WO2011001819A1 - 水処理装置および水処理装置濾材層の洗浄方法 - Google Patents

水処理装置および水処理装置濾材層の洗浄方法 Download PDF

Info

Publication number
WO2011001819A1
WO2011001819A1 PCT/JP2010/060108 JP2010060108W WO2011001819A1 WO 2011001819 A1 WO2011001819 A1 WO 2011001819A1 JP 2010060108 W JP2010060108 W JP 2010060108W WO 2011001819 A1 WO2011001819 A1 WO 2011001819A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter medium
water
layer
raw water
vibration
Prior art date
Application number
PCT/JP2010/060108
Other languages
English (en)
French (fr)
Inventor
三村等
向井清和
Original Assignee
株式会社ナガオカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナガオカ filed Critical 株式会社ナガオカ
Priority to EP10793989.4A priority Critical patent/EP2450094A4/en
Priority to US13/380,651 priority patent/US9017559B2/en
Publication of WO2011001819A1 publication Critical patent/WO2011001819A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/12Downward filtration, the filtering material being supported by pervious surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/14Downward filtration, the container having distribution or collection headers or pervious conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4668Regenerating the filtering material in the filter by moving the filtering element
    • B01D24/4673Regenerating the filtering material in the filter by moving the filtering element using rotary devices or vibration mechanisms, e.g. stirrers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Definitions

  • the present invention relates to a water treatment apparatus, and in particular, iron, manganese, and other soluble components in groundwater and the like are oxidized and insolubilized with a simple and small apparatus without using chemicals such as an oxidizing agent or a flocculant.
  • the present invention relates to a water treatment device that can be treated by the cleaning and a method for cleaning the filter medium layer.
  • Groundwater is used as raw water for tap water and in industries that require a large amount of water, such as the food industry, soft drinks, brewing, public baths, and dyeing industries.
  • groundwater contains a large amount of iron and manganese components. It is a problem. Iron and manganese are essential ingredients for the human body, but if they exceed a certain amount, they give a metallic taste to water, cause red water and black water, and are not suitable for drinking. Occurs.
  • groundwater drainage work prior to foundation work in building foundation work is an indispensable process, but if the groundwater contains a large amount of iron or manganese, it is prohibited by law to discharge it directly into the sewer. There is a problem that it must be released after removing iron and manganese in the groundwater.
  • iron removal and manganese removal equipment adds oxidizers such as sodium hypochlorite and flocculants such as polyaluminum chloride (PAC) to raw water, and oxidizes iron and manganese dissolved in water.
  • oxidizers such as sodium hypochlorite and flocculants such as polyaluminum chloride (PAC)
  • PAC polyaluminum chloride
  • this chemical injection system water treatment device consists of an aeration tank, a coagulation tank, a sedimentation tank, a sand filtration tower, an iron removal, a manganese removal tower, and a chemical solution tank.
  • the system is complex and the entire apparatus is enlarged and expanded. Since a large installation space is required, there is a problem that the apparatus cannot be installed in an environment where the installation space is limited such as an urban area.
  • the filtration sand used in this chemical injection system water treatment device needs to be replaced from time to time due to clogging due to the accumulation of impurities. In this case, since the sand contains chemicals, it must be treated as industrial waste. In addition, there are inconveniences such as restricting the abandoned place.
  • the coated iron is always in a state where there is excessive washing and insufficient washing in the upper layer portion and the lower layer portion of the filter medium layer. Even if iron and manganese are removed in a bite, as described later, iron forms a film in the upper layer of the filter medium layer by oxidation, while manganese is trapped on the surface of the filter medium particles by biological treatment in the lower layer of the filter medium layer.
  • the concentration of iron in the raw water is significantly higher than the concentration of manganese, the entire filter medium layer can be washed with a large amount of washing water to remove the iron trapped in the upper layer of the filter medium layer. Living organisms living in the lower layer for manganese treatment are also washed away, which hinders subsequent biological treatment of manganese.
  • the higher the filtration rate per unit time of the water treatment apparatus the more advantageous it is because the scale and space of the apparatus can be reduced.
  • the space for installing the water treatment device is limited due to the installation location and it is impossible to install a large-scale device, the required amount of raw water can be obtained with a small-scale device installed on a small site. It is necessary to increase the filtration rate.
  • One important condition necessary for increasing the filtration speed of the water treatment apparatus is to efficiently wash the water treatment apparatus.
  • the filtering function of the filtering medium decreases as time passes, especially when the surface of the filtering medium layer is covered with oxide flocks such as iron hydroxide and other foreign matters,
  • oxide flocks such as iron hydroxide and other foreign matters
  • the raw water supply pipe is reciprocated on a plane parallel to the surface of the filter medium layer, and the filter medium layer closed by a jet water flow containing a large number of bubbles ejected from the raw water supply pipe is closed.
  • the filtration function is restored by releasing from the state.
  • a filter medium layer receiver made of a plate-like screen supporting the filter medium layer is arranged at the bottom of one filter medium layer made of filter sand, and the filter medium layer is reversed below the filter medium layer receiver.
  • a backwash tube is provided for cleaning.
  • the supply of raw water to the filter tank is temporarily stopped, and the backwash water from the backwash pipe is passed through the filter medium tank receiver to cover the entire filter medium layer.
  • the foreign material covering the upper part of the filter medium layer is peeled off from the filter medium layer by flowing upward from below, and the iron and manganese components trapped in the filter medium layer are washed away and discharged from the backwash water discharge port to the outside of the system. Yes.
  • the filtration speed of this water treatment device is 60 m / day to 130 m / day, but if it is necessary to perform filtration at a higher speed, the filter medium layer must be washed more frequently, and therefore the filter medium layer Since the amount of the load on the biological treatment of the lower layer of the water treatment device further increases, this water treatment device has a limit in the cleaning efficiency of the filter medium layer, and it is impossible to increase the speed further.
  • the conventional water treatment apparatus including the above water treatment apparatus must consume about 10% to 15% of the filtered water amount for the above-mentioned washing of the filter medium layer, which greatly reduces the efficiency of the water treatment. I am letting.
  • the water treatment apparatus includes a mechanism for reciprocating the raw water supply pipe on a plane parallel to the surface of the filter medium layer in order to clean the surface of the filter medium layer.
  • This mechanism uses an electric motor for the raw water supply pipe. Not only does it require a large amount of power to clean the surface, but the mechanism for the reciprocating motion becomes complicated, and the rails for moving the raw water pipes are worn, and water is supplied to the raw water pipes. There is a problem that labor and cost of maintenance of parts such as wear of a hose to be supplied increase.
  • the shape of the filtration tank must be rectangular, which increases the size of the device and makes it difficult to reduce the size of the device even when the location of the device is small. There is also a problem that it is possible.
  • the present invention has been made in view of the problems of the conventional water treatment apparatus described above, and is a novel water treatment apparatus cleaning method and a cleaning method capable of performing filtration at a higher speed than the conventional water treatment apparatus.
  • An object of the present invention is to provide a water treatment apparatus that can be applied.
  • the present invention performs cleaning by reciprocating the raw water supply pipe, so the filter medium layer surface other than the point through which the raw water supply pipe passes is not cleaned, and the filter medium layer surface Therefore, it takes a considerable time to complete the necessary cleaning, and there is a limit to high-speed processing, so this point is to be improved.
  • the present invention improves the rate of water treatment efficiency by reducing the ratio of the amount of washing water to the amount of filtered water, and does not require much power, and is a water treatment that is easy to maintain with a compact and simplified mechanism.
  • An apparatus and a cleaning method thereof are provided.
  • the present inventor among iron and manganese to be captured by the water treatment apparatus, most of the iron is deposited on the upper layer of the filter medium layer, Contrary to this, there is a fact that most of manganese is deposited in the lower layer of the filter media layer, and the concentration of iron and manganese in the raw water is not constant, and there is almost a constant concentration difference depending on the raw water. Focusing on the fact that the concentration is significantly higher than the concentration, these facts are used for cleaning, and the filter media layer is cleaned by vibrating the filter media in the filter media layer by the filter media vibration means to remove iron in the upper layer of the filter media layer. The inventors have found that the effect is remarkably improved and have reached the present invention.
  • the inventor removes iron in the raw water by partial washing of the filter medium layer, and removes manganese by washing the entire filter medium layer, thereby significantly improving the washing effect. It has been found that the cleaning water can be saved while making it possible to achieve the present invention.
  • the first configuration of the present invention that achieves the above object is a raw water water pipe, and raw water that has one end communicating with the raw water water pipe, and the other end jets raw water as a mixed jet water stream of raw water and air.
  • One or a plurality of raw water mixed-flow jet nozzles having a jet outlet, and a filter whose surface is disposed below the raw water mixed-flow jet nozzle at a predetermined distance from the raw water mixed jet nozzle and accommodates a filter medium layer A tank, a filtered water discharge pipe provided in the filter tank for taking out water filtered by the filter medium layer, and a backwash water provided in the filter tank for supplying backwash water to the filter medium layer A water treatment comprising a supply pipe, a filter medium vibrating means having a portion embedded in the filter medium layer and vibrating the filter medium of the filter medium layer, and a drain trough or a drain outlet provided in the filter tank above the filter medium layer Wash the filter media layer of the device A method for cleaning a filter medium layer, wherein the
  • a raw water water pipe and one or more raw water outlets one end of which communicates with the raw water water pipe, and the other water is ejected as a mixed water stream of raw water and air at the other end.
  • a plurality of raw water mixed-flow jet nozzles, and the upper surface and the lower layer are arranged below the raw water mixed-flow jet nozzle at a predetermined distance from the raw water outlet of the raw water mixed-flow jet nozzle.
  • a backwash water supply pipe provided in the filtration tank for supplying backwash water to the filter medium layer, a filter medium vibrating means having a portion embedded in the upper layer and vibrating the upper filter medium, and the filter medium Drainage provided in the filtration tank above the bed A method for cleaning the filter medium layer of a water treatment apparatus provided with a rough or drain port, wherein the filter medium layer is cleaned mainly by partially cleaning the upper layer and by cleaning both the upper layer and the lower layer.
  • a muddy water drainage process for discharging muddy water containing quality components from the drainage trough or drainage port (B) Stopping the supply of raw water and performing a filtration treatment to lower the water level in the filtration tank to a predetermined water level (b) The backwash water from the backwash water supply pipe is more than the upper layer washing speed.
  • a method for cleaning a filter medium layer of a water treatment device comprising a muddy water drainage step of discharging turbid water containing turbid components separated from the upper layer and lower layer filter media from the drain trough or drain port by continuing to supply a flow It is.
  • the resistance value of the filtration tank during normal operation for the filtration process is measured, and when this resistance value becomes a predetermined value or more, the portion A cleaning method for a filter medium layer of a water treatment device, wherein a cleaning process is automatically started.
  • the resistance value of the filtration tank at the time of normal operation for the filtration treatment is measured, and when the resistance value becomes a predetermined value or more, the partial cleaning step is performed. Performing the entire cleaning process automatically when the time until the resistance value of the filtration tank reaches a predetermined value after the partial cleaning process is less than or equal to a predetermined time. It is a cleaning method.
  • a raw water water pipe and one raw water outlet through which one end communicates with the raw water water pipe and the other end jets raw water as a mixed flow of raw water and air.
  • a plurality of raw water mixed-flow jet nozzles, a filtration tank containing a filter medium layer whose surface is spaced from the raw water outlet of the raw water mixed-flow jet nozzle at a predetermined interval, and the filter medium layer A filtered water discharge pipe provided in the filtration tank for taking out the water filtered by the filter, a backwash water supply pipe provided in the filtration tank for supplying backwash water to the filter material layer, and the filter medium
  • a water treatment device comprising: a filter medium vibrating means having a portion embedded in a layer and vibrating the filter medium of the filter medium layer; and a drain trough or a drain outlet provided in the filter tank above the filter medium layer. It is.
  • the sixth configuration of the present invention is a water treatment apparatus characterized by further comprising means for additionally supplying dissolved oxygen into the filter medium layer in addition to the fifth configuration.
  • a raw water water pipe and one raw water outlet that communicates at one end with the raw water water pipe and at the other end jets the raw water as a mixed flow of raw water and air.
  • a plurality of raw water mixed-flow jet nozzles, and the upper surface and the lower layer are arranged below the raw water mixed-flow jet nozzle at a predetermined distance from the raw water outlet of the raw water mixed-flow jet nozzle.
  • a filtration tank containing a filter medium layer made of a filter medium having a smaller specific gravity and a larger particle size than the filter medium of the lower layer, and a filtered water outlet pipe provided in the filter tank for taking out the water filtered by the filter medium layer;
  • a backwash water supply pipe provided in the filtration tank for supplying backwash water to the filter medium layer, a filter medium vibrating means having a portion embedded in the upper layer and vibrating the upper filter medium, and the filter medium
  • the drain provided in the filtration tank above the bed A water treatment apparatus, characterized in that it comprises a trough or drain.
  • the water treatment apparatus in addition to the seventh configuration, includes a downstream filter medium layer made of the same material as the filter medium of the lower layer on the downstream side of the filtrate extraction pipe as viewed in the filtrate extraction direction. And a filtered water outlet that opens to the upper side of the filter medium layer in communication with the filtered water discharge pipe and takes out water filtered by the latter filter medium layer.
  • a plurality of the filtrate extraction pipe and the backwash water supply pipe are arranged in parallel in the horizontal direction at the bottom of the filtration tank.
  • Each collecting and distributing pipe is composed of a screen cylinder which is an outer cylinder and an internal porous pipe disposed in the center of the inside, and the inner porous pipe has a plurality of collecting and distributing holes formed on both sides in the longitudinal direction. It is the water treatment apparatus characterized by having.
  • the filter medium vibration means is embedded in the filter medium and one or a plurality of vibration elements connected to a power source. And a vibration expansion means that is attached to the vibration element and transmits the vibration of the vibration element to the filter medium of the filter medium layer.
  • the vibration expansion means includes a frame body attached to the vibrator and a plurality of vibration expansion elements fixed to the frame body.
  • Each of the elements extends in the vertical direction of the filter medium layer and is arranged parallel to each other with a support bar fixed to the frame at the upper end and a predetermined gap in the vertical direction of the filter medium layer.
  • a plurality of first vibration transmission plates fixed to the support rod, and in the gap between the first vibration transmission plates so as to be orthogonal to the first vibration transmission plate and in parallel with each other.
  • a water treatment apparatus comprising a plurality of second vibration transmission plates fixed to the support rod.
  • the plurality of vibration expansion elements are arranged so that a filter medium surface having a substantially square shape in plan view is formed by two adjacent vibration expansion elements. This is a water treatment device.
  • the plurality of vibration expansion elements are arranged such that a filter medium surface having a substantially rectangular shape in plan view is formed by two adjacent vibration expansion elements. This is a water treatment device.
  • the entire filter medium of the filter medium layer can be vibrated strongly by the vibration means that has a portion embedded in the filter medium layer and vibrates each grain of the filter medium of the filter medium layer. Therefore, while the filter medium is vibrated by this vibration means, the filter medium in the filter medium layer is continuously washed and rubbed, and compared with the cleaning nozzle reciprocating system in which the filter medium is stirred only when it passes through the cleaning nozzle. The cleaning efficiency per unit time can be drastically improved, whereby high-speed filtration can be promoted.
  • a large amount of power and a complicated mechanism are not required, so that the manufacturing cost of the apparatus can be saved and the filtration tank can be configured in a round shape in plan view. It is possible to provide a water treatment device with a simplified mechanism and easy maintenance.
  • the filter medium layer has a two-layer structure of an upper layer and a lower layer, and the upper layer performs partial washing and whole washing using a filter medium having a specific gravity smaller than that of the lower layer filter medium and a larger particle size. Therefore, the high concentration iron captured in the upper layer is washed by frequently washing the upper layer by partial washing by the combination of the vibration of the filter medium particles by the vibrating means and the washing by the upward flow at a relatively slow flow rate.
  • manganese with a low concentration trapped in the lower layer is cleaned and removed together with iron in the upper layer in the entire cleaning by the upward flow with a high flow rate performed less frequently than the cleaning of the upper layer.
  • the amount of cleaning water used as a whole is saved, and a conventional chemical injection water treatment system is used.
  • the amount of washing water used in about 10 to 15% of the filtered water amount can be reduced to about 3 to 5% of the filtered water amount.
  • the upper layer which is frequently washed, is composed of a filter medium having a relatively small specific gravity and a relatively large particle size.
  • the amount of cleaning water used for enhancing the effect and keeping the same cleaning effect can be minimized.
  • the lower layer is composed of a filter medium having a relatively large specific gravity and a relatively small particle size (fine mesh), and therefore has a large specific surface area per unit volume and a high biological treatment effect.
  • both the upper filter medium and the lower filter medium are stirred and mixed during the entire cleaning, but the lower filter medium has a higher specific gravity and a higher settling speed than the upper filter medium, so before the upper filter medium settles.
  • the upper filter medium settles and is allowed to stand in the lower layer, and the upper filter medium settles on it and is allowed to stand to restore the original upper and lower layers.
  • the highest cleaning efficiency can be achieved while sufficiently capturing turbidity contained in raw water in addition to iron and manganese.
  • the upper layer is composed of a filter medium having a relatively large particle size, resistance to water flow is small, and therefore high-speed filtration can be promoted.
  • the resistance value of the filtration tank during normal operation for the filtration process is measured, and the partial cleaning process is automatically started when the resistance value exceeds a predetermined value. Since the partial cleaning process is automatically started when clogging occurs in the upper layer of the filter medium layer so as to require cleaning, the partial cleaning process is performed more efficiently than according to a predetermined schedule. be able to.
  • the time when the entire cleaning process is performed is automatically performed when the time when the resistance value after the partial cleaning process becomes a predetermined value is equal to or less than the predetermined time. It is possible to automatically perform the entire cleaning process simply by measuring the value, and to maintain the filter medium layer in an ideal state at all times.
  • the dissolved oxygen is supplied into the filter medium layer by means for additionally supplying the dissolved oxygen.
  • Ammonia nitrogen can be oxidized and removed.
  • the seventh configuration of the present invention it is possible to provide a water treatment device that exhibits the effects of the second configuration.
  • the ninth configuration of the present invention by embedding a collecting / distributing pipe comprising a screen cylinder and an internal porous pipe in the bottom of the filtration tank, manganese is collected even when the manganese concentration in the raw water is very high. Therefore, the cleaning of the bottom of the filtration tank can be completed by a relatively simple operation by removing only the porous tube and directly washing the screen from the inside of the screen cylinder.
  • the vibration means is attached to the vibration element so as to be embedded in the filter medium and the one or more vibration elements connected to the power source, and the vibration of the vibration element is used as the filter medium. Because it has vibration expansion means to transmit, even if the number of vibration elements connected to the power source is small, it can transmit the desired vibration to all the filter media in the filter media layer and vibrate each grain of the filter media. Compared with the case where the entire filter medium is vibrated only by the vibration element connected to the power source without using the vibration expansion means, it is possible to significantly save power such as electric power and contribute to energy saving in the water treatment work. it can.
  • the plurality of first vibration transmission plates and the plurality of second vibration transmission plates of the vibration expansion element are each provided with a predetermined gap between the vibration transmission plates in the vertical direction. Therefore, during the filtration process, the water to be treated can freely flow in the lateral direction through this gap, so that no drift occurs, and thus uniform filtration can be achieved.
  • the 12th configuration of the present invention by arranging a plurality of vibration expansion elements so that a filter medium surface having a substantially square shape in plan view is formed by two adjacent vibration expansion elements, four adjacent vibration extensions
  • the area of the square can be reduced compared to the case of forming a square filter medium surface by this, so that the distance from each vibration transmission plate in the filter medium in the square can be reduced from the vibration transmission plate of the filter medium at the farthest position. Can be made relatively short.
  • the plurality of vibration expansion elements by arranging the plurality of vibration expansion elements so that a substantially rectangular filter medium surface is formed in plan view by two adjacent vibration expansion elements,
  • the distance from the vibration transmission plate of the filter medium at the farthest distance from the vibration transmission plate can be made relatively shorter than other arrangements of the vibration expansion elements.
  • the present invention can be applied not only to a water treatment apparatus having a filter medium layer composed of a two-layer structure of an upper layer and a lower layer, but also to a water treatment apparatus having a filter medium layer having a single layer structure.
  • a case where the present invention is applied to a water treatment apparatus having a filter medium layer having a two-layer structure of an upper layer and a lower layer will be described as an example.
  • FIG. 1 is a schematic view schematically showing one embodiment of a water treatment apparatus according to the present invention.
  • a water treatment apparatus 1 includes, as main components, a filter tank 5 containing a filter medium layer 4 composed of an upper layer 2 and a lower layer 3, a raw water feed pipe 6, a raw water mixed-flow jet nozzle 7, an upper filter medium vibrating means 8, and waste water.
  • a trough or drain 12, and a water collection and distribution pipe 13 that doubles as a filtered water outlet pipe and a backwash water supply pipe are provided.
  • the raw water feed pipe 6 made of a steel pipe or the like that supplies ground water to be filtered into the filtration tank 5 is connected to a water feed pump (not shown), and this water feed pump passes through a water receiving tank (not shown) if necessary.
  • the raw water is supplied from the raw water source, and the raw water is supplied to the raw water pipe 6 at a predetermined flow rate.
  • the raw water pipe 6 is disposed above one end of the filtration tank 5 so as to extend on a plane parallel to the surface of the filter medium layer 4.
  • One or a plurality of (two in the illustrated embodiment) raw water mixed flow jet nozzles 7 are provided so as to branch vertically from the raw water feed pipe 6.
  • the upstream end 7a of each jet nozzle 7 is fitted into the raw water supply pipe 6 so that the inside communicates with the raw water supply pipe 6, and the raw water from which the raw water is jetted out as a jet water stream is connected to the downstream end.
  • a spout 7b is formed.
  • the inner diameter of the raw water mixed flow jet nozzle 7 is preferably about 3 to 30 mm, for example.
  • the raw water mixed flow jet nozzles 7 are provided with the same number (two in the illustrated embodiment) of air introduction pipes 15.
  • the upstream end portion of each air introduction pipe 15 protrudes obliquely upward from the raw water mixed flow jet nozzle 7 so as to be open to the atmosphere, and the downstream end portion is a raw water mixed flow jet upstream of the raw water jet port 7b.
  • the nozzle 7 is opened.
  • the inner diameter of the air introduction tube 15 is preferably about 1 to 10 mm, for example.
  • the upper end portion of the air introduction pipe 15 is not limited to the open atmosphere, and pure oxygen may be supplied.
  • the upper layer 2 of the filter medium layer 5 has a surface disposed below the raw water mixed-flow jet nozzle 7 at a predetermined interval from the raw water outlet 7 b of the raw water mixed-flow jet nozzle 7.
  • the filter medium filled in the upper layer 2 of the filter medium layer 4 needs to be made of a material filled in the lower layer 3 and having a smaller specific gravity and a larger particle diameter than the filter medium.
  • Zeolite or the like is suitable as the upper filter medium that satisfies this condition, and zeolite (particle size of about 1.2 mm) is particularly preferred.
  • filter sand (particle diameter of about 0.6 mm) is suitable as a lower layer filter medium that satisfies this condition.
  • the filtration tank 4 functions to filter the raw water by capturing oxide flocs and other foreign matters in the raw water supplied as a jet stream supplied from the jet nozzle, and also inhabited by iron bacteria and other microorganisms, It functions to oxidize and adsorb manganese. Due to the autocatalytic action of iron oxyhydroxide, iron mainly forms a film on the surface of the upper layer 2 (most abundant at a portion of about 200 mm from the surface of the filter medium layer), and manganese forms a film on the surface of the filtered sand of the lower layer 3 mainly by biological treatment. (Most often in a portion of about 500 to 800 mm from the surface of the filter medium layer).
  • the filter medium layer 4 is supported by the supporting gravel layer 17.
  • the supporting gravel layer 17 is preferably constituted by a plurality of layers of a small particle size layer, a medium particle size layer, and a large particle size layer in order from the upper layer, but is not limited thereto.
  • a water collection and distribution pipe 13 is arranged in the horizontal direction.
  • the water collection and distribution pipe 13 serves both as a filtered water outlet pipe for taking out the water filtered by the filter medium layer 4 and a backwash water supply pipe for supplying backwash water to the filter medium layer 4.
  • a plurality of branch pipes 14 are attached to the water collection and distribution pipe 13 so as to branch and extend in the horizontal direction so as to communicate with the water collection and distribution pipe 13.
  • the filtered water outlet pipe and the backwash water supply pipe are not limited to the above example, and a separate filtered water outlet pipe and a backwash water supply pipe may be provided.
  • the filtration tank 5 above the surface of the upper layer 2 is provided with a drain trough 12 for draining water that has overflowed during backwashing.
  • the drainage trough 12 is not limited, and drainage ports of other shapes may be used.
  • the filter medium vibrating means 8 is embedded in one or more vibration elements 9 (one in the illustrated embodiment) connected to a power source such as an AC power source and embedded in the filter medium.
  • a vibration expansion unit is provided that is attached to the vibration element 9 and transmits the vibration of the vibration element 9 to the filter medium of the upper layer 2.
  • the vibration expansion means includes a frame body 40 and a plurality of vibration expansion elements 10 fixed to the frame body.
  • the vibration element 9 for example, a rod-shaped vibration element known as a concrete vibrator can be used.
  • the vibration element 9 is connected to a controller 48 via a cable 47, and the controller 48 is connected to an AC power source.
  • the frame 40 of the vibration expansion means has a shape on a net formed by arranging a plurality of steel rods so as to intersect each other and welding each intersection, and is spaced from the surface of the upper layer 2 by about 5 cm to 10 cm. It is arranged parallel to the surface of the upper layer.
  • a vibration element mounting plate 41 is fitted in the center of the frame and welded to the surrounding steel rod.
  • the vibration element 9 is fitted into the attachment hole 41a formed in the center of the vibration element attachment plate 41 so as to be in close contact with the inner wall of the attachment hole 41a.
  • a plurality of vibration expansion elements 10 are attached to each intersection 40 a of the frame body 40.
  • Each vibration expansion element 10 extends in the vertical direction of the filter medium layer and is fixed to the frame body 40 at the upper end, and a predetermined gap is provided in the vertical direction of the filter medium layer to each other.
  • the second vibration transmission plate 46 is provided.
  • the first vibration transmission plate 44 and the second vibration transmission plate 46 are each 1 in order from the top in order to balance the weight of the entire vibration expansion element 10.
  • the vibration transmission plates at the third, third, and fifth stages are welded to one side of the support bar 42, and the vibration transmission plates at the second and fourth stages are welded to the opposite side of the support bar 42.
  • the structure of the vibration expansion element 10 is not limited to that shown in FIGS. 3 to 5.
  • the first vibration transmission plate 44 and the second vibration transmission plate 46 are formed in two plate portions. It may be formed so as to be divided and welded to both sides of the support rod 42.
  • this filter medium vibration means when the vibration element 9 connected to the power source is turned on and operated, the vibration element 9 vibrates, and this vibration is transmitted from the support rods of the plurality of vibration expansion elements 10 via the frame body 40.
  • the vibration is transmitted to the first vibration transmission plate and the second vibration transmission plate, and the vibrations of these vibration transmission plates propagate to the entire filter medium of the upper layer 2 so that each grain of the filter medium itself vibrates.
  • the vibration means is attached to the vibration element 9 so as to be embedded in the filter medium and the vibration element 9 connected to the power source. Since the vibration expansion means for transmitting to the filter medium is provided, even if the number of vibration elements 9 connected to the power source is small, desired vibration is transmitted to all the filter medium in the filter medium layer to vibrate each particle of the filter medium. Compared to the case where all the filter media are vibrated only by the vibration element connected to the power source without using the vibration expansion means, the power such as electric power can be remarkably saved, contributing to energy saving in the water treatment work. can do.
  • the vibration means to which the present invention is applied is not limited to the above configuration, and a plurality of rod-shaped vibration elements connected to the power source may be arranged in the filter medium at appropriate intervals so as to extend in the vertical direction.
  • action which vibrates a filter medium can be acquired, the structure of the said embodiment is advantageous at the point of labor saving, and is a preferable embodiment.
  • the plurality of first vibration transmission plates 44 and the plurality of second vibration transmission plates 46 of the vibration expansion element 10 are each provided with a predetermined gap between the vibration transmission plates in the vertical direction. As such, during the filtration process, the water to be treated can freely flow laterally through this gap and does not cause a drift, and thus uniform filtration can be achieved.
  • a plane is formed by two adjacent vibration expansion elements 10-1 and 10-2 (FIG. 6).
  • a plurality of vibration expansion elements 10 are arranged such that a substantially square filter medium surface S is formed.
  • a square filter medium surface S is formed by four adjacent vibration extensions 10-1, 10-2, 10-3, and 10-4. The area can be reduced, whereby the distance from the vibration transmission plates 44 and 46 of the filter medium in the square S that is farthest from each vibration transmission plate 44 and 46 is relatively short. can do.
  • the other arrangement method of the vibration expansion element 10 is shown in the plan view of FIG.
  • This arrangement method is a position where each vibration expansion element 10 is rotated 30 degrees counterclockwise from the position indicated by the one-dot chain line in FIG. 8 (same as the position in FIG. 7) with the support rod 42 as the rotation axis.
  • the filter medium surface R having a substantially rectangular shape in plan view is formed by the two adjacent vibration expansion elements 10-1 and 10-2, so that each vibration transmission plate 44, 46 in the filter medium in the rectangle R can be obtained.
  • the distance from the vibration transmission plate of the filter medium at the farthest position from the vibration transmission plate can be made relatively shorter than other arrangements of the vibration expansion elements.
  • FIG. 9 is a plan view showing another arrangement method of the vibration expansion element.
  • three vibration expansion elements 10a are arranged vertically and horizontally in plan view to form a square, and the vibration expansion element 10a extending in the direction of two diagonal lines of the square is formed at the center of the square.
  • a vibration expansion element 10b having a large size is arranged.
  • an isosceles triangular filter medium surface T is formed between the vibration expansion element 10b and each of the vibration expansion elements 10a around it.
  • the distance from the vibration transmission plates 44 and 46 of the filter medium at the farthest distance from the vibration transmission plates 44 and 46 in the filter medium on the filter medium surface T can be made relatively short.
  • the configurations of the vibration element and the vibration expansion means are not limited to those described above, and various modifications can be made according to the size of the filter medium layer, the structure, type, particle size, and the like of the filter medium. Even when a frame and a plurality of vibration expansion elements are used as vibration expansion means, the shape of the frame, the number of vibration transmission plates of the vibration expansion element, the shape, the vertical pitch, the pitch between the vibration expansion elements, etc. Can be changed as appropriate.
  • the frame and the vibration expansion element of the vibration expansion means are made of steel and each component is fixed by welding. However, these components are made of hard plastic. It may be fixed with an adhesive.
  • the vibration element it is preferable to use a vibration element that can transmit a frequency of 10 Hz or more to the filter medium. Particularly, a vibration element having a frequency in the range of 40 Hz to 500 Hz is preferable because a commercially available element can be easily obtained.
  • the vibration generated by the ultrasonic generator is not suitable for use as the vibration means in the water treatment apparatus of the present invention because the vibration reach distance is as short as several millimeters.
  • raw water is supplied from the water pump to the raw water mixed-flow jet nozzle 7 via the raw water feed pipe 6 while maintaining the water depth on the surface of the upper layer 2 at a predetermined depth.
  • the raw water is made into a jet water flow by setting the flow rate to 1.5 to 3 liters / minute, for example, while air flows into the raw water mixed flow jet nozzle 7 from the air introduction pipe 15 opened in the jet nozzle 7 to a flow rate of 0.5 to 1 liter
  • the air is sucked in at a minute, whereby the jet water flow entrains air into a large number of small bubbles, and the mixed flow jet water flow containing the large number of bubbles is discharged from the raw water outlet 7b of the jet nozzle 7 into the water above the upper layer 2.
  • the dissolved oxygen in the water is close to saturation. Iron in water reacts with dissolved oxygen and is captured as iron hydroxide on the surface of the filter medium.
  • soluble components such as iron in water are oxidized to become insoluble components, the iron components are mainly captured on the surface of the zeolite particles forming the upper layer 2, and the manganese components are mainly the surfaces of the filtered sand particles forming the lower layer 3.
  • the filtered water in which these insoluble components and other foreign matters are filtered by the filter medium layer 4 is taken out from the collecting and distributing pipe 13 functioning as a filtered water take-out pipe.
  • the filter medium layer 4 has a reduced filtering function. When clogging of the upper layer surface portion occurs, the water level on the upper layer surface gradually increases, so when the water level reaches a certain level, the filter medium can be selected by selecting either the next partial washing step or the whole washing step. Layer 4 is cleaned.
  • Partial cleaning process (1) A filtration process interruption process for temporarily stopping the supply of raw water is performed.
  • the vibration element 9 is turned on and operated while the backwash water flows from the collection / distribution pipe 13 functioning as the backwash water supply pipe at the time of backwashing at the upper layer washing speed (for example, 5 to 30 m / h).
  • the vibration expansion element 10 propagates to the entire filter medium of the upper layer 2 to vibrate the filter medium of the upper layer 2 and rubs the filter medium to peel off the iron hydroxide blocking the filter medium surface from the filter medium.
  • the upper layer washing process is performed by washing with a flow. By supplying the backwash water at a relatively low upper layer washing speed, sludge separated by the filter medium vibration by the vibrating means is discharged to the drain trough.
  • Whole cleaning step (1) The supply of raw water is stopped, and a filtration treatment interruption step is performed in which the filtration treatment is performed until the water level is lowered to the vicinity of the surface of the upper filter medium or to a predetermined height in the upper layer.
  • the backwash water is caused to flow from the collection and distribution pipe 13 at an overall washing speed (for example, 30 to 60 m / h) that is larger than the upper layer washing speed and faster than the settling speed of the filter medium, and rapidly flows up the filter medium of the lower layer 3 and the upper layer 2
  • an overall washing speed for example, 30 to 60 m / h
  • Whether to select the partial washing step or the whole washing step is determined by determining the frequency of each of the partial washing step and the whole washing step according to the concentration ratio of iron and manganese in the raw water and the filtration rate, etc. Depending on the process, any one of the steps may be selected, and thereafter the partial cleaning and the entire cleaning may be performed at this frequency.
  • FIG. 10 is a schematic view schematically showing another embodiment of the water treatment apparatus of the present invention.
  • the same components as those in the embodiment of FIG. 10 are identical to those in the embodiment of FIG. 10.
  • a pump 18 for sucking and taking out filtered water is connected to the water collection and distribution pipe 13, and a water level gauge 19 for measuring the water level above the upper layer 2 is provided above the filtration tank 5. Is provided.
  • This pump 18 is controlled as follows. The amount of treated water per unit time by the pump 18 is set slightly larger than the raw water supply amount. If the filtering action is continued, the water level on the upper layer 2 gradually decreases. Therefore, the water level is measured by the water level gauge 19, and when the water level falls to a predetermined level, the pump 18 is temporarily stopped to restore the water level to a certain level. Wait for When the water level recovers to this level, the pump 18 is restarted and the above operation is repeated thereafter.
  • the pump 18 is controlled by setting the amount of water treated per unit time by the pump 18 slightly smaller than the raw water supply amount, and when the water level rises to a predetermined water level, the raw water supply is temporarily stopped and the water level is constant. It is possible to wait for the water level to rise to this level, restart the raw water supply when the water level rises to this level, and then repeat the above operation.
  • the resistance value of the filtration tank 5 during normal operation for filtration is measured, and the partial cleaning process is automatically started when the resistance value exceeds a predetermined value.
  • the differential pressure in the filtration tank may be measured by a differential pressure gauge, or when the water level measured by the water level system rises to a predetermined value, this water level may be regarded as a predetermined resistance value.
  • partial cleaning is performed when the resistance value of the filtration tank reaches a predetermined value (automatic or a predetermined value may be measured as needed), and the resistance value reaches a predetermined value after partial cleaning.
  • a predetermined value automated or a predetermined value may be measured as needed
  • the resistance value reaches a predetermined value after partial cleaning.
  • the entire cleaning process may be automatically performed.
  • FIG. 15 is a graph showing the relationship between the time when the partial cleaning process is performed every time the predetermined time T elapses and the resistance value (differential pressure) ⁇ p of the filtration tank, the horizontal axis indicates time, and the vertical axis indicates resistance value. .
  • this time when the time for the resistance value ⁇ p to reach the predetermined value b is set for each partial cleaning step, this time changes as follows. That is, if the initial resistance value at the start of operation is a, the resistance value at the first partial cleaning P1 is a predetermined value b, and the time to reach this resistance value is t1, the resistance value is reduced by the first partial cleaning P1. Although the resistance value decreases to c, the resistance value does not decrease to the initial resistance value a.
  • the time t2 when the resistance value reaches the predetermined value b is shorter than t1.
  • the resistance value decreases to e by the second partial cleaning P2, but this value is higher than c. Therefore, when the operation for the filtration process is performed next, the time t3 when the resistance value reaches the predetermined value b is shorter than the time t2.
  • the partial cleaning process is performed every time the resistance value reaches a predetermined value.
  • t2 and t3 are measured in advance and the time t3 when the resistance value reaches the predetermined value b after the second partial cleaning P2 and before the final partial cleaning step P3 is automatically less than the predetermined time Ta
  • FIG. 11 is a schematic view showing another embodiment of a water treatment apparatus for carrying out the method of the present invention.
  • This embodiment is a cleaning method that can effectively remove manganese even when the concentration of manganese in the raw water is very high and the apparatus shown in FIG. 1 or 10 cannot sufficiently remove manganese.
  • the same components as those of the apparatus of FIG. 1 are denoted by the same reference numerals as those of FIG.
  • This water treatment device 60 includes a post-stage filtration tank 35 that houses a post-stage filter medium layer 33 made of the same material as the filter medium of the lower layer 3 on the downstream side of the collecting and distributing pipe 13 of the apparatus of FIG.
  • a filtered water outlet 27 that communicates with the collecting and distributing pipe 13 functioning as a take-out pipe and opens above the filter medium layer 33 at the latter stage, and a filtered water take-out pipe and a latter filter medium layer 33 for taking out the water filtered by the latter filter medium layer 33.
  • a water collecting and distributing pipe 43 functioning as a backwashing water supply pipe for supplying backwashing water to the top and a drainage trough or drainage port 12 provided in the rear stage filtration tank 35 above the rear stage filter material layer 33 are further provided.
  • the collection and distribution pipes 13 and 43 are connected to a backwash water pipe 47, and open / close valves 48 and 55 are interposed in the backwash water pipe 47. Further, a filtered water supply pipe 49 is connected to the collecting and distributing pipe 43, and an open / close valve 50 is interposed in the filtered water supply pipe 49.
  • the collecting / distributing pipe 13 and the filtered water outlet 27 are connected to each other by a filtered water supply pipe 54.
  • the filtered water supply pipe 54 has a pump 52 and an opening / closing valve 53 for supplying filtered water to the subsequent filter medium layer 33. It is installed.
  • the supporting gravel layer 17 is provided, but the supporting gravel layer is not used, and the water collection and distribution pipe is embedded in the lower layer of the filter medium layer and the bottom of the subsequent filter medium layer. It is also possible to change.
  • a preferred example of the water collection and distribution pipe 13 when the supporting gravel layer is not used is shown in the sectional side view of FIG. 12 (a) and the plan view of FIG. 12 (b).
  • the illustrated example shows the water collection and distribution pipe 13, but the water collection and distribution pipe 43 has the same configuration.
  • a plurality of water collection / distribution pipes 13 are arranged in parallel in the filtration tank 5 in the horizontal direction, and each water collection / distribution pipe is provided with an inner perforated pipe 72 at the inner center of a screen cylinder 70 which is an outer cylinder. 72 has a plurality of water collection and distribution holes 74 formed on both sides in the longitudinal direction.
  • the screen cylinder 70 may be of a known structure formed by winding a spiral wire around support rods arranged at predetermined intervals in the circumferential direction. In FIG. 12A, the screen cylinder 70 is shown with a part thereof removed.
  • Each internal porous pipe 72 is connected to the screen cylinder 70 by a flange portion 78 and connected to a water collection / distribution main pipe 76 by a flange portion 80.
  • this water collection / distribution pipe can be used not only for the apparatus 60 but also for the apparatus 1 of FIG. In this case, the supporting gravel layer 17 is not used in the apparatus 1 of FIG. 1, and the water collecting and distributing pipe may be embedded in the bottom of the lower layer 3.
  • filtered water from which iron has been removed by the upper layer 2 and a corresponding portion of manganese has been removed by the lower layer 3 is supplied from the collecting and distributing pipe 13 to the subsequent filter medium layer 33 via the filtered water feed pipe 54, and the remaining manganese is removed from the latter stage. It is removed by the filter medium layer 33.
  • the valves 48 and 55 of the backwash water supply pipe 47 are closed, and the valves 53 and 50 of the filtered water supply pipes 54 and 49 are open.
  • the partial cleaning process and the entire cleaning process are performed as follows. Partial washing process (1) A filtration process interruption process for stopping the supply of raw water is performed.
  • valves 48 and 55 of the backwash water supply pipe 47 are closed, and the valves 53 and 50 of the filtered water supply pipes 54 and 49 are open.
  • the valve 48 is opened, and the valves 53 and 50 of the filtrate water pipes 54 and 49 are closed, and the backwash water is fed from the collecting and distributing pipe 13 to the upper layer washing speed.
  • An upper layer cleaning process is performed in which the vibration expansion element 10 is operated while flowing in (for example, 5 to 30 m / h) and the filter medium of the upper layer 2 is rubbed and cleaned. The upper layer cleaning process ends before the water level reaches the drainage trough 12.
  • Whole washing process (1) A filtration treatment interruption process for stopping the supply of raw water is performed. (2) With the valve 53 of the filtered water supply pipe 54 and the valve 50 of the filtered water supply pipe 49 closed, and the valves 48 and 55 of the backwash water supply pipe 47 opened, the upper backflow water is collected from the collecting and distributing pipes 13 and 43.
  • the flow rate is larger than the washing rate and faster than the settling rate of the filter medium (for example, 30 to 60 m / h), and the lower layer 3, the upper layer 2 filter medium, and the latter filter medium layer 33 are stirred in a rapid upward flow.
  • the vibration expansion element 10 of the upper layer 2 and the subsequent filter medium layer 33 is operated to perform a cleaning process for cleaning the filter medium of the upper layer, the lower layer, and the subsequent filter medium layer.
  • a stationary process is performed in which the filter medium of the upper layer, the lower layer and the subsequent filter medium layer is allowed to settle while supplying an upward flow at a speed equal to or lower than the settling speed of the filter medium.
  • the turbid water drainage process is performed in which the turbid water containing the turbid components separated from the filter medium of the upper layer, the lower layer, and the subsequent filter medium layer is discharged from the drain trough 12 by continuously supplying the upward flow at the upper layer cleaning speed.
  • Whether to select the partial washing step or the whole washing step is determined by determining the frequency of each of the partial washing step and the whole washing step according to the concentration ratio of iron and manganese in the raw water and the filtration rate, etc. Depending on the process, any one of the steps may be selected, and thereafter the partial cleaning and the entire cleaning may be performed at this frequency.
  • FIG. 13 and 14 are schematic views schematically showing other embodiments of the present invention.
  • high concentration ammoniacal nitrogen is contained in the raw water
  • a large amount of dissolved oxygen more than 10 times that of iron or manganese is required to capture and remove the ammoniacal nitrogen. Therefore, it has been found that it is difficult to sufficiently capture and remove ammonia nitrogen in the filter medium layer only by aeration by the mixed flow jet water flow from the raw water mixed flow jet nozzle during the filtration process.
  • FIG. 13 shows an example thereof.
  • the dissolved oxygen supply device 90 includes a treated water suction pipe 92 that sucks a portion of the treated water, and a portion of the treated water that is sucked from the suction pipe 92.
  • a fine bubble generating device 93 for injecting a gas-liquid mixed fluid mixed with fine bubbles into a filter medium layer from a gas-liquid injection tube 91 is provided.
  • a known device can be used as the fine bubble generating device 93.
  • the treated water suction pipe 92 and the gas-liquid injection pipe 91 those having the same structure as the collection and distribution pipe 13 can be used.
  • the fine bubbles have a small buoyancy and a low ascending speed, they flow by increasing the flow rate of the treated water stream, reach the lower layer of the filter medium layer while supplying dissolved oxygen to the filter medium layer, and are discharged from the collecting and distributing pipe 13 to collect air. There is no risk of generating. Therefore, in the present invention aimed at high-speed processing, injection of fine bubbles is a preferable method as an additional supply method of dissolved oxygen. What is necessary is just to determine the optimal value according to the additional amount of dissolved oxygen which depends on the state of raw
  • FIG. 14 shows another example for achieving the same purpose.
  • a dissolved oxygen supply device 95 is connected to branch from the water collection and distribution pipe 13 and a treated water suction pipe 96 for sucking a part of treated water;
  • a fine bubble generating device 98 is provided for sucking a part of the treated water from the suction pipe 96 and injecting a gas-liquid mixed fluid in which the treated water and fine bubbles are mixed into the filter medium layer from the gas-liquid injection pipe 97.
  • the structures of the treated water suction pipe 96 and the gas / liquid injection pipe 97 are the same as those of the apparatus shown in FIG.
  • the filtration tank of the water treatment apparatus used was a circular one with an inner diameter of 1200 mm in plan view.
  • the pitch between the vibration expansion elements 10 embedded in the upper layer (the length of one side of the square formed by the four vibration expansion elements 10) was 150 mm.
  • the method shown in FIG. 6 was used as a method for arranging the vibration expansion element 10.
  • the length of the support rod of the vibration expansion element 10 was 640 mm.
  • vibration element 9 one commercially available concrete vibrator was used, and this vibration element 9 was arranged in the center of the frame body 40.
  • This vibration element uses a commercial alternating current as a power source, and converts the frequency of the current to 400 Hz by an inverter.
  • the vibration element has a frequency of 200 Hz (12000 VPM).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Filtration Of Liquid (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

原水混流ジェットノズル(7)と、原水混流ジェットノズルの下方に配置された上層(2)と下層(3)の2層からなり、上層は下層の濾材よりも比重が小さく粒径が大きい濾材からなる濾材層(4)を収容する濾過槽(5)と、濾過水を取出すとともに逆洗時には濾材層に逆洗水を供給する集配水管(13)と、動力源に接続された振動素子(9)およびこの振動素子(9)の振動が伝達されるように上層(2)に埋設される振動拡張素子(10)を有し濾材の各粒を振動させる濾材振動手段と、濾材層の上方に設けられた排水トラフ(12)とを備えることを特徴とする水処理装置。

Description

水処理装置および水処理装置濾材層の洗浄方法
 本発明は、水処理装置に関し、特に地下水等の中の鉄、マンガンその他の溶解性成分を、酸化剤や凝集剤等の化学品を使用することなく、簡単で小型の装置で酸化させ、不溶化することにより処理することができる水処理装置およびその濾材層の洗浄方法に関する。
 地下水は、水道水の原水として、また食品工業、清涼飲料、醸造、公衆浴場、染色業など水を大量に必要とする産業で利用されているが、現在地下水に含まれる鉄、マンガン成分が大きな問題となっている。鉄やマンガンは人体にとって必要な成分であるが、一定量を超えると水に金属味を与えたり、赤水や黒水の原因となり、飲用に不適となるばかりでなく、これらの産業において様々な問題が生じる。また、建築基礎工事において基礎工事前の地下水抜き取り工事は必要不可欠な工程であるが、地下水に大量の鉄、マンガンが含まれている場合は、そのまま下水道に放流することは法令で禁止されており、地下水中の鉄、マンガンを除去してから放流しなければならないという問題がある。
 現在もっとも普及している除鉄、除マンガン装置は、原水に次亜塩素酸ナトリウム等の酸化剤やポリ塩化アルミニウム(PAC)等の凝集剤を添加し、水中に溶け込んでいる鉄、マンガンを酸化させて不溶性の酸化鉄、酸化マンガンとし、これを濾過砂により濾過して取り除くものである。
 しかし、この酸化剤や凝集剤を注入する方式の水処理装置においては、比較的に多量の酸化剤、凝集剤を消費するのでこれらの購入コストが大きい。また酸化剤として使用される次亜塩素酸が鉄、マンガンを酸化させた後も処理後の浄水の中に残留するために、発癌物質であるトリハロメタンを生成し、その対策のためさらに水を活性炭層を通して処理しなければならず不経済である。また、経済的考慮から活性炭層の設置を見送るとすれば、過剰な酸化剤の注入によるトリハロメタンの発生を防止するため濾過後の水を耐えず分析して監視し、状況に応じて酸化剤の注入量を調整する必要があり、薬品購入コストに加えて維持管理費が嵩むという欠点がある。また、この薬品注入方式による水処理装置は、曝気槽、凝集槽、沈殿槽、砂濾過塔、除鉄、除マンガン塔および薬液タンクからなり、システムは複雑であり装置全体は大規模化して広大な設置スペースを必要とするため、市街地等設置スペースが限られた環境においては装置を設置することができない、という問題点がある。さらに、この薬品注入方式による水処理装置において使用した濾過砂は不純物の堆積による目詰まりのため時々取り替える必要があるが、その場合砂が薬品を含有しているため産業廃棄物として処理しなければならず、その放棄場所も制限される等の不便がある。
 上記従来の薬品注入方式による水処理装置の欠点を除去し、地下水等の中の鉄、マンガンその他の溶解性成分を、酸化剤や凝集剤等の薬品を使用することなく、簡単で小型の装置で酸化させ不溶化することにより処理することができる水処理装置を提供することを目的として、特許文献1記載の水処理装置が提案されている。この水処理装置によれば、ジェットノズルにより原水をジェット水流とする一方ジェットノズル内に開口する空気導入管または気体導入管からジェットノズル内に空気を導入することにより、多数の気泡を含むジェット水流がジェットノズルの原水噴出口からその下方に配置された濾材層上の水面に叩きつけられ、水中および濾材表面において激しいエアレーションが起こることにより、水中の鉄、マンガン等の溶解性成分が酸化されて不溶性成分となり、濾材層を形成する濾過砂等の濾材粒子の表面で捕捉され、したがって、酸化剤や凝集剤等の薬品を一切使用することなく、簡単で小型の装置で原水中の鉄、マンガンその他の溶解性成分を不溶化し濾過することができる。
特開2002-126768公報
 上記特許文献1記載の水処理装置その他同型の水処理装置においては、皮膜化された鉄は濾材層の上層部と下層部とで洗浄過多と洗浄不足が常に同居した状態にある。また一口に鉄、マンガンを除去するといっても、後述のように、鉄は濾材層の上層部において酸化作用により皮膜化する一方マンガンは濾材層の下層部において生物処理により濾材粒子の表面で捕捉されるが、原水中の鉄の濃度がマンガンの濃度に比べて顕著に大きい場合は、濾材層の上層部で捕捉された鉄を除去するために大量の洗浄水で濾材層全体を洗浄すれば下層部においてマンガン処理のために棲息している生物も洗い流されてしまってその後のマンガンの生物処理に支障を来たすことになる。
 一方水処理装置はその単位時間当たりの濾過速度を高速化すればするほど、装置の規模とスペースを削減することができるので有利である。特に水処理装置を設置するスペースが設置場所の関係で限られており、大規模な装置を設置することが不可能な場合は、狭い敷地に設置された小規模な装置により必要な量の原水を濾過処理しなければならず、濾過速度を高める必要に迫られる。
 水処理装置の濾過速度を上げるために必要な一つの重要な条件は、水処理装置の洗浄を効率よく行うことである。
 水処理装置においては、一般に濾過作用を継続すると時間がたつにつれて濾材層特にその表面に水酸化鉄等の酸化物のフロックやその他の異物で覆われた時は濾材の濾過機能が減少するので、濾過処理を一時停止して濾材層の洗浄を行わなければならない。したがって濾材層の洗浄を効率よく行わなければ濾過処理の高速化は実現できない。
 上記特許文献1記載の水処理装置においては、原水送水管を濾材層の表面と平行な面上に往復動させ、原水送水管から噴出す多数の気泡を含むジェット水流により閉塞した濾材層を閉塞状態から開放して濾過機能を回復させるようにしている。また、この水処理装置は、濾過砂からなる1層の濾材層の底部に濾材層を支持する板状スクリーンからなる濾材層受が配置されており、濾材層受の下方には濾材層を逆洗浄するための逆洗管が配置されている。濾材層の上部特に表面が酸化物のフロックやその他の異物で覆われた時は濾過槽への原水供給を一時停止し、逆洗管から逆洗水を濾材槽受を介して濾材層全般にわたって下方から上方へ流すことにより濾材層上部を覆う異物を濾材層から剥離するとともに濾材層内に捕捉された鉄、マンガン成分を洗い流し、逆洗水排出口から系外に排出するように構成されている。
 この水処理装置の濾過速度は60m/日~130m/日であるが、より高速で濾過処理を行う必要がある場合は、濾材層の洗浄もより頻繁に行わなければならず、このため濾材層の下層部の生物処理に対する負荷量も一層増大するので、この水処理装置では濾材層の洗浄効率に限界があり、これ以上の高速化は不可能である。
 また上記水処理装置を含め、従来の水処理装置は、濾材層の上記洗浄のため濾過水量の約10%~15%の水を消費しなければならず、このため水処理の効率を大きく低下させている。
 また上記水処理装置は、濾材層の表面を洗浄するために原水送水管を濾材層の表面と平行な面上に往復動させる機構を備えているが、この機構は原水供給管を電動モータで往復動させなければならないので表面洗浄のために多大の動力を必要とするばかりでなく、往復動のための機構が複雑となり、さらに原水送水管の移動用レールの磨耗、原水送水管に水を供給するホースの損耗等部品のメンテナンスの手間と費用が嵩むという問題点がある。また直線状に配列された一連の原水送水管を同時に移動させるために濾過槽の形状は矩形で無ければならずこのため装置が大きくなり、装置の設置場所が狭い場合でも装置のコンパクト化が不可能であるという問題点もある。
 本発明は、上記従来の水処理装置の問題点にかんがみなされたものであって、従来の水処理装置より高速での濾過処理を可能とする新規な水処理装置の洗浄方法およびこの洗浄方法を適用することができる水処理装置を提供しようとするものである。
 さらに、本発明は、上記従来の水処理装置においては、原水送水管を往復動させることにより洗浄を行うので、原水送水管が通過する点以外の濾材層表面は洗浄が行われず、濾材層表面の全体にわたり必要な洗浄を完了するまでにかなりの時間を要し、高速処理には限界があるので、この点を改良しようとするものである。
 また、本発明は、濾過水量に対する洗浄水量の比率を減少させることによって水処理効率の率を向上させるとともに、多大の動力を必要とせず、コンパクトで簡素化された機構でメンテナンスも簡単な水処理装置とその洗浄方法を提供しようとするものである。
 本発明者は、上記問題を解決するために鋭意研究と実験を重ねた結果、水処理装置によって捕捉されるべき鉄とマンガンの中で鉄はその大部分が濾材層の上層部に沈着し、マンガンは逆に大部分が濾材層の下層部に沈着する事実があるとともに、原水中の鉄とマンガンの濃度は一定ではなく、原水によっておおむね一定の濃度差があり、通常鉄の濃度はマンガンの濃度より大幅に高いことに着目し、これらの事実を洗浄に利用して、濾材振動手段により濾材層中の濾材を振動させながら濾材層を洗浄することにより濾材層上層部において鉄を除去する洗浄効果を顕著に改善することを見出し、本発明に到達した。また本発明者は、原水中の鉄は濾材層の部分洗浄により除去し、マンガンは濾材層の全体洗浄により除去することにより洗浄効果を顕著に改善し、これによって従来実現できなかった高速濾過を可能とするとともに洗浄水が節約できることを発見し、本発明に到達した。
 すなわち、上記目的を達成する本発明の第1の構成は、原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を備える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置され濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該濾材層に埋設される部分を有し該濾材層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備える水処理装置の該濾材層を洗浄する方法であって、該逆洗水供給管から逆洗水を流入させながら該濾材層の濾材を振動させるようにして該濾材層を洗浄することを特徴とする水処理装置濾材層の洗浄方法である。
 本発明の第2の構成は、原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を備える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置された上層と下層の2層からなり、該上層は該下層の濾材よりも比重が小さく粒径が大きい濾材からなる濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該上層に埋設される部分を有し該上層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備える水処理装置の該濾材層を洗浄する方法であって、該濾材層の洗浄を、主として該上層の洗浄を行う部分洗浄と該上層および該下層の双方を洗浄する全体洗浄のいずれかを選択して行い、該部分洗浄工程は、
(イ)原水の供給を一時停止する濾過処理中断工程
(ロ)該逆洗水供給管から逆洗水を上向流として上層洗浄速度で流入させながら該上層の濾材を振動させることにより濾材を擦り合わせ濾材を閉塞させている水酸化鉄を濾材から剥離させて上向流により洗い流す上層洗浄工程
(ハ)該上層洗浄速度で上向流の供給を継続して該上層の濾材から分離した濁質成分を含む濁水を該排水トラフまたは排水口から排出する濁水排水工程
を備え、該全体洗浄工程は、
(イ)原水の供給を停止し、濾過処理を行うことにより濾過槽の水位を所定の水位まで下げる濾過処理中断工程
(ロ)該逆洗水供給管から逆洗水を該上層洗浄速度よりも大きくかつ濾材の沈降速度よりも速い全体洗浄速度で流入させ該上層および該下層の濾材を攪拌しながら該濾材振動手段を作動させ、該上層および該下層の濾材を洗浄する洗浄工程
(ハ)該上層および下層の濾材の洗浄を終了した後濾材の沈降速度以下の速度で上向流の供給を継続しながら該上層および下層の濾材を沈降させる静置工程
(ニ)該上層洗浄速度で上向流の供給を継続して該上層および下層の濾材から分離した濁質成分を含む濁水を該排水トラフまたは排水口から排出する濁水排水工程
を備えることを特徴とする水処理装置濾材層の洗浄方法である。
 本発明の第3の構成は、第1または第2の構成に加え、濾過処理のための通常運転時の濾過槽の抵抗値を計測し、この抵抗値が所定値以上になったとき該部分洗浄工程を自動的に開始することを特徴とする水処理装置濾材層の洗浄方法である。
 本発明の第4の構成は、第2の構成に加え、濾過処理のための通常運転時の濾過槽の抵抗値を計測し、この抵抗値が所定値以上になったとき該部分洗浄工程を行い、該部分洗浄工程後に濾過槽の抵抗値が所定値に達するまでの時間が所定の時間以下となった時に該全体洗浄工程を自動的に開始することを特徴とする水処理装置濾材層の洗浄方法である。
 本発明の第5の構成は、原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を供える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置された濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該濾材層に埋設される部分を有し該濾材層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備えことを特徴とする水処理装置である。
 本発明の第6の構成は、第5の構成に加え、該濾材層中に溶存酸素を追加供給する手段をさらに備えることを特徴とする水処理装置である。
 本発明の第7の構成は、原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を供える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置された上層と下層の2層からなり、該上層は該下層の濾材よりも比重が小さく粒径が大きい濾材からなる濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該上層に埋設される部分を有し該上層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備えることを特徴とする水処理装置である。
 本発明の第8の構成は、第7の構成に加え、該水処理装置は、濾過水取出し方向に見て該濾過水取出し管の下流側に該下層の濾材と同一材料からなる後段濾材層を収容する後段濾過槽を備え、該後段濾過槽は、該濾過水取出し管に連通し該後段該濾材層の上方に開口するする濾過水流出口と、該後段濾材層によって濾過された水を取り出すための濾過水取出し管と該後段濾材層に逆洗水を供給するための逆洗水供給管と、該後段濾材層の上方において該後段濾過槽に設けられた排水トラフまたは排水口とをさらに備えることを特徴とする水処理装置である。
 本発明の第9の構成は、第5~第8の構成のいずれかに加え、該濾過水取出し管および該逆洗水供給管は、該濾過槽の底部に水平方向に複数本並行に配置された集配水管からなり、各集配水管は外筒であるスクリーン筒とその内側中央に配置された内部多孔管からなり、該内部多孔管は長手方向に複数の集配水孔が両側に形成されていることを特徴とする水処理装置である。
 本発明の第10の構成は、第5~第8の構成のいずれかに加え、該濾材振動手段は、動力源に接続された1または複数の振動素子と、濾材中に埋設されるようにして該振動素子に取り付けられ、該振動素子の振動を濾材層の濾材に伝達する振動拡張手段を備えることを特徴とする水処理装置である。
 本発明の第11の構成は、第10の構成に加え、該振動拡張手段は、該振動子に取り付けられる枠体と、該枠体に固定された複数の振動拡張素子を備え、該振動拡張素子は、それぞれ、濾材層の上下方向に延長して上端部において該枠体に固定された支持棒と、該濾材層の上下方向に所定の間隙を設けて相互に平行に配置されるようにして該支持棒に固定された複数の第1振動伝達板と、該第1振動伝達板と直交するようにしてかつ相互に平行に配置されるようにして該第1振動伝達板の該間隙において該支持棒に固定された複数の第2振動伝達板を備えることを特徴とする水処理装置である。
 本発明の第12の構成は、第11の構成に加え、隣り合う2つの該振動拡張素子によって平面視ほぼ正方形の濾材面が形成されるように該複数の振動拡張素子を配置したことを特徴とする水処理装置である。
 本発明のだい13の構成は、第11の構成に加え、隣り合う2つの該振動拡張素子によって平面視ほぼ長方形の濾材面が形成されるように該複数の振動拡張素子を配置したことを特徴とする水処理装置である。
 本発明の第1の構成によれば、濾材層に埋設される部分を有し濾材層の濾材の各粒を振動させる振動手段により濾材層の濾材全体を強く振動することができる。したがって、この振動手段により濾材を振動している間は濾材層の濾材は継続的に絶え間なく擦れあうことにより洗浄され、洗浄ノズルの通過時のみ濾材が攪拌される洗浄ノズル往復動方式に比べて単位時間当たり洗浄能率を飛躍的に向上させることができ、これによって高速濾過を促進することができる。また洗浄ノズル往復動方式のように多大の動力と複雑な機構を必要としないので装置の製造コストを節約することができる上に濾過槽を平面視丸型に構成することができるので、コンパクトで簡素化された機構でメンテナンスも簡単な水処理装置を提供することができる。
 本発明の第2の構成によれば、濾材層を上層と下層の2層構造とし、上層は下層の濾材よりも比重が小さく粒径が大きい濾材を使用して部分洗浄、全体洗浄を実施することにより、上層で捕捉された濃度の高い鉄は、振動手段による濾材粒子の振動と比較的に緩やかな流速の上向流による洗浄の組み合わせによる部分洗浄により上層の洗浄を頻繁に行うことにより洗浄、除去される一方下層で捕捉された濃度が低いマンガンは上層の洗浄よりも少ない頻度で行う流速の早い上向流による全体洗浄で上層の鉄とともに洗浄、除去される。したがって、濃度が高く上層における蓄積量が多い鉄は頻繁な洗浄により充分に除去される一方濃度が低く下層における蓄積量が少ないマンガンは少ない頻度の全体洗浄により充分に除去され、頻繁な洗浄によって下層における生物の棲息が妨げられることがなく、上下濾材層全体としての洗浄効果を最高度に達成することができ、これによって必要とされる高速濾過を達成することができる。本発明によれば、特許文献1記載の水処理装置の濾過速度60m/日~120m/日に比べて画期的な500m/日の濾過速度を挙げることが可能である。また、上層の鉄の除去のため水量の多い逆洗水での全体洗浄を頻繁に行う必要がなく、その結果全体としての洗浄水の使用量が節約され、従来の薬品注入方式の水処理装置において濾過水量の約10~15%使用されていた洗浄水の量を本発明によれば濾過水量の約3~5%に減少させることができる。
 また本発明によれば、洗浄の頻度が高い上層は比重が比較的に小さく粒径が比較的に大きい濾材で構成されているので、上層洗浄時に濾材が攪拌されて大きく上方に舞い上がり濾材の洗浄効果を高め、同一洗浄効果を収めるための洗浄水の使用量を最小限にとどめることができる。一方下層は比重が比較的に大きく粒径が比較的に小さい(目の細かい)濾材で構成されているので単位容量に対する比表面積が大きく、生物処理効果が高い。また全体洗浄の際には上層の濾材も下層の濾材もともに攪拌されて混合されるが、下層の濾材は上層の濾材よりも比重が大きく沈降速度が大きいので、上層の濾材が沈降する前に沈降して下層に静置され、その上に上層の濾材が沈降して静置され元の上層、下層の状態に復元することができる。このように洗浄効果の高い上層の濾材と生物処理効果の高い下層の濾材を組み合わせることにより鉄、マンガンのほか原水に含まれる濁質を充分に捕捉しながら、最高の洗浄効率を挙げることができる。また上層は粒径が比較的に大きい濾材で構成されているので、水流に対する抵抗が小さく、したがって高速濾過を促進することができる。 
 本発明の第3の構成によれば、濾過処理のための通常運転時の濾過槽の抵抗値を計測し、この抵抗値が所定値以上になったとき部分洗浄工程を自動的に開始するようにしたので、濾材層の上層において洗浄が必要な程度に目詰まりが生じたとき、自動的に部分洗浄工程が開始されるので、部分洗浄工程を予め決まった日程に従って行うよりも能率的に行うことができる。
 本発明の第4の構成によれば、全体洗浄工程を行う時期を部分洗浄工程後抵抗値が所定値となる時間が所定の時間以下となった時に自動的に行うので、濾過槽の抵抗値を計測するだけで自動的に全体洗浄工程を行うことができ、濾材層を常に理想的な状態に維持することができる。
 本発明の第5の構成によれば、上記第1の構成の効果を奏する水処理装置を提供することができる。
 本発明の第6の構成によれば、原水が高濃度のアンモニア性窒素を含有している場合、溶存酸素を追加供給する手段により濾材層中に溶存酸素を供給することにより、この溶存酸素によりアンモニア性窒素を酸化させ除去することができる。
 本発明の第7の構成によれば、上記第2の構成の効果を奏する水処理装置を提供することができる。
 本発明の第8の構成によれば、上記第3の構成の効果を奏する水処理装置を提供することができる。
 本発明の第9の構成によれば、スクリーン筒および内部多孔管からなる集配水管を濾過槽底部に埋設することにより、原水中のマンガン濃度が非常に高い場合でも、マンガンは集配水管のスクリーン筒の外周部に堆積するので、多孔管のみを取り外してスクリーン筒内側からスクリーンを直接洗浄することにより比較的に簡単な作業で濾過槽底部の清掃を完了することができる。
 本発明の第10の構成によれば、振動手段は動力源に接続された1または複数の振動素子と、濾材中に埋設されるようにして振動素子に取り付けられ、振動素子の振動を濾材に伝達する振動拡張手段を備えているので、動力源に接続される振動素子の数は少なくても、所望の振動を濾材層中の全濾材に伝達して濾材の各粒を振動させることができ、振動拡張手段を使用しないで動力源に接続された振動素子のみにより全濾材を振動させる場合に比べて電力等の動力を著しく節約することができ、水処理作業の省エネルギー化に貢献することができる。
 本発明の第11の構成によれば、振動拡張素子の複数の第1振動伝達板と複数の第2の振動伝達板は、それぞれ、上下方向に各振動伝達板の間に所定の間隙を設けてあるので、濾過工程中は被処理水はこの間隙を通って横方向に自由に流動することができ、偏流を生じることがなく、したがって、均一な濾過を達成することができる。
 本発明の12の構成によれば、隣り合う2つの振動拡張素子によって平面視ほぼ正方形の濾材面が形成されるように複数の振動拡張素子を配置することにより、隣り合う4個の振動拡張子によって正方形の濾材面を形成する場合に比べて正方形の面積を小さくすることができ、これによって、正方形の中の濾材中各振動伝達板からの距離が最も遠い位置の濾材の該振動伝達板からの距離を比較的に短くすることができる。
 本発明の第13の構成によれば、隣り合う2つの振動拡張素子によって平面視ほぼ長方形の濾材面が形成されるように複数の振動拡張素子を配置することにより、長方形の中の濾材中各振動伝達板からの距離が最も遠い位置の濾材の該振動伝達板からの距離を振動拡張素子の他の配置に比べて比較的に短くすることができる。
本発明に係る水処理装置の1実施形態を模式的に示す概略断面図である。 濾材振動手段の1実施形態を示す平面図である。 図1の実施形態において使用する振動拡張素子の1例を示す斜視図である。 同振動拡張素子の正面図である。 同振動拡張素子の拡大平面図である。 同振動拡張素子の配置状態の1例を示す平面図である。 同振動拡張素子の配置状態の他の例を示す平面図である。 同振動拡張素子の配置状態の他の例を示す平面図である。 同振動拡張素子の配置状態の他の例を示す平面図である。 本発明に係る水処理装置の他の実施形態を示す概略断面図である。 本発明に係る水処理装置の他の実施形態を示す概略断面図である。 集配水管の変更例を示す図で、(a)は側面図、(b)は平面図である。 本発明に係る水処理装置の他の実施形態を示す概略断面図である。 本発明に係る水処理装置の他の実施形態を示す概略断面図である。 部分洗浄工程を一定時間経過ごとに行う場合の時間と濾過槽の抵抗値(差圧)Δpの関係を示すグラフである。 集配水管の配置状態を示す支持砂利層の断面平面図である。 振動拡張素子の他の例を示す平面図である。
 以下添付図面を参照して本発明の実施の形態について説明する。 
 本発明は、上層と下層の2層構造からなる濾材層を有する水処理装置に限らず、1層構造の濾材層を有する水処理装置にも適用できるものであるが、以下の説明においては、好ましい実施形態として上層と下層の2層構造の濾材層を有する水処理装置に本発明を適用した場合を例にとって説明する。
 図1は本発明に係る水処理装置の1実施形態を模式的に示す概略図である。 
 図1において、水処理装置1は、主たる構成要素として、上層2および下層3からなる濾材層4を収容した濾過槽5、原水送水管6、原水混流ジェットノズル7、上層濾材振動手段8、排水トラフまたは排水口12、濾過水取出し管と逆洗水供給管を兼ねる集配水管13を備える。
 濾過槽5に濾過されるべき地下水を供給する鋼管等からなる原水送水管6は送水ポンプ(図示せず)に接続されており、この送水ポンプは、必要により受水槽(図示せず)を介して原水の水源から原水を供給され、所定の流速で原水送水管6に原水を供給する。
 原水送水管6は濾材層4の表面と平行な面上に延長するようにして濾過槽5の一端部の上方に配設されている。
 原水送水管6から垂直に分岐するようにして、1本ないし複数本(図示の実施形態においては2本)の原水混流ジェットノズル7が設けられている。各ジェットノズル7の上流側の端部7aは、内部が原水送水管6に連通するようにして原水送水管6に嵌め込まれており、下流側の端部には原水をジェット水流として噴出する原水噴出口7bが形成されている。原水混流ジェットノズル7の内径はたとえば3~30mm程度が好適である。
 原水混流ジェットノズル7には、それと同数(図示の実施形態においては2本)の空気導入管15が設けられている。各空気導入管15の上流側の端部は大気に開放されるようにして原水混流ジェットノズル7から斜め上方に突出しており、下流側の端部は原水噴出口7bよりも上流の原水混流ジェットノズル7内に開口している。空気導入管15の内径はたとえば1~10mm程度が好適である。空気導入管15の上端部は大気開放に限らず、純粋酸素が供給されるようにしてもよい。
 濾過槽5内において、濾材層5の上層2はその表面が原水混流ジェットノズル7の原水噴出口7bと所定の間隔をおいて原水混流ジェットノズル7の下方に配置されている。濾材層4の上層2に充填される濾材は下層3に充填され濾材よりも比重が小さく粒径が大きい材質のものであることが必要である。この条件を満たす上層の濾材としてはゼオライト等が好適であり、特にゼオライト(粒径約1.2mm)が好ましい。またこの条件を満たす下層の濾材として濾過砂(粒径約0.6mm)が好適である。濾過槽4はジェットノズルから供給されたジェット流として供給される原水中の酸化物フロックその他の異物を捕捉することにより原水を濾過する機能を果たすとともに鉄バクテリアその他の微生物が生息し原水中の鉄、マンガンを酸化して吸着する機能を果たすものである。オキシ水酸化鉄の自触媒作用により鉄は主として上層2の表面に皮膜化し(濾材層の表面から200mm程度の部分に最も多い)、マンガンは主として生物処理により下層3の濾過砂表面に皮膜化する(濾材層の表面から500~800mm程度の部分に最も多い)。
 濾材層4を支持砂利層17により支持する。支持砂利層17は上層から順に小粒径層、中粒径層、大粒径層の複数層からなるように構成することが好ましいがこれに限るものではない。
 濾過槽5の支持砂利層17の中心部には集配水管13が水平方向に配置されている。本実施形態においては、集配水管13は濾材層4により濾過された水を取り出すための濾過水取出し管と濾材層4に逆洗水を供給するための逆洗水供給管を兼用している。集配水管13には図16に示すように複数本の支管14が集配水管13に連通するようにして枝分かれして水平方向に延長するように取り付けられている。なお、濾過水取出し管と逆洗水供給管は上記の例に限らず、別個の濾過水取出し管と逆洗水供給管を設けるようにしてもよい。
 上層2の表面よりも上方の濾過槽5には、逆洗時にオーバーフローした水を排水するための排水トラフ12が設けられている。逆洗時にオーバーフローした水を排水するには排水トラフ12に限らず、他の形状の排水口を使用してもよい。 
 図1の実施形態において、濾材振動手段8は、交流電源等の動力源に接続された1または複数の振動素子9(図示の実施形態では1個)と、濾材中に埋設されるようにして振動素子9に取り付けられ、振動素子9の振動を上層2の濾材に伝達する振動拡張手段を備える。振動拡張手段は、枠体40とこの枠体に固定された複数の振動拡張素子10からなる。
 振動素子9としては、たとえばコンクリートバイプレーターとして公知の棒状の振動素子を使用することができる。この振動素子9はケーブル47を介してコントローラ48に接続され、コントローラ48は交流電源に接続されている。
 振動拡張手段の枠体40は、複数の鋼棒を交差するように配置して各交点を溶接してなるネット上の形状のもので、上層2の表面から5cm~10cm程度の間隔をおいて上層の表面と平行に配置されている。枠体の中央部には図2に示すように振動素子取付け板41が嵌め込まれて周囲の鋼棒に溶接されている。振動素子取付け板41の中央部に形成された取付け孔41aには振動素子9が取付け孔41aの内壁に密接するようにして嵌め込まれている。枠体40の各交点40aには複数の振動拡張素子10が取り付けられている。 各振動拡張素子10は、それぞれ、濾材層の上下方向に延長して上端部において枠体40に固定された鋼製の支持棒42と、濾材層の上下方向に所定の間隙を設けて相互に平行に配置されるようにして支持棒42に溶接固定された複数(図3の例では5枚)の横長の長方形をした鋼製の第1振動伝達板44と、第1振動伝達板44と直交するようにしてかつ相互に平行に配置されるようにして第1振動伝達板44の間隙において支持棒42に固定された複数(図3の例では5枚)の横長の長方形をした鋼製の第2振動伝達板46を備えている。
 図3~図5に示す振動拡張素子10において、第1振動伝達板44および第2振動伝達板46は、それぞれ、1つの振動拡張素子10全体としての重量バランスをとるために、上から順に1段目、3段目および5段目の振動伝達板は支持棒42の一方側に溶接され、2段目および4段目の振動伝達板は支持棒42の反対側に溶接されている。
 振動拡張素子10の構造は図3~図5に示すものに限らず、たとえば図17の平面図に示すように、第1振動伝達板44、第2振動伝達板46をそれぞれ2つの板部分に分割して支持棒42の両側に溶接するように形成してもよい。
 この濾材振動手段においては、動力源に接続された振動素子9をオンにして作動させると、振動素子9が振動し、この振動が枠体40を介して複数の振動拡張素子10の支持棒から第1振動伝達板および第2振動伝達板に伝わり、これらの振動伝達板の振動が上層2の濾材全体に伝播して濾材の各粒自体がそれぞれ振動する。
本発明の上記実施形態によれば、振動手段は動力源に接続された1または複数の振動素子9と、濾材中に埋設されるようにして振動素子9に取り付けられ、振動素子9の振動を濾材に伝達する振動拡張手段を備えているので、動力源に接続される振動素子9の数は少なくても、所望の振動を濾材層中の全濾材に伝達して濾材の各粒を振動させることができ、振動拡張手段を使用しないで動力源に接続された振動素子のみにより全濾材を振動させる場合に比べて電力等の動力を著しく節約することができ、水処理作業の省エネルギー化に貢献することができる。
したがって、本発明が適用される振動手段としては、上記構成に限らず、動力源に接続された棒状振動素子を複数本上下方向に延長するように濾材中に適宜間隔をおいて配置しても濾材を振動させる作用を得ることはできるが、上記実施形態の構成は省力化の点で有利であり、好ましい実施形態である。
 本発明の上記実施形態によれば、振動拡張素子10の複数の第1振動伝達板44と複数の第2振動伝達板46は、それぞれ、上下方向に各振動伝達板の間に所定の間隙を設けてあるので、濾過工程中は被処理水はこの間隙を通って横方向に自由に流動することができ、偏流を生じることがなく、したがって、均一な濾過を達成することができる。
 本発明の上記実施形態においては、図2の平面図およびその拡大図である図6の平面図に示すように、隣り合う2つの振動拡張素子10-1、10-2(図6)によって平面視ほぼ正方形の濾材面Sが形成されるように複数の振動拡張素子10が配置されている。この構成により、図7の例に示すように隣り合う4個の振動拡張子10-1、10-2、10-3、10-4によって正方形の濾材面Sを形成する場合に比べて正方形の面積を小さくすることができ、これによって、正方形Sの中の濾材中各振動伝達板44、46からの距離が最も遠い位置の濾材の該振動伝達板44、46からの距離を比較的に短くすることができる。
 振動拡張素子10の他の配置方法を図8の平面図に示す。この配置方法は、各振動拡張素子10を図8中1点鎖線によって示される位置(図7の位置と同じ)から支持棒42を回転軸として反時計方向に30度回転させた位置である。この構成によれば、隣り合う2つの振動拡張素子10-1、10-2によって平面視ほぼ長方形の濾材面Rが形成されることにより、長方形Rの中の濾材中各振動伝達板44、46からの距離が最も遠い位置の濾材の該振動伝達板からの距離を振動拡張素子の他の配置に比べて比較的に短くすることができる。
 図9は振動拡張素子の他の配置方法を示す平面図である。この配置方法は、各振動拡張素子10aを平面視で縦横それぞれ3個ずつ配置することにより正方形を形成し、この正方形の中央に、この正方形の2つの対角線の方向に延長する振動拡張素子10aより大きい寸法の振動拡張素子10bを配置するものである。この構成により振動拡張素子10bとその周囲の各振動拡張素子10aとの間には2等辺3角形の濾材面Tが形成される。この方法によっても、濾材面Tの濾材中各振動伝達板44、46からの距離が最も遠い位置の濾材の該振動伝達板44、46からの距離を比較的に短くすることができる。
 なお、振動素子、振動拡張手段の構成は上記のものに限られるものではなく、濾材層の大きさ、濾材の構成、種類、粒径等に応じて種々の改変が可能である。また、振動拡張手段として枠体と複数の振動拡張素子を使用する場合でも、枠体の形状、振動拡張素子の振動伝達板の枚数、形状、上下方向のピッチ、各振動拡張素子間のピッチ等は適宜変更が可能である。また、上記実施形態においては、振動拡張手段の枠体および振動拡張素子としては鋼製のものを使用し、各構成要素は溶接により固定しているが、これらの構成要素を硬質プラスチックで作成し、接着剤で固定するようにしてもよい。
 振動素子としては、10Hz以上の振動数を濾材に伝えることができる振動素子を使用することが好ましい。特に振動数が40Hz~500Hzの範囲内の振動素子は市販のものが容易に入手できるので好適である。ただし、超音波発生装置による振動は振動の到達距離が数mmと短いので、本発明の水処理装置における振動手段として使用するには不適である。
 次に図1の実施形態にかかる水処理装置の動作について説明する。 
 原水濾過時には、上層2の表面上の水の水深を所定の深さに維持しつつ送水ポンプから原水送水管6を介して原水混流ジェットノズル7に原水を供給し、ジェットノズル7における水の流速をたとえば1.5~3リットル/分とすることにより原水をジェット水流とする一方ジェットノズル7内に開口する空気導入管15から原水混流ジェットノズル7内に空気がたとえば流速0.5~1リットル/分で吸気され、これによってジェット水流が空気を巻き込み多数の小さい気泡とし、この多数の気泡を含む混流ジェット水流がジェットノズル7の原水噴出口7bから上層2の上の水中に放出されることにより、水中の溶存酸素は飽和状態に近くなっている。水中の鉄は溶存酸素と反応して濾材表面で水酸化鉄として捕捉される。こうして水中の鉄等の溶解性成分が酸化されて不溶性成分となり、鉄成分は主として上層2を形成するゼオライトの粒子の表面で捕捉され、マンガン成分は主として下層3を形成する濾過砂の粒子の表面で高濃度の溶存酸素により活性化されたバクテリアによりにより生物処理で捕捉される。これらの不溶性成分およびその他の異物が濾材層4により濾過された濾過水は濾過水取出し管として機能する集配水管13から外部に取出される。
 上記の濾過作用を継続すると、時間が経つにつれて上層2の表面に酸化物のフロックその他の異物が蓄積し、上層2の表面部はフロックその他の異物で覆われ目詰まりを起こして閉塞するために濾材層4はその濾過機能が減少する。上層表面部の目詰まりが生じると上層表面上の水位が徐々に高まるので、水位がある一定のレベルに達したら次の部分洗浄工程と全体洗浄工程のいずれかを選択して実施することにより濾材層4の洗浄を行う。
 部分洗浄工程
(1)原水の供給を一時止める濾過処理中断工程を行う。
(2)逆洗時に逆洗水供給管として機能する集配水管13から逆洗水を上層洗浄速度(たとえば5~30m/h)で流入させながら振動素子9をオンして作動させ、その振動を振動拡張素子10により上層2の濾材全体に伝播することによって上層2の濾材を振動させ濾材を擦り合わせることにより濾材表面を閉塞している水酸化鉄を濾材から剥離させ、逆洗水による上向流により洗い流す上層洗浄工程を行う。逆洗水を比較的低速の上層洗浄速度で供給することにより振動手段による濾材振動によって剥離されたスラッジを排水トラフへ排出する。
(3)集配水管13から逆洗水を上層洗浄速度で流入させ下層3および上層2の濾材を上向流で洗浄することにより主として上層において捕捉された鉄成分を含む水を排水トラフ12から排水する濁水排水工程を行う。
 全体洗浄工程
(1)原水の供給を止め、上層の濾材の表面近傍まであるいは上層中の所定の高さまで水位が下がるまで濾過処理を行う濾過処理中断工程を行う。
(2)集配水管13から逆洗水を上層洗浄速度よりも大きくかつ濾材の沈降速度より速い全体洗浄速度(たとえば30~60m/h)で流入させ下層3および上層2の濾材を急速上向流で洗浄する洗浄工程を行う。
(3)上層および下層の濾材の洗浄を終了した後濾材の沈降速度以下で速度で上向流の供給を行いながら上層および下層の濾材を沈降させる静置工程。
(4)上層洗浄速度で上向流の供給を継続して上層および下層の濾材から分離した濁質成分を含む濁水を排水トラフ12から排出する濁水排水工程。
 上記部分洗浄工程と全体洗浄工程のいずれを選択するかは、原水中の鉄とマンガンの濃度比および濾過処理速度等に応じて部分洗浄工程と全体洗浄工程のそれぞれの頻度を決定し、その頻度に応じていずれかの工程を選択し、以後この頻度で部分洗浄および全体洗浄を行えばよい。
 図10は本発明の水処理装置の他の実施形態を模式的に示す概略図である。図10において、図1の実施形態と同一構成要素は同一符号で示し、その説明を省略する。
 図10の装置においては、集配水管13には濾過水を吸引して取り出すためのポンプ18が接続されており、また濾過槽5の上部には上層2の上の水位を計測する水位計19が設けられている。
 このポンプ18の制御は次にように行う。ポンプ18による単位時間あたり処理水量を原水供給量よりもやや多く設定しておく。濾過作用を継続すると上層2上の水位は徐々に低下するので、この水位を水位計19で計測し、水位が所定の水位まで下がったらポンプ18を一時停止して水位が一定のレベルまで回復するのを待つ。水位がこのレベルまで回復したらポンプ18を再稼動し、以後上記動作を繰り返す。
 ポンプ18の制御は、上記と逆にポンプ18による単位時間あたり処理水量を原水供給量よりもやや少なく設定しておいて、水位が所定の水位まで上がったら原水供給を一時停止して水位が一定のレベルまで上がるのを待ち、水位がこのレベルまで上がったら原水供給を再稼動し、以後上記動作を繰り返すようにしてもよい。
 また、本発明の他の実施形態においては、濾過処理のための通常運転時の濾過槽5の抵抗値を計測し、この抵抗値が所定値以上になったとき部分洗浄工程を自動的に開始するように構成する。抵抗値を計測するには差圧計により濾過槽の差圧を計測してもよいし、水位系により計測した水位が所定値まで上がったらこの水位を所定の抵抗値とみなしてもよい。これによって、濾材層の上層において洗浄が必要な程度に目詰まりが生じたとき、自動的に部分洗浄工程が開始されるので、部分洗浄工程を予め決まった日程に従って行うよりも能率的に行うことができる。
 他の方法として、濾過槽の抵抗値が所定値に達したら部分洗浄を行うこととし(自動的でもよいし、所定値を随時計測してもよい)、部分洗浄後に抵抗値が所定値に達するまでの時間が所定時間以下になったら自動的に全体洗浄工程を行うようにしてもよい。
 図15は一定時間Tが経過するごとに部分洗浄工程を行う場合の時間と濾過槽の抵抗値(差圧)Δpの関係を示すグラフであり、横軸は時間、縦軸は抵抗値を示す。図15において、部分洗浄工程ごとに抵抗値Δpが所定値bに達する時間を図ると、この時間は次のように変化する。すなわち、運転開始時の初期抵抗値をaとし、最初の部分洗浄時P1における抵抗値を所定値bとし、この抵抗値に達するまでの時間をt1とすると、最初の部分洗浄P1により抵抗値はcまで低下するが、この抵抗値は初期抵抗値aまでは低下しないので、次に濾過処理のための運転を行うと、抵抗値が所定値bに達する時間t2はt1よりも短い。2回目の部分洗浄P2により抵抗値はeまで下がるがこの値はcよりも高い。したがって次に濾過処理のための運転を行うと、抵抗値が所定値bに達する時間t3は時間t2よりも短い。
 そこで、部分洗浄工程を抵抗値が所定値に達するごとに行うこととし、その場合に濾過処理のための通常運転時に濾過槽の抵抗値Δpが部分洗浄工程ごとに所定値bに達する時間t1、t2、t3を予め計測しておき、2回目の部分洗浄P2の後最後の部分洗浄工程P3の前に抵抗値が所定値bに達する時間t3が所定の時間Ta以下である時、自動的に全体洗浄工程を開始することとすれば、所定値bを計測するだけで、簡単な方法で全体洗浄を効率的に行うことができ、濾材層を常に理想的な状態に維持することができる。
 図11は本発明の方法を実施するための水処理装置の他の実施形態を示す該略図である。この実施形態は、原水中のマンガンの濃度が非常に高く、図1または図10に示す装置では充分にマンガンを除去することができない場合でも有効にマンガンを除去することができる洗浄方法である。図11の装置において、図1の装置と同一構成要素は図1と同一符号で示し、説明を省略する。
 この水処理装置60は、図1の装置の集配水管13の下流側に下層3の濾材と同一材料からなる後段濾材層33を収容する後段濾過槽35を備え、後段濾過槽35は、濾過水取出し管として機能する集配水管13に連通し後段該濾材層33の上方に開口するする濾過水流出口27と、後段濾材層33によって濾過された水を取り出すための濾過水取出し管および後段濾材層33に逆洗水を供給するための逆洗水供給管として機能する集配水管43、後段濾材層33の上方において後段濾過槽35に設けられた排水トラフまたは排水口12とをさらに備える。濾過水流出口27の構造および作用は原水混流ジェットノズル7と同一であるので、その説明を省略する。集配水管13および43は逆洗水送水管47に接続しており、逆洗水送水管47には開閉弁48、55が介設されている。また、集配水管43には濾過水送水管49が接続しており、この濾過水送水管49には開閉弁50が介設されている。また、集配水管13と濾過水流出口27は濾過水送水管54によって相互に接続されており、濾過水送水管54には濾過水を後段濾材層33に供給するためのポンプ52および開閉弁53が介設されている。
 なお、図1および図11の実施形態においては、支持砂利層17が設けられているが、支持砂利層を使用せず、集配水管を濾材層の下層および後段濾材層の底部に埋設するように変更することも可能である。
 支持砂利層を使用しない場合の集配水管13の好適な1例を図12(a)の断面側面図および図12(b)の平面図に示す。なお図示の例は集配水管13を示すものであるが、集配水管43も同一構成のものである。集配水管13は濾過槽5内に水平方向に複数本並行に配置されており、各集配水管は外筒であるスクリーン筒70の内側中央に内部多孔管72が配置されており、各内部多孔管72は長手方向に複数の集配水孔74が両側に形成されている。スクリーン筒70はらせん状ワイヤを周方向に所定間隔で配置された支持ロッドに巻き付けて形成した公知の構造のものを使用することができる。なお図12(a)においてはスクリーン筒70は一部を取り除いて示してある。
 各内部多孔管72はフランジ部78によりスクリーン筒70に接続されるとともにフランジ部80により集配水本管76に接続されている。
 図1の装置1においては、原水中のマンガンの濃度が非常に高い場合は、支持砂利層17にもマンガンが堆積して被膜を作り支持砂利層および集配水管に目詰まりが生じる場合があり、この場合は支持砂利層17の砂利や集配水管は全体洗浄工程によっても洗浄できないので、支持砂利層17全体および集配水管を取り出して洗浄する必要があり、非常に手間がかかる作業が必要になるが、支持砂利層を使用せず、スクリーン筒70および内部多孔官72からなる集配水管13、43を炉材槽4の下層3および後段濾材層33に埋設する場合は、原水中のマンガン濃度が非常に高い場合でも、マンガンは集配水管のスクリーン筒の外周部に堆積するので、この場合は、スクリーン筒内の内部多孔管72のみを取り外しスクリーン内部からスクリーンを洗浄することにより比較的に簡単な作業ですみ、有利である。 
 なお、この集配水管は装置60だけでなく、図1の装置1に使用することもできる。この場合図1の装置1において支持砂利層17は使用しないで、集配水管を下層3の底部に埋設すればよい。
 また、支持砂利層の洗浄のため、動力源に接続された棒状振動素子を支持砂利層にまで差し込んで逆洗水を流しながら支持砂利層を洗浄すれば、支持砂利層を取り出さなくても簡単に洗浄することができる。
 次にこの装置60の動作について説明する。  
 濾過時には、上層2によって鉄が除去され、下層3によってマンガンの相当部分が除去された濾過水は集配水管13から濾過水送水管54を介して後段濾材層33に供給され、残余のマンガンが後段濾材層33によって除去される。この時逆洗水送水管47の弁48、55は閉じており、濾過水送水管54、49の弁53、50は開いている。 
 部分洗浄工程および全体洗浄工程は以下のように行われる。 
 部分洗浄工程
(1)原水の供給を止める濾過処理中断工程を行う。この時逆洗水送水管47の弁48、55は閉じており、濾過水送水管54、49の弁53、50は開いている。 
(2)逆洗水送水管47の弁55は閉じたまま弁48を開き、濾過水送水管54、49の弁53、50は閉じた状態で、集配水管13から逆洗水を上層洗浄速度(たとえば5~30m/h)で流入させながら振動拡張素子10を作動させて上層2の濾材を擦り合わせ洗浄する上層洗浄工程を行う。上層洗浄工程は水位が排水トラフ12に達する前に終了する。 
(3)上層濾材の攪拌洗浄を終了した後上層2の攪拌された濾材を沈降させる静置工程を行う。 
(4)集配水管13から逆洗水を上層洗浄速度で流入させ下層3および上層2の濾材を上向流で洗浄することにより主として上層において捕捉された鉄成分を含む水を排水トラフ12から排水する濁水排水工程を行う。
 全体洗浄工程
(1)原水の供給を止める濾過処理中断工程を行う。 
(2)濾過水送水管54の弁53および濾過水送水管49の弁50を閉じ逆洗水送水管47の弁48および55を開いた状態で、集配水管13および43から逆洗水を上層洗浄速度よりも大きくかつ濾材の沈降速度よりも速い全体洗浄速度(たとえば30~60m/h)で流入させ下層3、上層2の濾材および後段濾材層33の濾材を急速上向流でそれぞれ攪拌しながら、上層2および後段濾材層33の振動拡張素子10を作動させて上層、下層および後段濾材層の濾材を洗浄する洗浄工程を行う。 
(3)上層、下層および後段濾材層の濾材の洗浄を終了した後濾材の沈降速度以下の速度で上向流の供給を行いながら上層、下層および後段濾材層の濾材を沈降させる静置工程を行う。 
(4)上層洗浄速度で上向流の供給を継続して上層、下層および後段濾材層の濾材から分離した濁質成分を含む濁水を排水トラフ12から排出する濁水排水工程を行う。
 上記部分洗浄工程と全体洗浄工程のいずれを選択するかは、原水中の鉄とマンガンの濃度比および濾過処理速度等に応じて部分洗浄工程と全体洗浄工程のそれぞれの頻度を決定し、その頻度に応じていずれかの工程を選択し、以後この頻度で部分洗浄および全体洗浄を行えばよい。
 図13および図14は本発明の他の実施の態様を模式的に示す概略図である。 
 原水中に高濃度のアンモニア性窒素が含有されている場合、アンモニア性窒素を捕捉除去するためには鉄やマンガンに比べ10倍以上の大量の溶存酸素を必要とする。したがって、濾過処理中に原水混流ジェットノズルからの混流ジェット水流によるエアレーションのみでは濾材層においてアンモニア性窒素を充分に捕捉除去することが困難な場合が生じることがわかった。
 そこで、このような事態に対処するため、原水が高濃度のアンモニア性窒素を含有する場合には、濾材層中に溶存酸素を追加的に供給して、混流ジェット水流によるエアレーションを補うことが好ましい。
 濾材層中に溶存酸素を追加供給するには、種々の方法があるが、好ましい方法の一つとして、直径が数百μm以下の微細気泡を濾材層中に注入することが有効である。
 図13はその1例を示すもので、溶存酸素供給装置90は、処理水の一部を吸入する処理水吸入管92と、この吸入管92から処理水の一部を吸入し、処理水と微細気泡が混合した気液混合流体を気液注入管91から濾材層中に注入する微細気泡発生装置93を備えている。この微細気泡発生装置93としては、公知の装置を使用することができる。また処理水吸入管92と気液注入管91としては集配水管13と同様の構造のものを使用することができる。気泡の直径が大きいと気泡は濾材層の濾材中に滞留し空気溜りを生じやすく、この空気溜りは濾材の水処理面積を減少させるので濾過効率を妨げることになるが、本実施形態で使用する微細気泡は浮力が小さく浮上速度が遅いので、処理水流の流速を早くすることにより流されて、濾材層に溶存酸素を供給しながら濾材層の下層に達し、集配水管13から排出され、空気溜りを生じるおそれがない。したがって、高速処理を目標とする本願発明においては、溶存酸素の追加供給方法として、微細気泡の注入は好ましい方法である。微細気泡の注入量は、アンモニア性窒素の濃度等原水の状態に依存する溶存酸素の追加必要量に応じて最適値を決定すればよい。
 図14は同一目的を達成するための他の例を示すもので、溶存酸素供給装置95は、集配水管13から分岐するように接続され処理水の一部を吸入する処理水吸入管96と、この吸入管96から処理水の一部を吸入し、処理水と微細気泡が混合した気液混合流体を気液注入管97から濾材層中に注入する微細気泡発生装置98を備えている。処理水吸入管96と気液注入管97の構造及は図13の装置と同様である。
 以下本発明の実施例について説明する。 
 図1の水処理装置を用いて地下水を原水とする水処理を行った。
 水処理装置の濾過槽は内径1200mmの平面視円形のものを使用した。上層に埋設した各振動拡張素子10の相互間のピッチ(4つの振動拡張素子10によって形成される正方形の1辺の長さ)は150mmであった。振動拡張素子10の配置方法は図6に示す方法を使用した。振動拡張素子10の支持棒の長さは640mmであった。
 振動素子9としては、市販のコンクリートバイブレーター1本を使用し、この振動素子9を枠体40の中央に配置した。この振動素子は動力源として商用交番電流を使用し、インバータにより電流の周波数を400Hzに変換するもので、振動素子の振動数は200Hz(12000VPM)であった。
 この水処理装置を使用して、濾過、部分洗浄、全体洗浄を行うことにより濾過速度500m/日で下表1の濾過処理結果を得た。
Figure JPOXMLDOC01-appb-T000001
この結果、本発明による水処理装置を使用して部分洗浄、全体洗浄を実施することにより、濾過速度500m/日で充分な濾過処理を達成することができることが判った。
1、60  水処理装置
2     上層
3     下層
4     濾材層
5     濾過槽
6     原水送水管
7     原水混流ジェットノズル
8     振動手段
9     振動素子
10    振動拡張素子
12    排水トラフまたは排水口
13    集配水管
33    後段濾材層

Claims (13)

  1.  原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を備える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置され濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該濾材層に埋設される部分を有し該濾材層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備える水処理装置の該濾材層を洗浄する方法であって、該逆洗水供給管から逆洗水を流入させながら該濾材層の濾材を振動させるようにして該濾材層を洗浄することを特徴とする水処理装置濾材層の洗浄方法。
  2.  原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を備える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置された上層と下層の2層からなり、該上層は該下層の濾材よりも比重が小さく粒径が大きい濾材からなる濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該上層に埋設される部分を有し該上層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備える水処理装置の該濾材層を洗浄する方法であって、該濾材層の洗浄を、主として該上層の洗浄を行う部分洗浄と該上層および該下層の双方を洗浄する全体洗浄のいずれかを選択して行い、該部分洗浄工程は、
    (イ)原水の供給を一時停止する濾過処理中断工程
    (ロ)該逆洗水供給管から逆洗水を上向流として上層洗浄速度で流入させながら該上層の濾材を振動させることにより濾材を擦り合わせ、濾材表面を閉塞している水酸化鉄を濾材から剥離させて上向流により洗い流す上層洗浄工程
    (ハ)該上層洗浄速度で上向流の供給を継続して該上層の濾材から分離した濁質成分を含む濁水を該排水トラフまたは排水口から排出する濁水排水工程
    を備え、該全体洗浄工程は、
    (イ)原水の供給を停止する濾過処理中断工程
    (ロ)該逆洗水供給管から逆洗水を該上層洗浄速度よりも大きくかつ濾材の沈降速度よりも速い全体洗浄速度で流入させながら該濾材振動手段を作動させ、該上層および該下層の濾材を洗浄する洗浄工程
    (ハ)該上層および下層の濾材の洗浄を終了した後濾材の沈降速度以下の速度で上向流の供給を継続しながら該上層および下層の濾材を沈降させる静置工程
    (ニ)該上層洗浄速度で上向流の供給を継続して該上層および下層の濾材から分離した濁質成分を含む濁水を該排水トラフまたは排水口から排出する濁水排水工程
    を備えることを特徴とする水処理装置濾材層の洗浄方法。
  3.  濾過処理のための通常運転時の濾過槽の抵抗値を計測し、この抵抗値が所定値以上になったとき該部分洗浄工程を自動的に開始することを特徴とする請求項1または2に記載の水処理装置濾材層の洗浄方法。
  4.  濾過処理のための通常運転時の濾過槽の抵抗値を計測し、この抵抗値が所定値以上になったとき該部分洗浄工程を行い、該部分洗浄工程後に濾過槽の抵抗値が所定値に達するまでの時間が所定の時間以下となった時に該全体洗浄工程を自動的に開始することを特徴とする請求項2に記載の水処理装置濾材層の洗浄方法。
  5.  原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を供える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置された濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該濾材層に埋設される部分を有し該濾材層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備えことを特徴とする水処理装置。
  6.  該濾材層中に溶存酸素を追加供給する手段をさらに備えることを特徴とする請求項5に記載の水処理装置。
  7.  原水送水管と、該原水送水管に一端部が連通し、他端部には原水を原水と空気の混流ジェット水流として噴出する原水噴出口を供える1本または複数本の原水混流ジェットノズルと、表面が該原水混流ジェットノズルの原水噴出口と所定の間隔を置いて該原水混流ジェットノズルの下方に配置された上層と下層の2層からなり、該上層は該下層の濾材よりも比重が小さく粒径が大きい濾材からなる濾材層を収容する濾過槽と、該濾材層によって濾過された水を取り出すために該濾過槽に設けられた濾過水取出し管と、該濾材層に逆洗水を供給するために該濾過槽に設けられた逆洗水供給管と、該上層に埋設される部分を有し該上層の濾材を振動させる濾材振動手段と、該濾材層の上方において濾過槽に設けられた排水トラフまたは排水口とを備えることを特徴とする水処理装置。
  8.  該水処理装置は、濾過水取出し方向に見て該濾過水取出し管の下流側に該下層の濾材と同一材料からなる後段濾材層を収容する後段濾過槽を備え、該後段濾過槽は、該濾過水取出し管に連通し該後段該濾材層の上方に開口するする濾過水流出口と、該後段濾材層によって濾過された水を取り出すための濾過水取出し管と該後段濾材層に逆洗水を供給するための逆洗水供給管と、該後段濾材層の上方において該後段濾過槽に設けられた排水トラフまたは排水口とをさらに備えることを特徴とする請求項7に記載の水処理装置。
  9.  該濾過水取出し管および該逆洗水供給管は、該濾過槽の底部に水平方向に複数本並行に配置された集配水管からなり、各集配水管は外筒であるスクリーン筒とその内側中央に配置された内部多孔管からなり、該内部多孔管は長手方向に複数の集配水孔が両側に形成されていることを特徴とする請求項5~8のいずれかに記載の水処理装置。
  10.  該濾材振動手段は、動力源に接続された1または複数の振動素子と、濾材中に埋設されるようにして該振動素子に取り付けられ、該振動素子の振動を濾材層の濾材に伝達する振動拡張手段を備えることを特徴とする請求項5~8のいずれかに記載の水処理装置。
  11.  該振動拡張手段は、該振動子に取り付けられる枠体と、該枠体に固定された複数の振動拡張素子を備え、該振動拡張素子は、それぞれ、濾材層の上下方向に延長して上端部において該枠体に固定された支持棒と、該濾材層の上下方向に所定の間隙を設けて相互に平行に配置されるようにして該支持棒に固定された複数の第1振動伝達板と、該第1振動伝達板と直交するようにしてかつ相互に平行に配置されるようにして該第1振動伝達板の該間隙において該支持棒に固定された複数の第2振動伝達板を備えることを特徴とする請求項10記載の水処理装置。
  12.  隣り合う2つの該振動拡張素子によって平面視ほぼ正方形の濾材面が形成されるように該複数の振動拡張素子を配置したことを特徴とする請求項11記載の水処理装置。
  13.  隣り合う2つの該振動拡張素子によって平面視ほぼ長方形の濾材面が形成されるように該複数の振動拡張素子を配置したことを特徴とする請求項11記載の水処理装置。
PCT/JP2010/060108 2009-06-30 2010-06-15 水処理装置および水処理装置濾材層の洗浄方法 WO2011001819A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10793989.4A EP2450094A4 (en) 2009-06-30 2010-06-15 WATER PROCESSING DEVICE AND METHOD FOR CLEANING A FILTERING MATERIAL LAYER OF THE WATER PROCESSING DEVICE
US13/380,651 US9017559B2 (en) 2009-06-30 2010-06-15 Water treatment apparatus and a method for cleaning a filter layer of a water treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-155435 2009-06-30
JP2009155435A JP5448050B2 (ja) 2009-06-30 2009-06-30 水処理装置および水処理装置濾材層の洗浄方法

Publications (1)

Publication Number Publication Date
WO2011001819A1 true WO2011001819A1 (ja) 2011-01-06

Family

ID=43387876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060108 WO2011001819A1 (ja) 2009-06-30 2010-06-15 水処理装置および水処理装置濾材層の洗浄方法

Country Status (5)

Country Link
US (1) US9017559B2 (ja)
EP (1) EP2450094A4 (ja)
JP (1) JP5448050B2 (ja)
CN (1) CN101934162B (ja)
WO (1) WO2011001819A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698502A (zh) * 2012-02-01 2012-10-03 徐宏康 一种反冲洗过滤介质的高效节能方法
WO2013030545A1 (en) * 2011-08-31 2013-03-07 Gadwall Marine Limited Auger and method for remediating biological filter beds
WO2013084854A1 (ja) * 2011-12-05 2013-06-13 栗田工業株式会社 充填塔の逆洗方法
CN115340174A (zh) * 2022-08-03 2022-11-15 北京城市排水集团有限责任公司 一种生物滤池滤料防流失装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012225147B2 (en) 2011-03-08 2017-04-06 Envirosmart Pty Ltd As Trustee For The Mbd Trust A separator
JP5845535B2 (ja) * 2011-07-25 2016-01-20 株式会社ナガオカ 水処理装置の上層洗浄装置および水処理装置濾材層の洗浄方法
JP5453363B2 (ja) * 2011-09-14 2014-03-26 カルファケミカル株式会社 固液分離装置
JP5866659B2 (ja) * 2011-12-12 2016-02-17 株式会社ナガオカ 浸透取水設備
JP2013244428A (ja) * 2012-05-24 2013-12-09 Kazunori Koishi 振動装置を備えたろ過装置
CN102743909A (zh) * 2012-06-11 2012-10-24 徐州五洋科技股份有限公司 一种矿用精过滤器
JP2014009567A (ja) * 2012-07-03 2014-01-20 Nagaoka International Corp 集水埋渠用目詰まり除去装置
JP2014046245A (ja) * 2012-08-30 2014-03-17 Nagaoka International Corp 原水中のヒ素を除去する方法
JP6556419B2 (ja) * 2013-09-25 2019-08-07 三菱重工エンジニアリング株式会社 浄化装置及び浄化装置の逆洗方法
CN103721453B (zh) * 2014-01-23 2015-07-15 胡国荣 一种随机连续移动更换滤料的过滤器
CN103961919A (zh) * 2014-03-03 2014-08-06 梁彪 污泥水过滤装置
CN103977618A (zh) * 2014-05-28 2014-08-13 北京沃尔德斯水务科技有限公司 一种过滤器
CN105289059A (zh) * 2014-06-16 2016-02-03 豫水环保科技(上海)有限公司 快速清洗过滤器
CN104474749B (zh) * 2014-12-30 2016-10-05 马鞍山基业环保科技有限公司 多级分舱高效介质过滤器
CN104667599A (zh) * 2015-02-10 2015-06-03 张晓荣 一种过滤装置
KR101556883B1 (ko) * 2015-03-25 2015-10-02 케이원에코텍 주식회사 초음파 미세진동 여과장치
KR101629256B1 (ko) * 2015-07-17 2016-06-21 협진엘엔씨 주식회사 역세효율 증강형 여과장치 및 이의 제어방법
JP6385909B2 (ja) * 2015-10-16 2018-09-05 株式会社ナガオカ 原水の処理方法
KR101766898B1 (ko) * 2016-03-30 2017-08-09 이창수 역세기능을 구비한 수처리 시스템 및 이의 제어방법
CN106178640A (zh) * 2016-07-23 2016-12-07 安徽乙地生态科技有限公司 一种具有自净功能的污水过滤装置
JP2018008275A (ja) * 2017-10-20 2018-01-18 三菱重工業株式会社 生物膜濾過装置及び生物膜濾過装置の逆洗方法
KR101942380B1 (ko) * 2018-11-01 2019-01-25 문상욱 수처리용 활성탄 여과장치
CN112587970B (zh) * 2020-12-30 2022-12-06 新兴铸管股份有限公司 污水过滤器及污水站过滤系统
WO2023154239A1 (en) * 2022-02-10 2023-08-17 Innovasea Sub-surface multi-stage oxygenation system supporting net pen aquaculture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821258B1 (ja) * 1970-12-28 1973-06-27
JPH0965998A (ja) * 1995-08-31 1997-03-11 Matsushita Electric Works Ltd 浄水器
JP2001179013A (ja) * 1999-12-27 2001-07-03 Mitsubishi Electric Corp 濾過式水処理装置及び濾過担体洗浄方法
JP2002126768A (ja) 2000-10-24 2002-05-08 Tadayoshi Nagaoka 水処理装置
JP2004066217A (ja) * 2002-06-14 2004-03-04 Tadayoshi Nagaoka 水処理装置および水処理方法
EP2135657A1 (en) * 2008-06-19 2009-12-23 Nagaoka International Corporation Water treatment apparatus and a method for cleaning a filter layer of a water treatment apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2296824A (en) * 1938-03-18 1942-09-29 Ashworth James Liquid purifying apparatus
US2769547A (en) * 1951-06-25 1956-11-06 Hirsch Abraham Adler Articulated surface washing device with oscillatory nozzles for filter beds
FR1052727A (fr) * 1952-03-22 1954-01-26 Trailigaz Procédé de lavage des filtres d'épuration d'eau
US4013556A (en) * 1976-08-19 1977-03-22 Uop Inc. Combination flow distribution and collection apparatus
FR2373319A1 (fr) 1976-12-09 1978-07-07 Flipo Leon Procede et dispositif de filtration
US4547286A (en) * 1980-07-22 1985-10-15 Neptune Microfloc, Inc. Water filtration process and apparatus having upflow filter with buoyant filter media and downflow filter with nonbuoyant filter media
US4793934A (en) * 1987-04-22 1988-12-27 Signal Environmental Systems, Inc. Method for enhancing the separation capacity of a multi-bed filtration system
JPH02207897A (ja) * 1989-02-06 1990-08-17 Ataka Kogyo Kk 微量汚染水の処理方法および装置
US6942807B1 (en) * 1999-08-06 2005-09-13 Trustees Of Stevens Institute Of Technology Iron powder and sand filtration process for treatment of water contaminated with heavy metals and organic compounds
CA2322304C (en) * 2000-10-04 2009-01-27 Surface To Surface Inc. Apparatus and method for recycling drilling slurry
CA2610620A1 (en) * 2007-11-15 2009-05-15 Udo Staschik Method and apparatus for water restoration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821258B1 (ja) * 1970-12-28 1973-06-27
JPH0965998A (ja) * 1995-08-31 1997-03-11 Matsushita Electric Works Ltd 浄水器
JP2001179013A (ja) * 1999-12-27 2001-07-03 Mitsubishi Electric Corp 濾過式水処理装置及び濾過担体洗浄方法
JP2002126768A (ja) 2000-10-24 2002-05-08 Tadayoshi Nagaoka 水処理装置
JP2004066217A (ja) * 2002-06-14 2004-03-04 Tadayoshi Nagaoka 水処理装置および水処理方法
EP2135657A1 (en) * 2008-06-19 2009-12-23 Nagaoka International Corporation Water treatment apparatus and a method for cleaning a filter layer of a water treatment apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450094A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030545A1 (en) * 2011-08-31 2013-03-07 Gadwall Marine Limited Auger and method for remediating biological filter beds
WO2013084854A1 (ja) * 2011-12-05 2013-06-13 栗田工業株式会社 充填塔の逆洗方法
JPWO2013084854A1 (ja) * 2011-12-05 2015-04-27 栗田工業株式会社 充填塔の逆洗方法
CN102698502A (zh) * 2012-02-01 2012-10-03 徐宏康 一种反冲洗过滤介质的高效节能方法
CN115340174A (zh) * 2022-08-03 2022-11-15 北京城市排水集团有限责任公司 一种生物滤池滤料防流失装置
CN115340174B (zh) * 2022-08-03 2024-04-12 北京城市排水集团有限责任公司 一种生物滤池滤料防流失装置

Also Published As

Publication number Publication date
US20120103917A1 (en) 2012-05-03
JP2011011116A (ja) 2011-01-20
EP2450094A1 (en) 2012-05-09
US9017559B2 (en) 2015-04-28
EP2450094A4 (en) 2013-12-11
CN101934162B (zh) 2015-03-11
CN101934162A (zh) 2011-01-05
JP5448050B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5448050B2 (ja) 水処理装置および水処理装置濾材層の洗浄方法
JP5201481B2 (ja) 水処理装置および水処理装置濾材層の洗浄方法
JP5845535B2 (ja) 水処理装置の上層洗浄装置および水処理装置濾材層の洗浄方法
JP4076049B2 (ja) 水処理装置
MX2015003479A (es) Procedimiento de tratamiento de agua que comprende flotacion combinada con filtracion por gravedad, y equipo correspondiente.
JP4267452B2 (ja) ダイナミック濾過体モジュール
JP4303012B2 (ja) 水処理装置および水処理方法
JP2007144307A (ja) 水処理方法及びその処理装置
KR101594197B1 (ko) 세정기능을 갖는 일체형 여과장치
CN201501818U (zh) 催化氧化高效过滤器
JP4672993B2 (ja) メディア及び膜ろ過複合ろ過装置
JP5072050B2 (ja) メディア及び膜ろ過複合ろ過設備及びその運転方法
CN205549789U (zh) 用于高浓度悬浮物污水过滤处理的转盘滤池
JP2004275871A (ja) 水処理装置および水処理方法
RU2423166C2 (ru) Устройство для обработки воды и способ очистки фильтрующего слоя устройства для обработки воды
CN108238650A (zh) 采用升流式流动床连续过滤装置及过滤方法
JP3794589B1 (ja) 汚水処理装置
JP2004136268A (ja) 水中のマンガンを除去する装置
CN118005217A (zh) 一种低浓度废水处理装置及方法
CN117504382A (zh) 一种滤池以及滤池的工作方法
JP3606449B2 (ja) ろ過体の洗浄方法及び装置
JP2010012366A (ja) 微細気泡発生装置および微細気泡発生方法
JP2006051503A (ja) ダイナミック濾過体モジュール
JPH07265611A (ja) 河川・湖沼浄化施設

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010793989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13380651

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 9942/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE