WO2011001694A1 - 補聴器の調整装置、方法およびプログラム - Google Patents

補聴器の調整装置、方法およびプログラム Download PDF

Info

Publication number
WO2011001694A1
WO2011001694A1 PCT/JP2010/004359 JP2010004359W WO2011001694A1 WO 2011001694 A1 WO2011001694 A1 WO 2011001694A1 JP 2010004359 W JP2010004359 W JP 2010004359W WO 2011001694 A1 WO2011001694 A1 WO 2011001694A1
Authority
WO
WIPO (PCT)
Prior art keywords
phoneme
syllable
hearing
unit
hear
Prior art date
Application number
PCT/JP2010/004359
Other languages
English (en)
French (fr)
Inventor
森川幸治
足立信夫
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800037241A priority Critical patent/CN102265335B/zh
Priority to JP2010543732A priority patent/JP4769336B2/ja
Publication of WO2011001694A1 publication Critical patent/WO2011001694A1/ja
Priority to US13/085,806 priority patent/US9149202B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/38Acoustic or auditory stimuli
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L2021/065Aids for the handicapped in understanding

Definitions

  • the present invention relates to a technique for adjusting a hearing aid. More specifically, the present invention relates to a technique for identifying a phoneme that a user feels difficult to hear when using a hearing aid using a user's brain wave and adjusting the correction processing of the hearing aid so that the user can hear it better.
  • Hearing aid is a device that compensates the user's decreased hearing due to sound amplification.
  • the amount of sound amplification that each user seeks from the hearing aid varies depending on the degree of hearing loss of the user and the frequency band. Therefore, before starting to use the hearing aid, first, fitting that adjusts the amount of sound amplification for each frequency according to the hearing ability of each user is essential.
  • the fitting is generally performed based on an audiogram for each user.
  • An “audiogram” is a result of an evaluation of hearing with respect to a pure tone of each frequency. For example, for each sound of a plurality of frequencies, the lowest sound pressure level (decibel value) that the user can hear is set to the frequency. It is the figure plotted according to. Audiograms are created at hearing aid stores and hospitals.
  • Hearing aid stores and hospitals first create audiograms for each user. Then, an amplification amount is determined based on a fitting method that is an adjustment method for amplifying the sound pressure level that can be heard comfortably from the audiogram, and initial adjustment is performed.
  • the voice of a single syllable is presented to the user verbally or one CD at a time, and the speech intelligibility evaluation is performed to evaluate whether or not the speech is actually heard. I do.
  • a hearing aid having characteristics according to the user's hearing can be obtained.
  • the hearing aid user actually wears the hearing aid in everyday life, and it is optimal for each situation because it is at home, watching TV, or going out.
  • the adjustment of the correct hearing aid is considered different.
  • scene for example, conversations with hearing aid specialists that were good when you were watching TV but were noisy when watching TV
  • There was no problem, but it was still difficult to hear in the dialogue with the family, etc. it was communicated to the expert at the hearing aid dealer, and the expert was re-adjusting based on the result.
  • An approach to automatically readjust in daily life situations can be considered as a solution to such problems.
  • a conventional related technique for this approach there is a technique for performing an evaluation based on an objective index such as an electroencephalogram, not an evaluation of hearing based on an oral report (Patent Document 1), and a reproduced sound according to a change in external environmental sound.
  • An technique for adjusting (Patent Document 2), a technique for holding and switching a plurality of fitting parameters (Patent Document 3), and the like are known.
  • Patent Document 1 an auditory characteristic of each frequency for a pure tone is evaluated using an electroencephalogram using an ASSR (Audity-Stayy-State-Response), and this allows evaluation without verbal reports with large variations for each user. It becomes possible.
  • Patent Document 2 makes it possible to always reproduce music having the same sound quality with respect to fluctuations in external environmental sounds, and thus can adapt to fluctuations in external environmental sounds to some extent.
  • Patent Document 3 holds a plurality of fitting parameters in advance and switches the fitting parameters in accordance with the sound environment of the living place.
  • Patent Document 1 can evaluate a user's hearing tone for a pure tone, but cannot evaluate a conversational tone.
  • Patent Document 2 although adjustment according to external sound is possible to some extent, adjustment according to how the user heard is not possible.
  • Patent Document 3 a plurality of adjustment parameters are retained, but parameters suitable for all situations are not necessarily prepared.
  • the hearing aid For the user, whether or not the hearing aid should be adjusted is whether or not it is easy to hear the current sound that the user hears through the hearing aid regardless of the sound environment. If a phoneme that is particularly difficult to hear can be identified, it is possible to make adjustments that improve the hearing of only that phoneme.
  • the individual adjustment method of the hearing aid there are problems such as having an effect on a specific phoneme but having an adverse effect on other phonemes. As long as the conventional adjustment method is used, adjustment for all sounds must be performed, but such adjustment is difficult. Therefore, an adjustment method that does not adversely affect other phonemes, while targeting a phoneme that is difficult to hear by a method that is not a conventional adjustment method is effective.
  • the object of the present invention is to provide a phoneme that requires adjustment and hearing improvement on the hearing aid side without making oral reports or manual adjustments for various sound environments encountered by users in daily life situations. It is to realize a hearing aid readjustment device that can automatically readjustment.
  • the apparatus for adjusting a hearing aid collects ambient sounds and outputs a sound signal, and uses the information on the phonemes or syllables included in the sound signal, thereby using the phonemes or syllables.
  • a voice cutout unit that outputs time information for specifying the time when the voice is uttered; an electroencephalogram measurement unit that measures a user's electroencephalogram signal; and the identified phoneme obtained from the electroencephalogram signal measured by the electroencephalogram measurement unit Or based on an event-related potential starting from the time when the syllable is uttered, the hearing determination unit that determines difficulty in hearing the phoneme or syllable, and the hearing determination unit determines that it is difficult to hear a plurality of phonemes or syllables
  • a phoneme specifying unit that specifies that the phoneme or syllable that appeared earlier in time among the plurality of phonemes or syllables is difficult to hear; and the phoneme specified by the phoneme specifying unit
  • the hearing determination unit determines whether the phoneme is based on whether or not a predetermined characteristic component is included in the event-related potential at 800 ms ⁇ 100 ms from the time when the phoneme or syllable is uttered from the event-related potential. Alternatively, it may be determined whether the syllable is difficult to hear.
  • the electroencephalogram measurement unit may measure the electroencephalogram signal by using an electrode installed around Pz in the international 10-20 method of the user.
  • the hearing determination unit may determine that the phoneme or syllable is difficult to hear when a positive component is included in the event-related potential.
  • the electroencephalogram measurement unit may measure the electroencephalogram signal by using an electrode installed around Cz in the international 10-20 method of the user.
  • the hearing determination unit may determine that the phoneme or syllable is difficult to hear when a negative component is included in the event-related potential.
  • the gain adjustment unit may select a gain adjustment method according to the phoneme type from any of a plurality of types of gain adjustment methods according to the phoneme type specified by the phoneme specifying unit.
  • Another adjusting device uses the information on phonemes or syllables included in a sound signal of ambient sounds collected by a sound collection unit that collects ambient sounds, and uses the phoneme or syllable information.
  • the specified phoneme or syllable acquired from an electroencephalogram signal measured by an audio cutout unit that outputs time information specifying the time when the utterance is uttered and an electroencephalogram measurement unit that measures a user's electroencephalogram signal is uttered
  • a hearing determination unit that determines difficulty in hearing the sound based on an event-related potential starting from a time; and the hearing determination unit determines that the plurality of phonemes or syllables are difficult to hear.
  • a phoneme specifying unit that specifies that the phoneme or syllable that appears earlier in time among the phonemes or syllables is difficult to hear, and outputs information on the phonemes specified by the phoneme specifying unit.
  • the adjusting device may output the information on the phoneme specified by the phoneme specifying unit to a gain adjusting unit that adjusts the gain of the phoneme.
  • the hearing aid evaluation apparatus uses a sound collection unit that collects ambient sounds and outputs a sound signal, and uses the information on the phonemes or syllables included in the sound signal to utter the phonemes or syllables.
  • a voice cutout unit that outputs time information for specifying the time that has been recorded; an electroencephalogram measurement unit that measures a user's electroencephalogram signal; and the identified phoneme or syllable obtained from the electroencephalogram signal measured by the electroencephalogram measurement unit Based on the event-related potential starting from the time when the voice was uttered, the hearing determination unit for determining difficulty in hearing the phoneme or syllable, and the hearing determination unit determined that it is difficult to hear a plurality of phonemes or syllables A phoneme specifying unit that specifies that a phoneme or syllable that appears earlier in time among the plurality of phonemes or syllables is difficult to hear and stores the specified results.
  • the method for adjusting a hearing aid includes the steps of collecting ambient sounds and outputting a sound signal, and using the phoneme or syllable information included in the sound signal, the phoneme or syllable is uttered.
  • a step of outputting time information for specifying the specified time a step of measuring a user's brain wave signal, and an event starting from the time at which the specified phoneme or syllable is uttered, obtained from the measured brain wave signal Determining a difficulty in hearing the phoneme or syllable based on a related potential, and determining that it is difficult to hear the plurality of phonemes or syllables in the determining step.
  • a computer program is a computer program for adjusting a hearing aid, and is executed by a computer to receive an audio signal of ambient sounds collected by the computer; Using the included phoneme or syllable information, outputting time information identifying the time when the phoneme or syllable was uttered; receiving the measured user's brain wave signal; and from the brain wave signal Based on the acquired event-related potential starting from the time when the specified phoneme or syllable was uttered, a step of determining difficulty in hearing the phoneme or syllable, and a plurality of phonemes or syllables in the determining step If it is determined that it is difficult to hear, the plurality of phonemes or syllables The step of specifying that the phoneme or syllable that appeared earlier in time is difficult to hear, and determining the gain adjustment method for the specified phoneme or syllable according to the type of the phoneme or syllable, and the determined gain adjustment Adjusting the gain of
  • the timing when the user wearing the hearing aid feels that it is difficult to hear and the phoneme thereof are specified by electroencephalogram analysis, and the user's hearing is estimated. Based on the information obtained as a result, adjustment suitable for the phoneme identified as difficult to hear is performed.
  • the hearing aid process can be adjusted on the spot where it is difficult for the user to hear. Therefore, for example, it is unnecessary for the user to memorize the situation of difficulty in hearing, go to a hearing aid store, explain to a specialist, and receive readjustment.
  • (A) is a figure which shows the procedure of the process performed only by a hearing aid
  • (b) is a figure which shows the outline
  • the configuration of the hearing aid readjustment device includes the following two technical matters. One of them is to evaluate the ease of hearing (confidence level of discrimination) by EEG measurement, and the other is to which phoneme to hear when evaluating the ease of hearing by EEG measurement for continuous speech. It is a point that specifies whether it was difficult.
  • the inventors of the present application independently devised two methods for realizing the speech intelligibility evaluation without inputting the user's answer. The experiment was conducted. Then, an index has been discovered for enabling evaluation of speech sounds instead of conventional evaluation of pure sounds.
  • the second technical matter is inspired by the knowledge of the auditory research by the inventors of the present application when the first experimental result and a plurality of word sounds are consecutive.
  • the second technical matter will be described in detail in the description of the embodiment.
  • the inventors of the present application conducted the following behavioral experiment and electroencephalogram measurement experiment in order to realize speech intelligibility evaluation that does not require verbal reporting by the user.
  • the inventors of the present application first conducted a behavioral experiment to examine the relationship between the degree of confidence of voice discrimination and the probability of occurrence of abnormal hearing. Specifically, the speech of a single syllable was presented in the order of voice and letters (Hiragana), and the user was asked to confirm whether the voice and letters were the same, and the confidence level of voice listening was answered with a button. As a result, the inventors of the present application have a low probability of occurrence of abnormal hearing as low as 10% or less when the confidence level of sound discrimination is high, and a high probability of occurrence of abnormal hearing as high as 40% or higher when the confidence level of discrimination is low. It was confirmed.
  • the inventors of the present application conducted an electroencephalogram experiment in which a single syllable word sound was presented by voice and the reaction to the voice presentation was examined. Then, the event-related potential, which is one of the signal components of the electroencephalogram, was added and averaged based on the degree of confidence of discrimination obtained in the behavioral experiment. As a result, in the event-related potential starting from the voice stimulus, when the confidence level for the voice discrimination is high compared to the case where the confidence level is low, a positive component is induced in the latency from 700 ms to 900 ms around the center of the head. discovered.
  • the experiment participants were 6 university / graduate students with normal hearing.
  • Fig. 1 shows the outline of the experimental procedure for behavioral experiments.
  • Stimulating speech sounds refer to the “concept of hearing aid fitting” (Kojiro Kodera, Diagnosis and Treatment, 1999, p. 172). You selected from a pair of YA rows or a pair of KA / TA rows. The participants were instructed to hear the voice and to think of the corresponding hiragana. In the participants with normal hearing ability, three conditions of voice with processed frequency gain were presented so that the degree of confidence of each voice was dispersed. (1) 0 dB condition: The frequency gain was not processed as an easily audible voice.
  • FIG. 2 shows the gain adjustment amount for each frequency in each of the conditions (1) to (3).
  • the reason for reducing the frequency gain of the high frequency is to reproduce a typical pattern of hearing loss in elderly people. General elderly people with hearing loss are difficult to hear high-frequency sounds. By reducing the frequency gain of the high frequency, it is possible to cause the normal hearing person to simulate hearing that is equivalent to the hearing difficulty of the elderly hearing impaired person.
  • Procedure B is a button press for proceeding to Procedure C, and was added in order to present the text stimulus of Procedure C at the participant's pace in the experiment. This button is also referred to as the “Next” button.
  • Step C a single hiragana character was presented on the display. Characters that match the voice presented in Procedure A as matching trials and hiragana characters that do not match voices as mismatching trials were each shown with a probability of 0.5. Hiragana characters that do not match generally have a line of Na and Ma, Ra and Ya, and Ka and Ta. For example, when hiragana “NA” was presented in procedure A, “NA” was presented in procedure C in the matching trial, and “MA” was presented in procedure C in the mismatching trial.
  • Procedure D is a button press (numbers 1 to 5 on the keyboard) for confirming how much the participant feels a discrepancy between the voice presented in Procedure A and the characters presented in Procedure C. 5 if you feel an absolute match, 4 if you feel a match, 3 if you don't know, 2 if you feel a disagreement, 1 if you feel an absolute disagreement Each was pushed. If 5 or 1 is pressed in this button press, the participant will be divided into a correct answer and an incorrect answer (occurrence of abnormal hearing) at the stage of procedure C, but at the time of listening to the voice presented at the stage of procedure A. It can be said that he was confident in the discrimination. Similarly, if 2 to 4 are pressed, it can be said that the participant was not confident in hearing the voice.
  • FIG. 3 is a flowchart showing the procedure for one trial. In this flowchart, for the convenience of explanation, both the operation of the apparatus and the operation of the experiment participant are described.
  • Step S11 is a step of presenting single syllable speech to the experiment participants.
  • Step S12 is a step in which the participant hears a single syllable voice and thinks of a corresponding hiragana.
  • Hiragana is a character (phonetic character) representing pronunciation in Japanese.
  • Step S13 is a step in which the participant presses the space key as the next button (procedure B).
  • Step S14 is a step in which Hiragana characters that match or do not match the voice are presented on the display with a probability of 50% starting from Step S13 (Procedure C).
  • Step S15 is a step of confirming whether the hiragana conceived by the participant in step S12 matches the hiragana presented in step S14.
  • Step S16 is a step in which the number of 1 to 5 keys is used to answer how much the participant feels the match / mismatch in Step S15 (Procedure D).
  • FIG. 4 is a diagram showing the degree of confidence in the voice recognition of the participants classified according to the result of the button press and the probability of correct / incorrect button press.
  • the confidence level of the discrimination was classified as follows. When 5 (absolute coincidence) or 1 (absolute disagreement) was pressed, the confidence level was high. The probability that the degree of confidence was “high” was 60.4% of all trials (522 trials out of 864 trials). When 4 (probably coincident), 3 (not sure), or 2 (probably inconsistent) was pressed, the confidence level of discrimination was set to “low”. The probability that the degree of confidence was “low” was 39.6% of the total trials (342 trials out of 864 trials).
  • the correctness / incorrectness of the button press was determined by the match / mismatch between the voice and the character and the pressed button. If 5 (absolute match) or 4 (probably match) is pressed in the match trial, and 1 (absolute mismatch) or 2 (probably mismatch) is pressed in the mismatch trial, it is determined to be positive. .
  • Fig. 4 (a) shows the correct / wrong result of pressing a button in a trial with a high degree of confidence. It can be seen that the correct button was selected in almost all trials (92%). This indicates that when the confidence level of discrimination is high, the voice can be correctly recognized. From this result, it can be said that when the confidence level of the discrimination is high, the speech intelligibility is high.
  • Fig. 4 (b) shows the correct / wrong result of pressing a button in a trial with low discrimination confidence. It can be seen that there is a high probability that the wrong button was pressed (42%). This indicates that abnormal hearing is likely to occur when the degree of confidence of discrimination is low. From this result, it can be said that when the confidence level of the discrimination is low, it can be evaluated that the speech intelligibility is low.
  • Electroencephalogram measurement experiment The inventors of the present application conducted an electroencephalogram measurement experiment in order to examine the relationship between the degree of confidence of voice discrimination and the event-related potential after voice presentation.
  • FIGS. 5 to 9 experimental settings and experimental results of the conducted electroencephalogram measurement experiment will be described.
  • the experiment participants were 6 university / graduate students who were the same as those in the behavioral experiment.
  • FIG. 5 is a diagram showing electrode positions in the international 10-20 method.
  • the sampling frequency was 200 Hz and the time constant was 1 second.
  • a 1-6 Hz digital bandpass filter was applied off-line.
  • As an event-related potential for voice presentation a waveform from ⁇ 100 ms to 1000 ms was cut out from the voice presentation.
  • the average of event-related potentials was calculated based on the degree of confidence of hearing for each participant and for each speech sound under all the conditions (0 dB ⁇ ⁇ 25 dB ⁇ ⁇ 50 dB) in the above behavioral experiment.
  • FIG. 6 shows an outline of the experimental procedure of the electroencephalogram measurement experiment.
  • procedure X a single syllable speech was presented. Stimulus speech sounds are similar to behavioral experiments, referring to “Hearing Aid Fitting Concept” (Kazuko Kodera, Diagnosis and Treatment Company, 1999, p. 172). A pair was selected from a pair, a la / ya line pair, and a ka / ta line pair. The participants were instructed to hear the voice and to think of the corresponding hiragana. In addition, similar to the behavioral experiment, voices with the following three conditions were presented in the same manner as in the behavioral experiment so that the participants who have normal hearing ability can discriminate each voice. (1) 0 dB condition: The frequency gain was not processed as an easily audible voice.
  • FIG. 7 is a flowchart showing the procedure for one trial.
  • the same blocks as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference from FIG. 3 is that there is no step S13 to step S16, and the experiment participant is not required to perform an explicit action.
  • FIG. 8 shows a waveform obtained by summing and averaging event-related potentials in Pz based on voice presentation based on the degree of confidence of discrimination. The addition average was performed based on the degree of confidence of hearing for each participant for each speech sound under all the conditions (0 dB ⁇ ⁇ 25 dB ⁇ ⁇ 50 dB) in the behavioral experiment.
  • the horizontal axis is time and the unit is ms
  • the vertical axis is potential and the unit is ⁇ V.
  • the downward direction of the graph corresponds to positive (positive) and the upward direction corresponds to negative (negative).
  • the baseline was aligned so that the average potential from -100 ms to 0 ms would be zero.
  • the broken line shown in FIG. 8 is the average waveform of the event-related potentials at the electrode position Pz when the confidence level of discrimination is high in the behavioral experiment, and the solid line is when the confidence level of discrimination is low. According to FIG. 8, it can be seen that a positive component appears in the latency period from 700 ms to 900 ms on the solid line indicating that the discrimination confidence level is low compared to the broken line indicating that the discrimination confidence level is high.
  • the average potential between 700 ms and 900 ms for each participant was ⁇ 0.47 ⁇ V when the confidence level was high and 0.13 ⁇ V when the confidence level was low.
  • the section average potential was significantly large when the confidence level of discrimination was low (p ⁇ 0.05).
  • the inventors of the present application reflect the confidence component of the event-related potential from the latency of 700 ms to 900 ms starting from the voice presentation, and the positive component can be used as an indicator of the confidence of discrimination. The conclusion that it is. As a result of performing the t-test for every sampling from 0 ms to 1000 ms, the time periods in which the significant difference due to the difference in the degree of confidence of discrimination persisted for 30 ms or more were only 730 ms to 770 ms and 840 ms to 915 ms.
  • FIG. 9 is a diagram showing, for each confidence level, the segment average potential from 700 ms to 900 ms of the event-related potential starting from voice presentation at the electrode positions C3, Cz, C4.
  • the black circle line shown in FIG. 9 indicates the section average potential when the discrimination confidence level is high, and the white circle line indicates the section average potential when the discrimination confidence level is low.
  • the event-related potential is positive when the confidence level of discrimination is high, and the event-related potential is negative when it is low. Focusing on the polarity of the event-related potential, it can be seen that the polarity is inverted between the measurement at the electrode position Pz (FIG. 8) and the measurement at the electrode position Cz (FIG. 9).
  • the P300 component is known as a general event-related potential for auditory stimulation. The polarity of the P300 component hardly reverses at the electrode positions Cz and Pz.
  • the latency of the component obtained in this experiment is different from 700 ms to 900 ms as compared with around 300 ms of the latency of the P300 component, this positive that was caused at the electrode position Pz when the discrimination confidence level is low.
  • the component is a component different from the P300 component.
  • an example using an electroencephalogram signal measured at the electrode position Pz will be described.
  • the electrode position is Cz, it may be read with the polarity reversed as described at the beginning of this paragraph.
  • “P300 component” means “latency induced by a target stimulus in an oddball task according to page 14 of“ New Physiological Psychology Vol. 2 ”(supervised by Mr. Miyata, Kitaoji Shobo, 1997). It is a positive component of event-related potentials around 300 ms.
  • the black circle line that is the section average potential when the discrimination confidence level is high at the electrode positions C3, Cz, and C4 and the white circle line that is the section average potential when the discrimination confidence level is low are: It can be seen that the potential distribution (magnitude relationship) is different. As a result of the multiple comparison, the potential distribution was significantly different (p ⁇ 0.05). Thereby, it can be said that the confidence level can be determined from the potential distribution at the electrode positions C3, Cz, and C4.
  • the positive component (FIG. 8) having a latency of 700 ms to 900 ms at the electrode position Pz and the characteristic component (FIG. 9) having a latency of 700 ms to 900 ms at the electrode positions C3, C4, and Cz can be identified by various methods. For example, a method of thresholding the magnitude of the peak amplitude in the vicinity of the latency of about 700 ms, a method of creating a template from a typical waveform of the above component, and calculating a similarity to the template can be used.
  • the threshold value / template may be a typical user's previously stored or may be created for each individual.
  • the time after a predetermined time elapsed from a certain time point in order to define the event-related potential component is expressed as, for example, “latency 700 ms to 900 ms”. This means that a range centered on a specific time from 700 ms to 900 ms can be included. At this time, the boundary between 700 ms and 900 ms is included in “latency 700 ms to 900 ms”.
  • width from 30 ms to 50 ms is an example of a general individual difference of the P300 component.
  • the positive component of the latency 700 ms to 900 ms has a slower latency than the P300, so the individual difference of the user is different. It appears even bigger. Therefore, it is preferable to handle it as a wider width, for example, a width of about 100 ms.
  • the inventors of the present application can (1) evaluate the speech intelligibility based on the user's confidence level of voice recognition, and (2) the event relation starting from the voice presentation. It was discovered that positive components with potential latency of 700 ms to 900 ms reflect the confidence level. In combination, the positive component of the event-related potential can be used as an index for evaluating difficulty in hearing through the degree of confidence in hearing the voice.
  • FIG. 10 shows the correspondence between the presence / absence of a positive component, the degree of confidence of discrimination, and the ease of hearing, which are summarized by the inventors of the present application. This correspondence is created by taking the positive component at the electrode position Pz as an example.
  • the hearing aid readjustment device measures the brain waves evoked by conversational speech input from the sound collection unit when using a hearing aid in daily life, and latent event-related potentials starting from each phoneme of the conversational speech.
  • the ease of hearing of each phoneme is evaluated using the presence or absence of a positive component from 700 ms to 900 ms. If there are phonemes that are difficult to hear, the readjustment device will readjust the hearing aid.
  • FIG. 11 shows the configuration and usage environment of the hearing aid readjustment system 100.
  • the hearing aid readjustment system 100 includes two parts, a hearing aid unit 101 and a hearing aid adjustment unit 102.
  • the hearing aid unit 101 is a part that functions as a hearing aid, and includes a sound collection unit 2, a hearing aid processing unit 3, and an output unit 4.
  • the hearing aid unit 101 collects sounds from the outside by the sound collecting unit 2, performs hearing aid processing according to the hearing condition of the user 1 by the hearing aid processing unit 3, and outputs the result from the output unit 4 to the user.
  • FIG. 12 is an example of a scene where the readjustment system 100 is used.
  • a user wears a hearing aid readjustment system 100 in which a hearing aid 101 and a readjustment device 102 are integrated.
  • the components in FIG. 12 corresponding to the components in FIG.
  • the sound collection unit 2 in FIG. 11 corresponds to the microphone 2 attached to the hearing aid.
  • 11 corresponds to a signal processing circuit (chip circuit) (not shown) inside the hearing aid.
  • the hearing aid adjustment unit 102 in FIG. 11 performs additional processing outside the hearing aid unit 101.
  • the hearing aid adjustment unit 102 includes an electroencephalogram measurement unit 6, a sound extraction unit 5, a hearing determination unit 7, a phoneme identification unit 8, and a gain adjustment unit 9.
  • the electroencephalogram measurement unit 6 measures the electroencephalogram of the user 1.
  • the sound extraction unit 5 extracts a sound part from the sound information collected by the sound collection unit 2.
  • the hearing determination unit 7 determines the hearing using the characteristics of the electroencephalogram relating to the ease of hearing (experiments and data are already explained).
  • the phoneme identification unit 8 performs processing for eliminating the ambiguity and gain adjustment.
  • the adjustment corresponding to each difficulty in hearing is performed by the unit 9. This adjustment is performed on the hearing aid processing unit 3 and is reflected in the subsequent hearing aid processing of the hearing aid unit 101.
  • the hearing aid adjustment unit 102 in FIG. 11 corresponds to the circuit 102 shown in FIG. More specifically, the electroencephalograph measurement unit 6 of the hearing aid adjustment unit 102 in FIG. 11 includes an electroencephalograph main body 6a, an electrode 6b, and an electrode 6c which are circuits for amplifying a biological signal.
  • the electroencephalogram is measured by measuring a potential difference between at least two electrodes mounted on the head and its surroundings. In this case, the electrodes 6b and 6c are installed in the part where the hearing aid main body 101 and the user's ear are in contact. Recently, in order to improve performance and usability, hearing aids may be worn at the same time in both ears. In this case, electroencephalogram measurement can measure the potential between both ears, making it easier to measure brain activity.
  • the electrode was placed on the scalp. However, it is considered possible to arrange the electrodes at other positions. As shown in FIG. 9, the potential distribution pattern of C3-Cz-C4 is reversed regardless of whether the discrimination confidence level is high or low. Therefore, it is considered that the discrimination confidence level can be determined even when the electrode is arranged at an ear position further outside the electrode positions C3 and C4.
  • components of the hearing aid adjustment unit 102 are functional parts that mainly perform signal processing. These are realized as components built in the hearing aid main body as shown in FIG. For example, a DSP or a memory is assumed as the component. This will be described in more detail below.
  • FIG. 13 shows a hardware configuration of the hearing aid readjustment system 100 according to the present embodiment.
  • a CPU 101a a CPU 101a, a RAM 101b, and a ROM 101d that perform signal processing of the hearing aid unit 101 are provided.
  • a processing program 101c is stored in the RAM 101b.
  • a CPU 102a, a RAM 102b, and a ROM 102d that perform signal processing of the hearing aid adjustment unit 102 are provided.
  • a processing program 102c is stored in the RAM 102b.
  • a microphone 2a and an audio input circuit 2b are provided as the sound collection unit 2
  • a speaker (receiver) 4a and an audio output circuit 4b are provided as the output unit 4.
  • an electroencephalograph 6a, an electrode 6b, and an electrode 6c are provided.
  • Each device is connected to each other by a bus 100a and can exchange data.
  • the audio signal collected by the sound collection unit 2 is subjected to hearing aid processing by the CPU 101 a by the program 101 c stored in the RAM 101 b and sent to the output unit 4.
  • the hearing aid readjustment system 100 may be composed of a set of CPU, RAM, and ROM, or may be realized as hardware such as a DSP in which a computer program is incorporated in a semiconductor circuit. Such a DSP can realize all the functions of the above-described CPU, RAM, ROM, audio input / output circuit, and the like with a single integrated circuit.
  • the computer programs 101c and 102c described above can be recorded on a recording medium such as a CD-ROM and distributed as a product to the market, or can be transmitted through an electric communication line such as the Internet.
  • FIG. 14A shows a procedure of processing performed by a normal hearing aid
  • FIG. 14B shows an overview of the procedure when the processing of the hearing aid readjustment system 100 according to the present embodiment is combined. Steps that are insufficient in the description of only the outline will be described later based on a more detailed flowchart.
  • FIG. 14 (a) is an outline of the processing flow of the hearing aid.
  • step S20 the sound collection unit 2 collects external sounds.
  • step S30 the hearing aid processing unit 3 performs hearing aid processing.
  • the hearing aid process is a process of decomposing the sound recorded in step S20 into power for each frequency, performing predetermined amplification for each frequency, and returning the sound again.
  • performing predetermined amplification for each frequency is referred to as “hearing process”
  • changing a predetermined value for how much gain should be adjusted for each frequency is referred to as “gain adjustment”.
  • step S40 the output unit 4 outputs the result of the hearing aid process to the user. Specifically, the output unit 4 outputs the adjusted sound, so that the user 1 can hear as a sound that is easier to hear than before the adjustment.
  • FIG. 14 (b) shows an outline of the flow of processing of the readjustment system for the processing described above.
  • the same number as the number used in FIG. 14A is assigned to the step where the same process as the process of the hearing aid is performed, and the description thereof is omitted.
  • the difference from the hearing aid processing is a portion of steps S50 to S90 sandwiched between processing steps S20 and S30 of the hearing aid, and here, the hearing aid adjustment processing is performed.
  • step S50 the voice cutout unit 5 cuts out a voice signal.
  • voices were presented one by one. However, since a continuous voice is heard in a daily scene of the user, it is necessary to cut out a voice signal.
  • step S60 the electroencephalogram measurement unit 6 measures an electroencephalogram. Since the electroencephalograph has been downsized in recent years and the power consumption has been reduced, it is possible to realize a device in which an electroencephalograph is combined with a hearing aid. As long as the hearing aid readjustment system 100 is of a type that is worn using one ear, a plurality of positions of the electrodes of the miniaturized electroencephalograph may be installed, for example, at a portion where the hearing aid contacts the skin of the head. Alternatively, if the hearing aid readjustment system 100 is of a type that is worn using both ears, electrodes can be placed with both ears. In the latter case, an electroencephalogram between both ears can also be used. In addition, a head-like brain wave can be measured.
  • Measured electroencephalogram is considered to contain various information, but it can grasp the tendency of the evoked potential with respect to the voice presentation by relating it to the stimulus presentation like the event-related potential.
  • step S70 the hearing determination unit 7 extracts an electroencephalogram signal corresponding to the audio signal extracted by the audio extraction unit 5. By extracting each brain wave component, the hearing determination unit 7 determines the degree of hearing.
  • step S80 the phoneme specifying unit 8 specifies a portion that is really difficult to hear in the output result of the hearing determination unit 7 when there are a plurality of speech candidates that are difficult to hear.
  • step S90 the gain adjusting unit 9 adjusts the gain for a phoneme or syllable that is difficult to hear.
  • the individual adjustment method of the hearing aid is effective for a specific phoneme but adversely affects other phonemes. Adjustment for all sounds is difficult and adjustment for a phoneme that is difficult to hear is effective.
  • step S50 a speech signal extraction process
  • step S70 a hearing determination process
  • step S80 a phoneme identification process
  • step S90 a gain adjustment process
  • FIG. 15 shows the details of the processing flow of the voice extraction unit 5
  • FIG. 16 shows an explanatory diagram of the processing. Hereinafter, description will be made along the flowchart of FIG.
  • step S51 the sound extraction unit 5 acquires the sound signal recorded by the sound collection unit 2.
  • the recorded sound is taken into the sound extraction unit 5 at a constant length for every constant period (timing).
  • the sound extraction unit 5 captures a recorded sound signal 51 indicated by “recorded sound”.
  • step S52 the sound extraction unit 5 converts the recorded sound signal 51 into a phoneme sequence by the acoustic processing 52 (FIG. 16).
  • the extraction process in step S53 is performed on the converted phoneme sequence.
  • the acoustic processing in step S52 is processing for detecting what phonemes and syllables are included in the speech data, and is used in preprocessing in the field of speech recognition. Specifically, the acoustic processing in the present embodiment performs a comparison operation with the current data based on the stored acoustic data of each phoneme and syllable (for example, a standard speech waveform and its feature amount), Is a process of recognizing the utterance content.
  • step S53 the voice extraction unit 5 extracts and outputs a phoneme or syllable series in response to the result of the acoustic processing in step S52.
  • FIG. 16 shows an example in which a phoneme string 53 of [hai / do / ti / ra / de / mo / i / i] is extracted as a result of the acoustic processing 52.
  • phonemes separated by syllable levels are extracted.
  • the fineness of extraction may be changed as appropriate. For example, [h / a / i / d / o / u / m / o] or the like may be divided by the phoneme level.
  • the word recognition may be realized by, for example, storing the dictionary data in which the speech segmenting unit 5 associates the phoneme string sequence with the word and referring to the dictionary data based on the phoneme string 53. .
  • step S54 the voice cutout unit 5 associates the time when each syllable extracted as the output phoneme string 53 was uttered, and stores them in pairs.
  • FIG. 11 shows a procedure of processing performed by the hearing determination unit 7.
  • FIG. 18 shows an example of data processing of the hearing determination processing.
  • step S71 in FIG. 17 the hearing determination unit 7 receives syllable information and time information 71 (FIG. 18) corresponding to the syllable information from the sound extraction unit 5. According to the time information 71, the utterance point of each phoneme can be specified.
  • the hearing determination unit 7 receives the electroencephalogram data from the electroencephalogram measurement unit 6, and then extracts the event-related potential from the time included in the correspondence information 71 between the syllable and the time.
  • the event-related potential is brain wave information measured in association with a certain event (in this case, the pronunciation of a syllable), and a brain wave in a predetermined section (for example, a section 72a from ⁇ 100 ms to 1000 ms) is cut out from the time when the syllable is generated. As a result, an event-related potential is obtained. An electroencephalogram is cut out for each syllable.
  • FIG. 18 shows the extracted event-related potential 72b.
  • step S73 the hearing determination unit 7 extracts an electroencephalogram feature for analysis with respect to the extracted event-related potential 72b.
  • the electroencephalogram feature of interest this time is a feature-positive component of, for example, 800 ms ⁇ 100 ms, and the analysis feature amount uses, for example, a maximum amplitude of 700 to 900 ms of latency, a section average potential, and other wavelet coefficients.
  • the hearing determination unit 7 is also referred to as a component related to inaudibility of the electroencephalogram feature obtained in step S73 (for example, a late positive component when an electroencephalogram is measured from Pz, LPP (Late (Positive Potential). .) Is included. If it is determined that the LPP is included, the process proceeds to step S75. If it is determined that the LPP is not included, the process proceeds to step S76.
  • a component related to inaudibility of the electroencephalogram feature obtained in step S73 for example, a late positive component when an electroencephalogram is measured from Pz, LPP (Late (Positive Potential). .) Is included. If it is determined that the LPP is included, the process proceeds to step S75. If it is determined that the LPP is not included, the process proceeds to step S76.
  • this determination method it may be determined whether or not LPP is included by comparing the maximum amplitude or section average potential with a predetermined threshold. Alternatively, it is determined whether or not they are similar by the similarity (for example, correlation coefficient) between the electroencephalogram characteristics and a predetermined template of the electroencephalogram waveform created from the waveform of a typical positive component signal having a latency of 700 ms to 900 ms. Also good.
  • FIG. 18 schematically shows a comparison between the extracted event-related potential 72b and the LPP waveform 73 when it is difficult to hear. As a result of the comparison, it may be determined that “similar to positive components” if they are similar and “no positive components” if they are not similar.
  • the predetermined threshold value or template may be calculated / created from a waveform of a positive component of a general user held in advance, or may be calculated / created from a waveform of a positive component for each individual.
  • step S75 the hearing determination unit 7 determines that “it is difficult to hear”.
  • step S76 the hearing determination unit 7 determines that “easy to hear”.
  • step S77 the hearing determination unit 7 stores the result of hearing.
  • the result of hearing is stored in a table, for example, as a determination result 77 (FIG. 18).
  • Syllables are arranged on the horizontal axis, and determination results are stored in the table for the syllables. As illustrated in FIG. 18, for example, a result that it is easy to hear is stored in hai and ra, and a result that it is difficult to hear is stored in do and ti.
  • Listening processing is performed through such processing, and the hearing for each syllable is evaluated even for normal continuous speech.
  • the standard utterance speed is about 8 to 12 mora ( ⁇ characters).
  • the Japanese utterance speed of 10 mora / second can be standard.
  • one syllable corresponds to almost one character.
  • the time from when a syllable is uttered until the next syllable is uttered is about 100 ms.
  • the characteristics of the electroencephalogram related to inaudibility appear at 700 ms to 900 ms, which is a rather late latency zone in the field of event-related potentials.
  • the latency error of the event-related potential becomes larger as the delay time becomes slower.
  • the error of the target event-related potential is assumed to be about ⁇ 100 ms.
  • the section in which a significant difference was confirmed was characterized by a wide range of 730 ms to 915 ms (FIG. 8).
  • a hearing determination result 77 results in a processing result that is difficult to hear for a plurality of consecutive syllables (do, ti). Makes it possible to adjust the hearing aid more effectively. If multiple phonemes or syllables that are determined to be difficult to hear are detected, the sound that appeared earlier in time (the sound that appeared first) was difficult to hear and treated as the target of the adjustment process described later May be.
  • the individual adjustment method in the final stage adjustment of the hearing aid is effective for a specific phoneme because the pattern of frequency characteristics differs for each phoneme.
  • the phoneme specifying unit 8 takes charge of this, and the processing of the phoneme specifying unit 8 utilizing the auditory characteristics that the inventors of the present application pay attention to will be described.
  • step S80 of FIG. 14B The phoneme specifying process is performed by the phoneme specifying unit 8 (FIG. 11).
  • FIG. 19 shows a procedure of processing performed by the phoneme identification unit 8.
  • FIG. 20 shows auditory characteristic data which is the principle of phoneme identification processing. A description will be given below along the flowchart of FIG. 19 while being associated with the auditory principle of FIG.
  • step S81 the phoneme identification unit 8 receives the syllable and the evaluation result of hearing from the hearing determination unit 7.
  • step S82 the phoneme identification unit 8 first determines whether “difficult to hear” exists in the audible evaluation result. If “difficult to hear” does not exist, the process proceeds to step S83 to output that there is no “difficult to hear” syllable and end the processing. If “difficult to hear” exists, the process proceeds to step S84.
  • step S84 the phoneme specifying unit 8 determines whether or not the evaluation result “difficult to hear” continues. If the evaluation results of “difficult to hear” are not consecutive, the process proceeds to step S85, and the “difficult to hear” syllable is output as a result, and the process ends. If the evaluation result of “difficult to hear” continues, the process proceeds to step S86. In the case of proceeding to step S86, it is determined that ambiguity remains in specifying the syllable from the relation between the latency of the electroencephalogram and the speaking speed.
  • step S86 the phoneme identification unit 8 selects the syllable closest to the beginning of the consecutive “difficult to hear” syllables as the most difficult to hear syllable, outputs it as a result, and ends. For example, in the hearing determination result 77 of FIG. 18, do and ti are listed as candidates. The phoneme identification unit 8 determines do as a final result among these.
  • FIG. 20 shows the intelligibility curves of the first, second, and third sounds of three meaningless words.
  • This intelligibility curve was quoted from Kazuko Kodera, “Progress of hearing aids and social applications”, Diagnosis and Treatment, 2006, p. 67.
  • This intelligibility curve is an evaluation result of speech intelligibility for eight normal hearing persons.
  • the horizontal axis indicates the volume of sound (unit: dBSL) to be heard by the subject at the test sound level above the awareness threshold, and the vertical axis indicates the speech intelligibility (unit:%).
  • the inspection sound level is divided into four stages of 10 to 40 decibels, and the clarity of the first sound, the second sound, and the third sound is plotted for each level.
  • the first sound has the lowest speech intelligibility, and thereafter the intelligibility improves in the order of the second sound and the third sound.
  • An object of the present invention is to specify a syllable that is difficult to hear in an utterance in a conversation scene of daily life. For this purpose as well, it is effective for the present inventors to determine that the syllable closest to the head is the most difficult to hear when there are a plurality of candidates that are determined to be difficult to hear as a result of brain wave processing. I was inspired. In the experimental conditions, it was an experiment with meaningless words, but in daily conversation, the word was also estimated from the relationship between the characters before and after the first sound, taking into account the fact that the relationship before and after the first sound was most difficult to use. It is considered appropriate to select a syllable close to the beginning of the sentence.
  • candidates that are difficult to hear may or may not include the sound of the beginning of the word. Considering the knowledge shown in FIG. 20, it is reasonable to select a sound close to the beginning of the word because a sound close to the beginning of the word tends to be harder to hear.
  • the relationship between the experimental results for continuous speech can be considered as follows. There are many silent sections of speech data even if they are short in a dialogue sentence, and continuous speech can be regarded as a repetition of a single utterance at a plurality of word levels if the speech is captured with the silent sections as breaks. Considering that the latency time of the electroencephalogram is about ⁇ 100 ms, a silent section of several hundred milliseconds is also seen in continuous speech, so it was thought that it supported the assumption that it could be a continuous word or the like.
  • the gain adjustment process is performed by the gain adjustment unit 9 (FIG. 11). Specifically, when there is a “difficult to hear” syllable specified by the phoneme specifying unit 8, the phoneme specifying unit 8 introduces a specific hearing aid process or the like with reference to a table as shown in FIG. By doing so, only the sound that is hard to hear is improved.
  • the gain adjusting unit 9 holds this table in an internal memory or buffer (not shown), and applies consonant part expansion or consonant part expansion compression based on this table.
  • This table shows the results of research related to hearing aids related to consonants that are difficult to hear and the corresponding readjustment process (for example, Kazuko Kodera, “Progress and Social Application of Hearing Aid”, Diagnosis and Treatment, 2006, p. 78, etc. )) In advance.
  • consonant part expansion is effective for unvoiced consonants h and voiced consonants d and g
  • consonant part expansion and compression is effective for unvoiced consonants ts.
  • the timing when the user feels difficult to hear and its syllable are specified by electroencephalogram analysis, and readjustment suitable for the specified syllable can be performed. This eliminates the need for the user to remember the difficulty of hearing, go to a hearing aid store, explain to an expert, and receive readjustment. The burden on the user can be reduced.
  • the electrode position is assumed to be, for example, Pz in the international 10-20 method.
  • it is difficult for each user to specify exactly the electrode position corresponding to the position of Pz. Therefore, it may be a position (Pz peripheral position) that seems to be Pz. Even in the position around Pz, the event-related potential is correctly measured. The same applies to the electrode position Cz and the like.
  • the hearing aid readjustment device 100 may be provided in a form that does not have a hearing aid function. Specifically, only the hearing aid adjustment unit 102 in FIG. 11 may be provided. At this time, the hearing aid unit 101 is a normal hearing aid. However, the hearing aid unit 101 includes an interface for performing gain adjustment from an external PC or the like. The audio extraction unit 5 of the hearing aid adjustment unit 102 receives audio information (audio signal) from the sound collection unit 2 of the hearing aid unit 101 via this interface. Then, a gain adjustment instruction is passed from the hearing aid adjustment unit 102 to the hearing aid processing unit 3 of the hearing aid unit 101. Note that the hearing aid unit 101 may receive only gain adjustment. In this case, the hearing aid adjustment unit 102 may have a function equivalent to that of the sound collection unit.
  • the hearing aid adjustment unit 102 may output the evaluation result to a gain adjuster (not shown) provided outside.
  • the gain adjuster only needs to have the same function as the gain adjuster 9.
  • the electroencephalogram measurement unit 6 may be omitted from the hearing aid adjustment unit 102.
  • the electroencephalogram measurement unit 6 may be provided outside the hearing aid adjustment unit 102 and connected to the hearing aid adjustment unit 102.
  • FIG. 22 shows a configuration of the hearing aid evaluation apparatus 112 according to the modification.
  • the difference between the hearing aid evaluation device 112 and the hearing aid adjustment unit 102 (FIG. 11) is that the hearing aid evaluation device 112 is not provided with the gain adjustment unit 9 of FIG. 11 and that the sound collection unit 2 is provided. It is in. Since other configurations are common, description of each component is omitted.
  • the output unit 4 is not necessarily required for the hearing aid evaluation device 112, and the hearing aid evaluation device 112 does not need to be downsized like the hearing aid adjustment unit 102.
  • the sound collection unit 2 and / or the electroencephalogram measurement unit 6 may be omitted from the configuration of the hearing aid evaluation apparatus 112 shown in FIG. It is also possible to realize the same operation as the hearing aid evaluation device 112 shown in FIG. 22 by providing the sound collection unit 2 and / or the electroencephalogram measurement unit 6 outside and connecting them to the hearing aid evaluation device 112.
  • the hearing aid evaluation apparatus 112 can be configured by a high-performance microphone, a larger electroencephalograph for medical / research purposes, and a PC. Technical development for downsizing is not necessary, and since it can be realized using an existing microphone, electroencephalograph, PC and computer program, it can be realized at low cost.
  • a fitter that adjusts a hearing aid in a hearing aid store wears this hearing aid evaluation device 112 on the user and evaluates hearing from an electroencephalogram during a conversation.
  • the function of the phoneme identification unit 8 can store information on evaluation results indicating in which part of the dialogue the user feels difficult to hear in an internal memory (not shown).
  • the recorded information is output to a monitor (not shown) and is output to a gain adjuster for viewing a gain provided separately.
  • the hearing aid evaluation apparatus 112 may output evaluation result information in real time. Based on this information, the fitter can perform an appropriate gain adjustment. According to this method, even when the automatic gain adjustment method for all hearing is not established, the hearing aid processing can be adjusted according to the inaudibility actually felt by the user.
  • the hearing aid evaluation apparatus 112 can be used in a workplace where a user usually lives, a public place, or a home, for example, besides making adjustments in a hearing aid store.
  • the hearing aid evaluation device 112 may be lent to a user at a hearing aid store. Then, as the user sends their daily life as usual, the EEG measurement is performed in the hearing aid evaluation apparatus 112, and it is recorded and accumulated for what kind of dialogue in which situation the user feels difficult to hear. Keep it.
  • a hearing instrument store fitter can refer to the stored data and recommend an optimal type of hearing aid or gain adjustment.
  • the hearing aid readjustment apparatus enables in-situ readjustment by detecting, by means of an electroencephalogram, an inaudibility that a hearing aid user is expected to encounter on a daily basis. For this reason, it can be widely used in situations where hearing aids are used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Neurosurgery (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Psychiatry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Psychology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 補聴器購入後でも再調整を行うには補聴器販売店で行う必要があり、様々な日常使用シーンでの調整をその場で自動的に行う調整機能を提供する。 補聴器の調整装置は、収集された音声信号を音響処理して、音声信号に含まれている音素または音節の情報を利用して、音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、ユーザの脳波信号を計測する脳波計測部と、音素または音節の発声時点を起点とした脳波信号の事象関連電位に基づき、音素または音節に対する聞こえにくさを判定する判定部と、聞こえにくいと判定された場合に、複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定する音素特定部と、音素特定部で特定された音素または音節に対して、音素の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で音素または音節のゲインを調整するゲイン調整部とを備えている。

Description

補聴器の調整装置、方法およびプログラム
 本発明は、補聴器の調整を行うための技術に関する。より具体的には、本発明は、補聴器の利用時にユーザが聞こえにくいと感じた音素を、ユーザの脳波を利用して特定し、よりよく聞こえるよう補聴器の補正処理を調整する技術に関する。
 近年、社会の高齢化あるいは大音量の音楽を長時間聴く機会が増えたなどの影響により、老人性あるいは音響性の難聴者が増加している。また、補聴器の小型化・高性能化に伴って補聴器装用の敷居が低くなり、日常生活において会話をより明瞭に聞き取ることを目的に補聴器を利用するユーザが増加している。
 補聴器は、音の増幅によりユーザの低下した聴力を補うための装置である。各ユーザが補聴器に求める音の増幅量は、そのユーザの聴力低下の度合いに応じて、また周波数帯に応じて異なる。そのため補聴器の利用を開始する前には、まず、各ユーザの聴力に合わせて音の増幅量を周波数毎に調整するフィッティングが必須である。
 フィッティングは、一般的にはユーザごとのオージオグラムに基づいて行われる。「オージオグラム」とは、各周波数の純音に対する聞こえの評価の結果であり、たとえば、複数の周波数の音のそれぞれについて、そのユーザが聞き取ることが可能な最も小さい音圧レベル(デシベル値)を周波数に応じてプロットした図である。オージオグラムは補聴器店や病院において作成される。
 補聴器店や病院は、まず、ユーザごとのオージオグラムを作成する。そして、オージオグラムから快適に聞こえる音圧レベルに増幅するための調整方法であるフィッティング手法に基づいて増幅量を決定し初期調整を行う。
 補聴器店では、必要に応じてさらに、単音節の音声をひとつずつ口頭やCDによってユーザに呈示し、実際に語音が聞き取れたか否かの評価をする語音明瞭度評価を実施し、補聴器の微調整を行う。このような評価と補聴器の調整の繰り返しによって、ユーザの聞こえに応じた特性を持った補聴器を得ることができる。
 しかし、このように丁寧に調整を行っても必ずしも満足のいく補聴器の調整はできないという課題があった。それは補聴器の評価および調整は補聴器販売店にて、販売店の専門家によって行われるからである。
 より具体的に説明すると補聴器ユーザが実際に補聴器を装用するのは日常の生活場面であり、それは家庭内であったりテレビの視聴時であったり、外出中であったりするため、状況ごとに最適な補聴器の調整は異なると考えられる。従来は日常生活で補聴器の調整に不満があった場合には、その場面を覚えておき(例えば、会話は良く聞こえたがテレビを見ているときにはうるさかった、補聴器店の専門家との会話は問題なかったが家族との対話ではまだ聞き取りづらい、など)、それを補聴器販売店にて専門家に伝え、その結果をもとに専門家が再調整を行っていた。
 この調整の困難さは、ユーザは記憶をたどりながら、過去の聞こえにくかった体験をその場面と聞こえにくさを説明し、専門家はその対話の中から補聴器の調整可能な多数の項目の中から適切なものを推定する必要がある点にある。もともと聞こえの主観的表現はばらつきが大きく、さらに記憶に基づくという点でさらに調整が困難になっている。
 このような課題に対する解決策として、日常生活場面で自動的に再調整をするアプローチが考えられる。このアプローチに対する従来の関連技術としては、特に口頭報告による聞こえの評価ではなく脳波等の客観的な指標に基づいて評価を行う技術(特許文献1)、外部環境音の変化に応じて再生音を調整する技術(特許文献2)、複数のフィッティングパラメータを保持して切り替える技術(特許文献3)などが知られている。
 特許文献1は、脳波を用いて純音に対する各周波数の聴覚特性の評価をASSR(Audiroty Steady-State Response)を用いて行うもので、これによりユーザごとにばらつきの大きな口頭報告をせずに評価が可能になる。
 特許文献2は、外部環境音の変動に対しても常時同じ音質の音楽が再生できるようにするものであり、これによりある程度の外部環境音の変動に適応できる。
 特許文献3は、複数のフィッティングパラメータをあらかじめ保持しておき、生活場所の音環境に合わせてフィッティングのパラメータを切り替えるものである。
特表2003-533258号公報 特許第4145507号明細書 特許第3482465号明細書
 これらの技術は、聞こえを生活場面ごとに異なる音環境に適応させる技術であり、口頭報告なしで聞こえ評価をするには有用である。
 しかしながら、これらを利用しても、日常生活での聞こえ評価をユーザの手間なしに実現し、その場で補聴器の再調整を実現することはできない。換言すれば、日常生活でユーザが聞き取りにくいと感じた音を客観的に検出し、自動的に調整することができない。たとえば特許文献1は、ユーザの純音に対する聞こえ評価はできるが、会話音に対する評価は行えない。特許文献2は、外部音に応じた調整はある程度可能であるが、ユーザがどう聞こえたかに応じた調整はできない。そして、特許文献3では、複数の調整パラメータは保持するが、すべての状況に適したパラメータは必ずしも準備されない。
 ユーザにとっては、音環境に関わらずユーザ自身が補聴器を通して聞く今の音を聞き取りやすいかどうかが、補聴器を調整すべきか否かの基準である。特に聞き取りにくかった音素を特定できれば、その音素のみの聞こえを改善する調整が可能になる。一般的に、補聴器の個別の調整方法によると、特定の音素に対しては効果があっても他の音素に対しては悪影響を及ぼす等の弊害がある。従来の調整方法を利用する限り、すべての音に対する調整を行わなければならないが、そのような調整は困難である。したがって、従来の調整方法ではない方法により、聞き取りにくい音素を対象にしつつも、他の音素には悪影響を及ぼさない調整方法が有効である。
 本発明の目的は、ユーザが日常生活場面で遭遇する様々な音環境に対して特に口頭報告や手動の調整をしなくても補聴器側でその調整が必要なタイミングおよび聞こえの改善が必要な音素を特定し、自動的に再調整ができる補聴器の再調整装置を実現することにある。
 本発明による、補聴器の調整装置は、周囲の音を集音し、音声信号を出力する集音部と、前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、ユーザの脳波信号を計測する脳波計測部と、前記脳波計測部で計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定する聞こえ判定部と、前記聞こえ判定部において複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定する音素特定部と、前記音素特定部で特定された前記音素または音節に対して、前記音素の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で前記音素または音節のゲインを調整するゲイン調整部とを備えている。
 前記聞こえ判定部は、前記事象関連電位のうち、前記音素または音節が発声された時刻を起点として800ms±100msにおける事象関連電位に所定の特徴成分が含まれているか否かに基づいて前記音素または音節に対する聞こえにくさを判定してもよい。
 前記脳波計測部は、前記ユーザの国際10-20法におけるPz周辺に設置された電極を利用して、前記脳波信号を計測してもよい。
 前記聞こえ判定部は、前記事象関連電位に陽性成分が含まれているときは前記音素または音節が聞こえにくいと判定してもよい。
 前記脳波計測部は、前記ユーザの国際10-20法におけるCz周辺に設置された電極を利用して、前記脳波信号を計測してもよい。
 前記聞こえ判定部は、前記事象関連電位に陰性成分が含まれているときは前記音素または音節が聞こえにくいと判定してもよい。
 前記ゲイン調整部は、前記音素特定部で特定された音素の種類に応じて、複数種類のゲイン調整方法のいずれかから、前記音素の種類に応じたゲイン調整方法を選択してもよい。
 本発明による、他の調整装置は、周囲の音を集音する集音部で集音された周囲の音の音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、ユーザの脳波信号を計測する脳波計測部で計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音声に対する聞こえにくさを判定する聞こえ判定部と、前記聞こえ判定部において複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定する音素特定部とを備えており、前記音素特定部で特定された音素の情報を出力する。
 前記調整装置は、前記音素特定部で特定された音素の情報を、音素のゲインを調整するゲイン調整部に出力してもよい。
 本発明による補聴評価装置は、周囲の音を集音し、音声信号を出力する集音部と、前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、ユーザの脳波信号を計測する脳波計測部と、前記脳波計測部で計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定する聞こえ判定部と、前記聞こえ判定部において複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定し、特定した結果を蓄積する音素特定部とを備えている。
 本発明による、補聴器の調整方法は、周囲の音を集音し、音声信号を出力するステップと、前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力するステップと、ユーザの脳波信号を計測するステップと、計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定するステップと、前記判定するステップにおいて複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定するステップと、特定された前記音素または音節に対して、前記音素または音節の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で前記音素または音節のゲインを調整するステップとを包含する。
 本発明によるコンピュータプログラムは、補聴器の調整のためのコンピュータプログラムであり、コンピュータによって実行されることにより、前記コンピュータに対し、集音された周囲の音の音声信号を受け取るステップと、前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力するステップと、計測されたユーザの脳波信号を受け取るステップと、前記脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定するステップと、前記判定するステップにおいて複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定するステップと、特定された前記音素または音節に対して、前記音素または音節の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で前記音素または音節のゲインを調整するステップとを実行させる。
 本発明によれば、補聴器を装着しているユーザが聞こえにくいと感じたタイミングおよびその音素を脳波解析により特定し、ユーザの聞こえを推定する。その結果得られた情報に基づき、聞こえにくいとして特定された音素に適した調整を行う。ユーザが聞こえにくいと思ったその場で補聴処理の調整を行うことができる。したがって、たとえばユーザは聞こえにくさの状況を記憶して補聴器販売店まで出向いて専門家に説明して再調整を受けるという手間が不要になる。
行動実験の実験手順の概要を示す図である。 3つの条件に対応する周波数ごとのゲイン調整量を示す図である。 1試行分の手順を示すフローチャートである。 ボタン押しの結果により分類した参加者の音声聞き分けの自信度と、ボタン押しの正誤の確率を示した図である。 国際10-20法の電極位置を示した図である。 脳波計測実験の実験手順の概要を示す図である。 1試行分の手順を示すフローチャートである。 音声呈示を起点としたPzにおける事象関連電位を、聞き分け自信度に基づき総加算平均した波形図である。 電極位置C3、Cz、C4における音声呈示を起点とした事象関連電位の700msから900msの区間平均電位を聞き分け自信度ごとに示した図である。 本願発明者らによってまとめられた、陽性成分の有無と、聞き分け自信度および聞きやすさの対応関係を示す図である。 補聴器の再調整システム100の構成および利用環境を示す図である。 再調整システム100の使用シーンを例示する図である。 本実施の形態による補聴器の再調整システム100のハードウェア構成を示す図である。 (a)は、補聴器のみで行われる処理の手順を示す図であり、(b)は、本実施形態による補聴器の再調整システム100の処理を組み合わせたときの手順の概要を示す図である。 音声切出部5の処理の詳細を示す図である。 音声切出部5の処理の具体的な説明図である。 聞こえ判定部7が行う処理の手順を示すフローチャートである。 聞こえ判定処理のデータ処理の例を示す図である。 音素特定部8が行う処理の手順を示すフローチャートである。 音素特定の処理の原理となる聴覚上の特性のデータを示す図である。 聞こえにくいとされた音節が含んでいる子音の種類によって、行うべき調整方法が異なることを示す例である。 補聴評価装置112の構成を示す図である。
 以下、添付の図面を参照しながら、本発明による「補聴器の再調整装置」の各実施形態を説明する。
 本発明による補聴器の再調整装置の構成には、下記の2点の技術的事項が含まれている。その1つは、脳波計測による聞こえやすさ(聞き分けの自信度)を評価する点、他の1つは、連続音声に対して脳波計測によって聞こえやすさを評価した場合においてどの音素に対して聞こえにくかったかを特定する点である。
 第1の技術的事項である、脳波計測による聞き分けの自信度の評価に関しては、本願発明者らはユーザの回答入力をしなくても語音明瞭度評価を実現するための独自に考案した2種類の実験を実施した。そして、従来の純音に対する評価ではなく、語音に対する評価が可能になるための指標を発見した。
 実施形態の説明に先だって、まず、この2種類の実験内容とそこから得られた新たな知見を説明する。
 なお第2の技術的事項は、本願発明者らが、第1の実験結果と複数語音が連続した場合の聴覚研究の知見から着想を得たものである。第2の技術的事項については、実施形態の説明中で詳述する。
 本願発明者らは、ユーザによる口頭報告を必要としない語音明瞭度評価を実現するために、以下の行動実験と脳波計測実験を実施した。
 本願発明者らは、まず音声の聞き分けの自信度と異聴発生確率との関係を調べる行動実験を実施した。具体的には、単音節の語音を音声と文字(平仮名)で順に呈示し、ユーザに音声と文字が同一であったか否かを確認させ、音声聞き取りの自信度をボタンで回答させた。その結果、本願発明者らは、音声の聞き分け自信度が高い場合には異聴の発生確率が10%以下と低く、聞き分け自信度が低い場合には異聴の発生確率が40%以上と高いことを確認した。
 つぎに本願発明者らは、単音節の語音を音声で呈示し、音声呈示に対する反応を調べる脳波実験を実施した。そして行動実験で取得した聞き分け自信度に基づき脳波の信号成分のひとつである事象関連電位を加算平均した。その結果、音声刺激を起点とした事象関連電位において、音声聞き分けに対する自信度が低い場合と比べて高い場合には、頭部中心部周辺において潜時700msから900msに陽性成分が惹起されることを発見した。
 これらの行動実験と脳波実験に基づく発見から、音声呈示を起点とした頭部中心部付近の事象関連電位の潜時700msから900msの陽性成分の有無で音声の聞き分け自信度を判定可能であり、それに対応する語音明瞭度を評価可能であることを見出した。従来、語音明瞭度評価はユーザの口頭などでの回答の正誤に基づいて行われたが、本手法により、実際に音声を正しく聞き分けられたか否かではなく、ユーザが音声を聞き分けられたと思ったか否かに基づいて語音明瞭度評価が実現される。
 1.行動実験
 本願発明者らは、音声の聞き分けに関する自信度と異聴発生確率との関係を調べるために、行動実験を実施した。以下、図1から図3を参照しながら、実施した行動実験の実験設定および実験結果を説明する。
 実験参加者は、正常な聴力を有する大学・大学院生6名であった。
 図1は、行動実験の実験手順の概要を示す。
 まず、手順Aにおいて単音節の音声を呈示した。刺激語音は、「補聴器フィッティングの考え方」(小寺一興、診断と治療社、1999年、172頁)を参照して、相互に聞き取り間違いが多いとされるナ行/マ行のペア、ラ行/ヤ行のペア、カ行/タ行のペアから選択した。実験参加者には音声を聞いて対応する平仮名を思い浮かべるよう教示した。正常な聴力を有する参加者において音声ごとに聞き分け自信度が分散するように、周波数ゲインを加工した3条件の音声を呈示した。(1)0dB条件:聞き分けやすい音声として周波数ゲインの加工をしなかった。(2)-25dB条件:250Hz-16kHzの周波数のゲインを段々と-25dBまで調整(低減)した。(3)-50dB条件:250Hz-16kHzの周波数のゲインを段々と-50dBまで調整(低減)した。図2は、条件(1)~(3)のそれぞれにおける周波数ごとのゲイン調整量を示す。高周波数の周波数ゲインを低減させた理由は、高齢者の難聴の典型的なパターンを再現するためである。一般の高齢難聴者は高周波数の音を聞き取りにくい。高周波数の周波数ゲインを低減させることにより、健聴者に高齢難聴者の聞こえ難さと同等の聞こえを模擬させることができる。
 次に手順Bにおいて実験参加者にキーボードのスペースキーを押させた。手順Bは手順Cに進むためのボタン押しで、実験では参加者のペースで手順Cの文字刺激を呈示するために付加した。このボタンは「次へ」ボタンとも言及する。
 手順Cにおいてディスプレイに平仮名を一文字呈示した。一致試行として手順Aで呈示した音声と一致する文字を、不一致試行として音声とは一致しない平仮名をそれぞれ0.5の確率で呈示した。一致しない平仮名は一般的に聞き取り間違いが多いとされるナ行とマ行、ラ行とヤ行、カ行とタ行をペアとして母音は揃えて音声とは異なる行の文字を選んだ。たとえば、手順Aにおいて平仮名「な」を呈示した場合、一致試行では手順Cにおいて「な」を呈示し、不一致試行では手順Cにおいて「ま」を呈示した。
 手順Dは、参加者が手順Aで呈示された音声と手順Cで呈示された文字にどれくらい不一致を感じたかを確認するためのボタン押し(キーボードの数字の1から5)である。絶対一致と感じた場合には5を、多分一致と感じた場合には4を、わからない場合には3を、多分不一致と感じた場合には2を、絶対不一致と感じた場合には1をそれぞれ押させた。このボタン押しにおいて5または1が押された場合、参加者は結果として手順Cの段階で正解と不正解(異聴発生)に別れたものの手順Aの段階で呈示された音声を聞いた時点では聞き分けに自信があったと言える。同様に、2から4が押された場合、参加者は音声の聞き分けに自信がなかったと言える。
 上述の手順Aから手順Dを108回繰り返す実験を行った(108試行)。
 図3は、1試行分の手順を示すフローチャートである。このフローチャートでは、説明の便宜のため、装置の動作と実験参加者の動作の両方を記載している。
 ステップS11は単音節の音声を実験参加者に呈示するステップである。音声は0dB条件、-25dB条件、-50dB条件の3条件をランダムな順序で呈示した(手順A)。
 ステップS12は参加者が単音節の音声を聞いて対応する平仮名を思い浮かべるステップである。なお、「平仮名」とは、日本語において発音を表す文字(表音文字)である。
 ステップS13は参加者が次へボタンとしてスペースキーを押すステップである(手順B)。
 ステップS14はステップS13を起点に50%の確率で音声と一致または不一致な平仮名を文字でディスプレイに呈示するステップである(手順C)。
 ステップS15は参加者がステップS12で思い浮かべた平仮名とステップS14で呈示された平仮名とが一致したか否かを確認するステップである。
 ステップS16は参加者がステップS15でどれくらい一致/不一致と感じたかを1から5の数字キーで回答するステップである(手順D)。
 以下、行動実験の実験結果を示す。
 図4は、ボタン押しの結果により分類した参加者の音声聞き分けの自信度と、ボタン押しの正誤の確率を示した図である。聞き分けの自信度は以下のように分類した。5(絶対一致)または1(絶対不一致)が押された場合を聞き分け自信度「高」とた。自信度が「高」であった確率は全体の試行のうち60.4%(864試行中の522試行)であった。4(多分一致)、3(分からない)、2(多分不一致)が押された場合を聞き分け自信度「低」とした。自信度が「低」であった確率は、全体の試行のうち39.6%(864試行中の342試行)であった。ボタン押しの正誤は音声と文字の一致/不一致と押されたボタンにより判定した。一致試行において5(絶対一致)または4(多分一致)が押された場合、および不一致試行において1(絶対不一致)または2(多分不一致)が押された場合を正とし、それら以外を誤とした。
 図4(a)は、聞き分け自信度が高い試行におけるボタン押しの正誤結果である。ほぼ全ての試行(92%)において正しいボタンが選択されたことが分かる。これは、聞き分け自信度が高い場合には、正しく音声を聞き分けられることを示している。この結果により、聞き分け自信度が高い場合は語音明瞭度が高いと評価できると言える。
 図4(b)は、聞き分け自信度が低い試行におけるボタン押しの正誤結果である。誤ったボタンが押された確率が高いことが分かる(42%)。これは、聞き分け自信度が低い場合には、異聴が発生しやすいことを示している。この結果により、聞き分け自信度が低い場合は語音明瞭度が低いと評価できると言える。
 なお、参加者ごとの異聴発生確率は、聞き分け自信度が低い場合に有意に高かった(p<.01)。
 以上、音声に対するユーザの聞き分け自信度に基づき語音明瞭度評価が実現できる可能性が行動実験によって明らかになった。これにより、ボタン押し以外の方法で聞き分け自信度が測定できれば、その指標に基づき回答入力なしの語音明瞭度評価が実現可能となる。本願発明者らは脳波の事象関連電位に着目し、脳波計測実験を実施して音声に対する聞き分け自信度の違いを反映する脳波成分が存在するかを調べた。以下、実施した脳波計測実験を説明する。
 2.脳波計測実験
 本願発明者らは、音声の聞き分け自信度と音声呈示後の事象関連電位との関係を調べるために、脳波計測実験を実施した。以下、図5から図9を参照しながら、実施した脳波計測実験の実験設定および実験結果を説明する。
 実験参加者は、行動実験と同一の大学・大学院生6名であった。
 本願発明者らは、右耳朶を基準にして、頭皮上のFz、Cz、Pz、C3、C4(国際10-20法)の位置に設けられた電極を用いて脳波を測定し記録した。図5は、国際10-20法の電極位置を示した図である。サンプリング周波数は200Hz、時定数は1秒とした。オフラインで1-6Hzのディジタルバンドパスフィルタをかけた。音声呈示に対する事象関連電位として、音声呈示を起点に-100msから1000msの波形を切り出した。事象関連電位の加算平均は、上記行動実験の、全ての条件(0dB・-25dB・-50dB)における参加者ごと語音ごとの聞き分け自信度に基づいて行った。
 図6は、脳波計測実験の実験手順の概要を示す。
 手順Xにおいて単音節の音声を呈示した。刺激語音は、行動実験と同様に「補聴器フィッティングの考え方」(小寺一興、診断と治療社、1999年、172頁)を参照して、相互に聞き取り間違いが多いとされるナ行/マ行のペア、ラ行/ヤ行のペア、カ行/タ行のペアから選択した。実験参加者には音声を聞いて対応する平仮名を思い浮かべるよう教示した。また、正常な聴力を有する参加者の、音声ごとの聞き分け自信度が分散するように、行動実験と同様に、周波数ゲインを加工した下記3条件の音声を呈示した。
 (1)0dB条件:聞き分けやすい音声として周波数ゲインの加工をしなかった。
 (2)-25dB条件:250Hz-16kHzの周波数のゲインを段々と-25dBまで調整(低減)した。
 (3)-50dB条件:250Hz-16kHzの周波数のゲインを段々と-50dBまで調整(低減)した。
 上述の手順Xを108回繰り返す実験を行った(108試行)。
 図7は、1試行分の手順を示すフローチャートである。図3と同じブロックについては同一の参照符号を付し、その説明は省略する。図3との差異は、ステップS13からステップS16がなく、実験参加者は明示的な行動を求められない点である。
 以下、脳波計測実験の実験結果を示す。
 図8は、音声呈示を起点としたPzにおける事象関連電位を、聞き分け自信度に基づき総加算平均した波形である。加算平均は、上記行動実験の、全ての条件(0dB・-25dB・-50dB)における参加者ごと語音ごとの聞き分け自信度に基づいて行った。図8の横軸は時間でその単位はms、縦軸は電位でその単位はμVである。図8に示されたスケールから明らかなとおり、グラフの下方向が正(陽性)に対応し、上方向が負(陰性)に対応している。-100msから0msの平均電位が0となるようにベースラインをそろえた。
 図8に示される破線は行動実験において聞き分け自信度が高かった場合、実線は聞き分け自信度が低かった場合の、電極位置Pzにおける事象関連電位の加算平均波形である。図8によれば、聞き分け自信度が高いことを示す破線に比べて、聞き分け自信度が低いことを示す実線には、潜時700msから900msに陽性成分が出現していることが分かる。
 参加者ごとの700msから900msの区間平均電位は、聞き分け自信度が高い場合は-0.47μV、自信度が低い場合には0.13μVであった。区間平均電位をt検定した結果、聞き分け自信度が低い場合において区間平均電位が有意に大きかった(p<.05)。
 これらの結果から、本願発明者らは、音声呈示を起点として潜時700msから900msの事象関連電位の陽性成分は聞き分け自信度を反映しており、当該陽性成分は聞き分け自信度の指標として利用可能である、という結論を導き出した。0msから1000msにおける全てのサンプリングごとにt検定を実施した結果、聞き分け自信度の違いによる有意差が30ms以上持続した時間帯は730msから770msおよび840msから915msのみであった。
 図9は、電極位置C3、Cz、C4における、音声呈示を起点とした事象関連電位の700msから900msの区間平均電位を聞き分け自信度ごとに示した図である。図9に示される黒丸線は聞き分け自信度が高かった場合、白丸線は聞き分け自信度が低かった場合の区間平均電位である。電極位置C3、Cz、C4それぞれにおいて自信度が高かった場合と低かった場合の区間平均電位のt検定を行った結果、いずれの部位においても有意差があった(p<.05)。
 図9によれば、電極位置Czにおいては、聞き分け自信度が高い場合に事象関連電位は陽性となり、低い場合には事象関連電位は陰性であることが分かる。事象関連電位の極性に着目すると、電極位置Pzで計測したとき(図8)と電極位置Czで計測したとき(図9)とでは、極性が反転していることが分かる。聴覚刺激に対する一般的な事象関連電位としてはP300成分が知られている。P300成分は電極位置CzとPzにおいて極性が逆転することはほとんどない。また、P300成分の潜時300ms付近と比較して本実験で得られた成分の潜時は700msから900msと異なることなどから、聞き分け自信度が低い場合に電極位置Pzにおいて惹起された今回の陽性成分はP300成分とは異なる成分である可能性が高い。以下の説明では主として電極位置Pzにおいて計測した脳波信号を利用する例を説明するが、電極位置をCzとする場合には本段落冒頭記載のように極性を逆にして読み替えればよい。なお、「P300成分」とは、「新生理心理学2巻」(宮田様監修、北大路書房、1997)14ページによると、一般的にはオドボール課題において標的刺激に対して惹起される、潜時300ms付近の事象関連電位の陽性成分である。
 さらに図9によれば、電極位置C3、Cz、C4において聞き分け自信度が高かった場合の区間平均電位である黒丸線と、聞き分け自信度が低かった場合の区間平均電位である白丸線とでは、電位分布(大小関係)が異なっていることが分かる。多重比較の結果、電位分布は有意に差があった(p<.05)。これにより、電極位置C3、Cz、C4における電位分布からも聞き分け自信度が判定可能であるといえる。
 上述の電極位置Pzにおける潜時700msから900msの陽性成分(図8)および電極位置C3、C4、Czにおける潜時700msから900msの特徴成分(図9)は、種々の方法によって識別可能である。たとえば潜時約700ms付近のピーク振幅の大きさを閾値処理する方法、典型的な上記成分の波形からテンプレートを作成してそのテンプレートとの類似度を算出する方法等を用いることができる。なお、閾値・テンプレートは予め保持した典型的なユーザのものを利用してもよいし、個人ごとに作成してもよい。
 また、今回の実験では音声呈示を起点とした事象関連電位に聞き分け自信度に特徴的な成分が出現することを確認するために6人の参加者のデータを40回程度ずつ加算平均した。しかし、特徴量抽出の方法(たとえば波形のウェーブレット変換)や識別方法(たとえばサポートベクターマシンラーニング)の工夫により非加算または数回程度の少数加算でも陽性成分の識別は可能である。
 本願明細書においては、事象関連電位の成分を定義するためにある時点から起算した所定時間経過後の時刻を、たとえば「潜時700msから900ms」と表現している。これは、700msから900msという特定の時刻を中心とした範囲を包含し得ることを意味している。このとき、700ms及び900msの境界は「潜時700msから900ms」に含まれる。「事象関連電位(ERP)マニュアル-P300を中心に」(加我君孝ほか編集、篠原出版新社、1995)の30ページに記載の表1によると、一般的に、事象関連電位の波形には、個人ごとに30msから50msの差異(ずれ)が生じる。したがって、「約Xms」や「Xms付近」という語は、Xmsを中心として30msから50msの幅がその前後(例えば、300ms±30ms、700ms±50ms)に存在し得ることを意味している。
 なお、上述の「30msから50msの幅」はP300成分の一般的な個人差の例であるが、上記潜時700msから900msの陽性成分はP300と比べて潜時が遅いためユーザの個人差がさらに大きく現れる。よって、より広い幅、たとえば100ms程度の幅であるとして取り扱うことが好ましい。
 以上のように、行動実験および脳波計測実験によって、本願発明者らは、(1)音声に対するユーザの聞き分け自信度に基づいて語音明瞭度を評価できること、(2)音声呈示を起点とした事象関連電位の潜時700msから900msの陽性成分が聞き分け自信度を反映することを発見した。これらを併せると、事象関連電位の陽性成分を指標として音声に対する聞き分け自信度を介して、聞きにくさの評価指標として利用可能である。図10は、本願発明者らによってまとめられた、陽性成分の有無と、聞き分け自信度および聞きやすさの対応関係を示す。この対応関係は、電極位置Pzの部位の陽性成分を例に作成されている。
 以下、本発明の実施形態にかかる補聴器の再調整装置を説明する。補聴器の再調整装置は、日常生活で補聴器を使用しているときに集音部から入力される会話音声によって惹起された脳波を計測し、会話音声の各音素を起点とした事象関連電位の潜時700msから900msの陽性成分の有無を用いて、各音素の聞きやすさの評価を行う。聞きにくい音素があった場合には、再調整装置は補聴器を再調整する。
 (実施形態1)
 以下、図面を参照しながら補聴器の再調整装置の実施形態を説明する。
 図11は、補聴器の再調整システム100の構成および利用環境を示す。補聴器の再調整システム100は、補聴器部101および補聴調整部102の2つの部分を備えている。補聴器部101は、補聴器の働きをする部分であり、集音部2と、補聴処理部3と、出力部4とを有している。補聴器部101、外界の音を集音部2によって集音し、補聴処理部3によってユーザ1の聞こえ具合に応じた補聴処理を行い、その結果を出力部4からユーザに出力する。
 図12は、再調整システム100が使用されるシーンの一例である。ユーザは補聴器101および再調整装置102が一体となった補聴器の再調整システム100を耳に装着している。図11の構成要素に対応する図12の構成要素には同じ参照符号を付している。たとえば、図11の集音部2は、補聴器につけられたマイク2に対応する。また、図11の出力部4はユーザに音を提示するスピーカ(レシーバ)に対応する。なお、図11の補聴処理部3は、補聴器の内部の図示されない信号処理回路(チップ回路)に対応する。
 図11の補聴調整部102は、補聴器部101の外部で追加的な処理を行う。補聴調整部102は、脳波計測部6と、音声切出部5と、聞こえ判定部7と、音素特定部8と、ゲイン調整部9とを有している。脳波計測部6はユーザ1の脳波を計測する。音声切出部5は集音部2にて集音された音情報から音声部分を抽出する。脳波計測部6によって計測された脳波と、音声切出部5にて特定された音情報を対応づけることで、それぞれの音情報に対する脳反応が計測される。その脳反応から、聞こえ判定部7は、聞こえやすさに関する脳波の特徴(実験とデータは説明済)を用いて聞こえを判定する。その後、聞こえの判定結果に関し、脳波の潜時ずれが原因で複数の文字に対して聞こえにくいと判定された場合には、音素特定部8により、そのあいまいさを解消する処理を行い、ゲイン調整部9によってそれぞれの聞こえにくさに対応する調整を実施する。この調整は補聴処理部3に対して行われ、以後の補聴器部101の補聴処理に反映される。
 図11の補聴調整部102は、図12に示す回路102などに対応する。より具体的に説明すると、図11の補聴調整部102の脳波計計測部6は、生体信号を増幅する回路である脳波計本体6a、電極6bおよび電極6cを有している。脳波は、頭部およびその周辺に装着された少なくとも2つの電極間の電位差を計測することにより、計測される。この事例では、補聴器本体101とユーザの耳とが接触する部分に、電極6bおよび6cが設置してある。最近は、性能や使用感の向上のため両耳に補聴器を同時に装着する場合もあり、この場合には脳波計測は両耳の間の電位を計測でき、脳活動をより計測しやすくなる。
 上述の脳波計測実験では電極を頭皮上に配置した。しかしながら、他の位置に電極を配置することも可能であると考えられる。図9に示したように聞き分け自信度が高い場合であっても低い場合であってもC3-Cz-C4の電位分布のパターンは反転している。よって、電極位置C3、C4よりもさらに外側の耳位置に電極を配置した場合でも聞き分け自信度の判定は可能であると考えられる。
 その他の補聴調整部102の構成要素は、主に信号処理を行う機能部分である。これらは、図13に示されるように、補聴器本体に内蔵された部品として実現される。部品とは、例えばDSP、メモリ等が想定される。以下、より詳しく説明する。
 図13は、本実施形態による補聴器の再調整システム100のハードウェアの構成を示す。補聴器の再調整システム100のハードウェアとして、補聴器部101の信号処理を行うCPU101a、RAM101b、ROM101dが設けられている。RAM101b内には処理のプログラム101cが格納されている。同様に、補聴調整部102の信号処理を行うCPU102a、RAM102b、ROM102dが設けられている。RAM102b内には処理のプログラム102cが格納されている。
 外部との入出力関係のデバイスとしては、集音部2としてマイク2aおよび音声入力回路2bが設けられ、出力部4としてスピーカ(レシーバ)4aおよび音声出力回路4bが設けられている。脳波計測部6に関しては、脳波計6a、電極6b、電極6cが設けられている。
 それぞれのデバイスは、バス100aによって相互に接続され、データの授受が可能である。例えば、集音部2で集音された音声の信号は、RAM101bに格納されたプログラム101cによってCPU101aで補聴処理がなされ出力部4に送られる。
 なお、補聴器の再調整システム100は、1組のCPU、RAM、ROMで構成されてもよいし、半導体回路にコンピュータプログラムを組み込んだDSP等のハードウェアとして実現されてもよい。そのようなDSPは、1つの集積回路で上述のCPU、RAM、ROM、音声の入出力回路等の機能を全て実現できる。
 また、上述のコンピュータプログラム101c、102cは、CD-ROM等の記録媒体に記録されて製品として市場に流通され、または、インターネット等の電気通信回線を通じて伝送され得る。
 次に、このような補聴器の再調整システム100における処理について、図14~22を用いて詳細に説明する。
 図14(a)は、通常の補聴器で行われる処理の手順を示し、図14(b)は、本実施形態による補聴器の再調整システム100の処理を組み合わせたときの手順の概要を示す。概要のみの説明で不十分なステップについては、より詳細なフローチャートに基づいて後に説明する。
 図14(a)は補聴器の処理の流れの概要である。
 ステップS20において、集音部2は外部の音を集音する。
 ステップS30において、補聴処理部3は補聴処理を行う。補聴処理とは、ステップS20で収録された音を周波数毎のパワーに分解し、それぞれの周波数毎に所定の増幅を行い、再度音声に戻す処理である。この周波数毎に所定の増幅を行うことを本明細書では「補聴処理」と呼び、周波数毎にどの程度のゲインで調整すべきかの所定の値を変更することを「ゲイン調整」と呼ぶ。
 ステップS40において、出力部4は、補聴処理が行われた結果をユーザに出力する。具体的には出力部4が調整後の音声を出力することで、ユーザ1は、調整する前に比べて聞きやすい音声として聞くことができる。
 上述の処理に対して、図14(b)は再調整システムの処理の流れの概要を示す。図中で補聴器の処理と同様の処理が行われるステップには図14(a)で使用した番号と同じ番号を付与し、その説明を省略する。ここで補聴器処理と異なる部分は、補聴器の処理ステップS20とステップS30に挟まれたステップS50~S90の部分で、ここで補聴調整処理が行われる。
 ステップS50では、音声切出部5は音声信号を切り出す。本願発明者らによる上述の脳波実験では、音声は一音ずつ呈示された。しかしながら、ユーザの日常的な場面では連続音声を聞くことになるため、音声信号の切り出しが必要になる。
 ステップS60では、脳波計測部6は、脳波を計測する。脳波計は近年小型化が進み、低消費電力化も進んでいるため、補聴器に脳波計が組み合わされた機器も実現可能である。小型化された脳波計の電極の位置は、補聴器の再調整システム100が片耳を利用して装着されるタイプであれば、たとえば補聴器と頭部の皮膚が接触する部分に複数設置すればよい。または、補聴器の再調整システム100が両耳を利用して装着されるタイプであれば両耳で電極設置が可能である。後者の場合には両耳間の脳波も使用できる。また、ヘッドフォン型のような形状であれば頭部の脳波も計測可能になる。
 計測される脳波は、様々な情報を含むと考えられるが、事象関連電位のように刺激呈示と関係付けることで、音声呈示に対する誘発電位の傾向をつかむことができる。
 ステップS70では、聞こえ判定部7は、音声切出部5にて切り出された音声信号に対応する脳波信号を抽出する。各脳波成分を抽出することで、聞こえ判定部7は、聞こえ具合の判定を行う。
 ステップS80では、音素特定部8は、聞こえ判定部7の出力結果のうち、聞きにくかった音声の候補が複数存在していた場合には本当に聞きにくかった部分を特定する。
 ステップS90では、ゲイン調整部9は、聞きにくい音素または音節に対するゲインを調整する。一般的に補聴器の個別の調整方法は特定の音素には効果があるが他の音素には悪影響を及ぼす等、すべての音に対する調整は難しく、聞きにくい音素を対象にした調整が有効である。
 次に、上記フローのうち、発明の内容と特に関連が深い音声信号の切り出し処理(ステップS50)、聞こえ判定処理(ステップS70)、音素特定処理(ステップS80)、および、ゲイン調整処理(ステップS90)については、さらに個別のフローチャートと図面によりその処理の詳細を説明する。
 図15は音声切出部5の処理の流れの詳細を示し、図16はその処理の説明図を示す。以下、図15のフローチャートに沿って、必要に応じて図16と対応付けながら説明する。
 ステップS51では、音声切出部5は集音部2により記録された音声信号を取得する。収録音声は一定の周期(タイミング)ごとに一定の長さで音声切出部5に取り込まれる。図16に示す例では、音声切出部5は、「収録音声」に示される収録音声信号51を取り込む。
 ステップS52では、音声切出部5は、収録音声信号51を音響処理52(図16)によって音素系列に変換する。変換後の音素系列に対して、ステップS53の抽出処理が行われる。
 ステップS52における音響処理とは、音声データの中にどのような音素や音節が含まれているかを検出する処理であり、音声認識の分野では、前処理で用いられる。具体的には、本実施形態における音響処理は、記憶してある各音素や音節の音響データ(例えば標準的な音声波形やその特徴量)を元に現在のデータと比較演算を行って、現在の発話内容を認識する処理である。
 ステップS53では、音声切出部5は、ステップS52の音響処理の結果を受けて音素または音節の系列を抽出し出力する。図16は、音響処理52の結果、[hai/do/ti/ra/de/mo/i/i]という音素列53が抽出された例を示している。本願明細書では、音節レベルで区切った音素が抽出されている。しかしながら、抽出の細かさは適宜変更してもよい。たとえば[h/a/i/d/o/u/m/o]などと音素レベルで区切っても良い。また、もっと大きな単位として単語レベルや無音区間ごとで区切っても、上記と同様な処理が可能になる。単語の認定は、たとえば音声切出部5が音素列の並びと単語とを対応付けた辞書データを保持しておき、音素列53に基づいて辞書データを参照することにより、実現してもよい。
 ステップS54では、音声切出部5は、出力音素列53として抽出された各音節がどの時刻に発話されたかを対応付け、各々を対にして記憶する。
 このような処理によって、最終的には現在発話されている音節情報とその音節が発話された時刻とを対応付けた情報が得られる。この対応関係を元にして、本明細書の冒頭で説明した脳波実験(事象関連電位計測実験)の知見が活用できるようになる。具体的には音節ごとに脳波を切出して個別の音節に対する脳波特徴を判断することで、聞こえの判定ができる。
 次に、図14(b)のステップS70に示されている聞こえ判定処理を詳細に説明する。聞こえ判定処理は、聞こえ判定部7(図11)によって行われる。図17は、聞こえ判定部7が行う処理の手順を示す。また図18は、聞こえ判定処理のデータ処理の例を示す。
 図17のステップS71では、聞こえ判定部7は、音声切出部5から音節情報とそれに対応した時刻情報71(図18)とを受け取る。時刻情報71によれば、各音素の発声時点を特定することができる。
 ステップS72では、聞こえ判定部7は、脳波計測部6から脳波データを受け取った後に、音節と時刻の対応情報71に含まれる時刻を起点に事象関連電位を抽出する。事象関連電位はある事象(この場合はある音節の発音)と関連して計測される脳波情報であり、音節が発生された時点から所定区間(例えば-100msから1000msの区間72a)の脳波を切り出すことにより、事象関連電位が得られる。脳波は各音節に対してそれぞれ切り出される。図18には、切り出された事象関連電位72bが示されている。
 ステップS73では、聞こえ判定部7は、切出された事象関連電位72bに対して解析のための脳波特徴を抽出する。今回注目している脳波特徴は例えば800ms±100msの特徴陽性成分であり、解析の特徴量は例えば潜時700msから900msの最大振幅や区間平均電位、その他Waveletの係数等が使用される。
 ステップS74では、聞こえ判定部7は、ステップS73で得られた脳波特徴について、聞こえにくさに関係する成分(例えばPzから脳波を計測した場合には後期陽性成分、LPP(Late Positive Potential)とも呼ばれる。)が含まれていたかを判別する。LPPが含まれたと判定された場合には、ステップS75に進み、含まれないと判定された場合にはステップS76に進む。
 この判定方法の一例を挙げると、最大振幅や区間平均電位と所定の閾値とを比較してLPPが含まれたか否かを判定すればよい。または、脳波特徴と、潜時700msから900msの典型的な陽性成分信号の波形から作成した脳波波形の所定のテンプレートとの類似度(たとえば相関係数)によって類似しているか否かを判定してもよい。図18には、切り出された事象関連電位72bと、聞き難いときのLPPの波形73とを比較することが模式的に示されている。比較の結果、類似している場合を「陽性成分あり」と判定し、類似していない場合を「陽性成分なし」と判定しても良い。所定の閾値やテンプレートは、予め保持した一般的なユーザの陽性成分の波形から算出・作成しても良いし、個人ごとの陽性成分の波形から算出・作成しても良い。
 ステップS75では、聞こえ判定部7は、「聞こえにくい」と判定する。
 ステップS76では、聞こえ判定部7は、「聞こえやすい」と判定する。
 ステップS77では、聞こえ判定部7は、聞こえの結果の保存をする。聞こえの結果は例えば判定結果77(図18)のようにテーブルに格納される。横軸には音節が並び、テーブル内にはその音節に対しては、判定結果が格納される。図18に記載のように、例えば、hai、raには聞こえやすいという結果が格納され、do、tiには聞こえにくいという結果が格納されている。
 このような処理を経て聞こえ判定の処理がなされ、通常の連続発話に対しても各音節に対する聞こえが評価される。
 しかし、ここでどの文字が聴きにくかったかに関する課題がある。この課題は、音節の移り変わりの速さ(発話速度)と、脳波の特徴区間の幅とを比較すると、脳波の特徴区間の幅の方が広いことに起因して発生すると考えられる。
 以下、具体的に説明する。標準的な発話速度はおよそ8~12モーラ(≒文字)程度であり、例えば日本語の10モーラ/秒の発話速度は標準的にありえる。本実施形態の事例では、1音節はほぼ1文字に対応しているので、この場合は、ある音節が発話されて次の音節が発話されるまでの時間は100ms前後になると想定される。
 一方、本願発明者らが実施した脳波計測実験によれば聞こえにくさに関連した脳波の特徴は700ms~900msに現れており、事象関連電位の分野ではかなり遅い潜時帯である。通常、事象関連電位の潜時の誤差は遅い潜時帯にいくほど大きくなる。本実施形態の事例では、対象とする事象関連電位の潜時の誤差は±100ms程度が想定される。実際に、本願発明者らが実施した脳波実験においても有意差が確認された区間は730ms~915msと幅が広いという特徴が認められた(図8)。
 上記の両方の特性から考えると、一回の「聞こえにくい」を感じる主観的現象が発生した場合には、脳波の潜時の誤差からすると、複数(例えば2、3、4)程度の連続した音素または音節に対して脳波特徴成分が含まれると判定される可能性が高い。この場合には、例えば聞こえ判定結果77のように複数の連続した音節(do、ti)に対して聞こえにくいという処理結果になってしまうが、実際にはどの音節が原因かを突き止められた方がより効果的な補聴器の調整が可能になる。聞こえにくいと判定された音素または音節が複数検出された場合には、時間的に前に現れた音(最初に現れた音)が聞こえにくかった音であるとして、後述する調整処理の対象として取り扱ってもよい。
 一般的に補聴器の最終段階の調整における個別の調整方法は、音素ごとに周波数特性のパターンが異なるため特定の音素には効果がある。しかしながら他の音素には悪影響を及ぼす等、すべての音に対する調整は難しく、聞きにくい音素が絞りこめた方が正確な調整が可能という特性を持っている。
 このため聞こえ判定処理の後に、複数の聞こえにくい音節の候補が得られた場合には、どの音節が最も聞きにくかったかを特定する必要がある。これを本実施形態においては音素特定部8が担当し、本願発明者が着目する聴覚上の特性を活用した音素特定部8の処理を説明する。
 そこで次に、図14(b)のステップS80に示されている音素特定処理を詳細に説明する。音素特定処理は、音素特定部8(図11)によって行われる。
 図19は、音素特定部8が行う処理の手順を示す。また、図20は音素特定の処理の原理となる聴覚上の特性のデータを示す。以下、図19のフローチャートに沿って、途中で図20の聴覚原理と対応付けながら説明する。
 ステップS81では、音素特定部8は、聞こえ判定部7から音節と聞こえの評価結果を受け取る。
 ステップS82では、音素特定部8は、まず聞こえの評価結果の中に「聞こえにくい」が存在するかどうかを判定する。もしも「聞こえにくい」が存在しない場合には、ステップS83に進み、「聞こえにくい」音節はなかったと出力して処理を終了する。「聞こえにくい」が存在した場合には、ステップS84に進む。
 ステップS84では、音素特定部8は、「聞こえにくい」という評価結果が連続するかについて判断する。「聞こえにくい」という評価結果が連続しない場合には、ステップS85に進み、「聞こえにくい」音節をその結果として出力して処理を終了する。もしも、「聞こえにくい」という評価結果が連続した場合には、ステップS86に進む。ステップS86に進む場合には、脳波の潜時と発話速度の関連から、音節の特定にあいまいさが残っていると判断される。
 ステップS86では、音素特定部8は、連続した「聞こえにくい」音節のうち、語頭に最も近い音節を、最も聞こえにくかった音節として選定し、それを結果として出力して終了する。例えば図18の聞こえ判定結果77においては、doとtiが候補として挙げられている。音素特定部8は、これらのうちdoを最終結果として決定することになる。
 この処理が有効な理由を図20の聴覚原理とともに説明する。
 図20は、無意味語3音節の第1音、第2音、第3音の明瞭度曲線を示す。この明瞭度曲線は、小寺一興、「補聴の進歩と社会的応用」、診断と治療社、2006年、67ページから引用した。この明瞭度曲線は、正常聴力者8名に対する語音明瞭度の評価結果である。横軸は自覚閾値上の検査音レベルで被験者に聞かせる音の大きさ(単位:dBSL)を示し、縦軸は語音明瞭度(単位:%)である。評価結果は、検査音レベルを10~40デシベルの4段階に分け、そのそれぞれのレベルにおいて、第1音、第2音および第3音の明瞭度がそれぞれプロットされて表されている。
 このグラフによれば3音節語において第1音がもっとも語音明瞭度が低く、その後第2音、第3音の順に明瞭度が向上することが読み取れる。
 この結果は、前後の関係が使えない無意味語においても第1音が最も聴きにくい音節になる可能性があるという知見を示している。本願発明は、日常生活の対話シーンでの発話における聞き取り困難な音節を特定することを目的としている。本願発明者らは、この目的に対しても、脳波処理の結果、聞き取りにくいと判定される候補が連続して複数存在する場合には最も先頭に近い音節が最も聞き取りにくかったと判定するのが有効であると着想した。実験条件では無意味語での実験であるが日常会話では、前後の文字の関係等から単語を推定することも行われ、第1音はその前後の関係が最も活用しにくい点を考慮しても文頭に近い音節を選択するのは妥当であると考えられる。
 なお、聞き取りにくい候補には、語頭の音が含まれる場合も含まれない場合も想定される。図20の知見から考えると、語頭に近い音の方がより聴き難い傾向が見られるため、語頭に近い音が選択されることは妥当である。
 また、連続音声に対してこの実験結果との関係性については、次のように考えられる。音声データは、対話文においても短くても無音区間が数多く存在し、その無音区間を切れ目として発話を捉えると連続音声も複数の単語レベルの単発的な発声の繰り返しと見なすことができる。脳波の潜時も±100ms程度であることも考えても、数百ミリ秒の無音区間は連続音声にも見られるので、単語等の連続として差し支えないという仮定を支持すると考えた。
 最後に、補聴器の再調整における最後のステップであるゲイン調整処理を説明する。ゲイン調整処理は、ゲイン調整部9(図11)によって行われる。具体的には、音素特定部8にて特定された「聞こえにくい」音節が存在する場合には、音素特定部8は、図21のようなテーブルを参照して、特定の補聴処理などを導入することで、聞こえにくい音のみの改善を行う。
 図21のテーブルは、聞こえにくいとされた音節が含んでいる子音の種類によって、行うべき調整方法が異なることを示した例である。ゲイン調整部9は、この表を内部のメモリまたはバッファ(図示せず)に保持し、この表に基づいて、子音部の伸長または子音部の伸長圧縮を適用する。この表は、聞こえにくい子音と、それに対応した再調整処理について補聴器関連の研究の蓄積結果(例えば、小寺一興、「補聴の進歩と社会的応用」、診断と治療社、2006年、78ページなど。)に基づいて予め作成されたものである。
 例えば無声子音hや有声子音d、gなどに対しては子音部伸長という処理が有効であり、無声子音tsなどに対しては子音部伸長圧縮という処理が有効である。この表に示す規則に基づいて再調整を行うことにより、聞こえにくい子音のみの調整が行われる。
 以上、説明したように本発明によれば、ユーザの聞こえにくいと感じたタイミングとその音節を脳波解析により特定し、特定された音節に適した再調整が行える。これにより、ユーザは聞こえにくさの状況を記憶して補聴器販売店まで出向いて専門家に説明して再調整を受けるという手間が不要になり、聞こえにくいと思ったその場で再調整がされてユーザの負担が軽減できる。
 上述の実施形態の説明では、電極位置は、たとえば国際10-20法におけるPz等であるとした。しかしながら、Pzの位置に対応する電極位置を各ユーザにおいて厳密に特定することは困難である。よって、Pzと思われる位置(Pz周辺位置)であればよい。Pz周辺位置であっても事象関連電位は正しく計測される。電極位置Cz等についても同様である。
 (変形例)
 以下、上述の実施形態にかかる補聴器の再調整システム100にかかる変形例を説明する。
 まず、補聴器の再調整装置100は、補聴器機能を有しない形で提供されても良い。具体的には図11における補聴調整部102のみが提供されてもよい。このとき、補聴器部101は通常の補聴器である。ただし、補聴器部101は、ゲイン調整を外部のPC等から行うためのインタフェースを備えている。補聴調整部102の音声切出部5は、このインタフェースを介して補聴器部101の集音部2から音声の情報(音声信号)を受け取る。そして、補聴調整部102から補聴器部101の補聴処理部3にゲイン調整の指示が渡される。なお、補聴器部101がゲイン調整のみを受け取るタイプであってもよい。このときは、補聴調整部102は別途、集音部と同等の機能を備えていればよい。
 また、補聴調整部102からゲイン調整部9を省略し、評価のために使用することも可能である。さらに、補聴調整部102は、評価結果を外部に設けられたゲイン調整器(図示せず)に出力してもよい。ゲイン調整器はゲイン調整部9と同等の機能を有していればよい。
 さらに、補聴調整部102から脳波計測部6を省略してもよい。脳波計測部6を補聴調整部102の外部に設け、補聴調整部102と接続してもよい。
 図22は、変形例にかかる補聴評価装置112の構成を示す。補聴評価装置112と補聴調整部102(図11)との相違点は、補聴評価装置112には図11のゲイン調整部9が設けられていないこと、および、集音部2を備えていることにある。他の構成は共通するため、各構成要素の説明は省略する。
 この構成によれば、評価データの収集を行うことが可能である。図12に示す例との対比では、補聴評価装置112には出力部4は必ずしも必須ではなくなり、また補聴評価装置112は、補聴調整部102のように小型化される必要もない。
 また、図22に示す補聴評価装置112の構成から、集音部2および/または脳波計測部6が省略されてもよい。集音部2および/または脳波計測部6を外部に設け、それらと補聴評価装置112とを接続することにより、図22に示す補聴評価装置112と同じ動作を実現することも可能である。たとえば、補聴評価装置112を、高性能なマイクと、サイズがより大きな、医療用・研究用の脳波計と、PCとで構成することも可能である。小型化のための技術開発は不要であり、かつ、既存のマイク、脳波計、PCおよびコンピュータプログラムを利用して実現できるため、低コストで実現できる。
 使用状況のイメージとしては、例えば補聴器店内で補聴器の調整を行うフィッターが、ユーザにこの補聴評価装置112を装着し、対話を行っている途中の脳波から聞こえを評価する形式が考えられる。音素特定部8の機能により、対話中のどの部分でユーザは聞こえにくさを感じたかを示す評価結果の情報を内部メモリ(図示せず)に蓄積できる。または、記録された情報は、図示されないモニタに出力され、また別に設けられたゲインを聴視するためのゲイン調整器に出力される。なお、補聴評価装置112は評価結果の情報をリアルタイムで出力してもよい。この情報に基づいて、フィッターは適切なゲイン調整を実施できる。この方法によれば、全ての聞こえに対する自動ゲイン調整方法が確立されていない段階においても、ユーザが実際に感じる聞こえにくさに応じて補聴処理の調整が可能になる。
 また、補聴評価装置112は、補聴器店内で調整を行う以外にも、例えばユーザが普段生活を行う職場や公共の場所や自宅でも利用され得る。たとえば補聴器を購入する前に、補聴器店で補聴評価装置112をユーザに貸し出してもよい。そして、ユーザが日常生活を通常通りに送ってもらう中で、補聴評価装置112において脳波計測がなされ、どのような状況のどの対話に対してユーザが聞こえにくさを感じたかを記録して蓄積しておく。補聴器店のフィッターは、その蓄積データを参照して最適な形式の補聴器やゲイン調整を推薦できる。
 本発明の補聴器の再調整装置は、補聴器ユーザが日常的に遭遇することが想定される聞こえにくさを脳波によって検出することで、その場での再調整を可能にする。このため、補聴器を使用する場面で広く利用可能である。
 2 集音部
 3 補聴処理部
 4 出力部
 5 音声切出部
 6 脳波計測部
 7 聞こえ判定部
 8 音素特定部
 9 ゲイン調整部
 10 蓄積部
 100 補聴器の再調整システム
 101 補聴器部
 102 補聴調整部

Claims (12)

  1.  周囲の音を集音し、音声信号を出力する集音部と、
     前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、
     ユーザの脳波信号を計測する脳波計測部と、
     前記脳波計測部で計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定する聞こえ判定部と、
     前記聞こえ判定部において複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定する音素特定部と、
     前記音素特定部で特定された前記音素または音節に対して、前記音素の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で前記音素または音節のゲインを調整するゲイン調整部と
     を備えた、補聴器の調整装置。
  2.  前記聞こえ判定部は、前記事象関連電位のうち、前記音素または音節が発声された時刻を起点として800ms±100msにおける事象関連電位に所定の特徴成分が含まれているか否かに基づいて前記音素または音節に対する聞こえにくさを判定する、請求項1に記載の調整装置。
  3.  前記脳波計測部は、前記ユーザの国際10-20法におけるPz周辺に設置された電極を利用して、前記脳波信号を計測する、請求項2に記載の調整装置。
  4.  前記聞こえ判定部は、前記事象関連電位に陽性成分が含まれているときは前記音素または音節が聞こえにくいと判定する、請求項3に記載の調整装置。
  5.  前記脳波計測部は、前記ユーザの国際10-20法におけるCz周辺に設置された電極を利用して、前記脳波信号を計測する、請求項2に記載の調整装置。
  6.  前記聞こえ判定部は、前記事象関連電位に陰性成分が含まれているときは前記音素または音節が聞こえにくいと判定する、請求項5に記載の調整装置。
  7.  前記ゲイン調整部は、前記音素特定部で特定された音素の種類に応じて、複数種類のゲイン調整方法のいずれかから、前記音素の種類に応じたゲイン調整方法を選択する、請求項1に記載の調整装置。
  8.  周囲の音を集音する集音部で集音された周囲の音の音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、
     ユーザの脳波信号を計測する脳波計測部で計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音声に対する聞こえにくさを判定する聞こえ判定部と、
     前記聞こえ判定部において複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定する音素特定部とを備え、
     前記音素特定部で特定された音素の情報を出力する、補聴器の調整装置。
  9.  前記音素特定部で特定された音素の情報を、音素のゲインを調整するゲイン調整部に出力する、請求項8に記載の調整装置。
  10.  周囲の音を集音し、音声信号を出力する集音部と、
     前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力する音声切出部と、
     ユーザの脳波信号を計測する脳波計測部と、
     前記脳波計測部で計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定する聞こえ判定部と、
     前記聞こえ判定部において複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定し、特定した結果を蓄積する音素特定部と
     を備えた、補聴評価装置。
  11.  周囲の音を集音し、音声信号を出力するステップと、
     前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力するステップと、
     ユーザの脳波信号を計測するステップと、
     計測された脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定するステップと、
     前記判定するステップにおいて複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定するステップと、
     特定された前記音素または音節に対して、前記音素または音節の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で前記音素または音節のゲインを調整するステップと
     を包含する、補聴器の調整方法。
  12.  コンピュータによって実行されるコンピュータプログラムであって、
     前記コンピュータプログラムは、前記コンピュータに対し、
     集音された周囲の音の音声信号を受け取るステップと、
     前記音声信号に含まれている音素または音節の情報を利用して、前記音素または音節が発声された時刻を特定する時刻情報を出力するステップと、
     計測されたユーザの脳波信号を受け取るステップと、
     前記脳波信号から取得される、特定した前記音素または音節が発声された時刻を起点とした事象関連電位に基づき、前記音素または音節に対する聞こえにくさを判定するステップと、
     前記判定するステップにおいて複数の音素または音節に対して聞こえにくいと判定された場合に、前記複数の音素または音節のうち時間的に前に現れた音素または音節が聞きにくかったと特定するステップと、
     特定された前記音素または音節に対して、前記音素または音節の種類に応じてゲイン調整方法を決定し、決定したゲイン調整方法で前記音素または音節のゲインを調整するステップと
     を実行させる、補聴器の調整のためのコンピュータプログラム。
PCT/JP2010/004359 2009-07-03 2010-07-02 補聴器の調整装置、方法およびプログラム WO2011001694A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800037241A CN102265335B (zh) 2009-07-03 2010-07-02 助听器的调整装置和方法
JP2010543732A JP4769336B2 (ja) 2009-07-03 2010-07-02 補聴器の調整装置、方法およびプログラム
US13/085,806 US9149202B2 (en) 2009-07-03 2011-04-13 Device, method, and program for adjustment of hearing aid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009159115 2009-07-03
JP2009-159115 2009-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/085,806 Continuation US9149202B2 (en) 2009-07-03 2011-04-13 Device, method, and program for adjustment of hearing aid

Publications (1)

Publication Number Publication Date
WO2011001694A1 true WO2011001694A1 (ja) 2011-01-06

Family

ID=43410780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004359 WO2011001694A1 (ja) 2009-07-03 2010-07-02 補聴器の調整装置、方法およびプログラム

Country Status (4)

Country Link
US (1) US9149202B2 (ja)
JP (1) JP4769336B2 (ja)
CN (1) CN102265335B (ja)
WO (1) WO2011001694A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108128A1 (ja) * 2011-02-10 2012-08-16 パナソニック株式会社 脳波記録装置、補聴器、脳波記録方法およびそのプログラム
WO2013017169A1 (en) * 2011-08-03 2013-02-07 Widex A/S Hearing aid with self fitting capabilities
WO2013161189A1 (ja) * 2012-04-24 2013-10-31 パナソニック株式会社 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2581038T3 (en) 2011-10-14 2018-02-19 Oticon As Automatic real-time hearing aid fitting based on auditory evoked potentials
KR101368927B1 (ko) * 2012-01-03 2014-02-28 (주)가온다 오디오 신호 출력 방법 및 장치, 오디오 신호의 볼륨 조정 방법
JP6167904B2 (ja) 2012-04-24 2017-07-26 パナソニックIpマネジメント株式会社 語音弁別能力判定装置、語音弁別能力判定システム、補聴器利得決定装置、語音弁別能力判定方法およびそのプログラム
EP2560412A1 (en) 2012-10-08 2013-02-20 Oticon A/s Hearing device with brain-wave dependent audio processing
US9933990B1 (en) * 2013-03-15 2018-04-03 Sonitum Inc. Topological mapping of control parameters
CN103816007B (zh) * 2013-11-22 2016-04-06 刘志勇 一种基于脑电频域特征指标化算法的耳鸣治疗设备及方法
US10037712B2 (en) * 2015-01-30 2018-07-31 Toyota Motor Engineering & Manufacturing North America, Inc. Vision-assist devices and methods of detecting a classification of an object
US10157607B2 (en) 2016-10-20 2018-12-18 International Business Machines Corporation Real time speech output speed adjustment
EP3711306B1 (en) * 2017-11-15 2024-05-29 Starkey Laboratories, Inc. Interactive system for hearing devices
TWI669709B (zh) * 2018-07-17 2019-08-21 宏碁股份有限公司 電子系統及音訊處理方法
US11228849B2 (en) 2018-12-29 2022-01-18 Gn Hearing A/S Hearing aids with self-adjustment capability based on electro-encephalogram (EEG) signals
DK3675525T3 (da) * 2018-12-29 2023-08-14 Research Foundation Of The City Univ Of New York Rfcuny Høreapparater med selvjusteringsevne baseret på elektroencefalogram (EEG) signaler
JP7189033B2 (ja) * 2019-01-23 2022-12-13 ラピスセミコンダクタ株式会社 半導体装置及び音出力装置
CN113286243A (zh) * 2021-04-29 2021-08-20 佛山博智医疗科技有限公司 一种自测言语识别的纠错系统及方法
CN113286242A (zh) * 2021-04-29 2021-08-20 佛山博智医疗科技有限公司 分解言语信号修饰音节提升语音信号清晰度的装置
CN116156401B (zh) * 2023-04-17 2023-06-27 深圳市英唐数码科技有限公司 基于大数据监测的助听设备智能检测方法、系统和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105399A (ja) * 1992-09-24 1994-04-15 Hitachi Ltd 聴覚補償装置
JPH09182193A (ja) * 1995-12-27 1997-07-11 Nec Corp 補聴器
JP2007202619A (ja) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology 脳活動解析方法および装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225282B1 (en) * 1996-01-05 2001-05-01 Genentech, Inc. Treatment of hearing impairments
JP3961616B2 (ja) 1996-05-22 2007-08-22 ヤマハ株式会社 話速変換方法および話速変換機能付補聴器
JP2904272B2 (ja) 1996-12-10 1999-06-14 日本電気株式会社 ディジタル補聴器、及びその補聴処理方法
WO2001087147A2 (en) 2000-05-19 2001-11-22 Michael Sasha John System and method for objective evaluation of hearing using auditory steady-state responses
JP3482465B2 (ja) 2001-01-25 2003-12-22 独立行政法人産業技術総合研究所 モバイルフィッティングシステム
JP4145507B2 (ja) 2001-06-07 2008-09-03 松下電器産業株式会社 音質音量制御装置
CA2452945C (en) * 2003-09-23 2016-05-10 Mcmaster University Binaural adaptive hearing system
JP4125362B2 (ja) * 2005-05-18 2008-07-30 松下電器産業株式会社 音声合成装置
CN101223571B (zh) * 2005-07-20 2011-05-18 松下电器产业株式会社 音质变化部位确定装置及音质变化部位确定方法
JP4064446B2 (ja) 2005-12-09 2008-03-19 松下電器産業株式会社 情報処理システム、情報処理装置および方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105399A (ja) * 1992-09-24 1994-04-15 Hitachi Ltd 聴覚補償装置
JPH09182193A (ja) * 1995-12-27 1997-07-11 Nec Corp 補聴器
JP2007202619A (ja) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology 脳活動解析方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOTA TAKANO ET AL.: "The Study of Auditory Recognition and Event-Related Potentials", IEICE TECHNICAL REPORT, vol. 96, no. 501, 25 January 1997 (1997-01-25), pages 155 - 161 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108128A1 (ja) * 2011-02-10 2012-08-16 パナソニック株式会社 脳波記録装置、補聴器、脳波記録方法およびそのプログラム
JP5042398B1 (ja) * 2011-02-10 2012-10-03 パナソニック株式会社 脳波記録装置、補聴器、脳波記録方法およびそのプログラム
CN103270779A (zh) * 2011-02-10 2013-08-28 松下电器产业株式会社 脑电波记录装置、助听器、脑电波记录方法以及其程序
US9232904B2 (en) 2011-02-10 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Electroencephalogram recording apparatus, hearing aid, electroencephalogram recording method, and program thereof
WO2013017169A1 (en) * 2011-08-03 2013-02-07 Widex A/S Hearing aid with self fitting capabilities
WO2013161189A1 (ja) * 2012-04-24 2013-10-31 パナソニック株式会社 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム
JPWO2013161189A1 (ja) * 2012-04-24 2015-12-21 パナソニックIpマネジメント株式会社 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム
US9712931B2 (en) 2012-04-24 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Hearing aid gain determination system, hearing aid gain determination method, and computer program

Also Published As

Publication number Publication date
CN102265335B (zh) 2013-11-06
JPWO2011001694A1 (ja) 2012-12-13
CN102265335A (zh) 2011-11-30
US20110188664A1 (en) 2011-08-04
US9149202B2 (en) 2015-10-06
JP4769336B2 (ja) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4769336B2 (ja) 補聴器の調整装置、方法およびプログラム
JP4690507B2 (ja) 語音明瞭度評価システム、その方法およびそのプログラム
JP4638558B2 (ja) 語音明瞭度評価システム、その方法およびそのコンピュータプログラム
JP5144835B2 (ja) うるささ判定システム、装置、方法およびプログラム
Divenyi et al. Audiological correlates of speech understanding deficits in elderly listeners with mild-to-moderate hearing loss. I. Age and lateral asymmetry effects
JP5002739B2 (ja) 聴力判定システム、その方法およびそのプログラム
JP5042398B1 (ja) 脳波記録装置、補聴器、脳波記録方法およびそのプログラム
Lawson et al. Speech audiometry
JP5144836B2 (ja) 語音聴取の評価システム、その方法およびそのプログラム
US8849391B2 (en) Speech sound intelligibility assessment system, and method and program therefor
WO2021035067A1 (en) Measuring language proficiency from electroencephelography data
RU2743049C1 (ru) Способ доврачебной оценки качества распознавания речи, скрининговой аудиометрии и программно-аппаратный комплекс, его реализующий
JP2007114631A (ja) 情報処理装置、情報処理方法、およびプログラム
Narasimhan et al. Effect of age, gender and vowel type on vowel space area in sinhala speakers
Plante-Hébert et al. Electrophysiological Correlates of Familiar Voice Recognition.
Liu et al. Psychometric functions of vowel detection and identification in long-term speech-shaped noise
Kurkowski et al. Phonetic Audiometry and its Application in the Diagnosis of People with Speech Disorders
Yamamoto et al. GESI: Gammachirp Envelope Similarity Index for Predicting Intelligibility of Simulated Hearing Loss Sounds
Faulkner et al. The TIDE project OSCAR
Kumar et al. Speech Identification Test in Telugu: Considerations for Sloping High Frequency Hearing Loss
Gengel et al. Research on Frequency Transposition for Hearing Aids. Final Report.
Hiroya et al. Japanese native speakers discriminate English vowel formant frequencies better than English native speakers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003724.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010543732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793866

Country of ref document: EP

Kind code of ref document: A1