WO2011001911A1 - Energy ray-curable epoxy resin composition having excellent fast curing properties - Google Patents

Energy ray-curable epoxy resin composition having excellent fast curing properties Download PDF

Info

Publication number
WO2011001911A1
WO2011001911A1 PCT/JP2010/060832 JP2010060832W WO2011001911A1 WO 2011001911 A1 WO2011001911 A1 WO 2011001911A1 JP 2010060832 W JP2010060832 W JP 2010060832W WO 2011001911 A1 WO2011001911 A1 WO 2011001911A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
energy ray
resin composition
silicate
curable epoxy
Prior art date
Application number
PCT/JP2010/060832
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 遠山
Original Assignee
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協立化学産業株式会社 filed Critical 協立化学産業株式会社
Priority to KR1020117031477A priority Critical patent/KR101671047B1/en
Priority to CN201080027559.3A priority patent/CN102471456B/en
Priority to JP2011520897A priority patent/JP5736568B2/en
Publication of WO2011001911A1 publication Critical patent/WO2011001911A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds

Definitions

  • the present invention relates to an energy beam curable epoxy resin composition, and more particularly to an energy beam curable epoxy resin composition that has excellent fast curability while maintaining high fixing accuracy and is suitable for fixing optical components.
  • a photo-curing adhesive is used to fix the photodetector to the housing (Patent Documents 1 and 2).
  • This adhesive is required to have high fixing accuracy and good curability (fast curability).
  • the fixing accuracy is an accuracy indicating that the light detector does not move from a predetermined position when the light detector is fixed to the housing. If the fixing accuracy is low, the photodetector moves from a predetermined position at the time of manufacturing the optical pickup device or after the durability test, and light detection cannot be performed. Therefore, high fixing accuracy is required.
  • Fast curability means that the curing speed is high and the curing is quicker, that is, the curability is good.
  • tact-up there has been a demand for tact-up, and there is an increasing demand for fast curability.
  • a cationic curable epoxy resin adhesive is superior to a photocurable acrylic resin adhesive as a photocurable adhesive. Furthermore, the cationic curable epoxy resin adhesive does not inhibit the curing by oxygen unlike the acrylic resin adhesive, and is excellent in thin film curability (Non-Patent Document 1). However, the cationic curable epoxy resin has a problem that the curing rate is slow.
  • An object of the present invention is to solve the problem that the curing rate is slow while maintaining high fixation accuracy in the energy ray curable epoxy resin composition.
  • the present invention is an energy ray curable epoxy resin composition
  • an epoxy resin a silicate compound having a cationic curable functional group, and a photoacid generator.
  • the low cure shrinkage is important to prevent the position-adjusted photodetector from moving due to cure shrinkage when curing the photocurable adhesive, and the elastic modulus during heat. It is important to prevent the photodetector from moving due to its own weight or the tension of the FPC (polyimide wiring) attached to the photodetector when heated, and the photo-curing adhesive softens even when heated. It shows that it is hard without.
  • the epoxy resin composition has a curing shrinkage of 3% or less and elasticity when heated (durability test temperature of 100 ° C.) in order to obtain high fixing accuracy. It has been found that the rate needs to be 50 MPa or more.
  • the inventors of the present invention need to set the curing time of 15 to 20 seconds to 5 to 10 seconds in order to satisfy the recent tact-up requirement. I found out.
  • the curing rate of the resin composition can be remarkably improved while maintaining high fixing accuracy.
  • the energy beam curable epoxy resin composition of the present invention includes an epoxy resin, a silicate compound having a cationic curable functional group, and a photoacid generator.
  • epoxy resin Although it does not specifically limit as an epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, hydrogenated bisphenol A Examples thereof include a type epoxy resin, a hydrogenated bisphenol F type epoxy resin, a polybutadiene type epoxy resin, a polyisoprene type epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin. These resins may be used alone or in combination of two or more.
  • alicyclic epoxy resins examples include vinylcyclohexene monooxide ⁇ ⁇ ⁇ 1,2-epoxy-4-vinylcyclohexane (CEL2000), 1,2: 8,9 diepoxy limonene (CEL3000), 3,4-epoxycyclohexenylmethyl- 3 ′, 4′-epoxycyclohexenecarboxylate (CEL2021P), 1,2-epoxy-4- (2-oxiranyl) cyclosoxane adduct of 2,2-bis (hydroxymethyl) -1-butanol (EHPE3150), 3 , 4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, hydrogenated biphenyl type alicyclic epoxy resin, and the like. Each may be used alone or in combination of two or more.
  • Examples of the aliphatic epoxy resin include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1 , 6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, trimethylolpropane diglycidyl ether, polyethylene glycol diglycidyl ether, and the like. Each may be used alone or in combination of two or more.
  • epoxy resin bisphenol A type epoxy resin (for example, Epicron 850 or Epicron 860 manufactured by DIC) and hydrogenated bisphenol A type epoxy resin (for example, YX8034 manufactured by jER) are particularly preferable.
  • bisphenol A type epoxy resin for example, Epicron 850 or Epicron 860 manufactured by DIC
  • hydrogenated bisphenol A type epoxy resin for example, YX8034 manufactured by jER
  • a purified epoxy resin such as a bisphenol A epoxy resin may be used.
  • phenol type epoxy resin epichlorohydrin used for the synthesis and halogen-containing intermediates not ring-closed to the epoxy group are present as impurities. These impurities are not cured even when irradiated with energy rays in the presence of a cationic curing catalyst. Therefore, by using a phenol type epoxy resin from which these impurities are removed, an uncured component in the cured product after curing with energy rays can be reduced, and an energy ray curable epoxy resin composition containing a low halogen content can be obtained. Obtainable.
  • Examples of the purification of the phenol type epoxy resin include purification by distillation, purification by chromatography using silica gel, alumina, etc., purification by hydrolyzing a halogen bonded by a covalent bond with an alkaline aqueous solution such as an aqueous sodium hydroxide solution, etc. Can be mentioned.
  • EXA-850CRP can be obtained from DIC as a purified product by distillation of bisphenol A type epoxy resin.
  • EXA-8067 is available from DIC as a high molecular weight epoxy resin obtained by reacting EXA-850CRP with bisphenol A.
  • the halogen content is preferably 500 ppm or less from the viewpoint of the problem of electric corrosion (electro-corrosion) and the problem of the global environment.
  • EXA-850CRP or EXA-8067 is used as the epoxy resin, low halogenation can be achieved in addition to the effects of the present invention described above.
  • silicate compounds with cationic curable functional groups The silicate compound having a cationic curable functional group is not particularly limited as long as it is a cation curable silicate compound.
  • examples of the silicate compound having a cationic curable functional group include glycidyl silicate, alicyclic epoxy silicate, vinyl silicate, and oxetanyl silicate.
  • Examples of the alicyclic epoxy silicate include a condensate of tetra (3,4-epoxycyclohexenylmethyl) silicate.
  • X-40-2670 (Shin-Etsu Chemical Co., Ltd.) is an example of such a commercial product.
  • oxetanyl silicate examples include a condensate of tetra [(3-ethyloxetane-3-yl) methyl)] silicate.
  • Aron Oxetane OXT-191 can be mentioned.
  • the silicate compound having a cationic curable functional group is preferably one or more silicate compounds selected from the group consisting of oxetanyl silicate and alicyclic epoxy silicate, and in particular, oxetanyl silicate OXT-191 and / or Toagosei Co., Ltd. Or X-40-2670 (alicyclic epoxy silicate) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the range of the amount of the silicate compound having a cationic curable functional group is preferably 2.5 to 10 parts by weight, particularly preferably 5 to 10 parts by weight with respect to 45 parts by weight of the epoxy resin. If the amount of the silicate compound having a cationic curable functional group is too small relative to 45 parts by weight of the epoxy resin, the resulting energy beam curable epoxy resin composition is insufficiently improved in its curability. Even if exceeding, improvement of curability of the obtained energy ray-curable epoxy resin composition cannot be expected.
  • the photoacid generator is not limited as long as it is a compound that generates a Lewis acid or a Bronsted acid upon irradiation with energy rays, and examples thereof include a sulfonium salt and an iodonium salt.
  • the range of use amount of the photoacid generator is preferably 0.5 to 10 parts by weight, more preferably 1 to 4 parts by weight with respect to 45 parts by weight of the epoxy resin.
  • the photoacid generator can also be added after being dissolved or dispersed in a solvent such as 4-butyrolactone.
  • sulfonium salt examples include triphenylsulfonium ⁇ ⁇ ⁇ hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4'-bis [diphenylsulfonio] diphenyl sulfide bishexafluorophosphate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluorophosphate 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluor
  • SP-172, SP-150, SP-152, CPI-210S manufactured by Sun Apro, and the like can be mentioned.
  • Preferred as the sulfonium salt is SP-170, SP-172 manufactured by Asahi Denka Co., Ltd. or CPI-210S manufactured by San Apro. These salts may be used alone or in combination of two or more.
  • iodonium salt examples include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and PI2074 manufactured by Rhodia.
  • Preferable iodonium salt is Rho20's PI2074. These salts may be used alone or in combination of two or more.
  • the energy ray curable epoxy resin composition of the present invention contains other additives such as oxetane compounds (excluding oxetanyl silicate), fillers, photosensitizers, and silane coupling agents within the scope of the effects of the present invention. Can be included.
  • Oxetane compound is added for the purpose of reducing viscosity and reducing shrinkage in order to improve coating workability.
  • oxetane compounds include 3-ethyl-3-hydroxymethyloxetane (OXA), 1,4-bis [ ⁇ (3-ethyl-3-oxetanyl) methoxy ⁇ methyl] benzene (XDO), 3-ethyl-3- (phenoxy Methyl) oxetane (OXT-211 (POX)), 2-ethylhexyloxetane (OXT-212 (EHOX)), xylylene bisoxetane (OXT-121 (XDO)), bis (3-ethyl-3-oxetanylmethyl) ether (OXT-221 (DOX)), 3-ethyl-[ ⁇ (3-triethoxysilylpropoxy) methyl) oxetane, oxetanylsilsesquio
  • the number in parentheses indicates the product number of Toagosei Co., Ltd.
  • the addition amount of the oxetane compound is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight with respect to 45 parts by weight of the epoxy resin.
  • Each oxetane compound may be used alone or in combination of two or more.
  • Filler is added for the purpose of reducing the cure shrinkage during curing.
  • the filler include acrylic filler, styrene filler, acrylic / styrene copolymer filler, fluorine resin filler, polyethylene filler, polypropylene filler, silicone filler, silica filler, mica, talc, and glass filler. . Each may be used alone or in combination of two or more.
  • a preferred filler is an acrylic / styrene copolymer filler.
  • the addition amount of the filler is preferably 5 to 100 parts by weight, more preferably 15 to 60 parts by weight with respect to 45 parts by weight of the epoxy resin.
  • the photosensitizer is not particularly limited, and examples thereof include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreductive dyes.
  • Specific examples of photosensitizers include benzoin derivatives such as benzoin methyl ether, benzoin isopropyl ether, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate.
  • Benzophenone derivatives such as 4,4′-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone; 2-chloroanthraquinone, 2-methylanthraquinone, etc.
  • Anthraquinone derivatives; acridone derivatives such as N-methylacridone and N-butylacridone; other ⁇ , ⁇ -diethoxyacetophenone, benzyl, fluorenone, xanthone, uranyl compounds Etc.
  • photosensitizers may be used alone or in combination of two or more.
  • a preferred photosensitizer is 2,4-diethylthioxanthone (DETX-S manufactured by Nippon Kayaku).
  • the addition amount of the photosensitizer is 0.001 to 1 part by weight, preferably 0.005 to 0.1 part by weight with respect to 45 parts by weight of the epoxy resin.
  • iodonium salt-based PI2074 it is preferable to use the photosensitizer DETX-S, and the addition amount is preferably 0.005 to 45 parts by weight of the epoxy resin. 0.1 parts by weight, particularly preferably 0.01 parts by weight.
  • sulfonium salt-based CPI-210S is used as the photoacid generator, the curability is excellent without adding a photosensitizer.
  • ⁇ Silane coupling agent is added for the purpose of imparting adhesion.
  • silane coupling agents include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, dimethoxydiisopropoxysilane, diethoxydiisopropoxysilane, diethoxydi Tetraalkoxysilanes such as butoxysilane; trialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltriethoxysilane, ethyltributoxysilane, cyclohexyltriethoxysilane, and phenyltriisopropoxysilane Dimethyldimethoxysilane, dimethyldiethoxysilane,
  • the energy ray curable epoxy resin composition of the present invention includes, for example, an LD (laser diode), a photodetector (PD: photodetector), an optical component such as a lens and a prism, and an optical module on which an optical component such as a lens is mounted. Since it can be quickly fixed with high fixing accuracy, it is useful as an adhesive for assembling an optical device.
  • an optical device for example, in the optical pickup device described in Patent Documents 1 and 2 and paragraph 0023 of Japanese Patent Application Laid-Open No. 2007-311006, it can be used for fixing after adjusting the tilt of the actuator with a skew screw. In addition, it can also be used for fixing optical components such as mirrors and suspension wires.
  • Example 7 to 11 and Comparative Example 3 Based on the formulation shown in Table 3, the energy ray curable epoxy resin compositions of Examples 7 to 11 and Comparative Example 3 were prepared.
  • Example 12 to 14 Based on the formulation shown in Table 6, energy ray curable epoxy resin compositions of Examples 12 to 14 were prepared.
  • Test Example 4 The curability of each of the energy beam curable epoxy resin compositions of Examples 12 to 14 was tested in the same manner as in Test Example 1. The test results are shown in Table 6.
  • Example 15 to 18 Based on the formulation shown in Table 7, energy ray curable epoxy resin compositions of Examples 15 to 18 were prepared.
  • EXA-850CRP Bisphenol A type epoxy resin (manufactured by DIC: purified product by distillation)
  • EXA-8067 Bisphenol A type epoxy resin (manufactured by DIC: reaction product of EXA-850CRP and bisphenol A)
  • I-651 2,2-dimethoxy-1,2-diphenylethane (sensitizer manufactured by Ciba)
  • Example 5 Each of the energy ray curable epoxy resin compositions of Examples 15 and 16 was tested for LED curability.
  • the LED curability is obtained by dropping one drop of an energy ray curable epoxy resin composition on an aluminum plate and irradiating it with an irradiance of 500 mW / cm 2 (illuminance meter C6080-13 manufactured by Hamamatsu Photonics) for 10 seconds using an LED irradiator with a wavelength of 365 nm.
  • the cured state was confirmed by touch with a finger.
  • the criteria for LED curability were ⁇ : cured (solid) and x: uncured (liquid). The test results are shown in Table 8.
  • the deep curability of the LED is such that an energy beam curing type epoxy resin composition is filled in a black tube having an inner diameter of 5 mm ⁇ and a length of 5 mm, and an illuminance of 500 mW / cm 2 from above by an LED irradiator with a wavelength of 365 nm (illuminance meter: C6080 made by Hamamatsu Photonics)
  • the length of the energy ray-curable epoxy resin composition which was irradiated for 10 seconds at ⁇ 13) and was cured was measured. Table 10 shows the measurement results.
  • Test Example 8 The hardness, cure shrinkage, and elastic modulus of each of the energy beam curable epoxy resin compositions of Examples 15 and 17 were measured. Hardness (D) was measured with a durometer described in JIS K 7215. The cure shrinkage rate was measured according to the cup method described in JIS K 6833. Tan ⁇ and storage elastic modulus were measured by a flat plate tension method using EXSTAR6000 manufactured by SII.
  • optical components such as LDs, photodetectors, lenses and prisms, and optical modules on which optical components such as lenses are mounted can be quickly and accurately fixed. Since it can be fixed, it is useful as an adhesive for assembling an optical device.

Abstract

Disclosed is an energy ray-curable epoxy resin composition wherein the problem of slow curing has been solved, while maintaining high fixation accuracy. Specifically disclosed is an energy ray-curable epoxy resin composition which contains an epoxy resin, a silicate compound that has a cationically curable functional group, and a photoacid generator.

Description

速硬化性に優れたエネルギー線硬化型エポキシ樹脂組成物Energy ray curable epoxy resin composition excellent in rapid curing
 本発明は、エネルギー線硬化型エポキシ樹脂組成物、特に、固定精度を高く維持しながら、優れた速硬化性を有し、光学部品固定用に適したエネルギー線硬化型エポキシ樹脂組成物に関する。 The present invention relates to an energy beam curable epoxy resin composition, and more particularly to an energy beam curable epoxy resin composition that has excellent fast curability while maintaining high fixing accuracy and is suitable for fixing optical components.
 光ピックアップ装置において、光検出器をハウジングに固定用するのに光硬化型接着剤が用いられている(特許文献1、2)。この接着剤には、固定精度が高いこと及び硬化性が良いこと(速硬化性)が要求される。 In the optical pickup device, a photo-curing adhesive is used to fix the photodetector to the housing (Patent Documents 1 and 2). This adhesive is required to have high fixing accuracy and good curability (fast curability).
 固定精度とは、光検出器をハウジングに固定する際に、光検出器が所定の位置から動かないことを示す精度である。固定精度が低いと、光ピックアップ装置の製造時や耐久試験後に、光検出器が所定の位置から動いてしまい、光検出ができなくなる。したがって、高い固定精度が要求される。 The fixing accuracy is an accuracy indicating that the light detector does not move from a predetermined position when the light detector is fixed to the housing. If the fixing accuracy is low, the photodetector moves from a predetermined position at the time of manufacturing the optical pickup device or after the durability test, and light detection cannot be performed. Therefore, high fixing accuracy is required.
 速硬化性は、硬化速度が大きく、より短時間で硬化すること、すなわち、硬化性が良いことである。従来に比べ、近年タクトアップの要求があり、速硬化性に対する要望が高まっている。 Fast curability means that the curing speed is high and the curing is quicker, that is, the curability is good. In recent years, there has been a demand for tact-up, and there is an increasing demand for fast curability.
 固定精度を考慮すると、光硬化型接着剤として、光硬化性アクリル系樹脂接着剤よりもカチオン硬化性エポキシ樹脂接着剤のほうが優れている。さらに、カチオン硬化性エポキシ樹脂接着剤は、アクリル系樹脂接着剤のように酸素による硬化阻害がなく、また薄膜硬化性にもすぐれている(非特許文献1)。しかしながら、カチオン硬化性エポキシ樹脂は、硬化速度が遅いという問題があった。 In consideration of fixing accuracy, a cationic curable epoxy resin adhesive is superior to a photocurable acrylic resin adhesive as a photocurable adhesive. Furthermore, the cationic curable epoxy resin adhesive does not inhibit the curing by oxygen unlike the acrylic resin adhesive, and is excellent in thin film curability (Non-Patent Document 1). However, the cationic curable epoxy resin has a problem that the curing rate is slow.
特開2002-251776号公報JP 2002-251776 A 特開2007-35238号公報JP 2007-35238 A
 本発明は、エネルギー線硬化型エポキシ樹脂組成物において、固定精度を高く維持しながら、硬化速度が遅いという問題点を解決することを課題とする。 An object of the present invention is to solve the problem that the curing rate is slow while maintaining high fixation accuracy in the energy ray curable epoxy resin composition.
 本発明は、エポキシ樹脂とカチオン硬化性官能基をもつシリケート化合物と光酸発生剤とを含むエネルギー線硬化型エポキシ樹脂組成物である。 The present invention is an energy ray curable epoxy resin composition comprising an epoxy resin, a silicate compound having a cationic curable functional group, and a photoacid generator.
 固定精度に関連して、硬化収縮率が低いことは、位置調整をした光検出器を光硬化型接着剤の硬化時に硬化収縮で動かさないようにするのに重要であり、熱時の弾性率が高いことは、熱時に光検出器がその自重や光検出器に付いているFPC(ポリイミド配線)の張力で動かないようにするのに重要であり、熱時でも光硬化型接着剤が軟化せずに硬いことを示す。本発明者らは、種々の検討の結果、高い固定精度を得るためには、エポキシ樹脂組成物の硬化収縮率が3%以下であること及び熱時(耐久試験の温度100℃)での弾性率が50MPa以上であることが必要であることを見出した。 In relation to the fixing accuracy, the low cure shrinkage is important to prevent the position-adjusted photodetector from moving due to cure shrinkage when curing the photocurable adhesive, and the elastic modulus during heat. It is important to prevent the photodetector from moving due to its own weight or the tension of the FPC (polyimide wiring) attached to the photodetector when heated, and the photo-curing adhesive softens even when heated. It shows that it is hard without. As a result of various studies, the present inventors have found that the epoxy resin composition has a curing shrinkage of 3% or less and elasticity when heated (durability test temperature of 100 ° C.) in order to obtain high fixing accuracy. It has been found that the rate needs to be 50 MPa or more.
 速硬化性に関して、本発明者らは、種々の検討の結果、近年のタクトアップの要求を満たすためには、従来は15~20秒であった硬化時間を5~10秒とする必要があることを見出した。 As a result of various studies, the inventors of the present invention need to set the curing time of 15 to 20 seconds to 5 to 10 seconds in order to satisfy the recent tact-up requirement. I found out.
 本発明によれば、高い固定精度を維持しながら、樹脂組成物の硬化速度を格段に向上することができる。 According to the present invention, the curing rate of the resin composition can be remarkably improved while maintaining high fixing accuracy.
 本発明のエネルギー線硬化型エポキシ樹脂組成物は、エポキシ樹脂とカチオン硬化性官能基をもつシリケート化合物と光酸発生剤とを含む。 The energy beam curable epoxy resin composition of the present invention includes an epoxy resin, a silicate compound having a cationic curable functional group, and a photoacid generator.
(エポキシ樹脂)
 エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ポリブタジエン型エポキシ樹脂、ポリイソプレン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂などを例示することができる。これらの樹脂は、それぞれ単独で使用してもよいし、又は二種以上を組み合わせて使用してもよい。
(Epoxy resin)
Although it does not specifically limit as an epoxy resin, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, hydrogenated bisphenol A Examples thereof include a type epoxy resin, a hydrogenated bisphenol F type epoxy resin, a polybutadiene type epoxy resin, a polyisoprene type epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin. These resins may be used alone or in combination of two or more.
 脂環式エポキシ樹脂として、例えば、ビニルシクロヘキセンモノオキサイド 1,2-エポキシ-4-ビニルシクロヘキサン(CEL2000)、1,2:8,9ジエポキシリモネン(CEL3000)、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(CEL2021P)、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物(EHPE3150)、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、水添ビフェニル型脂環式エポキシ樹脂などが挙げられる。それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。 Examples of alicyclic epoxy resins include vinylcyclohexene monooxide オ キ サ 1,2-epoxy-4-vinylcyclohexane (CEL2000), 1,2: 8,9 diepoxy limonene (CEL3000), 3,4-epoxycyclohexenylmethyl- 3 ′, 4′-epoxycyclohexenecarboxylate (CEL2021P), 1,2-epoxy-4- (2-oxiranyl) cyclosoxane adduct of 2,2-bis (hydroxymethyl) -1-butanol (EHPE3150), 3 , 4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, hydrogenated biphenyl type alicyclic epoxy resin, and the like. Each may be used alone or in combination of two or more.
 脂肪族エポキシ樹脂として、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルなどが挙げられる。それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。 Examples of the aliphatic epoxy resin include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1 , 6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, trimethylolpropane diglycidyl ether, polyethylene glycol diglycidyl ether, and the like. Each may be used alone or in combination of two or more.
 エポキシ樹脂として、好ましいのは、ビスフェノールA型エポキシ樹脂(例えば、DIC社製のエピクロン850またはエピクロン860)、水添ビスフェノールA型エポキシ樹脂(例えば、jER社製のYX8034)であり、特に好ましいのは、DIC社製のエピクロン860である。 As the epoxy resin, bisphenol A type epoxy resin (for example, Epicron 850 or Epicron 860 manufactured by DIC) and hydrogenated bisphenol A type epoxy resin (for example, YX8034 manufactured by jER) are particularly preferable. , Epicron 860 manufactured by DIC Corporation.
 本発明において、ビスフェノールA型エポキシ樹脂等のフェノール型エポキシ樹脂として、精製したものを用いることもできる。フェノール型エポキシ樹脂中には、合成に使用したエピクロロヒドリンや、エポキシ基に閉環していないハロゲン含有の中間体が不純物として存在する。これら不純物は、カチオン硬化触媒の存在下、エネルギー線を照射しても硬化しない。したがって、これら不純物を除去したフェノール型エポキシ樹脂を用いることで、エネルギー線で硬化後の硬化物中の未硬化成分を少なくすることができ、かつ低ハロゲン含有のエネルギー線硬化型エポキシ樹脂組成物を得ることができる。 In the present invention, a purified epoxy resin such as a bisphenol A epoxy resin may be used. In the phenol type epoxy resin, epichlorohydrin used for the synthesis and halogen-containing intermediates not ring-closed to the epoxy group are present as impurities. These impurities are not cured even when irradiated with energy rays in the presence of a cationic curing catalyst. Therefore, by using a phenol type epoxy resin from which these impurities are removed, an uncured component in the cured product after curing with energy rays can be reduced, and an energy ray curable epoxy resin composition containing a low halogen content can be obtained. Obtainable.
 フェノール型エポキシ樹脂の精製として、例えば、蒸留による精製、シリカゲルやアルミナ等を用いたクロマトグラフィによる精製、共有結合で結合しているハロゲンを水酸化ナトリウム水溶液のようなアルカリ水溶液で加水分解する精製などが挙げられる。ビスフェノールAタイプのエポキシ樹脂の蒸留による精製品として、DIC社からEXA-850CRPを入手することができる。EXA-850CRPとビスフェノールAを反応させ得られる高分子量のエポキシ樹脂として、DIC社からEXA-8067を入手できる。 Examples of the purification of the phenol type epoxy resin include purification by distillation, purification by chromatography using silica gel, alumina, etc., purification by hydrolyzing a halogen bonded by a covalent bond with an alkaline aqueous solution such as an aqueous sodium hydroxide solution, etc. Can be mentioned. EXA-850CRP can be obtained from DIC as a purified product by distillation of bisphenol A type epoxy resin. EXA-8067 is available from DIC as a high molecular weight epoxy resin obtained by reacting EXA-850CRP with bisphenol A.
 本発明のエネルギー線硬化型エポキシ樹脂組成物において、ハロゲン量は、500ppm以下であることが、電気腐食(電食性)の問題、地球環境の問題の観点から好ましい。エポキシ樹脂として、EXA-850CRPやEXA-8067を用いると、上記した本発明の効果に加え、低ハロゲン化が達成できる。 In the energy ray curable epoxy resin composition of the present invention, the halogen content is preferably 500 ppm or less from the viewpoint of the problem of electric corrosion (electro-corrosion) and the problem of the global environment. When EXA-850CRP or EXA-8067 is used as the epoxy resin, low halogenation can be achieved in addition to the effects of the present invention described above.
(カチオン硬化性官能基をもつシリケート化合物)
 カチオン硬化性官能基をもつシリケート化合物としては、カチオン硬化可能なシリケート化合物であれば特に限定されない。カチオン硬化性官能基もつシリケート化合物としては、例えば、グリシジルシリケート、脂環式エポキシシリケート、ビニルシリケート、オキセタニルシリケートが挙げられる。
(Silicate compounds with cationic curable functional groups)
The silicate compound having a cationic curable functional group is not particularly limited as long as it is a cation curable silicate compound. Examples of the silicate compound having a cationic curable functional group include glycidyl silicate, alicyclic epoxy silicate, vinyl silicate, and oxetanyl silicate.
 脂環式エポキシシリケートとしては、テトラ(3、4-エポキシシクロヘキセニルメチル)シリケートの縮合物が挙げられる。その市販品として、X-40-2670(信越化学工業(株))が挙げられる。 Examples of the alicyclic epoxy silicate include a condensate of tetra (3,4-epoxycyclohexenylmethyl) silicate. X-40-2670 (Shin-Etsu Chemical Co., Ltd.) is an example of such a commercial product.
 オキセタニルシリケートとしては、テトラ[(3-エチルオキセタン-3-イル)メチル)]シリケートの縮合物が挙げられる。その市販品として、アロンオキセタンOXT-191(東亞合成(株))が挙げられる。 Examples of the oxetanyl silicate include a condensate of tetra [(3-ethyloxetane-3-yl) methyl)] silicate. As a commercially available product, Aron Oxetane OXT-191 (Toagosei Co., Ltd.) can be mentioned.
 カチオン硬化性官能基をもつシリケート化合物は、好ましくは、オキセタニルシリケート及び脂環式エポキシシリケートからなる群から選択した1種以上のシリケート化合物であり、特に、東亞合成社製オキセタニルシリケートOXT-191及び/又は信越化学工業製X-40-2670(脂環式エポキシシリケート)である。 The silicate compound having a cationic curable functional group is preferably one or more silicate compounds selected from the group consisting of oxetanyl silicate and alicyclic epoxy silicate, and in particular, oxetanyl silicate OXT-191 and / or Toagosei Co., Ltd. Or X-40-2670 (alicyclic epoxy silicate) manufactured by Shin-Etsu Chemical Co., Ltd.
 カチオン硬化性官能基をもつシリケート化合物の使用量の範囲は、45重量部のエポキシ樹脂に対して、好ましくは2.5~10重量部であり、特に好ましくは5~10重量部である。45重量部のエポキシ樹脂に対して、カチオン硬化性官能基をもつシリケート化合物の使用量が少なすぎると、得られるエネルギー線硬化型エポキシ樹脂組成物の硬化性の向上が不十分となり、10重量部を超えても、得られるエネルギー線硬化型エポキシ樹脂組成物の硬化性の向上が見込めない。 The range of the amount of the silicate compound having a cationic curable functional group is preferably 2.5 to 10 parts by weight, particularly preferably 5 to 10 parts by weight with respect to 45 parts by weight of the epoxy resin. If the amount of the silicate compound having a cationic curable functional group is too small relative to 45 parts by weight of the epoxy resin, the resulting energy beam curable epoxy resin composition is insufficiently improved in its curability. Even if exceeding, improvement of curability of the obtained energy ray-curable epoxy resin composition cannot be expected.
(光酸発生剤)
 光酸発生剤としては、エネルギー線の照射によりルイス酸又はブレンステッド酸を発生する化合物であれば限定されないが、例えばスルホニウム塩、ヨードニウム塩が挙げられる。光酸発生剤の使用量の範囲は、45重量部のエポキシ樹脂に対して、好ましくは0.5~10重量部であり、より好ましくは1~4重量部である。光酸発生剤は、4-ブチロラクトン等の溶剤に溶解又は分散して添加することもできる。
(Photoacid generator)
The photoacid generator is not limited as long as it is a compound that generates a Lewis acid or a Bronsted acid upon irradiation with energy rays, and examples thereof include a sulfonium salt and an iodonium salt. The range of use amount of the photoacid generator is preferably 0.5 to 10 parts by weight, more preferably 1 to 4 parts by weight with respect to 45 parts by weight of the epoxy resin. The photoacid generator can also be added after being dissolved or dispersed in a solvent such as 4-butyrolactone.
 スルホニウム塩として、例えば、トリフェニルスルホニウム ヘキサフルオロホスフェート、トリフェニルスルホニウム ヘキサフルオロアンチモネート、トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン ヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレート、旭電化社製SP-170、SP-172、SP-150、SP-152、サンアプロ社製CPI-210Sなどが挙げられる。スルホニウム塩として好ましいのは、旭電化社製SP-170、SP-172またはサンアプロ社製CPI-210Sである。これらの塩は、それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。 Examples of the sulfonium salt include triphenylsulfonium ス ル ホ hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4'-bis [diphenylsulfonio] diphenyl sulfide bishexafluorophosphate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluorophosphate 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfone Nio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfo Nio-diphenyl sulfide hexafluoroantimonate, 4- (p-tert-butylphenylcarbonyl) -4'-di (p-toluyl) sulfonio-diphenyl sulfide tetrakis (pentafluorophenyl) borate, SP-170 manufactured by Asahi Denka Co., Ltd. SP-172, SP-150, SP-152, CPI-210S manufactured by Sun Apro, and the like can be mentioned. Preferred as the sulfonium salt is SP-170, SP-172 manufactured by Asahi Denka Co., Ltd. or CPI-210S manufactured by San Apro. These salts may be used alone or in combination of two or more.
 ヨードニウム塩として、例えば、ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウム ヘキサフルオロホスフェート、ローディア社製PI2074などが挙げられる。ヨードニウム塩として好ましいのは、ローディア社製PI2074である。これらの塩は、それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。 Examples of the iodonium salt include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and PI2074 manufactured by Rhodia. Preferable iodonium salt is Rho20's PI2074. These salts may be used alone or in combination of two or more.
(その他の添加剤)
 本発明のエネルギー線硬化型エポキシ樹脂組成物は、本発明の効果を奏する範囲内で、オキセタン化合物(オキセタニルシリケートを除く)、フィラー、光増感剤、シランカップリング剤などのその他の添加剤を含むことができる。
(Other additives)
The energy ray curable epoxy resin composition of the present invention contains other additives such as oxetane compounds (excluding oxetanyl silicate), fillers, photosensitizers, and silane coupling agents within the scope of the effects of the present invention. Can be included.
 オキセタン化合物は、塗布作業性を向上するために低粘度化や低収縮率化の目的で添加する。オキセタン化合物として、3-エチル-3-ヒドロキシメチルオキセタン(OXA)、1,4-ビス〔{(3-エチル-3-オキセタニル)メトキシ}メチル〕ベンゼン(XDO)、3-エチル-3-(フェノキシメチル)オキセタン(OXT-211(POX))、2-エチルヘキシルオキセタン(OXT-212(EHOX))、キシリレンビスオキセタン(OXT-121(XDO))、ビス(3-エチル-3-オキセタニルメチル)エーテル(OXT-221(DOX))、3-エチル-〔{(3-トリエトキシシリルプロポキシ)メチル)オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタンなどが挙げられる。カッコ内は東亞合成社の品番を示す。オキセタン化合物の添加量は、45重量部のエポキシ樹脂に対して、好ましくは5~100重量部であり、より好ましくは10~50重量部である。それぞれのオキセタン化合物は、単独で使用しても、又は二種以上を組み合わせて使用してもよい。 Oxetane compound is added for the purpose of reducing viscosity and reducing shrinkage in order to improve coating workability. Examples of oxetane compounds include 3-ethyl-3-hydroxymethyloxetane (OXA), 1,4-bis [{(3-ethyl-3-oxetanyl) methoxy} methyl] benzene (XDO), 3-ethyl-3- (phenoxy Methyl) oxetane (OXT-211 (POX)), 2-ethylhexyloxetane (OXT-212 (EHOX)), xylylene bisoxetane (OXT-121 (XDO)), bis (3-ethyl-3-oxetanylmethyl) ether (OXT-221 (DOX)), 3-ethyl-[{(3-triethoxysilylpropoxy) methyl) oxetane, oxetanylsilsesquioxane, phenol novolac oxetane and the like. The number in parentheses indicates the product number of Toagosei Co., Ltd. The addition amount of the oxetane compound is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight with respect to 45 parts by weight of the epoxy resin. Each oxetane compound may be used alone or in combination of two or more.
 フィラーは、硬化時の硬化収縮率を下げる目的で添加する。フィラーとして、アクリル系フィラー、スチレン系フィラー、アクリル/スチレン共重合系フィラー、フッ素系樹脂フィラー、ポリエチレン系フィラー、ポリプロピレン系フィラー、シリコーン系フィラー、シリカ系フィラー、マイカ、タルク、ガラスフィラーなどが挙げられる。それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。好ましいフィラーは、アクリル/スチレン共重合系フィラーである。フィラーの添加量は、45重量部のエポキシ樹脂に対して、好ましくは5~100重量部であり、より好ましくは15~60重量部である。 Filler is added for the purpose of reducing the cure shrinkage during curing. Examples of the filler include acrylic filler, styrene filler, acrylic / styrene copolymer filler, fluorine resin filler, polyethylene filler, polypropylene filler, silicone filler, silica filler, mica, talc, and glass filler. . Each may be used alone or in combination of two or more. A preferred filler is an acrylic / styrene copolymer filler. The addition amount of the filler is preferably 5 to 100 parts by weight, more preferably 15 to 60 parts by weight with respect to 45 parts by weight of the epoxy resin.
 光増感剤としては、特に限定されないが、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ及びジアゾ化合物、ハロゲン化合物、光還元性色素など挙げられる。光増感剤として、具体的には、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、α,α-ジメトキシ-α-フェニルアセトフェノンのようなベンゾイン誘導体;ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジエチルアミノ)ベンゾフェノンのようなベンゾフェノン誘導体;2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントンのようなチオキサントン誘導体;2-クロロアントラキノン、2-メチルアントラキノンのようなアントラキノン誘導体;N-メチルアクリドン、N-ブチルアクリドンのようなアクリドン誘導体;その他、α,α-ジエトキシアセトフェノン、ベンジル、フルオレノン、キサントン、ウラニル化合物などが挙げられる。これらの光増感剤は、単独で使用しても、又は二種以上を組み合わせて使用してもよい。好ましい光増感剤は、2,4-ジエチルチオキサントン(日本化薬製DETX-S)である。光増感剤の添加量は、45重量部のエポキシ樹脂に対して、0.001~1重量部、好ましくは0.005~0.1重量部である。光酸発生剤としてヨウドニウム塩系PI2074を用いたときは、光増感剤DETX-Sの使用が好適であり、その添加量は、45重量部のエポキシ樹脂に対して、好ましくは0.005~0.1重量部、特に好ましくは0.01重量部である。光酸発生剤としてスルホニウム塩系のCPI-210Sを使用した場合には、光増感剤を添加しなくても、硬化性に優れる。 The photosensitizer is not particularly limited, and examples thereof include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreductive dyes. Specific examples of photosensitizers include benzoin derivatives such as benzoin methyl ether, benzoin isopropyl ether, α, α-dimethoxy-α-phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate. Benzophenone derivatives such as 4,4′-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone; 2-chloroanthraquinone, 2-methylanthraquinone, etc. Anthraquinone derivatives; acridone derivatives such as N-methylacridone and N-butylacridone; other α, α-diethoxyacetophenone, benzyl, fluorenone, xanthone, uranyl compounds Etc. These photosensitizers may be used alone or in combination of two or more. A preferred photosensitizer is 2,4-diethylthioxanthone (DETX-S manufactured by Nippon Kayaku). The addition amount of the photosensitizer is 0.001 to 1 part by weight, preferably 0.005 to 0.1 part by weight with respect to 45 parts by weight of the epoxy resin. When iodonium salt-based PI2074 is used as the photoacid generator, it is preferable to use the photosensitizer DETX-S, and the addition amount is preferably 0.005 to 45 parts by weight of the epoxy resin. 0.1 parts by weight, particularly preferably 0.01 parts by weight. When sulfonium salt-based CPI-210S is used as the photoacid generator, the curability is excellent without adding a photosensitizer.
 シランカップリング剤は、接着性付与の目的で添加する。シランカップリング剤として、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン、ジメトキシジイソプロポキシシラン、ジエトキシジイソプロポキシシラン、ジエトキシジブトキシシランなどのテトラアルコキシシラン類;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリエトキシシラン、エチルトリブトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリイソプロポキシシランなどのトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジブトキシシラン、フェニルエチルジエトキシシランなどのジアルコキシシラン類を例示できる。これらのシランカップリング剤は、単独でも2種以上組み合わせて使用しても良い。シランカップリング剤の添加量は、45重量部のエポキシ樹脂に対して、好ましくは0.1~10重量部であり、より好ましくは0.5~5重量部である。 ¡Silane coupling agent is added for the purpose of imparting adhesion. Examples of silane coupling agents include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, dimethoxydiisopropoxysilane, diethoxydiisopropoxysilane, diethoxydi Tetraalkoxysilanes such as butoxysilane; trialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltriethoxysilane, ethyltributoxysilane, cyclohexyltriethoxysilane, and phenyltriisopropoxysilane Dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, diethyldibutoxysilane, phenylethyldiethoxy It can be exemplified dialkoxysilane such as silane. These silane coupling agents may be used alone or in combination of two or more. The addition amount of the silane coupling agent is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 45 parts by weight of the epoxy resin.
(エネルギー線硬化型エポキシ樹脂組成物の用途)
 本発明のエネルギー線硬化型エポキシ樹脂組成物は、たとえば、LD(レーザーダイオード)、光検出器(PD:フォトディデクタ)、レンズ、プリズムなどの光学部品やレンズ等の光学部品を搭載する光学モジュール等を高い固定精度で迅速に固定できるので、光学装置組み立て用の接着剤として有用である。光学装置として、例えば、特許文献1、2や、特開2007-311006公報の段落0023に記載の光ピックアップ装置において、スキューネジでアクチュエータの傾きを調整した後の固定にも使用できる。また、その他に、ミラー等の光学部品の固定やサスペンションワイヤーの固定にも使用可能である。
(Use of energy ray curable epoxy resin composition)
The energy ray curable epoxy resin composition of the present invention includes, for example, an LD (laser diode), a photodetector (PD: photodetector), an optical component such as a lens and a prism, and an optical module on which an optical component such as a lens is mounted. Since it can be quickly fixed with high fixing accuracy, it is useful as an adhesive for assembling an optical device. As an optical device, for example, in the optical pickup device described in Patent Documents 1 and 2 and paragraph 0023 of Japanese Patent Application Laid-Open No. 2007-311006, it can be used for fixing after adjusting the tilt of the actuator with a skew screw. In addition, it can also be used for fixing optical components such as mirrors and suspension wires.
 以下に、本発明を実施例により説明する。なお、配合量は重量部で示す。 Hereinafter, the present invention will be described with reference to examples. In addition, a compounding quantity is shown by a weight part.
[実施例1~6及び比較例1~2]
 表1に示した配合に基づき、光酸発生剤PI2074又はCPI-210Sを4-ブチロラクトンに溶かし、これをエピクロン850に加え、透明になるまで撹拌して、比較例1及び2のエネルギー線硬化型エポキシ樹脂組成物を調製した。
[Examples 1 to 6 and Comparative Examples 1 and 2]
Based on the formulation shown in Table 1, the photoacid generator PI2074 or CPI-210S was dissolved in 4-butyrolactone, added to Epicron 850, and stirred until it became transparent. An epoxy resin composition was prepared.
 表1に示した配合に基づき、比較例1又は2のエポキシ樹脂組成物にOXT-191を添加し、均一になるまで撹拌し、実施例1~6のエネルギー線硬化型エポキシ樹脂組成物を調製した。 Based on the formulation shown in Table 1, OXT-191 was added to the epoxy resin composition of Comparative Example 1 or 2 and stirred until uniform to prepare the energy ray curable epoxy resin compositions of Examples 1-6. did.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[試験例1]
 実施例1~6及び比較例1~2のエネルギー線硬化型エポキシ樹脂組成物の硬化性を試験した。硬化性は、それぞれのエネルギー線硬化型エポキシ樹脂組成物を1mm厚に塗布した後、浜松ホトニクス製UV照射機で500mW/cm2(365nm)を2.5秒間、5秒間、10秒間、15秒間、20秒間又は30秒間照射して硬化状態を指触で確認した。指触により、液状の場合は×、柔らかい硬化物の場合は△、固化している場合は○と評価した。結果を表2に示す。
[Test Example 1]
The curability of the energy ray curable epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 and 2 was tested. Curability is determined by applying each energy beam curable epoxy resin composition to a thickness of 1 mm, and then applying 500 mW / cm 2 (365 nm) for 2.5 seconds, 5 seconds, 10 seconds, and 15 seconds with a UV irradiation machine manufactured by Hamamatsu Photonics. The cured state was confirmed by touch with a finger after irradiation for 20 seconds or 30 seconds. By touch, the liquid was evaluated as x, the soft cured product as Δ, and the solidified as ○. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例7~11及び比較例3]
 表3に示した配合に基づき、実施例7~11及び比較例3のエネルギー線硬化型エポキシ樹脂組成物を調製した。
[Examples 7 to 11 and Comparative Example 3]
Based on the formulation shown in Table 3, the energy ray curable epoxy resin compositions of Examples 7 to 11 and Comparative Example 3 were prepared.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[試験例2]
 実施例7~11及び比較例3のエネルギー線硬化型エポキシ樹脂組成物のそれぞれの硬化性を試験例1と同様にして試験した。結果を表4に示す。
[Test Example 2]
The curability of each of the energy beam curable epoxy resin compositions of Examples 7 to 11 and Comparative Example 3 was tested in the same manner as in Test Example 1. The results are shown in Table 4.
[試験例3]
 実施例7及び8並びに比較例3のエネルギー線硬化型エポキシ樹脂組成物のそれぞれの硬化収縮率及び弾性率を測定した。硬化収縮率は、JIS K 6833記載のカップ法に準じて測定した。弾性率は、SII社製 EXSTAR6000を使用して、平板引張法で測定した。結果を表5に示す。
[Test Example 3]
The curing shrinkage rate and elastic modulus of each of the energy ray curable epoxy resin compositions of Examples 7 and 8 and Comparative Example 3 were measured. The cure shrinkage rate was measured according to the cup method described in JIS K 6833. The elastic modulus was measured by a flat plate tension method using EXSTAR6000 manufactured by SII. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例12~14]
 表6に示した配合に基づき、実施例12~14のエネルギー線硬化型エポキシ樹脂組成物を調製した。
[Examples 12 to 14]
Based on the formulation shown in Table 6, energy ray curable epoxy resin compositions of Examples 12 to 14 were prepared.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[試験例4]
 実施例12~14のエネルギー線硬化型エポキシ樹脂組成物のそれぞれの硬化性を試験例1と同様にして試験した。試験結果を表6に示す。
[Test Example 4]
The curability of each of the energy beam curable epoxy resin compositions of Examples 12 to 14 was tested in the same manner as in Test Example 1. The test results are shown in Table 6.
[実施例15~18]
 表7に示した配合に基づき、実施例15~18のエネルギー線硬化型エポキシ樹脂組成物を調製した。
[Examples 15 to 18]
Based on the formulation shown in Table 7, energy ray curable epoxy resin compositions of Examples 15 to 18 were prepared.
Figure JPOXMLDOC01-appb-T000007
 EXA-850CRP:ビスフェノールA型エポキシ樹脂(DIC社製:蒸留による精製品)
 EXA-8067:ビスフェノールA型エポキシ樹脂(DIC社製:EXA-850CRPとビスフェノールAの反応品)
 I-651:2,2-ジメトキシ-1,2-ジフェニルエタン(チバ社製増感剤)
Figure JPOXMLDOC01-appb-T000007
EXA-850CRP: Bisphenol A type epoxy resin (manufactured by DIC: purified product by distillation)
EXA-8067: Bisphenol A type epoxy resin (manufactured by DIC: reaction product of EXA-850CRP and bisphenol A)
I-651: 2,2-dimethoxy-1,2-diphenylethane (sensitizer manufactured by Ciba)
[試験例5]
 実施例15及び16のエネルギー線硬化型エポキシ樹脂組成物のそれぞれのLED硬化性を試験した。LED硬化性は、アルミ板上にエネルギー線硬化型エポキシ樹脂組成物を一滴たらし、これを波長365nmのLED照射機により500mW/cm2の照度(照度計浜松ホトニクス製C6080-13)で10秒間照射して硬化し、硬化状態を指触にて確認した。LED硬化性の基準は、○:硬化(固体)、×印:未硬化(液状)であった。試験結果を表8に示す。
[Test Example 5]
Each of the energy ray curable epoxy resin compositions of Examples 15 and 16 was tested for LED curability. The LED curability is obtained by dropping one drop of an energy ray curable epoxy resin composition on an aluminum plate and irradiating it with an irradiance of 500 mW / cm 2 (illuminance meter C6080-13 manufactured by Hamamatsu Photonics) for 10 seconds using an LED irradiator with a wavelength of 365 nm. The cured state was confirmed by touch with a finger. The criteria for LED curability were ◯: cured (solid) and x: uncured (liquid). The test results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[試験例6]
 実施例15、17及び18のエネルギー線硬化型エポキシ樹脂組成物のそれぞれのハロゲン量をEN14582燃焼イオンクロマトグラフ法により測定した。測定結果を表9に示す。
[Test Example 6]
The halogen amount of each of the energy ray curable epoxy resin compositions of Examples 15, 17 and 18 was measured by EN14582 combustion ion chromatography. Table 9 shows the measurement results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[試験例7]
 実施例15、17及び18のエネルギー線硬化型エポキシ樹脂組成物のそれぞれの深部硬化性を測定した。紫外線ランプによる深部硬化性は、内径5mmφの長さ5mmの黒チューブにエネルギー線硬化型エポキシ樹脂組成物を充填し、紫外線照射機(浜松ホトニクス社製LC5)により上部から紫外線を照度500mW/cm2(365nm)(照度計:浜松ホトニクス製 C6080-13)で10秒間照射し、硬化したエネルギー線硬化型エポキシ樹脂組成物の長さを測定した。LEDによる深部硬化性は、内径5mmφの長さ5mmの黒チューブにエネルギー線硬化型エポキシ樹脂組成物を充填し、波長365nmのLED照射機により上部から照度500mW/cm2(照度計:浜松ホトニクス製 C6080-13)で10秒間照射し、硬化したエネルギー線硬化型エポキシ樹脂組成物の長さを測定した。測定結果を表10に示す。
[Test Example 7]
The deep part curability of each of the energy ray curable epoxy resin compositions of Examples 15, 17 and 18 was measured. The deep-curing property by the ultraviolet lamp is such that an energy ray-curable epoxy resin composition is filled in a black tube with an inner diameter of 5 mmφ and a length of 5 mm, and ultraviolet rays are irradiated from above by an ultraviolet irradiation machine (LC5 manufactured by Hamamatsu Photonics). 365 nm) (illuminance meter: C6080-13 manufactured by Hamamatsu Photonics) was irradiated for 10 seconds, and the length of the cured energy beam curable epoxy resin composition was measured. The deep curability of the LED is such that an energy beam curing type epoxy resin composition is filled in a black tube having an inner diameter of 5 mmφ and a length of 5 mm, and an illuminance of 500 mW / cm 2 from above by an LED irradiator with a wavelength of 365 nm (illuminance meter: C6080 made by Hamamatsu Photonics) The length of the energy ray-curable epoxy resin composition which was irradiated for 10 seconds at −13) and was cured was measured. Table 10 shows the measurement results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[試験例8]
 実施例15及び17のエネルギー線硬化型エポキシ樹脂組成物のそれぞれの硬度、硬化収縮率、弾性率を測定した。硬度(D)は、JIS K 7215記載のデュロメータにより測定した。硬化収縮率は、JIS K 6833記載のカップ法に準じて測定した。Tanδと貯蔵弾性率は、SII社製 EXSTAR6000を使用して、平板引張法で測定した。
[Test Example 8]
The hardness, cure shrinkage, and elastic modulus of each of the energy beam curable epoxy resin compositions of Examples 15 and 17 were measured. Hardness (D) was measured with a durometer described in JIS K 7215. The cure shrinkage rate was measured according to the cup method described in JIS K 6833. Tan δ and storage elastic modulus were measured by a flat plate tension method using EXSTAR6000 manufactured by SII.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明のエネルギー線硬化型エポキシ樹脂組成物によれば、たとえば、LD、光検出器、レンズ、プリズムなどの光学部品やレンズ等の光学部品が搭載される光学モジュール等を高い固定精度で迅速に固定できるので、光学装置組み立て用の接着剤として有用である。 According to the energy ray curable epoxy resin composition of the present invention, for example, optical components such as LDs, photodetectors, lenses and prisms, and optical modules on which optical components such as lenses are mounted can be quickly and accurately fixed. Since it can be fixed, it is useful as an adhesive for assembling an optical device.

Claims (9)

  1.  エポキシ樹脂とカチオン硬化性官能基をもつシリケート化合物と光酸発生剤とを含むエネルギー線硬化型エポキシ樹脂組成物。 An energy ray curable epoxy resin composition comprising an epoxy resin, a silicate compound having a cationic curable functional group, and a photoacid generator.
  2.  エポキシ樹脂45重量部に対して、カチオン硬化性官能基をもつシリケート化合物を2.5重量部~10重量部含有する、請求項1記載の組成物。 The composition according to claim 1, comprising 2.5 to 10 parts by weight of a silicate compound having a cationically curable functional group with respect to 45 parts by weight of the epoxy resin.
  3.  カチオン硬化性官能基をもつシリケート化合物が、オキセタニルシリケート及び脂環式エポキシシリケートからなる群から選択した1種以上のシリケート化合物である、請求項1又は2記載の組成物。 The composition according to claim 1 or 2, wherein the silicate compound having a cationic curable functional group is one or more silicate compounds selected from the group consisting of oxetanyl silicate and alicyclic epoxy silicate.
  4.  さらに、フィラーを含有する、請求項1~3のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 3, further comprising a filler.
  5.  さらに、オキセタニルシリケート以外のオキセタン化合物を含有する、請求項1~4のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 4, further comprising an oxetane compound other than oxetanyl silicate.
  6.  光学装置組み立て用の接着剤である、請求項1~5のいずれか1項記載の組成物。 6. The composition according to any one of claims 1 to 5, which is an adhesive for assembling an optical device.
  7.  光ピックアップ装置組み立て用の接着剤である、請求項1~5のいずれか1項記載の組成物。 6. The composition according to claim 1, which is an adhesive for assembling an optical pickup device.
  8.  請求項6記載の組成物を使用して組み立てた光学装置。 An optical device assembled using the composition according to claim 6.
  9.  請求項7記載の組成物を使用して組み立てた光ピックアップ装置。 An optical pickup device assembled using the composition according to claim 7.
PCT/JP2010/060832 2009-07-01 2010-06-25 Energy ray-curable epoxy resin composition having excellent fast curing properties WO2011001911A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117031477A KR101671047B1 (en) 2009-07-01 2010-06-25 Energy ray-curable epoxy resin composition having excellent fast curing properties
CN201080027559.3A CN102471456B (en) 2009-07-01 2010-06-25 Energy ray-curable epoxy resin composition having excellent fast curing properties
JP2011520897A JP5736568B2 (en) 2009-07-01 2010-06-25 Energy ray curable epoxy resin composition excellent in rapid curing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-156853 2009-07-01
JP2009156853 2009-07-01

Publications (1)

Publication Number Publication Date
WO2011001911A1 true WO2011001911A1 (en) 2011-01-06

Family

ID=43410987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060832 WO2011001911A1 (en) 2009-07-01 2010-06-25 Energy ray-curable epoxy resin composition having excellent fast curing properties

Country Status (5)

Country Link
JP (1) JP5736568B2 (en)
KR (1) KR101671047B1 (en)
CN (1) CN102471456B (en)
TW (1) TWI481686B (en)
WO (1) WO2011001911A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067732A (en) * 2011-09-22 2013-04-18 Kyoritsu Kagaku Sangyo Kk Cationic curing type resin composition
JP2015034227A (en) * 2013-08-08 2015-02-19 株式会社Adeka Energy ray-sensitive composition
CN108140452A (en) * 2015-09-30 2018-06-08 三星Sdi株式会社 Anisotropic conductive film and use its display equipment
JP2018127507A (en) * 2017-02-06 2018-08-16 アイカ工業株式会社 Adhesive for fixing optical components
JP2020164881A (en) * 2018-12-27 2020-10-08 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103666320B (en) * 2012-09-20 2016-07-06 广东恒大新材料科技有限公司 A kind of bonding agent composition for add-on type silica gel and application thereof
CN105504686B (en) * 2015-12-30 2018-01-05 广东生益科技股份有限公司 A kind of compositions of thermosetting resin and the prepreg, laminate and circuit carrier containing it
CA3022348C (en) 2016-05-19 2024-02-20 Sicpa Holding Sa Adhesives for assembling components of inert material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047064A (en) * 1983-06-20 1985-03-14 ゼネラル・エレクトリツク・カンパニイ Ultraviolet ray curable silicone releasing agent compositionwith controlled release power
JPS6426693A (en) * 1987-04-07 1989-01-27 Nitto Denko Corp Ultraviolet-curable silicone-based releasant
JPH01294725A (en) * 1987-10-07 1989-11-28 Nitto Denko Corp Curable silicone release agent
JPH01297421A (en) * 1988-03-21 1989-11-30 General Electric Co <Ge> Ultraviolet-curing epoxy functional silicone
JPH07156267A (en) * 1993-12-13 1995-06-20 Asahi Denka Kogyo Kk Optical solid shaping resin composition and optical solid shaping method using the composition
JPH11158254A (en) * 1997-11-27 1999-06-15 Ueno Hiroshi Ultraviolet-curable coating material for packaging body and packaging container
WO2007007803A1 (en) * 2005-07-13 2007-01-18 Fuji Seal International, Inc. Actinic-energy-ray-curable resin composition for plastic film and plastic label
JP2007284500A (en) * 2006-04-13 2007-11-01 Sekisui Chem Co Ltd Adhesive for optical part
WO2008133228A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
WO2008153076A1 (en) * 2007-06-14 2008-12-18 Sekisui Chemical Co., Ltd. Optical adhesive for substrate bonding and optical adhesive cured body for substrate bonding
JP2009098187A (en) * 2007-10-12 2009-05-07 Sekisui Chem Co Ltd Adhesive for optical components
JP2009298888A (en) * 2008-06-11 2009-12-24 Sekisui Chem Co Ltd Optical post-curable composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604567B1 (en) * 2002-02-14 2003-08-12 Ashland Inc. Free radically cured cold-box binders containing an alkyl silicate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047064A (en) * 1983-06-20 1985-03-14 ゼネラル・エレクトリツク・カンパニイ Ultraviolet ray curable silicone releasing agent compositionwith controlled release power
JPS6426693A (en) * 1987-04-07 1989-01-27 Nitto Denko Corp Ultraviolet-curable silicone-based releasant
JPH01294725A (en) * 1987-10-07 1989-11-28 Nitto Denko Corp Curable silicone release agent
JPH01297421A (en) * 1988-03-21 1989-11-30 General Electric Co <Ge> Ultraviolet-curing epoxy functional silicone
JPH07156267A (en) * 1993-12-13 1995-06-20 Asahi Denka Kogyo Kk Optical solid shaping resin composition and optical solid shaping method using the composition
JPH11158254A (en) * 1997-11-27 1999-06-15 Ueno Hiroshi Ultraviolet-curable coating material for packaging body and packaging container
WO2007007803A1 (en) * 2005-07-13 2007-01-18 Fuji Seal International, Inc. Actinic-energy-ray-curable resin composition for plastic film and plastic label
JP2007284500A (en) * 2006-04-13 2007-11-01 Sekisui Chem Co Ltd Adhesive for optical part
WO2008133228A1 (en) * 2007-04-23 2008-11-06 Adeka Corporation Silicon-containing compound, curable composition and cured product
WO2008153076A1 (en) * 2007-06-14 2008-12-18 Sekisui Chemical Co., Ltd. Optical adhesive for substrate bonding and optical adhesive cured body for substrate bonding
JP2009098187A (en) * 2007-10-12 2009-05-07 Sekisui Chem Co Ltd Adhesive for optical components
JP2009298888A (en) * 2008-06-11 2009-12-24 Sekisui Chem Co Ltd Optical post-curable composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067732A (en) * 2011-09-22 2013-04-18 Kyoritsu Kagaku Sangyo Kk Cationic curing type resin composition
JP2015034227A (en) * 2013-08-08 2015-02-19 株式会社Adeka Energy ray-sensitive composition
CN108140452A (en) * 2015-09-30 2018-06-08 三星Sdi株式会社 Anisotropic conductive film and use its display equipment
JP2018127507A (en) * 2017-02-06 2018-08-16 アイカ工業株式会社 Adhesive for fixing optical components
JP2020164881A (en) * 2018-12-27 2020-10-08 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device

Also Published As

Publication number Publication date
JPWO2011001911A1 (en) 2012-12-13
TWI481686B (en) 2015-04-21
KR101671047B1 (en) 2016-10-31
TW201116604A (en) 2011-05-16
JP5736568B2 (en) 2015-06-17
KR20120111955A (en) 2012-10-11
CN102471456A (en) 2012-05-23
CN102471456B (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5736568B2 (en) Energy ray curable epoxy resin composition excellent in rapid curing
JP5401767B2 (en) Curable composition and optical device
JP5897538B2 (en) Cationic curable resin composition with excellent flexibility
KR102006993B1 (en) Energy-beam-curable resin composition
KR20120055528A (en) Cationically polymerizable adhesive and polarizing plate obtained using same
KR20090055518A (en) Cation-polymerizable resin composition containing multi-branched polyether polyol, adhesive agent comprising the composition, and laminate and polarizing plate using the adhesive agent
WO2014185180A1 (en) Photo-curable resin composition for optical components, optical component using same, and optical component production method
KR20180012780A (en) Photocurable compositions, cured products and optical parts using the same
JP5634993B2 (en) Energy ray-curable epoxy resin composition with excellent deep-part curability
JPWO2008153076A1 (en) Optical adhesive for substrate bonding, and cured optical adhesive for substrate bonding
WO2023277060A1 (en) Laminate, electronic device, resin composition and cover glass
WO2016031602A1 (en) Photosensitive resin composition for optical applications and optical material using same
JP6691855B2 (en) Curable composition and cured product obtained by curing the same
JP5716221B2 (en) Cationic curable resin composition
WO2015151782A1 (en) Resin composition for use in optical component and optical component using same
WO2014129261A1 (en) Cation-polymerizable adhesive
JP2019073574A (en) Adhesive composition and optical semiconductor device
JP5119846B2 (en) Epoxy resin composition and transparent composite sheet
WO2023153513A1 (en) Laminate and electronic device
WO2023008542A1 (en) Curable resin composition, sealant for display elements, sealant for organic el display elements, optical adhesive, and optical member
JP2023061543A (en) Cation curing epoxy resin composition and method for curing the same
US20200079896A1 (en) Curable resin composition for three-dimensional molding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027559.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011520897

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117031477

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794080

Country of ref document: EP

Kind code of ref document: A1