WO2015072740A1 - Method for treating organic waste liquid including sludge and waste water using solvent extraction - Google Patents

Method for treating organic waste liquid including sludge and waste water using solvent extraction Download PDF

Info

Publication number
WO2015072740A1
WO2015072740A1 PCT/KR2014/010845 KR2014010845W WO2015072740A1 WO 2015072740 A1 WO2015072740 A1 WO 2015072740A1 KR 2014010845 W KR2014010845 W KR 2014010845W WO 2015072740 A1 WO2015072740 A1 WO 2015072740A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
solvent
waste liquid
organic
organic waste
Prior art date
Application number
PCT/KR2014/010845
Other languages
French (fr)
Korean (ko)
Inventor
강진구
Original Assignee
김용환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김용환 filed Critical 김용환
Publication of WO2015072740A1 publication Critical patent/WO2015072740A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/06Means for pre-treatment of biological substances by chemical means or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention relates to a method for treating organic waste liquid containing sludge and waste water, and more particularly, to a method for treating organic waste liquid including sludge and waste water using a solvent extraction method.
  • the reason for this agglomeration is that water acts as a medium for connecting the particles in a water content of 25% or more.
  • the water content is 25% or more for two reasons.
  • the first is that organic sludge particles generally have a small particle size of less than 200 m, so that the capillary between them is narrow and the outermost angle cannot be easily removed.
  • the second is that the microorganisms in the sewage are not destroyed.
  • the body water present in the microorganisms accounts for about 40% of the total water after the flocculation treatment.
  • Palm Oil Mill Effluent is the term used for the wastewater produced when palm oil is produced in a palm oil refining facility. It is causing a big problem.
  • the present invention is to solve the above problems, an object of the present invention is to provide an organic waste liquid treatment method that is easy to remove the water of the sludge using a solvent extraction method.
  • the object of the present invention is a method for treating an organic waste liquid containing sludge and waste water by using a solvent extraction method, comprising: extracting at least a portion of the sludge to the organic solvent by mixing the organic waste liquid and the organic solvent; Separating the wastewater and the organic solvent after the extraction; Is achieved by first separating the organic solvent and the sludge.
  • the sludge includes microorganisms, and the organic solvent includes a microbial destruction component capable of destroying the microorganisms; It may include an interface characteristic change component that can change the characteristics of the sludge interface.
  • the microbial destruction component includes an alcohol hydrocarbon and may be 3 to 10 wt%.
  • the interfacial property change component may include an aromatic hydrocarbon and an ether hydrocarbon, the aromatic hydrocarbon may be 19 to 35% by weight, and the ether hydrocarbon may be 5 to 10% by weight.
  • the organic solvent may further include 29 to 24% by weight of olefinic hydrocarbons and 12 to 29% of paraffinic hydrocarbons.
  • the sludge includes microorganisms, and the organic solvent includes a microbial destruction component capable of destroying the microorganisms; It may include a viscosity reducing component for reducing the viscosity of the sludge.
  • the microbial destruction component includes an alcohol-based hydrocarbon, 3 to 10% by weight, and the viscosity reducing component may include 12 to 29% by weight of a paraffinic hydrocarbon.
  • the method may further include diluting by adding additional water to the sewage.
  • Primary separation of the solvent and the sludge may be carried out by a mechanical method.
  • After the primary separation step of the solvent and the sludge, may further comprise the step of secondary separation of the organic sludge and the solvent under conditions of increasing the vaporization activity.
  • the secondary separation may be performed at room temperature.
  • the primary separation may further comprise briquetting or pelletizing the sludge.
  • the sludge contains a microorganism
  • the organic solvent includes an alcohol hydrocarbon that can destroy the microorganism, the destruction of the microorganism may be carried out in the extraction step.
  • the solvent may be reused in the extraction step after recovery in the separation step.
  • the dilution, extraction and separation steps are carried out in a closed system which is isolated from the outside, wherein the organic waste liquid further comprises oil / grease, and before the extraction, the oil / grease is recovered after mixing the oil recovery solvent and the organic waste liquid. It may further comprise the step.
  • Figure 1 shows the configuration of the aggregated mass obtained in the conventional sludge treatment method
  • Figure 2 shows the flow of the sludge treatment method according to a first embodiment of the present invention
  • FIG. 4 illustrates the sludge / solvent primary separation step in the sludge treatment method according to the first embodiment of the present invention.
  • FIG. 5 illustrates the sludge / solvent secondary separation step in the sludge treatment method according to the first embodiment of the present invention.
  • Figure 6 shows the flow of the sludge treatment method according to a second embodiment of the present invention
  • Figure 7 shows the sewage before solvent extraction in the first experimental example
  • Figure 10 shows the POME stock solution and diluent in Example 2,
  • Figure 13 shows the FT-IR results of the oil recovered in the second experimental example
  • FIG. 15 shows FT-IR results of a test solvent before use in Example 2,
  • Fig. 17 shows the state of the sludge powder obtained in the second experimental example.
  • the present invention relates to a method for treating an organic waste solution including sludge and wastewater by using solvent extraction, comprising: extracting at least a portion of the sludge with an organic solvent by mixing sewage and an organic solvent; Separating the wastewater and the organic solvent after extraction; Primary separation of the organic solvent and sludge.
  • Organic waste liquid in the present invention means a mixture of waste water and sludge.
  • the sludge includes organic sludge, microorganisms and some inorganic substances, and may include only organic sludge in some cases.
  • Organic waste liquid in the present invention is a factory waste water, process waste water, organic waste liquid containing paper slurry, organic waste liquid containing food, organic waste liquid containing livestock manure, organic waste liquid generated after food processing, organic generated in the pharmaceutical process Waste liquid, organic mine wastewater.
  • the organic waste liquid in the present invention includes a sugar mill effluent (SME) which is a wastewater generated in the process of producing sugar in the sugar cane refinery.
  • SME sugar mill effluent
  • the present invention by applying a solvent extraction method used for metal extraction to extract the sludge in the organic waste liquid with an organic solvent, the outermost number of the organic sludge is easily removed in the solvent extraction process.
  • the sludge microorganisms are destroyed by the solvent, so that the crystal water of the microorganism can be easily removed.
  • the sludge includes both organic sludge and microorganisms by way of example.
  • the wastewater and POME are described as organic waste liquids, but the present invention is not limited thereto.
  • the organic waste liquid treatment method (sludge treatment method) according to the first embodiment of the present invention will be described in detail.
  • the organic waste liquid in the first embodiment is sewage.
  • FIG. 2 shows a flow of the sewage treatment method according to the first embodiment.
  • Dilution is to adjust the sludge concentration in the sewage in consideration of the reaction ratio between the waste water and the solvent. If the sludge concentration in the sewage is within a range suitable for the solvent extraction process, this step can be omitted. In addition, depending on the sludge concentration in the sewage, process conditions such as solvent usage may be changed in the solvent extraction, in which case the dilution step may be omitted.
  • sludge concentrations and / or components in the sewage may be observed and subsequent process conditions may be changed depending on the observed results. Sludge concentrations and / or component observations can be made in real time.
  • the sludge is extracted by mixing an organic solvent (extraction solvent) and sewage (S200).
  • solvent extraction is performed in which organic sludge and microorganisms are transferred to an extraction solvent (organic solvent).
  • the organic solvent is at least two of the microbial destruction components that can destroy microorganisms, the interfacial property change component that changes the characteristics of the sludge interface, the interparticle property change component that changes the characteristics between the sludge particles, and the viscosity reduction component that reduces the viscosity of the sludge It may contain more than branches.
  • the microbial destruction component functions to destroy microorganisms by leaking internal moisture to the outside of the microbial cell membrane, and may use an alcohol-based hydrocarbon.
  • the alcoholic hydrocarbon may have 2 to 5 carbon atoms, for example, ethanol and / or isopropyl alcohol may be used. Alcoholic hydrocarbons may be used in 3 to 10% by weight.
  • the interfacial property change component is composed of a first component that increases the water contact angle of the organic sludge interface and a second component that lowers the surface tension of the organic sludge interface.
  • first component an aromatic hydrocarbon may be used, for example, dimethylbenzene and methylbenzene may be used.
  • the first component may be used 19 to 35% by weight.
  • second component an ether hydrocarbon may be used, for example, di-n-propyl ether may be used.
  • the second component may be used 5 to 10% by weight.
  • the interparticle property change component forms a hydrophobic adsorption agglomerate to widen the capillary radius between organic sludge particles.
  • An olefinic hydrocarbon may be used as the component for changing the particles, for example, 2-methyl 2-butene (di-methyl but-2-ene) and cyclohexane may be used.
  • the interparticle characteristic change component may be used in an amount of 29 to 48 wt%.
  • the viscosity reducing component performs a function of reducing the viscosity of the organic sludge.
  • a paraffinic hydrocarbon having 5 to 8 carbon atoms may be used.
  • pentane, hexane and / or heptane may be used.
  • the viscosity reducing component may be used 12 to 29%.
  • the specific gravity of the organic solvent may be 0.4 to 0.9, and may be 0.5 to 0.7.
  • Organic solvents may be more volatile than water.
  • Organic sludge, microorganisms, wastewater and organic solvents exist before extraction.
  • organic sludge particles bind to an organic solvent having a lower specific gravity.
  • Organic sludge particles whose specific gravity is lighter than water through the combination with the organic solvent are separated from the surface water while rapidly moving to the organic solvent layer.
  • up to 40% of the crystallized water in the microorganisms is easily removed by microbial destruction by organic solvents.
  • Microorganisms combined with organic solvents also migrate to the organic solvent layer.
  • Extraction may be carried out under turbulent conditions, which may be formed by machinery causing a pressure difference between the inlet and outlet, rheology machines equipped with baffles, mixers or stirrers, and the like. Extraction can be carried out in a batch reaction or in a continuous reaction. In order to improve the extraction rate, it may be performed by co-current multistage extraction or counter-current multistage extraction.
  • waste water phase and the organic solvent phase are separated (S300).
  • This process may use conventional fixing and separation methods.
  • the separated waste water can be used or discharged as industrial / living / agricultural water after appropriate treatment. If necessary, separate concentration tanks can be installed and operated to ensure additional retention time for complete separation of the wastewater from the recovered organic solvent phase.
  • the separated wastewater may be used for dilution of sewage (S100).
  • the sewage contains heavy metals
  • heavy metals can also be extracted by the organic solvent.
  • the heavy metal content of the wastewater is greatly reduced, it is easy to utilize the wastewater.
  • separate solvents may be used to remove heavy metals in the wastewater or sludge, or additional processes may be added.
  • the primary separation can be carried out through any machine capable of solid-liquid separation, such as a vacuum filter, filter press, belt press, screw dehydrator, centrifugal dehydrator.
  • Primary separation may be carried out by a mechanical method, and a single mechanical method may be carried out a plurality of times or a plurality of mechanical methods may be used.
  • Organic solvent is combined on the organic sludge and the surface of the microorganism before the first separation. Through primary separation, most organic solvents are recovered from organic sludge and microorganisms.
  • Secondary separation of the organic solvent may be carried out at room temperature, and may be compressed air to help recover the remaining organic solvent.
  • Compressed air plays a role in creating a condition that increases the vaporization activity of the organic solvent. Compressed air collides with the organic solvent, and the organic solvent diffuses and vaporizes by the collision. In another embodiment, other means for increasing the vaporization activity of the organic solvent may be used in addition to providing compressed air.
  • the secondary separation may be performed at room temperature to 50, or may use a vacuum.
  • Secondary separation may be carried out in a batch or continuous process.
  • an in-pipe powder transfer device in the form of an air amplifier, a tank containing a rotating body such as a fan, a blower, a cyclone, a jet mill, a conveyor belt or a spiral conveyor.
  • the sludge obtained may be in powder form.
  • Sludge can be manufactured in the form of briquettes or pellets and used as a fuel source, especially with coal where fossil fuels are used, such as thermal power plants and cogeneration plants.
  • the calorific value of the sludge may be 3500 to 5500 kcal / kg.
  • the organic solvent recovered in the primary separation and the secondary separation can be used again in the extraction process.
  • a process for regenerating all or part of the recovered organic solvent may be added, and a certain amount of organic solvent may be replaced with a new organic solvent.
  • the organic solvent replacement time may be automatically informed by observing the extraction efficiency of the organic solvent or the change in the composition of the organic solvent. Observation of extraction efficiency or component change can be made regularly or irregularly, and can be observed in real time. Extraction efficiencies or component changes can be observed by sampling organic solvents or monitored remotely through instruments.
  • the treatment of sewage described above can be carried out in a closed system in which the outside and the inside are separated. In this case, the occurrence of other additional reactions is inherently blocked and the risk of secondary environmental pollution is reduced.
  • the organic waste liquid is POME.
  • Palm Oil Mill Effluent is the term used for the wastewater produced when palm oil is produced in a palm oil refinery. It is not easy to treat wastewater, which is a major environmental problem in six Southeast Asian countries that are currently producing palm oil. Is causing.
  • POME has a very high BOD, COD concentration, as well as a large amount of Total Solids, Suspended Solids, Volatile solids, and Oil & Grease.
  • Table 1 shows the general characteristics of POME.
  • POME treatment technologies include 1) Ponding system, 2) Conventional physico-chemical treatment, and 3) Aerobic and Anaerobic digestion. have. However, most of the slow treatment times (reservoir treatment: 45-60 days, aerobic & anaerobic treatment: 4-10 days), large treatment sites, difficulties in managing volatile gas capture and capture systems such as methane and high water content of sediments (more than 80%) Due to problems such as), POME is not properly handled.
  • a part different from the first embodiment of the second embodiment is the oil / grease recovery step S150.
  • the oil and grease residues contained in the POME are separated / recovered, and an extraction method using an oil recovery solvent may be used.
  • the oil recovery solvent may consist of aromatic hydrocarbons and paraffinic hydrocarbons.
  • the aromatic hydrocarbon may use dimethylbenzene and / or methylbenzene, and the paraffinic hydrocarbon may use pentane, heptane and / or octane.
  • the aromatic hydrocarbon may be used 74 to 95% by weight, more specifically 22 to 81% by weight of dimethylbenzene and 14 to 53% by weight of methylbenzene may be used.
  • the paraffinic hydrocarbon may use 5 to 26% by weight of C5 to C12 hydrocarbon. More specifically, 2 to 13 wt% of pentane, 2 to 8 wt% of heptane, and 1 to 5 wt% of octane may be used.
  • As the paraffinic hydrocarbon hexane, nonane, decane, undecane and / or dodecane can be used.
  • Oil / grease recovery recovers oil recovery solvents containing oil and grease.
  • the recovered oil recovery solvent can be used as an energy source of oil components by itself, and can be separated from oil and grease through a special separation device such as a heating / aggregation recovery device or a membrane separator.
  • the sewage used for the experiment was taken from the U city Y sewage treatment plant, showing a turbid state as shown in FIG. MLSS (mixed liquor suspended solids) was 5027 mg / L.
  • Sewage and organic solvent were mixed at a volume ratio of 1: 0.0005 at room temperature, and the solvent was extracted under turbulent conditions for 5 minutes.
  • composition of the organic solvent used is as follows.
  • FIG. 8 shows the wastewater from which the organic solvent phase is separated after standing, and shows that the sludge has been sufficiently removed as compared with FIG. 7.
  • Table 3 is the component and calorific value data of the organic sludge recovered.
  • the high calorific value was 3,876 kcal / kg, which is sufficient for thermal power plants.
  • Test Items unit Result 1 Test Methods Fixed carbon % 9.2 ASTM D 5142-04 (Compliant) Ash % 6.2 ASTM D 5142-04 (Compliant) Volatile Powder (VM) % 78.9 ASTM D 5142-04 (Compliant) moisture % 3.7 ASTM D 5142-04 (Compliant) Sulfur powder % 0.37 KS E ISO 334: 2003 High calorific value kcal / kg 3876 KS E 3707: 2001 (applied mutatis mutandis)
  • the experiment was performed on POME with an MLSS concentration of 57,400 (mg / L). After 20-fold dilution, POME and an oil recovery solvent were mixed at turbulent conditions for 5 minutes at a volume ratio of 1: 0.0005, and oil and grease were recovered. Thereafter, the POME and the organic solvent were mixed at turbulent conditions for 5 minutes at a volume ratio of 1: 0.0005, and then the solvent phase and the wastewater phase were separated.
  • composition of the oil recovery solvent is shown in Table 4, and the composition of the organic solvent is the same as in Experiment 1.
  • Figure 10 shows the POME stock solution and diluent
  • Figure 11 shows the treated water.
  • the removal rate is calculated from the concentration ratio of the dilution standard treatment water for each item.
  • Table 5 shows the results of water quality analysis by sampling the treated water obtained after the solid sludge (SS) separation experiment in the POME diluent. As can be seen in Table 5, SS and O & G, which are to be removed in this experiment, can satisfy both Malaysian regulations.
  • FIG. 15 shows FT-IR results of the organic solvent before use
  • FIG. 16 shows FT-IR results of the organic solvent recovered after the third experiment.
  • Figure 17 shows the state of the sludge powder obtained in the second experimental example of the present invention.
  • the recovered powder had a high calorific value of 17800 J / g. This translates into a calorific value of about 4252 kcal / kg, which is sufficient for thermal power plants.
  • the POME can be effectively treated by the present invention.
  • the present invention can be used for the treatment of organic waste liquid.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

The present invention relates to a method for treating organic waste liquid including sludge and waste water using solvent extraction, comprising the steps of: mixing the organic waste liquid and a solvent so as to extract at least a part of the sludge by the solvent; separating the waste water and the solvent after the extraction; and primarily separating the solvent and the sludge.

Description

용매 추출을 이용한 슬러지와 폐수를 포함하는 유기폐액의 처리방법Treatment method of organic waste liquid containing sludge and wastewater by solvent extraction
본 발명은 슬러지와 폐수를 포함하는 유기폐액의 처리방법에 관한 것으로, 더 구체적으로는 용매추출법을 이용한 슬러지와 폐수를 포함하는 유기폐액의 처리방법에 관한 것이다.The present invention relates to a method for treating organic waste liquid containing sludge and waste water, and more particularly, to a method for treating organic waste liquid including sludge and waste water using a solvent extraction method.
런던 협약에 따라 대한민국은 2014년부터 하수 슬러지의 해양투기가 전면 금지될 예정이다. 이에 따라 하수를 효율적으로 처리할 수 있는 기술의 개발이 시급한 현실이다.Under the London Convention, South Korea will ban all dumping of sewage sludge from 2014. Accordingly, the development of technology that can efficiently treat sewage is an urgent reality.
기존의 처리방법에서는 고분자 응집제를 이용하여 하수 내에 존재하고 있는 유기성 슬러지, 미생물 및 중금속 등을 물과 함께 덩어리로 응집/침전시킨다. 이러한 처리방법에 따르면 도 1과 같이 비중이 1.2 정도의 슬러지 덩어리가 분리/회수된다.In the existing treatment method, organic sludge, microorganisms and heavy metals existing in sewage are agglomerated / precipitated together with water using a polymer flocculant. According to this treatment method, as shown in FIG. 1, the sludge mass having a specific gravity of about 1.2 is separated / recovered.
이렇게 덩어리가 되는 이유는 물 함유량이 25% 이상의 조건에서는 물이 입자들을 연결하는 매체로서 작용하기 때문이다.The reason for this agglomeration is that water acts as a medium for connecting the particles in a water content of 25% or more.
고분자 응집제를 사용하는 경우 물의 함유량이 25%이상이 되는 이유는 두 가지이다. 첫 번째는 일반적으로 유기성 슬러지의 입자들은 200m미만의 작은 입자 사이즈를 가지기 때문에 그 들 사이에 존재하는 모세관(Capillary)도 좁아 최외각수가 쉽게 빠지지 못하기 때문이다. 두 번째는 하수에 존재하고 있는 미생물이 파괴되지 않기 때문인데, 미생물 내부에 존재하고 있는 체내수는 응집 처리 후 전체 물의 약 40%를 차지한다.When the polymer flocculant is used, the water content is 25% or more for two reasons. The first is that organic sludge particles generally have a small particle size of less than 200 m, so that the capillary between them is narrow and the outermost angle cannot be easily removed. The second is that the microorganisms in the sewage are not destroyed. The body water present in the microorganisms accounts for about 40% of the total water after the flocculation treatment.
이런 이유로 기존 방법에서는 기계적 탈수를 통해서는 미생물 내에 존재하는 40%의 체내수를 제외한 나머지 60%의 최외각수 중 15-20%의 물만 탈수 가능하다. For this reason, in the conventional method, only 15-20% of water can be dehydrated out of the remaining 60% of the outermost water except for 40% of the body water present in the microorganism through mechanical dehydration.
따라서 기존 처리방법에서는 재활용 또는 매립처리를 위한 함수율 기준을 맞추기 위해 열처리/건조 소각 등의 2차 처리가 필요한 문제가 있다. Therefore, in the existing treatment method, there is a problem that secondary treatment such as heat treatment / dry incineration is required to meet the water content standard for recycling or landfill treatment.
한편, Palm Oil Mill Effluent(POME)는 팜오일 정제 시설에서 팜오일을 생산할 때 발생되는 폐수를 뜻하는 용어로 폐수정제 처리가 쉽지 않은 특성으로 인해 현재 팜유를 생산하고 있는 동남아 6개국에서 환경적으로 큰 문제를 야기시키고 있다.On the other hand, Palm Oil Mill Effluent (POME) is the term used for the wastewater produced when palm oil is produced in a palm oil refining facility. It is causing a big problem.
이와 같이 유기슬러지와 폐수를 포함하고 있는 하수나 POME와 같은 유기폐액에 대한 처리방법의 개발이 필요하다.As such, it is necessary to develop a treatment method for organic waste liquids such as sewage and POME containing organic sludge and waste water.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 용매추출법을 이용하여 슬러지의 수분제거가 용이한 유기폐액 처리방법을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to provide an organic waste liquid treatment method that is easy to remove the water of the sludge using a solvent extraction method.
상기 본 발명의 목적은 슬러지와 폐수를 포함하는 유기폐액을 용매추출법을 이용하여 처리하는 방법에 있어서, 상기 유기폐액과 유기용매를 혼합하여 상기 슬러지의 적어도 일부를 상기 유기용매로 추출하는 단계와; 상기 추출 후 폐수와 유기용매를 분리하는 단계와; 상기 유기용매와 상기 슬러지를 1차 분리하는 단계를 포함하는 것에 의해 달성된다.The object of the present invention is a method for treating an organic waste liquid containing sludge and waste water by using a solvent extraction method, comprising: extracting at least a portion of the sludge to the organic solvent by mixing the organic waste liquid and the organic solvent; Separating the wastewater and the organic solvent after the extraction; Is achieved by first separating the organic solvent and the sludge.
상기 슬러지는 미생물을 포함하며, 상기 유기용매는, 상기 미생물을 파괴할 수 있는 미생물파괴성분과; 슬러지 계면의 특성을 변화시킬 수 있는 계면특성변화성분을 포함할 수 있다.The sludge includes microorganisms, and the organic solvent includes a microbial destruction component capable of destroying the microorganisms; It may include an interface characteristic change component that can change the characteristics of the sludge interface.
상기 미생물파괴성분은 알코올계 탄화수소를 포함하며 3 내지 10 중량%일 수 있다.The microbial destruction component includes an alcohol hydrocarbon and may be 3 to 10 wt%.
상기 계면특성변화성분은 방향족 탄화수소와 에테르계 탄화수소를 포함하며, 상기 방향족 탄화수소는 19 내지 35 중량%이고 상기 에테르계 탄화수소는 5 내지 10 중량%일 수 있다.The interfacial property change component may include an aromatic hydrocarbon and an ether hydrocarbon, the aromatic hydrocarbon may be 19 to 35% by weight, and the ether hydrocarbon may be 5 to 10% by weight.
상기 유기용매는 29 내지 24중량%의 올레핀계 탄화수소와 12 내지 29%의 파라핀계 탄화수소를 더 포함할 수 있다.The organic solvent may further include 29 to 24% by weight of olefinic hydrocarbons and 12 to 29% of paraffinic hydrocarbons.
상기 슬러지는 미생물을 포함하며, 상기 유기용매는, 상기 미생물을 파괴할 수 있는 미생물파괴성분과; 슬러지의 점도를 저감시키는 점도저감성분을 포함할 수 있다.The sludge includes microorganisms, and the organic solvent includes a microbial destruction component capable of destroying the microorganisms; It may include a viscosity reducing component for reducing the viscosity of the sludge.
상기 미생물파괴성분은 알코올계 탄화수소를 포함하며 3 내지 10 중량%이고, 상기 점도저감성분은 파라핀계 탄화수소를 포함하며 12 내지 29 중량%일 수 있다.The microbial destruction component includes an alcohol-based hydrocarbon, 3 to 10% by weight, and the viscosity reducing component may include 12 to 29% by weight of a paraffinic hydrocarbon.
상기 추출 전에, 상기 하수에 추가의 물을 가하여 희석하는 단계를 더 포함할 수 있다.Before the extraction, the method may further include diluting by adding additional water to the sewage.
상기 용매와 상기 슬러지의 1차 분리는 기계적 방법으로 수행될 수 있다.Primary separation of the solvent and the sludge may be carried out by a mechanical method.
상기 용매와 상기 슬러지의 1차 분리 단계 후에, 기화활성도를 높인 조건에서 상기 유기성 슬러지와 용매를 2차 분리하는 단계를 더 포함할 수 있다.After the primary separation step of the solvent and the sludge, may further comprise the step of secondary separation of the organic sludge and the solvent under conditions of increasing the vaporization activity.
상기 2차 분리는 상온에서 수행될 수 있다.The secondary separation may be performed at room temperature.
상기 1차 분리 후에, 상기 슬러지를 브리켓팅이나 펠렛타이징하는 단계를 더 포함할 수 있다.After the primary separation, it may further comprise briquetting or pelletizing the sludge.
상기 슬러지는 미생물을 포함하고, 상기 유기용매는 상기 미생물을 파괴할 수 있는 알코올계 탄화수소를 포함하며, 상기 미생물의 파괴는, 상기 추출 단계에서 수행될 수 있다.The sludge contains a microorganism, the organic solvent includes an alcohol hydrocarbon that can destroy the microorganism, the destruction of the microorganism may be carried out in the extraction step.
상기 용매는, 상기 분리 단계에서 회수 후 상기 추출 단계에 재사용할 수 있다.The solvent may be reused in the extraction step after recovery in the separation step.
상기 희석, 추출 및 분리 단계는 외부와 차단된 닫힌계 내에서 수행되며, 상기 유기폐액은 오일/그리스를 더 포함하며, 상기 추출 전에, 오일회수용매와 상기 유기폐액을 혼합 후 상기 오일/그리스를 회수하는 단계를 더 포함할 수 있다.The dilution, extraction and separation steps are carried out in a closed system which is isolated from the outside, wherein the organic waste liquid further comprises oil / grease, and before the extraction, the oil / grease is recovered after mixing the oil recovery solvent and the organic waste liquid. It may further comprise the step.
본 발명에 따르면 용매추출법을 이용하여 슬러지의 수분제거가 용이한 유기폐액의 처리방법이 제공된다. According to the present invention, there is provided a method for treating an organic waste liquid which is easy to remove water from sludge using a solvent extraction method.
도 1은 기존 슬러지 처리방법에서 얻어지는 응집덩어리의 구성을 나타낸 것이고,Figure 1 shows the configuration of the aggregated mass obtained in the conventional sludge treatment method,
도 2는 본 발명의 제1실시예에 따른 슬러지 처리방법의 흐름을 나타낸 것이고,Figure 2 shows the flow of the sludge treatment method according to a first embodiment of the present invention,
도 3은 본 발명의 제1실시예에 따른 슬러지 처리방법에서 추출 단계를 설명하는 것이고,3 illustrates the extraction step in the sludge treatment method according to the first embodiment of the present invention,
도 4는 본 발명의 제1실시예에 따른 슬러지 처리방법에서 슬러지/용매 1차 분리 단계를 설명하는 것이고,4 illustrates the sludge / solvent primary separation step in the sludge treatment method according to the first embodiment of the present invention.
도 5는 본 발명의 제1실시예에 따른 슬러지 처리방법에서 슬러지/용매 2차 분리 단계를 설명하는 것이고,FIG. 5 illustrates the sludge / solvent secondary separation step in the sludge treatment method according to the first embodiment of the present invention.
도 6은 본 발명의 제2실시예에 따른 슬러지 처리방법의 흐름을 나타낸 것이고,Figure 6 shows the flow of the sludge treatment method according to a second embodiment of the present invention,
도 7은 제1 실험예에 있어 용매추출 전의 하수를 나타낸 것이고,Figure 7 shows the sewage before solvent extraction in the first experimental example,
도 8은 제1실험예에 있어 용매추출 후의 폐수를 나타낸 것이고,8 shows the wastewater after the solvent extraction in the first experimental example,
도 9는 제1실험예에 있어 슬러지 처리방법에 의해 얻어진 슬러지 파우더를 나타낸 것이고,9 shows the sludge powder obtained by the sludge treatment method in the first experimental example,
도 10은 제2실험예에 있어 POME 원액과 희석액을 나타낸 것이고,Figure 10 shows the POME stock solution and diluent in Example 2,
도 11은 제2실험예에 있어 처리수를 나타낸 것이고,11 shows the treated water in the second experimental example,
도 12는 제2실험예에 있어 회수한 오일을 나타낸 것이고,12 shows the oil recovered in Example 2,
도 13은 제2실험예에 있어 회수된 오일의 FT-IR 결과를 나타낸 것이고,Figure 13 shows the FT-IR results of the oil recovered in the second experimental example,
도 14는 제2실험예에 있어 시중에 판매 중인 팜 오일의 FT-IR 결과를 나타낸 것이고,14 shows FT-IR results of palm oil on the market in Experimental Example 2.
도 15는 제2실험예에 있어 사용전 실험용매의 FT-IR 결과를 나타낸 것이고,FIG. 15 shows FT-IR results of a test solvent before use in Example 2,
도 16은 제2실험예에 있어 3회차 실험 후 회수한 실험용매의 FT-IR 결과를 나타낸 것이고,16 shows the FT-IR results of the experimental solvent recovered after the third experiment in Example 2,
도 17은 제2실험예에 있어 얻어진 슬러지 파우더의 모습을 나타낸 것이다.Fig. 17 shows the state of the sludge powder obtained in the second experimental example.
본 발명은 슬러지와 폐수를 포함하는 유기폐액을 용매추출을 이용하여 처리하는 방법에 관한 것으로, 하수와 유기용매를 혼합하여 슬러지의 적어도 일부를 유기용매로 추출하는 단계와; 추출 후 폐수와 유기용매를 분리하는 단계와; 유기용매와 슬러지를 1차 분리하는 단계를 포함한다.The present invention relates to a method for treating an organic waste solution including sludge and wastewater by using solvent extraction, comprising: extracting at least a portion of the sludge with an organic solvent by mixing sewage and an organic solvent; Separating the wastewater and the organic solvent after extraction; Primary separation of the organic solvent and sludge.
본 발명에서의 유기폐액은 폐수와 슬러지의 혼합물을 의미한다. 슬러지는 유기성 슬러지와 미생물 및 일부 무기물이 포함되며 경우에 따라 유기성 슬러지만을 포함할 수 있다. 본 발명에서의 유기폐액은 공장폐수, 공정폐수, 제지슬러리를 포함하는 유기폐액, 음식물을 포함하는 유기폐액, 축산분뇨를 포함하는 유기폐액, 식품가공 후 발생하는 유기폐액, 제약공정에서 발생하는 유기폐액, 유기성 광산폐수를 포함한다. 또한 본 발명에서의 유기폐액은 사탕수수 정제 시설에서 설탕을 생산하는 과정에서 발생되는 폐수인 SME(sugar mill effluent)를 포함한다.Organic waste liquid in the present invention means a mixture of waste water and sludge. The sludge includes organic sludge, microorganisms and some inorganic substances, and may include only organic sludge in some cases. Organic waste liquid in the present invention is a factory waste water, process waste water, organic waste liquid containing paper slurry, organic waste liquid containing food, organic waste liquid containing livestock manure, organic waste liquid generated after food processing, organic generated in the pharmaceutical process Waste liquid, organic mine wastewater. In addition, the organic waste liquid in the present invention includes a sugar mill effluent (SME) which is a wastewater generated in the process of producing sugar in the sugar cane refinery.
본 발명에서는 금속 추출에 사용되는 용매 추출방법을 적용하여 유기폐액 중의 슬러지를 유기용매로 추출하며, 용매추출과정에서 유기성 슬러지의 최외각수가 용이하게 제거된다. 슬러지의 미생물은 용매에 의해 파괴되어, 미생물의 결정수도 용이하게 제거할 수 있다.In the present invention, by applying a solvent extraction method used for metal extraction to extract the sludge in the organic waste liquid with an organic solvent, the outermost number of the organic sludge is easily removed in the solvent extraction process. The sludge microorganisms are destroyed by the solvent, so that the crystal water of the microorganism can be easily removed.
이하의 설명에서는 슬러지가 유기성 슬러지 및 미생물을 모두 포함하는 것을 예시로 설명한다. 또한 이하의 설명에서는 유기폐액으로 하수와 POME를 예시로 설명하나 본 발명은 이에 한정되지 않는다.In the following description, the sludge includes both organic sludge and microorganisms by way of example. In addition, in the following description, the wastewater and POME are described as organic waste liquids, but the present invention is not limited thereto.
이하, 도 2 내지 도 5를 참조하여, 본 발명의 제1실시예에 따른 유기폐액의 처리 방법(슬러지 처리 방법)을 상세히 설명한다. 제1실시예에서의 유기폐액은 하수이다.2 to 5, the organic waste liquid treatment method (sludge treatment method) according to the first embodiment of the present invention will be described in detail. The organic waste liquid in the first embodiment is sewage.
도 2는 제1실시예에 따른 하수 처리방법의 흐름을 나타낸 것이다.2 shows a flow of the sewage treatment method according to the first embodiment.
먼저 하수를 용매추출에 적합하도록 희석한다(S100). 희석은 폐수와 용매와의 반응비를 고려하여 하수 내의 슬러지 농도를 조절하는 것이다. 하수 내의 슬러지 농도가 용매추출 공정에 적합한 범위 내에 있을 경우, 이 단계는 생략될 수 있다. 또한 하수 내 슬러지 농도에 따라 용매추출에서 용매 사용량과 같은 공정 조건을 변화시킬 수 있으며, 이 경우에도 희석단계는 생략될 수 있다. First dilute the sewage to suit the solvent extraction (S100). Dilution is to adjust the sludge concentration in the sewage in consideration of the reaction ratio between the waste water and the solvent. If the sludge concentration in the sewage is within a range suitable for the solvent extraction process, this step can be omitted. In addition, depending on the sludge concentration in the sewage, process conditions such as solvent usage may be changed in the solvent extraction, in which case the dilution step may be omitted.
다른 실시예에서는 하수 내 슬러지 농도 및/또는 성분을 관찰하고, 관찰된 결과에 따라 이후의 공정 조건을 변화시킬 수 있다. 슬러지 농도 및/또는 성분 관찰은 실시간으로 이루어질 수 있다. In another embodiment, sludge concentrations and / or components in the sewage may be observed and subsequent process conditions may be changed depending on the observed results. Sludge concentrations and / or component observations can be made in real time.
다음으로 유기용매(추출용매)와 하수를 혼합하여 슬러지를 추출한다(S200). 이 단계에서 유기슬러지와 미생물이 추출용매(유기용매)로 이동하는 용매추출이 수행된다. Next, the sludge is extracted by mixing an organic solvent (extraction solvent) and sewage (S200). In this step, solvent extraction is performed in which organic sludge and microorganisms are transferred to an extraction solvent (organic solvent).
유기용매는 미생물을 파괴할 수 있는 미생물파괴성분, 슬러지계면의 특성을 변화시키는 계면특성변화성분, 슬러지 입자간의 특성을 변화시키는 입자간특성변화성분 및 슬러지의 점도를 저감시키는 점도저감성분 중 적어도 2가지 이상을 포함할 수 있다.The organic solvent is at least two of the microbial destruction components that can destroy microorganisms, the interfacial property change component that changes the characteristics of the sludge interface, the interparticle property change component that changes the characteristics between the sludge particles, and the viscosity reduction component that reduces the viscosity of the sludge It may contain more than branches.
미생물파괴성분은 미생물 세포막 외부로 내부 수분을 유출시켜 미생물을 파괴하는 기능을 수행하며 알콜계 탄화수소를 사용할 수 있다. 알콜계 탄화수소는 탄소수 2 내지 5일 수 있으며, 예를 들어, 에탄올 및/또는 이소프로필 알콜을 사용할 수 있다. 알콜계 탄화수소는 3 내지 10중량% 사용될 수 있다.The microbial destruction component functions to destroy microorganisms by leaking internal moisture to the outside of the microbial cell membrane, and may use an alcohol-based hydrocarbon. The alcoholic hydrocarbon may have 2 to 5 carbon atoms, for example, ethanol and / or isopropyl alcohol may be used. Alcoholic hydrocarbons may be used in 3 to 10% by weight.
계면특성변화성분은 유기성슬러지 계면의 물접촉각을 높이는 제1성분과 유기성슬러지 계면의 표면장력을 낮추는 제2성분으로 이루어진다. 제1성분은 방향족 탄화수소를 사용할 수 있으며, 예를 들어, 디메틸벤젠과 메틸벤젠을 사용할 수 있다. 제1성분은 19 내지 35중량% 사용될 수 있다. 제2성분은 에테르계 탄화수소를 사용할 수 있으며, 예를 들어, 디-n-프로필 에테르를 사용할 수 있다. 제2성분은 5 내지 10중량% 사용될 수 있다.The interfacial property change component is composed of a first component that increases the water contact angle of the organic sludge interface and a second component that lowers the surface tension of the organic sludge interface. As the first component, an aromatic hydrocarbon may be used, for example, dimethylbenzene and methylbenzene may be used. The first component may be used 19 to 35% by weight. As the second component, an ether hydrocarbon may be used, for example, di-n-propyl ether may be used. The second component may be used 5 to 10% by weight.
입자간 특성변화성분은 소수성 흡착 응집을 형성하여 유기성슬러지 입자 간의 캐필러리 반경을 넓히는 기능을 수행한다. 입자간 특성변화성분으로는 올레핀계 탄화수소를 사용할 수 있으며, 예를 들어, 2-메틸 2-부텐(di-methyl but-2-ene)과 사이클로헥산을 사용할 수 있다. 입자간특성변화성분은 29 내지 48중량% 사용될 수 있다.The interparticle property change component forms a hydrophobic adsorption agglomerate to widen the capillary radius between organic sludge particles. An olefinic hydrocarbon may be used as the component for changing the particles, for example, 2-methyl 2-butene (di-methyl but-2-ene) and cyclohexane may be used. The interparticle characteristic change component may be used in an amount of 29 to 48 wt%.
점도저감성분은 유기성슬러지의 점도를 저감시키는 기능을 수행한다. 점도저감성분으로는 탄소수 5 내지 8인 파라핀계 탄화수소를 사용할 수 있으며, 예를 들어, 펜탄, 헥산 및/또는 헵탄을 사용할 수 있다. 점도저감성분은 12 내지 29%를 사용될 수 있다.The viscosity reducing component performs a function of reducing the viscosity of the organic sludge. As the viscosity reducing component, a paraffinic hydrocarbon having 5 to 8 carbon atoms may be used. For example, pentane, hexane and / or heptane may be used. The viscosity reducing component may be used 12 to 29%.
유기용매의 비중은 0.4 내지 0.9일 수 있으며, 0.5 내지 0.7일 수 있다. 유기용매는 물보다 휘발성이 높을 수 있다.The specific gravity of the organic solvent may be 0.4 to 0.9, and may be 0.5 to 0.7. Organic solvents may be more volatile than water.
이 과정을 도 3을 참조하여 자세히 설명한다. 추출 전 유기성 슬러지, 미생물, 폐수 및 유기용매가 존재하고 있다. 이들을 혼합하면 유기성 슬러지 입자가 더 낮은 비중을 가진 유기용매에 결합한다. 유기용매와의 결합을 통해 비중이 물보다 가벼워진 유기성 슬러지 입자는 유기용매 층으로 빠르게 이동하면서 표면수로부터 분리된다. 또한 미생물의 경우에는 유기용매에 의한 미생물 파괴에 의해 미생물 속에 있는 40%의 결정수까지 용이하게 제거된다. 유기용매와 결합된 미생물도 유기용매 층으로 이동하게 된다.This process will be described in detail with reference to FIG. 3. Organic sludge, microorganisms, wastewater and organic solvents exist before extraction. When mixed, organic sludge particles bind to an organic solvent having a lower specific gravity. Organic sludge particles whose specific gravity is lighter than water through the combination with the organic solvent are separated from the surface water while rapidly moving to the organic solvent layer. In the case of microorganisms, up to 40% of the crystallized water in the microorganisms is easily removed by microbial destruction by organic solvents. Microorganisms combined with organic solvents also migrate to the organic solvent layer.
추출은 난류조건에서 수행될 수 있으며, 난류 조건은 입구와 출구의 압력차를 유발하는 기계류, 베플이 설치된 유동학 기계, 믹서 또는 스터러 등으로 형성할 수 있다. 추출은 배치 반응 또는 연속식 반응으로 수행될 수 있다. 추출율을 향상시키기 위해 다단 연속추출(co-current multistage extraction) 방식이나 향류 다단추출(counter-current multistage extraction) 방식으로 수행될 수도 있다.Extraction may be carried out under turbulent conditions, which may be formed by machinery causing a pressure difference between the inlet and outlet, rheology machines equipped with baffles, mixers or stirrers, and the like. Extraction can be carried out in a batch reaction or in a continuous reaction. In order to improve the extraction rate, it may be performed by co-current multistage extraction or counter-current multistage extraction.
이 과정을 통해 하수의 유기성 슬러지와 미생물이 유기용매 층으로 이동하여 폐수로부터 분리된다. Through this process, organic sludge and microorganisms in sewage are transferred to the organic solvent layer and separated from the waste water.
다음으로 폐수상과 유기용매상을 분리한다(S300). 이 과정은 통상의 정치방법 및 분리방법을 사용할 수 있다. 분리된 폐수는 적절한 처리 후, 산업용/생활용/농업용 용수로 사용되거나 방류될 수 있다. 필요에 따라 회수된 유기용매상으로부터 완벽한 폐수의 분리를 위해 추가의 정체시간(retention time)을 확보하기 위한 별도의 농축조를 설치 및 운영할 수 있다. 다른 실시예에서 분리된 폐수는 하수의 희석(S100)에 사용될 수 있다.Next, the waste water phase and the organic solvent phase are separated (S300). This process may use conventional fixing and separation methods. The separated waste water can be used or discharged as industrial / living / agricultural water after appropriate treatment. If necessary, separate concentration tanks can be installed and operated to ensure additional retention time for complete separation of the wastewater from the recovered organic solvent phase. In another embodiment, the separated wastewater may be used for dilution of sewage (S100).
한편 하수가 중금속을 포함하고 있을 경우, 중금속도 유기용매에 의해 추출될 수 있다. 이 경우 폐수의 중금속 함량이 크게 감소하므로 폐수의 활용이 용이하다. 다른 실시예에서는 폐수 또는 슬러지 내의 중금속 제거를 위해 별도의 용매를 사용하거나, 별도의 공정이 추가될 수 있다.On the other hand, if the sewage contains heavy metals, heavy metals can also be extracted by the organic solvent. In this case, since the heavy metal content of the wastewater is greatly reduced, it is easy to utilize the wastewater. In other embodiments, separate solvents may be used to remove heavy metals in the wastewater or sludge, or additional processes may be added.
이후, 슬러지와 유기용매를 1차 분리한다(S400). 1차 분리는 감압필터, 필터프레스, 벨트프레스, 스크류탈수기, 원심탈수기와 같은 고액분리가 가능한 모든 기계를 통해 수행될 수 있다. 1차 분리는 기계적 방법으로 수행될 수 있으며, 단일의 기계적 방법을 복수 회 실시하거나 복수의 기계적 방법을 사용할 수 있다.Thereafter, the sludge and the organic solvent are first separated (S400). The primary separation can be carried out through any machine capable of solid-liquid separation, such as a vacuum filter, filter press, belt press, screw dehydrator, centrifugal dehydrator. Primary separation may be carried out by a mechanical method, and a single mechanical method may be carried out a plurality of times or a plurality of mechanical methods may be used.
이 과정을 도 4를 참조하여 자세히 설명한다. 1차 분리 전 유기성 슬러지와 미생물 표면에는 유기용매가 결합되어 있다. 1차 분리를 통해 대부분의 유기용매가 유기성 슬러지와 미생물로부터 회수된다. This process will be described in detail with reference to FIG. 4. Organic solvent is combined on the organic sludge and the surface of the microorganism before the first separation. Through primary separation, most organic solvents are recovered from organic sludge and microorganisms.
다음으로, 슬러지 표면에 있는 유기용매를 2차 분리한다(S500). Next, the organic solvent on the surface of the sludge is secondarily separated (S500).
이 과정을 도 5를 참조하여 설명한다. 유기용매의 2차 분리는 상온에서 수행될 수 있으며, 압축공기를 가하여 잔여 유기용매의 회수를 도울 수 있다. 압축공기는 유기용매의 기화활성도가 높아지는 조건을 만드는 역할을 한다. 압축공기는 유기용매와 충돌하며, 충돌에 의해 유기용매가 확산 및 기화된다. 다른 실시예에서는 압축공기의 제공 외에 유기용매의 기화활성도를 높일 수 있는 다른 수단이 사용될 수 있다.This process will be described with reference to FIG. 5. Secondary separation of the organic solvent may be carried out at room temperature, and may be compressed air to help recover the remaining organic solvent. Compressed air plays a role in creating a condition that increases the vaporization activity of the organic solvent. Compressed air collides with the organic solvent, and the organic solvent diffuses and vaporizes by the collision. In another embodiment, other means for increasing the vaporization activity of the organic solvent may be used in addition to providing compressed air.
유기용매의 2차 분리를 상온에서 수행하게 되면 온도 상승을 위한 별도의 에너지 소비가 없어 유기용매 회수를 위한 에너지가 절감된다. 또한 사용된 유기 용매가 물보다 휘발성이 높은 경우, 종래 공정에 비해 최종 슬러지를 얻기 위한 에너지 소비가 절감된다.When the secondary separation of the organic solvent is performed at room temperature, there is no separate energy consumption for increasing the temperature, thereby saving energy for organic solvent recovery. In addition, when the organic solvent used is more volatile than water, the energy consumption for obtaining the final sludge is reduced compared to the conventional process.
다른 실시예에서는, 2차 분리는 상온 내지 50에서 수행될 수 있으며, 진공을 이용할 수도 있다.In another embodiment, the secondary separation may be performed at room temperature to 50, or may use a vacuum.
2차 분리는 배치 또는 연속 공정으로 수행될 수 있다. 연속 공정으로 수행되는 경우 슬러지를 공기증폭기 형태의 관내 분체 이송기기, 팬과 같은 회전체가 포함된 탱크, 블로어, 사이클론, 제트밀, 콘베이어 밸트나 스파이럴 콘베이어로 이송하면서 유기용매를 회수할 수 있다. Secondary separation may be carried out in a batch or continuous process. When carried out in a continuous process it is possible to recover the organic solvent while transporting the sludge to an in-pipe powder transfer device in the form of an air amplifier, a tank containing a rotating body such as a fan, a blower, a cyclone, a jet mill, a conveyor belt or a spiral conveyor.
2차 분리를 통해 10% 미만의 함수율을 가진 슬러지를 얻을 수 있다.Secondary separation gives sludge with a water content of less than 10%.
얻어진 슬러지는 파우더 형태일 수 있다. 슬러지는 브리켓이나 펠렛 형태로 제조하여 연료자원으로 사용할 수 있으며, 특히, 화력발전소나 열병합발전소와 같이 화석연료를 사용하는 곳에서 석탄과 함께 사용될 수 있다. 슬러지의 열량은 3500 내지 5500kcal/kg일 수 있다.The sludge obtained may be in powder form. Sludge can be manufactured in the form of briquettes or pellets and used as a fuel source, especially with coal where fossil fuels are used, such as thermal power plants and cogeneration plants. The calorific value of the sludge may be 3500 to 5500 kcal / kg.
1차 분리 및 2차 분리에서 회수된 유기용매는 추출 공정에 다시 사용될 수 있다. 회수된 유기용매의 전부 또는 일부를 재생하는 공정이 추가될 수 있으며, 일정량의 유기용매를 새로운 유기용매로 대체할 수 도 있다. The organic solvent recovered in the primary separation and the secondary separation can be used again in the extraction process. A process for regenerating all or part of the recovered organic solvent may be added, and a certain amount of organic solvent may be replaced with a new organic solvent.
다른 실시예에서는 유기용매의 추출효율이나 유기용매의 성분변화를 관찰하여 유기용매의 교체시기를 자동으로 알려줄 수도 있다. 추출효율 또는 성분변화의 관찰은 정기적 또는 비정기적으로 이루어질 수 있으며, 실시간으로 관찰하는 것도 가능하다. 추출효율 또는 성분변화는 유기용매를 샘플링하여 검사하거나 계측기를 통해 원격에서 관찰할 수 있다.In another embodiment, the organic solvent replacement time may be automatically informed by observing the extraction efficiency of the organic solvent or the change in the composition of the organic solvent. Observation of extraction efficiency or component change can be made regularly or irregularly, and can be observed in real time. Extraction efficiencies or component changes can be observed by sampling organic solvents or monitored remotely through instruments.
이상 설명한 하수의 처리는 외부와 내부가 분리된 닫힌계에서 수행될 수 있다. 이 경우 다른 추가반응의 발생이 원천적으로 차단되며, 2차 환경오염의 위험도 감소한다.The treatment of sewage described above can be carried out in a closed system in which the outside and the inside are separated. In this case, the occurrence of other additional reactions is inherently blocked and the risk of secondary environmental pollution is reduced.
도 6을 참조하여 본 발명의 제2실시예에 따른 유기폐액의 처리방법을 설명한다. 제2실시예에서 유기폐액은 POME이다.Referring to Figure 6 will be described in the organic waste liquid treatment method according to a second embodiment of the present invention. In the second embodiment, the organic waste liquid is POME.
Palm Oil Mill Effluent(POME)는 팜오일 정제 시설에서 팜오일을 생산할 때 발생되는 폐수를 뜻하는 용어로 폐수정제 처리가 쉽지 않은 특성으로 인해 현재 팜유를 생산하고 있는 동남아 6개국에서 환경적으로 큰 문제를 야기시키고 있다.Palm Oil Mill Effluent (POME) is the term used for the wastewater produced when palm oil is produced in a palm oil refinery. It is not easy to treat wastewater, which is a major environmental problem in six Southeast Asian countries that are currently producing palm oil. Is causing.
말레이시아의 경우 430여개 Palm Oil Mill에서 연간 172백만톤 정도가 발생되고 있으며 매년 발생량이 증가하고 있다. POME는 매우 높은 BOD, COD 농도 뿐만아니라 많은 양의 Total Solids, Suspended Solids, Volatile solids 및 Oil & Grease를 포함하고 있는 특성으로 인해 일반 하수처리 기술로는 처리가 어려운 문제점이 있다. In Malaysia, about 172 million tons are generated annually in 430 Palm Oil Mills, and the amount is increasing every year. POME has a very high BOD, COD concentration, as well as a large amount of Total Solids, Suspended Solids, Volatile solids, and Oil & Grease.
표 1는 POME의 일반적인 특성을 나타낸 것이다.Table 1 shows the general characteristics of POME.
<표 1> POME의 일반 특성(mg/L, pH 제외) <Table 1> General Properties of POME (mg / L, pH Excluded)
표 1
Parameter 평균 범위 규제치(말레이시아)
pH 4.2 3.4-5.2 5-9
Biological oxygen demand(BOD) 25,000 10,250-43,750 100
Chemical oxygen demand(COD) 51,000 15,000-100,000 -
Total Solids 40,000 11,500-79,000 -
Suspended Solids 18,000 5,000-54,000 400
Volatile solids 34,000 9,000-72,000 N/A
Oil and Grease 6,000 130-18,000 50
Ammoniacal Nitrogen 35 4-90 100
Table 1
Parameter Average range Regulatory Levels (Malaysia)
pH 4.2 3.4-5.2 5-9
Biological oxygen demand (BOD) 25,000 10,250-43,750 100
Chemical oxygen demand (COD) 51,000 15,000-100,000 -
Total solids 40,000 11,500-79,000 -
Suspended Solids 18,000 5,000-54,000 400
Volatile solids 34,000 9,000-72,000 N / A
Oil and grease 6,000 130-18,000 50
Ammoniacal Nitrogen 35 4-90 100
현재 적용되고 있는 POME 처리 기술로는 1) 저수지 처리법(Ponding system), 2) 재래식 물리화학적 처리방법 (Conventional physico-chemical treatment), 3) 호기성 및 혐기성 분해처리 방법(Aerobic & Anaerobic digestion) 등이 사용되고 있다. 그러나 대부분 느린 처리 시간 (저수지 처리: 45~60일, 호기성&혐기성 처리: 4~10일), 넓은 처리 장소, 메탄 등과 같은 휘발성 가스 포집 및 포집시스템 관리의 어려움 및 침전물의 높은 함수율 (80% 이상) 등의 문제점으로 인해 POME가 적합하게 처리되지 못하고 있는 실정이다.Currently applied POME treatment technologies include 1) Ponding system, 2) Conventional physico-chemical treatment, and 3) Aerobic and Anaerobic digestion. have. However, most of the slow treatment times (reservoir treatment: 45-60 days, aerobic & anaerobic treatment: 4-10 days), large treatment sites, difficulties in managing volatile gas capture and capture systems such as methane and high water content of sediments (more than 80%) Due to problems such as), POME is not properly handled.
제2실시예 중 제1실시예와 다른 부분은 오일/그리스 회수단계(S150)이다. 오일/그리스 회수단계(S150)에서는 POME에 포함되어 있는 오일 및 그리스 잔여물을 분리/회수하며, 오일회수용매를 이용한 추출방법을 사용할 수 있다.A part different from the first embodiment of the second embodiment is the oil / grease recovery step S150. In the oil / grease recovery step (S150), the oil and grease residues contained in the POME are separated / recovered, and an extraction method using an oil recovery solvent may be used.
오일회수용매는 방향족 탄화수소와 파라핀계 탄화수소로 이루어질 수 있다. 방향족 탄화수소는 디메틸벤젠 및/또는 메틸벤젠을 사용할 수 있고, 파라핀계 탄화수소는 펜탄, 헵탄 및/또는 옥탄을 사용할 수 있다. 방향족 탄화수소는 74 내지 95 중량%를 사용할 수 있으며, 더 구체적으로는 디메틸벤젠은 22 내지 81 중량%를 메틸벤젠은 14 내지 53 중량%를 사용할 수 있다. 파라핀계 탄화수소는 C5 내지 C12의 탄화수소를 5 내지 26 중량%를 사용할 수 있다. 더 구체적으로는 펜탄은 2 내지 13 중량%, 헵탄은 2 내지 8 중량%, 옥탄은 1 내지 5 중량%를 사용할 수 있다. 파라핀계 탄화수소로는 이 외에 헥산, 노난, 데칸, 운데칸 및/또는 도데칸을 사용할 수 있다.The oil recovery solvent may consist of aromatic hydrocarbons and paraffinic hydrocarbons. The aromatic hydrocarbon may use dimethylbenzene and / or methylbenzene, and the paraffinic hydrocarbon may use pentane, heptane and / or octane. The aromatic hydrocarbon may be used 74 to 95% by weight, more specifically 22 to 81% by weight of dimethylbenzene and 14 to 53% by weight of methylbenzene may be used. The paraffinic hydrocarbon may use 5 to 26% by weight of C5 to C12 hydrocarbon. More specifically, 2 to 13 wt% of pentane, 2 to 8 wt% of heptane, and 1 to 5 wt% of octane may be used. As the paraffinic hydrocarbon, hexane, nonane, decane, undecane and / or dodecane can be used.
오일/그리스 회수를 통해 오일 및 그리스가 포함된 오일회수용매가 회수된다. 회수된 오일회수용매는 그 자체로 oil 성분의 에너지원으로 사용이 가능하며, 또한 가열/응집 회수장치나 멤브레인 분리막과 같은 특수한 분리장치를 통해 oil 및 grease와 분리가 가능해 다시 사용이 가능하다.Oil / grease recovery recovers oil recovery solvents containing oil and grease. The recovered oil recovery solvent can be used as an energy source of oil components by itself, and can be separated from oil and grease through a special separation device such as a heating / aggregation recovery device or a membrane separator.
이상과 같은 본 발명에 따르면 미생물까지 파괴되어 악취제거가 가능하며, 슬러지가 자원화되어 폐기물 처리비용이 발생하지 않는다. 슬러지의 탈수가 용이하여 탈수를 위한 에너지 비용이 크게 절약된다. 또한 폐수의 처리가 닫힌계에서 이루어질 수 있어 원하지 않는 반응의 발생이 억제되며, 2차 환경오염의 위험이 감소된다. 또한 기존 하수처리장의 폐수처리효율에 영향을 미치지 않아 기존 시설에 부수장치로 설치가 용이하며 또한 기 설치되어있는 탈수시스템을 대체하는 것도 가능하다. 뿐만 아니라 장치 집약적인 공정을 통해 대용량 설비를 갖추기 용이하다.According to the present invention as described above, even microorganisms are destroyed and odor can be removed, and the sludge is recycled and waste treatment costs are not incurred. Dewatering of the sludge is easy, which greatly reduces the energy cost for dewatering. The treatment of waste water can also take place in a closed system, thus suppressing the occurrence of unwanted reactions and reducing the risk of secondary environmental pollution. In addition, since it does not affect the wastewater treatment efficiency of the existing sewage treatment plant, it is easy to install as an auxiliary device in an existing facility, and it is also possible to replace an existing dewatering system. In addition, it is easy to equip large-capacity facilities through device-intensive processes.
희석(S100) 및 그 외의 단계는 제1실시예와 유사하며, 당업자가 적절히 변형할 수 있다.Dilution (S100) and other steps are similar to the first embodiment and can be modified by those skilled in the art as appropriate.
이하 실험예를 통해 본 발명을 더욱 상세히 설명한다.The present invention will be described in more detail with reference to the following experimental examples.
<실험예 1 하수처리>Experimental Example 1 Sewage Treatment
실험에 사용된 하수는 U시 Y하수처리장으로부터 채취하였으며, 도 7과 같이 혼탁한 모습을 보여주고 있다. MLSS(혼합액부유물, mixed liquor suspended solid)는 5027mg/L였다.The sewage used for the experiment was taken from the U city Y sewage treatment plant, showing a turbid state as shown in FIG. MLSS (mixed liquor suspended solids) was 5027 mg / L.
상온에서 하수와 유기용매를 1:0.0005의 부피비로 혼합하고 5분간 난류조건에서 용매추출하였다.Sewage and organic solvent were mixed at a volume ratio of 1: 0.0005 at room temperature, and the solvent was extracted under turbulent conditions for 5 minutes.
사용된 유기용매의 조성은 다음과 같다.The composition of the organic solvent used is as follows.
표 2
성분명 함량 (%)
Dimethylbenzenes 8
Methylbenzene 19
Ethanol 4
Isopropyl alcohol 3
Di-n-propyl ether 7
2-methyl but-2-ene 26
Cyclohexane 13
Heptane 10
Hexane 6
Pentane 4
TABLE 2
Ingredient Name content (%)
Dimethylbenzenes 8
Methylbenzene 19
Ethanol 4
Isopropyl alcohol 3
Di-n-propyl ether 7
2-methyl but-2-ene 26
Cyclohexane 13
Heptane 10
Hexane 6
Pentane 4
도 8은 정치 후 유기용매상을 분리한 폐수를 나타낸 것으로 도 7과 비교했을 때 슬러지가 충분히 제거되었음을 보여준다.8 shows the wastewater from which the organic solvent phase is separated after standing, and shows that the sludge has been sufficiently removed as compared with FIG. 7.
도 9는 1차 및 2차 분리를 거쳐 건조된 유기성 슬러지 파우더의 모습니다.9 collects organic sludge powder dried through primary and secondary separations.
아래 표 3은 회수된 유기성 슬러지의 성분 및 발열량 데이터이다. 고위발열량이 3,876kcal/kg이었으며, 이는 화력발전소에 충분히 적용될 수 있는 발열량이다.Table 3 below is the component and calorific value data of the organic sludge recovered. The high calorific value was 3,876 kcal / kg, which is sufficient for thermal power plants.
표 3
시험항목 단위 결과치1) 시험방법
고정탄소 % 9.2 ASTM D 5142-04(준용)
회분 % 6.2 ASTM D 5142-04(준용)
휘발분(VM) % 78.9 ASTM D 5142-04(준용)
수분 % 3.7 ASTM D 5142-04(준용)
유황분 % 0.37 KS E ISO 334 : 2003(준용)
고위발열량 kcal/kg 3876 KS E 3707 : 2001(준용)
TABLE 3
Test Items unit Result 1) Test Methods
Fixed carbon % 9.2 ASTM D 5142-04 (Compliant)
Ash % 6.2 ASTM D 5142-04 (Compliant)
Volatile Powder (VM) % 78.9 ASTM D 5142-04 (Compliant)
moisture % 3.7 ASTM D 5142-04 (Compliant)
Sulfur powder % 0.37 KS E ISO 334: 2003
High calorific value kcal / kg 3876 KS E 3707: 2001 (applied mutatis mutandis)
1) 나머지 1.63%는 질소, 인 등의 기타 성분임.1) The remaining 1.63% is other components such as nitrogen and phosphorus.
<실험예 2 POME처리>Experimental Example 2 POME Treatment
실험은 MLSS 농도 57,400 (mg/L)인 POME를 대상으로 하였으며, 20배 희석 후 상온에서 POME과 오일회수용매를 1:0.0005의 부피비로 5분간 난류조건에서 혼합 후 오일과 그리스를 회수하였다. 이후 상온에서 POME과 유기용매를 1:0.0005의 부피비로 5분간 난류조건에서 혼합 후 용매상과 폐수상을 분리하였다.The experiment was performed on POME with an MLSS concentration of 57,400 (mg / L). After 20-fold dilution, POME and an oil recovery solvent were mixed at turbulent conditions for 5 minutes at a volume ratio of 1: 0.0005, and oil and grease were recovered. Thereafter, the POME and the organic solvent were mixed at turbulent conditions for 5 minutes at a volume ratio of 1: 0.0005, and then the solvent phase and the wastewater phase were separated.
오일회수용매의 조성은 다음 표 4와 같으며, 유기용매의 조성은 실험예 1과 동일하다,The composition of the oil recovery solvent is shown in Table 4, and the composition of the organic solvent is the same as in Experiment 1.
표 4
성분 함량%
Dimethylbenzenes 55
Methylbenzene 35
Pentane 5
Heptane 3
Octane 2
Table 4
ingredient content%
Dimethylbenzenes 55
Methylbenzene 35
Pentane 5
Heptane 3
Octane 2
도 10은 POME 원액과 희석액을 나타낸 것이고, 도 11은 처리수를 나타낸 것이다. Figure 10 shows the POME stock solution and diluent, and Figure 11 shows the treated water.
실험결과는 다음과 같다.The experimental results are as follows.
<표 5> POME 원액, 희석액, 처리수의 수질 분석 결과 (mg/L)<Table 5> Water quality analysis results (mg / L) of POME stock solution, diluent solution and treated water
표 5
분석항목 원액 희석액 처리수 제거율 (%)1)
pH2) 3.7 4.2 4.3 -
BOD2) 27600 1070 514 52.0
COD2) 25000 1000 605 39.5
Total Solid (TS)3) 50900 2280 - -
Volatile Solid (VS)3) 41100 1790 - -
Suspended Solid (SS)2) 9200 520 48.4 90.7
Oil and Grease (O&G)2) 1800 80 7.9 90.1
Ammoniacal Nitrogen (NH4 +)2) 85.4 4.95 3.91 21.0
Table 5
Analysis item Stock solution diluent Treated water Removal rate (%) 1)
pH 2) 3.7 4.2 4.3 -
BOD 2) 27600 1070 514 52.0
COD 2) 25000 1000 605 39.5
Total Solid (TS) 3) 50900 2280 - -
Volatile Solid (VS) 3) 41100 1790 - -
Suspended Solid (SS) 2) 9200 520 48.4 90.7
Oil and Grease (O & G) 2) 1800 80 7.9 90.1
Ammoniacal Nitrogen (NH 4 + ) 2) 85.4 4.95 3.91 21.0
주 1) 제거율은 각 항목별 희석액 기준 처리수의 농도비로 계산Note 1) The removal rate is calculated from the concentration ratio of the dilution standard treatment water for each item.
2) 수질오염공정시험기준 : 2012에 따라 시험   2) Test according to water pollution process test standard: 2012
3) APHA Standard Methods : 2012에 따라 시험   3) Test according to APHA Standard Methods: 2012
표 5는 POME 희석액 대상으로 고형 슬러지(SS) 분리 실험 후 얻어진 처리수를 각각 샘플링하여 수질 분석한 결과이다. 표 5에서 볼 수 있는 바와 같이 본 실험에서의 제거대상인 SS와 O&G의 경우 말레이시아 규제치를 모두 만족하는 것을 확인할 수 있다.  Table 5 shows the results of water quality analysis by sampling the treated water obtained after the solid sludge (SS) separation experiment in the POME diluent. As can be seen in Table 5, SS and O & G, which are to be removed in this experiment, can satisfy both Malaysian regulations.
각 항목별로 검토해 보면 SS의 경우 희석액 대비 90.7%의 제거효율을 확인할 수 있었고 O&G의 경우는 90.1%가 제거되었다.  For each item, SS showed 90.7% removal efficiency compared to diluent and 90.1% for O & G.
또한 이와 더불어 본 기술의 처리 목표는 아니지만 BOD의 경우에 희석수 대비 52%가 제거되는 그리고 COD의 경우에 39.5%가 제거되는 효과가 추가로 얻어짐을 확인할 수 있었다.  In addition, it was confirmed that an additional effect of removing 52% of the dilution water in the case of BOD and 39.5% in the case of COD, although not the treatment target of the present technology.
회수한 Oil의 성분이 Palm oil과 동일한지 확인하기 위하여 FT-IR 분석을 실시하였다. 도 12은 회수한 오일을 나타낸 것이고, 도 13는 회수된 오일의 FT-IR 결과를 나타낸 것이고, 도 14은 시중에 판매 중인 팜 오일의 FT-IR 결과를 나타낸 것이다.FT-IR analysis was performed to confirm that the oil components of the recovered oil were the same as the palm oil. Figure 12 shows the recovered oil, Figure 13 shows the FT-IR results of the recovered oil, Figure 14 shows the FT-IR results of commercially available palm oil.
분석결과에서 볼 수 있는 바와 같이 도 13과 도 14의 FT-IR 결과는 동일 wavenumber에서 거의 동일한 투과율 peak가 나타남을 확인할 수 있다. 따라서 본 실험을 통해 회수된 Oil은 palm oil임을 확인할 수 있었다.As can be seen from the analysis results, it can be seen that the FT-IR results of FIGS. 13 and 14 show nearly identical transmittance peaks at the same wavenumber. Therefore, the recovered oil was confirmed to be palm oil through this experiment.
팜 오일의 분석방법과 동일한 방법으로 사용전 유기용매 (fresh)와 3회차 실험 후 회수한 유기용매(used)를 FT-IR 분석하여 peak의 모습을 확인하였다. 도 15는 사용 전 유기용매의 FT-IR 결과를 나타낸 것이고, 도 16은 3회차 실험 후 회수한 유기용매의 FT-IR 결과를 나타낸 것이다.FT-IR analysis of the organic solvent (fresh) and the organic solvent (used) recovered after the third experiment before using the palm oil was performed in the same manner as in the analysis method of palm oil to confirm the appearance of the peak. FIG. 15 shows FT-IR results of the organic solvent before use, and FIG. 16 shows FT-IR results of the organic solvent recovered after the third experiment.
도 15 및 도 16에서 볼 수 있는 바와 같이 모두 동일 wavenumber에서 거의 동일한 투과율 peak가 나타남을 확인할 수 있다. 따라서 회수된 유기용매는 추출 실험과정에서 변형이 발생되지 않음을 확인할 수 있었으며 또한 실제로 이 유기용매를 이용하여 재사용하였을 때 동일한 추출 효율이 얻어지는 것을 실험적으로 확인할 수 있었다.As can be seen in Figures 15 and 16 it can be seen that almost the same transmittance peak appears at the same wavenumber. Therefore, the recovered organic solvent was confirmed that no deformation occurs in the extraction experiment process, and it was confirmed experimentally that the same extraction efficiency is obtained when actually reused using this organic solvent.
본 실험을 통해 POME로부터 회수된 파우더의 고형 연료화 가능성을 확인하기 위하여 회수된 파우더의 고위발열량을 분석하였다. 도 17은 본 발명의 제2실험예에서 얻어진 슬러지 파우더의 모습을 나타낸 것이다.   In this experiment, high calorific value of the recovered powder was analyzed to confirm the possibility of solid fuelization of the powder recovered from POME. Figure 17 shows the state of the sludge powder obtained in the second experimental example of the present invention.
<표 6> POME로부터 회수된 파우더의 고위발열량TABLE 6 High calorific value of powder recovered from POME
표 6
시험항목 단위 결과치 시험항목
수분 % 4.3 ASTM D 5142-04(준용)
고위발열량 J/g 17800 KS E 3707 : 2001(준용)
Table 6
Test Items unit Result Test Items
moisture % 4.3 ASTM D 5142-04 (Compliant)
High calorific value J / g 17800 KS E 3707: 2001 (applied mutatis mutandis)
<표 6>에서 볼 수 있는 바와 같이 회수된 파우더는 17800 J/g의 고위발열량을 가짐을 확인할 수 있었다. 이를 환산해보면 약 4252 kcal/kg의 발열량으로 이는 화력발전소에 충분히 적용될 수 있는 발열량이다.As can be seen in Table 6, the recovered powder had a high calorific value of 17800 J / g. This translates into a calorific value of about 4252 kcal / kg, which is sufficient for thermal power plants.
본 실험예에서의 결과에서 확인할 수 있듯이, 본 발명에 의해 POME을 효과적으로 처리할 수 있다.As can be seen from the results in this experimental example, the POME can be effectively treated by the present invention.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Could be. Accordingly, the true scope of protection of the invention should be defined only by the appended claims.
본 발명은 유기폐액의 처리에 사용될 수 있다. The present invention can be used for the treatment of organic waste liquid.

Claims (15)

  1. 슬러지와 폐수를 포함하는 유기폐액을 용매추출법을 이용하여 처리하는 방법에 있어서,In the method of treating the organic waste liquid containing the sludge and waste water using a solvent extraction method,
    상기 유기폐액과 유기용매를 혼합하여 상기 슬러지의 적어도 일부를 상기 유기용매로 추출하는 단계와;Mixing at least a portion of the sludge with the organic solvent by mixing the organic waste liquid and the organic solvent;
    상기 추출 후 폐수와 유기용매를 분리하는 단계와;Separating the wastewater and the organic solvent after the extraction;
    상기 유기용매와 상기 슬러지를 1차 분리하는 단계를 포함하는 유기폐액 처리 방법.Organic waste liquid treatment method comprising the step of primary separation of the organic solvent and the sludge.
  2. 제1항에 있어서, The method of claim 1,
    상기 슬러지는 미생물을 포함하며,The sludge contains microorganisms,
    상기 유기용매는,The organic solvent,
    상기 미생물을 파괴할 수 있는 미생물파괴성분과;Microbial destruction components capable of destroying the microorganisms;
    슬러지 계면의 특성을 변화시킬 수 있는 계면특성변화성분을 포함하는 것을 특징으로 하는 유기폐액 처리 방법.An organic waste liquid treatment method comprising an interface characteristic change component capable of changing the characteristics of the sludge interface.
  3. 제2항에 있어서, The method of claim 2,
    상기 미생물파괴성분은 알코올계 탄화수소를 포함하며 3 내지 10 중량%인 것을 특징으로 하는 유기폐액 처리 방법.The microorganism destruction component comprises an alcohol-based hydrocarbon, organic waste solution treatment method characterized in that 3 to 10% by weight.
  4. 제3항에 있어서, The method of claim 3,
    상기 계면특성변화성분은 방향족 탄화수소와 에테르계 탄화수소를 포함하며, 상기 방향족 탄화수소는 19 내지 35 중량%이고 상기 에테르계 탄화수소는 5 내지 10 중량%인 것을 특징으로 하는 유기폐액 처리 방법.The interfacial property change component includes an aromatic hydrocarbon and an ether hydrocarbon, wherein the aromatic hydrocarbon is 19 to 35% by weight and the ether hydrocarbon is 5 to 10% by weight.
  5. 제3항에 있어서, The method of claim 3,
    상기 유기용매는 29 내지 24중량%의 올레핀계 탄화수소와 12 내지 29%의 파라핀계 탄화수소를 더 포함하는 것을 특징으로 하는 유기폐액 처리 방법.The organic solvent further comprises 29 to 24% by weight of an olefinic hydrocarbon and 12 to 29% of a paraffinic hydrocarbon.
  6. 제1항에 있어서, The method of claim 1,
    상기 슬러지는 미생물을 포함하며,The sludge contains microorganisms,
    상기 유기용매는,The organic solvent,
    상기 미생물을 파괴할 수 있는 미생물파괴성분과;Microbial destruction components capable of destroying the microorganisms;
    슬러지의 점도를 저감시키는 점도저감성분을 포함하는 것을 특징으로 하는 유기폐액 처리 방법.An organic waste liquid processing method comprising a viscosity reducing component for reducing the viscosity of sludge.
  7. 제6항에 있어서, The method of claim 6,
    상기 미생물파괴성분은 알코올계 탄화수소를 포함하며 3 내지 10 중량%이고,The microbial destruction component comprises an alcohol hydrocarbon and 3 to 10% by weight,
    상기 점도저감성분은 파라핀계 탄화수소를 포함하며 12 내지 29 중량%인 것을 특징으로 하는 유기폐액 처리 방법.The viscosity reducing component is an organic waste liquid treatment method comprising a paraffinic hydrocarbon, 12 to 29% by weight.
  8. 제1항에 있어서, The method of claim 1,
    상기 추출 전에,Before the extraction,
    상기 하수에 추가의 물을 가하여 희석하는 단계를 더 포함하는 것을 특징으로 하는 유기폐액 처리 방법. And further diluting by adding additional water to the sewage.
  9. 제1항에 있어서, The method of claim 1,
    상기 용매와 상기 슬러지의 1차 분리는 기계적 방법으로 수행되는 것을 특징으로 하는 유기폐액 처리 방법.Primary separation of the solvent and the sludge is characterized in that the organic waste liquid treatment method performed by a mechanical method.
  10. 제9항에 있어서, The method of claim 9,
    상기 용매와 상기 슬러지의 1차 분리 단계 후에,After the first separation step of the solvent and the sludge,
    기화활성도를 높인 조건에서 상기 유기성 슬러지와 용매를 2차 분리하는 단계를 더 포함하는 것을 특징으로 하는 유기폐액 처리 방법.The organic waste liquid treatment method further comprises the step of separating the organic sludge and the solvent in the conditions of increasing the vaporization activity.
  11. 제1항에 있어서, The method of claim 1,
    상기 2차 분리는 상온에서 수행되는 것을 특징으로 하는 유기폐액 처리 방법.The secondary separation is organic waste liquid treatment method characterized in that carried out at room temperature.
  12. 제1항에 있어서, The method of claim 1,
    상기 1차 분리 후에,After the first separation,
    상기 슬러지를 브리켓팅이나 펠렛타이징하는 단계를 더 포함하는 것을 특징으로 하는 유기폐액 처리 방법.Briquetting or pelletizing the sludge organic waste liquid treatment method characterized in that it further comprises.
  13. 제1항에 있어서, The method of claim 1,
    상기 슬러지는 미생물을 포함하고,The sludge contains microorganisms,
    상기 유기용매는 상기 미생물을 파괴할 수 있는 알코올계 탄화수소를 포함하며,The organic solvent includes an alcohol hydrocarbon capable of destroying the microorganism,
    상기 미생물의 파괴는,Destruction of the microorganism,
    상기 추출 단계에서 수행되는 것을 특징으로 하는 유기폐액 처리 방법.Organic waste liquid treatment method characterized in that carried out in the extraction step.
  14. 제1항에 있어서, The method of claim 1,
    상기 용매는,The solvent,
    상기 분리 단계에서 회수 후 상기 추출 단계에 재사용하는 것을 특징으로 하는 유기폐액 처리 방법.Organic waste solution treatment method characterized in that for reuse in the extraction step after the recovery in the separation step.
  15. 제1항에 있어서,The method of claim 1,
    상기 희석, 추출 및 분리 단계는 외부와 차단된 닫힌계 내에서 수행되며,The dilution, extraction and separation steps are carried out in a closed system isolated from the outside,
    상기 유기폐액은 오일/그리스를 더 포함하며,The organic waste liquid further comprises an oil / grease,
    상기 추출 전에, 오일회수용매와 상기 유기폐액을 혼합 후 상기 오일/그리스를 회수하는 단계를 더 포함하는 것을 특징으로 하는 유기폐액 처리 방법.Before the extraction, further comprising the step of recovering the oil / grease after mixing the oil recovery solvent and the organic waste liquid.
PCT/KR2014/010845 2013-11-15 2014-11-12 Method for treating organic waste liquid including sludge and waste water using solvent extraction WO2015072740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130139302 2013-11-15
KR10-2013-0139302 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072740A1 true WO2015072740A1 (en) 2015-05-21

Family

ID=53057620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010845 WO2015072740A1 (en) 2013-11-15 2014-11-12 Method for treating organic waste liquid including sludge and waste water using solvent extraction

Country Status (2)

Country Link
KR (4) KR20150056429A (en)
WO (1) WO2015072740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028222A (en) * 2019-04-02 2019-07-19 叶文勇 A kind of construction slurry solidification processing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827305B1 (en) * 2017-05-23 2018-02-09 한국환경시스템 주식회사 Apparatus of chemical treatment for dehydration and separation of organic sludge and method thereof
KR101954139B1 (en) 2018-10-15 2019-06-17 (주)리사이텍 Method for treatment sludge of sewage using alkane solvent
KR102018905B1 (en) * 2018-12-24 2019-09-05 (주)리사이텍 Multi layer separating bioreactor and method for treatment sludge of sewage using alkane solvent using the same
KR102215482B1 (en) 2019-08-19 2021-02-15 아크홀딩스 주식회사 Method for dewatering sewage sludge using alkane solvent having 4 or less carbon atom
KR102144250B1 (en) 2020-03-12 2020-08-12 주식회사 에스에이치씨앤유 Apparatus for purifying wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251141A (en) * 1994-03-17 1995-10-03 Ngk Insulators Ltd Method for recovering phosphorus from sewage sludge incinerated ash
JP2000167531A (en) * 1998-12-03 2000-06-20 Hitachi Zosen Corp Removal of organic harmful substance in soil, water, or sludge
KR100341613B1 (en) * 1993-08-26 2002-11-23 케미라 오이 Method for recovering at least one metal from an acidified waste water sludge
KR20030018474A (en) * 2001-08-29 2003-03-06 한모기술주식회사 Solvent recovery facility by the combination of extraction and distillation
KR20120120106A (en) * 2009-07-07 2012-11-01 노와 테크놀로지, 인코퍼레이티드 Wastewater Sludge Processing System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341613B1 (en) * 1993-08-26 2002-11-23 케미라 오이 Method for recovering at least one metal from an acidified waste water sludge
JPH07251141A (en) * 1994-03-17 1995-10-03 Ngk Insulators Ltd Method for recovering phosphorus from sewage sludge incinerated ash
JP2000167531A (en) * 1998-12-03 2000-06-20 Hitachi Zosen Corp Removal of organic harmful substance in soil, water, or sludge
KR20030018474A (en) * 2001-08-29 2003-03-06 한모기술주식회사 Solvent recovery facility by the combination of extraction and distillation
KR20120120106A (en) * 2009-07-07 2012-11-01 노와 테크놀로지, 인코퍼레이티드 Wastewater Sludge Processing System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028222A (en) * 2019-04-02 2019-07-19 叶文勇 A kind of construction slurry solidification processing method

Also Published As

Publication number Publication date
KR20150056473A (en) 2015-05-26
KR20150056429A (en) 2015-05-26
KR20150056471A (en) 2015-05-26
KR20150056472A (en) 2015-05-26

Similar Documents

Publication Publication Date Title
WO2015072740A1 (en) Method for treating organic waste liquid including sludge and waste water using solvent extraction
CN102039301B (en) Oily sludge resource-innocent comprehensive treatment process
WO2014112703A1 (en) Apparatus and method for processing final effluent and palm by-products discharged from palm oil mill process
CN108704931B (en) Complete equipment and method for mobile thermal desorption of pollution waste
WO2016027954A1 (en) System for disposal of waste containing food waste or livestock manure and production of energy and method therefor
US20220243129A1 (en) Processing method for perennially polluted sludge containing oils and water, waste residues or oil sands deep in natural oil mines, and processing system thereof
EP1275443A2 (en) Method for the physical and chemical treatment, and the separation of industrial and/or domestic waste
JP5039634B2 (en) Waste treatment facility and waste treatment method
CN111778059A (en) Oil sludge sand pre-separation-oil recovery-post-treatment system and process
CN218146298U (en) System for comprehensive utilization and innocent treatment fatlute
CN212640265U (en) Oily sludge resourceful treatment system
CN211847640U (en) Comprehensive treatment system for oily sludge
KR100352790B1 (en) Device for the treatment of the sludge by burning and melting
JP2011200794A (en) Incineration ash treatment system
CN212404016U (en) Waste salt vacuum cracking system
CN112254148A (en) Paint residue harmless treatment process and system
JP2000239050A (en) Treatment of plant waste fluid
CN211226875U (en) Oily sludge hot washing treatment system
CN112573784A (en) Method for treating oily sludge by utilizing atmospheric and vacuum distillation/cracking device
CN105696955B (en) A kind of processing method of oil-contained drilling cuttings
CN113028426A (en) Harmless decrement process and heat energy recycling method of paint waste residues
CN112028272A (en) Method for recovering crude oil in crude oil electric desalting wastewater
JP4003084B2 (en) Detoxification method for dredged soil
Constable et al. The effect of three sludge processing operations on the fate and leachability of trace organics in municipal sludges
CN215327652U (en) Low energy consumption resource fatlute processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862937

Country of ref document: EP

Kind code of ref document: A1