WO2023277060A1 - Laminate, electronic device, resin composition and cover glass - Google Patents

Laminate, electronic device, resin composition and cover glass Download PDF

Info

Publication number
WO2023277060A1
WO2023277060A1 PCT/JP2022/025950 JP2022025950W WO2023277060A1 WO 2023277060 A1 WO2023277060 A1 WO 2023277060A1 JP 2022025950 W JP2022025950 W JP 2022025950W WO 2023277060 A1 WO2023277060 A1 WO 2023277060A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
laminate
mpa
resin
glass
Prior art date
Application number
PCT/JP2022/025950
Other languages
French (fr)
Japanese (ja)
Inventor
穣 末▲崎▼
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022542766A priority Critical patent/JPWO2023277060A1/ja
Priority to KR1020237030630A priority patent/KR20240026880A/en
Publication of WO2023277060A1 publication Critical patent/WO2023277060A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a laminate having excellent impact resistance.
  • the present invention also relates to an electronic device and a cover glass using the laminate, and a resin composition used for forming a resin layer of the laminate.
  • Patent Document 1 discloses a protective substrate for a display device comprising glass and a resin layer on one side of the glass, wherein the thickness of the glass is 20 ⁇ m to 200 ⁇ m, and the specific gravity of the resin layer is 0.9 g/ cm 3 to 1.5 g/cm 3 and the bending elastic modulus of the resin layer at 25° C. is 1000 MPa to 8000 MPa.
  • Patent Document 2 discloses a thin glass having a thickness of 120 ⁇ m or less and a shock absorbing layer having a thickness of 5 ⁇ m or more disposed on one side of the thin glass, and the shock absorbing layer has a thickness of 5 ⁇ m or more at 25° C.
  • Optical laminates with tan ⁇ maxima in the range of 10 1 to 10 15 Hz are described.
  • the impact resistance is insufficient.
  • An object of the present invention is to provide a laminate having excellent impact resistance. Another object of the present invention is to provide an electronic device and a cover glass using the laminate, and a resin composition used for forming the resin layer of the laminate.
  • the present disclosure 1 has a thin plate glass with a thickness of 200 ⁇ m or less and a resin layer with a thickness of 5 ⁇ m or more disposed on at least one side of the thin plate glass, and the breaking energy of the resin layer is 1 mJ / mm. 3 or more and a storage modulus at 25° C. of 2500 MPa or less (first laminate).
  • the present disclosure 2 is the laminate according to the present disclosure 1, wherein the resin layer has a Young's modulus of 50 MPa or more and 1500 MPa or less.
  • Present Disclosure 3 is the laminate according to Present Disclosure 1 or 2, wherein the resin layer has a storage elastic modulus at 25° C. of 2000 MPa or less.
  • Present Disclosure 4 is the laminate according to Present Disclosure 1, 2, or 3, wherein the resin layer has a glass transition temperature of 100° C. or less.
  • Present Disclosure 5 is the laminate of Present Disclosure 1, 2, 3 or 4, wherein the resin layer contains a cationic curable resin polymer.
  • the present disclosure 6 is a first resin layer having a thickness of 5 ⁇ m or more, which is arranged on one side of the thin glass, and a thick and a second resin layer having a thickness of 5 ⁇ m or more, wherein both the first resin layer and the second resin layer have a breaking energy of 1 mJ/mm 3 or more and storage elasticity at 25 ° C.
  • the present disclosure 7 is the laminate according to the present disclosure 6, wherein both the first resin layer and the second resin layer have a Young's modulus of 50 MPa or more and 1500 MPa or less.
  • the present disclosure 8 has a thin plate glass with a thickness of 200 ⁇ m or less, and a resin layer with a thickness of 5 ⁇ m or more disposed on at least one side of the thin plate glass, wherein the resin layer has a Young's modulus of 50 MPa or more, A laminated body (second laminated body) having a tensile strength of 1500 MPa or less.
  • Present Disclosure 9 is the laminate according to Present Disclosure 8, wherein the breaking energy of the resin layer is 1 mJ/mm 3 or more.
  • Present Disclosure 10 is the laminate according to Present Disclosure 8 or 9, wherein the resin layer has a storage modulus at 25° C. of 2500 MPa or less.
  • Present Disclosure 11 is the laminate according to Present Disclosure 8, 9, or 10, wherein the resin layer has a glass transition temperature of 100° C. or lower.
  • Disclosure 12 is the laminate of Disclosure 8, 9, 10 or 11, wherein the resin layer comprises a cationic curable resin polymer.
  • the present disclosure 13 is a first resin layer having a thickness of 5 ⁇ m or more, which is arranged on one side of the thin glass plate, and a thick and a second resin layer having a thickness of 5 ⁇ m or more, and the Young's modulus of both the first resin layer and the second resin layer is 50 MPa or more and 1500 MPa or less.
  • Present Disclosure 14 is the laminate according to Present Disclosure 13, wherein at least one of the first resin layer and the second resin layer has a storage elastic modulus at 25° C.
  • 15 of the present disclosure is the laminate according to 6, 7, 13, or 14 of the present disclosure, wherein at least one of the first resin layer and the second resin layer has a thickness of 25 ⁇ m or less.
  • 16 of the present disclosure is the laminate according to 6, 7, 13, 14, or 15 of the present disclosure, wherein at least one of the first resin layer and the second resin layer has a glass transition temperature of 100° C. or less.
  • the present disclosure 17 is the laminate according to the present disclosure 6, 7, 13, 14, 15 or 16, wherein at least one of the first resin layer and the second resin layer contains a cationic curable resin polymer be.
  • a 18 of the present disclosure is an electronic device including the laminate according to any one of 1 to 17 of the present disclosure.
  • a 19th aspect of the present disclosure is a resin composition used for forming a resin layer of the laminate of any one of the 1st to 17th aspects of the present disclosure.
  • the present disclosure 20 is a cover glass comprising the laminate of any one of the present disclosures 1-17. The present invention will be described in detail below.
  • the present inventor focused on the correlation between the breaking energy and storage elastic modulus of the resin layer and impact resistance, and set the breaking energy to 1 mJ / mm 3 or more. and the storage elastic modulus at 25° C. of 2500 MPa or less, sufficient impact resistance can be obtained.
  • the present inventors examined the resin layer disposed on at least one side of the thin glass sheet, and focused on the correlation between the Young's modulus of the resin layer and the impact resistance, and set the Young's modulus to 50 MPa or more and 1500 MPa or less. It has been found that sufficient impact resistance can be obtained by doing so.
  • the present inventors have studied how to improve impact resistance by laminating a resin layer on the surface of a thin glass plate placed on a display surface of an electronic device or the like. Glass scattering can be effectively prevented by providing the first and second resin layers. was found to be able to increase As described above, the inventor has completed the present invention.
  • the laminate of the present invention (hereinafter also referred to as the "laminate of the present invention" for matters common to the first laminate and the second laminate) comprises a thin glass having a thickness of 200 ⁇ m or less and the above and a resin layer having a thickness of 5 ⁇ m or more disposed on at least one side of the thin plate glass.
  • At least one resin layer may be provided in the laminate of the present invention.
  • one or more resin layers may be disposed on one side of the thin glass plate, or may One or more layers of the resin layer may be arranged.
  • the laminate of the present invention may have layers other than the thin glass sheet and the resin layer.
  • the resin layer may be laminated with the thin glass sheet via an adhesive layer.
  • the thin sheet glass without an adhesive layer.
  • a configuration in which only one layer of the resin layer is arranged on one side of the thin plate glass, and one resin layer is arranged on each side of the thin plate glass. configuration is preferred.
  • a method of forming the resin layer by applying a resin composition, which is the material of the resin layer, on the surface of the thin glass plate and curing the resin composition is preferably used.
  • the laminated body of this invention has the said thin plate glass or said resin layer arrange
  • the resin layer preferably covers an area of 80% or more of the thin plate glass in plan view, and more preferably covers the entire surface of the thin plate glass.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of the laminate of the present invention.
  • the laminated body 10 includes a first resin layer 11 on one side (visible side) of the thin glass plate 12, and the side opposite to the first resin layer 11 side of the thin glass plate 12 (display device side). , and may be integrated with the polarizing plate 15 with an optical transparent adhesive (OCA) 14 .
  • OCA optical transparent adhesive
  • the thin plate glass is not particularly limited as long as it is plate-shaped and has a thickness of 200 ⁇ m or less.
  • the composition of the thin plate glass include soda-lime glass, boric acid glass, aluminosilicate glass, and quartz glass.
  • the thin sheet glass is preferably chemically strengthened glass that has undergone chemical strengthening treatment.
  • the chemically strengthened glass preferably has a compressive stress layer formed on its surface by chemical strengthening treatment (ion exchange treatment).
  • the thickness of the thin plate glass is 200 ⁇ m or less. When the thickness of the thin plate glass is 200 ⁇ m or less, flexibility required for foldable electronic devices can be obtained. In addition, the thinner the thickness of the sheet glass, the more remarkable the improvement in impact resistance due to the resin layer.
  • the thickness of the thin plate glass is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less. Further, the thickness of the thin plate glass is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more. When the thin plate glass has a certain thickness or more, both flexibility and impact resistance can be achieved.
  • the light transmittance of the thin plate glass at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index of the thin plate glass at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the thin plate glass is preferably 2.3 g/cm 3 to 3.0 g/cm 3 , more preferably 2.3 g/cm 3 to 2.7 g/cm 3 .
  • the method for producing the glass used for the above-mentioned thin glass is not particularly limited. It is produced by melting at a temperature of 1600° C. to 1600° C., molding it into a thin plate, and then cooling it.
  • Examples of the method for forming a thin sheet of glass include a slot down draw method, a fusion method, a float method, and the like.
  • the glass formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve smoothness.
  • chemical strengthening treatment is performed.
  • ion exchange is performed on the glass surface to form a surface layer (compressive stress layer) in which compressive stress remains.
  • alkali metal ions with a small ionic radius typically Li ions or Na ions
  • alkali ions with a larger ionic radius typically, Li ions are replaced by Na ions or K ions, and Na ions are replaced by K ions.
  • compressive stress remains on the surface of the glass, improving the strength of the glass.
  • the thin plate glass a commercially available one may be used as it is, or a commercially available glass may be used after being subjected to additional treatment such as polishing and etching so as to have a desired thickness.
  • the resin layer has a breaking energy of 1 mJ/mm 3 or more.
  • the breaking energy of the resin layer is 1 mJ/mm 3 or more, sufficient impact resistance can be imparted to the thin glass that is thinned to realize a foldable electronic device.
  • the breaking energy is preferably 1.5 mJ/mm 3 or more, more preferably 2 mJ/mm 3 or more.
  • the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate.
  • the above breaking energy was measured according to JIS K7113 "Plastic tensile test method" using a test piece prepared according to the following procedure.
  • a release-treated polyethylene terephthalate resin film was placed on a glass plate with a thickness of 0.7 mm, with the release surface facing upward, and a silicon with a thickness of 0.5 mm was punched into a dumbbell shape (SDK-400).
  • the resin composition used for forming the resin layer was poured into a dumbbell mold, and the resin liquid was covered with the release surface of the release-treated polyethylene terephthalate resin film so as not to entrain air bubbles. Stack the glass plates.
  • an ultraviolet LED with a wavelength of 365 nm and an illuminance of 100 mW/cm 2 is used as a light source, and exposed through the glass plate for 15 seconds to irradiate with ultraviolet rays of 1500 mJ/cm 2 . Furthermore, while being sandwiched between the glass plates, it is turned over, and the same ultraviolet rays are applied again from the back side. Thereafter, the resin is cured by heating in an oven at 80° C. for 30 minutes, and the cured resin is removed from the silicon sheet mold to obtain a test piece. This test piece is subjected to a tensile test using a tensile tester.
  • the tensile test is performed at a distance between chucks of 25 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 ⁇ m until the test piece breaks. From the obtained measurement results, stress (unit: MPa) is taken on the vertical axis and strain (unit: %) is taken on the horizontal axis - Create a strain curve, this stress - surrounded by the strain curve and the horizontal axis The breaking energy can be calculated by finding the area of the portion where the fracture occurs.
  • the resin layer When the breaking energy of the resin layer is directly measured from the laminate, the resin layer is punched into a dumbbell shape (SDK-400), and this is used as the test piece.
  • the resin liquid is poured into the dumbbell mold, and the solvent is completely dried to obtain a test piece.
  • the resin layer preferably has a Young's modulus of 1500 MPa or less.
  • the Young's modulus of the resin layer is 1500 MPa or less, the resin layer can have appropriate flexibility.
  • the resin film is hard to be broken at the same time, and a scattering prevention effect can be obtained.
  • the Young's modulus is more preferably 1300 MPa or less, still more preferably 1200 MPa or less.
  • the lower limit of the Young's modulus is not particularly limited, it is preferably 50 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
  • the Young's modulus can be calculated by creating a stress-strain curve in the same manner as in the measurement of the breaking energy, and determining the slope of the stress-strain curve at a strain of 0 to 10%.
  • the resin layer has a storage modulus of 2500 MPa or less at 25°C.
  • the storage modulus is preferably 2000 MPa or less, more preferably 1800 MPa or less.
  • the lower limit of the storage elastic modulus is not particularly limited, it is, for example, 100 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
  • two test pieces of cured resin prepared in the same manner as in the measurement of the breaking energy are superimposed so as to have a thickness of 1 mm to prepare a measurement sample.
  • a viscoelastic spectrometer for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.
  • -50 ° C. to 200 ° C. It can be obtained as a storage modulus at 25° C. when the dynamic viscoelasticity spectrum of is measured.
  • the resin layer has a Young's modulus of 50 MPa or more and 1500 MPa or less.
  • the Young's modulus of the resin layer is 50 MPa or more and 1500 MPa or less, so that moderate flexibility for realizing a foldable electronic device is obtained, and the thickness is reduced to realize a foldable electronic device. Sufficient impact resistance can be imparted to the thin glass.
  • the Young's modulus is preferably 1300 MPa or less, more preferably 1200 MPa or less, and preferably 80 MPa or more.
  • the Young's modulus was measured according to JIS K7113 "Plastic tensile test method" using a test piece prepared according to the following procedure.
  • a release-treated polyethylene terephthalate resin film was placed on a glass plate with a thickness of 0.7 mm, with the release surface facing upward, and a silicon with a thickness of 0.5 mm was punched into a dumbbell shape (SDK-400).
  • the resin composition used for forming the resin layer was poured into a dumbbell mold, and the resin liquid was covered with the release surface of the release-treated polyethylene terephthalate resin film so as not to entrain air bubbles. Stack the glass plates.
  • an ultraviolet LED with a wavelength of 365 nm and an illuminance of 100 mW/cm 2 is used as a light source, and exposed through the glass plate for 15 seconds to irradiate with ultraviolet rays of 1500 mJ/cm 2 . Furthermore, while being sandwiched between the glass plates, it is turned over, and the same ultraviolet rays are applied again from the back side. Thereafter, the resin is cured by heating in an oven at 80° C. for 30 minutes, and the cured resin is removed from the silicon sheet mold to obtain a test piece. This test piece is subjected to a tensile test using a tensile tester.
  • the tensile test is performed at a distance between chucks of 25 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 ⁇ m until the test piece breaks. From the measurement results obtained, a stress (unit: MPa) is taken on the vertical axis and a strain (unit: %) is taken on the horizontal axis - a strain curve is created, and the strain of this stress - strain curve is 0 to 1 It can be calculated by finding the slope in %.
  • the resin layer When the Young's modulus of the resin layer is directly measured from the laminate, the resin layer is punched into a dumbbell shape (SDK-400), which is used as the test piece.
  • SDK-400 dumbbell shape
  • the resin liquid is poured into the dumbbell mold, and the solvent is completely dried to obtain a test piece.
  • the resin layer preferably has a breaking energy of 1 mJ/mm 3 or more.
  • the breaking energy is preferably 1.5 mJ/mm 3 or more, more preferably 2 mJ/mm 3 or more.
  • the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate.
  • the breaking energy can be calculated by creating a stress-strain curve in the same manner as in the measurement of the Young's modulus and finding the area of the portion surrounded by this stress-strain curve and the horizontal axis. can.
  • the resin layer preferably has a storage modulus of 2500 MPa or less at 25°C.
  • the storage elastic modulus of the resin layer is 2500 MPa or less, the flexibility of the resin layer can be ensured, which is preferable for a laminate having the flexibility required for realizing a foldable electronic device.
  • the storage elastic modulus is more preferably 2000 MPa or less, still more preferably 1800 MPa or less.
  • the lower limit of the storage elastic modulus is not particularly limited, it is, for example, 100 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
  • two test pieces of the cured resin prepared in the same manner as in the measurement of the breaking energy are laminated to a thickness of 1 mm to prepare a measurement sample.
  • a viscoelastic spectrometer for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.
  • -50 ° C. to 200 ° C. It can be obtained as a storage modulus at 20 ° C. when measuring the dynamic viscoelastic spectrum of.
  • the resin layer preferably has an elongation at break of 5% or more.
  • the elongation at break of the resin layer is 5% or more, cracks and whitening are less likely to occur in a bending endurance test. More preferably, the elongation at break of the resin layer is 7% or more.
  • the elongation at break is preferably 1000% or less.
  • a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the strain when the test piece breaks can be used.
  • the resin layer preferably has a breaking strength of 5 MPa or more and 50 MPa or less.
  • the breaking strength of the resin layer is within the range of 5 MPa or more and 50 MPa or less, it becomes easy to impart sufficient impact resistance to the thin glass. More preferably, the breaking strength of the resin layer is 10 MPa or more and 40 MPa or less.
  • a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the stress when the test piece breaks can be used.
  • the resin layer preferably has a glass transition temperature of 100° C. or lower.
  • the glass transition temperature is more preferably 80° C. or lower.
  • the lower limit of the glass transition temperature is not particularly limited, but is, for example, 0° C. or higher from the viewpoint of ensuring other properties of the laminate.
  • a dynamic viscoelastic spectrum is prepared in the same manner as in the measurement of the storage elastic modulus, and the temperature at which the loss tangent has a maximum value can be used.
  • the resin layer preferably has a total light transmittance of 80% or more.
  • the total light transmittance of the resin layer is 80% or more, the transparency of the resin layer can be ensured. It is preferable to form a laminate.
  • the total light transmittance is more preferably 90% or more.
  • the total light transmittance can be measured using, for example, HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The above total light transmittance is measured by a method conforming to JIS K 7361-1.
  • the thickness of the resin layer is 5 ⁇ m or more.
  • the flexible resin layer can exert a shock absorbing function, and the thin glass thinned to realize a foldable electronic device has sufficient shock resistance. You can give it character.
  • the thickness of the resin layer is preferably 10 ⁇ m or more.
  • the upper limit of the thickness of the resin layer is not particularly limited, but from the viewpoint of ensuring the bendability of the laminate, it is preferably thinner than the thin plate glass. It is more preferably 30 ⁇ m or less, particularly preferably 20 ⁇ m or less.
  • the resin composition used to form the resin layer is not particularly limited as long as it can adjust the physical properties of the resin layer obtained after curing to an appropriate range. It is preferably used. That is, the resin layer preferably contains a cationic curable resin polymer.
  • the cationic curable resin is not particularly limited as long as it has at least one cationic polymerizable functional group in the molecule and is highly cationic polymerizable.
  • the cationic polymerizable functional group include epoxy group, oxetanyl group, vinyl ether group, episulfide group, and ethyleneimine group.
  • the cationic curable resin preferably contains an epoxy resin. Since the epoxy resin has excellent adhesion to the thin plate glass, it is possible to suppress peeling of the resin layer when the laminate of the present invention is repeatedly bent.
  • the epoxy resin is not particularly limited, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and bisphenol S type; resins, aromatic epoxy resins such as trisphenolmethane triglycidyl ether, naphthalene-type epoxy resins, fluorene-type epoxy resins, dicyclopentadiene-type epoxy resins, polyether-modified epoxy resins, NBR-modified epoxy resins, CTBN-modified epoxy resins, and Hydrogenated products thereof and the like are included. These epoxy resins may be used alone or in combination of two or more.
  • bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and bisphenol S type
  • resins aromatic epoxy resins such as trisphenolmethane triglycidyl ether, naphthalene-type epoxy resins, fluorene-type epoxy resins, dicyclopentadiene-type epoxy resins, polyether-modified epoxy resins,
  • the above-mentioned epoxy resin may be an epoxy resin that is liquid at normal temperature, or an epoxy resin that is solid at normal temperature, and these may be used in appropriate combination.
  • commercially available products include, for example, EPICLON 840, 840-S, 850, 850-S, EXA-850CRP (manufactured by DIC Corporation) and other bisphenol A type epoxy resins, EPICLON 830, Bisphenol F type epoxy resins such as 830-S, EXA-830CRP, EXA-830LVP (manufactured by DIC), jER 806H (manufactured by Mitsubishi Chemical), EPICLON HP-4032, HP-4032D (manufactured by DIC) Naphthalene type epoxy resin such as EPICLON EXA-7015 (manufactured by DIC), hydrogenated bisphenol A type epoxy resin such as EX-252 (manufactured by Nagase ChemteX),
  • epoxy resins that are solid at room temperature
  • commercially available products include bisphenol A type epoxy resins such as EPICLON 860, 10550, and 1055 (manufactured by DIC Corporation), and bisphenol F type epoxy resins such as JER 4005P (manufactured by Mitsubishi Chemical Corporation).
  • Epoxy resins bisphenol S-type epoxy resins such as EPICLON EXA-1514 (manufactured by DIC), naphthalene-type epoxy resins such as EPICLON HP-4700, HP-4710, and HP-4770 (manufactured by DIC), EPICLON HP-7200 dicyclopentadiene type epoxy resins such as series (manufactured by DIC), cresol novolac type epoxy resins such as EPICLON HP-5000 and EXA-9900 (manufactured by DIC).
  • EPICLON EXA-1514 manufactured by DIC
  • naphthalene-type epoxy resins such as EPICLON HP-4700, HP-4710, and HP-4770 (manufactured by DIC)
  • EPICLON HP-7200 dicyclopentadiene type epoxy resins such as series (manufactured by DIC)
  • cresol novolac type epoxy resins such as EPICLON HP-5000 and EXA-9900
  • the resin composition preferably contains a polymerization initiator.
  • the polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
  • photopolymerization initiators include diphenyliodonium, 4-methoxydiphenyliodonium, bis(4-methylphenyl)iodonium, bis(4-tert-butylphenyl)iodonium, bis(dodecylphenyl)iodonium, diphenyl-4-thio phenoxyphenylsulfonium, bis[4-(diphenylsulfonio)-phenyl]sulfide, bis[4-(di(4-(2-hydroxyethyl)phenyl)sulfonio)-phenyl]sulfide, ⁇ 5-2,4-( cations such as cyclopentagenyl)[1,2,3,4,5,6- ⁇ -(methylethyl)benzene]-iron(1
  • Thermal polymerization initiators include, for example, imidazoles, quaternary ammonium salts, phosphorus compounds, amines, phosphines, phosphonium salts, bicyclic amidines and their salts, acid anhydrides, phenol, cresol, xylenol, Novolac type phenol resins obtained by condensation reaction of resorcinol and the like with formaldehyde, polymercapto resins such as liquid polymercaptan and polysulfide, and amides can be mentioned. These polymerization initiators may be used alone or in combination of two or more.
  • the content of the polymerization initiator has a preferable lower limit of 0.1 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the cationic curable resin. If the content of the polymerization initiator is less than 0.1 part by weight, the cationic polymerization may not proceed sufficiently or the curing reaction may become too slow. If the content of the polymerization initiator exceeds 10 parts by weight, the curing reaction of the resin composition may become too fast, resulting in reduced workability and uneven composition of the resulting resin layer. .
  • a more preferable lower limit to the content of the polymerization initiator is 0.5 parts by weight, and a more preferable upper limit is 5 parts by weight.
  • the resin composition further contains a solvent, a viscosity modifier, a surface modifier (surfactant, leveling agent), a plasticizer, a silane coupling agent, a tackifier, a sensitizer, as long as the object of the present invention is not impaired. It may contain various known additives such as curing agents, thermosetting agents, cross-linking agents, curing retarders, antioxidants, storage stabilizers, dispersants and fillers.
  • the method for preparing the resin composition is not particularly limited, and examples thereof include a method of mixing a curable resin, a polymerization initiator, and additives to be added as necessary using a mixer. be done.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
  • the method for forming the resin layer is not particularly limited.
  • the resin layer can be formed by applying a resin composition on the surface of the thin plate glass and then curing the resin composition by light irradiation, heating, or the like.
  • the method of applying the resin composition is not particularly limited, and for example, a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, an inkjet printing method, or the like may be used.
  • first laminated body and the second laminated body a thin plate glass having a thickness of 200 ⁇ m or less and a first glass plate having a thickness of 5 ⁇ m or more arranged on one side of the thin plate glass and a second resin layer having a thickness of 5 ⁇ m or more, which is arranged on the opposite side of the thin plate glass from the first resin layer side.
  • At least one layer of the first resin layer and the second resin layer may be provided in the first laminate and the second laminate.
  • the first laminate and the second laminate may have layers other than the thin glass, the first resin layer, and the second resin layer.
  • the first resin layer and the second resin layer may be laminated on the thin plate glass via an adhesive layer, but may be in direct contact with the thin plate glass without an adhesive layer.
  • a resin composition as a material for the first resin layer and the second resin layer is placed on the surface of the thin plate glass.
  • a method of forming a resin layer by applying and curing a substance is preferably used.
  • the first resin layer and the second resin layer preferably cover an area of 80% or more of the thin glass plate in plan view, and more preferably cover the entire surface of the thin glass plate.
  • both the first resin layer and the second resin layer have a breaking energy of 1 mJ/mm3 or more and a storage elastic modulus at 25°C of 2500 MPa or less. is preferred.
  • the breaking energy is 1 mJ/mm 3 or more, sufficient impact resistance can be imparted to the thin glass that is thinned to realize a foldable electronic device.
  • the breaking energy is more preferably 1.5 mJ/mm 3 or more, still more preferably 2 mJ/mm 3 or more.
  • the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate.
  • the storage elastic modulus is 2500 MPa or less.
  • the laminate can have the flexibility required for realizing a foldable electronic device.
  • the storage elastic modulus is more preferably 2000 MPa or less, still more preferably 1800 MPa or less.
  • the lower limit of the storage elastic modulus is not particularly limited, it is, for example, 100 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
  • the breaking energy can be measured according to JIS K7113 "Plastic tensile test method" using a test piece prepared according to the following procedure.
  • a release-treated polyethylene terephthalate resin film was placed on a glass plate with a thickness of 0.7 mm, with the release surface facing upward, and a silicon with a thickness of 0.5 mm was punched into a dumbbell shape (SDK-400).
  • the resin composition used for forming the resin layer was poured into a dumbbell mold, and the resin liquid was covered with the release surface of the release-treated polyethylene terephthalate resin film so as not to entrain air bubbles. Stack the glass plates.
  • an ultraviolet LED with a wavelength of 365 nm and an illuminance of 100 mW/cm 2 is used as a light source, and exposed through the glass plate for 15 seconds to irradiate with ultraviolet rays of 1500 mJ/cm 2 . Furthermore, while being sandwiched between the glass plates, it is turned over, and the same ultraviolet rays are applied again from the back side. Thereafter, the resin is cured by heating in an oven at 80° C. for 30 minutes, and the cured resin is removed from the silicon sheet mold to obtain a test piece. This test piece is subjected to a tensile test using a tensile tester.
  • the tensile test is performed at a distance between chucks of 25 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 ⁇ m until the test piece breaks. From the obtained measurement results, stress (unit: MPa) is taken on the vertical axis and strain (unit: %) is taken on the horizontal axis - Create a strain curve, this stress - surrounded by the strain curve and the horizontal axis The breaking energy can be calculated by finding the area of the portion where the fracture occurs.
  • the resin layer When the breaking energy of the resin layer is directly measured from the laminate, the resin layer is punched into a dumbbell shape (SDK-400), and this is used as the test piece.
  • the resin liquid is poured into the dumbbell mold, and the solvent is completely dried to obtain a test piece.
  • the storage elastic modulus was measured by punching out a rectangular shape with a width of 5 mm and a length of 50 mm instead of a silicon sheet mold with a thickness of 0.5 mm punched into a dumbbell shape (SDK-400). Except for using a 0.5 mm silicon sheet mold, a measurement sample is prepared in the same manner as in the measurement of the breaking energy. For the prepared measurement sample, using a viscoelastic spectrometer (for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.), under the conditions of 5 ° C./min and 1 Hz in the slow heating shear deformation mode, -50 ° C. to 200 ° C. It can be obtained as a storage modulus at 25° C. when the dynamic viscoelasticity spectrum of is measured.
  • a viscoelastic spectrometer for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.
  • the Young's modulus of the first resin layer and the second resin layer is preferably 1500 MPa or less. When the Young's modulus is 1500 MPa or less, it is possible to obtain appropriate flexibility of the first resin layer and the second resin layer. In addition, when the glass is broken, the resin layer is difficult to break at the same time, and a scattering prevention effect can be obtained.
  • the Young's modulus is more preferably 1400 MPa or less, still more preferably 1300 MPa or less. Although the lower limit of the Young's modulus is not particularly limited, it is preferably 50 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
  • the Young's modulus can be calculated by creating a stress-strain curve in the same manner as in the measurement of the breaking energy, and determining the slope of the stress-strain curve at a strain of 0 to 10%.
  • both the first resin layer and the second resin layer preferably have a Young's modulus of 50 MPa or more and 1500 MPa or less.
  • a Young's modulus is 50 MPa or more and 1500 MPa or less, a moderate flexibility for realizing a foldable electronic device can be obtained, and a thin glass thinned to realize a foldable electronic device. Sufficient impact resistance can be imparted.
  • the Young's modulus is more preferably 1400 MPa or less, still more preferably 1300 MPa or less, and more preferably 80 MPa or more.
  • Each of the first resin layer and the second resin layer preferably has a breaking energy of 1 mJ/mm 3 or more.
  • the breaking energy is preferably 1.5 mJ/mm 3 or more, more preferably 2 mJ/mm 3 or more.
  • the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate.
  • At least one of the first resin layer and the second resin layer preferably has a storage modulus at 25° C. of 3000 MPa or less, more preferably 2500 MPa or less, and even more preferably 2000 MPa or less. , 1800 MPa or less, particularly preferably 1500 MPa or less.
  • the storage elastic modulus is not particularly limited, but from the viewpoint of ensuring the impact resistance of the laminate, it is preferably 10 MPa or more, more preferably 100 MPa or more, and further preferably 500 MPa or more. preferable.
  • both the first resin layer and the second resin layer have a storage elastic modulus at 25° C. of 2500 MPa or less. From the viewpoint of ensuring the impact resistance of the laminate, it is preferable that both the first resin layer and the second resin layer have a storage elastic modulus of 100 MPa or more at 25°C.
  • each of the first resin layer and the second resin layer has an elongation at break of 5% or more.
  • the elongation at break is 5% or more, cracks and whitening are less likely to occur in a bending endurance test. More preferably, the elongation at break is 7% or more.
  • the elongation at break is preferably 1000% or less.
  • a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the strain when the test piece breaks can be used.
  • each of the first resin layer and the second resin layer has a breaking strength of 5 MPa or more and 50 MPa or less.
  • the breaking strength is within the range of 5 MPa or more and 50 MPa or less, it becomes easy to impart sufficient impact resistance to the thin glass. More preferably, the breaking strength is 10 MPa or more and 40 MPa or less.
  • a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the stress when the test piece breaks can be used.
  • Each of the first resin layer and the second resin layer preferably has a glass transition temperature of 100° C. or less, and at least one of the first resin layer and the second resin layer has a glass transition temperature of is preferably 100° C. or lower.
  • the glass transition temperature is more preferably 80° C. or lower, still more preferably 60° C. or lower.
  • the lower limit of the glass transition temperature is not particularly limited, but is, for example, 0° C. or higher from the viewpoint of ensuring other properties of the laminate.
  • the glass transition temperature a dynamic viscoelastic spectrum is prepared in the same manner as in the measurement of the storage elastic modulus, and the temperature at which the loss tangent has a maximum value can be used.
  • Each of the first resin layer and the second resin layer preferably has a total light transmittance of 80% or more.
  • the total light transmittance of the resin layer is 80% or more, the transparency of the resin layer can be ensured. It is preferable to form a laminate.
  • the total light transmittance is more preferably 90% or more.
  • the total light transmittance can be measured using, for example, HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The above total light transmittance is measured by a method conforming to JIS K 7361-1.
  • each of the first resin layer and the second resin layer has a thickness of 5 ⁇ m or more.
  • the thickness of the resin layer is 5 ⁇ m or more, the flexible resin layer can exert a shock absorbing function, and the thin glass thinned to realize a foldable electronic device has sufficient shock resistance. You can give it character.
  • the thicknesses of the first resin layer and the second resin layer are more preferably 10 ⁇ m or more.
  • the upper limit of the thickness of the first resin layer and the second resin layer is not particularly limited, but from the viewpoint of ensuring the bendability of the laminate, it is preferable that they are thinner than the thin plate glass.
  • At least one of the first resin layer and the second resin layer have a thickness of 25 ⁇ m or less.
  • the resin composition used to form the first resin layer and the second resin layer is not particularly limited as long as the properties of the resin layer obtained after curing can be adjusted within a desired range.
  • one containing a cationic curable resin is preferably used because of its excellent adhesion to glass. That is, it is preferable that each of the first resin layer and the second resin layer contains a cationic curable resin polymer, and at least one of the first resin layer and the second resin layer contains a cationic It preferably contains a polymer of a curable resin.
  • the cationic curable resin is not particularly limited as long as it has at least one cationic polymerizable functional group in the molecule and is highly cationic polymerizable.
  • the cationic polymerizable functional group include epoxy group, oxetanyl group, vinyl ether group, episulfide group, and ethyleneimine group.
  • epoxy resins, oxetane resins, and vinyl ether resins are suitable as the cationic curable resin. Since the epoxy resin has excellent adhesion to the thin plate glass, the first resin layer and the second resin layer are peeled off when the first laminate or the second laminate is repeatedly bent. can be suppressed.
  • the epoxy resin is not particularly limited. Novolac type epoxy resin; resorcinol type epoxy resin, and aromatic epoxy resin such as trisphenol methane triglycidyl ether; alicyclic epoxy resin; naphthalene type epoxy resin; fluorene type epoxy resin; dicyclopentadiene type epoxy resin; epoxy resins; NBR-modified epoxy resins; CTBN-modified epoxy resins; and hydrogenated products thereof.
  • Examples of the alicyclic epoxy resin include 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, ⁇ -caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate , bis(3,4-epoxycyclohexyl) adipate, 1,2-epoxy-4-vinylcyclohexane, 1,4-cyclohexanedimethanol diglycidyl ether, epoxyethyldivinylcyclohexane, diepoxyvinylcyclohexane, 1,2,4- Examples include triepoxyethylcyclohexane, limonene dioxide, and alicyclic epoxy group-containing silicone oligomers. These epoxy resins may be used alone or in combination of two or more.
  • the above-mentioned epoxy resin may be an epoxy resin that is liquid at normal temperature, or an epoxy resin that is solid at normal temperature, and these may be used in appropriate combination.
  • the epoxy resins that are liquid at room temperature include "EPICLON 840", “EPICLON 840-S”, “EPICLON 850”, “EPICLON 850-S”, and “EPICLON EXA-850CRP” (manufactured by DIC Corporation).
  • Bisphenol A type epoxy resin Bisphenol A type epoxy resin; "EPICLON 830", “EPICLON 830-S”, “EPICLON EXA-830CRP”, “EPICLON EXA-830LVP” (manufactured by DIC Corporation), “jER 806H” (manufactured by Mitsubishi Chemical Corporation) Bisphenol F type epoxy resins such as; Naphthalene type epoxy resins such as “EPICLON HP-4032” and “EPICLON HP-4032D” (manufactured by DIC Corporation); “jER XY8000” and “jER YX8034” (manufactured by Mitsubishi Chemical Corporation ), “EPICLON EXA-7015” (manufactured by DIC Corporation), “EX-252" (manufactured by Nagase ChemteX Corporation) and other hydrogenated bisphenol A type epoxy resins; “EX-201” (manufactured by Nagase ChemteX Corporation), etc.
  • epoxy resins that are solid at room temperature include bisphenol A type epoxy resins such as “EPICLON 860”, “EPICLON 10550”, and “EPICLON 1055" (manufactured by DIC Corporation); ); Bisphenol S type epoxy resins such as “EPICLON EXA-1514" (manufactured by DIC); “EPICLON HP-4700", “EPICLON HP-4710", “EPICLON HP-4770” (above Naphthalene type epoxy resins such as “EPICLON HP-7200 series” (manufactured by DIC); dicyclopentadiene type epoxy resins such as "EPICLON HP-5000" and "EPICLON EXA-9900" available as commercial products.
  • oxetane resin oxetanyl group-containing compound
  • oxetanyl group-containing compound 3-ethyl-3-[(2-ethylhexyloxy)methyl]oxetane, 3-ethyl-3-hydroxymethyloxetane, 1 , 4-bis([(3-ethyl-3-oxetanyl)methoxy]methyl)benzene, 3-ethyl-3-(phenoxymethyl)oxetane, bis[(3-ethyloxetan-3-yl)methyl]ether, 3 -ethyl-3-([3-(triethoxysilyl)propoxy]methyl)oxetane, oxetanylsilsesquioxane and the like.
  • oxetane resin examples include "Aron oxetane OXT-101", “Aron oxetane OXT-121", “Aron oxetane OXT-211", “Aron oxetane OXT-221", and “Aron oxetane OXT-610" (above, (manufactured by Toagosei Co., Ltd.) and the like are available as commercial products. These can be used individually by 1 type or in combination of 2 or more types.
  • vinyl ether resins (vinyl ether group-containing compounds) that are cationic curable resins include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, allyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, and tert-butyl.
  • the resin composition preferably contains a polymerization initiator.
  • the polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
  • photopolymerization initiators include diphenyliodonium, 4-methoxydiphenyliodonium, bis(4-methylphenyl)iodonium, bis(4-tert-butylphenyl)iodonium, bis(dodecylphenyl)iodonium, diphenyl-4-thio phenoxyphenylsulfonium, bis[4-(diphenylsulfonio)-phenyl]sulfide, bis[4-(di(4-(2-hydroxyethyl)phenyl)sulfonio)-phenyl]sulfide, ⁇ 5-2,4-( cations such as cyclopentagenyl)[1,2,3,4,5,6- ⁇ -(methylethyl)benzene]-iron(1
  • Thermal polymerization initiators include, for example, imidazoles, quaternary ammonium salts, phosphorus compounds, amines, phosphines, phosphonium salts, bicyclic amidines and their salts, acid anhydrides, phenol, cresol, xylenol, Novolac type phenol resins obtained by condensation reaction of resorcinol and the like with formaldehyde, polymercapto resins such as liquid polymercaptan and polysulfide, and amides can be mentioned. These polymerization initiators may be used alone or in combination of two or more.
  • the content of the polymerization initiator has a preferable lower limit of 0.1 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the cationic curable resin. If the content of the polymerization initiator is less than 0.1 part by weight, the cationic polymerization may not proceed sufficiently or the curing reaction may become too slow. If the content of the polymerization initiator exceeds 10 parts by weight, the curing reaction of the resin composition may become too fast, resulting in reduced workability and uneven composition of the resulting resin layer. .
  • a more preferable lower limit to the content of the polymerization initiator is 0.5 parts by weight, and a more preferable upper limit is 5 parts by weight.
  • the resin composition further contains a solvent, a viscosity modifier, a surface modifier (surfactant, leveling agent), a plasticizer, a silane coupling agent, a tackifier, a sensitizer, as long as the object of the present invention is not impaired. It may contain various known additives such as curing agents, thermosetting agents, cross-linking agents, curing retarders, antioxidants, storage stabilizers, dispersants and fillers.
  • the method for preparing the resin composition is not particularly limited, and examples thereof include a method of mixing a curable resin, a polymerization initiator, and additives to be added as necessary using a mixer. be done.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
  • the method of forming the first resin layer and the second resin layer is not particularly limited. can be formed.
  • the method of applying the resin composition is not particularly limited, and for example, a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, an inkjet printing method, or the like may be used.
  • An electronic device comprising the laminate of the present invention is also one aspect of the present invention.
  • a foldable electronic device foldable electronic device
  • a foldable display device foldable display
  • mobile display terminals such as smartphones, electronic books, and tablet PCs are included.
  • the display device including the first laminate or the second laminate preferably has a configuration in which the first resin layer is arranged on the viewing side and the second resin layer is arranged on the display device side.
  • the resin composition used for forming the resin layer of the laminate of the present invention is also one aspect of the present invention.
  • the resin composition of the present invention can exhibit excellent impact resistance after curing, and is suitable for forming a thin film for protecting an adherend such as glass.
  • the resin composition may contain a solvent from the viewpoint of coatability and the like.
  • a solvent a nonpolar solvent having a boiling point of 200° C. or lower or an aprotic polar solvent having a boiling point of 200° C. or lower is preferable from the viewpoint of coatability, storage stability, and the like.
  • the nonpolar solvent having a boiling point of 200° C. or lower or the aprotic polar solvent having a boiling point of 200° C. or lower include ketone solvents, ester solvents, hydrocarbon solvents, halogen solvents, ether solvents, and nitrogen-containing solvents. system solvents and the like.
  • the boiling point of the nonpolar solvent or aprotic polar solvent is more preferably in the range of 80°C to 180°C from the viewpoints of stability of the coating liquid, uniformity of the coating film, drying efficiency, and the like.
  • the resin composition preferably has a viscosity of 1 to 1000 mPa ⁇ s at 25° C. using an E-type viscometer.
  • a more preferable range of the above viscosity is adjusted by the coating method. For example, a range of 5 to 50 mPa s is preferable for coating by an inkjet method, a range of 10 to 100 mPa s is preferable for coating by a slit coating method, and a range of 100 to 1000 mPa s is preferable for coating by a roll coating method or an offset printing method. is preferred.
  • the viscosity exceeds 1000 mPa ⁇ s, the leveling property of the coating liquid tends to deteriorate, and the uniformity of the thickness of the coating film tends to deteriorate.
  • the above viscosity is determined, for example, by using VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) as an E-type viscometer, and using a cone plate of CP1 at a rotation speed of 1 to 100 rpm as appropriate from the optimum torque number in each viscosity region. can be measured by selecting VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) as an E-type viscometer, and using a cone plate of CP1 at a rotation speed of 1 to 100 rpm as appropriate from the optimum torque number in each viscosity region. can be measured by selecting
  • a cover glass comprising the laminate of the present invention is also one aspect of the present invention.
  • the cover glass of the present invention is preferably a protective glass arranged so as to cover an article to be protected, and more preferably a display cover glass in which the article to be protected is a display device.
  • the laminated body excellent in impact resistance can be provided. Further, according to the present invention, it is possible to provide an electronic device and a cover glass using the laminate, and a resin composition used for forming the resin layer of the laminate.
  • Examples 1 to 5, Comparative Examples 1 to 3 A curable resin shown in (1) below and an initiator shown in (2) below were stirred and mixed according to the compounding ratio shown in Table 1 below to obtain a resin composition.
  • the resulting resin composition was diluted with propylene glycol monomethyl ether acetate as a solvent to adjust the viscosity, and coated on a thin plate glass having a thickness of 50 ⁇ m so that the thickness after drying was 10 ⁇ m.
  • the obtained coating film was dried at a temperature of 100° C. for 15 minutes, irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 1500 mJ/cm 2 , and further cured by heating at 80° C. for 30 minutes.
  • a laminate was obtained in which a resin layer made of a cured resin material was formed on one side of the thin plate glass.
  • Curing resin EPICON EXA-830LVP mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, manufactured by DIC
  • JER YX7400 polyether skeleton liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • JER 4005P bisphenol F type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • JER 806H bisphenol F type liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • Celoxide 2021P (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, manufactured by Daicel Corporation
  • ERENACOLL EHO 3-ethyl-3-hydroxymethyloxetane, manufactured by Ube Industries, Ltd.
  • Comparative Example 4 A thin glass sheet of Comparative Example 4 was prepared from a thin glass sheet having a thickness of 50 ⁇ m, which was the same as that of Examples 1 to 5 and Comparative Examples 1 to 3, on which no resin layer was formed.
  • a test piece of the cured resin was laminated to a thickness of 1 mm to prepare a measurement sample.
  • a viscoelastic spectrometer (DVA-200, manufactured by IT Keisoku Co., Ltd.)
  • the prepared measurement sample was subjected to dynamics from -50°C to 200°C under the conditions of 5°C/min and 1Hz in a low-speed heating shear deformation mode.
  • a viscoelastic spectrum was measured.
  • the storage modulus at 25°C was calculated from the obtained dynamic viscoelasticity spectrum.
  • the temperature at which the loss tangent has a maximum value was taken as the glass transition temperature Tg (°C).
  • the value of the strain when the test piece broke was defined as the elongation at break, and the value of the maximum stress when the test piece was broken was defined as the breaking strength.
  • Young's modulus was calculated by determining the slope of the stress-strain curve at strains between 0 and 10%.
  • the breaking energy was calculated by finding the area enclosed by the stress-strain curve and the horizontal axis.
  • Total light transmittance and haze The total light transmittance and haze were measured using HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • Example 6 to 12 A curable resin shown in (1) below and an initiator shown in (2) below were stirred and mixed according to the compounding ratio shown in Table 2 below to obtain a resin composition.
  • the resulting resin composition was diluted with propylene glycol monomethyl ether acetate as a solvent to adjust the viscosity, and coated on a thin plate glass having a thickness of 50 ⁇ m so as to have a thickness after drying as shown in Table 2 below.
  • the obtained coating film was dried at a temperature of 100° C. for 15 minutes, irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 1500 mJ/cm 2 , and further cured by heating at 80° C. for 30 minutes.
  • a laminate provided with a first resin layer made of a cured resin on one side (visible side) of the thin plate glass and a second resin layer made of a cured resin on the other side (display element side) was gotten.
  • Curing resin EPICON EXA-830LVP mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, manufactured by DIC
  • JER YX7400N polyether skeleton liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • JER 4005P bisphenol F type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • JER YX8034 hydrogenated bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • Celoxide 2021P (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, manufactured by Daicel Corporation
  • ERENACOLL EHO 3-ethyl-3-hydroxymethyloxetane, manufactured by Ube Industries, Ltd.
  • Initiator CPI-210S triarylsulfonium salt type photocationic polymerization initiator, San-Apro Co., Ltd.
  • DTS-200 aromatic sulfonium salt type photocationic polymerization initiator, manufactured by Midori Chemical Co., Ltd.
  • Surface modifier BYK-340 manufactured by Big Chemie
  • a test piece of a cured resin having a thickness of 0.5 mm, a width of 5 mm, and a length of 50 mm was prepared, and a viscoelastic spectrometer (DVA-200, manufactured by IT Keisoku Co., Ltd.) was used at a tensile mode of 10 ° C./min.
  • a dynamic viscoelastic spectrum was measured from -50°C to 150°C under the condition of 10Hz.
  • the storage modulus at 25°C was determined from the obtained dynamic viscoelasticity spectrum.
  • the temperature at which the loss tangent has a maximum value was taken as the glass transition temperature Tg (°C).
  • the value of the strain when the test piece broke was defined as the elongation at break, and the value of the maximum stress when the test piece was broken was defined as the breaking strength.
  • Young's modulus was calculated by determining the slope of the stress-strain curve at strains between 0 and 10%.
  • the breaking energy was calculated by finding the area enclosed by the stress-strain curve and the horizontal axis.
  • Total light transmittance and haze The total light transmittance and haze were measured using HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the laminated body excellent in impact resistance can be provided. Further, according to the present invention, it is possible to provide an electronic device and a cover glass using the laminate, and a resin composition used for forming the resin layer of the laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a laminate which exhibits excellent shock resistance. The purpose of the present invention is to provide: an electronic device and cover glass which are obtained using said laminate; and a resin composition used in order to form the resin layer of said laminate. The present invention is a laminate having a thin glass sheet which has a thickness no greater than 200μm and a resin layer which has a thickness of 5μm or greater and is positioned on one or more sides of the thin glass sheet, wherein the breaking energy of the resin layer is at least 1mJ/mm3 and the storage modulus at 25°C is no greater than 2,500MPa, or the present invention is a laminate having a thin glass sheet which has a thickness no greater than 200μm and a resin layer which has a thickness of 5μm or greater and is positioned on one or more sides of the thin glass sheet, wherein the Young's modulus of the resin layer is 50-1,500MPa, inclusive.

Description

積層体、電子機器、樹脂組成物及びカバーガラスLaminates, electronic devices, resin compositions and cover glasses
本発明は、耐衝撃性に優れる積層体に関する。また、本発明は、該積層体を用いてなる電子機器及びカバーガラス、並びに、該積層体の樹脂層を形成するために用いられる樹脂組成物に関する。 TECHNICAL FIELD The present invention relates to a laminate having excellent impact resistance. The present invention also relates to an electronic device and a cover glass using the laminate, and a resin composition used for forming a resin layer of the laminate.
近年、スマートフォン、電子ブック、タブレットPC等の電子機器の表示画面を折り畳み可能にするための開発が進められている。このような折り畳み可能な表示画面の最表面側に、可撓性を有する薄板ガラスを用いることが検討されている。 2. Description of the Related Art In recent years, the development of foldable display screens of electronic devices such as smartphones, electronic books, and tablet PCs has been progressing. The use of flexible thin plate glass on the outermost surface side of such a foldable display screen is under study.
薄板ガラスは衝撃によって割れやすいことから、薄板ガラスの一方の面に保護用の樹脂層を配置することが検討されている。例えば、特許文献1には、ガラスと、該ガラスの片側に樹脂層を備える表示装置用保護基板であって、該ガラスの厚みが20μm~200μmであり、該樹脂層の比重が0.9g/cm~1.5g/cmであり、該樹脂層の25℃における曲げ弾性率が1000MPa~8000MPaである、表示装置用保護基板が記載されている。また、特許文献2には、厚みが120μm以下の薄ガラスと、前記薄ガラスの一方の側に配置される、厚み5μm以上の衝撃吸収層とを有し、該衝撃吸収層が、25℃において10~1015Hzの範囲にtanδの極大値を有する光学積層体が記載されている。しかしながら、保護用の樹脂層を形成するために従来の樹脂組成物を用いた場合、耐衝撃性が不充分であったため、更に耐衝撃性を高めることが求められていた。 Since thin glass is easily broken by impact, it is being studied to arrange a protective resin layer on one side of the thin glass. For example, Patent Document 1 discloses a protective substrate for a display device comprising glass and a resin layer on one side of the glass, wherein the thickness of the glass is 20 μm to 200 μm, and the specific gravity of the resin layer is 0.9 g/ cm 3 to 1.5 g/cm 3 and the bending elastic modulus of the resin layer at 25° C. is 1000 MPa to 8000 MPa. Further, Patent Document 2 discloses a thin glass having a thickness of 120 μm or less and a shock absorbing layer having a thickness of 5 μm or more disposed on one side of the thin glass, and the shock absorbing layer has a thickness of 5 μm or more at 25° C. Optical laminates with tan δ maxima in the range of 10 1 to 10 15 Hz are described. However, when a conventional resin composition is used to form a protective resin layer, the impact resistance is insufficient.
特開2013-37207号公報JP 2013-37207 A 国際公開第2018/190208号WO2018/190208
本発明は、耐衝撃性に優れる積層体を提供することを目的とする。また、本発明は、該積層体を用いてなる電子機器及びカバーガラス、並びに、該積層体の樹脂層を形成するために用いられる樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a laminate having excellent impact resistance. Another object of the present invention is to provide an electronic device and a cover glass using the laminate, and a resin composition used for forming the resin layer of the laminate.
本開示1は、厚さが200μm以下の薄板ガラスと、前記薄板ガラスの少なくとも一方の側に配置される、厚さ5μm以上の樹脂層とを有し、前記樹脂層の破断エネルギーが1mJ/mm以上であり、かつ、25℃における貯蔵弾性率が2500MPa以下である、積層体(第1の積層体)である。
本開示2は、前記樹脂層のヤング率が50MPa以上、1500MPa以下である、本開示1の積層体である。
本開示3は、前記樹脂層の25℃における貯蔵弾性率が2000MPa以下である、本開示1又は2の積層体である。
本開示4は、前記樹脂層のガラス転移温度が100℃以下である、本開示1、2又は3の積層体である。
本開示5は、前記樹脂層がカチオン硬化性樹脂の重合体を含む、本開示1、2、3又は4の積層体である。
The present disclosure 1 has a thin plate glass with a thickness of 200 μm or less and a resin layer with a thickness of 5 μm or more disposed on at least one side of the thin plate glass, and the breaking energy of the resin layer is 1 mJ / mm. 3 or more and a storage modulus at 25° C. of 2500 MPa or less (first laminate).
The present disclosure 2 is the laminate according to the present disclosure 1, wherein the resin layer has a Young's modulus of 50 MPa or more and 1500 MPa or less.
Present Disclosure 3 is the laminate according to Present Disclosure 1 or 2, wherein the resin layer has a storage elastic modulus at 25° C. of 2000 MPa or less.
Present Disclosure 4 is the laminate according to Present Disclosure 1, 2, or 3, wherein the resin layer has a glass transition temperature of 100° C. or less.
Present Disclosure 5 is the laminate of Present Disclosure 1, 2, 3 or 4, wherein the resin layer contains a cationic curable resin polymer.
本開示6は、前記薄板ガラスの一方の側に配置される、厚さ5μm以上の第1の樹脂層と、前記薄板ガラスの前記第1の樹脂層側とは反対側に配置される、厚さ5μm以上の第2の樹脂層と、を有し、前記第1の樹脂層及び前記第2の樹脂層がいずれも、破断エネルギーが1mJ/mm以上であり、かつ、25℃における貯蔵弾性率が2500MPa以下である、本開示1の積層体である。
本開示7は、前記第1の樹脂層及び前記第2の樹脂層がいずれも、ヤング率が50MPa以上、1500MPa以下である、本開示6の積層体である。
The present disclosure 6 is a first resin layer having a thickness of 5 μm or more, which is arranged on one side of the thin glass, and a thick and a second resin layer having a thickness of 5 μm or more, wherein both the first resin layer and the second resin layer have a breaking energy of 1 mJ/mm 3 or more and storage elasticity at 25 ° C. The laminate of the present disclosure 1, having a modulus of 2500 MPa or less.
The present disclosure 7 is the laminate according to the present disclosure 6, wherein both the first resin layer and the second resin layer have a Young's modulus of 50 MPa or more and 1500 MPa or less.
本開示8は、厚さが200μm以下の薄板ガラスと、前記薄板ガラスの少なくとも一方の側に配置される、厚さ5μm以上の樹脂層とを有し、前記樹脂層のヤング率が50MPa以上、1500MPa以下である積層体(第2の積層体)である。
本開示9は、前記樹脂層の破断エネルギーが1mJ/mm以上である、本開示8の積層体である。
本開示10は、前記樹脂層の25℃における貯蔵弾性率が2500MPa以下である、本開示8又は9の積層体である。
本開示11は、前記樹脂層のガラス転移温度が100℃以下である、本開示8、9又は10の積層体である。
本開示12は、前記樹脂層がカチオン硬化性樹脂の重合体を含む、本開示8、9、10又は11の積層体である。
本開示13は、前記薄板ガラスの一方の側に配置される、厚さ5μm以上の第1の樹脂層と、前記薄板ガラスの前記第1の樹脂層側とは反対側に配置される、厚さ5μm以上の第2の樹脂層と、を有し、前記第1の樹脂層及び前記第2の樹脂層がいずれも、ヤング率が50MPa以上、1500MPa以下である、本開示8の積層体である。
本開示14は、前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、25℃における貯蔵弾性率が3000MPa以下である、本開示13の積層体である。
本開示15は、前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、厚さ25μm以下である、本開示6、7、13又は14の積層体である。
本開示16は、前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、ガラス転移温度が100℃以下である、本開示6、7、13、14又は15の積層体である。
本開示17は、前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、カチオン硬化性樹脂の重合体を含む、本開示6、7、13、14、15又は16の積層体である。
The present disclosure 8 has a thin plate glass with a thickness of 200 μm or less, and a resin layer with a thickness of 5 μm or more disposed on at least one side of the thin plate glass, wherein the resin layer has a Young's modulus of 50 MPa or more, A laminated body (second laminated body) having a tensile strength of 1500 MPa or less.
Present Disclosure 9 is the laminate according to Present Disclosure 8, wherein the breaking energy of the resin layer is 1 mJ/mm 3 or more.
Present Disclosure 10 is the laminate according to Present Disclosure 8 or 9, wherein the resin layer has a storage modulus at 25° C. of 2500 MPa or less.
Present Disclosure 11 is the laminate according to Present Disclosure 8, 9, or 10, wherein the resin layer has a glass transition temperature of 100° C. or lower.
Disclosure 12 is the laminate of Disclosure 8, 9, 10 or 11, wherein the resin layer comprises a cationic curable resin polymer.
The present disclosure 13 is a first resin layer having a thickness of 5 μm or more, which is arranged on one side of the thin glass plate, and a thick and a second resin layer having a thickness of 5 μm or more, and the Young's modulus of both the first resin layer and the second resin layer is 50 MPa or more and 1500 MPa or less. be.
Present Disclosure 14 is the laminate according to Present Disclosure 13, wherein at least one of the first resin layer and the second resin layer has a storage elastic modulus at 25° C. of 3000 MPa or less.
15 of the present disclosure is the laminate according to 6, 7, 13, or 14 of the present disclosure, wherein at least one of the first resin layer and the second resin layer has a thickness of 25 μm or less.
16 of the present disclosure is the laminate according to 6, 7, 13, 14, or 15 of the present disclosure, wherein at least one of the first resin layer and the second resin layer has a glass transition temperature of 100° C. or less.
The present disclosure 17 is the laminate according to the present disclosure 6, 7, 13, 14, 15 or 16, wherein at least one of the first resin layer and the second resin layer contains a cationic curable resin polymer be.
本開示18は、本開示1~17のいずれかの積層体を備える電子機器である。
本開示19は、本開示1~17のいずれかの積層体の樹脂層を形成するために用いられる樹脂組成物である。
本開示20は、本開示1~17のいずれかの積層体を備えるカバーガラスである。
以下に本発明を詳述する。
18 of the present disclosure is an electronic device including the laminate according to any one of 1 to 17 of the present disclosure.
A 19th aspect of the present disclosure is a resin composition used for forming a resin layer of the laminate of any one of the 1st to 17th aspects of the present disclosure.
The present disclosure 20 is a cover glass comprising the laminate of any one of the present disclosures 1-17.
The present invention will be described in detail below.
本発明者は、薄板ガラスの少なくとも一方の側に配置される樹脂層について検討した結果、樹脂層の破断エネルギー及び貯蔵弾性率と耐衝撃性の相関に着目し、破断エネルギーを1mJ/mm以上とし、かつ、25℃における貯蔵弾性率を2500MPa以下にすることで、充分な耐衝撃性が得られることを見出した。
また、本発明者は、薄板ガラスの少なくとも一方の側に配置される樹脂層について検討した結果、樹脂層のヤング率と耐衝撃性の相関に着目し、ヤング率を50MPa以上、1500MPa以下にすることで、充分な耐衝撃性が得られることを見出した。
更に、本発明者は、電子機器の表示面等に配置される薄板ガラスについて、その表面に樹脂層を積層することにより耐衝撃性を改善することを検討した結果、薄板ガラスの両側に樹脂層を設けることでガラス飛散を効果的に防止でき、第1及び第2の樹脂層の破断エネルギーを破断エネルギー及び貯蔵弾性率の組み合わせ又はヤング率を特定の範囲内に調整することで、耐衝撃性を高めることができることを見出した。
以上のようにして、本発明者は、本発明を完成させるに至った。
As a result of examining the resin layer arranged on at least one side of the thin plate glass, the present inventor focused on the correlation between the breaking energy and storage elastic modulus of the resin layer and impact resistance, and set the breaking energy to 1 mJ / mm 3 or more. and the storage elastic modulus at 25° C. of 2500 MPa or less, sufficient impact resistance can be obtained.
In addition, the present inventors examined the resin layer disposed on at least one side of the thin glass sheet, and focused on the correlation between the Young's modulus of the resin layer and the impact resistance, and set the Young's modulus to 50 MPa or more and 1500 MPa or less. It has been found that sufficient impact resistance can be obtained by doing so.
Furthermore, the present inventors have studied how to improve impact resistance by laminating a resin layer on the surface of a thin glass plate placed on a display surface of an electronic device or the like. Glass scattering can be effectively prevented by providing the first and second resin layers. was found to be able to increase
As described above, the inventor has completed the present invention.
本発明の積層体(以下、第1の積層体及び第2の積層体に共通する事項については、「本発明の積層体」ともいう。)は、厚さが200μm以下の薄板ガラスと、上記薄板ガラスの少なくとも一方の側に配置される、厚さ5μm以上の樹脂層とを有する。上記樹脂層は、本発明の積層体内に少なくとも1層設けられていればよく、例えば、上記薄板ガラスの一方の側に上記樹脂層が1層以上配置されてもよいし、両方の側にそれぞれ上記樹脂層が1層以上配置されてもよい。また、本発明の積層体は、上記薄板ガラス及び上記樹脂層以外の別の層を有していてもよく、例えば、上記樹脂層は、接着層を介して上記薄板ガラスと積層されてもよいが、接着層を介さずに上記薄板ガラスと直に接することが好ましい。可撓性を有する薄板ガラスを用いる利点を生かす観点から、上記薄板ガラスの一方の側に上記樹脂層が1層のみ配置された構成、両方の側にそれぞれ上記樹脂層が1層ずつ配置された構成が好ましい。接着層を介さずに上記樹脂層を設ける場合、上記薄板ガラスの表面上に、樹脂層の材料となる樹脂組成物を塗布し硬化させることによって樹脂層を形成する方法が好適に用いられる。 The laminate of the present invention (hereinafter also referred to as the "laminate of the present invention" for matters common to the first laminate and the second laminate) comprises a thin glass having a thickness of 200 μm or less and the above and a resin layer having a thickness of 5 μm or more disposed on at least one side of the thin plate glass. At least one resin layer may be provided in the laminate of the present invention. For example, one or more resin layers may be disposed on one side of the thin glass plate, or may One or more layers of the resin layer may be arranged. In addition, the laminate of the present invention may have layers other than the thin glass sheet and the resin layer. For example, the resin layer may be laminated with the thin glass sheet via an adhesive layer. However, it is preferable to directly contact the thin sheet glass without an adhesive layer. From the viewpoint of making the most of the advantage of using flexible thin plate glass, a configuration in which only one layer of the resin layer is arranged on one side of the thin plate glass, and one resin layer is arranged on each side of the thin plate glass. configuration is preferred. When the resin layer is provided without an adhesive layer, a method of forming the resin layer by applying a resin composition, which is the material of the resin layer, on the surface of the thin glass plate and curing the resin composition is preferably used.
また、本発明の積層体は、上記薄板ガラス又は上記樹脂層が最表面に配置されたものであることが好ましい。すなわち、本発明の積層体は、最表面に上記薄板ガラスが配置され、その下に上記樹脂層が配置された構成であってもよいし、最表面に上記樹脂層が配置され、その下に上記薄板ガラスが配置された構成であってもよい。なかでも、ガラスのもつ耐擦傷性と樹脂層による耐衝撃性の改善を両立する観点から、最表面に上記薄板ガラスが配置され、その下に上記樹脂層が配置された構成が特に好ましい。 Moreover, it is preferable that the laminated body of this invention has the said thin plate glass or said resin layer arrange|positioned on the outermost surface. That is, the laminate of the present invention may have a structure in which the thin sheet glass is arranged on the outermost surface and the resin layer is arranged thereunder, or the resin layer is arranged on the outermost surface and the resin layer is arranged thereunder. A configuration in which the thin plate glass is arranged may be used. Among these, from the viewpoint of achieving both the scratch resistance of glass and the improvement of impact resistance by the resin layer, a configuration in which the thin plate glass is arranged on the outermost surface and the resin layer is arranged below it is particularly preferable.
上記樹脂層は、平面視において、上記薄板ガラスの80%以上の面積を被覆していることが好ましく、上記薄板ガラスの全面を被覆することがより好ましい。 The resin layer preferably covers an area of 80% or more of the thin plate glass in plan view, and more preferably covers the entire surface of the thin plate glass.
上記第1の積層体及び上記第2の積層体の構成は、その用途に応じて適宜選択されるが、有機エレクトロルミネッセンス表示装置等の表示装置の前面に配置して用いられる場合には、例えば、図1に示した構成を有する。図1は、本発明の積層体の構成の一例を示す概略断面図である。図1において、積層体10は、薄板ガラス12の一方の側(視認側)に第1の樹脂層11を備え、薄板ガラス12の第1の樹脂層11側とは反対側(表示装置側)に第2の樹脂層13を備えるものであり、光学用透明粘着剤(OCA)14によって偏光板15と一体化されていてもよい。 The configurations of the first laminate and the second laminate are appropriately selected depending on the application. , having the configuration shown in FIG. FIG. 1 is a schematic cross-sectional view showing an example of the structure of the laminate of the present invention. In FIG. 1, the laminated body 10 includes a first resin layer 11 on one side (visible side) of the thin glass plate 12, and the side opposite to the first resin layer 11 side of the thin glass plate 12 (display device side). , and may be integrated with the polarizing plate 15 with an optical transparent adhesive (OCA) 14 .
上記薄板ガラスは、板状であり、かつ厚さ200μm以下であれば特に限定されない。上記薄板ガラスの組成は、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記薄板ガラスは、耐衝撃性の面からは、化学強化処理が施された化学強化ガラスであることが好ましい。化学強化ガラスは、表面に化学強化処理(イオン交換処理)によって形成された圧縮応力層を有することが好ましい。 The thin plate glass is not particularly limited as long as it is plate-shaped and has a thickness of 200 μm or less. Examples of the composition of the thin plate glass include soda-lime glass, boric acid glass, aluminosilicate glass, and quartz glass. Moreover, according to the classification by the alkali component, non-alkali glass and low-alkali glass can be mentioned. From the standpoint of impact resistance, the thin sheet glass is preferably chemically strengthened glass that has undergone chemical strengthening treatment. The chemically strengthened glass preferably has a compressive stress layer formed on its surface by chemical strengthening treatment (ion exchange treatment).
上記薄板ガラスの厚さは、200μm以下である。薄板ガラスの厚さが200μm以下であることにより、折り畳み可能な電子機器に求められる可撓性を得ることができる。また、上記薄板ガラスの厚さが薄いほど、上記樹脂層による耐衝撃性の向上が顕著に現れる。上記薄板ガラスの厚さは、好ましくは150μm以下であり、より好ましくは100μm以下である。また、薄板ガラスの厚さは、好ましくは5μm以上であり、より好ましくは10μm以上であり、更に好ましくは20μm以上であり、特に好ましくは30μm以上である。上記薄板ガラスが一定以上の厚さを有することで、可撓性と耐衝撃性を両立することができる。 The thickness of the thin plate glass is 200 μm or less. When the thickness of the thin plate glass is 200 μm or less, flexibility required for foldable electronic devices can be obtained. In addition, the thinner the thickness of the sheet glass, the more remarkable the improvement in impact resistance due to the resin layer. The thickness of the thin plate glass is preferably 150 μm or less, more preferably 100 μm or less. Further, the thickness of the thin plate glass is preferably 5 µm or more, more preferably 10 µm or more, still more preferably 20 µm or more, and particularly preferably 30 µm or more. When the thin plate glass has a certain thickness or more, both flexibility and impact resistance can be achieved.
上記薄板ガラスの波長550nmにおける光透過率は、好ましくは85%以上である。上記薄板ガラスの波長550nmにおける屈折率は、好ましくは1.4~1.65である。 The light transmittance of the thin plate glass at a wavelength of 550 nm is preferably 85% or more. The refractive index of the thin plate glass at a wavelength of 550 nm is preferably 1.4 to 1.65.
上記薄板ガラスの密度は、好ましくは2.3g/cm~3.0g/cmであり、より好ましくは2.3g/cm~2.7g/cmである。 The density of the thin plate glass is preferably 2.3 g/cm 3 to 3.0 g/cm 3 , more preferably 2.3 g/cm 3 to 2.7 g/cm 3 .
上記薄板ガラスに用いられるガラスの作製方法は特に限定されず、例えば、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃の温度で溶融し、薄板状に成形した後、冷却して作製される。上記ガラスの薄板成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラスは、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。 The method for producing the glass used for the above-mentioned thin glass is not particularly limited. It is produced by melting at a temperature of 1600° C. to 1600° C., molding it into a thin plate, and then cooling it. Examples of the method for forming a thin sheet of glass include a slot down draw method, a fusion method, a float method, and the like. The glass formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve smoothness.
化学強化ガラスの場合には、化学強化処理が行われる。化学強化処理では、ガラスの表面をイオン交換し、圧縮応力が残留する表面層(圧縮応力層)を形成させる。具体的には、ガラス転移点以下の温度でイオン交換によりガラス板表面付近に存在するイオン半径が小さなアルカリ金属イオン(典型的には、Liイオン又はNaイオン)をイオン半径のより大きいアルカリイオン(典型的には、Liイオンに対してはNaイオン又はKイオンであり、Naイオンに対してはKイオン)に置換する。これにより、ガラスの表面に圧縮応力が残留し、ガラスの強度が向上する。 In the case of chemically strengthened glass, chemical strengthening treatment is performed. In the chemical strengthening treatment, ion exchange is performed on the glass surface to form a surface layer (compressive stress layer) in which compressive stress remains. Specifically, alkali metal ions with a small ionic radius (typically Li ions or Na ions) present near the glass plate surface by ion exchange at a temperature below the glass transition point are replaced with alkali ions with a larger ionic radius ( Typically, Li ions are replaced by Na ions or K ions, and Na ions are replaced by K ions. As a result, compressive stress remains on the surface of the glass, improving the strength of the glass.
上記薄板ガラスは、市販のものをそのまま用いてもよいし、市販のガラスを所望の厚みになるように研磨、エッチング等の追加処理をして用いてもよい。 As the thin plate glass, a commercially available one may be used as it is, or a commercially available glass may be used after being subjected to additional treatment such as polishing and etching so as to have a desired thickness.
<第1の積層体>
上記樹脂層は、破断エネルギーが1mJ/mm以上である。上記樹脂層の破断エネルギーが1mJ/mm以上であることにより、折り畳み可能な電子機器を実現するために薄くされた薄型ガラスに充分な耐衝撃性を付与することができる。破断エネルギーは、好ましくは1.5mJ/mm以上であり、より好ましくは2mJ/mm以上である。また、破断エネルギーの上限は特に限定されないが、積層体の他の特性を確保する観点から、例えば、50mJ/mm以下である。
<First laminate>
The resin layer has a breaking energy of 1 mJ/mm 3 or more. When the breaking energy of the resin layer is 1 mJ/mm 3 or more, sufficient impact resistance can be imparted to the thin glass that is thinned to realize a foldable electronic device. The breaking energy is preferably 1.5 mJ/mm 3 or more, more preferably 2 mJ/mm 3 or more. Although the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate.
なお、上記破断エネルギーの測定はJIS K7113「プラスチックの引張試験方法」に準拠し、以下の手順に従って作製した試験片を使用して行った。厚さ0.7mmのガラス板上に、離型処理されたポリエチレンテレフタレート樹脂フィルムの離型面を上面として設置し、さらにダンベル型(SDK-400)の形状に打ち抜いた厚さ0.5mmのシリコンシートの型を設置する。樹脂層を形成するために用いられる樹脂組成物をダンベル型に流し込み、さらに離型処理されたポリエチレンテレフタレート樹脂フィルムの離型面で気泡を巻き込まないように樹脂液をカバーした後、もう1枚のガラス板を重ねる。次に、波長365nm、照度100mW/cmの紫外線LEDを光源としてガラス板を通して15秒間露光し、1500mJ/cmの紫外線を照射する。さらに、ガラス板に挟まれた状態のまま裏返し、裏面から再度同様の紫外線を照射する。その後、80℃のオーブン中で30分加熱して樹脂を硬化し、シリコンシートの型から樹脂硬化物を取り出すことで、試験片とする。この試験片を引張試験機により引張試験を実施する。引張試験は、チャック間距離25mm、引張速度50mm/分、及び、サンプリング間隔20μmで試験片が破断するまで実施する。得られた測定結果から、縦軸に応力(単位:MPa)を取り、横軸に歪み(単位:%)を取った応力-歪み曲線を作成し、この応力-歪み曲線と横軸で囲まれた部分の面積を求めることによって破断エネルギーを算出することができる。 The above breaking energy was measured according to JIS K7113 "Plastic tensile test method" using a test piece prepared according to the following procedure. A release-treated polyethylene terephthalate resin film was placed on a glass plate with a thickness of 0.7 mm, with the release surface facing upward, and a silicon with a thickness of 0.5 mm was punched into a dumbbell shape (SDK-400). Install the sheet mold. The resin composition used for forming the resin layer was poured into a dumbbell mold, and the resin liquid was covered with the release surface of the release-treated polyethylene terephthalate resin film so as not to entrain air bubbles. Stack the glass plates. Next, an ultraviolet LED with a wavelength of 365 nm and an illuminance of 100 mW/cm 2 is used as a light source, and exposed through the glass plate for 15 seconds to irradiate with ultraviolet rays of 1500 mJ/cm 2 . Furthermore, while being sandwiched between the glass plates, it is turned over, and the same ultraviolet rays are applied again from the back side. Thereafter, the resin is cured by heating in an oven at 80° C. for 30 minutes, and the cured resin is removed from the silicon sheet mold to obtain a test piece. This test piece is subjected to a tensile test using a tensile tester. The tensile test is performed at a distance between chucks of 25 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 μm until the test piece breaks. From the obtained measurement results, stress (unit: MPa) is taken on the vertical axis and strain (unit: %) is taken on the horizontal axis - Create a strain curve, this stress - surrounded by the strain curve and the horizontal axis The breaking energy can be calculated by finding the area of the portion where the fracture occurs.
なお、樹脂層の破断エネルギーを積層体から直接測定する場合は、樹脂層をダンベル型(SDK-400)の形状に打ち抜き、これを上記試験片とする。もしくは、樹脂層を溶剤に溶解させて樹脂液とした後、これを上記ダンベル型に流し込み、溶剤を完全に乾燥させて試験片とする。 When the breaking energy of the resin layer is directly measured from the laminate, the resin layer is punched into a dumbbell shape (SDK-400), and this is used as the test piece. Alternatively, after dissolving the resin layer in a solvent to obtain a resin liquid, the resin liquid is poured into the dumbbell mold, and the solvent is completely dried to obtain a test piece.
上記樹脂層は、ヤング率が1500MPa以下であることが好ましい。上記樹脂層のヤング率が1500MPa以下であると、上記樹脂層の適度な柔軟性を得ることができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とするうえで好ましく、また、ガラスが割れた際に同時に樹脂膜が割れにくく飛散防止効果を得ることもできる。上記ヤング率は、より好ましくは1300MPa以下であり、さらに好ましくは1200MPa以下である。また、上記ヤング率の下限は特に限定されないが、積層体の耐衝撃性を確保する観点から、50MPa以上であることが好ましい。上記ヤング率は、上記破断エネルギーの測定の場合と同様にして応力-歪み曲線を作成し、この応力-歪み曲線の歪みが0~10%での傾きを求めることによって算出することができる。 The resin layer preferably has a Young's modulus of 1500 MPa or less. When the Young's modulus of the resin layer is 1500 MPa or less, the resin layer can have appropriate flexibility. In addition, when the glass is broken, the resin film is hard to be broken at the same time, and a scattering prevention effect can be obtained. The Young's modulus is more preferably 1300 MPa or less, still more preferably 1200 MPa or less. Although the lower limit of the Young's modulus is not particularly limited, it is preferably 50 MPa or more from the viewpoint of ensuring the impact resistance of the laminate. The Young's modulus can be calculated by creating a stress-strain curve in the same manner as in the measurement of the breaking energy, and determining the slope of the stress-strain curve at a strain of 0 to 10%.
上記樹脂層は、25℃における貯蔵弾性率が2500MPa以下である。樹脂層の貯蔵弾性率が2500MPa以下であると、薄型ガラスに充分な耐衝撃性を付与することができる。また、樹脂層の柔軟性を確保することができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とすることができる。上記貯蔵弾性率は、好ましくは2000MPa以下、より好ましくは1800MPa以下である。また、上記貯蔵弾性率の下限は特に限定されないが、積層体の耐衝撃性を確保する観点から、例えば、100MPa以上である。 The resin layer has a storage modulus of 2500 MPa or less at 25°C. When the storage elastic modulus of the resin layer is 2500 MPa or less, sufficient impact resistance can be imparted to the thin glass. Moreover, since the flexibility of the resin layer can be ensured, the laminate can have the flexibility required for realizing a foldable electronic device. The storage modulus is preferably 2000 MPa or less, more preferably 1800 MPa or less. Although the lower limit of the storage elastic modulus is not particularly limited, it is, for example, 100 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
なお、上記貯蔵弾性率の測定は、上記破断エネルギーの測定での手順と同様にして作製した樹脂硬化物の試験片を2枚重ねて厚さ1mmとし、測定サンプルを作製する。作製した測定サンプルについて、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定したときの25℃における貯蔵弾性率として得ることができる。 In addition, in the measurement of the storage modulus, two test pieces of cured resin prepared in the same manner as in the measurement of the breaking energy are superimposed so as to have a thickness of 1 mm to prepare a measurement sample. For the prepared measurement sample, using a viscoelastic spectrometer (for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.), under the conditions of 5 ° C./min and 1 Hz in the slow heating shear deformation mode, -50 ° C. to 200 ° C. It can be obtained as a storage modulus at 25° C. when the dynamic viscoelasticity spectrum of is measured.
<第2の積層体>
上記樹脂層は、ヤング率が50MPa以上、1500MPa以下である。上記樹脂層のヤング率が50MPa以上、1500MPa以下であることにより、折り畳み可能な電子機器を実現するための適度な柔軟性が得られ、かつ、折り畳み可能な電子機器を実現するために薄くされた薄型ガラスに充分な耐衝撃性を付与することができる。上記ヤング率は、好ましくは1300MPa以下、より好ましくは1200MPa以下であり、好ましくは80MPa以上である。
<Second laminate>
The resin layer has a Young's modulus of 50 MPa or more and 1500 MPa or less. The Young's modulus of the resin layer is 50 MPa or more and 1500 MPa or less, so that moderate flexibility for realizing a foldable electronic device is obtained, and the thickness is reduced to realize a foldable electronic device. Sufficient impact resistance can be imparted to the thin glass. The Young's modulus is preferably 1300 MPa or less, more preferably 1200 MPa or less, and preferably 80 MPa or more.
なお、上記ヤング率の測定はJIS K7113「プラスチックの引張試験方法」に準拠し、以下の手順に従って作製した試験片を使用して行った。厚さ0.7mmのガラス板上に、離型処理されたポリエチレンテレフタレート樹脂フィルムの離型面を上面として設置し、さらにダンベル型(SDK-400)の形状に打ち抜いた厚さ0.5mmのシリコンシートの型を設置する。樹脂層を形成するために用いられる樹脂組成物をダンベル型に流し込み、さらに離型処理されたポリエチレンテレフタレート樹脂フィルムの離型面で気泡を巻き込まないように樹脂液をカバーした後、もう1枚のガラス板を重ねる。次に、波長365nm、照度100mW/cmの紫外線LEDを光源としてガラス板を通して15秒間露光し、1500mJ/cmの紫外線を照射する。さらに、ガラス板に挟まれた状態のまま裏返し、裏面から再度同様の紫外線を照射する。その後、80℃のオーブン中で30分加熱して樹脂を硬化し、シリコンシートの型から樹脂硬化物を取り出すことで、試験片とする。この試験片を引張試験機により引張試験を実施する。引張試験は、チャック間距離25mm、引張速度50mm/分、及び、サンプリング間隔20μmで試験片が破断するまで実施する。得られた測定結果から、縦軸に応力(単位:MPa)を取り、横軸に歪み(単位:%)を取った応力-歪み曲線を作成し、この応力-歪み曲線の歪みが0~1%での傾きを求めることによって算出することができる。 The Young's modulus was measured according to JIS K7113 "Plastic tensile test method" using a test piece prepared according to the following procedure. A release-treated polyethylene terephthalate resin film was placed on a glass plate with a thickness of 0.7 mm, with the release surface facing upward, and a silicon with a thickness of 0.5 mm was punched into a dumbbell shape (SDK-400). Install the sheet mold. The resin composition used for forming the resin layer was poured into a dumbbell mold, and the resin liquid was covered with the release surface of the release-treated polyethylene terephthalate resin film so as not to entrain air bubbles. Stack the glass plates. Next, an ultraviolet LED with a wavelength of 365 nm and an illuminance of 100 mW/cm 2 is used as a light source, and exposed through the glass plate for 15 seconds to irradiate with ultraviolet rays of 1500 mJ/cm 2 . Furthermore, while being sandwiched between the glass plates, it is turned over, and the same ultraviolet rays are applied again from the back side. Thereafter, the resin is cured by heating in an oven at 80° C. for 30 minutes, and the cured resin is removed from the silicon sheet mold to obtain a test piece. This test piece is subjected to a tensile test using a tensile tester. The tensile test is performed at a distance between chucks of 25 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 μm until the test piece breaks. From the measurement results obtained, a stress (unit: MPa) is taken on the vertical axis and a strain (unit: %) is taken on the horizontal axis - a strain curve is created, and the strain of this stress - strain curve is 0 to 1 It can be calculated by finding the slope in %.
なお、樹脂層のヤング率を積層体から直接測定する場合は、樹脂層をダンベル型(SDK-400)の形状に打ち抜き、これを上記試験片とする。もしくは、樹脂層を溶剤に溶解させて樹脂液とした後、これを上記ダンベル型に流し込み、溶剤を完全に乾燥させて試験片とする。 When the Young's modulus of the resin layer is directly measured from the laminate, the resin layer is punched into a dumbbell shape (SDK-400), which is used as the test piece. Alternatively, after dissolving the resin layer in a solvent to obtain a resin liquid, the resin liquid is poured into the dumbbell mold, and the solvent is completely dried to obtain a test piece.
上記樹脂層は、破断エネルギーが1mJ/mm以上であることが好ましい。上記樹脂層の破断エネルギーが1mJ/mm以上であると、積層体の耐衝撃性をより向上することができる。破断エネルギーは、好ましくは1.5mJ/mm以上であり、より好ましくは2mJ/mm以上である。また、破断エネルギーの上限は特に限定されないが、積層体の他の特性を確保する観点から、例えば、50mJ/mm以下である。上記破断エネルギーは、上記ヤング率の測定の場合と同様にして応力-歪み曲線を作成し、この応力-歪み曲線と横軸で囲まれた部分の面積を求めることによって破断エネルギーを算出することができる。 The resin layer preferably has a breaking energy of 1 mJ/mm 3 or more. When the breaking energy of the resin layer is 1 mJ/mm 3 or more, the impact resistance of the laminate can be further improved. The breaking energy is preferably 1.5 mJ/mm 3 or more, more preferably 2 mJ/mm 3 or more. Although the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate. The breaking energy can be calculated by creating a stress-strain curve in the same manner as in the measurement of the Young's modulus and finding the area of the portion surrounded by this stress-strain curve and the horizontal axis. can.
上記樹脂層は、25℃における貯蔵弾性率が2500MPa以下であることが好ましい。樹脂層の貯蔵弾性率が2500MPa以下であると、樹脂層の柔軟性を確保することができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とするうえで好ましい。上記貯蔵弾性率は、より好ましくは2000MPa以下、さらに好ましくは1800MPa以下である。また、上記貯蔵弾性率の下限は特に限定されないが、積層体の耐衝撃性を確保する観点から、例えば、100MPa以上である。 The resin layer preferably has a storage modulus of 2500 MPa or less at 25°C. When the storage elastic modulus of the resin layer is 2500 MPa or less, the flexibility of the resin layer can be ensured, which is preferable for a laminate having the flexibility required for realizing a foldable electronic device. . The storage elastic modulus is more preferably 2000 MPa or less, still more preferably 1800 MPa or less. Although the lower limit of the storage elastic modulus is not particularly limited, it is, for example, 100 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
なお、上記貯蔵弾性率の測定は上記破断エネルギーの測定での手順と同様にして作製した樹脂硬化物の試験片を2枚重ねて厚さ1mmとし、測定サンプルを作製する。作製した測定サンプルについて、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定したときの20℃における貯蔵弾性率として得ることができる。 For the measurement of the storage elastic modulus, two test pieces of the cured resin prepared in the same manner as in the measurement of the breaking energy are laminated to a thickness of 1 mm to prepare a measurement sample. For the prepared measurement sample, using a viscoelastic spectrometer (for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.), under the conditions of 5 ° C./min and 1 Hz in the slow heating shear deformation mode, -50 ° C. to 200 ° C. It can be obtained as a storage modulus at 20 ° C. when measuring the dynamic viscoelastic spectrum of.
<第1及び第2の積層体>
上記樹脂層は、破断伸びが5%以上であることが好ましい。上記樹脂層の破断伸びが5%以上であると、曲げ耐久試験においてクラックや白化を生じにくい。上記樹脂層の破断伸びは、7%以上であることがより好ましい。破断伸びの上限は特にないが、積層体の耐衝撃性を確保する観点から、1000%以下が好ましい。上記破断伸びは、上記破断エネルギーの測定の場合と同様にして引張試験を行い、試験片が破断したときの歪みの値を用いることができる。
<First and second laminates>
The resin layer preferably has an elongation at break of 5% or more. When the elongation at break of the resin layer is 5% or more, cracks and whitening are less likely to occur in a bending endurance test. More preferably, the elongation at break of the resin layer is 7% or more. There is no particular upper limit for the elongation at break, but from the viewpoint of ensuring the impact resistance of the laminate, it is preferably 1000% or less. As the elongation at break, a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the strain when the test piece breaks can be used.
上記樹脂層は、破断強度が5MPa以上、50MPa以下であることが好ましい。上記樹脂層の破断強度が5MPa以上、50MPa以下の範囲内であると、薄型ガラスに充分な耐衝撃性を付与しやすくなる。上記樹脂層の破断強度は、10MPa以上、40MPa以下であることがより好ましい。上記破断強度は、上記破断エネルギーの測定の場合と同様にして引張試験を行い、試験片が破断したときの応力の値を用いることができる。 The resin layer preferably has a breaking strength of 5 MPa or more and 50 MPa or less. When the breaking strength of the resin layer is within the range of 5 MPa or more and 50 MPa or less, it becomes easy to impart sufficient impact resistance to the thin glass. More preferably, the breaking strength of the resin layer is 10 MPa or more and 40 MPa or less. For the breaking strength, a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the stress when the test piece breaks can be used.
上記樹脂層は、ガラス転移温度が100℃以下であることが好ましい。樹脂層のガラス転移温度が100℃以下であると、樹脂層の柔軟性を確保することができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とするうえで好ましい。上記ガラス転移温度は、より好ましくは80℃以下である。また、上記ガラス転移温度の下限は特に限定されないが、積層体の他の特性を確保する観点から、例えば、0℃以上である。なお、上記ガラス転移温度は、上記貯蔵弾性率の測定の場合と同様にして動的粘弾性スペクトルを作成し、損失正接の極大値の温度を用いることができる。 The resin layer preferably has a glass transition temperature of 100° C. or lower. When the glass transition temperature of the resin layer is 100° C. or less, the flexibility of the resin layer can be ensured. preferable. The glass transition temperature is more preferably 80° C. or lower. The lower limit of the glass transition temperature is not particularly limited, but is, for example, 0° C. or higher from the viewpoint of ensuring other properties of the laminate. As for the glass transition temperature, a dynamic viscoelastic spectrum is prepared in the same manner as in the measurement of the storage elastic modulus, and the temperature at which the loss tangent has a maximum value can be used.
上記樹脂層は、全光線透過率が80%以上であることが好ましい。樹脂層の全光線透過率が80%以上であると、樹脂層の透明性を確保することができるので、折り畳み可能な表示装置(フォルダブル・ディスプレイ)を実現するために求められる透明性を有する積層体とするうえで好ましい。上記全光線透過率は、より好ましくは90%以上である。上記全光線透過率は、例えば、HazeMeterNDH2000(日本電色工業株式会社製)を用いて測定することができる。上記全光線透過率はJIS K 7361-1に準拠した方法で測定される。 The resin layer preferably has a total light transmittance of 80% or more. When the total light transmittance of the resin layer is 80% or more, the transparency of the resin layer can be ensured. It is preferable to form a laminate. The total light transmittance is more preferably 90% or more. The total light transmittance can be measured using, for example, HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The above total light transmittance is measured by a method conforming to JIS K 7361-1.
上記樹脂層の厚さは、5μm以上である。樹脂層の厚さが5μm以上であることにより、柔軟な樹脂層によって衝撃を緩和する機能を発揮することができ、折り畳み可能な電子機器を実現するために薄くされた薄型ガラスに充分な耐衝撃性を付与することができる。上記樹脂層の厚さは、好ましくは10μm以上である。また、上記樹脂層の厚さの上限は特に限定されないが、積層体の折り曲げ性を確保する観点から、薄板ガラスよりも薄いことが好ましく、具体的には、100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることが更に好ましく、20μm以下であることが特に好ましい。 The thickness of the resin layer is 5 μm or more. When the thickness of the resin layer is 5 μm or more, the flexible resin layer can exert a shock absorbing function, and the thin glass thinned to realize a foldable electronic device has sufficient shock resistance. You can give it character. The thickness of the resin layer is preferably 10 μm or more. In addition, the upper limit of the thickness of the resin layer is not particularly limited, but from the viewpoint of ensuring the bendability of the laminate, it is preferably thinner than the thin plate glass. It is more preferably 30 μm or less, particularly preferably 20 μm or less.
以下、本発明に係る樹脂層に用いることができる各材料を説明する。
上記樹脂層を形成するために用いられる樹脂組成物としては、硬化後に得られる樹脂層の物性を適切な範囲に調整できるものであれば特に限定されないが、例えば、カチオン硬化性樹脂を含むものが好適に用いられる。すなわち、上記樹脂層は、カチオン硬化性樹脂の重合体を含むことが好ましい。
Each material that can be used for the resin layer according to the present invention will be described below.
The resin composition used to form the resin layer is not particularly limited as long as it can adjust the physical properties of the resin layer obtained after curing to an appropriate range. It is preferably used. That is, the resin layer preferably contains a cationic curable resin polymer.
上記カチオン硬化性樹脂としては、分子内に少なくとも1個のカチオン重合性官能基を有し、かつ、カチオン重合性に富む化合物であれば特に限定されない。
上記カチオン重合性官能基としては、例えば、エポキシ基、オキセタニル基、ビニルエーテル基、エピスルフィド基、エチレンイミン基等が挙げられる。なかでも、上記カチオン硬化性樹脂は、エポキシ樹脂を含有することが好ましい。エポキシ樹脂は、上記薄板ガラスへの密着性に優れることから、本発明の積層体を繰り返し折り曲げた際に上記樹脂層が剥離することを抑制できる。
The cationic curable resin is not particularly limited as long as it has at least one cationic polymerizable functional group in the molecule and is highly cationic polymerizable.
Examples of the cationic polymerizable functional group include epoxy group, oxetanyl group, vinyl ether group, episulfide group, and ethyleneimine group. Among them, the cationic curable resin preferably contains an epoxy resin. Since the epoxy resin has excellent adhesion to the thin plate glass, it is possible to suppress peeling of the resin layer when the laminate of the present invention is repeatedly bent.
上記エポキシ樹脂は特に限定されず、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型等のビスフェノール型エポキシ樹脂、フェノールノボラック型、クレゾールノボラック型等のノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリエーテル変性エポキシ樹脂、NBR変性エポキシ樹脂、CTBN変性エポキシ樹脂、及び、これらの水添化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。 The epoxy resin is not particularly limited, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and bisphenol S type; resins, aromatic epoxy resins such as trisphenolmethane triglycidyl ether, naphthalene-type epoxy resins, fluorene-type epoxy resins, dicyclopentadiene-type epoxy resins, polyether-modified epoxy resins, NBR-modified epoxy resins, CTBN-modified epoxy resins, and Hydrogenated products thereof and the like are included. These epoxy resins may be used alone or in combination of two or more.
上記エポキシ樹脂は、常温で液状のエポキシ樹脂であっても、常温で固体のエポキシ樹脂であってもよく、これらを適宜組み合わせて用いてもよい。
上記常温で液状のエポキシ樹脂のうち、市販品として、例えば、EPICLON 840、840-S、850、850-S、EXA-850CRP(以上、DIC社製)等のビスフェノールA型エポキシ樹脂、EPICLON 830、830-S、EXA-830CRP、EXA-830LVP(以上、DIC社製)、jER 806H(三菱ケミカル社製)等のビスフェノールF型エポキシ樹脂、EPICLON HP-4032、HP-4032D(以上、DIC社製)等のナフタレン型エポキシ樹脂、EPICLON EXA-7015(DIC社製)、EX-252(ナガセケムテックス社製)等の水添ビスフェノールA型エポキシ樹脂、EX-201(ナガセケムテックス社製)等のレゾルシノール型エポキシ樹脂、3-エチル-3-ヒドロキシメチルオキセタン(ETRENACOLL EHO、宇部興産社製)等が挙げられる。
The above-mentioned epoxy resin may be an epoxy resin that is liquid at normal temperature, or an epoxy resin that is solid at normal temperature, and these may be used in appropriate combination.
Among the epoxy resins that are liquid at room temperature, commercially available products include, for example, EPICLON 840, 840-S, 850, 850-S, EXA-850CRP (manufactured by DIC Corporation) and other bisphenol A type epoxy resins, EPICLON 830, Bisphenol F type epoxy resins such as 830-S, EXA-830CRP, EXA-830LVP (manufactured by DIC), jER 806H (manufactured by Mitsubishi Chemical), EPICLON HP-4032, HP-4032D (manufactured by DIC) Naphthalene type epoxy resin such as EPICLON EXA-7015 (manufactured by DIC), hydrogenated bisphenol A type epoxy resin such as EX-252 (manufactured by Nagase ChemteX), resorcinol such as EX-201 (manufactured by Nagase ChemteX) type epoxy resin, 3-ethyl-3-hydroxymethyloxetane (ETRENACOLL EHO, manufactured by Ube Industries, Ltd.), and the like.
上記常温で固体のエポキシ樹脂のうち、市販品として、例えば、EPICLON 860、10550、1055(以上、DIC社製)等のビスフェノールA型エポキシ樹脂、jER 4005P(三菱ケミカル社製)等のビスフェノールF型エポキシ樹脂、EPICLON EXA-1514(DIC社製)等のビスフェノールS型エポキシ樹脂、EPICLON HP-4700、HP-4710、HP-4770(以上、DIC社製)等のナフタレン型エポキシ樹脂、EPICLON HP-7200シリーズ(DIC社製)等のジシクロペンタジエン型エポキシ樹脂、EPICLON HP-5000、EXA-9900(以上、DIC社製)等のクレゾールノボラック型エポキシ樹脂等が挙げられる。 Among the epoxy resins that are solid at room temperature, commercially available products include bisphenol A type epoxy resins such as EPICLON 860, 10550, and 1055 (manufactured by DIC Corporation), and bisphenol F type epoxy resins such as JER 4005P (manufactured by Mitsubishi Chemical Corporation). Epoxy resins, bisphenol S-type epoxy resins such as EPICLON EXA-1514 (manufactured by DIC), naphthalene-type epoxy resins such as EPICLON HP-4700, HP-4710, and HP-4770 (manufactured by DIC), EPICLON HP-7200 dicyclopentadiene type epoxy resins such as series (manufactured by DIC), cresol novolac type epoxy resins such as EPICLON HP-5000 and EXA-9900 (manufactured by DIC).
上記樹脂組成物は、重合開始剤を含有することが好ましい。上記重合開始剤としては、光重合開始剤であってもよく、熱重合開始剤であってもよい。光重合開始剤としては、例えば、ジフェニルヨードニウム、4-メトキシジフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、ジフェニル-4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)-フェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)-フェニル〕スルフィド、η5-2,4-(シクロペンタジェニル)〔1,2,3,4,5,6-η-(メチルエチル)ベンゼン〕-鉄(1+)等のカチオンと、テトラフルオロボレート、ヘキサフルオロホスフェート、トリフェニルヘキサフルオロホスフェート、ヘキサフルオロアルセネート等のアニオンとの組合せからなる化合物が挙げられる。熱重合開始剤としては、例えば、イミダゾール類、4級アンモニウム塩類、リン化合物類、アミン類、ホスフィン類、ホスホニウム塩類、双環式アミジン類及びそれらの塩類、酸無水物、フェノール、クレゾール、キシレノール、レゾールシン等とホルムアルデヒドとを縮合反応して得られるノボラック型フェノール樹脂、液状ポリメルカプタンやポリサルファイド等のポリメルカプト樹脂、アミド等が挙げられる。これらの重合開始剤は単独で用いてもよく、二種以上を併用してもよい。 The resin composition preferably contains a polymerization initiator. The polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator. Examples of photopolymerization initiators include diphenyliodonium, 4-methoxydiphenyliodonium, bis(4-methylphenyl)iodonium, bis(4-tert-butylphenyl)iodonium, bis(dodecylphenyl)iodonium, diphenyl-4-thio phenoxyphenylsulfonium, bis[4-(diphenylsulfonio)-phenyl]sulfide, bis[4-(di(4-(2-hydroxyethyl)phenyl)sulfonio)-phenyl]sulfide, η5-2,4-( cations such as cyclopentagenyl)[1,2,3,4,5,6-η-(methylethyl)benzene]-iron(1+), tetrafluoroborate, hexafluorophosphate, triphenylhexafluorophosphate, Compounds that are combined with anions such as hexafluoroarsenate can be mentioned. Thermal polymerization initiators include, for example, imidazoles, quaternary ammonium salts, phosphorus compounds, amines, phosphines, phosphonium salts, bicyclic amidines and their salts, acid anhydrides, phenol, cresol, xylenol, Novolac type phenol resins obtained by condensation reaction of resorcinol and the like with formaldehyde, polymercapto resins such as liquid polymercaptan and polysulfide, and amides can be mentioned. These polymerization initiators may be used alone or in combination of two or more.
上記重合開始剤の含有量は、上記カチオン硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.1重量部未満であると、カチオン重合が充分に進行しなかったり、硬化反応が遅くなりすぎたりすることがある。上記重合開始剤の含有量が10重量部を超えると、樹脂組成物の硬化反応が速くなりすぎて、作業性が低下したり、得られる樹脂層の組成が不均一となったりすることがある。上記重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator has a preferable lower limit of 0.1 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the cationic curable resin. If the content of the polymerization initiator is less than 0.1 part by weight, the cationic polymerization may not proceed sufficiently or the curing reaction may become too slow. If the content of the polymerization initiator exceeds 10 parts by weight, the curing reaction of the resin composition may become too fast, resulting in reduced workability and uneven composition of the resulting resin layer. . A more preferable lower limit to the content of the polymerization initiator is 0.5 parts by weight, and a more preferable upper limit is 5 parts by weight.
上記樹脂組成物は、本発明の目的を阻害しない範囲で、更に、溶媒、粘度調整剤、表面改質剤(界面活性剤、レベリング剤)、可塑剤、シランカップリング剤、タッキファイヤー、増感剤、熱硬化剤、架橋剤、硬化遅延剤、酸化防止剤、貯蔵安定化剤、分散剤、充填剤等の公知の各種添加剤を含有してもよい。 The resin composition further contains a solvent, a viscosity modifier, a surface modifier (surfactant, leveling agent), a plasticizer, a silane coupling agent, a tackifier, a sensitizer, as long as the object of the present invention is not impaired. It may contain various known additives such as curing agents, thermosetting agents, cross-linking agents, curing retarders, antioxidants, storage stabilizers, dispersants and fillers.
上記樹脂組成物を調製する方法としては特に限定されず、例えば、混合機を用いて、硬化性樹脂と、重合開始剤と、必要に応じて添加する添加剤等とを混合する方法等が挙げられる。上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。 The method for preparing the resin composition is not particularly limited, and examples thereof include a method of mixing a curable resin, a polymerization initiator, and additives to be added as necessary using a mixer. be done. Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
上記樹脂層の形成方法は特に限定されず、例えば、上記薄板ガラスの表面上に、樹脂組成物を塗布した後、光照射、加熱等によって硬化させることによって形成することができる。樹脂組成物の塗布方法は特に限定されず、例えば、スクリーン印刷法、ダイコート印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等を用いてもよい。 The method for forming the resin layer is not particularly limited. For example, the resin layer can be formed by applying a resin composition on the surface of the thin plate glass and then curing the resin composition by light irradiation, heating, or the like. The method of applying the resin composition is not particularly limited, and for example, a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, an inkjet printing method, or the like may be used.
また、上記第1の積層体及び上記第2の積層体の好ましい形態としては、厚さが200μm以下の薄板ガラスと、上記薄板ガラスの一方の側に配置される、厚さ5μm以上の第1の樹脂層と、上記薄板ガラスの上記第1の樹脂層側とは反対側に配置される、厚さ5μm以上の第2の樹脂層と、を有するものが挙げられる。上記第1の樹脂層及び上記第2の樹脂層は、上記第1の積層体及び上記第2の積層体内に少なくとも1層設けられていればよい。また、上記好ましい形態において、上記第1の積層体及び上記第2の積層体は、上記薄板ガラス、上記第1の樹脂層及び上記第2の樹脂層以外の別の層を有していてもよく、例えば、上記第1の樹脂層及び上記第2の樹脂層は、接着層を介して上記薄板ガラスと積層されてもよいが、接着層を介さずに上記薄板ガラスと直に接することが好ましい。接着層を介さずに上記第1の樹脂層及び上記第2の樹脂層を設ける場合、上記薄板ガラスの表面上に、上記第1の樹脂層及び上記第2の樹脂層の材料となる樹脂組成物を塗布し硬化させることによって樹脂層を形成する方法が好適に用いられる。 Further, as a preferred form of the first laminated body and the second laminated body, a thin plate glass having a thickness of 200 μm or less and a first glass plate having a thickness of 5 μm or more arranged on one side of the thin plate glass and a second resin layer having a thickness of 5 μm or more, which is arranged on the opposite side of the thin plate glass from the first resin layer side. At least one layer of the first resin layer and the second resin layer may be provided in the first laminate and the second laminate. In the preferred embodiment, the first laminate and the second laminate may have layers other than the thin glass, the first resin layer, and the second resin layer. Well, for example, the first resin layer and the second resin layer may be laminated on the thin plate glass via an adhesive layer, but may be in direct contact with the thin plate glass without an adhesive layer. preferable. When the first resin layer and the second resin layer are provided without an adhesive layer interposed therebetween, a resin composition as a material for the first resin layer and the second resin layer is placed on the surface of the thin plate glass. A method of forming a resin layer by applying and curing a substance is preferably used.
上記第1の樹脂層及び上記第2の樹脂層は、平面視において、上記薄板ガラスの80%以上の面積を被覆していることが好ましく、上記薄板ガラスの全面を被覆することがより好ましい。 The first resin layer and the second resin layer preferably cover an area of 80% or more of the thin glass plate in plan view, and more preferably cover the entire surface of the thin glass plate.
<第1の積層体が備える第1及び第2の樹脂層の特性>
上記第1の積層体では、上記第1の樹脂層及び上記第2の樹脂層がいずれも、破断エネルギーが1mJ/mm以上であり、かつ、25℃における貯蔵弾性率が2500MPa以下であることが好ましい。上記破断エネルギーが1mJ/mm以上であることにより、折り畳み可能な電子機器を実現するために薄くされた薄型ガラスに充分な耐衝撃性を付与することができる。破断エネルギーは、より好ましくは1.5mJ/mm以上であり、更に好ましくは2mJ/mm以上である。また、破断エネルギーの上限は特に限定されないが、積層体の他の特性を確保する観点から、例えば、50mJ/mm以下である。また、上記貯蔵弾性率が2500MPa以下であると、薄型ガラスに充分な耐衝撃性を付与することができる。また、樹脂層の柔軟性を確保することができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とすることができる。上記貯蔵弾性率は、より好ましくは2000MPa以下、更に好ましくは1800MPa以下である。また、上記貯蔵弾性率の下限は特に限定されないが、積層体の耐衝撃性を確保する観点から、例えば、100MPa以上である。
<Characteristics of the first and second resin layers included in the first laminate>
In the first laminate, both the first resin layer and the second resin layer have a breaking energy of 1 mJ/mm3 or more and a storage elastic modulus at 25°C of 2500 MPa or less. is preferred. When the breaking energy is 1 mJ/mm 3 or more, sufficient impact resistance can be imparted to the thin glass that is thinned to realize a foldable electronic device. The breaking energy is more preferably 1.5 mJ/mm 3 or more, still more preferably 2 mJ/mm 3 or more. Although the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate. Moreover, sufficient impact resistance can be provided to thin glass as the said storage elastic modulus is 2500 MPa or less. Moreover, since the flexibility of the resin layer can be ensured, the laminate can have the flexibility required for realizing a foldable electronic device. The storage elastic modulus is more preferably 2000 MPa or less, still more preferably 1800 MPa or less. Although the lower limit of the storage elastic modulus is not particularly limited, it is, for example, 100 MPa or more from the viewpoint of ensuring the impact resistance of the laminate.
なお、上記破断エネルギーの測定はJIS K7113「プラスチックの引張試験方法」に準拠し、以下の手順に従って作製した試験片を使用して行うことができる。
厚さ0.7mmのガラス板上に、離型処理されたポリエチレンテレフタレート樹脂フィルムの離型面を上面として設置し、さらにダンベル型(SDK-400)の形状に打ち抜いた厚さ0.5mmのシリコンシートの型を設置する。樹脂層を形成するために用いられる樹脂組成物をダンベル型に流し込み、さらに離型処理されたポリエチレンテレフタレート樹脂フィルムの離型面で気泡を巻き込まないように樹脂液をカバーした後、もう1枚のガラス板を重ねる。次に、波長365nm、照度100mW/cmの紫外線LEDを光源としてガラス板を通して15秒間露光し、1500mJ/cmの紫外線を照射する。さらに、ガラス板に挟まれた状態のまま裏返し、裏面から再度同様の紫外線を照射する。その後、80℃のオーブン中で30分加熱して樹脂を硬化し、シリコンシートの型から樹脂硬化物を取り出すことで、試験片とする。この試験片を引張試験機により引張試験を実施する。引張試験は、チャック間距離25mm、引張速度50mm/分、及び、サンプリング間隔20μmで試験片が破断するまで実施する。得られた測定結果から、縦軸に応力(単位:MPa)を取り、横軸に歪み(単位:%)を取った応力-歪み曲線を作成し、この応力-歪み曲線と横軸で囲まれた部分の面積を求めることによって破断エネルギーを算出することができる。
The breaking energy can be measured according to JIS K7113 "Plastic tensile test method" using a test piece prepared according to the following procedure.
A release-treated polyethylene terephthalate resin film was placed on a glass plate with a thickness of 0.7 mm, with the release surface facing upward, and a silicon with a thickness of 0.5 mm was punched into a dumbbell shape (SDK-400). Install the sheet mold. The resin composition used for forming the resin layer was poured into a dumbbell mold, and the resin liquid was covered with the release surface of the release-treated polyethylene terephthalate resin film so as not to entrain air bubbles. Stack the glass plates. Next, an ultraviolet LED with a wavelength of 365 nm and an illuminance of 100 mW/cm 2 is used as a light source, and exposed through the glass plate for 15 seconds to irradiate with ultraviolet rays of 1500 mJ/cm 2 . Furthermore, while being sandwiched between the glass plates, it is turned over, and the same ultraviolet rays are applied again from the back side. Thereafter, the resin is cured by heating in an oven at 80° C. for 30 minutes, and the cured resin is removed from the silicon sheet mold to obtain a test piece. This test piece is subjected to a tensile test using a tensile tester. The tensile test is performed at a distance between chucks of 25 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 μm until the test piece breaks. From the obtained measurement results, stress (unit: MPa) is taken on the vertical axis and strain (unit: %) is taken on the horizontal axis - Create a strain curve, this stress - surrounded by the strain curve and the horizontal axis The breaking energy can be calculated by finding the area of the portion where the fracture occurs.
なお、樹脂層の破断エネルギーを積層体から直接測定する場合は、樹脂層をダンベル型(SDK-400)の形状に打ち抜き、これを上記試験片とする。もしくは、樹脂層を溶剤に溶解させて樹脂液とした後、これを上記ダンベル型に流し込み、溶剤を完全に乾燥させて試験片とする。 When the breaking energy of the resin layer is directly measured from the laminate, the resin layer is punched into a dumbbell shape (SDK-400), and this is used as the test piece. Alternatively, after dissolving the resin layer in a solvent to obtain a resin liquid, the resin liquid is poured into the dumbbell mold, and the solvent is completely dried to obtain a test piece.
また、上記貯蔵弾性率の測定は、ダンベル型(SDK-400)の形状に打ち抜いた厚さ0.5mmのシリコンシートの型に代えて、幅5mm、長さ50mmの矩形状に打ち抜いた厚さ0.5mmのシリコンシートの型を用いること以外は、上記破断エネルギーの測定での手順と同様にして測定サンプルを作製する。作製した測定サンプルについて、粘弾性スペクトロメーター(例えば、アイティー計測制御社製、DVA-200)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定したときの25℃における貯蔵弾性率として得ることができる。 In addition, the storage elastic modulus was measured by punching out a rectangular shape with a width of 5 mm and a length of 50 mm instead of a silicon sheet mold with a thickness of 0.5 mm punched into a dumbbell shape (SDK-400). Except for using a 0.5 mm silicon sheet mold, a measurement sample is prepared in the same manner as in the measurement of the breaking energy. For the prepared measurement sample, using a viscoelastic spectrometer (for example, DVA-200 manufactured by IT Instrument Control Co., Ltd.), under the conditions of 5 ° C./min and 1 Hz in the slow heating shear deformation mode, -50 ° C. to 200 ° C. It can be obtained as a storage modulus at 25° C. when the dynamic viscoelasticity spectrum of is measured.
上記第1の樹脂層及び上記第2の樹脂層は、ヤング率が1500MPa以下であることが好ましい。上記ヤング率が1500MPa以下であると、上記第1の樹脂層及び上記第2の樹脂層の適度な柔軟性を得ることができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とするうえで好ましく、また、ガラスが割れた際に同時に樹脂層が割れにくく飛散防止効果を得ることもできる。上記ヤング率は、より好ましくは1400MPa以下であり、さらに好ましくは1300MPa以下である。また、上記ヤング率の下限は特に限定されないが、積層体の耐衝撃性を確保する観点から、50MPa以上であることが好ましい。上記ヤング率は、上記破断エネルギーの測定の場合と同様にして応力-歪み曲線を作成し、この応力-歪み曲線の歪みが0~10%での傾きを求めることによって算出することができる。 The Young's modulus of the first resin layer and the second resin layer is preferably 1500 MPa or less. When the Young's modulus is 1500 MPa or less, it is possible to obtain appropriate flexibility of the first resin layer and the second resin layer. In addition, when the glass is broken, the resin layer is difficult to break at the same time, and a scattering prevention effect can be obtained. The Young's modulus is more preferably 1400 MPa or less, still more preferably 1300 MPa or less. Although the lower limit of the Young's modulus is not particularly limited, it is preferably 50 MPa or more from the viewpoint of ensuring the impact resistance of the laminate. The Young's modulus can be calculated by creating a stress-strain curve in the same manner as in the measurement of the breaking energy, and determining the slope of the stress-strain curve at a strain of 0 to 10%.
<第2の積層体が備える第1及び第2の樹脂層の特性>
上記第2の積層体では、上記第1の樹脂層及び上記第2の樹脂層がいずれも、ヤング率が50MPa以上、1500MPa以下であることが好ましい。上記ヤング率が50MPa以上、1500MPa以下であることにより、折り畳み可能な電子機器を実現するための適度な柔軟性が得られ、かつ、折り畳み可能な電子機器を実現するために薄くされた薄型ガラスに充分な耐衝撃性を付与することができる。上記ヤング率は、より好ましくは1400MPa以下、更に好ましくは1300MPa以下であり、より好ましくは80MPa以上である。
<Characteristics of the first and second resin layers included in the second laminate>
In the second laminate, both the first resin layer and the second resin layer preferably have a Young's modulus of 50 MPa or more and 1500 MPa or less. When the Young's modulus is 50 MPa or more and 1500 MPa or less, a moderate flexibility for realizing a foldable electronic device can be obtained, and a thin glass thinned to realize a foldable electronic device. Sufficient impact resistance can be imparted. The Young's modulus is more preferably 1400 MPa or less, still more preferably 1300 MPa or less, and more preferably 80 MPa or more.
上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、破断エネルギーが1mJ/mm以上であることが好ましい。上記破断エネルギーが1mJ/mm以上であると、積層体の耐衝撃性をより向上することができる。破断エネルギーは、好ましくは1.5mJ/mm以上であり、より好ましくは2mJ/mm以上である。また、破断エネルギーの上限は特に限定されないが、積層体の他の特性を確保する観点から、例えば、50mJ/mm以下である。 Each of the first resin layer and the second resin layer preferably has a breaking energy of 1 mJ/mm 3 or more. When the breaking energy is 1 mJ/mm 3 or more, the impact resistance of the laminate can be further improved. The breaking energy is preferably 1.5 mJ/mm 3 or more, more preferably 2 mJ/mm 3 or more. Although the upper limit of the breaking energy is not particularly limited, it is, for example, 50 mJ/mm 3 or less from the viewpoint of ensuring other properties of the laminate.
上記第1の樹脂層及び上記第2の樹脂層の少なくとも一方は、25℃における貯蔵弾性率が3000MPa以下であることが好ましく、2500MPa以下であることがより好ましく、2000MPa以下であることが更に好ましく、1800MPa以下であることが特に好ましく、1500MPa以下であることがとりわけ好ましい。上記貯蔵弾性率を上記範囲内にすることで、樹脂層の柔軟性を向上させることができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とするうえで好ましい。また、上記貯蔵弾性率の下限は特に限定されないが、積層体の耐衝撃性を確保する観点から、10MPa以上であることが好ましく、100MPa以上であることがより好ましく、500MPa以上であることが更に好ましい。積層体の折り曲げ性を向上する観点からは、上記第1の樹脂層及び上記第2の樹脂層がいずれも、25℃における貯蔵弾性率が2500MPa以下であることが好ましい。積層体の耐衝撃性を確保する観点からは、上記第1の樹脂層及び上記第2の樹脂層がいずれも、25℃における貯蔵弾性率が100MPa以上であることが好ましい。 At least one of the first resin layer and the second resin layer preferably has a storage modulus at 25° C. of 3000 MPa or less, more preferably 2500 MPa or less, and even more preferably 2000 MPa or less. , 1800 MPa or less, particularly preferably 1500 MPa or less. By setting the storage elastic modulus within the above range, the flexibility of the resin layer can be improved, which is preferable for a laminate having the flexibility required for realizing a foldable electronic device. . In addition, the lower limit of the storage elastic modulus is not particularly limited, but from the viewpoint of ensuring the impact resistance of the laminate, it is preferably 10 MPa or more, more preferably 100 MPa or more, and further preferably 500 MPa or more. preferable. From the viewpoint of improving the bendability of the laminate, it is preferable that both the first resin layer and the second resin layer have a storage elastic modulus at 25° C. of 2500 MPa or less. From the viewpoint of ensuring the impact resistance of the laminate, it is preferable that both the first resin layer and the second resin layer have a storage elastic modulus of 100 MPa or more at 25°C.
<第1及び第2の積層体に共通する第1及び第2の樹脂層の特性>
上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、破断伸びが5%以上であることが好ましい。上記破断伸びが5%以上であると、曲げ耐久試験においてクラックや白化を生じにくい。上記破断伸びは、7%以上であることがより好ましい。破断伸びの上限は特にないが、積層体の耐衝撃性を確保する観点から、1000%以下が好ましい。上記破断伸びは、上記破断エネルギーの測定の場合と同様にして引張試験を行い、試験片が破断したときの歪みの値を用いることができる。
<Characteristics of first and second resin layers common to first and second laminates>
It is preferable that each of the first resin layer and the second resin layer has an elongation at break of 5% or more. When the elongation at break is 5% or more, cracks and whitening are less likely to occur in a bending endurance test. More preferably, the elongation at break is 7% or more. There is no particular upper limit for the elongation at break, but from the viewpoint of ensuring the impact resistance of the laminate, it is preferably 1000% or less. As the elongation at break, a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the strain when the test piece breaks can be used.
上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、破断強度が5MPa以上、50MPa以下であることが好ましい。上記破断強度が5MPa以上、50MPa以下の範囲内であると、薄型ガラスに充分な耐衝撃性を付与しやすくなる。上記破断強度は、10MPa以上、40MPa以下であることがより好ましい。上記破断強度は、上記破断エネルギーの測定の場合と同様にして引張試験を行い、試験片が破断したときの応力の値を用いることができる。 It is preferable that each of the first resin layer and the second resin layer has a breaking strength of 5 MPa or more and 50 MPa or less. When the breaking strength is within the range of 5 MPa or more and 50 MPa or less, it becomes easy to impart sufficient impact resistance to the thin glass. More preferably, the breaking strength is 10 MPa or more and 40 MPa or less. For the breaking strength, a tensile test is performed in the same manner as in the measurement of the breaking energy, and the value of the stress when the test piece breaks can be used.
上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、ガラス転移温度が100℃以下であることが好ましく、上記第1の樹脂層及び上記第2の樹脂層の少なくとも一方が、ガラス転移温度が100℃以下であることが好ましい。樹脂層のガラス転移温度が100℃以下であると、樹脂層の柔軟性を確保することができるので、折り畳み可能な電子機器を実現するために求められる可撓性を有する積層体とするうえで好ましい。上記ガラス転移温度は、より好ましくは80℃以下であり、更に好ましくは60℃以下である。また、上記ガラス転移温度の下限は特に限定されないが、積層体の他の特性を確保する観点から、例えば、0℃以上である。なお、上記ガラス転移温度は、上記貯蔵弾性率の測定の場合と同様にして動的粘弾性スペクトルを作成し、損失正接の極大値の温度を用いることができる。 Each of the first resin layer and the second resin layer preferably has a glass transition temperature of 100° C. or less, and at least one of the first resin layer and the second resin layer has a glass transition temperature of is preferably 100° C. or lower. When the glass transition temperature of the resin layer is 100° C. or less, the flexibility of the resin layer can be ensured. preferable. The glass transition temperature is more preferably 80° C. or lower, still more preferably 60° C. or lower. The lower limit of the glass transition temperature is not particularly limited, but is, for example, 0° C. or higher from the viewpoint of ensuring other properties of the laminate. As for the glass transition temperature, a dynamic viscoelastic spectrum is prepared in the same manner as in the measurement of the storage elastic modulus, and the temperature at which the loss tangent has a maximum value can be used.
上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、全光線透過率が80%以上であることが好ましい。樹脂層の全光線透過率が80%以上であると、樹脂層の透明性を確保することができるので、折り畳み可能な表示装置(フォルダブル・ディスプレイ)を実現するために求められる透明性を有する積層体とするうえで好ましい。上記全光線透過率は、より好ましくは90%以上である。上記全光線透過率は、例えば、HazeMeterNDH2000(日本電色工業株式会社製)を用いて測定することができる。上記全光線透過率はJIS K 7361-1に準拠した方法で測定される。 Each of the first resin layer and the second resin layer preferably has a total light transmittance of 80% or more. When the total light transmittance of the resin layer is 80% or more, the transparency of the resin layer can be ensured. It is preferable to form a laminate. The total light transmittance is more preferably 90% or more. The total light transmittance can be measured using, for example, HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The above total light transmittance is measured by a method conforming to JIS K 7361-1.
上記第1の樹脂層及び上記第2の樹脂層の厚さはそれぞれ、5μm以上であることが好ましい。樹脂層の厚さが5μm以上であることにより、柔軟な樹脂層によって衝撃を緩和する機能を発揮することができ、折り畳み可能な電子機器を実現するために薄くされた薄型ガラスに充分な耐衝撃性を付与することができる。上記第1の樹脂層及び上記第2の樹脂層の厚さは、より好ましくは10μm以上である。また、上記第1の樹脂層及び上記第2の樹脂層の厚さの上限は特に限定されないが、積層体の折り曲げ性を確保する観点から、薄板ガラスよりも薄いことが好ましく、具体的には、100μm以下であることが好ましく、より好ましくは50μm以下であり、更に好ましくは30μm以下、特に好ましくは25μm以下、最も好ましくは20μm以下である。積層体の折り曲げ性を確保する観点からは、上記第1の樹脂層及び上記第2の樹脂層の少なくとも一方が、厚さ25μm以下であることが好ましい。 It is preferable that each of the first resin layer and the second resin layer has a thickness of 5 μm or more. When the thickness of the resin layer is 5 μm or more, the flexible resin layer can exert a shock absorbing function, and the thin glass thinned to realize a foldable electronic device has sufficient shock resistance. You can give it character. The thicknesses of the first resin layer and the second resin layer are more preferably 10 μm or more. In addition, the upper limit of the thickness of the first resin layer and the second resin layer is not particularly limited, but from the viewpoint of ensuring the bendability of the laminate, it is preferable that they are thinner than the thin plate glass. , preferably 100 μm or less, more preferably 50 μm or less, still more preferably 30 μm or less, particularly preferably 25 μm or less, most preferably 20 μm or less. From the viewpoint of ensuring the bendability of the laminate, it is preferable that at least one of the first resin layer and the second resin layer have a thickness of 25 μm or less.
以下、上記第1の樹脂層及び上記第2の樹脂層に用いることができる各材料を説明する。
上記第1の樹脂層及び上記第2の樹脂層を形成するために用いられる樹脂組成物としては、硬化後に得られる樹脂層の特性を所望の範囲内に調整できるものであれば特に限定されないが、例えば、ガラスへの密着性に優れることから、カチオン硬化性樹脂を含むものが好適に用いられる。すなわち、上記第1の樹脂層及び上記第2の樹脂層はそれぞれ、カチオン硬化性樹脂の重合体を含むことが好ましく、上記第1の樹脂層及び上記第2の樹脂層の少なくとも一方が、カチオン硬化性樹脂の重合体を含むことが好ましい。
Materials that can be used for the first resin layer and the second resin layer are described below.
The resin composition used to form the first resin layer and the second resin layer is not particularly limited as long as the properties of the resin layer obtained after curing can be adjusted within a desired range. For example, one containing a cationic curable resin is preferably used because of its excellent adhesion to glass. That is, it is preferable that each of the first resin layer and the second resin layer contains a cationic curable resin polymer, and at least one of the first resin layer and the second resin layer contains a cationic It preferably contains a polymer of a curable resin.
上記カチオン硬化性樹脂としては、分子内に少なくとも1個のカチオン重合性官能基を有し、かつ、カチオン重合性に富む化合物であれば特に限定されない。
上記カチオン重合性官能基としては、例えば、エポキシ基、オキセタニル基、ビニルエーテル基、エピスルフィド基、エチレンイミン基等が挙げられる。なかでも、上記カチオン硬化性樹脂としては、エポキシ樹脂、オキセタン樹脂、ビニルエーテル樹脂が好適である。エポキシ樹脂は、上記薄板ガラスへの密着性に優れることから、上記第1の積層体又は上記第2の積層体を繰り返し折り曲げた際に上記第1の樹脂層及び上記第2の樹脂層が剥離することを抑制できる。
The cationic curable resin is not particularly limited as long as it has at least one cationic polymerizable functional group in the molecule and is highly cationic polymerizable.
Examples of the cationic polymerizable functional group include epoxy group, oxetanyl group, vinyl ether group, episulfide group, and ethyleneimine group. Among them, epoxy resins, oxetane resins, and vinyl ether resins are suitable as the cationic curable resin. Since the epoxy resin has excellent adhesion to the thin plate glass, the first resin layer and the second resin layer are peeled off when the first laminate or the second laminate is repeatedly bent. can be suppressed.
上記エポキシ樹脂(エポキシ基含有化合物)は特に限定されず、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、及びビスフェノールS型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、及びクレゾールノボラック型等のノボラック型エポキシ樹脂;レゾルシノール型エポキシ樹脂、及びトリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂;脂環式エポキシ樹脂;ナフタレン型エポキシ樹脂;フルオレン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ポリエーテル変性エポキシ樹脂;NBR変性エポキシ樹脂;CTBN変性エポキシ樹脂;及びこれらの水添化物等が挙げられる。上記脂環式エポキシ樹脂としては、例えば、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-エポキシ-4-ビニルシクロヘキサン、1,4-シクロヘキサンジメタノールジグリシジルエーテル、エポキシエチルジビニルシクロヘキサン、ジエポキシビニルシクロヘキサン、1,2,4-トリエポキシエチルシクロヘキサン、リモネンジオキサイド、及び脂環式エポキシ基含有シリコーンオリゴマー等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。 The epoxy resin (epoxy group-containing compound) is not particularly limited. Novolac type epoxy resin; resorcinol type epoxy resin, and aromatic epoxy resin such as trisphenol methane triglycidyl ether; alicyclic epoxy resin; naphthalene type epoxy resin; fluorene type epoxy resin; dicyclopentadiene type epoxy resin; epoxy resins; NBR-modified epoxy resins; CTBN-modified epoxy resins; and hydrogenated products thereof. Examples of the alicyclic epoxy resin include 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, ε-caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate , bis(3,4-epoxycyclohexyl) adipate, 1,2-epoxy-4-vinylcyclohexane, 1,4-cyclohexanedimethanol diglycidyl ether, epoxyethyldivinylcyclohexane, diepoxyvinylcyclohexane, 1,2,4- Examples include triepoxyethylcyclohexane, limonene dioxide, and alicyclic epoxy group-containing silicone oligomers. These epoxy resins may be used alone or in combination of two or more.
上記エポキシ樹脂は、常温で液状のエポキシ樹脂であっても、常温で固体のエポキシ樹脂であってもよく、これらを適宜組み合わせて用いてもよい。
上記常温で液状のエポキシ樹脂としては、例えば、「EPICLON 840」、「EPICLON 840-S」、「EPICLON 850」、「EPICLON 850-S」、「EPICLON EXA-850CRP」(以上、DIC社製)等のビスフェノールA型エポキシ樹脂;「EPICLON 830」、「EPICLON 830-S」、「EPICLON EXA-830CRP」、「EPICLON EXA-830LVP」(以上、DIC社製)、「jER 806H」(三菱ケミカル社製)等のビスフェノールF型エポキシ樹脂;「EPICLON HP-4032」、「EPICLON HP-4032D」(以上、DIC社製)等のナフタレン型エポキシ樹脂;「jER XY8000」、「jER YX8034」(以上、三菱ケミカル社製)、「EPICLON EXA-7015」(DIC社製)、「EX-252」(ナガセケムテックス社製)等の水添ビスフェノールA型エポキシ樹脂;「EX-201」(ナガセケムテックス社製)等のレゾルシノール型エポキシ樹脂;「セロキサイド2081」、「セロキサイド2021P」、「セロキサイド2000」、「セロキサイド3000」、「セロキサイド8000」、「セロキサイド8010」、「EHPE3150」(以上、ダイセル社製)、「TTA21」(Jiangsu TetraChem社製)、「リカレジン DME-100」(新日本理化社製)、「X-40-2670」、「X-22-169AS」、「X-22-169B」(信越化学社製)等の脂環式エポキシ樹脂等が市販品として入手可能である。
The above-mentioned epoxy resin may be an epoxy resin that is liquid at normal temperature, or an epoxy resin that is solid at normal temperature, and these may be used in appropriate combination.
Examples of the epoxy resins that are liquid at room temperature include "EPICLON 840", "EPICLON 840-S", "EPICLON 850", "EPICLON 850-S", and "EPICLON EXA-850CRP" (manufactured by DIC Corporation). Bisphenol A type epoxy resin; "EPICLON 830", "EPICLON 830-S", "EPICLON EXA-830CRP", "EPICLON EXA-830LVP" (manufactured by DIC Corporation), "jER 806H" (manufactured by Mitsubishi Chemical Corporation) Bisphenol F type epoxy resins such as; Naphthalene type epoxy resins such as "EPICLON HP-4032" and "EPICLON HP-4032D" (manufactured by DIC Corporation); "jER XY8000" and "jER YX8034" (manufactured by Mitsubishi Chemical Corporation ), "EPICLON EXA-7015" (manufactured by DIC Corporation), "EX-252" (manufactured by Nagase ChemteX Corporation) and other hydrogenated bisphenol A type epoxy resins; "EX-201" (manufactured by Nagase ChemteX Corporation), etc. resorcinol-type epoxy resin; "Celoxide 2081", "Celoxide 2021P", "Celoxide 2000", "Celoxide 3000", "Celoxide 8000", "Celoxide 8010", "EHPE3150" (manufactured by Daicel Corporation), "TTA21" (manufactured by Jiangsu TetraChem), "Rikaresin DME-100" (manufactured by New Japan Chemical Co., Ltd.), "X-40-2670", "X-22-169AS", "X-22-169B" (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like are available as commercial products.
上記常温で固体のエポキシ樹脂としては、例えば、「EPICLON 860」、「EPICLON 10550」、「EPICLON 1055」(以上、DIC社製)等のビスフェノールA型エポキシ樹脂;「jER 4005P」(三菱ケミカル社製)等のビスフェノールF型エポキシ樹脂;「EPICLON EXA-1514」(DIC社製)等のビスフェノールS型エポキシ樹脂;「EPICLON HP-4700」、「EPICLON HP-4710」、「EPICLON HP-4770」(以上、DIC社製)等のナフタレン型エポキシ樹脂;「EPICLON HP-7200シリーズ」(DIC社製)等のジシクロペンタジエン型エポキシ樹脂;「EPICLON HP-5000」、「EPICLON EXA-9900」(以上、DIC社製)等のクレゾールノボラック型エポキシ樹脂等が市販品として入手可能である。 Examples of epoxy resins that are solid at room temperature include bisphenol A type epoxy resins such as "EPICLON 860", "EPICLON 10550", and "EPICLON 1055" (manufactured by DIC Corporation); ); Bisphenol S type epoxy resins such as "EPICLON EXA-1514" (manufactured by DIC); "EPICLON HP-4700", "EPICLON HP-4710", "EPICLON HP-4770" (above Naphthalene type epoxy resins such as "EPICLON HP-7200 series" (manufactured by DIC); dicyclopentadiene type epoxy resins such as "EPICLON HP-5000" and "EPICLON EXA-9900" available as commercial products.
また、上記カチオン硬化性樹脂であるオキセタン樹脂(オキセタニル基含有化合物)としては、例えば、3-エチル-3-[(2-エチルヘキシルオキシ)メチル]オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス([(3-エチル-3-オキセタニル)メトキシ]メチル)ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ビス[(3-エチルオキセタン-3-イル)メチル]エーテル、3-エチル-3-([3-(トリエトキシシリル)プロポキシ]メチル)オキセタン、オキセタニルシルセスキオキサン等を挙げることができる。上記オキセタン樹脂としては、例えば、「アロンオキセタン OXT-101」、「アロンオキセタン OXT-121」、「アロンオキセタン OXT-211」、「アロンオキセタン OXT-221」、「アロンオキセタン OXT-610」(以上、東亞合成社製)等が市販品として入手可能である。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the oxetane resin (oxetanyl group-containing compound) which is the cationic curable resin include 3-ethyl-3-[(2-ethylhexyloxy)methyl]oxetane, 3-ethyl-3-hydroxymethyloxetane, 1 , 4-bis([(3-ethyl-3-oxetanyl)methoxy]methyl)benzene, 3-ethyl-3-(phenoxymethyl)oxetane, bis[(3-ethyloxetan-3-yl)methyl]ether, 3 -ethyl-3-([3-(triethoxysilyl)propoxy]methyl)oxetane, oxetanylsilsesquioxane and the like. Examples of the oxetane resin include "Aron oxetane OXT-101", "Aron oxetane OXT-121", "Aron oxetane OXT-211", "Aron oxetane OXT-221", and "Aron oxetane OXT-610" (above, (manufactured by Toagosei Co., Ltd.) and the like are available as commercial products. These can be used individually by 1 type or in combination of 2 or more types.
また、上記カチオン硬化性樹脂であるビニルエーテル樹脂(ビニルエーテル基含有化合物)としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、アリルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、n-ペンチルビニルエーテル、イソペンチルビニルエーテル、tert-ペンチルビニルエーテル、n-ヘキシルビニルエーテル、イソヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ヘプチルビニルエーテル、n-オクチルビニルエーテル、ノニルビニルエーテル、デシルビニルエーテル、ドデシルビニルエーテル、ヘキサデシルビニルエーテル、オクタデシルビニルエーテル、エトキシメチルビニルエーテル、2-メトキシエチルビニルエーテル、2-エトキシエチルビニルエーテル、2-ブトキシエチルビニルエーテル、アセトキシメチルビニルエーテル、2-アセトキシエチルビニルエーテル、3-アセトキシプロピルビニルエーテル、4-アセトキシブチルビニルエーテル、4-エトキシブチルビニルエーテル、2-(2-メトキシエトキシ)エチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールメチルビニルエーテル、ジエチレングリコールエチルビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、プロピレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、シクロヘキシルジメタノールモノビニルエーテル、トリメチロールプロパンモノビニルエーテル、エチレンオキサイド付加トリメチロールプロパンモノビニルエーテル、ペンタエリスリトールモノビニルエーテル、エチレンオキサイド付加ペンタエリスリトールモノビニルエーテル、シクロヘキシルビニルエーテル、シクロヘキシルメチルビニルエーテル、シクロヘキシルエチルビニルエーテル、メンチルビニルエーテル、テトラヒドロフルフリルビニルエーテル、ノルボルネニルビニルエーテル、1-アダマンチルビニルエーテル、2-アダマンチルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、1-ナフチルビニルエーテル、2-ナフチルビニルエーテル、グリシジルビニルエーテル、ジエチレングリコールエチルビニルエーテル、トリエチレングリコールメチルビニルエーテル、ジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル、ポリプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ノナンジオールジビニルエーテル、ハイドロキノンジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド付加トリメチロールプロパンジビニルエーテル、ペンタエリスリトールジビニルエーテル、エチレンオキサイド付加ペンタエリスリトールジビニルエーテル、トリメチロールプロパントリビニルエーテル、エチレンオキサイド付加トリメチロールプロパントリビニルエーテル、ペンタエリスリトールトリビニルエーテル、エチレンオキサイド付加ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、エチレンオキサイド付加ペンタエリスリトールテトラビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of vinyl ether resins (vinyl ether group-containing compounds) that are cationic curable resins include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, allyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, and tert-butyl. Vinyl ether, n-pentyl vinyl ether, isopentyl vinyl ether, tert-pentyl vinyl ether, n-hexyl vinyl ether, isohexyl vinyl ether, 2-ethylhexyl vinyl ether, n-heptyl vinyl ether, n-octyl vinyl ether, nonyl vinyl ether, decyl vinyl ether, dodecyl vinyl ether, hexa decyl vinyl ether, octadecyl vinyl ether, ethoxymethyl vinyl ether, 2-methoxyethyl vinyl ether, 2-ethoxyethyl vinyl ether, 2-butoxyethyl vinyl ether, acetoxymethyl vinyl ether, 2-acetoxyethyl vinyl ether, 3-acetoxypropyl vinyl ether, 4-acetoxybutyl vinyl ether, 4-ethoxybutyl vinyl ether, 2-(2-methoxyethoxy)ethyl vinyl ether, 3-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, diethylene glycol monovinyl ether, diethylene glycol methyl vinyl ether, diethylene glycol Ethyl vinyl ether, triethylene glycol monovinyl ether, tetraethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, propylene glycol monovinyl ether, dipropylene glycol monovinyl ether, tripropylene glycol monovinyl ether, polypropylene glycol monovinyl ether, 4-hydroxycyclohexyl vinyl ether, cyclohexyl di Methanol monovinyl ether, trimethylolpropane monovinyl ether, ethylene oxide-added trimethylolpropane monovinyl ether, pentaerythritol monovinyl ether, ethylene oxide-added pentaerythritol monovinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether, cyclohexylethyl vinyl ether, men Tyl vinyl ether, tetrahydrofurfuryl vinyl ether, norbornenyl vinyl ether, 1-adamantyl vinyl ether, 2-adamantyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, 1-naphthyl vinyl ether, 2-naphthyl vinyl ether, glycidyl vinyl ether, diethylene glycol ethyl vinyl ether, triethylene glycol methyl Vinyl ether, divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, tripropylene glycol divinyl ether, polypropylene glycol Divinyl ether, butanediol divinyl ether, neopentyl glycol divinyl ether, hexanediol divinyl ether, nonanediol divinyl ether, hydroquinone divinyl ether, 1,4-cyclohexanediol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, trimethylolpropane Divinyl ether, ethylene oxide-added trimethylolpropane divinyl ether, pentaerythritol divinyl ether, ethylene oxide-added pentaerythritol divinyl ether, trimethylolpropane trivinyl ether, ethylene oxide-added trimethylolpropane trivinyl ether, pentaerythritol trivinyl ether, ethylene oxide-added pentaerythritol Examples include trivinyl ether, pentaerythritol tetravinyl ether, ethylene oxide-added pentaerythritol tetravinyl ether, ditrimethylolpropane tetravinyl ether, and dipentaerythritol hexavinyl ether. These can be used individually by 1 type or in combination of 2 or more types.
上記樹脂組成物は、重合開始剤を含有することが好ましい。上記重合開始剤としては、光重合開始剤であってもよく、熱重合開始剤であってもよい。光重合開始剤としては、例えば、ジフェニルヨードニウム、4-メトキシジフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、ジフェニル-4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)-フェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)-フェニル〕スルフィド、η5-2,4-(シクロペンタジェニル)〔1,2,3,4,5,6-η-(メチルエチル)ベンゼン〕-鉄(1+)等のカチオンと、テトラフルオロボレート、ヘキサフルオロホスフェート、トリフェニルヘキサフルオロホスフェート、ヘキサフルオロアルセネート等のアニオンとの組合せからなる化合物が挙げられる。熱重合開始剤としては、例えば、イミダゾール類、4級アンモニウム塩類、リン化合物類、アミン類、ホスフィン類、ホスホニウム塩類、双環式アミジン類及びそれらの塩類、酸無水物、フェノール、クレゾール、キシレノール、レゾールシン等とホルムアルデヒドとを縮合反応して得られるノボラック型フェノール樹脂、液状ポリメルカプタンやポリサルファイド等のポリメルカプト樹脂、アミド等が挙げられる。これらの重合開始剤は単独で用いてもよく、2種以上を併用してもよい。 The resin composition preferably contains a polymerization initiator. The polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator. Examples of photopolymerization initiators include diphenyliodonium, 4-methoxydiphenyliodonium, bis(4-methylphenyl)iodonium, bis(4-tert-butylphenyl)iodonium, bis(dodecylphenyl)iodonium, diphenyl-4-thio phenoxyphenylsulfonium, bis[4-(diphenylsulfonio)-phenyl]sulfide, bis[4-(di(4-(2-hydroxyethyl)phenyl)sulfonio)-phenyl]sulfide, η5-2,4-( cations such as cyclopentagenyl)[1,2,3,4,5,6-η-(methylethyl)benzene]-iron(1+), tetrafluoroborate, hexafluorophosphate, triphenylhexafluorophosphate, Compounds that are combined with anions such as hexafluoroarsenate can be mentioned. Thermal polymerization initiators include, for example, imidazoles, quaternary ammonium salts, phosphorus compounds, amines, phosphines, phosphonium salts, bicyclic amidines and their salts, acid anhydrides, phenol, cresol, xylenol, Novolac type phenol resins obtained by condensation reaction of resorcinol and the like with formaldehyde, polymercapto resins such as liquid polymercaptan and polysulfide, and amides can be mentioned. These polymerization initiators may be used alone or in combination of two or more.
上記重合開始剤の含有量は、上記カチオン硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記重合開始剤の含有量が0.1重量部未満であると、カチオン重合が充分に進行しなかったり、硬化反応が遅くなりすぎたりすることがある。上記重合開始剤の含有量が10重量部を超えると、樹脂組成物の硬化反応が速くなりすぎて、作業性が低下したり、得られる樹脂層の組成が不均一となったりすることがある。上記重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator has a preferable lower limit of 0.1 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the cationic curable resin. If the content of the polymerization initiator is less than 0.1 part by weight, the cationic polymerization may not proceed sufficiently or the curing reaction may become too slow. If the content of the polymerization initiator exceeds 10 parts by weight, the curing reaction of the resin composition may become too fast, resulting in reduced workability and uneven composition of the resulting resin layer. . A more preferable lower limit to the content of the polymerization initiator is 0.5 parts by weight, and a more preferable upper limit is 5 parts by weight.
上記樹脂組成物は、本発明の目的を阻害しない範囲で、更に、溶媒、粘度調整剤、表面改質剤(界面活性剤、レベリング剤)、可塑剤、シランカップリング剤、タッキファイヤー、増感剤、熱硬化剤、架橋剤、硬化遅延剤、酸化防止剤、貯蔵安定化剤、分散剤、充填剤等の公知の各種添加剤を含有してもよい。 The resin composition further contains a solvent, a viscosity modifier, a surface modifier (surfactant, leveling agent), a plasticizer, a silane coupling agent, a tackifier, a sensitizer, as long as the object of the present invention is not impaired. It may contain various known additives such as curing agents, thermosetting agents, cross-linking agents, curing retarders, antioxidants, storage stabilizers, dispersants and fillers.
上記樹脂組成物を調製する方法としては特に限定されず、例えば、混合機を用いて、硬化性樹脂と、重合開始剤と、必要に応じて添加する添加剤等とを混合する方法等が挙げられる。上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。 The method for preparing the resin composition is not particularly limited, and examples thereof include a method of mixing a curable resin, a polymerization initiator, and additives to be added as necessary using a mixer. be done. Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and three rolls.
上記第1の樹脂層及び上記第2の樹脂層の形成方法は特に限定されず、例えば、上記薄板ガラスの表面上に、樹脂組成物を塗布した後、光照射、加熱等によって硬化させることによって形成することができる。樹脂組成物の塗布方法は特に限定されず、例えば、スクリーン印刷法、ダイコート印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等を用いてもよい。 The method of forming the first resin layer and the second resin layer is not particularly limited. can be formed. The method of applying the resin composition is not particularly limited, and for example, a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, an inkjet printing method, or the like may be used.
また、本発明の積層体を備える電子機器もまた、本発明の1つである。本発明の電子機器としては、折り畳み可能な電子機器(フォルダブル電子機器)が好適であり、なかでも、折り畳み可能な表示装置(フォルダブル・ディスプレイ)が好適である。具体的には、例えば、スマートフォン、電子ブック、タブレットPC等の携帯表示端末が挙げられる。上記第1の積層体又は上記第2の積層体を備える表示装置では、上記第1の樹脂層が視認側に配置され、上記第2の樹脂層が表示装置側に配置される構成が好ましい。 An electronic device comprising the laminate of the present invention is also one aspect of the present invention. As the electronic device of the present invention, a foldable electronic device (foldable electronic device) is preferable, and a foldable display device (foldable display) is particularly preferable. Specifically, for example, mobile display terminals such as smartphones, electronic books, and tablet PCs are included. The display device including the first laminate or the second laminate preferably has a configuration in which the first resin layer is arranged on the viewing side and the second resin layer is arranged on the display device side.
更に、本発明の積層体の樹脂層を形成するために用いられる樹脂組成物もまた、本発明の1つである。本発明の樹脂組成物は、硬化後に優れた耐衝撃性を発揮することができ、ガラス等の被着体を保護するための薄膜の形成に適した樹脂組成物である。 Furthermore, the resin composition used for forming the resin layer of the laminate of the present invention is also one aspect of the present invention. The resin composition of the present invention can exhibit excellent impact resistance after curing, and is suitable for forming a thin film for protecting an adherend such as glass.
上記樹脂組成物は、塗工性等の観点から溶媒を含有してもよい。上記溶媒としては、塗工性や貯蔵安定性等の観点から、沸点が200℃以下の非極性溶媒又は沸点が200℃以下の非プロトン性極性溶媒が好ましい。上記沸点が200℃以下の非極性溶媒又は沸点が200℃以下の非プロトン性極性溶媒としては、例えば、ケトン系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、エーテル系溶媒、含窒素系溶媒等が挙げられる。塗液の安定性、塗膜の均一性、乾燥効率等の観点から、上記非極性溶媒又は非プロトン性極性溶媒の沸点は80℃~180℃の範囲がより好ましい。 The resin composition may contain a solvent from the viewpoint of coatability and the like. As the solvent, a nonpolar solvent having a boiling point of 200° C. or lower or an aprotic polar solvent having a boiling point of 200° C. or lower is preferable from the viewpoint of coatability, storage stability, and the like. Examples of the nonpolar solvent having a boiling point of 200° C. or lower or the aprotic polar solvent having a boiling point of 200° C. or lower include ketone solvents, ester solvents, hydrocarbon solvents, halogen solvents, ether solvents, and nitrogen-containing solvents. system solvents and the like. The boiling point of the nonpolar solvent or aprotic polar solvent is more preferably in the range of 80°C to 180°C from the viewpoints of stability of the coating liquid, uniformity of the coating film, drying efficiency, and the like.
上記樹脂組成物は、E型粘度計を用いて、25℃における粘度が1~1000mPa・sであることが好ましい。上記粘度のより好ましい範囲は、塗工方法によって調整される。例えば、インクジェット法による塗布では5~50mPa・sの範囲が好ましく、スリットコート法による塗布では、10~100mPa・sの範囲が好ましく、ロールコート法やオフセット印刷法による塗布では、100~1000mPa・sの範囲が好ましい。一方、粘度が1000mPa・sを超えると、塗液のレベリング性が低下し、塗膜の厚みの均一性が低下する傾向にある。
なお、上記粘度は、例えば、E型粘度計としてVISCOMETER TV-22(東機産業社製)を用い、CP1のコーンプレートにて、各粘度領域における最適なトルク数から適宜1~100rpmの回転数を選択することにより測定することができる。
The resin composition preferably has a viscosity of 1 to 1000 mPa·s at 25° C. using an E-type viscometer. A more preferable range of the above viscosity is adjusted by the coating method. For example, a range of 5 to 50 mPa s is preferable for coating by an inkjet method, a range of 10 to 100 mPa s is preferable for coating by a slit coating method, and a range of 100 to 1000 mPa s is preferable for coating by a roll coating method or an offset printing method. is preferred. On the other hand, when the viscosity exceeds 1000 mPa·s, the leveling property of the coating liquid tends to deteriorate, and the uniformity of the thickness of the coating film tends to deteriorate.
In addition, the above viscosity is determined, for example, by using VISCOMETER TV-22 (manufactured by Toki Sangyo Co., Ltd.) as an E-type viscometer, and using a cone plate of CP1 at a rotation speed of 1 to 100 rpm as appropriate from the optimum torque number in each viscosity region. can be measured by selecting
また、本発明の積層体を備えるカバーガラスもまた、本発明の1つである。本発明のカバーガラスは、保護対象の物品を覆うように配置される保護ガラスであることが好ましく、該保護対象の物品が表示装置であるディスプレイカバーガラスであることがより好ましい。 A cover glass comprising the laminate of the present invention is also one aspect of the present invention. The cover glass of the present invention is preferably a protective glass arranged so as to cover an article to be protected, and more preferably a display cover glass in which the article to be protected is a display device.
本発明によれば、耐衝撃性に優れる積層体を提供することができる。また、本発明によれば、該積層体を用いてなる電子機器及びカバーガラス、並びに、該積層体の樹脂層を形成するために用いられる樹脂組成物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated body excellent in impact resistance can be provided. Further, according to the present invention, it is possible to provide an electronic device and a cover glass using the laminate, and a resin composition used for forming the resin layer of the laminate.
本発明の積層体の構成の一例を示す概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which shows an example of a structure of the laminated body of this invention.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(実施例1~5、比較例1~3)
下記表1に記載された配合比に従い、下記(1)に示す硬化性樹脂及び下記(2)に示す開始剤を攪拌混合し、樹脂組成物を得た。得られた樹脂組成物を溶剤のプロピレングリコールモノメチルエーテルアセテートによって希釈して粘度を調整し、厚さ50μmの薄板ガラス上に、乾燥後厚さ10μmとなるように塗工した。得られた塗膜を100℃の温度で15分間乾燥させた後、波長365nmの紫外線を照射量1500mJ/cmで照射し、更に80℃で30分間加熱することによって硬化させた。その結果、樹脂硬化物からなる樹脂層が、薄板ガラスの一方の側に形成された積層体が得られた。
(Examples 1 to 5, Comparative Examples 1 to 3)
A curable resin shown in (1) below and an initiator shown in (2) below were stirred and mixed according to the compounding ratio shown in Table 1 below to obtain a resin composition. The resulting resin composition was diluted with propylene glycol monomethyl ether acetate as a solvent to adjust the viscosity, and coated on a thin plate glass having a thickness of 50 μm so that the thickness after drying was 10 μm. The obtained coating film was dried at a temperature of 100° C. for 15 minutes, irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 1500 mJ/cm 2 , and further cured by heating at 80° C. for 30 minutes. As a result, a laminate was obtained in which a resin layer made of a cured resin material was formed on one side of the thin plate glass.
(1)硬化性樹脂
・EPICON EXA-830LVP(ビスフェノールF型液状エポキシ樹脂とビスフェノールA型液状エポキシ樹脂の混合物、DIC社製)
・jER YX7400(ポリエーテル骨格液状エポキシ樹脂、三菱ケミカル社製)
・jER 4005P(ビスフェノールF型固形エポキシ樹脂、三菱ケミカル社製)
・jER 806H(ビスフェノールF型液状エポキシ樹脂、三菱ケミカル社製)
・セロキサイド 2021P(3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、ダイセル社製)
・ETRENACOLL EHO(3-エチル-3-ヒドロキシメチルオキセタン、宇部興産社製)
(1) Curing resin EPICON EXA-830LVP (mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, manufactured by DIC)
・ JER YX7400 (polyether skeleton liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation)
・ JER 4005P (bisphenol F type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation)
・ JER 806H (bisphenol F type liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation)
- Celoxide 2021P (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, manufactured by Daicel Corporation)
・ETRENACOLL EHO (3-ethyl-3-hydroxymethyloxetane, manufactured by Ube Industries, Ltd.)
(2)開始剤
・CPI-210S(トリアリールスルホニウム塩型の光カチオン重合開始剤、サンアプロ社製)
(2) Initiator CPI-210S (triarylsulfonium salt type photocationic polymerization initiator, San-Apro Co., Ltd.)
(比較例4)
表面に樹脂層が形成されなかった実施例1~5、比較例1~3と同じ厚さ50μmの薄板ガラスを比較例4の薄板ガラスとした。
(Comparative Example 4)
A thin glass sheet of Comparative Example 4 was prepared from a thin glass sheet having a thickness of 50 μm, which was the same as that of Examples 1 to 5 and Comparative Examples 1 to 3, on which no resin layer was formed.
<物性測定>
実施例1~5、比較例1~3の樹脂組成物を用いて作製した樹脂硬化物の物性を以下の方法で測定した。結果を表1に示した。
<Physical property measurement>
The physical properties of cured resin products prepared using the resin compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were measured by the following methods. Table 1 shows the results.
(貯蔵弾性率及びガラス転移温度)
樹脂硬化物の試験片を厚さ1mmまで積層し、測定サンプルを作製した。作製した測定サンプルについて、粘弾性スペクトロメーター(アイティー計測制御社製、DVA-200)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-50℃~200℃の動的粘弾性スペクトルを測定した。得られた動的粘弾性スペクトルから、25℃における貯蔵弾性率を算出した。また、損失正接の極大値の温度をガラス転移温度Tg(℃)とした。
(Storage modulus and glass transition temperature)
A test piece of the cured resin was laminated to a thickness of 1 mm to prepare a measurement sample. Using a viscoelastic spectrometer (DVA-200, manufactured by IT Keisoku Co., Ltd.), the prepared measurement sample was subjected to dynamics from -50°C to 200°C under the conditions of 5°C/min and 1Hz in a low-speed heating shear deformation mode. A viscoelastic spectrum was measured. The storage modulus at 25°C was calculated from the obtained dynamic viscoelasticity spectrum. The temperature at which the loss tangent has a maximum value was taken as the glass transition temperature Tg (°C).
(ヤング率、破断伸び、破断強度、破断エネルギー)
JIS K7113「プラスチックの引張試験方法」に準拠し、ダンベル型(SDK-400)に型取りした厚さ0.5mmの樹脂硬化物の試験片を作製し、引張試験機により引張試験を実施した。引張試験は、チャック間距離20mm、引張速度50mm/分、及び、サンプリング間隔20μmで試験片が破断するまで実施した。得られた測定結果から、縦軸に応力(単位:MPa)を取り、横軸に歪み(単位:%)を取った応力-歪み曲線を作成した。試験片が破断したときの歪みの値を破断伸びとし、試験片が破断したときの最大応力の値を破断強度とした。ヤング率は、応力-歪み曲線の歪みが0~10%での傾きを求めることによって算出した。破断エネルギーは、応力-歪み曲線と横軸で囲まれた部分の面積を求めることによって算出した。
(Young's modulus, elongation at break, strength at break, energy at break)
According to JIS K7113 "Plastic tensile test method", a dumbbell-shaped (SDK-400) test piece of a cured resin having a thickness of 0.5 mm was prepared and subjected to a tensile test using a tensile tester. The tensile test was carried out at a chuck-to-chuck distance of 20 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 μm until the test piece broke. From the obtained measurement results, a stress-strain curve was created in which the vertical axis represents stress (unit: MPa) and the horizontal axis represents strain (unit: %). The value of the strain when the test piece broke was defined as the elongation at break, and the value of the maximum stress when the test piece was broken was defined as the breaking strength. Young's modulus was calculated by determining the slope of the stress-strain curve at strains between 0 and 10%. The breaking energy was calculated by finding the area enclosed by the stress-strain curve and the horizontal axis.
<評価>
実施例1~5、比較例1~3で得られた積層体及び比較例4の薄板ガラスについて、以下の評価を行った。結果を表1に示した。
<Evaluation>
The laminates obtained in Examples 1 to 5 and Comparative Examples 1 to 3 and the thin plate glass of Comparative Example 4 were evaluated as follows. Table 1 shows the results.
(全光線透過率及びヘイズ)
全光線透過率及びヘイズは、HazeMeterNDH2000(日本電色工業株式会社製)を用いて測定した。
(Total light transmittance and haze)
The total light transmittance and haze were measured using HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
(ペンドロップ試験)
厚さ10mmのSUS板上に積層体の薄板ガラス側を上に向けて配置し、ボールペン(BICジャパン社製、オレンジEG0.7、ペン先0.7mmφ、重さ5.75g)をペン先を下に向け、所定の高さから、積層体のガラス面に向けて垂直に落下させた。そして、薄板ガラスにクラックが発生しなかった最大の高さを、試験結果とした。
(Pen drop test)
The laminate is placed with the thin glass side facing upward on a 10 mm thick SUS plate, and a ballpoint pen (manufactured by BIC Japan, orange EG 0.7, pen tip 0.7 mmφ, weight 5.75 g) is placed with the pen tip It was vertically dropped from a predetermined height downward onto the glass surface of the laminate. The maximum height at which cracks did not occur in the thin plate glass was taken as the test result.
(飛散防止試験)
上記ペンドロップ試験において薄板ガラスにクラックが発生した積層体について、下記評価基準に基づいて、飛散防止性を評価した。
○:ガラスにクラックが発生するが、クラックによって個片化されたガラスが樹脂層によって繋ぎ止められ、かつ、樹脂層と薄板ガラス間が剥離せずガラスの飛散が認められなかった。
×:薄板ガラスのクラック発生と同時に樹脂層にもクラックが発生して個片化、もしくは、樹脂層と薄板ガラスが剥離することによりガラスが個片化した。
(Scattering prevention test)
Regarding the laminate in which cracks occurred in the thin plate glass in the pen drop test, the scattering prevention property was evaluated based on the following evaluation criteria.
Good: Cracks were generated in the glass, but the pieces of glass separated by the cracks were held together by the resin layer, and there was no separation between the resin layer and the thin sheet glass, and no scattering of the glass was observed.
x: Cracking occurred in the resin layer simultaneously with the occurrence of cracks in the thin plate glass, resulting in singulation, or separation of the resin layer and the thin glass plate resulted in singulation of the glass.
(曲げ耐久試験)
U字曲げ試験機(ユアサシステム機器社製、DLDMLH-FS)を用い、上記積層体を屈曲させたときに薄板ガラスが内側に配置されるようにし、試験速度2秒/回、屈曲径R3.0mm、屈曲回数10万回で、繰り返し屈曲させた。そして、水平状態の可動板上に、上記積層体を配置した状態で、両可動板を90度旋回することで、上記積層体をU字状に屈曲させた。そして、試験後に、積層体の外観を目視で確認した。試験前後で外観の変化が無かった場合を「○○」、試験後に端部にクラックや白化が発生したが端部以外ではクラック及び白化が生じなかった場合を「○」、試験後に端部以外にクラックや白化が生じて外観が変化した場合を「×」と評価した。
(Bending endurance test)
Using a U-shaped bending tester (manufactured by Yuasa System Co., Ltd., DLDMLH-FS), the laminate was bent so that the thin sheet glass was arranged inside, and the test speed was 2 seconds/times, and the bending diameter was R3. It was repeatedly bent at 0 mm and 100,000 times of bending. Then, in a state in which the laminate was arranged on the movable plate in a horizontal state, both movable plates were turned by 90 degrees to bend the laminate into a U-shape. After the test, the appearance of the laminate was visually confirmed. "○○" when there was no change in appearance before and after the test, "○" when cracks or whitening occurred at the edge after the test, but no cracks or whitening occurred at other than the edge after the test, and "○" after the test A case where the appearance changed due to cracks or whitening was evaluated as "x".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例6~12)
下記表2に記載された配合比に従い、下記(1)に示す硬化性樹脂及び下記(2)に示す開始剤を攪拌混合し、樹脂組成物を得た。得られた樹脂組成物を溶剤のプロピレングリコールモノメチルエーテルアセテートによって希釈して粘度を調整し、厚さ50μmの薄板ガラス上に、下記表2に記載された乾燥後厚さとなるように塗工した。得られた塗膜を100℃の温度で15分間乾燥させた後、波長365nmの紫外線を照射量1500mJ/cmで照射し、更に80℃で30分間加熱することによって硬化させた。その結果、薄板ガラスの一方の側(視認側)に樹脂硬化物からなる第1の樹脂層を備え、他方の側(表示素子側)に樹脂硬化物からなる第2の樹脂層を備える積層体が得られた。
(Examples 6 to 12)
A curable resin shown in (1) below and an initiator shown in (2) below were stirred and mixed according to the compounding ratio shown in Table 2 below to obtain a resin composition. The resulting resin composition was diluted with propylene glycol monomethyl ether acetate as a solvent to adjust the viscosity, and coated on a thin plate glass having a thickness of 50 μm so as to have a thickness after drying as shown in Table 2 below. The obtained coating film was dried at a temperature of 100° C. for 15 minutes, irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation dose of 1500 mJ/cm 2 , and further cured by heating at 80° C. for 30 minutes. As a result, a laminate provided with a first resin layer made of a cured resin on one side (visible side) of the thin plate glass and a second resin layer made of a cured resin on the other side (display element side) was gotten.
(1)硬化性樹脂
・EPICON EXA-830LVP(ビスフェノールF型液状エポキシ樹脂とビスフェノールA型液状エポキシ樹脂の混合物、DIC社製)
・jER YX7400N(ポリエーテル骨格液状エポキシ樹脂、三菱ケミカル社製)
・jER 4005P(ビスフェノールF型固形エポキシ樹脂、三菱ケミカル社製)
・jER YX8034(水添ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)
・セロキサイド 2021P(3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、ダイセル社製)
・ETRENACOLL EHO(3-エチル-3-ヒドロキシメチルオキセタン、宇部興産社製)
(1) Curing resin EPICON EXA-830LVP (mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, manufactured by DIC)
・ JER YX7400N (polyether skeleton liquid epoxy resin, manufactured by Mitsubishi Chemical Corporation)
・ JER 4005P (bisphenol F type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation)
・ JER YX8034 (hydrogenated bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
- Celoxide 2021P (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, manufactured by Daicel Corporation)
・ETRENACOLL EHO (3-ethyl-3-hydroxymethyloxetane, manufactured by Ube Industries, Ltd.)
(2)開始剤
・CPI-210S(トリアリールスルホニウム塩型の光カチオン重合開始剤、サンアプロ社製)
・DTS-200(芳香族スルホニウム塩型の光カチオン重合開始剤、みどり化学社製)
(3)表面改質剤
・BYK-340(ビッグケミー社製)
(2) Initiator CPI-210S (triarylsulfonium salt type photocationic polymerization initiator, San-Apro Co., Ltd.)
・ DTS-200 (aromatic sulfonium salt type photocationic polymerization initiator, manufactured by Midori Chemical Co., Ltd.)
(3) Surface modifier BYK-340 (manufactured by Big Chemie)
<物性測定>
実施例6~12で作製した樹脂硬化物の物性を以下の方法で測定した。結果を下記表2に示した。
<Physical property measurement>
Physical properties of cured resins produced in Examples 6 to 12 were measured by the following methods. The results are shown in Table 2 below.
(貯蔵弾性率及びガラス転移温度)
厚さ0.5mm、幅5mm、長さ50mmの樹脂硬化物の試験片を作製し、粘弾性スペクトロメーター(アイティー計測制御社製、DVA-200)を用い、引張モードの10℃/分、10Hzの条件で、-50℃~150℃の動的粘弾性スペクトルを測定した。得られた動的粘弾性スペクトルから、25℃における貯蔵弾性率を求めた。また、損失正接の極大値の温度をガラス転移温度Tg(℃)とした。
(Storage modulus and glass transition temperature)
A test piece of a cured resin having a thickness of 0.5 mm, a width of 5 mm, and a length of 50 mm was prepared, and a viscoelastic spectrometer (DVA-200, manufactured by IT Keisoku Co., Ltd.) was used at a tensile mode of 10 ° C./min. A dynamic viscoelastic spectrum was measured from -50°C to 150°C under the condition of 10Hz. The storage modulus at 25°C was determined from the obtained dynamic viscoelasticity spectrum. The temperature at which the loss tangent has a maximum value was taken as the glass transition temperature Tg (°C).
(ヤング率、破断伸び、破断強度、破断エネルギー)
JIS K7113「プラスチックの引張試験方法」に準拠し、ダンベル型(SDK-400)に型取りした厚さ0.5mmの樹脂硬化物の試験片を作製し、引張試験機により引張試験を実施した。引張試験は、チャック間距離20mm、引張速度50mm/分、及び、サンプリング間隔20μmで試験片が破断するまで実施した。得られた測定結果から、縦軸に応力(単位:MPa)を取り、横軸に歪み(単位:%)を取った応力-歪み曲線を作成した。試験片が破断したときの歪みの値を破断伸びとし、試験片が破断したときの最大応力の値を破断強度とした。ヤング率は、応力-歪み曲線の歪みが0~10%での傾きを求めることによって算出した。破断エネルギーは、応力-歪み曲線と横軸で囲まれた部分の面積を求めることによって算出した。
(Young's modulus, elongation at break, strength at break, energy at break)
According to JIS K7113 "Plastic tensile test method", a dumbbell-shaped (SDK-400) test piece of a cured resin having a thickness of 0.5 mm was prepared and subjected to a tensile test using a tensile tester. The tensile test was carried out at a chuck-to-chuck distance of 20 mm, a tensile speed of 50 mm/min, and a sampling interval of 20 μm until the test piece broke. From the obtained measurement results, a stress-strain curve was created in which the vertical axis represents stress (unit: MPa) and the horizontal axis represents strain (unit: %). The value of the strain when the test piece broke was defined as the elongation at break, and the value of the maximum stress when the test piece was broken was defined as the breaking strength. Young's modulus was calculated by determining the slope of the stress-strain curve at strains between 0 and 10%. The breaking energy was calculated by finding the area enclosed by the stress-strain curve and the horizontal axis.
<評価>
実施例6~12で得られた積層体の薄板ガラスについて、以下の評価を行った。結果を下記表2に示した。
<Evaluation>
The thin glass sheets of the laminates obtained in Examples 6 to 12 were evaluated as follows. The results are shown in Table 2 below.
(全光線透過率及びヘイズ)
全光線透過率及びヘイズは、HazeMeterNDH2000(日本電色工業株式会社製)を用いて測定した。
(Total light transmittance and haze)
The total light transmittance and haze were measured using HazeMeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
(ペンドロップ試験)
厚さ10mmの人工大理石板(デュポン社製、「コーリアン」)上に積層体の第1の樹脂層側を上に向けて配置し、ボールペン(BICジャパン社製、オレンジEG0.7、ペン先0.7mmφ、重さ5.75g)をペン先を下に向け、所定の高さから、積層体の第1の樹脂層側の面に向けて垂直に落下させた。そして、薄板ガラスにクラックが発生しなかった最大の高さを、試験結果とした。
(Pen drop test)
The first resin layer side of the laminate is placed facing upward on an artificial marble plate (manufactured by DuPont, "Corian") having a thickness of 10 mm, and a ballpoint pen (manufactured by BIC Japan, orange EG 0.7, nib 0) is applied. 0.7 mmφ, weight 5.75 g) was vertically dropped from a predetermined height toward the surface of the laminate on the first resin layer side with the pen tip facing downward. The maximum height at which cracks did not occur in the thin plate glass was taken as the test result.
(飛散防止試験)
上記ペンドロップ試験において薄板ガラスにクラックが発生した積層体について、下記評価基準に基づいて、飛散防止性を評価した。
○:ガラスにクラックが発生するが、クラックによって個片化されたガラスが樹脂層によって繋ぎ止められ、かつ、樹脂層と薄板ガラス間が剥離せずガラスの飛散が認められなかった。
×:薄板ガラスのクラック発生と同時に樹脂層にもクラックが発生して個片化、もしくは、樹脂層と薄板ガラスが剥離することによりガラスが個片化した。
(Scattering prevention test)
Regarding the laminate in which cracks occurred in the thin plate glass in the pen drop test, the scattering prevention property was evaluated based on the following evaluation criteria.
Good: Cracks were generated in the glass, but the pieces of glass separated by the cracks were held together by the resin layer, and there was no separation between the resin layer and the thin sheet glass, and no scattering of the glass was observed.
x: Cracks were generated in the resin layer simultaneously with the occurrence of cracks in the thin plate glass, and the glass was singulated by separation of the resin layer and the thin plate glass.
(曲げ耐久試験)
U字曲げ試験機(ユアサシステム機器社製、DLDMLH-FS)を用い、上記積層体を屈曲させたときに第1の樹脂層が内側となるように配置し、試験速度1秒/回、屈曲径R2.0mm、屈曲回数10万回で、繰り返し屈曲させた。そして、試験後に、積層体の屈曲部分を目視で確認した。試験前後で外観の変化が無かった場合を「○○」、試験後に端部にクラックや白化が発生したが端部以外ではクラック及び白化が生じなかった場合を「○」、試験後に端部以外にクラックや白化が生じて外観が変化した場合を「×」と評価した。
(Bending endurance test)
Using a U-shaped bending tester (manufactured by Yuasa System Co., Ltd., DLDMLH-FS), the laminate is arranged so that the first resin layer is on the inside when bending, and the test speed is 1 second / time, bending It was repeatedly bent with a diameter R of 2.0 mm and a bending number of 100,000 times. After the test, the bent portion of the laminate was visually confirmed. "○○" when there was no change in appearance before and after the test, "○" when cracks or whitening occurred at the edge after the test, but no cracks or whitening occurred at other than the edge after the test, and "○" after the test A case where the appearance changed due to cracks or whitening was evaluated as "x".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、耐衝撃性に優れる積層体を提供することができる。また、本発明によれば、該積層体を用いてなる電子機器及びカバーガラス、並びに、該積層体の樹脂層を形成するために用いられる樹脂組成物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated body excellent in impact resistance can be provided. Further, according to the present invention, it is possible to provide an electronic device and a cover glass using the laminate, and a resin composition used for forming the resin layer of the laminate.
10 積層体
11 第1の樹脂層
12 薄板ガラス
13 第2の樹脂層
14 光学用透明粘着剤
15 偏光板

 
REFERENCE SIGNS LIST 10 laminate 11 first resin layer 12 thin plate glass 13 second resin layer 14 optical transparent adhesive 15 polarizing plate

Claims (20)

  1. 厚さが200μm以下の薄板ガラスと、前記薄板ガラスの少なくとも一方の側に配置される、厚さ5μm以上の樹脂層とを有し、
    前記樹脂層の破断エネルギーが1mJ/mm以上であり、かつ、25℃における貯蔵弾性率が2500MPa以下である
    ことを特徴とする積層体。
    A thin glass sheet having a thickness of 200 μm or less and a resin layer having a thickness of 5 μm or more disposed on at least one side of the thin glass sheet,
    A laminate, wherein the resin layer has a breaking energy of 1 mJ/mm 3 or more and a storage elastic modulus of 2500 MPa or less at 25°C.
  2. 前記樹脂層のヤング率が50MPa以上、1500MPa以下である請求項1記載の積層体。 2. The laminate according to claim 1, wherein the resin layer has a Young's modulus of 50 MPa or more and 1500 MPa or less.
  3. 前記樹脂層の25℃における貯蔵弾性率が2000MPa以下である請求項1又は2記載の積層体。 3. The laminate according to claim 1, wherein the resin layer has a storage modulus at 25[deg.] C. of 2000 MPa or less.
  4. 前記樹脂層のガラス転移温度が100℃以下である請求項1、2又は3記載の積層体。 4. The laminate according to claim 1, 2 or 3, wherein the resin layer has a glass transition temperature of 100[deg.] C. or less.
  5. 前記樹脂層がカチオン硬化性樹脂の重合体を含む請求項1、2、3又は4記載の積層体。 5. The laminate according to claim 1, 2, 3 or 4, wherein the resin layer contains a cationic curable resin polymer.
  6. 前記薄板ガラスの一方の側に配置される、厚さ5μm以上の第1の樹脂層と、
    前記薄板ガラスの前記第1の樹脂層側とは反対側に配置される、厚さ5μm以上の第2の樹脂層と、を有し、
    前記第1の樹脂層及び前記第2の樹脂層がいずれも、破断エネルギーが1mJ/mm以上であり、かつ、25℃における貯蔵弾性率が2500MPa以下である
    請求項1記載の積層体。
    a first resin layer having a thickness of 5 μm or more, which is arranged on one side of the thin plate glass;
    a second resin layer having a thickness of 5 μm or more, which is arranged on the side opposite to the first resin layer side of the thin plate glass;
    The laminate according to claim 1, wherein both the first resin layer and the second resin layer have a breaking energy of 1 mJ/mm3 or more and a storage elastic modulus at 25°C of 2500 MPa or less.
  7. 前記第1の樹脂層及び前記第2の樹脂層がいずれも、ヤング率が50MPa以上、1500MPa以下である請求項6記載の積層体。 7. The laminate according to claim 6, wherein both the first resin layer and the second resin layer have a Young's modulus of 50 MPa or more and 1500 MPa or less.
  8. 厚さが200μm以下の薄板ガラスと、前記薄板ガラスの少なくとも一方の側に配置される、厚さ5μm以上の樹脂層とを有し、
    前記樹脂層のヤング率が50MPa以上、1500MPa以下である
    ことを特徴とする積層体。
    A thin glass sheet having a thickness of 200 μm or less and a resin layer having a thickness of 5 μm or more disposed on at least one side of the thin glass sheet,
    A laminate, wherein the Young's modulus of the resin layer is 50 MPa or more and 1500 MPa or less.
  9. 前記樹脂層の破断エネルギーが1mJ/mm以上である請求項8記載の積層体。 The laminate according to claim 8, wherein the resin layer has a breaking energy of 1 mJ/mm3 or more.
  10. 前記樹脂層の25℃における貯蔵弾性率が2500MPa以下である請求項8又は9記載の積層体。 The laminate according to claim 8 or 9, wherein the resin layer has a storage elastic modulus at 25°C of 2500 MPa or less.
  11. 前記樹脂層のガラス転移温度が100℃以下である請求項8、9又は10記載の積層体。 11. The laminate according to claim 8, 9 or 10, wherein the resin layer has a glass transition temperature of 100[deg.] C. or lower.
  12. 前記樹脂層がカチオン硬化性樹脂の重合体を含む請求項8、9、10又は11記載の積層体。 12. The laminate according to claim 8, 9, 10 or 11, wherein the resin layer contains a cationic curable resin polymer.
  13. 前記薄板ガラスの一方の側に配置される、厚さ5μm以上の第1の樹脂層と、
    前記薄板ガラスの前記第1の樹脂層側とは反対側に配置される、厚さ5μm以上の第2の樹脂層と、を有し、
    前記第1の樹脂層及び前記第2の樹脂層がいずれも、ヤング率が50MPa以上、1500MPa以下である
    請求項8記載の積層体。
    a first resin layer having a thickness of 5 μm or more, which is arranged on one side of the thin plate glass;
    a second resin layer having a thickness of 5 μm or more, which is arranged on the side opposite to the first resin layer side of the thin plate glass;
    9. The laminate according to claim 8, wherein both the first resin layer and the second resin layer have a Young's modulus of 50 MPa or more and 1500 MPa or less.
  14. 前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、25℃における貯蔵弾性率が3000MPa以下である請求項13記載の積層体。 14. The laminate according to claim 13, wherein at least one of the first resin layer and the second resin layer has a storage elastic modulus at 25[deg.]C of 3000 MPa or less.
  15. 前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、厚さ25μm以下である請求項6、7、13又は14記載の積層体。 15. The laminate according to claim 6, 7, 13 or 14, wherein at least one of the first resin layer and the second resin layer has a thickness of 25 [mu]m or less.
  16. 前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、ガラス転移温度が100℃以下である請求項6、7、13、14又は15記載の積層体。 16. The laminate according to claim 6, 7, 13, 14 or 15, wherein at least one of said first resin layer and said second resin layer has a glass transition temperature of 100[deg.] C. or less.
  17. 前記第1の樹脂層及び前記第2の樹脂層の少なくとも一方が、カチオン硬化性樹脂の重合体を含む請求項6、7、13、14、15又は16記載の積層体。 17. The laminate according to claim 6, 7, 13, 14, 15 or 16, wherein at least one of the first resin layer and the second resin layer contains a cationic curable resin polymer.
  18. 請求項1~17のいずれかに記載の積層体を備える電子機器。 An electronic device comprising the laminate according to any one of claims 1 to 17.
  19. 請求項1~17のいずれかに記載の積層体の樹脂層を形成するために用いられる樹脂組成物。 A resin composition used for forming a resin layer of the laminate according to any one of claims 1 to 17.
  20. 請求項1~17のいずれかに記載の積層体を備えるカバーガラス。

     
    A cover glass comprising the laminate according to any one of claims 1 to 17.

PCT/JP2022/025950 2021-06-30 2022-06-29 Laminate, electronic device, resin composition and cover glass WO2023277060A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022542766A JPWO2023277060A1 (en) 2021-06-30 2022-06-29
KR1020237030630A KR20240026880A (en) 2021-06-30 2022-06-29 Laminates, electronic devices, resin compositions and cover glasses

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-108610 2021-06-30
JP2021108611 2021-06-30
JP2021-108611 2021-06-30
JP2021108610 2021-06-30
JP2022020334 2022-02-14
JP2022-020334 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023277060A1 true WO2023277060A1 (en) 2023-01-05

Family

ID=84691828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025950 WO2023277060A1 (en) 2021-06-30 2022-06-29 Laminate, electronic device, resin composition and cover glass

Country Status (4)

Country Link
JP (1) JPWO2023277060A1 (en)
KR (1) KR20240026880A (en)
TW (1) TW202319234A (en)
WO (1) WO2023277060A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153513A1 (en) * 2022-02-14 2023-08-17 積水化学工業株式会社 Laminate and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003122269A (en) * 2001-10-18 2003-04-25 Hitachi Ltd Substrate for display element and display element using the same
JP2005206445A (en) * 2003-08-22 2005-08-04 Sekisui Chem Co Ltd Laminated glass and interlayer film for laminated glass
JP2008107510A (en) * 2006-10-25 2008-05-08 Nitto Denko Corp Substrate for display element and its manufacturing method
JP2008303140A (en) * 2003-08-22 2008-12-18 Sekisui Chem Co Ltd Interlayer film for laminated glass and laminated glass
WO2014034507A1 (en) * 2012-08-31 2014-03-06 株式会社ダイセル Curable composition, cured product thereof, optical member and optical device
WO2020153259A1 (en) * 2019-01-25 2020-07-30 株式会社ダイセル Cover member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037207A (en) 2011-08-09 2013-02-21 Nitto Denko Corp Protective substrate for display unit
WO2018190208A1 (en) 2017-04-11 2018-10-18 富士フイルム株式会社 Optical laminate, and front plate of image display device, image display device, resistive touch panel and capacitive touch panel, each of which comprises this optical laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003122269A (en) * 2001-10-18 2003-04-25 Hitachi Ltd Substrate for display element and display element using the same
JP2005206445A (en) * 2003-08-22 2005-08-04 Sekisui Chem Co Ltd Laminated glass and interlayer film for laminated glass
JP2008303140A (en) * 2003-08-22 2008-12-18 Sekisui Chem Co Ltd Interlayer film for laminated glass and laminated glass
JP2008107510A (en) * 2006-10-25 2008-05-08 Nitto Denko Corp Substrate for display element and its manufacturing method
WO2014034507A1 (en) * 2012-08-31 2014-03-06 株式会社ダイセル Curable composition, cured product thereof, optical member and optical device
WO2020153259A1 (en) * 2019-01-25 2020-07-30 株式会社ダイセル Cover member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153513A1 (en) * 2022-02-14 2023-08-17 積水化学工業株式会社 Laminate and electronic device

Also Published As

Publication number Publication date
KR20240026880A (en) 2024-02-29
TW202319234A (en) 2023-05-16
JPWO2023277060A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
KR101702707B1 (en) Adhesive film for polarizing plate, adhesive composition for the same, polarizing plate comprising the same and optical display apparatus comprising the same
TW201833602A (en) Polarizing plate and image display device
CN106443857B (en) Polarization plates, composite polarizing plate and liquid crystal display device
KR101630938B1 (en) Polarizing plate, preparing method for polarizing plate and image display apparatus comprising the same
TW201323223A (en) Unit for image display device having adhesive layer, and image display device using said unit
TW201936408A (en) Laminate optical film production method
JP2009244860A (en) Polarizing plate, optical member, and liquid crystal display
JP6922638B2 (en) Active energy ray-curable adhesive composition, polarizing plate adhesive composition, polarizing plate adhesive, and polarizing plate using the same.
US11719869B2 (en) Polarizing plate, polarizing plate-carrier film laminate, method for preparing polarizing plate-carrier film laminate, method for preparing polarizing plate, and active energy ray curable composition
WO2017094584A1 (en) Cation-curable resin composition
WO2023277060A1 (en) Laminate, electronic device, resin composition and cover glass
KR102496513B1 (en) Actinicraycurable adhesive composition, adhesive composition for polarizer, adhesive for polarizer, and polarizer obtained using same
KR102008187B1 (en) Composition for barrier layer, polarizing plate comprising the same and optical display apparatus comprising the same
KR102052196B1 (en) Adhesive composition for polarizing plate, polarizing plate and optical display apparatus
WO2021117396A1 (en) Cationically curable composition, cured product, and joined body
WO2023153513A1 (en) Laminate and electronic device
US20200142116A1 (en) Polarizing plate for light emitting displays and light emitting display comprising the same
WO2017175735A1 (en) Cationic-curable resin composition
KR20200135339A (en) Active energy ray-curable resin composition, polarizing film protective layer, and polarizing plate
KR20140141814A (en) Adhesive composition for polarizing plate and polarizing plate using the same
KR101780530B1 (en) Adhesive film for polarizing plate, adhesive composition for polarizing plate for the same, polarizing plate comprising the same and optical display apparatus comprising the same
KR20160084094A (en) Curable composition with active energy ray, polarizing plate comprising thereof and liquid crystal display device
JP5716221B2 (en) Cationic curable resin composition
JP7196596B2 (en) Active energy ray-curable adhesive composition, adhesive composition for polarizing plate, adhesive for polarizing plate, and polarizing plate using the same
JP2020533644A (en) Polarizing plate and image display device including it

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542766

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE