WO2013161189A1 - 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム - Google Patents

補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム Download PDF

Info

Publication number
WO2013161189A1
WO2013161189A1 PCT/JP2013/002287 JP2013002287W WO2013161189A1 WO 2013161189 A1 WO2013161189 A1 WO 2013161189A1 JP 2013002287 W JP2013002287 W JP 2013002287W WO 2013161189 A1 WO2013161189 A1 WO 2013161189A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
hearing aid
frequency
unit
time
Prior art date
Application number
PCT/JP2013/002287
Other languages
English (en)
French (fr)
Inventor
信夫 足立
幸治 森川
小澤 順
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013540917A priority Critical patent/JP6041271B2/ja
Priority to CN201380001393.1A priority patent/CN103548364A/zh
Publication of WO2013161189A1 publication Critical patent/WO2013161189A1/ja
Priority to US14/137,802 priority patent/US9712931B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/38Acoustic or auditory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • A61B5/125Audiometering evaluating hearing capacity objective methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Definitions

  • This application relates to hearing aid fitting technology. More specifically, it relates to a system, method and program for determining the sound gain of a hearing aid in hearing aid fitting.
  • Hearing loss means, for example, a state where it is difficult to hear sound of a specific frequency or frequency band.
  • the frequency or frequency band that is difficult to hear varies from user to user.
  • the hearing aid amplifies the sound so that the user can hear it.
  • the amount of amplification required for each user varies depending on the user's auditory characteristics.
  • gain means an amount of amplification (amount of gain).
  • HTL minimum audible threshold
  • UCL uncomfortable level
  • Non-Patent Document 1 discloses that there is a correlation between the V wave latency of an auditory brainstem response (ABR) to a click sound and UCL.
  • ABR auditory brainstem response
  • the gain of each frequency is made half of the HTL of that frequency.
  • amplification from 1000 Hz to 4000 Hz is slightly increased in consideration of the frequency band of conversational voice.
  • the gains at 250 Hz and 500 Hz are reduced by 10 dB and 5 dB, respectively.
  • the NAL-R method the long-term acoustic analysis frequency of words is amplified so as to enter a comfortable level.
  • Non-Patent Document 1 it is possible to estimate UCL, but it is not possible to directly estimate the gain for each frequency of the hearing aid.
  • One non-limiting exemplary embodiment of the present application estimates a user's auditory characteristics from measured brain waves and determines a hearing aid gain for each frequency band suitable for the user based on the estimated auditory characteristics.
  • a system, method and computer program are provided.
  • a hearing aid gain determination system determines a frequency of a sound signal group including a first sound, a second sound, and a third sound, which are pure sounds, and a biological signal measurement unit that measures a user's brain wave signal.
  • the sound stimulation group determining unit, the first sound, the second sound, so as to decrease in order of the first sound, the second sound, and the third sound, and the sound pressure is equal to or lower than a predetermined threshold value.
  • a sound pressure determination unit that determines a sound pressure of the sound and the third sound, and the first sound, the second sound, and the third sound at the frequency determined by the sound pressure determination unit; And an output part to be presented, and feature amounts relating to time-frequency information of event-related potentials included in a predetermined time range after the time when each of the first sound, the second sound, and the third sound is presented Based on the feature quantity extracted by the feature quantity extraction section with reference to a predetermined standard.
  • a hearing aid gain determining unit for determining a hearing aid gain for the frequency of the sound stimulation group.
  • the hearing aid gain determination system can estimate the hearing aid output for each frequency with respect to a predetermined input sound pressure.
  • FIG. 6 is a diagram illustrating a modification of the configuration of the first embodiment. It is a figure which illustrates the addition average waveform and wavelet coefficient for every frequency in the electroencephalogram measurement experiment 2 which this inventor implemented. It is a figure which illustrates the dispersion
  • a first aspect of the present invention is a sound signal group that determines a frequency of a sound signal group that includes a first sound, a second sound, and a third sound, which are pure sounds, and a biological signal measurement unit that measures a user's brain wave signal.
  • the determination unit and the first sound and the second sound so that the sound pressure is less than or equal to a predetermined threshold and the sound pressure decreases in the order of the first sound, the second sound, and the third sound.
  • a sound pressure determination unit that determines a sound pressure of the third sound, and the frequency and sound pressure determined by the sound stimulation group determination unit and the sound pressure determination unit, the first sound, the second sound, And the output unit that presents the third sound to the user, and the brain wave signal in a predetermined time range after the time when each of the first sound, the second sound, and the third sound is presented.
  • a feature amount extraction unit that extracts feature amounts related to time-frequency information of included event-related potentials, and a predetermined reference Based on the feature amounts extracted by the feature amount extracting unit, and a hearing aid gain determining unit for determining a hearing aid gain for the frequency of the sound stimulation group.
  • the gain determination unit refers to a predetermined standard in which the feature amount and a hearing aid output value set for an input sound pressure of 80 dBSPL or more are associated in advance, Determine hearing aid output for input sound pressure above 80 dBSPL.
  • the gain determining unit refers to a predetermined reference in which the feature amount and the value of the hearing aid output at the time of 90 dBSPL input or 80 dBSPL input are associated in advance, or at the time of 90 dBSPL input or Determine the hearing aid output for an input sound pressure having 80 dBSPL.
  • the predetermined threshold is a sound pressure lower than a general UCL value.
  • the sound pressure determination unit determines the sound pressure so that the sound pressure decreases by 5 dB in the order of the first sound, the second sound, and the third sound.
  • the sound pressure determination unit determines the sound pressure so that the sound pressure decreases by 15 dB in the order of the first sound, the second sound, and the third sound.
  • the gain setting unit further sets a hearing aid gain for each frequency at the time of 90 dBSPL input or 80 dBSPL input, or at the time of 90 dBSPL input and 80 dBSPL input based on the determination result of the gain determination unit.
  • the gain determination unit is configured to use, as the predetermined reference, data associating time-frequency feature quantities measured with a plurality of users with a hearing aid gain at the time of 90 dBSPL input or 80 dBSPL input. And the hearing aid gain is determined with reference to the predetermined criterion.
  • the gain determining unit holds the predetermined reference for each frequency of the sound stimulation group and uses a predetermined reference selected according to the frequency of the sound stimulation group.
  • the feature amount extraction unit performs a time period of an electroencephalogram signal in a section from the presentation time of each of the first sound, the second sound, and the third sound to a time point when 300 ms elapses. Frequency information is calculated, and a value averaged over a predetermined frequency width and a predetermined time width is used as a feature amount.
  • the predetermined frequency width is a frequency width defined by dividing a frequency range of 2.5 Hz to 12.5 Hz into nine.
  • the predetermined time width is 50 ms.
  • the user's brain wave signal measured by the biological signal measuring unit is a sound pressure that is presented by the output unit and is equal to or lower than a predetermined threshold and has a sound pressure that decreases in order.
  • a feature amount extraction unit that extracts a feature amount related to the time frequency of the event-related potential of the brain wave signal after the time when each of the first sound, the second sound, and the third sound is presented,
  • a gain determining unit that determines a hearing aid gain based on the feature amount extracted by the feature amount extracting unit;
  • a fourteenth aspect of the present invention includes a step of measuring a user's brain wave signal, a step of determining a frequency of a sound stimulation group including a first sound, a second sound, and a third sound, which are pure sounds, and a predetermined threshold value And the first sound, the second sound, and the third sound so that the sound pressure decreases in the order of the first sound, the second sound, and the third sound.
  • Determining a sound pressure presenting the first sound, the second sound, and the third sound to the user at the determined frequency and sound pressure; and Extracting a feature amount related to time-frequency information of event-related potentials included in a predetermined time range after the time when each of the first sound, the second sound, and the third sound is presented; and refer to a predetermined reference And determining a hearing aid gain based on the extracted feature amount.
  • a computer program executed by a computer, wherein the computer program includes a first sound, a second sound, and a third sound that are pure tones to the computer. Determining the frequency of the first sound, the second sound, and the second sound so that the sound pressure is equal to or lower than a predetermined threshold and decreases in the order of the first sound, the second sound, and the third sound.
  • Event-related potential is a type of electroencephalogram (EEG), which is a transient brain that is temporally related to external stimuli or internal events. Potential fluctuation.
  • Sound stimulation is also called auditory stimulation and is a sound presented to the user.
  • the “N1 component” is a negative component of the event-related potential that appears about 100 ms after the time when the sound stimulus is presented.
  • the “P2 component” is a positive component of an event-related potential that appears about 200 ms after the time when the sound stimulus is presented.
  • the “latency” is the time until the peak potential of the positive component or negative component appears from the time when the voice stimulus is presented.
  • Negative component generally means a potential lower than 0 ⁇ V. In the case where there is a target for comparing potentials, a potential having a more negative value is also referred to as a negative component.
  • “Positive component” generally refers to a potential greater than 0 ⁇ V. When there is an object whose potentials are to be compared, a potential having a more positive value is also referred to as a positive component.
  • Input sound pressure refers to the sound pressure (sound pressure level) of the sound input to the hearing aid.
  • “Hearing aid gain” is the amount by which the hearing aid amplifies the sound for each sound pressure or frequency of the sound input to the hearing aid. For example, this corresponds to the difference between the sound pressure (sound pressure level) of the sound input to the hearing aid and the sound pressure (sound pressure level) of the sound output from the hearing aid.
  • the minimum audible level is the sound pressure of the smallest sound that the user can hear.
  • “Pure tone” is a sound represented by a sine wave having only a single frequency component among musical sounds that repeats periodic vibrations.
  • the hearing aid gain determination system of the present embodiment presents a sound, and estimates the amount of sound to be amplified by the hearing aid using the user's event-related potential for the presented sound. Specifically, the hearing aid gain determination system estimates the sound pressure of the sound to be adjusted and output by the hearing aid for each sound frequency or sound pressure.
  • the first is a hearing aid characteristic measurement experiment that measures the characteristics of a hearing aid in a state in which it is routinely used by a hearing aid user.
  • the hearing aid characteristic measurement experiment was carried out using a dedicated device for hearing aid characteristic measurement (FONIX FP35).
  • the other is an electroencephalogram measurement experiment that measures the response to sound stimulation.
  • the electroencephalogram measurement experiment was conducted with two types of sound stimulation settings.
  • the first sound, the second sound, and the third sound were presented to the experiment participants as a set at predetermined time intervals.
  • the first sound, the second sound, and the third sound had the same frequency and were pure sounds.
  • a set of sound stimuli (first sound, second sound, and third sound) having the same frequency may be referred to as a “sound stimulus group”.
  • the first sound was 80 dBHL
  • the second sound was 75 dBHL
  • the third sound was 70 dBHL. That is, it was decreased by 5 dB in order from the first sound to the third sound.
  • the first sound was 80 dBHL
  • the second sound was 65 dBHL
  • the third sound was 50 dBHL. That is, it was decreased by 15 dB in order from the first sound to the third sound.
  • “Pure tone” is a sound represented by a sine wave that repeats periodic vibration at a single frequency.
  • a sound whose frequency is changed to a level that cannot be recognized by humans can also be regarded as a single frequency sound.
  • the present inventors have found that the hearing aid gain at the time of input of 80 dBSPL or more (at the time of 90 dBSPL input and at the time of 80 dBSPL input) is 5 dB from an electroencephalogram with a sound pressure lower than the sound pressure generally evaluated as UCL. It was found that it can be estimated with an average error of a degree.
  • UCL sound pressure estimated for each HTL value is, for example, Pascoe, DP (1988). (Clinical measurements of the auditory dynamic range and their relation to formulas for hearing aid gain. In 1ensen. H. 1. (Ed.) Hearing Aid Fitting: Theoretical and Practical Views 13th Danavox Symposium. Copenhagen: Stougaard.).
  • a sound pressure lower than this UCL by, for example, 5 dB or more may be considered as the “low sound pressure”.
  • HTL at 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz was measured in advance in order to measure the degree of hearing loss of the experiment participants.
  • the average hearing level of participants was measured using a quadrant. As a result of the measurement, breakdown of the level of hearing loss in 26 ears was moderate hearing loss (40-69 dBHL) in 20 ears, mild hearing loss (26-39 dBHL) in 3 ears, and severe hearing loss (70 dBHL or more) in 3 ears.
  • the value obtained by (a + 2b + c) / 4 is treated as the average hearing level.
  • a 500 Hz HTL
  • b 1000 Hz HTL
  • c 2000 Hz HTL.
  • the sound pressure of the output sound of the hearing aid was measured for each of the input sounds having 50, 60, 70, 80, and 90 dBSPL.
  • the frequency was measured for an input sound having 200 Hz to 8000 Hz.
  • the sound pressure of the output sound was measured using a 2 cc coupler.
  • 1 (a) and 1 (b) show measurement results of hearing aid output for each participant when a sound of 90 dBSPL is input.
  • 1A and 1B the horizontal axis represents frequency, and the vertical axis represents sound pressure (dBSPL).
  • FIG. 1 (a) shows the measurement results for 18 ears for right ear wearing
  • FIG. 1 (b) shows the measurement results for 8 ears for left ear wearing.
  • the hearing aid gain can be obtained by subtracting the sound pressure of the input sound to the hearing aid from the sound pressure of the output sound of the hearing aid.
  • Electroencephalogram measurement experiment In the electroencephalogram measurement experiment 1, three sound stimuli whose sound pressures decreased monotonously in order at 80 dBHL, 75 dBHL, and 70 dBHL were presented as sound stimulus groups, and the characteristic change of the event-related potential for each sound stimulus was examined.
  • the sound stimulation group has any one of four frequencies (500, 1000, 2000, 4000 Hz), and the sound stimulation groups having different frequencies were continuously presented with a predetermined time interval.
  • the sound pressures (80 dBHL, 75 dBHL, 70 dBHL, 65 dBHL, 50 dBHL) of the sound presented in Experiment 1 and Experiment 2 are lower than the sound pressure generally evaluated as UCL.
  • the sound stimulus is tone burst on with a rise of 3 ms, a duration of 44 ms, and a fall of 3 ms.
  • the sound stimuli included in the sound stimulus group were presented to the same ear with a predetermined interval.
  • the sound stimulation was presented one ear at a time using headphones (HDA 200, SENNHEISER).
  • the sound pressure of sound stimulation was calibrated using a sound level meter (LA-1440, ONO SOKKI) and a coupler (IEC318, Larson Davis).
  • FIG. 2 (a) shows an outline of the sound stimulation presented in the electroencephalogram measurement experiment 1
  • FIG. 2 (b) shows an outline of the sound stimulation in the electroencephalogram measurement experiment 2.
  • the interval of sound stimulation within the sound stimulation group (ISI1 in FIG. 2) was fixed at 300 ms. Further, the interval between sound stimulation groups (ISI2 in FIG. 2) was randomly determined in the range of 450 ⁇ 50 ms.
  • the sound stimulation group for each left and right ear and each frequency was repeated 20 times per block (a total of 160 repetitions as the sound stimulation group). In order to improve the measurement accuracy, a sound stimulation group of 3 to 5 blocks was presented.
  • the participant When sound stimulation groups having the same frequency are presented continuously to the same ear, the participant may become accustomed to the sound stimulation and the amplitude of the event-related potential may be reduced. This phenomenon is called auditory evoked potential habitation.
  • the frequency of the sound stimulation group and the presented ear were determined with the following constraints. The sound stimulation group having a different frequency from the immediately preceding sound stimulation group is presented, and the sound stimulation group having the same frequency is not presented continuously. • Ears presenting sound stimulation groups should be random on the left and right. However, in order to ensure the randomness of the stimulation to the left and right ears, the sound stimulation group to either the left or right ear is not continued four times or more.
  • FIG. 3 (a) shows the electrode positions of the international 10-20 method (10-20 System).
  • FIG. 3B shows an electrode arrangement in which electrodes are mounted in this experiment. Circled numbers 1 to 5 in FIG. 3B indicate electrode positions Fz, Cz, Pz, C3, and C4, respectively.
  • the inventors of the present application measured the potential difference between the active electrode attached to Fz, Cz, Pz, C3, and C4 on the scalp and the reference electrode attached to the right mastoid as an electroencephalogram.
  • the “mastoid” is the mastoid process of the skull below the base of the back of the ear, and the position of the mastoid is indicated by “Ref” in FIG.
  • electrodes (circled numbers 6 and 7 in FIG. 3B) were placed on the right eye and on the right eye in order to measure electrooculogram noise mixed in the electroencephalogram by blinking and eye movement.
  • the sampling frequency was 1000 Hz
  • the time constant was 1 second
  • a 30 Hz analog low-pass filter was applied.
  • a 1-20 Hz digital bandpass filter was applied to all time zones of the electroencephalogram data measured offline. Thereafter, waveforms of ⁇ 100 ms to 1000 ms were cut out from the first sound of each sound stimulation group as an event-related potential for sound stimulation for each left and right ear, frequency, and sound pressure.
  • ⁇ 100 ms refers to a time point 100 milliseconds before the time when the first sound was presented.
  • continuous wavelet transformation was performed on the electroencephalogram waveform in the range of 0 ms to 900 ms of the event-related potential, and the wavelet coefficient for each time and frequency was obtained.
  • a Mexican hat function ( ⁇ (t) (1 ⁇ t ⁇ 2) exp ( ⁇ t ⁇ 2/2)) was used as the mother wavelet.
  • the wavelet transform is one method for obtaining the time frequency component of the event-related potential. If a time-frequency component is obtained, it is not limited to wavelet transform, and for example, short-time Fourier transform may be performed.
  • the event-related potential waveforms and wavelet coefficients were averaged for each individual, left and right ears, and frequency. These are referred to as the addition average waveform and the addition average wavelet coefficient, respectively. Trials including an amplitude of 80 ⁇ V or more in absolute value in any of the electrodes are excluded from the total average and the average because it is assumed that the influence of noise due to eye movement and blinking is included.
  • the wavelet feature value was obtained as a feature value extracted from the event-related potential and serving as an index indicating the hearing aid gain.
  • the wavelet feature amount is an average value such that the addition average wavelet coefficient is divided into, for example, 30 divisions (every 30 ms) on the time axis and, for example, 9 divisions on the frequency axis (eg, 2.5 Hz to 12.5 Hz). It is what I have sought.
  • the event-related potential with respect to the sound pressure change includes an index of the hearing aid gain
  • the actual hearing aid gain at the time of 90 dBSPL input or 80 dB input measured in the hearing aid characteristic measurement experiment and the electroencephalogram measurement Comparison was made with the event-related potentials obtained by averaging in the experiment.
  • the presence of a difference in event-related potential that reflects the hearing aid gain for each participant is essential.
  • the participants in the experiment were divided into two groups based on the magnitude of the hearing aid gain measured in the hearing aid characteristic measurement experiment. More specifically, depending on whether the hearing aid output at the time of 90 dBSPL input or 80 dBSPL input is greater than the average value or smaller than the average value, the hearing aid gain (hearing aid output) is divided into a large group and a small group for each frequency. It was.
  • FIG. 4 (a) and 4 (b) show the addition average waveform in the central portion (Cz) of the electroencephalogram measurement experiment 1 and the electroencephalogram measurement experiment 2.
  • FIG. The case where the hearing aid output is above the average is indicated by a solid line, and the case where the hearing aid output is smaller than the average is indicated by a broken line.
  • the horizontal axis is time and the unit is ms, and the vertical axis is potential and the unit is ⁇ V. 0 ms on the horizontal axis is the first sound presentation time.
  • the negative component that appears about 100 ms after each sound stimulus presentation timing indicated by the arrow is the N1 component
  • the positive component that appears about 200 ms after is the P2 component.
  • the N1 component and the P2 component appear regardless of the output sound level of the hearing aid.
  • the N1 component of the event-related potential corresponding to the group with a small hearing aid output has a larger amplitude than the N1 component of the event-related potential corresponding to the group with a large hearing aid output (solid line).
  • FIG. 5 and 13 show the addition average waveform and the addition average wavelet coefficient for each frequency (500, 1000, 2000, and 4000 Hz) of the input sound in the electroencephalogram measurement experiment 1 and the electroencephalogram measurement experiment 2, respectively.
  • the upper part of FIG. 5 shows the addition average waveform
  • the middle part shows the addition average wavelet coefficient when the hearing aid output is equal to or higher than the average
  • the lower part shows the addition average wavelet coefficient when the hearing aid output is smaller than the average.
  • the case where the hearing aid output is above the average is indicated by a solid line
  • the case where the hearing aid output is smaller than the average is indicated by a broken line.
  • the horizontal axis is time and the unit is ms
  • the vertical axis is potential and the unit is ⁇ V. 0 ms on the horizontal axis is the first sound presentation time.
  • the absolute value of the amplitude of the N1 component differs depending on the frequency, it can be seen that the amplitude of the N1 component is larger when the hearing aid output is smaller than the average, compared to when the hearing aid output is equal to or higher than the average.
  • there is a difference depending on the size of the hearing aid output particularly in the average time wavelet coefficient in the time zone where there is a difference in addition average.
  • the wavelet feature amount was first obtained.
  • the wavelet feature amount was generated by averaging a range of 0 to 900 ms of the addition average wavelet coefficient for each scale (frequency width) in a time window of 50 ms.
  • the hearing aid output at the time of 90 dBSPL input and 80 dBSPL input measured in the hearing aid characteristic measurement experiment was rounded every 5 dB.
  • the hearing aid characteristics in 5 dB increments are estimated by linear discrimination.
  • the measured hearing aid output was rounded off. Then, arbitrary two wavelet feature amounts were combined, and the correspondence between the combination of the hearing aid output in increments of 5 dB and the wavelet feature amount of participants other than itself was used as teacher data. Teacher data was created for each stimulation frequency by pooling the left and right ears for each input sound pressure.
  • the accuracy of hearing aid output estimation was evaluated by average error (average of the absolute values of the difference between the hearing aid output in 5 dB increments and the estimated hearing aid output for each participant's left and right ears / frequency). The average error was obtained for all combinations of wavelet features.
  • FIG. 6 and FIG. 14 show the results of linear discrimination based on the wavelet feature values obtained in EEG measurement experiment 1 and EEG measurement experiment 2, respectively.
  • the distribution of the correspondence between the hearing aid output for the 90 dBSPL input and the 80 dBSPL input measured in the hearing aid characteristic measurement experiment and the hearing aid output estimated by performing discriminant analysis using the wavelet feature amount is expressed as ⁇ Stimulation frequency was pooled and shown.
  • the frequency corresponding to each grid point is indicated by the size of a circle. If the center of the circle is on the broken line, it indicates that the hearing aid output was correctly estimated.
  • the hearing aid output can be estimated from the measured brain waves.
  • the average error of hearing aid output estimation for the 90 dBSPL input and the 80 dBSPL input in the electroencephalogram measurement experiment 1 was 4.6 dB and 5.1 dB, respectively.
  • the average error of hearing aid output estimation for the 90 dBSPL input and 80 dBSPL input in EEG measurement experiment 2 was 4.6 dB and 5.2 dB, respectively.
  • the hearing aid output was estimated using the above-described wavelet feature amount for an input sound having a sound pressure of 60 dBSPL or 70 dBSPL, it was confirmed by the present inventor that the estimation accuracy may be reduced. Therefore, the estimation of the hearing aid output using the above-described brain wave may be performed as estimating the hearing aid output with respect to an input sound pressure of 80 dBSPL or higher.
  • FIG. 7 shows the result of the electroencephalogram measurement experiment 1
  • FIG. 15 shows the result of the electroencephalogram measurement experiment 2.
  • the upper part of FIGS. 7 and 15 shows the frequency of wavelet feature values used in the estimation of the top 1% where the average error was small.
  • Both results show that the wavelet in the time zone around the N1 component (latency about 100 ms) for the first sound, the time zone around the P2 component (latency about 200 ms) for the second sound, and the time zone of the P2 component for the third sound. It can be seen that the average error is small when the coefficient is used.
  • the most commonly used results with a probability of 15% or more are the time zone around the N1 component for the first sound, the time zone around the P2 component for the second sound, It was the wavelet feature amount in the time zone around the N1 component and P2 component for the sound.
  • discriminant analysis may be performed by adding not only the wavelet feature amount but also information on the P1-N1 amplitude and the N1-P2 amplitude.
  • a pure tone having the same frequency is converted to a monotonically decreasing sound pressure change within a range of sound pressure lower than the sound pressure generally evaluated as UCL.
  • a hearing aid at the time of 90 dBSPL input and 80 dBSPL input using feature amounts (for example, feature amounts related to wavelet coefficients) included in the electroencephalogram for each sound stimulus from the first sound to the third sound when presented repeatedly It became clear that the output could be estimated.
  • the hearing aid gain determination system 100 extracts a feature amount by measuring a user's brain wave (event-related potential) to which a sound stimulus is presented, and at the time of 90 dBPL input or 80 dBSPL input from the change pattern of the feature amount. Alternatively, the hearing aid gain at the time of 90 dBSPL input and 80 dBSPL input is determined.
  • the search electrode is provided in the center (Cz)
  • the reference electrode is provided in the right mastoid
  • an electroencephalogram that is a potential difference between the search electrode and the reference electrode is measured.
  • the level and polarity of the characteristic component of the event-related potential may vary depending on the part where the electroencephalogram measurement electrode is attached and the set positions of the reference electrode and the exploration electrode.
  • a person skilled in the art can make an appropriate modification according to the reference electrode and the exploration electrode at that time to extract the characteristics of the event-related potential and measure the uncomfortable sound pressure. is there. Such modifications are within the scope of the present invention.
  • FIG. 8 shows a functional block configuration of the hearing aid gain determination system 100 (hereinafter sometimes referred to as gain determination system 100) according to the present embodiment.
  • the gain determination system 100 includes a sound stimulus output unit 10, a biological signal measurement unit 50, and a hearing aid gain determination device 1 (hereinafter sometimes referred to as gain determination device 1).
  • the gain determination device 1 includes an event-related potential feature amount extraction unit 55, a hearing aid gain determination unit 65, a sound stimulation group determination unit 70, a sound stimulation sound pressure determination unit 71, a sound stimulation generation unit 75, and a hearing aid gain setting. Part 80.
  • the event-related potential feature amount extraction unit 55 may be described as a “feature amount extraction unit 55”
  • the hearing aid gain determination unit 65 may be described as a “gain determination unit 65”.
  • the pressure determining unit 71 may be described as “sound pressure determining unit 71”
  • the hearing aid gain setting unit 80 may be described as “gain setting unit 80”.
  • the gain determination device 1 is connected to the sound stimulus output unit 10 and the biological signal measurement unit 50 by wire or wirelessly.
  • the sound stimulus output unit 10 is configured to present a sound stimulus to the user 5
  • the biological signal measurement unit 50 is configured to measure the biological signal (electroencephalogram) of the user 5.
  • the block of the user 5 is also shown in the figure.
  • the sound stimulus output unit 10 provides the user 5 with a sound stimulus group (first sound, second sound) having a certain frequency and a monotonically decreasing sound pressure change in a sound pressure range lower than a sound pressure generally evaluated as UCL. , And the third sound).
  • the biological signal measuring unit 50 is connected to at least two electrodes A and B.
  • the electrode A is affixed to the mastoid of the user 5, and the electrode B is affixed to the center (so-called Cz) on the scalp of the user 5.
  • the biological signal measurement unit 50 measures the brain wave of the user 5 corresponding to the potential difference between the electrode A and the electrode B.
  • the gain determination device 1 extracts a wavelet coefficient including time-frequency information as a feature amount from the brain wave (event-related potential) of the user 5 that is measured starting from the presentation time of the first to third sounds.
  • the gain determination apparatus 1 estimates the hearing aid gain of the user 5 using the extracted feature amount for the first to third sounds. Details of each configuration will be described later.
  • FIG. 9 shows a configuration and usage environment of the hearing aid gain determination system 100 according to the present embodiment.
  • the gain determination system 100 corresponds to the system configuration of the first embodiment shown in FIG.
  • the hearing aid gain determination system 100 includes the gain determination device 1, the sound stimulus output unit 10, and the biological signal measurement unit 50.
  • the gain determination system 100 may include the biological signal measurement unit 50 and the sound stimulus output unit 10 in the same casing. Alternatively, the gain determination system 100 may include the biological signal measurement unit 50 and the sound stimulus output unit 10 in separate housings. In that case, the biological signal measurement unit 50 transmits the measured electroencephalogram signal to the gain determination device 1 connected wirelessly or by wire.
  • the gain determination device 1 determines sound stimulation information for hearing aid gain measurement.
  • the information of the sound stimulus may include, for example, an ear (left ear or right ear) that presents the stimulus, sound frequency, sound pressure, and timing for presenting the sound.
  • the sound stimulus output unit 10 presents the sound stimulus determined by the gain determination device 1 in this way to the user 5.
  • the gain determination device 1 extracts a feature amount for estimating the hearing aid output from the event-related potentials cut out from the sound stimuli of the first to third sounds.
  • the gain determination system 100 estimates the hearing aid gain in the volume that the user uses on a daily basis. “Volume” means the amount that the hearing aid amplifies uniformly for all sounds.
  • the hearing aid gain when the input sound pressure is 90 dBSPL is estimated.
  • the output sound pressure of the hearing aid relative to the 90 dBSPL input sound pressure is important for determining the compression ratio of the non-linearly amplified hearing aid (Kazuko Kodera, revised 3rd edition, concept of hearing aid fitting, p81).
  • the hearing aid output at the time of 90 dBSPL input or 80 dBSPL input, or 90 dBSPL input and 80 dBSPL input is determined for each left and right ear and for each frequency, based on the pattern of the feature amount change with respect to the sound pressure change.
  • FIG. 10 shows a hardware configuration of the hearing aid gain determination apparatus 1 according to the present embodiment.
  • the gain determination device 1 includes a CPU 30, a memory 31, and an audio controller 32.
  • the CPU 30, the memory 31, and the audio controller 32 are connected to each other via a bus 34 and can exchange data with each other.
  • the CPU 30 executes a computer program 35 stored in the memory 31.
  • the computer program 35 describes a processing procedure shown in a flowchart described later.
  • the gain determination device 1 performs processing such as sound stimulus generation, event-related potential feature extraction, and hearing aid gain determination discriminant analysis in accordance with the computer program 35. This process will be described in detail later.
  • the audio controller 32 outputs the sound stimulus to be presented through the sound stimulus output unit 10 with the designated sound pressure according to the instruction of the CPU 30.
  • the gain determination device 1 may be realized as hardware such as a DSP in which a computer program is incorporated in one semiconductor circuit. Such a DSP can realize all the functions of the CPU 30, the memory 31, and the audio controller 32 described above with a single integrated circuit. For example, the feature quantity extraction unit 55, the gain determination unit 65, the sound stimulus group determination unit 70, the sound pressure determination unit 71, the sound stimulus generation unit 75, and the gain setting unit 80 are realized by the CPU 30.
  • the computer program 35 described above can be recorded on a recording medium such as a CD-ROM and distributed as a product to the market, or can be transmitted through an electric communication line such as the Internet.
  • a device for example, a PC having hardware shown in FIG. 10 can function as the gain determination device 1 according to the present embodiment by reading the computer program 35.
  • Each function block of the gain determination apparatus 1 corresponds to the function realized as a whole by the CPU 30, the memory 31, and the audio controller 32 by executing the program described in relation to FIG. Yes.
  • the sound stimulus group determination unit 70 determines information on a plurality of sound stimuli (sound stimulus groups) to be presented to the user 5.
  • the sound stimulus group includes at least a first sound, a second sound, and a third sound.
  • the information on the sound stimulus group includes, for example, the ear (right ear or left ear) presenting the sound stimulus, the frequency of the presented sound stimulus, the duration of the sound stimulus within the sound stimulus group, and the interval between the sound stimuli.
  • the sound stimulus group information may include at least the frequency of the sound stimulus and the interval between the sound stimuli. Note that the interval between sound stimuli may be determined by the sound stimulus output unit 10 described later holding predetermined information without the sound stimulus group determining unit 70 determining.
  • the gain determination system 100 presents a presentation sound having a sound pressure level that does not make the user feel uncomfortable.
  • Such control of the sound pressure may be performed by, for example, a sound pressure determination unit 71 described later.
  • the presentation ear and frequency of the sound stimulation group may be determined at random based on the following constraints, for example.
  • a sound stimulus having the same frequency as that of the immediately preceding sound stimulus group is not selected.
  • the left and right ears are preferably selected in a random order. However, it is preferable not to continuously present the sound stimulation group four or more times only to either the left or right ear. By doing so, the influence of brain wave habitation due to continuous presentation of sound stimulation groups of the same ear and frequency is reduced, and high-accuracy hearing aid gain measurement can be realized.
  • the duration of the sound stimulation is set to, for example, 25 ms or more so that the auditory evoked potential is stably evoked.
  • the interval between stimuli is set to the time of 1 second or less more than the duration of sound stimulation. For example, it may be 300 ms or 200 ms.
  • the sound pressure determination unit 71 receives information on the sound stimulus group from the sound stimulus group determination unit 70.
  • the information on the sound stimulus group includes, for example, the ear (right ear or left ear) presenting the sound stimulus, the frequency of the presented sound stimulus, the duration of the sound stimulus within the sound stimulus group, and the interval between the sound stimuli. is there.
  • the first sound, the second sound, and the third sound may have at least the same frequency.
  • the same frequency includes sounds having a smaller difference than the frequency that humans can hear. In this specification, for example, a difference of 5 Hz or less is regarded as the same frequency.
  • the sound pressure determination unit 71 determines the sound pressures of the first sound to the third sound in the sound stimulation group within a sound pressure range lower than a set predetermined threshold. Further, in the present embodiment, the sound pressure determination unit 71 reduces the sound pressures of the first sound to the third sound in order so that the sound pressure decreases, that is, the sound pressure of the first sound> the sound pressure of the second sound. > The sound pressure of each sound is determined so as to satisfy the relationship of the sound pressure of the third sound.
  • the predetermined threshold is, for example, a sound pressure generally evaluated as UCL. That is, the sound pressures of the first sound to the third sound are determined so as to be included in the sound pressure range that the user 5 can comfortably hear.
  • the sound stimulation sound pressure determination unit 71 may hold a predetermined threshold value in advance. For example, the sound stimulation sound pressure determination unit 71 may determine the sound pressure of the first sound as 80 dBHL, the sound pressure of the second sound as 75 dBHL, and the sound pressure of the third sound as 70 dBHL so as to fall below this threshold. . Further, for example, the sound pressure of the first sound may be determined as 80 dBHL, the sound pressure of the second sound as 65 dBHL, and the sound pressure of the third sound as 50 dBHL.
  • the sound stimulation sound pressure determination unit 71 may be controlled not to determine a sound pressure greater than a predetermined threshold.
  • the sound stimulus generation unit 75 generates sound stimulus data based on the sound stimulus group information received from the sound pressure determination unit 71.
  • Each sound stimulus may be, for example, a tone burst sound with a rise and fall of 3 ms.
  • the sound stimulus generation unit 75 outputs a sound stimulus to the user 5 via the sound stimulus output unit 10 and outputs a trigger signal to the biological signal measurement unit 50 at the timing. Note that the sound stimulus generation unit 75 may be configured to have only a function of sending the sound stimulus data generated to the sound stimulus output unit 10.
  • one sound stimulus data including a plurality of sound stimuli having sound pressure changes at predetermined time intervals may be created for one sound stimulus group.
  • the trigger signal sent to the biological signal measuring unit 50 may be only the presentation timing of the first sound.
  • the sound stimulus generation unit 75 may include an input device, or may be connected to an external input device.
  • the user 5 or the hearing tester of the user 5 can arbitrarily input information related to the sound stimulus using the input device, and the sound stimulus generator 75 uses the information received from the input device to make the sound stimulus. Is generated.
  • the sound stimulus output unit 10 presents a sound to the user 5 according to the sound stimulus data generated by the sound stimulus generation unit 75. It is preferable that the sound stimulation output unit 10 correctly outputs the sound stimulation generated by the sound stimulation generation unit 75 to the left and right ears.
  • the sound stimulus output unit 10 may include, for example, a headphone or a speaker with no distortion in frequency characteristics.
  • the biological signal measuring unit 50 is a measuring instrument that measures the biological signal of the user 5.
  • the biological signal measurement unit 50 is an electroencephalograph.
  • the biological signal measurement unit 50 measures an electroencephalogram corresponding to the potential difference between the exploration electrode and the reference electrode attached to the user 5 as a biological signal.
  • ⁇ Frequency filtering at an appropriate cutoff frequency may be performed on the measured electroencephalogram.
  • the biological signal measurement unit 50 transmits the measured brain wave or filtered brain wave to the event-related potential feature amount extraction unit 55.
  • the measured electroencephalogram or filtered electroencephalogram is also referred to as “electroencephalogram data”.
  • the biological signal measurement unit 50 performs frequency filtering with an appropriate cutoff frequency on the electroencephalogram data, and starts from a trigger signal received from the sound stimulus generation unit 75 as a starting point (for example, from 100 ms before the first sound presentation).
  • the event-related potential 400 ms after the third sound presentation
  • the waveform data (event-related potential) may be sent to the event-related potential feature amount extraction unit 55.
  • the cutoff frequency may be set so as to pass from 1 Hz to 20 Hz, for example. It is assumed that the user 5 is wearing an electroencephalograph in advance. For example, the exploration electrode is attached to Cz in the center, and the reference electrode is attached to the mastoid.
  • the electroencephalogram data includes event-related potentials.
  • An event-related potential means a change in the potential of an electroencephalogram that occurs in response to a certain stimulus.
  • the types of event-related potential signals are (1) Potential polarity (positive or negative), (2) Latency (time from stimulation to potential occurrence), (3) Potential amplitude magnitude, etc. It is decided according to.
  • the feature amount extraction unit 55 extracts the feature amounts of the first sound to the third sound from the event-related potential received from the biological signal measurement unit 50.
  • the feature quantity of the event-related potential is, for example, information on the time frequency of the event-related potential.
  • An example of time frequency information is information about wavelet coefficients.
  • the wavelet coefficient to be described has the same meaning as the time frequency information of the event-related potential.
  • the feature quantity extraction unit 55 calculates the feature quantities related to the wavelet coefficients for the first to third sounds according to the content of the sound stimulus received from the sound stimulus sound pressure determination unit 71, respectively.
  • the feature amount extraction unit 55 sends the calculated feature amount and sound stimulus information (left and right ears, frequency, sound pressure, etc.) to the hearing aid gain determination unit 65.
  • the feature amount related to the wavelet coefficient may be obtained as an average value in a predetermined range defined by dividing the frequency axis and the time axis by a predetermined width, for example.
  • the time axis may be divided by a time width of 50 ms so that 2.5 Hz to 12.5 Hz is divided into nine, and the average of the wavelet coefficients within the divided range may be used as the feature amount.
  • the widths of the frequency axis and the time axis that are averaged for calculating the feature amount may be finer or coarser than the above as long as the hearing aid gain can be estimated.
  • the feature amount extraction unit 55 performs the first sound, the first sound
  • the time frequency information (average of wavelet coefficients) may be calculated in a section from the presentation time of each of the second sound and the third sound to the time when 300 ms has elapsed.
  • the gain determination unit 65 determines the hearing aid gain for each frequency based on the feature amount related to the wavelet coefficient for each of the first to third sounds received from the feature amount extraction unit 55.
  • the hearing aid gain determination unit 65 estimates the hearing aid gain by performing linear discrimination on the received wavelet feature amount using a predetermined reference (teacher data, discriminant function, etc.).
  • the predetermined reference means, for example, information in which a wavelet feature amount and a hearing aid gain value are associated in advance.
  • the predetermined reference may be a table in which the wavelet feature amount and the hearing aid gain value are associated with each other, or may be a predetermined formula.
  • the hearing aid gain determination unit 65 may hold a predetermined reference in advance.
  • the gain determination unit 65 may hold a predetermined reference for each frequency of the sound stimulation group.
  • the gain determination unit 65 may be configured to use a predetermined reference acquired from the outside.
  • the predetermined reference is, for example, teacher data generated from the hearing aid gain at the time of 90 dBSPL input or 80 dBSPL input.
  • the teacher data can be generated based on the measured hearing aid gain and the wavelet feature amount obtained by conducting the hearing aid characteristic measurement experiment and the electroencephalogram measurement experiment in advance on at least two or more other persons.
  • the sound stimulation conditions related to the sound pressure and the number of sound stimulations in the electroencephalogram measurement experiment when generating the predetermined reference must be the same as the stimulation sound pressure change pattern determined by the sound stimulation sound pressure determination unit 71.
  • the predetermined reference holding method may be for each frequency by pooling the left and right ears. In this case, based on the information on the frequency of the sound stimulus received from the feature amount extraction unit 55, the predetermined reference used for the hearing aid gain measurement is switched and used so that the frequency to be measured matches the predetermined reference frequency. May be.
  • the predetermined standard may be switched according to the user's deafness symptoms.
  • the predetermined criteria used may be different for large classifications such as conductive hearing loss and sensorineural hearing loss.
  • a predetermined reference may be prepared and switched for each audiogram pattern such as a low pitch gradual type or a high pitch gradual type.
  • the hearing aid gain determination unit 65 sends the determined hearing aid gain to the hearing aid gain setting unit 80.
  • the gain setting unit 80 sets the hearing aid gain estimated from the gain determination unit 65 at the time of 90 dBPL input or 80 dBSPL input, or at the time of 90 dBSPL input and 80 dBSPL input for each frequency, to the hearing aid of the user 5.
  • FIG. 11 is a flowchart illustrating an example of processing of the gain determination system 100.
  • the sound stimulation group determination unit 70 determines the presentation ear / frequency of the sound stimulation group and the duration and interval between the stimulations in the sound stimulation group.
  • the presentation ear and frequency may be determined randomly based on the following constraints, for example. A sound stimulus having the same frequency as that of the immediately preceding sound stimulus group is not selected. The left and right ears are selected in a random order. However, the presentation of the sound stimulation group to the left or right ear is not continued four times or more.
  • the duration of the sound stimulation is set to, for example, 25 ms or more so that the auditory evoked potential is stably evoked.
  • the interval between stimuli is set to the time of 1 second or less more than the duration of sound stimulation. For example, it may be 300 ms or 200 ms. Information on the determined ear and frequency of the sound stimulus group and the duration and interval between sound stimuli in the sound stimulus group is sent to the sound stimulus sound pressure determination unit 71.
  • the sound pressure determination unit 71 receives from the sound stimulation group determination unit 70 information on the presentation ear / frequency of the sound stimulation group, the duration of sound stimulation in the sound stimulation group, and the interval between stimulations. Then, the sound pressures of the first sound to the third sound in the sound stimulation group are determined by a monotonically decreasing sound pressure change in a sound pressure range lower than the sound pressure generally evaluated as UCL. For example, the sound pressure of the first sound may be determined as 80 dBHL, the sound pressure of the second sound as 75 dBHL, and the sound pressure of the third sound as 70 dBHL.
  • the sound pressure of the first sound may be determined as 80 dBHL, the sound pressure of the second sound as 65 dBHL, and the sound pressure of the third sound as 50 dBHL.
  • the sound pressure for each sound stimulus in the determined sound stimulus group is sent to the sound stimulus generator 75 together with the information received from the sound stimulus group determiner 70.
  • the sound stimulus generation unit 75 generates sound stimulus data based on the sound stimulus information received from the sound pressure determination unit 71.
  • Each sound stimulus is, for example, a tone burst sound having a rise and fall time of 3 ms and a duration of 44 ms.
  • Step S104 the sound stimulus generation unit 75 outputs a sound stimulus to the user via the sound stimulus output unit 10, and outputs a trigger signal to the biological signal measurement unit 50 at the timing.
  • the sound stimulus data for example, one sound stimulus data including a plurality of sound stimuli having sound pressure changes at predetermined time intervals may be generated for one sound stimulus group.
  • the trigger signal sent to the biological signal measuring unit 50 may be sent only at the presentation timing of the first sound.
  • Step S105 The biological signal measurement unit 50 measures an electroencephalogram as a biological signal. Then, frequency filtering of an appropriate cut-off frequency is performed on the electroencephalogram data, and a predetermined interval (for example, an interval from 100 ms before the first sound presentation to 400 ms after the nth sound presentation) starts from the trigger received from the sound stimulus generation unit 75. And the waveform data (event-related potential) is sent to the feature quantity extraction unit 55.
  • a predetermined interval for example, an interval from 100 ms before the first sound presentation to 400 ms after the nth sound presentation
  • the feature amount extraction unit 55 refers to the content of the sound stimulus received from the sound pressure determination unit 71, and from the event-related potential received from the biological signal measurement unit 50, the feature amount related to the wavelet coefficients for the first to third sounds. Are calculated respectively.
  • the mother wavelet is a Mexican hat, and wavelet coefficients from 2.5 to 12.5 Hz are obtained.
  • step S107 the feature amount extraction unit 55 adds and averages the wavelet coefficients calculated in step S106 for each left and right ear and for each frequency based on the sound stimulus information received from the sound pressure determination unit 71.
  • Step S108 The feature quantity extraction unit 55 determines whether or not the average number of additions to the sound stimulus of the sound stimulus group presented in step S104 has reached a predetermined number. If the average addition count is less than or equal to the predetermined count, the process returns to step S101 and repeats the presentation of the sound stimulus group. If the average number of additions is equal to or greater than the predetermined number, the feature amount extraction unit 55 sends the feature amount related to the averaged wavelet coefficient to the hearing aid gain determination unit 65, and the process proceeds to step S108.
  • the predetermined number is, for example, 20 times. Note that “20 times” is the number of additions frequently used in the field of measuring event-related potentials, but this is an example.
  • the hearing aid gain determination unit 65 determines the hearing aid gain by using the feature amounts regarding the wavelet coefficients of the first to third sounds received from the feature amount extraction unit 55.
  • the determination of the hearing aid gain can be realized by linear discrimination using teacher data (predetermined reference) generated from the wavelet feature amount of the other person prepared in advance and the hearing aid gain at the time of 90 dBSPL input or 80 dBSPL input, for example. it can.
  • a plurality of teacher data used for hearing aid gain measurement may be prepared according to the frequency, and may be used by switching so that the frequency of the measurement target and the frequency of the teacher data match. In addition to the frequency, the teacher data may be switched for each left and right ear.
  • the teacher data may be switched in accordance with the user's deafness symptoms.
  • teacher data may be prepared and switched in large categories such as conductive hearing loss and sensorineural hearing loss.
  • teacher data may be prepared and switched for each audiogram pattern such as a low pitch gradual type or a high pitch gradual type.
  • the hearing aid gain setting unit 80 sets the result of the hearing aid gain for each frequency received from the gain determination unit 65 in the hearing aid of the user 5.
  • a pure tone having the same frequency is presented three times continuously with a monotonically decreasing sound pressure change, and the characteristics of the electroencephalogram for each sound stimulus from the first sound to the third sound are presented.
  • the amount of hearing aid gain for each frequency at the time of 90 dBSPL input or 80 dBSPL input, or at the time of 90 dBSPL input and 80 dBSPL input can be directly measured from the feature amount change pattern.
  • the biological signal measurement unit 50 cuts out an event-related potential in a predetermined range starting from the trigger signal from the sound stimulus generation unit 75 and transmits the event-related potential to the feature amount extraction unit 55.
  • this process is an example.
  • the biological signal measurement unit 50 may continuously measure brain waves, and the feature amount extraction unit 55 may perform necessary event-related potential extraction and baseline correction. If it is the said structure, the sound stimulus production
  • the result of the hearing aid gain measurement is set to the hearing aid of the user 5 by the hearing aid gain setting unit 80, but it may not be set.
  • each determination result of the hearing aid gain determination unit 65 may be simply output or accumulated.
  • Each determination result can be used as information on the hearing aid gain setting.
  • the hearing aid gain determination system 100 may include a hearing aid gain determination device 11, a sound stimulation device 12, a biological signal measurement unit 50, and a hearing aid gain setting unit 80.
  • the hearing aid gain determination device 11, the sound stimulation device 12, the biological signal measurement unit 51, and the hearing aid gain setting unit 80 are connected by wire or wirelessly and transmit / receive information.
  • the hearing aid gain determination device 11 includes an event-related potential feature amount extraction unit 55 and a hearing aid gain determination unit 65.
  • the sound stimulation device 12 includes a sound stimulation output unit 10, a sound stimulation group determination unit 70, a sound stimulation sound pressure determination unit 71, and a sound stimulation generation unit 75.
  • the event-related potential feature amount extraction unit 55 of the hearing aid gain determination device 11 receives the brain wave measured by the biological signal measurement unit 50 and the information on the sound stimulation group output by the sound stimulation output unit 10.
  • the event-related potential feature amount extraction unit 55 includes the event-related potential included in a predetermined time range after the time when each of the sound stimulation groups is presented from the electroencephalogram signal measured by the biological signal measurement unit 50.
  • the feature-value regarding the time frequency information of is extracted.
  • the hearing aid gain determination unit 65 refers to a predetermined standard and determines a hearing aid gain for the frequency of the sound stimulation group based on the feature amount extracted by the feature amount extraction unit.
  • the hearing aid gain can be obtained from an electroencephalogram for each user, which is useful for adjusting a hearing aid in a hearing aid store or at home.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • Psychiatry (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Neurosurgery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Multimedia (AREA)
  • Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 補聴器利得決定システム(100)は、ユーザの脳波信号を計測する生体信号計測部(50)と、純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定する音刺激群決定部(70)と、所定の閾値以下の音圧であり、かつ、第1音、第2音、及び第3音の順に音圧が減少するように、第1音、第2音、及び第3音の音圧を決定する音圧決定部(71)と、音刺激群決定部および音圧決定部で決定された周波数および音圧で、第1音、第2音、及び第3音を、ユーザに呈示する出力部(10)と、第1音、第2音、及び第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出する特徴量抽出部(55)と、所定の基準を参照して、特徴量抽出部で抽出した特徴量に基づいて、音刺激群の周波数に対する補聴器利得を決定する利得決定部(65)とを備える。

Description

補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム
 本願は、補聴器フィッティングの技術に関する。より具体的には、補聴器フィッティングにおいて、補聴器の音利得を決定するためのシステム、方法およびプログラムに関する。
 難聴とは、たとえば、特定の周波数あるいは周波数帯の音が聞こえにくい状態を意味する。聞こえにくい周波数あるいは周波数帯は、ユーザごとに異なる。
 補聴器は、ユーザが音を聞くことができるように、音を増幅する。ユーザの聴覚特性の違いにより、ユーザごとに必要な増幅量が異なる。本明細書において、「利得」とは、音を増幅する量(amount of gain)を意味する。
 補聴器を利用する前に、周波数ごとの音の利得を決定するフィッティングを行う。適切なフィッティングを行うためには、ユーザの聴覚特性の正確な測定が必要になる。
 聴覚特性の検査では、最初に最小可聴閾値(hearing threshold level:HTL)が調べられる。次に、不快レベル(uncomfortable level:UCL)が調べられる。HTL及びUCLは、補聴器から出力する音の音圧のダイナミックレンジを決定するために利用される。
 UCLは、脳波を用いて測定することも考えられる。たとえば、非特許文献1は、クリック音に対する聴性脳幹反応(auditory brainstem response: ABR)のV波潜時とUCLとに相関関係があることを開示している。
Thornton、A.R.他、「The objective estimation of loudness discomfort level using auditory brainstem evoked responses」、Scandinavian Audiology、Vol.16、No.4、P.219-225、1987年
 補聴器の周波数ごと、あるいは、入力音の音圧ごとの利得を得るために、現在、いくつかのフィッティング理論が提唱されている。たとえばハーフゲイン法では、各周波数の利得を、その周波数のHTLの半分にする。また、Berger法では、会話音声の周波数帯域を考慮して、1000Hzから4000Hzの増幅をやや増強する。POGO法では、250Hzと500Hzの利得をそれぞれ10dB、5dBだけ減じる。NAL-R法では、言葉の長時間音響分析周波数が快適レベルに入るように増幅する。
 しかしながら、非特許文献1に開示される構成では、UCLの推定は可能であるが、直接的に補聴器の周波数ごとの利得を推定することはできなかった。また、上記の種々のフィッティング理論では、聴覚特性から一律に計算した補聴器の利得を求めることは可能であるが、ユーザごとに適した利得の設定はできなかった。
 本願の、限定的でない例示的なある実施形態は、計測された脳波からユーザの聴覚特性を推定し、推定された聴覚特性に基づいて、そのユーザに適した周波数帯域ごとの補聴器利得を決定するシステム、方法及びコンピュータプログラムを提供する。
 本発明の一態様である補聴器利得決定システムは、ユーザの脳波信号を計測する生体信号計測部と、純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定する音刺激群決定部と、所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定する音圧決定部と、前記音圧決定部で決定された周波数で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示する出力部と、前記第1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出する特徴量抽出部と、所定の基準を参照して、前記特徴量抽出部で抽出した特徴量に基づいて、前記音刺激群の周波数に対する補聴器利得を決定する補聴器利得決定部とを備える。
 本発明の一態様による補聴器利得決定システムは、所定の入力音圧に対する周波数ごとの補聴器出力が推定できる。
本願発明者らが実施した補聴器特性測定実験の結果の例である90dBSPL入力時の補聴器出力を例示する図である。 本願発明者らが実施した脳波実験で使用した音刺激の構成を例示する図である。 国際10-20法の電極位置と、本願発明者らが実施した脳波実験での電極位置を示す図である。 本願発明者らが実施した脳波実験における事象関連電位の特徴データを例示する図である。 本願発明者らが実施した脳波計測実験1における周波数ごとの加算平均波形とウェーブレット係数を例示する図である。 補聴器特性測定実験で得られた90dBSPL入力および80dBSPL入力に対する補聴器出力と、脳波計測実験1から推定した補聴器出力推定結果のばらつきを例示する図である。 脳波計測実験1の補聴器出力推定において、平均誤差が小さい上位1%で用いられたウェーブレット係数の頻度を例示する図である。 実施形態1による補聴器利得決定システムの実現形態の構成を例示する図である。 補聴器利得決定システムの利用環境を例示する図である。 実施形態1によるハードウェア構成を例示する図である。 補聴器利得決定システムの全体処理の概要を例示するフローチャートである。 実施形態1の構成の変形例を例示する図である。 本願発明者らが実施した脳波計測実験2における周波数ごとの加算平均波形とウェーブレット係数を例示する図である。 補聴器特性測定実験で得られた90dBSPL入力および80dBSPL入力に対する補聴器出力と、脳波計測実験2から推定した補聴器出力推定結果のばらつきを例示する図である。 脳波計測実験2の補聴器出力推定において、平均誤差が小さい上位1%で用いられたウェーブレット係数の頻度を例示する図である。
 本発明の第1の態様は、ユーザの脳波信号を計測する生体信号計測部と、純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定する音刺激群決定部と、所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に音圧が減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定する音圧決定部と、前記音刺激群決定部及び前記音圧決定部で決定された周波数及び音圧で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示する出力部と、前記脳波信号において、前記第1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出する特徴量抽出部と、所定の基準を参照して、前記特徴量抽出部で抽出した特徴量に基づいて、前記音刺激群の周波数に対する補聴器利得を決定する補聴器利得決定部とを備える。
 本発明の第2の態様において、前記利得決定部は、前記特徴量と、80dBSPL以上の入力音圧に対して設定された補聴器出力の値とを予め対応付けた所定の基準を参照して、80dBSPL以上の入力音圧に対する補聴器出力を決定する。
 本発明の第3の態様において、前記利得決定部は、前記特徴量と、90dBSPL入力時または80dBSPL入力時の補聴器出力の値とを予め対応付けた所定の基準を参照して、90dBSPL入力時または80dBSPLを有する入力音圧に対する補聴器出力を決定する。
 本発明の第4の態様において、前記所定の閾値は、一般的なUCL値よりも低い音圧である。
 本発明の第5の態様において、前記音圧決定部は、前記第1音、前記第2音、及び前記第3音の順に、5dBずつ音圧が低下するように音圧を決定する。
 本発明の第6の態様において、前記音圧決定部は、前記第1音、前記第2音、及び前記第3音の順に、15dBずつ音圧が低下するように音圧を決定する。
 本発明の第7の態様は、さらに、前記利得決定部の判定結果に基づいて、90dBSPL入力時または80dBSPL入力時、あるいは90dBSPL入力時および80dBSPL入力時の周波数ごとの補聴器利得を設定する利得設定部を備える。
 本発明の第8の態様において、前記利得決定部は、複数のユーザで計測された、時間周波数の特徴量と90dBSPL入力時または80dBSPL入力時の補聴器利得とを対応付けたデータを前記所定の基準として保持し、当該所定の基準を参照して、補聴器利得を決定する。
 本発明の第9の態様において、前記利得決定部は、前記音刺激群の周波数ごとに、前記所定の基準を保持し、前記音刺激群の周波数に応じて選択された所定の基準を用いる。
 本発明の第10の態様において、前記特徴量抽出部は、前記第1音、前記第2音、及び前記第3音のそれぞれの呈示時刻から300ms経過した時点までの区間における、脳波信号の時間周波数情報を算出し、所定の周波数幅および所定の時間幅で平均した値を特徴量とする。
 本発明の第11の態様において、前記所定の周波数幅は2.5Hz以上12.5Hz以下の周波数範囲を9分割することによって規定される周波数幅である。
 本発明の第12の態様において、前記所定の時間幅は50msである。
 本発明の第13の態様は、生体信号計測部により計測されたユーザの脳波信号において、出力部により呈示された、所定の閾値以下の音圧であり、かつ、順に減少する音圧を有する第1音、第2音、及び第3音のそれぞれが呈示された時刻後の前記脳波信号の事象関連電位の時間周波数に関する特徴量を抽出する特徴量抽出部と、所定の基準を参照して、前記特徴量抽出部で抽出した特徴量に基づいて、補聴器利得を決定する利得決定部とを備える。
 本発明の第14の態様は、ユーザの脳波信号を計測するステップと、純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定するステップと、所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に音圧が減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定するステップと、前記決定された周波数および音圧で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示するステップと、前記脳波信号において、前記第1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出するステップと、所定の基準を参照して、前記抽出した特徴量に基づいて、補聴器利得を決定するステップと、を備える。
 本発明の第15の態様は、コンピュータによって実行されるコンピュータプログラムであって、前記コンピュータプログラムは、前記コンピュータに対し、純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定するステップと、所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定するステップと、前記決定された周波数および音圧で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示するステップと、前記第1音、前記第2音、及び前記第3音を呈示したときの前記ユーザの脳波信号において、前記第1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出するステップと、所定の基準を参照して、前記抽出した特徴量に基づいて、補聴器利得を決定するステップと、実行させる。
 上述の一般的かつ特定の態様は、システム、装置、方法およびコンピュータプログラムを用いて実装され、またはシステム、装置、方法およびコンピュータプログラムの組み合わせを用いて実現され得る。
 まず、本明細書における用語の定義を説明する。
 「事象関連電位(event-related potential:ERP)」とは、脳波(electroencephalogram:EEG)の一種であり、外的な刺激あるいは内的な事象に時間的に関連して生じる脳の一過性の電位変動である。
 「音刺激」とは、聴覚刺激とも呼ばれ、ユーザに対して呈示する音である。
 「N1成分」とは、音刺激を呈示した時刻を起点として、約100ms後に現れる事象関連電位の陰性成分である。
 「P2成分」とは、音刺激を呈示した時刻を起点として、約200ms後に現れる事象関連電位の陽性成分である。
 「潜時」とは、音声刺激が呈示された時刻を起点として陽性成分または陰性成分のピーク電位が出現するまでの時間である。
 「陰性成分」とは、一般的には、0μVよりも小さい電位をいう。電位を比較する対象がある場合には、より負の値を有する電位を陰性成分ともいう。
 「陽性成分」とは、一般的には、0μVよりも大きい電位をいう。電位を比較する対象がある場合には、より正の値を有する電位を陽性成分ともいう。
 「入力音圧」とは、補聴器に入力される音の音圧(音圧レベル)をいう。
 「補聴器利得」とは、補聴器に入力される音の音圧または周波数ごとに、補聴器が音を増幅する量である。例えば、補聴器に入力される音の音圧(音圧レベル)と、補聴器から出力される音の音圧(音圧レベル)との差に相当する。
 「最小可聴値(hearing threshold level:HTL)」とは、ユーザが聞き取ることのできる最も小さい音の音圧である。
 「純音」とは、周期振動を繰り返す楽音のうち、単一の周波数成分しか持たない正弦波で表される音である。
 なお、「事象関連電位(ERP)マニュアル-P300を中心に」(加我君孝ほか編集、篠原出版新社、1995)の30頁に記載の表1によると、一般的に、事象関連電位の波形には、個人ごとに30msから50msの差異(ずれ)が生じる。したがって、本明細書において、「約Xms」又は「Xms付近」という場合、Xmsを中心として30msから50msの幅を、その前後(例えば、N1成分は100ms±30ms、P2成分は200ms±50ms)に有するものと解釈されてよい。
 以下、図面を参照しながら、各実施形態を説明する。
 本実施形態の補聴器利得決定システムは、音を呈示し、呈示した音に対するユーザの事象関連電位を用いて、補聴器によって音を増幅すべき量を推定する。具体的には、補聴器利得決定システムは、音の周波数又は音圧毎に、補聴器により調整して出力すべき音の音圧を推定する。
 推定手法の説明に先立ち、本願発明者らが実施した実験とその実験結果を説明する。より詳細には、本願発明者らが実験データから見出した補聴器利得決定を可能にする事象関連電位の特性について説明する。
 (実験概要の説明)
 1.実験概要
 本願発明者らは、所定の入力音圧に対する周波数ごとの適切な補聴器利得を推定するために、補聴器ユーザに対して、以下の2つの実験を実施した。
 一つは、補聴器ユーザが日常的に使用している状態の補聴器の特性を測定する補聴器特性測定実験である。補聴器特性測定実験は、補聴器特性測定の専用装置(FONIX FP35)を用いて実施した。
 もう一つは、音刺激に対する反応を計測する脳波計測実験である。脳波計測実験は、2種類の音刺激の設定で実施した。
 脳波計測実験1及び脳波計測実験2のそれぞれにおいて、所定の時間間隔を空けて第1音、第2音、及び第3音を1セットとして実験参加者に呈示した。第1音、第2音、及び第3音は、同一周波数を有し、かつ、純音であった。本明細書では、同一周波数を有する1セットの音刺激(第1音、第2音、及び第3音)を「音刺激群」と呼ぶことがある。
 脳波計測実験1では、第1音は80dBHL、第2音は75dBHL、第3音は70dBHLとした。つまり、第1音から第3音まで順に5dBずつ減少させた。
 脳波計測実験2では、第1音は80dBHL、第2音は65dBHL、第3音は50dBHLとした。つまり、第1音から第3音まで順に15dBずつ減少させた。
 脳波計測実験1及び脳波計測実験2のいずれにおいても、第1音から第3音のそれぞれに対する事象関連電位を計測した。
 「純音」とは、単一の周波数で周期振動を繰り返す、正弦波で表される音である。ここで、人間の聞き分けることができない程度に周波数が変化している音も、単一の周波数の音とみなすことができる。
 上記の脳波計測実験1および2に基づいて、80dBSPL以上の音圧を有する音の入力時(より具体的には、90dBSPL入力時および80dBSPL入力時)の補聴器特性測定結果が、計測した脳波(事象関連電位)から推定できるかどうかを調べた。
 その結果、本発明者らは、一般的にUCLと評価される音圧よりも低い音圧の音刺激に対する脳波から、80dBSPL以上の入力時(90dBSPL入力時および80dBSPL入力時)の補聴器利得が5dB程度の平均誤差で推定できることを見出した。
 ここで、上記のUCLと評価される音圧よりも「低い音圧」について説明する。一般的に、UCLと評価される音圧よりも低い音圧は、HTL値によって変動する。
 HTL値ごとに推定されたUCL音圧が、たとえば、Pascoe、 D.P. (1988). (Clinical measurements of the auditory dynamic range and their relation to formulas for hearing aid gain. In 1ensen. H. 1. (Ed.) Hearing Aid Fitting: Theoretical and Practical Views 13th Danavox Symposium. Copenhagen: Stougaard.)に記載されている。このようにHTLから定められたUCLを基準として、このUCLより例えば5dB以上低い音圧を上述した「低い音圧」と考えて良い。
 なお、実験参加者の難聴の程度を測定するために、事前に、250Hz、500Hz、1000Hz、2000Hz、および4000HzにおけるHTLを測定した。
 以下、本願発明者らの実験内容、実験結果、及び実験結果を分析することにより明らかになった脳波の特徴を説明する。
 (実験条件の説明)
 2-1.補聴器特性測定実験および脳波計測実験
 実験参加者は、日常的に補聴器を装用している、22名の難聴者(61歳から80歳の平均73.0歳)であった。難聴者の内訳は、男性15名および女性7名であった。全ての参加者のうち、18個の右耳、及び8個の左耳(合計26耳)に補聴器が装用されていた。両耳に補聴器を装用した者は4名であった。
 4分法を用いて、参加者の平均聴力レベルを測定した。測定の結果、26耳の難聴のレベルの内訳は、20耳が中等度難聴(40~69dBHL)、3耳が軽度難聴(26~39dBHL)、3耳が高度難聴(70dBHL以上)であった。
 4分法では、(a+2b+c)/4で求められる数値を平均聴力レベルとして扱う。ここで、aは500HzのHTL、bは1000HzのHTL、cは2000HzのHTLである。
 2-2.補聴器特性測定実験
 ユーザが日常的に補聴器を利用している時の補聴器の利得を測定するために、ボリュームを日常使用位置に合わせた。
 補聴器特性装置を用いて、50、60、70、80、90dBSPLを有する入力音のそれぞれに対する、補聴器の出力音の音圧を測定した。周波数については、200Hzから8000Hzを有する入力音について測定した。なお、出力音の音圧は2ccカプラ(2cc coupler)を用いて測定した。
 測定誤差を低減するため、補聴器ごとに、4回の測定を行い、500Hz、1000Hz、2000Hz、4000Hzを有する出力音の平均を求めた。
 図1(a)及び(b)は、90dBSPLの音が入力された時の、参加者ごとの補聴器出力の測定結果を示す。図1(a)及び(b)の横軸は周波数で、縦軸は音圧(dBSPL)である。
 図1(a)は、右耳装用の18耳についての測定結果、図1(b)は左耳装用の8耳についての測定結果を示す。図1(a)及び(b)から、90dBSPL入力時の補聴器出力は、ユーザごとに異なっていることが明らかである。例えば、図1(a)に示す結果では、500Hzの音に対して、ユーザ間で40dBの出力音圧の差があることがわかる。
 この結果は、同じ入力音圧であっても、ユーザごとに適切な利得が異なることを示している。80dBSPL入力時の補聴器出力においてもばらつきは同様であった。500、1000、2000、4000Hzにおける補聴器出力の平均と標準偏差は、それぞれ96.1±8.8、103.7±9.4、105.1±8.7、99.6±8.8dBSPLであった。
 なお、補聴器利得は、補聴器の出力音の音圧から補聴器への入力音の音圧を減算することによって求めることができる。
 2-3.脳波計測実験
 脳波計測実験1では、音圧が80dBHL、75dBHL、70dBHLで順で単調減少する3つの音刺激を音刺激群として呈示し、各音刺激ごとの事象関連電位の特徴変化を調べた。また、音刺激群は、4つの周波数(500、1000、2000、4000Hz)のいずれかを有しており、周波数の異なる音刺激群を、所定の時間を空けて連続的に呈示した。
 脳波計測実験2は、脳波計測実験1で呈示した音刺激の音圧以外の条件は同じである。脳波計即実験2では、音圧が単調減少するように、音刺激を80dBHL、65dBHL、50dBHLで順に呈示した。
 なお、実験1及び実験2の呈示音の音圧(80dBHL、75dBHL、70dBHL、65dBHL、50dBHL)は、一般的にUCLと評価される音圧よりも低い。
 以下、図2、図5、および図13を参照しながら、脳波計測実験1および2の詳細な実験設定および実験結果を説明する。
 音刺激は、立ち上がり(rise)が3ms、持続時間44ms、立ち下がり(fall)が3msのトーンバーストオンである。
 音刺激群に含まれる音刺激は、所定間隔をあけて、同じ耳に呈示した。音刺激は、ヘッドフォン(HDA 200、SENNHEISER)を用いて片耳ずつ呈示した。音刺激の音圧は、騒音計(LA-1440、ONO SOKKI)とカプラ(IEC318、Larson Davis)を用いて校正した。
 図2(a)は、脳波計測実験1で呈示した音刺激の概要を示し、図2(b)は、脳波計測実験2の音刺激の概要を示す。
 実験の前に、参加者に対して、音刺激に注意する必要がないことを説明した。
 音刺激群内の音刺激の間隔(図2中ではISI1)は300msに固定した。また、音刺激群間の間隔(図2中ではISI2)は、450±50msの範囲でランダムに決定した。1ブロックあたり、左右耳ごと、周波数ごとの音刺激群をそれぞれ20回繰り返した(音刺激群としては計160回の繰り返し)。測定精度を向上させるために、3ブロックから5ブロックの音刺激群の呈示を実施した。
 同じ周波数を有する音刺激群が同じ耳に対して連続的に呈示された場合、参加者が音刺激に慣れて、事象関連電位の振幅が小さくなることがある。この現象を聴覚誘発電位の慣れ(habituation)と呼ぶ。聴覚誘発電位の慣れを低減するために、音刺激群の周波数および呈示耳は、次の制約で決定した。
 ・直前の音刺激群とは、異なる周波数を有する音刺激群を呈示し、同じ周波数の音刺激群を連続して呈示しない。
 ・音刺激群を呈示する耳は左右でランダムとする。ただし、左右の耳への刺激のランダム性を確保するために、左右どちらかの耳への音刺激群を4回以上連続させない。
 次に、脳波を計測するために装着される電極の位置を説明する。図3(a)は、国際10-20法(10-20 System)の電極位置を示す。図3(b)は本実験で電極を装着した電極配置を示す。図3(b)の丸付き数字1~5は、電極位置のFz、Cz、Pz、C3、C4をそれぞれ示す。
 本願発明者らは、頭皮上のFz、Cz、Pz、C3、C4に装着したアクティブ電極と、右マストイドに装着した基準電極との電位差を脳波として計測した。「マストイド」とは、耳の裏の付け根の下部の頭蓋骨の乳様突起であり、図3(b)には、マストイドの位置が「Ref」によって示されている。
 また、瞬目および眼球運動によって、脳波に混入する眼電ノイズを測定するために、右目の上および右目の右に電極(図3(b)の丸付き数字6および7)を配置した。
 サンプリング周波数は1000Hz、時定数は1秒とし、30Hzのアナログローパスフィルタをかけた。
 オフラインで計測した脳波データの全時間帯について、1-20Hzのディジタルバンドパスフィルタをかけた。その後に、左右耳ごと、周波数ごと、音圧ごとの音刺激に対する事象関連電位として、それぞれの音刺激群の第1音を起点に、-100msから1000msの波形をそれぞれ切り出した。ここで、「-100ms」とは、第1音を呈示した時刻より100ミリ秒前の時点をいう。
 また、事象関連電位の0ms以上900ms以下の範囲の脳波波形に対して、連続ウェーブレット変換を実施し、時間ごと周波数ごとのウェーブレット係数を求めた。マザーウェーブレットとして、メキシカンハット関数(ψ(t)=(1-t^2)exp(-t^2/2))を用いた。ウェーブレット変換とは、事象関連電位の時間周波数成分を求める一つの方法である。時間周波数成分が求められるのであれば、ウェーブレット変換に限られず、たとえば短時間フーリエ変換を実施してもよい。
 事象関連電位の波形およびウェーブレット係数は、個人ごと、左右耳ごと、周波数ごとに加算平均した。それぞれ加算平均波形、加算平均ウェーブレット係数と呼ぶ。いずれかの電極において絶対値で80μV以上の振幅を含む試行は、眼球運動や瞬目によるノイズの影響を含むことが想定されるため、総加算平均および加算平均から除外した。
 事象関連電位から抽出され、補聴器利得を示す指標となりうる特徴量として、ウェーブレット特徴量を求めた。ここで、ウェーブレット特徴量とは、加算平均ウェーブレット係数において、時間軸で例えば30分割(30msごと)、周波数軸(例えば2.5Hzから12.5Hz)で例えば9分割となるように、平均値を求めたものである。
 以下、脳波計測実験の結果を説明する。
 まず、音圧変化に対する事象関連電位に、補聴器利得の指標が含まれることを確認するために、補聴器特性測定実験にて測定された90dBSPL入力時または80dB入力時の実際の補聴器利得と、脳波計測実験において得られた加算平均した事象関連電位との比較を行った。事象関連電位から補聴器利得を推定するためには、参加者ごとの補聴器利得を反映する事象関連電位の差の存在が必須である。
 補聴器特性測定実験にて測定された補聴器利得の大きさに基づいて、実験参加者を2つのグループに分けた。より具体的には、周波数ごとに、90dBSPL入力時または80dBSPL入力時の補聴器出力が平均値以上か平均値よりも小さいか否かによって、補聴器利得(補聴器出力)の大きいグループと小さいグループとに分けた。
 図4(a)及び図4(b)は、脳波計測実験1および脳波計測実験2の中心部(Cz)における、加算平均波形を示す。補聴器出力が平均以上のグループの場合を実線で、平均よりも小さいグループの場合を破線でそれぞれ示した。横軸は時間で単位はms、縦軸は電位で単位はμVである。横軸の0msは、第1音呈示時刻である。
 矢印で示したそれぞれの音刺激呈示タイミングから約100ms後に現れる陰性成分がN1成分であり、約200ms後に現れる陽性成分がP2成分である。補聴器の出力音の大小によらず、N1成分及びP2成分が現れている。
 また、補聴器出力が小さいグループ(破線)に対応する事象関連電位のN1成分は、補聴器出力が大きいグループ(実線)に対応する事象関連電位のN1成分より、振幅が大きいことが分かる。
 なお、この結果は、健聴者に対して同じ音刺激を呈示し、主観報告で評価したUCL(主観UCLと呼ぶ)の大小に基づいてグループ分けしたときの加算平均事象関連電位の波形とは異なる。大きな主観UCLを有する健聴者に比べて、小さな主観UCLを有する健聴者は、特に第2音と第3音に対して、小さな振幅のP2成分を有していた。つまり、参加者の聴力差もあるが、90dBSPL入力時の補聴器出力に関連する指標は、UCLに関連する指標とは異なる形で、事象関連電位の波形のうちに現れるものと考えられる。
 図5と図13に、脳波計測実験1と脳波計測実験2のそれぞれ入力音の周波数(500、1000、2000、4000Hz)ごとの加算平均波形および加算平均ウェーブレット係数を示した。図5の上段には、加算平均波形を示し、中段には補聴器出力が平均以上の場合の加算平均ウェーブレット係数を示し、下段には補聴器出力が平均より小さい場合の加算平均ウェーブレット係数を示す。
 図4と同様に、補聴器出力が平均以上の場合を実線で、平均よりも小さい場合を破線でそれぞれ示した。横軸は時間で単位はms、縦軸は電位で単位はμVである。横軸の0msは、第1音呈示時刻である。周波数によりN1成分の振幅の絶対値は異なるが、補聴器出力が平均以上の場合と比べて、平均より小さい場合の方がN1成分の振幅が大きいことが分かる。また、特に加算平均で差がある時間帯の加算平均ウェーブレット係数においても、補聴器出力の大小ごとに差がある様子が見てとれる。
 2-4.補聴器出力の推定
 脳波計測実験1および脳波計測実験2の結果から、90dBSPL入力時および80dBSPL入力時の補聴器特性測定結果が推定できるかどうかを調べた。補聴器出力の推定には、線形判別を用いた。上述のように、補聴器利得は、補聴器出力音圧から入力音圧を減算することで求められる。よって、補聴器出力が推定できれば、補聴器利得が推定できたといえる。
 上述のように、まずウェーブレット特徴量を求めた。ウェーブレット特徴量は、加算平均ウェーブレット係数の0から900msの範囲を、50msの時間窓でスケール(周波数幅)ごとに平均することによって生成した。次に、線形判別を用いた推定を行うために、補聴器特性測定実験で測定した90dBSPL入力時および80dBSPL入力時の補聴器出力を5dBごとに丸めた。これにより、5dB刻みの補聴器特性を線形判別によって推定する。
 具体的には、測定した補聴器出力を二捨三入した。そして、任意の2つのウェーブレット特徴量を組合せ、自分以外の参加者の5dB刻みの補聴器出力とウェーブレット特徴量との組合せの対応関係を教師データとして用いた。教師データは、入力音圧ごとに左右耳をプールして、刺激周波数ごとに作成した。
 補聴器出力推定の精度は、平均誤差(全ての参加者の左右耳・周波数ごとの5dB刻みの補聴器出力と推定した補聴器出力との差の絶対値の平均)で評価した。平均誤差は、全てのウェーブレット特徴量の組合せに対して求めた。
 図6および図14は、脳波計測実験1と脳波計測実験2で得たウェーブレット特徴量に基づいて線形判別を行った結果をそれぞれ示す。線形判別結果として、補聴器特性測定実験で測定された90dBSPL入力および80dBSPL入力に対する補聴器出力と、ウェーブレット特徴量を用いて判別分析を行うことによって推定された補聴器出力との対応関係の分布を、左右耳・刺激周波数をプールしてそれぞれ示した。各格子点に該当した度数を丸印の大きさで示した。丸印の中心が破線上にあれば、補聴器出力が正しく推定できたことを示す。
 両実験・両入力音圧において、ばらつきはあるが、計測された脳波から補聴器出力が推定できている様子が分かる。脳波計測実験1の90dBSPL入力および80dBSPL入力に対する、補聴器出力推定の平均誤差はそれぞれ4.6dB、5.1dBであった。脳波計測実験2の90dBSPL入力および80dBSPL入力に対する、補聴器出力推定の平均誤差はそれぞれ4.6dB、5.2dBであった。よって、同一周波数の純音を80dBHLから5dBずつ、または15dBずつ下げて3連発で呈示して測定した事象関連電位から、90dBSPL入力時および80dBSPL入力時の周波数ごとの補聴器出力が高精度に推定できるといえる。
 なお、60dBSPLや70dBSPLの音圧を有する入力音について、上記のウェーブレット特徴量を用いて補聴器出力を推定したところ、推定精度が低下する場合があることが本発明者によって確認された。したがって、上述のような脳波を利用した補聴器出力の推定は、80dBSPL以上の入力音圧に対する補聴器出力を推定するものとして行われても良い。
 どの時間帯・周波数帯のウェーブレット特徴量に補聴器出力推定に関する情報が最も特徴的に含まれるかを調べるために、平均誤差が小さくなるウェーブレット特徴量の分布を調べた。図7に脳波計測実験1の結果を、図15に脳波計測実験2の結果を示す。図7および図15の上段には、平均誤差が小さかった上位1%の推定で用いられたウェーブレット特徴量の頻度を示している。いずれの結果も、第1音に対するN1成分(潜時約100ms)周辺の時間帯および第2音に対するP2成分(潜時約200ms)周辺の時間帯および第3音に対するP2成分の時間帯におけるウェーブレット係数を用いた場合に、平均誤差が小さくなることが分かる。
 また、図7および図15の下段は、上位1%の推定で用いられた50msの時間窓ごと(第1音から第3音それぞれに6つの時間窓)のウェーブレット特徴量の頻度を示した。いずれの結果も、第1音に対するN1成分(潜時約100ms)周辺の時間帯および第2音に対するP2成分(潜時約200ms)周辺の時間帯および第3音に対するP2成分の時間帯におけるウェーブレット係数を用いた場合に、平均誤差が小さくなることが分かる。上位1%の推定において、ほとんどの結果において共通して15%以上の確率で利用されたのは、第1音に対するN1成分周辺の時間帯、第2音に対するP2成分周辺の時間帯、第3音に対するN1成分およびP2成分周辺の時間帯のウェーブレット特徴量であった。
 なお、ウェーブレット特徴量だけでなく、P1-N1振幅とN1-P2振幅の情報を加えて判別分析を実施してもよい。
 以上、本願発明者らが実施した主観報告実験および脳波計測実験により、一般的にUCLと評価される音圧よりも低い音圧の範囲において、同一周波数の純音を単調下降の音圧変化で3回連発呈示した場合に、第1音から第3音までのそれぞれの音刺激に対する脳波に含まれる特徴量(例えばウェーブレット係数に関する特徴量)を用いて、例えば、90dBSPL入力時および80dBSPL入力時の補聴器出力が推定可能であることが明らかとなった。
 (実施形態1)
 以下では、まず、補聴器利得決定システム100の概要を説明する。その後、補聴器利得測定装置1を含む補聴器利得決定システム100の構成および動作を説明する。
 本実施形態による補聴器利得決定システム100は、音刺激が提示されたユーザの脳波(事象関連電位)を計測して特徴量を抽出し、その特徴量の変化パターンから、90dBSPL入力時または80dBSPL入力時、あるいは90dBSPL入力時および80dBSPL入力時の補聴器利得を決定する。
 本実施形態においては、探査電極を中心部(Cz)に設け、基準電極を右マストイドに設けて、探査電極と基準電極の電位差である脳波を計測するものとする。なお、事象関連電位の特徴成分のレベルや極性は、脳波計測用の電極を装着する部位や、基準電極および探査電極の設定位置に応じて変わる可能性がある。しかしながら、以下の説明に基づけば、当業者は、そのときの基準電極および探査電極に応じて適切な改変を行って事象関連電位の特徴を抽出し、不快音圧の測定を行うことが可能である。そのような改変例は、本発明の範疇である。
 図8は、本実施形態による補聴器利得決定システム100(以下、利得決定システム100と記述することがある)の機能ブロックの構成を示す。利得決定システム100は、音刺激出力部10と、生体信号計測部50と、補聴器利得決定装置1(以下、利得決定装置1と記述することがある)とを備えている。
 利得決定装置1は、事象関連電位特徴量抽出部55と、補聴器利得判定部65と、音刺激群決定部70と、音刺激音圧決定部71と、音刺激生成部75と、補聴器利得設定部80とを備えている。なお、以下では、事象関連電位特徴量抽出部55を「特徴量抽出部55」と記述することがあり、補聴器利得判定部65を「利得判定部65」と記述することがあり、音刺激音圧決定部71を「音圧決定部71」と記述することがあり、補聴器利得設定部80を「利得設定部80」と記述することがある。
 利得決定装置1は、音刺激出力部10及び生体信号計測部50と、有線又は無線で接続されている。音刺激出力部10は、ユーザ5に音刺激を呈示するように構成されており、生体信号計測部50は、ユーザ5の生体信号(脳波)を計測できるように構成されている。なお、説明の便宜のために、図にはユーザ5のブロックも示されている。
 音刺激出力部10は、ユーザ5に、一般的にUCLと評価される音圧よりも低い音圧範囲において単調下降の音圧変化で、ある周波数の音刺激群(第1音、第2音、及び第3音)を出力する。
 生体信号計測部50は、少なくとも2つの電極Aおよび電極Bと接続されている。例えば、電極Aはユーザ5のマストイドに貼り付けられ、電極Bはユーザ5の頭皮上の中心部(いわゆるCz)に貼り付けられている。生体信号計測部50は、電極Aと電極Bとの電位差に対応するユーザ5の脳波を計測する。
 利得決定装置1は、第1音から第3音の呈示時刻を起点にそれぞれ計測したユーザ5の脳波(事象関連電位)から、時間周波数の情報を含むウェーブレット係数を特徴量として抽出する。利得決定装置1は、抽出した、第1音から第3音に対する特徴量を用いて、ユーザ5の補聴器利得を推定する。それぞれの構成の詳細は、後述する。
 <利用環境>
 図9は、本実施形態による補聴器利得決定システム100の構成および利用環境を示す。利得決定システム100は、図8に示す実施形態1のシステム構成に対応している。
 上記のように補聴器利得決定システム100は、利得決定装置1と、音刺激出力部10と、生体信号計測部50とを備えている。
 利得決定システム100は、生体信号計測部50および音刺激出力部10を、同じ筐体内に備えていてもよい。あるいは、利得決定システム100は、生体信号計測部50および音刺激出力部10を、別筐体に備えてもよい。その場合には、生体信号計測部50は、計測した脳波信号を、無線または有線で接続されている利得決定装置1に送信する。
 利得決定装置1は、補聴器利得測定のための音刺激の情報を決定する。音刺激の情報には、例えば、刺激を提示する耳(左耳または右耳)、音の周波数、音圧、音を呈示するタイミングが含まれていてよい。このようにして利得決定装置1によって決定された音刺激を、音刺激出力部10はユーザ5に対して呈示する。
 また、利得決定装置1は、第1音から第3音のそれぞれの音刺激を起点に切り出した事象関連電位から、補聴器出力を推定するための特徴量を抽出する。
 例えば、補聴器が出力する音の音圧を調整が可能な場合、本実施形態の利得決定システム100は、ユーザが日常的に使用しているボリュームにおける補聴器利得を推定する。「ボリューム」とは、補聴器が、全ての音に対して、一律的に増幅する量を意味する。
 例えば、入力音圧が90dBSPLのときの補聴器利得を推定する。90dBSPLの入力音圧に対する補聴器の出力音圧は、ノンリニア増幅の補聴器の圧縮比を決定するために重要である(小寺一興、改訂第3版 補聴器フィッティングの考え方 p81)。
 圧縮比をより正確に求めるためには、90dBSPLの入力音圧に対する補聴器の出力音圧だけでなく、90dBSPL以外の入力音圧に対する補聴器の出力音圧を求めることが好ましい。
 たとえば、音圧変化に対する特徴量変化のパターンに基づいて、左右耳ごと、周波数ごとの90dBSPL入力時または80dBSPL入力時、あるいは90dBSPL入力時および80dBSPL入力時の補聴器出力を判定する。
 <補聴器利得決定装置1のハードウェア構成>
 図10は、本実施形態による補聴器利得決定装置1のハードウェア構成を示す。利得決定装置1は、CPU30と、メモリ31と、オーディオコントローラ32とを備えている。CPU30と、メモリ31と、オーディオコントローラ32とは、互いにバス34で接続されており、相互にデータの授受が可能である。
 CPU30は、メモリ31に格納されているコンピュータプログラム35を実行する。コンピュータプログラム35には、後述するフローチャートに示される処理手順が記述されている。
 利得決定装置1は、コンピュータプログラム35にしたがって、音刺激の生成、事象関連電位の特徴量抽出、補聴器利得決定の判別分析等の処理を行う。この処理は後に詳述する。
 オーディオコントローラ32は、CPU30の命令に従って、それぞれ、呈示すべき音刺激を指定された音圧で音刺激出力部10を介して出力する。
 なお、利得決定装置1は、1つの半導体回路にコンピュータプログラムを組み込んだDSP等のハードウェアとして実現されてもよい。そのようなDSPは、1つの集積回路で上述のCPU30、メモリ31、オーディオコントローラ32の機能を全て実現することが可能である。例えば、特徴量抽出部55と、利得決定部65と、音刺激群決定部70と、音圧決定部71と、音刺激生成部75と、利得設定部80とは、CPU30により実現される。
 上述のコンピュータプログラム35は、CD-ROM等の記録媒体に記録されて製品として市場に流通され、または、インターネット等の電気通信回線を通じて伝送され得る。図10に示すハードウェアを備えた機器(たとえばPC)は、当該コンピュータプログラム35を読み込むことにより、本実施形態による利得決定装置1として機能し得る。
 利得決定装置1の各機能ブロックは、それぞれ、図10に関連して説明したプログラムが実行されることによって、CPU30、メモリ31、オーディオコントローラ32によって全体としてその時々で実現される機能に対応している。
 以下、補聴器利得決定システム100の各構成要素を説明する。
 <音刺激群決定部70>
 音刺激群決定部70は、ユーザ5に呈示する複数の音刺激(音刺激群)の情報を決定する。本実施形態において、音刺激群は、少なくとも第1音、第2音、及び第3音を含む。
 音刺激群の情報は、たとえば、音刺激を呈示する耳(右耳または左耳)、呈示する音刺激の周波数、音刺激群内の音刺激の持続時間、複数の音刺激間の間隔を含む。音刺激群の情報は、少なくとも音刺激の周波数及び音刺激間の間隔を含めばよい。なお、音刺激間の間隔は、音刺激群決定部70が決定せずに、後述する音刺激出力部10が予め決められた情報を保持することによって決定されても良い。
 なお、利得決定システム100は、ユーザが不快と感じない程度の大きさの音圧を有する呈示音を呈示することが望ましい。このような音圧の制御は、例えば、後述する音圧決定部71によって行われてよい。
 音刺激群の呈示耳および周波数は、たとえば次の制約に基づいてランダムに決定されてもよい。直前の音刺激群と同じ周波数の音刺激は選択しない。左右耳はランダムな順序で選択することが好ましい。ただし、左右どちらか一方の耳のみに、音刺激群の呈示を4回以上連続させないことが好ましい。こうすることで、同一耳、周波数の音刺激群の連続呈示による脳波の慣れ(habituation)の影響が低減され、高精度な補聴器利得測定が実現できる。音刺激の持続時間は、聴覚誘発電位が安定して惹起されるよう、たとえば25ms以上に設定する。また、刺激間間隔は、音刺激の持続時間以上で1秒以下の時間に設定する。たとえば、300msとしてもよいし、200msとしてもよい。
 <音刺激音圧決定部71>
 音圧決定部71は、音刺激群決定部70から音刺激群の情報を受け取る。
 音刺激群の情報とは、例えば、音刺激を呈示する耳(右耳または左耳)、呈示する音刺激の周波数、音刺激群内の音刺激の持続時間、複数の音刺激間の間隔である。
 第1音、第2音、及び第3音は、少なくとも周波数が同じであればよい。周波数が同じとは、人間が聞き分けられる周波数より小さい差を有する音を含む。本明細書において、例えば、5Hz以下の差は、同じ周波数であるとみなす。
 音圧決定部71は、音刺激群内の第1音から第3音の音圧を、設定された所定の閾値よりも低い音圧範囲で決定する。また、本実施形態では、音圧決定部71は、第1音から第3音の音圧を、順に音圧が減少するように、すなわち、第1音の音圧>第2音の音圧>第3音の音圧の関係を満たすように、それぞれの音の音圧を決定する。
 ここで、所定の閾値とは、例えば、一般的にUCLと評価される音圧である。つまり、ユーザ5が快適に聞くことができる音圧範囲内に含まれるように、第1音から第3音の音圧を決定する。
 音刺激音圧決定部71は、予め所定の閾値を保持していてもよい。この閾値を下回るように、音刺激音圧決定部71は、たとえば、第1音の音圧を80dBHL、第2音の音圧を75dBHL、第3音の音圧を70dBHLと決定してもよい。また、たとえば、第1音の音圧を80dBHL、第2音の音圧を65dBHL、第3音の音圧を50dBHLと決定してもよい。
 また、音刺激音圧決定部71は、所定の閾値より大きい音圧を決定しないように制御されていても良い。
 <音刺激生成部75>
 音刺激生成部75は、音圧決定部71から受け取った音刺激群の情報に基づいて、音刺激データを生成する。各音刺激は、たとえば、立ち上がり及び立ち下がりが3msのトーンバースト音であってよい。
 音刺激生成部75は、音刺激出力部10を介してユーザ5に音刺激を出力し、そのタイミングで生体信号計測部50にトリガ信号を出力する。なお、音刺激生成部75は、音刺激出力部10に生成した音刺激データを送る機能のみを有するように構成されていて良い。
 音刺激データは、たとえば、一つの音刺激群に対して、所定の時間間隔で音圧変化のある複数の音刺激を含む音刺激データを一つ作成してもよい。その場合、生体信号計測部50に送付するトリガ信号は、第1音の呈示タイミングだけでもよい。
 なお、音刺激生成部75は、入力装置を含んでいてもよいし、あるいは、外部の入力装置に接続されていても良い。この場合、ユーザ5又はユーザ5の聴力検査者は、入力装置を用いて音刺激に関する情報を任意に入力することができ、音刺激生成部75は、入力装置から受け取った情報を用いて音刺激を生成する。
 <音刺激出力部10>
 音刺激出力部10は、音刺激生成部75で生成された音刺激データに従って、ユーザ5に音を呈示する。音刺激出力部10は、左右それぞれの耳に音刺激生成部75で生成された音刺激を正しく出力することが好ましい。音刺激出力部10は、たとえば、周波数特性に歪みのないヘッドフォンやスピーカを含んでいても良い。
 <生体信号計測部50>
 生体信号計測部50は、ユーザ5の生体信号を計測する計測器である。本開示においては、生体信号計測部50は、脳波計である。生体信号計測部50は、ユーザ5に装着した探査電極及び基準電極の電位差に相当する脳波を、生体信号として計測する。
 計測した脳波に対して、適切な遮断周波数での周波数フィルタリングを行っても良い。生体信号計測部50は、計測した脳波又はフィルタリングした脳波を事象関連電位特徴量抽出部55に送信する。以下、計測した脳波又はフィルタリングした脳波を、「脳波データ」とも表記する。
 例えば、生体信号計測部50は、脳波データに対して、適切な遮断周波数の周波数フィルタリングを行い、音刺激生成部75から受け取ったトリガ信号を起点に、所定区間(たとえば第1音呈示前100msから第3音呈示後400msの区間)の事象関連電位を切り出し、その波形データ(事象関連電位)を事象関連電位特徴量抽出部55に送付するように構成されていても良い。
 周波数フィルタとして、バンドパスフィルタを用いる場合は、たとえば1Hzから20Hzまでを通過させるように遮断周波数を設定してもよい。ユーザ5は予め脳波計を装着しているものとする。例えば、探査電極は中心部のCz、基準電極はマストイドに装着される。
 脳波データは、事象関連電位を含んでいる。事象関連電位とは、ある刺激に対して発生する脳波の電位の変化を意味する。例えば、事象関連電位の信号の種類は、(1)電位の極性(陽性または陰性)、(2)潜時(刺激から電位が生起するまでの時間)、(3)電位の振幅の大きさ等に応じて決定される。
 <事象関連電位特徴量抽出部55>
 特徴量抽出部55は、生体信号計測部50から受信した事象関連電位から、第1音から第3音のそれぞれの特徴量を抽出する。
 事象関連電位の特徴量とは、例えば、事象関連電位の時間周波数の情報である。時間周波数の情報一例は、ウェーブレット係数に関する情報である。以下、説明するウェーブレット係数は、事象関連電位の時間周波数情報と同様の意味である。
 本実施形態では、特徴量抽出部55は、音刺激音圧決定部71から受けた音刺激の内容に応じて、第1音から第3音に対するウェーブレット係数に関する特徴量をそれぞれ算出する。
 特徴量抽出部55は、算出した特徴量と、音刺激の情報(左右耳、周波数、音圧等)とを、補聴器利得決定部65に送付する。ウェーブレット係数に関する特徴量は、たとえば周波数軸および時間軸のそれぞれについて所定幅で分割することで規定される所定範囲における平均値として求めてもよい。たとえば、周波数軸では2.5Hzから12.5Hzが9分割となるように、時間軸では50msの時間幅で分割し、この分割された範囲内のウェーブレット係数の平均を特徴量としてもよい。特徴量算出のために平均する周波数軸および時間軸の幅は、補聴器利得が推定できる範囲において、上記よりも細かくしてもよいし、粗くしてもよい。
 なお、上記のように事象関連電位のN1成分およびP2成分が現れる期間を分析することが、補聴器出力の推定に特に有効であると考えられるので、特徴量抽出部55は、第1音、第2音、及び第3音のそれぞれの呈示時刻から300ms経過した時点までの区間において、時間周波数情報(ウェーブレット係数の平均)を算出するように構成されていてもよい。
 <補聴器利得決定部65>
 利得決定部65は、特徴量抽出部55から受け取った、第1音から第3音のそれぞれについてのウェーブレット係数に関する特徴量に基づいて、周波数ごとの補聴器利得を判定する。
 補聴器利得決定部65は、所定の基準(教師データや判別関数など)を利用して、受け取ったウェーブレット特徴量に対して線形判別を実施することによって、補聴器利得の推定を行う。具体的には、所定の基準とは、例えば、ウェーブレット特徴量と補聴器利得の値とを予め対応付けた情報を意味する。所定の基準は、ウェーブレット特徴量と補聴器利得の値とを対応付けた表であっても良いし、所定の式であっても良い。補聴器利得決定部65は、所定の基準を予め保持していてよい。
 利得決定部65は、音刺激群の周波数ごとに、所定の基準を保持していてよい。また、利得決定部65は、外部から取得した所定の基準を利用するように構成されていても良い。
 また、所定の基準は、例えば、90dBSPL入力時または80dBSPL入力時における補聴器利得から生成された教師データである。教師データは、少なくとも2人以上の他者に対して、あらかじめ上述の補聴器特性測定実験および脳波計測実験を実施し、測定した補聴器利得とウェーブレット特徴量とに基づいて生成され得る。
 ここで、所定の基準を生成する際の脳波計測実験の音圧および音刺激数に関する音刺激条件は、音刺激音圧決定部71で決定した刺激音圧の変化パターンと同一である必要がある。所定の基準の保持方法は、左右耳をプールして、周波数ごととしてもよい。その場合、特徴量抽出部55から受け取った音刺激の周波数の情報に基づいて、補聴器利得測定に用いる所定の基準を、測定対象の周波数と、所定の基準の周波数が一致するように切り替えて用いてもよい。
 また、所定の基準は、ユーザの難聴の症状に合わせて切り替えてもよい。たとえば伝音性難聴と感音性難聴のような大きな分類で、それぞれ用いる所定の基準を別のものとしても良い。また、低音漸傾型や高音漸傾型などのオージオグラムのパターンごとに所定の基準を用意し、切り替えてもよい。補聴器利得決定部65は、判定した補聴器利得を補聴器利得設定部80に送る。
 <補聴器利得設定部80>
 利得設定部80は、利得決定部65から受け取った、周波数ごとの90dBSPL入力時または80dBSPL入力時、あるいは90dBSPL入力時および80dBSPL入力時について推定された補聴器利得を、ユーザ5の補聴器に設定する。
 <補聴器利得決定システム100の処理>
 図11を参照しながら、図8に示す利得決定システム100の処理手順を説明する。図11は、利得決定システム100の処理の一例を示すフローチャートである。
 (ステップS101)
 音刺激群決定部70は、音刺激群の呈示耳・周波数と、音刺激群内の音刺激の持続時間・刺激間間隔を決定する。呈示耳および周波数は、たとえば次の制約に基づいてランダム決定してもよい。直前の音刺激群と同じ周波数の音刺激は選択しない。左右耳はランダムな順序で選択する。ただし、左右どちらか一方の耳への音刺激群の呈示を4回以上連続させない。音刺激の持続時間は、聴覚誘発電位が安定して惹起されるよう、たとえば25ms以上に設定する。また、刺激間間隔は、音刺激の持続時間以上で1秒以下の時間に設定する。たとえば、300msとしてもよいし、200msとしてもよい。決定した音刺激群の呈示耳・周波数と、音刺激群内の音刺激の持続時間・刺激間間隔の情報は、音刺激音圧決定部71に送付する。
 (ステップS102)
 音圧決定部71は、音刺激群決定部70から音刺激群の呈示耳・周波数、音刺激群内の音刺激の持続時間・刺激間間隔の情報を受け取る。そして、音刺激群内の第1音から第3音の音圧を、一般的にUCLと評価される音圧よりも低い音圧範囲において、単調下降の音圧変化で決定する。たとえば、第1音の音圧を80dBHL、第2音の音圧を75dBHL、第3音の音圧を70dBHLと決定してもよい。また、第1音の音圧を80dBHL、第2音の音圧を65dBHL、第3音の音圧を50dBHLと決定してもよい。決定した音刺激群内の音刺激ごとの音圧は、音刺激群決定部70から受け取った情報とともに、音刺激生成部75に送る。
 (ステップS103)
 音刺激生成部75は、音圧決定部71から受け取った音刺激の情報に基づいて音刺激データを生成する。各音刺激は、たとえば立ち上がり及び立ち下りが3ms、持続時間が44msのトーンバースト音とする。
 (ステップS104)
 ステップS104において、音刺激生成部75は、音刺激出力部10を介してユーザに音刺激を出力し、そのタイミングで生体信号計測部50にトリガ信号を出力する。音刺激データは、たとえば一つの音刺激群に対して、所定の時間間隔で音圧変化のある複数の音刺激を含む音刺激データを一つ生成してもよい。その場合、生体信号計測部50に送られるトリガ信号は、第1音の呈示タイミングのときだけ送られてもよい。
 (ステップS105)
 生体信号計測部50は、生体信号として脳波を計測する。そして、脳波データに対して適切な遮断周波数の周波数フィルタリングを行い、音刺激生成部75から受けたトリガを起点に、所定区間(たとえば第1音呈示前100msから第n音呈示後400msの区間)の事象関連電位を切り出し、その波形データ(事象関連電位)を特徴量抽出部55に送付する。
 (ステップS106)
 特徴量抽出部55は、音圧決定部71から受けた音刺激の内容を参照して、生体信号計測部50から受け取った事象関連電位から、第1音から第3音に対するウェーブレット係数に関する特徴量をそれぞれ算出する。たとえば、マザーウェーブレットをメキシカンハットとし、2.5から12.5Hzのウェーブレット係数を求める。
 (ステップS107)
 ステップS107において、特徴量抽出部55は、ステップS106において算出したウェーブレット係数を、音圧決定部71から受けた音刺激の情報に基づいて、左右耳ごと、周波数ごとに加算平均する。
 (ステップS108)
 特徴量抽出部55はステップS104で呈示された音刺激群の音刺激に対する加算平均回数が所定回数に到達したか否かを判定する。加算平均回数が所定回数以下の場合には、処理はステップS101へ戻り、音刺激群の呈示を繰り返す。加算平均回数が所定回数以上の場合には、特徴量抽出部55は、加算平均したウェーブレット係数に関する特徴量を、補聴器利得決定部65に送り、処理はステップS108へ進む。所定回数とは、たとえば20回である。なお、「20回」は、事象関連電位を計測する分野において多く採用される加算回数であるが、これは一例である。
 (ステップS109)
 補聴器利得決定部65は、特徴量抽出部55から受け取った、第1音から第3音それぞれのウェーブレット係数に関する特徴量を利用して、補聴器利得を判定する。補聴器利得決定は、例えば、あらかじめ用意した他者のウェーブレット特徴量と90dBSPL入力時または80dBSPL入力時の補聴器利得とから生成された教師データ(所定の基準)を利用して線形判別によって実現することができる。補聴器利得測定に用いる教師データは、周波数に応じて複数用意されていても良く、測定対象の周波数と、教師データの周波数が一致するように切り替えて用いられてもよい。また、周波数に加えて、左右耳ごとに教師データを切り替えてもよい。また、教師データは、ユーザの難聴の症状に合わせて切り替えてもよい。たとえば伝音性難聴と感音性難聴のような大きな分類でそれぞれ教師データを用意し、切り替えてもよい。また、低音漸傾型や高音漸傾型などのオージオグラムのパターンごとに教師データを用意し、切り替えてもよい。
 (ステップS110)
 補聴器利得設定部80は、利得決定部65から受け取った周波数ごとの補聴器利得の結果を、ユーザ5の補聴器に設定する。
 本実施形態の補聴器利得決定システム100によれば、例えば、同一周波数の純音を単調下降の音圧変化で3回連発呈示し、第1音から第3音までのそれぞれの音刺激に対する脳波の特徴量を抽出し、その特徴量の変化パターンから90dBSPL入力時または80dBSPL入力時、あるいは90dBSPL入力時および80dBSPL入力時の周波数ごとの補聴器利得が直接的に測定することができる。これにより、ノンリニア増幅の補聴器における圧縮比の精度が向上し、補聴器装用時に聞こえに関する不満の少ない、補聴器フィッティングが実現できる。
 本実施形態の説明では、生体信号計測部50は、音刺激生成部75からのトリガ信号を起点にして予め定められた範囲の事象関連電位を切り出し、特徴量抽出部55に送信する。しかしながら、この処理は一例である。他の処理として、たとえば、生体信号計測部50は継続的に脳波を計測し、特徴量抽出部55が必要な事象関連電位の切り出しおよびベースライン補正を行ってもよい。当該構成であれば、音刺激生成部75は生体信号計測部50にトリガ信号を送信する必要はなくなり、事象関連電位特徴量抽出部55にトリガ信号を送信すればよい。
 また、本実施形態においては、補聴器利得測定の結果は、補聴器利得設定部80によりユーザ5の補聴器に設定されるとしたが、設定しなくてもよい。たとえば補聴器利得設定部80を補聴器利得決定装置1の外部に設ける場合には、補聴器利得決定部65の各判定結果を単に出力する、あるいは蓄積すればよい。各判定結果は、補聴器利得設定に関する情報として利用され得る。
 また、図12に示すように、補聴器利得決定システム100は、補聴器利得決定装置11と、音刺激装置12と、生体信号計測部50と、補聴器利得設定部80とを備えていても良い。補聴器利得決定装置11と、音刺激装置12と、生体信号計測部51と、補聴器利得設定部80とは、有線又は無線により接続されており、情報を送受信する。
 補聴器利得決定装置11は、事象関連電位特徴量抽出部55と、補聴器利得決定部65とを備える。音刺激装置12は、音刺激出力部10と、音刺激群決定部70と、音刺激音圧決定部71と、音刺激生成部75とを備える。
 補聴器利得決定装置11の事象関連電位特徴量抽出部55は、生体信号計測部50が計測した脳波と、音刺激出力部10が出力した音刺激群の情報を受け取る。
 上述と同様に、事象関連電位特徴量抽出部55は、生体信号計測部50が計測した脳波信号から、音刺激群のそれぞれが呈示された時刻の後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出する。補聴器利得決定部65は、所定の基準を参照して、前記特徴量抽出部で抽出した特徴量に基づいて、前記音刺激群の周波数に対する補聴器利得を決定する。
 本開示の補聴器利得決定システムによれば、補聴器利得を、ユーザごとの脳波から求めることができるため、補聴器店や家庭などでの補聴器の調整に有用である。
 1、11 補聴器利得決定装置
 5  ユーザ
 10 音刺激出力部
 12 音刺激装置
 50 生体信号計測部
 55 事象関連電位特徴量抽出部
 65 補聴器利得決定部
 70 音刺激群決定部
 71 音刺激音圧決定部
 75 音刺激生成部
 100 補聴器利得決定システム

Claims (15)

  1.  ユーザの脳波信号を計測する生体信号計測部と、
     純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定する音刺激群決定部と、
     所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に音圧が減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定する音圧決定部と、
     前記音刺激群決定部及び前記音圧決定部で決定された周波数及び音圧で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示する出力部と、
     前記脳波信号において、前記第1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出する特徴量抽出部と、
     所定の基準を参照して、前記特徴量抽出部で抽出した特徴量に基づいて、前記音刺激群の周波数に対する補聴器利得を決定する利得決定部と
    を備える、補聴器利得決定システム。
  2.  前記利得決定部は、前記特徴量と、80dBSPL以上の入力音圧に対して設定された補聴器出力の値とを予め対応付けた所定の基準を参照して、80dBSPL以上の入力音圧に対する補聴器出力を決定する、請求項1に記載の補聴器利得決定システム。
  3.  前記利得決定部は、前記特徴量と、90dBSPL入力時または80dBSPL入力時の補聴器出力の値とを予め対応付けた所定の基準を参照して、90dBSPL入力時または80dBSPLを有する入力音圧に対する補聴器出力を決定する、請求項2に記載の補聴器利得決定システム。
  4.  前記所定の閾値は、一般的なUCL値よりも低い音圧である、請求項1に記載の補聴器利得決定システム。
  5.  前記音圧決定部は、前記第1音、前記第2音、及び前記第3音の順に、5dBずつ音圧が低下するように前記第1音、前記第2音、及び前記第3音の音圧を決定する、請求項1に記載の補聴器利得決定システム。
  6.  前記音圧決定部は、前記第1音、前記第2音、及び前記第3音の順に、15dBずつ音圧が低下するように前記第1音、前記第2音、及び前記第3音の音圧を決定する、請求項1に記載の補聴器利得決定システム。
  7.  前記利得決定部の判定結果に基づいて、90dBSPL入力時または80dBSPL入力時、あるいは90dBSPL入力時および80dBSPL入力時の周波数ごとの補聴器利得を設定する利得設定部をさらに備える、請求項3に記載の補聴器利得決定システム。
  8.  前記利得決定部は、複数のユーザで計測された、時間周波数に関する特徴量と90dBSPL入力時または80dBSPL入力時の補聴器利得とを対応付けたデータを前記所定の基準として保持し、当該所定の基準を参照して、補聴器利得を決定する、請求項3に記載の補聴器利得決定システム。
  9.  前記利得決定部は、前記音刺激群の周波数ごとに、前記所定の基準を保持し、前記音刺激群の周波数に応じて選択された所定の基準を用いる、請求項1に記載の補聴器利得決定システム。
  10.  前記特徴量抽出部において、前記第1音、前記第2音、及び前記第3音のそれぞれの呈示時刻から300ms経過した時点までの区間における、脳波信号の時間周波数情報を算出し、所定の周波数幅および所定の時間幅で平均した値を特徴量とする、請求項1に記載の補聴器利得決定システム。
  11.  前記所定の周波数幅は2.5Hz以上12.5Hz以下の周波数範囲を9分割することによって規定される周波数幅である、請求項10に記載の補聴器利得決定システム。
  12.  前記所定の時間幅は50msである、請求項10に記載の補聴器利得決定システム。
  13.  生体信号計測部により計測されたユーザの脳波信号において、出力部により呈示された、所定の閾値以下の音圧であり、かつ、順に減少する音圧を有する第1音、第2音、及び第3音のそれぞれが呈示された時刻後の前記脳波信号の事象関連電位の時間周波数に関する特徴量を抽出する特徴量抽出部と、
     所定の基準を参照して、前記特徴量抽出部で抽出した特徴量に基づいて、補聴器利得を決定する利得決定部と
    を備える、補聴器利得決定装置。
  14.  ユーザの脳波信号を計測するステップと、
     純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定するステップと、
     所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に音圧が減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定するステップと、
     前記決定された周波数および音圧で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示するステップと、
     前記脳波信号において、前記1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出するステップと、
     所定の基準を参照して、前記抽出した特徴量に基づいて、補聴器利得を決定するステップと
     を備えた、補聴器利得決定方法。
  15.  補聴器利得決定システムの補聴器利得決定装置に設けられたコンピュータによって実行されるコンピュータプログラムであって、
     前記コンピュータプログラムは、前記コンピュータに対し、
     純音である、第1音、第2音及び第3音を含む音刺激群の周波数を決定するステップと、
     所定の閾値以下の音圧であり、かつ、前記第1音、前記第2音、及び前記第3音の順に減少するように、前記第1音、前記第2音、及び前記第3音の音圧を決定するステップと、
     前記決定された周波数および音圧で、前記第1音、前記第2音、及び前記第3音を、前記ユーザに呈示するステップと、
     前記第1音、前記第2音、及び前記第3音を呈示したときの前記ユーザの脳波信号において、前記第1音、前記第2音、及び前記第3音のそれぞれが呈示された時刻後の所定の時間範囲に含まれる事象関連電位の時間周波数情報に関する特徴量を抽出するステップと、
     所定の基準を参照して、前記抽出した特徴量に基づいて、補聴器利得を決定するステップと
    を実行させる、補聴器利得を決定するためのコンピュータプログラム。
PCT/JP2013/002287 2012-04-24 2013-04-02 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム WO2013161189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013540917A JP6041271B2 (ja) 2012-04-24 2013-04-02 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム
CN201380001393.1A CN103548364A (zh) 2012-04-24 2013-04-02 助听器增益决定系统、助听器增益决定方法以及计算机程序
US14/137,802 US9712931B2 (en) 2012-04-24 2013-12-20 Hearing aid gain determination system, hearing aid gain determination method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012098430 2012-04-24
JP2012-098430 2012-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/137,802 Continuation US9712931B2 (en) 2012-04-24 2013-12-20 Hearing aid gain determination system, hearing aid gain determination method, and computer program

Publications (1)

Publication Number Publication Date
WO2013161189A1 true WO2013161189A1 (ja) 2013-10-31

Family

ID=49482544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002287 WO2013161189A1 (ja) 2012-04-24 2013-04-02 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム

Country Status (4)

Country Link
US (1) US9712931B2 (ja)
JP (1) JP6041271B2 (ja)
CN (1) CN103548364A (ja)
WO (1) WO2013161189A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063251A (ja) * 2015-09-24 2017-03-30 株式会社オトデザイナーズ 補聴器適合検査装置
JP2021026098A (ja) * 2019-08-02 2021-02-22 株式会社三菱ケミカルホールディングス コミュニケーション支援装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950555A1 (en) * 2014-05-28 2015-12-02 Oticon A/s Automatic real-time hearing aid fitting based on auditory evoked potentials evoked by natural sound signals
EP3244635A1 (en) * 2016-05-12 2017-11-15 Oticon Medical A/S Hearing aid system and a method of operating thereof
CN107509151A (zh) * 2016-06-14 2017-12-22 中兴通讯股份有限公司 一种放大音频信号的方法及装置
CN107864440B (zh) * 2016-07-08 2022-02-08 奥迪康有限公司 包括eeg记录和分析系统的助听系统
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC NEURO-ACTIVATION PROCESS AND APPARATUS
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
WO2019133997A1 (en) 2017-12-31 2019-07-04 Neuroenhancement Lab, LLC System and method for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
TWI669709B (zh) * 2018-07-17 2019-08-21 宏碁股份有限公司 電子系統及音訊處理方法
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
KR20210007385A (ko) * 2019-07-11 2021-01-20 현대자동차주식회사 오류 모니터링을 이용한 교통 감시 시스템
EP4007309A1 (en) * 2020-11-30 2022-06-01 Oticon A/s Method for calculating gain in a heraing aid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087147A2 (en) * 2000-05-19 2001-11-22 Michael Sasha John System and method for objective evaluation of hearing using auditory steady-state responses
WO2008038650A1 (fr) * 2006-09-27 2008-04-03 National University Corporation Chiba University Dispositif et système d'inspection du potentiel évoqué
JP2010504139A (ja) * 2006-09-20 2010-02-12 株式会社イアロジック コリア 他覚的自動聴力検査方法及びその装置
WO2011001694A1 (ja) * 2009-07-03 2011-01-06 パナソニック株式会社 補聴器の調整装置、方法およびプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2511482A (en) * 1943-09-17 1950-06-13 Sonotone Corp Method of testing hearing
US4275744A (en) * 1979-11-19 1981-06-30 Wisconsin Alumni Research Foundation Auditory response detection method and apparatus
US5230344A (en) * 1992-07-31 1993-07-27 Intelligent Hearing Systems Corp. Evoked potential processing system with spectral averaging, adaptive averaging, two dimensional filters, electrode configuration and method therefor
DE29615656U1 (de) * 1996-09-07 1997-01-02 Finkenzeller, Peter, Prof. Dr.rer.nat., 91054 Erlangen Gerät zur Ableitung akustisch evozierter Gehirnpotentiale
US5999856A (en) * 1997-02-21 1999-12-07 St. Croix Medical, Inc. Implantable hearing assistance system with calibration and auditory response testing
US7399282B2 (en) 2000-05-19 2008-07-15 Baycrest Center For Geriatric Care System and method for objective evaluation of hearing using auditory steady-state responses
TW519486B (en) * 2001-02-05 2003-02-01 Univ California EEG feedback control in sound therapy for tinnitus
AU2005265033B2 (en) * 2004-06-18 2011-08-04 Neuronetrix Solutions, Llc Evoked response testing system for neurological disorders
US20090163828A1 (en) * 2006-05-16 2009-06-25 Board Of Trustees Of Southern Illinois University Tinnitus Testing Device and Method
US8311228B2 (en) * 2006-06-01 2012-11-13 Personics Holdings Inc. Ear input sound pressure level monitoring system
JP4272702B2 (ja) * 2006-11-15 2009-06-03 パナソニック株式会社 脳波識別方法の調整装置、方法およびコンピュータプログラム
CA2681559C (en) * 2007-03-23 2013-08-06 Widex A/S System and method for the objective measurement of hearing ability of an individual
US8675900B2 (en) * 2010-06-04 2014-03-18 Exsilent Research B.V. Hearing system and method as well as ear-level device and control device applied therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087147A2 (en) * 2000-05-19 2001-11-22 Michael Sasha John System and method for objective evaluation of hearing using auditory steady-state responses
JP2010504139A (ja) * 2006-09-20 2010-02-12 株式会社イアロジック コリア 他覚的自動聴力検査方法及びその装置
WO2008038650A1 (fr) * 2006-09-27 2008-04-03 National University Corporation Chiba University Dispositif et système d'inspection du potentiel évoqué
WO2011001694A1 (ja) * 2009-07-03 2011-01-06 パナソニック株式会社 補聴器の調整装置、方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOBUO ADACHI ET AL.: "Jun'on Pair Shigeki ni Taisuru Yuhatsu Den'i ni Motozuku Fukai On'atsu Level Suitei", JAPANESE JOURNAL OF CLINICAL NEUROPHYSIOLOGY, vol. 39, no. 5, 1 October 2011 (2011-10-01), pages 447 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063251A (ja) * 2015-09-24 2017-03-30 株式会社オトデザイナーズ 補聴器適合検査装置
JP2021026098A (ja) * 2019-08-02 2021-02-22 株式会社三菱ケミカルホールディングス コミュニケーション支援装置

Also Published As

Publication number Publication date
CN103548364A (zh) 2014-01-29
JP6041271B2 (ja) 2016-12-07
US20140105436A1 (en) 2014-04-17
JPWO2013161189A1 (ja) 2015-12-21
US9712931B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
JP6041271B2 (ja) 補聴器利得決定システム、補聴器利得決定方法、およびコンピュータプログラム
JP5215508B1 (ja) 不快閾値推定システム、方法およびそのプログラム、補聴器調整システムおよび不快閾値推定処理回路
JP5579352B1 (ja) 不快音圧評価システム、不快音圧評価装置、不快音圧調整装置、不快音圧評価方法およびそのコンピュータプログラム
JP5091366B2 (ja) 音圧評価システム、その方法およびそのプログラム
JP5406414B2 (ja) 不快音圧推定システム、不快音圧推定装置、不快音圧推定システムの作動方法およびそのコンピュータプログラム
JP5915944B2 (ja) 不快音圧推定システム、不快音圧推定装置、不快音圧推定方法およびそのコンピュータプログラム
JP5215507B1 (ja) 不快音圧決定システム、その方法およびそのプログラム、補聴器調整システムおよび不快音圧決定装置
WO2013057928A1 (ja) 聴覚事象関連電位計測システム、聴覚事象関連電位計測装置、聴覚事象関連電位計測方法およびそのコンピュータプログラム
JP5632569B2 (ja) 不快音圧推定システム、不快音圧推定プロセッサ、不快音圧推定方法およびそのコンピュータプログラム
Adachi et al. Estimating uncomfortable loudness levels using evoked potentials to auditory stimuli for hearing aid fitting
Larsby et al. A system for recording of auditory evoked responses

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013540917

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781557

Country of ref document: EP

Kind code of ref document: A1