WO2011001645A1 - Automatic analysis device - Google Patents

Automatic analysis device Download PDF

Info

Publication number
WO2011001645A1
WO2011001645A1 PCT/JP2010/004217 JP2010004217W WO2011001645A1 WO 2011001645 A1 WO2011001645 A1 WO 2011001645A1 JP 2010004217 W JP2010004217 W JP 2010004217W WO 2011001645 A1 WO2011001645 A1 WO 2011001645A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
transfer
dispensed
container
reagent container
Prior art date
Application number
PCT/JP2010/004217
Other languages
French (fr)
Japanese (ja)
Inventor
井谷麻紀
岡林理
橋本佳亮
Original Assignee
ベックマン コールター, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベックマン コールター, インコーポレイテッド filed Critical ベックマン コールター, インコーポレイテッド
Publication of WO2011001645A1 publication Critical patent/WO2011001645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers

Definitions

  • the present invention relates to an automatic analyzer for analyzing a specimen by dispensing a specimen and a reagent into a reaction container and measuring a reaction solution generated in the reaction container.
  • an automatic analyzer that analyzes a sample by dispensing a sample and a reagent into a reaction vessel and measuring the absorbance of the reaction solution reacted in the reaction vessel.
  • This automatic analyzer stores a plurality of reagent containers containing reagents to be used for analysis on a reagent tray in a reagent storage, and rotates the reagent tray to dispense a desired reagent container according to a sample or analysis item.
  • the reagent is dispensed by transferring to the dispensing position by the probe.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an automatic analyzer that can reduce the shaking of the reagent when stopped due to the transfer of the reagent container containing the reagent.
  • an automatic analyzer dispenses a reagent and a sample into a reaction container by a dispensing mechanism having a liquid level detection unit.
  • a transfer means for storing a plurality of reagent containers containing the reagents and transferring the reagent containers to be dispensed to a reagent suction position;
  • a storage medium that is provided in each of the reagent containers housed in the transfer means and stores reagent information including the shape of the reagent container and the type of reagent; a reading means for reading the reagent information from the storage medium; and the transfer
  • a transfer length calculating means for calculating a transfer length from the storage position of the reagent container to be dispensed to the reagent suction position in the means, and before the liquid level detecting means detects
  • a liquid amount calculating means for calculating a liquid amount of the
  • the present invention is an automatic analyzer that analyzes a specimen, and dispenses a reagent and the specimen into a reaction container, a dispensing mechanism having a liquid level detection means, and a reaction solution reacted in the reaction container Measurement means for measuring the absorbance of the sample, analysis means for analyzing the sample, transfer means for storing a plurality of reagent containers containing the reagents and transferring the reagent containers to be dispensed to the reagent suction position, and the transfer means Provided in each of the plurality of reagent containers accommodated in the storage medium, storing a storage medium storing reagent information including the shape of the reagent container and the type of reagent, a reading unit for reading the reagent information from the storage medium, and the transfer unit Transfer length calculation means for calculating the transfer length from the storage position of the reagent container to be dispensed to the reagent suction position, and the reagent container to be dispensed detected by the liquid level detection means.
  • Liquid amount calculating means for calculating the liquid amount of the reagent contained in the reagent container to be dispensed based on the height of the liquid level of the reagent and the reagent information, and When the reagent container is transferred to the reagent aspirating position, based on the reagent information, the transfer length, and the amount of the reagent liquid, the shaking of the reagent at the time of stopping accompanying the transfer of the reagent container to be dispensed is reduced.
  • an automatic analyzer comprising: a transfer control means for controlling the transfer means at a preset transfer speed.
  • the transfer speed is slower as the shape of the reagent container to be dispensed is larger.
  • the transfer speed is slower as the transfer length is shorter.
  • the transfer speed is slower as the amount of the reagent contained in the reagent container to be dispensed is larger.
  • the present invention dispenses the sample by dispensing the reagent and the sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel.
  • An automatic analyzer for analyzing, wherein a plurality of reagent containers containing the reagents are stored, a transfer means for transferring the reagent containers to be dispensed to a reagent suction position, and a plurality of the reagent containers stored in the transfer means
  • a method of controlling an automatic analyzer provided with a storage medium storing reagent information including the shape of the reagent container and the type of reagent the method comprising: reading the reagent information from the storage medium; A step of calculating a transfer length from the storage position of the reagent container to be dispensed to the reagent suction position in the transfer means, and before the liquid level detection means detects Calculating the amount of reagent contained in the reagent container to be dispense
  • the method of the present invention includes any one or more of the above features of the automated analyzer of the present invention.
  • the present invention dispenses the sample by dispensing the reagent and the sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel.
  • An automatic analyzer for analyzing wherein a plurality of reagent containers containing the reagents are stored, a transfer means for transferring the reagent containers to be dispensed to a reagent suction position, and a plurality of the reagent containers stored in the transfer means
  • the method includes reading the reagent information from the storage medium, and the reagent volume to be dispensed in the transfer means.
  • the program of the present invention includes any one or more of the above-described features of the automatic analyzer or the control method of the present invention.
  • An apparatus for storing a plurality of reagent containers containing the reagents and transferring each of the reagent containers to be dispensed to a reagent suction position; and a plurality of the reagent containers stored in the transfer means A computer-readable recording medium recording a control program used in an automatic analyzer provided with a storage medium storing reagent information including the shape of a reagent container and the type of reagent, the control program including the automatic analyzer
  • a method of controlling, wherein the method reads the reagent information from the storage medium; and Calculating the transfer length from the storage position of the reagent container to be dispensed to the reagent suction position in the means, and the liquid of the reagent contained in the reagent container to be dispensed detected by the liquid level detecting means Calculating the amount of reagent contained in the reagent container to be dispensed based on the height of the surface and the reagent information; and the transfer means places the reagent container to be disp
  • a transfer speed set in advance so as to reduce the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container to be dispensed based on the reagent information, the transfer length, and the amount of the reagent liquid
  • a step of controlling the transfer means In the case of transfer, a transfer speed set in advance so as to reduce the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container to be dispensed based on the reagent information, the transfer length, and the amount of the reagent liquid.
  • the computer-readable recording medium of the present invention includes any one or more of the features of the automatic analyzer or the control method thereof of the present invention.
  • the automatic analyzer includes reagent information from the storage medium provided in the reagent container to be dispensed, the transfer length of the reagent container to be dispensed, and the liquid amount of the reagent contained in the reagent container to be dispensed. Therefore, the transfer means is controlled at a transfer speed that reduces the shaking of the reagent at the time of stopping accompanying the transfer of the reagent container to be dispensed, so that the shaking of the reagent at the time of stopping accompanying the transfer of the reagent container is controlled. There exists an effect that it can reduce.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a configuration including a reagent store, a reagent dispensing mechanism, and a reagent store control unit.
  • FIG. 3 is a diagram illustrating a transfer speed table in which the transfer speed of the storage unit is set.
  • FIG. 4 is a diagram illustrating the transfer speed of the storage unit set corresponding to the transfer length.
  • FIG. 5 is a diagram showing a change over time of the shaking of the reagent in the reagent container immediately after stopping.
  • FIG. 6 is a flowchart showing an outline of the reagent container transfer process performed by the reagent storage control unit.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention.
  • the automatic analyzer 1 according to one embodiment of the present invention dispenses a reagent and a sample into a reaction container 20, reacts them in the reaction container 20, and measures the absorbance of the reaction solution.
  • a control mechanism 3 that controls the entire automatic analyzer 1 including the measurement mechanism 2 and analyzes the measurement result in the measurement mechanism 2.
  • the automatic analyzer 1 automatically performs analysis of a plurality of samples by cooperation of these two mechanisms.
  • the measurement mechanism 2 includes a sample transport unit 11 that sequentially transports a sample rack 11b holding a plurality of sample containers 11a containing a sample such as blood or urine, in the direction of the arrow in the figure.
  • the sample dispensing mechanism 12 for aspirating the sample from the sample container 11a stopped at the sample aspirating position P1 on the sample transfer unit 11 and dispensing the sample into the reaction container 20, and the reagent dispensed in the reaction container 20
  • a reagent container 14 for storing a plurality of stored reagent containers 13 and a reagent container for aspirating the reagent from the dispensing target reagent container 13 stopped at the reagent suction position P2 of the reagent container 14 and dispensing the reagent to the reaction container 20
  • the stirring unit 16 that stirs the reagent and the sample dispensed in the reaction container 20
  • the photometric unit 17 that measures the absorbance of the liquid dispensed in the reaction container 20
  • the photometric unit 17 Wash reaction vessel 20 after measurement That includes a cleaning unit 18, the dispensing of the specimen and the reagent into the reaction vessel 20, stirring, and a reaction vessel 19 for conveying the reaction vessel 20 to a predetermined position in order to perform the photometry and
  • the control mechanism 3 is realized by a CPU or the like, and is realized by a control unit 31 that controls processing and operation of each unit of the automatic analyzer 1, a keyboard, a mouse, a touch panel having an input / output function, and the like, and is necessary for analysis of a sample.
  • a control unit 31 that controls processing and operation of each unit of the automatic analyzer 1, a keyboard, a mouse, a touch panel having an input / output function, and the like, and is necessary for analysis of a sample.
  • the reagent container control unit 34 that controls the reagent container 13 to be dispensed to the reagent suction position P2, and a hard disk, a memory, and the like.
  • a storage unit 35 for storing various types of information including information related to sample analysis, a display, a printer, and the like.
  • an output unit 36 that outputs, a.
  • the reagent dispensing mechanism 15 dispenses with the plurality of reaction containers 20 sequentially transferred on the reaction tank 19 stopped at the reagent suction position P ⁇ b> 2 of the reagent storage 14.
  • the specimen dispensing mechanism 12 dispenses the specimen from the specimen container 11a stopped at the specimen aspirating position P1.
  • the photometry unit 17 measures the absorbance of the reaction solution in a state where the reagent and the sample are reacted, and the analysis unit 33 analyzes based on the measurement result, so that the component analysis of the sample is automatically performed.
  • the cleaning unit 18 cleans the reaction vessel 20 being conveyed after the measurement by the photometry unit 17 is completed, and reuses the reaction vessel 20.
  • the washed reaction vessel 20 is reused to perform a plurality of analysis processes.
  • FIG. 2 is a schematic diagram showing a configuration including the reagent storage 14, the reagent dispensing mechanism 15, and the reagent storage control unit 34.
  • the reagent store 14 includes a storage portion 14a, a drive portion 14b, a main body portion 14c, a lid 14d, and a reading portion 14e.
  • the storage portion 14a is formed in a disc shape, and a plurality of storage chambers are formed on the upper surface at equal intervals along the circumferential direction.
  • the storage unit 14a detachably stores the reagent container 13 in each storage chamber, and transfers the reagent container 13 to be dispensed to the reagent suction position P2.
  • the drive unit 14b is realized by a pulse motor, and rotates the storage unit 14a around the vertical line passing through the center of the reagent store 14 under the control of the reagent store control unit 34.
  • the main body portion 14c is formed in a cylindrical shape so as to integrally cover the side surface and the bottom surface of the storage portion 14a, and prevents outside air from entering the inside.
  • a window portion 14f is provided in a part of the side wall of the main body portion 14c.
  • the window portion 14f is realized by a transparent material such as glass.
  • the lid 14d is openable and closable with respect to the main body part 14c, and is provided on the upper part of the storage part 14a to prevent evaporation and denaturation of the reagent stored in the reagent container 13.
  • the lid 14d is provided with a hole 14g as a reagent aspirating position P2 for aspirating the reagent by the reagent dispensing mechanism 15.
  • the reading unit 14e is realized by a barcode reader or the like, and reads reagent information from a storage medium (not shown) provided in the reagent container 13 stored in the storage unit 14a via the window unit 14f.
  • the reading unit 14e outputs the reagent information read from the storage medium provided in the reagent container 13 to the reagent storage control unit 34 in association with the storage position of the reagent container 13 in the storage unit 14a.
  • the storage medium is realized by a barcode or a two-dimensional code, and stores reagent information.
  • the reagent information refers to information including at least the shape of the reagent container 13 and the type of reagent. Further, the viscosity is set corresponding to each type of reagent.
  • the reading unit 14e is a memory provided in the reagent container 13 before the start of analysis, for example, at the time of initialization when the automatic analyzer 1 is turned on or whenever a new reagent container 13 is stored in the storage unit 14a. Read reagent information from the medium.
  • the reading unit 14e reads reagent information from a storage medium provided in the reagent container 13 every time the reagent container 13 crosses the reading unit 14e.
  • the reagent dispensing mechanism 15 includes a dispensing nozzle 15a, an arm 15b, a driving unit 15c, a connecting unit 15d, and a liquid level detecting unit 15e.
  • the dispensing nozzle 15a is made of a rod-like tube made of stainless steel or the like, and is attached to the arm 15b.
  • the arm 15b is operated by driving of the driving unit 15c, and is centered on a vertical axis passing through the connecting unit 15d and moving up and down in the vertical direction via the connecting unit 15d connecting the arm 15b and the driving unit 15c. Rotate.
  • the liquid level detection unit 15e detects the height of the liquid level of the reagent based on the change amount of the electrical signal change caused by the contact between the dispensing nozzle 15a and the reagent accommodated in the reagent container 13.
  • the liquid level detection unit 15 e outputs the detected liquid level of the reagent to the reagent storage control unit 34.
  • the reagent storage control unit 34 includes a transfer length calculation unit 34a, a liquid amount calculation unit 34b, a transfer control unit 34c, and a storage unit 34d.
  • the transfer length calculation unit 34a calculates the transfer length from the storage position of the reagent container 13 to be dispensed to the reagent suction position P2.
  • the calculated transfer length is converted as the number of pulses output to the pulse motor.
  • the liquid amount calculation unit 34b is a dispensing target reagent container included in the reagent information read by the reading unit 14e and the height of the liquid level of the reagent contained in the dispensing target reagent container 13 detected by the liquid level detection unit 15e.
  • the amount of the reagent contained in the reagent container 13 to be dispensed is calculated.
  • the transfer control unit 34c transfers the reagent information read by the reading unit 14e and the transfer length and liquid calculated by the transfer length calculation unit 34a.
  • the storage unit 14a is controlled at a preset transfer speed so as to reduce the shaking of the reagent when stopped due to the transfer of the reagent container 13 to be dispensed.
  • the storage unit 34d stores a transfer speed that is set in advance so as to reduce the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container 13 to be dispensed.
  • FIG. 3 is a diagram illustrating a transfer speed table in which the transfer speed of the storage unit 14a is set.
  • the automatic analyzer 1 normally performs analysis processing according to a certain sequence, and the operation time of each part is set. For this reason, the storage unit 14a is set so as to finish transferring the reagent container 13 to be dispensed to the reagent suction position P2 within a predetermined time.
  • the storage unit 14a takes the reagent container 13 to be dispensed to the reagent suction position P2 for a predetermined time without considering the type (viscosity) of the reagent, the shape of the reagent container 13, the amount of the reagent, and the transfer length. Set to finish the transfer within. Therefore, when the storage unit 14a transfers the reagent container 13 to be dispensed to the reagent suction position P2 at a predetermined transfer speed, the type (viscosity) of the reagent, the shape of the reagent container 13, the amount of the reagent, and the transfer length The shaking of the reagent at the time of stopping accompanying the transfer of the reagent container 13 differs depending on each.
  • the transfer speed table R ⁇ b> 1 is used to transfer the reagent container 13 to be dispensed according to the information on the reagent type (viscosity), reagent container shape, liquid amount, and transfer length.
  • the transfer speed of the storage portion 14a is set so as to reduce the shaking of the reagent at the time of stopping. For example, in FIG. 3, in the case of the reagent “A”, the reagent container shape “ ⁇ ”, the liquid amount “ab” and the transfer length “d3”, the transfer speed “s3” of the storage portion 14a is set.
  • the transfer control unit 34c uses the transfer speed table R1 shown in FIG. 3 and the reagent information read by the reading unit 14e. Transfer that reduces the shaking of the reagent when stopped due to the transfer of the reagent container 13 to be dispensed, based on the transfer length calculated by the transfer length calculation unit 14a and the reagent liquid amount calculated by the liquid amount calculation unit 34b The speed is acquired from the storage unit 34d, and the storage unit 14a is controlled at the acquired transfer speed.
  • the shaking of the reagent when the reagent aspirating position P2 is stopped by the storage unit 14a corresponds to the type (viscosity) of the reagent, the shape of the reagent container 13, the amount of the reagent, and the transfer length of the storage unit 14a. Compared with the case where the transfer speed is not set, it can be greatly reduced. Note that the transfer speed of the storage portion 14a in the transfer speed table R1 of FIG. 3 described above is obtained and set in advance by experiments and simulations.
  • the transfer speed by the storage unit 14a is set to be slower as the transfer length of the reagent container 13 is shorter than that when the transfer length is longer. Specifically, since the storage unit 14a is set to finish the transfer of the reagent container 13 within a predetermined time, when the transfer length is short, the transfer speed is slowed down and the reagent container within the predetermined time. What is necessary is just to finish 13 transfers. Thereby, the reaction caused by the inertial force accompanying the stop can be reduced, and the shaking of the reagent can be reduced. Further, the transfer speed is set to be slower as the volume of the shape of the reagent container 13 and the amount of the reagent liquid increase.
  • the reaction due to the inertial force accompanying the stop is determined by the liquid amount (weight) and the transfer speed, when the liquid amount is large, the transfer speed by the storage portion 14a is set to be slow. Thereby, since the reaction caused by the inertial force accompanying the stop can be reduced, the shaking of the reagent can be reduced.
  • FIG. 4 is a diagram showing the transfer speed of the storage portion 14a set corresponding to the transfer length.
  • the horizontal axis indicates time
  • the vertical axis indicates speed
  • the broken lines L1 to L4 indicate the transfer speeds s1 to s4 in the transfer speed table R1 of FIG.
  • the transfer speed “s3” is set in the transfer speed table R1 of FIG. 3, it becomes a broken line L3.
  • FIG. 5 it has been confirmed that the shaking of the reagent stored in the reagent container 13 to be dispensed when the reagent suction position P2 is stopped is reduced.
  • the acceleration time and the deceleration time are the same regardless of the transfer length.
  • the acceleration time and the deceleration time correspond to the reagent type (viscosity), the shape of the reagent container 13 and the reagent type, respectively. May be adjusted. For example, when the amount of reagent solution is large, the acceleration time is shortened and the deceleration time is lengthened, and the acceleration at the time of deceleration is made a gentle slope. Thereby, the shaking of the reagent accommodated in the reagent container 13 can be reduced by reducing the reaction of the inertial force at the time of stopping.
  • the reagent storage control unit 34 determines whether there is a newly accepted sample (step S101). Specifically, it is determined whether a new sample has been received based on information input to the input unit 32 by the operator. When it is determined that there is no newly received sample (step S101: No), the determination process in step S101 is repeated. On the other hand, when it is determined that there is a newly received sample (step S101: Yes), the reagent storage control unit 34 sets the reagent information of the reagent container 13 to be dispensed in which the reagent corresponding to the analysis item of the sample is stored.
  • step S102 the storage position of the reagent container 13 to be dispensed in the storage unit 14a is acquired from the storage unit 34d (step S102), and the transfer length calculation unit 34a dispenses in the storage unit 14a acquired by the reagent storage control unit 34.
  • the transfer length from the storage position of the target reagent container 13 to the reagent suction position P2 is calculated (step S103).
  • the liquid amount calculation unit 34b dispenses the reagent to be dispensed based on the reagent information of the reagent vessel 13 to be dispensed and the liquid level of the reagent vessel 13 to be dispensed detected by the liquid level detection unit 15e.
  • the amount of the reagent stored in the container 13 is calculated (step S104).
  • the transfer control unit 34c reduces the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container 13 to be dispensed based on the reagent information, the transfer length, and the amount of the reagent of the reagent container 13 to be dispensed.
  • the preset transfer speed is acquired from the storage unit 34d (step S105).
  • the transfer control unit 34c controls the storage unit 14a at the acquired transfer speed and transfers the reagent container 13 to be dispensed to the reagent suction position P2 (step S106). Specifically, as shown in FIG. 3, the reagent “A” accommodated in the reagent container 13 to be dispensed, the shape “ ⁇ ” of the reagent container 13 to be dispensed, the liquid amount “ab” and the transfer When the length is “d3”, the transfer control unit 34c acquires the transfer rate “s3” from the transfer rate table R1 of the storage unit 34d, and controls the storage unit 14a with this transfer rate “s3” to be dispensed. The reagent container 13 is transferred to the reagent suction position P2.
  • the reagent storage controller 34 determines whether or not there is an instruction to end the analysis from the controller 31 (step S107). If there is no instruction to end the analysis (step S107: No), the process returns to step S101, and the processes from step S101 to step S106 described above are repeated. On the other hand, when there is an analysis end instruction from the control unit 31 (step S107: Yes), the reagent storage control unit 34 ends the reagent container transfer process.
  • the storage unit 14a transfers the reagent container 13 to be dispensed to the reagent suction position P2
  • the reagent information and the transfer length of the reagent container 13 to be dispensed read by the reading unit 14e.
  • the transfer controller 34c Based on the transfer length calculated by the height calculator 34a and the reagent liquid amount calculated by the liquid amount calculator 34b, the transfer controller 34c accompanies the transfer of the reagent container 13 to be dispensed stored in the storage unit 34d.
  • the transfer controller 34c By acquiring a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping, and controlling the storage unit 14a at this acquired transfer speed, the reagent container 13 to be dispensed when the reagent suction position P2 is stopped. The shaking of the reagent accommodated in the container can be reduced.
  • a control program for controlling processing executed by the automatic analyzer 1 is installed in the storage unit 35 (also shown in FIG. 2) of the control mechanism 3 shown in FIG.
  • the computer can function as a part or all of the control mechanism 3 (FIG. 1, not shown in FIG. 2).
  • Such a control program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped.
  • the program may be installed in the computer memory by reading the program recorded in the recording medium, or the program downloaded via a network such as the Internet may be installed in the computer memory.
  • Any type of computer can be used as the computer. 6 described in detail above is not limited to being implemented by software (for example, a program.
  • the functions of each step shown in FIGS. 5 and 6 are implemented by hardware (for example, a circuit, Board, semiconductor chip), or a combination of software and hardware.
  • the dispensing device, the automatic analyzer, and the control method thereof according to the present invention are useful for an analyzer that analyzes a reaction product between a sample and a reagent, and in particular, a reagent at the time of stopping accompanying the transfer of a reagent container It is suitable for the field where it is required to reduce the fluctuation of the vibration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An automatic analysis device capable of reducing the movement of a reagent within a reagent container occurring when the transfer of the reagent container is stopped. An automatic analysis device is provided with a transfer control unit (34c) which controls a containing unit (14a) to a preset transfer speed in order to reduce the movement of a reagent within a reagent container (13) which is to be subjected to dispensing operation, said movement of the reagent occurring when the transfer of the reagent container (13) is stopped. The control by the transfer control unit (34c) is performed when the containing unit (14a) transfers the reagent container (13), which is to be subjected to dispensing operation, to a reagent suction position (P2) on the basis of the following information: reagent information relating to the reagent container (13) read by a reading unit (14e), the distance of the transfer calculated by a transfer distance calculation unit (34a), and the amount of the liquid reagent calculated by a liquid amount calculation unit (34b).

Description

自動分析装置Automatic analyzer
 本発明は、検体と試薬とを反応容器に分注し、この反応容器内で生じた反応液を測定することによって検体を分析する自動分析装置に関する。 The present invention relates to an automatic analyzer for analyzing a specimen by dispensing a specimen and a reagent into a reaction container and measuring a reaction solution generated in the reaction container.
 従来から、検体と試薬とを反応容器に分注し、この反応容器内で反応した反応液の吸光度を測定することによって検体を分析する自動分析装置が知られている。この自動分析装置は、分析に使用する試薬を収容した試薬容器を試薬庫内の試薬トレイ上に複数収納し、この試薬トレイを回転させて検体や分析項目に応じた所望の試薬容器を分注プローブによる分注位置まで移送して試薬を分注している。 Conventionally, an automatic analyzer that analyzes a sample by dispensing a sample and a reagent into a reaction vessel and measuring the absorbance of the reaction solution reacted in the reaction vessel is known. This automatic analyzer stores a plurality of reagent containers containing reagents to be used for analysis on a reagent tray in a reagent storage, and rotates the reagent tray to dispense a desired reagent container according to a sample or analysis item. The reagent is dispensed by transferring to the dispensing position by the probe.
 ところで、近年、自動分析装置は、分析処理の処理能力向上のため、試薬トレイの高速回転化が図られている。この試薬トレイの高速回転化によって試薬に対する遠心力が増加し、移送中に試薬容器内の試薬の揺れが大きくなってしまう結果、分注精度の悪化または分注プローブの汚れが問題となっていた。このため、遠心方向に対して摩擦抵抗を生じさせるように容器の形状を変化させて移送中の試薬の揺れを小さくした試薬容器を用いる自動分析装置が知られている(特許文献1参照)。 By the way, in recent years, automatic analyzers have been designed to rotate reagent trays at a high speed in order to improve the throughput of analysis processing. As a result of the high-speed rotation of the reagent tray, the centrifugal force on the reagent increases and the shaking of the reagent in the reagent container increases during the transfer. As a result, deterioration of the dispensing accuracy or contamination of the dispensing probe becomes a problem. . For this reason, there is known an automatic analyzer using a reagent container in which the shape of the container is changed so as to generate a frictional resistance in the centrifugal direction to reduce the shaking of the reagent being transferred (see Patent Document 1).
特開2000-275251号公報JP 2000-275251 A
 しかしながら、上述した特許文献1に記載の自動分析装置は、試薬容器の形状を変更させて移送中に試薬容器内の試薬の揺れを小さくしているが、試薬トレイの回転速度が上がることによって進行方向に対する慣性力も大きくなる。このため、停止時に試薬容器の進行方向側に対する慣性力の反動によって試薬の揺れが大きくなるという問題点があった。 However, although the automatic analyzer described in Patent Document 1 described above changes the shape of the reagent container to reduce the shaking of the reagent in the reagent container during the transfer, it proceeds by increasing the rotational speed of the reagent tray. The inertia force with respect to the direction is also increased. For this reason, there has been a problem that the shaking of the reagent becomes large due to the reaction of the inertial force with respect to the traveling direction side of the reagent container at the stop.
 本発明は、上記に鑑みてなされたものであって、試薬を収容した試薬容器の移送に伴う停止時の試薬の揺れを低減することができる自動分析装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an automatic analyzer that can reduce the shaking of the reagent when stopped due to the transfer of the reagent container containing the reagent.
 上述した課題を解決し、目的を達成するために、本発明にかかる自動分析装置は、液面検知部を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置において、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と、前記記憶媒体から前記試薬情報を読み取る読取手段と、前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出する移送長さ算出手段と、前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出する液量算出手段と、前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御する移送制御手段と、を備える。 In order to solve the above-described problems and achieve the object, an automatic analyzer according to the present invention dispenses a reagent and a sample into a reaction container by a dispensing mechanism having a liquid level detection unit. In the automatic analyzer for analyzing the sample by measuring the absorbance of the reacted reaction solution, a transfer means for storing a plurality of reagent containers containing the reagents and transferring the reagent containers to be dispensed to a reagent suction position; A storage medium that is provided in each of the reagent containers housed in the transfer means and stores reagent information including the shape of the reagent container and the type of reagent; a reading means for reading the reagent information from the storage medium; and the transfer A transfer length calculating means for calculating a transfer length from the storage position of the reagent container to be dispensed to the reagent suction position in the means, and before the liquid level detecting means detects A liquid amount calculating means for calculating a liquid amount of the reagent contained in the reagent container to be dispensed based on the height of the liquid level of the reagent contained in the reagent container to be dispensed and the reagent information; When the transfer means transfers the reagent container to be dispensed to the reagent suction position, it is accompanied by the transfer of the reagent container to be dispensed based on the reagent information, the transfer length, and the amount of the reagent liquid. Transfer control means for controlling the transfer means at a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping.
 あるいは、本発明は、検体を分析する自動分析装置であって、試薬と前記検体とを反応容器に分注する、液面検知手段を有する分注機構と、前記反応容器内で反応した反応液の吸光度を測定する測定手段と、前記検体を分析する分析手段と、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と、前記記憶媒体から前記試薬情報を読み取る読取手段と、前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出する移送長さ算出手段と、前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出する液量算出手段と、前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御する移送制御手段と、を備える自動分析装置を提供する。 Alternatively, the present invention is an automatic analyzer that analyzes a specimen, and dispenses a reagent and the specimen into a reaction container, a dispensing mechanism having a liquid level detection means, and a reaction solution reacted in the reaction container Measurement means for measuring the absorbance of the sample, analysis means for analyzing the sample, transfer means for storing a plurality of reagent containers containing the reagents and transferring the reagent containers to be dispensed to the reagent suction position, and the transfer means Provided in each of the plurality of reagent containers accommodated in the storage medium, storing a storage medium storing reagent information including the shape of the reagent container and the type of reagent, a reading unit for reading the reagent information from the storage medium, and the transfer unit Transfer length calculation means for calculating the transfer length from the storage position of the reagent container to be dispensed to the reagent suction position, and the reagent container to be dispensed detected by the liquid level detection means. Liquid amount calculating means for calculating the liquid amount of the reagent contained in the reagent container to be dispensed based on the height of the liquid level of the reagent and the reagent information, and When the reagent container is transferred to the reagent aspirating position, based on the reagent information, the transfer length, and the amount of the reagent liquid, the shaking of the reagent at the time of stopping accompanying the transfer of the reagent container to be dispensed is reduced. There is provided an automatic analyzer comprising: a transfer control means for controlling the transfer means at a preset transfer speed.
 1つの実施形態において、本発明にかかる自動分析装置は、上記の発明において、前記移送速度は、前記分注対象の試薬容器の形状が大きいほど遅い。 In one embodiment, in the automatic analyzer according to the present invention, the transfer speed is slower as the shape of the reagent container to be dispensed is larger.
 別の実施形態において、本発明にかかる自動分析装置は、上記の発明において、前記移送速度は、前記移送長さが短いほど遅い。 In another embodiment, in the automatic analyzer according to the present invention, the transfer speed is slower as the transfer length is shorter.
 別の実施形態において、本発明にかかる自動分析装置は、上記の発明において、前記移送速度は、前記分注対象の試薬容器に収容された試薬の液量が多いほど遅い。 In another embodiment, in the automatic analyzer according to the present invention, in the above invention, the transfer speed is slower as the amount of the reagent contained in the reagent container to be dispensed is larger.
 別の局面において、本発明は、液面検知手段を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置であって、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と備える自動分析装置を制御する方法であって、前記方法は、前記記憶媒体から前記試薬情報を読み取るステップと、前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出するステップと、前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出するステップと、前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御するステップと、を包含する方法を提供する。 In another aspect, the present invention dispenses the sample by dispensing the reagent and the sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel. An automatic analyzer for analyzing, wherein a plurality of reagent containers containing the reagents are stored, a transfer means for transferring the reagent containers to be dispensed to a reagent suction position, and a plurality of the reagent containers stored in the transfer means And a method of controlling an automatic analyzer provided with a storage medium storing reagent information including the shape of the reagent container and the type of reagent, the method comprising: reading the reagent information from the storage medium; A step of calculating a transfer length from the storage position of the reagent container to be dispensed to the reagent suction position in the transfer means, and before the liquid level detection means detects Calculating the amount of reagent contained in the reagent container to be dispensed based on the height of the liquid level of the reagent contained in the reagent container to be dispensed and the reagent information; and When the reagent container to be dispensed is transferred to the reagent aspirating position, based on the reagent information, the transfer length, and the amount of the reagent liquid, the stop time associated with the transfer of the reagent container to be dispensed Controlling the transfer means at a preset transfer rate to reduce reagent sway.
 種々の実施形態において、本発明の方法は、本発明の自動分析装置の上記のいずれか一つまたは複数の特徴を含む。 In various embodiments, the method of the present invention includes any one or more of the above features of the automated analyzer of the present invention.
 別の局面において、本発明は、液面検知手段を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置であって、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と備える自動分析装置において用いられる制御プログラムであって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は前記記憶媒体から前記試薬情報を読み取るステップと、前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出するステップと、前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出するステップと、前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御するステップと、を包含する制御プログラムを提供する。 In another aspect, the present invention dispenses the sample by dispensing the reagent and the sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel. An automatic analyzer for analyzing, wherein a plurality of reagent containers containing the reagents are stored, a transfer means for transferring the reagent containers to be dispensed to a reagent suction position, and a plurality of the reagent containers stored in the transfer means Is a control program used in an automatic analyzer provided with a storage medium storing reagent information including the shape of the reagent container and the type of reagent, and the control program implements a method for controlling the automatic analyzer The method includes reading the reagent information from the storage medium, and the reagent volume to be dispensed in the transfer means. Calculating the transfer length from the storage position to the reagent suction position, the height of the liquid level of the reagent stored in the reagent container to be dispensed detected by the liquid level detection means, and the reagent information The step of calculating the amount of the reagent contained in the reagent container to be dispensed based on the above, and when the transfer means transfers the reagent container to be dispensed to the reagent suction position, the reagent information and Controlling the transfer means at a preset transfer speed so as to reduce the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container to be dispensed based on the transfer length and the amount of the reagent solution; , Providing a control program.
 種々の実施形態において、本発明のプログラムは、本発明の自動分析装置またはその制御方法の上記のいずれか一つまたは複数の特徴を含む。 In various embodiments, the program of the present invention includes any one or more of the above-described features of the automatic analyzer or the control method of the present invention.
 別の局面において、液面検知手段を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置であって、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と備える自動分析装置において用いられる制御プログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は前記記憶媒体から前記試薬情報を読み取るステップと、前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出するステップと、前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出するステップと、前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御するステップと、を包含する記録媒体を提供する。 In another aspect, automatic analysis in which a reagent and a specimen are dispensed into a reaction container by a dispensing mechanism having a liquid level detection means, and the specimen is analyzed by measuring the absorbance of the reaction liquid reacted in the reaction container. An apparatus for storing a plurality of reagent containers containing the reagents and transferring each of the reagent containers to be dispensed to a reagent suction position; and a plurality of the reagent containers stored in the transfer means, A computer-readable recording medium recording a control program used in an automatic analyzer provided with a storage medium storing reagent information including the shape of a reagent container and the type of reagent, the control program including the automatic analyzer A method of controlling, wherein the method reads the reagent information from the storage medium; and Calculating the transfer length from the storage position of the reagent container to be dispensed to the reagent suction position in the means, and the liquid of the reagent contained in the reagent container to be dispensed detected by the liquid level detecting means Calculating the amount of reagent contained in the reagent container to be dispensed based on the height of the surface and the reagent information; and the transfer means places the reagent container to be dispensed in the reagent suction position. In the case of transfer, a transfer speed set in advance so as to reduce the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container to be dispensed based on the reagent information, the transfer length, and the amount of the reagent liquid And a step of controlling the transfer means.
 種々の実施形態において、本発明のコンピュータ読み取り可能な記録媒体は、本発明の自動分析装置またはその制御方法の上記のいずれか一つまたは複数の特徴を含む。 In various embodiments, the computer-readable recording medium of the present invention includes any one or more of the features of the automatic analyzer or the control method thereof of the present invention.
 本発明にかかる自動分析装置は、分注対象の試薬容器に設けられた記憶媒体から試薬情報と分注対象の試薬容器の移送長さと分注対象の試薬容器に収容された試薬の液量とに基づいて、分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減する移送速度で移送手段を制御するようにしているので、試薬容器の移送に伴う停止時の試薬の揺れを低減することができるという効果を奏する。 The automatic analyzer according to the present invention includes reagent information from the storage medium provided in the reagent container to be dispensed, the transfer length of the reagent container to be dispensed, and the liquid amount of the reagent contained in the reagent container to be dispensed. Therefore, the transfer means is controlled at a transfer speed that reduces the shaking of the reagent at the time of stopping accompanying the transfer of the reagent container to be dispensed, so that the shaking of the reagent at the time of stopping accompanying the transfer of the reagent container is controlled. There exists an effect that it can reduce.
図1は、本発明の一実施の形態にかかる自動分析装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention. 図2は、試薬庫、試薬分注機構および試薬庫制御部を含む構成を示す模式図である。FIG. 2 is a schematic diagram showing a configuration including a reagent store, a reagent dispensing mechanism, and a reagent store control unit. 図3は、収納部の移送速度が設定された移送速度テーブルを示す図である。FIG. 3 is a diagram illustrating a transfer speed table in which the transfer speed of the storage unit is set. 図4は、移送長さに対応して設定される収納部の移送速度を示す図である。FIG. 4 is a diagram illustrating the transfer speed of the storage unit set corresponding to the transfer length. 図5は、停止直後における試薬容器内の試薬の揺れの時間変化を示す図である。FIG. 5 is a diagram showing a change over time of the shaking of the reagent in the reagent container immediately after stopping. 図6は、試薬庫制御部が行う試薬容器移送処理の概要を示すフローチャートである。FIG. 6 is a flowchart showing an outline of the reagent container transfer process performed by the reagent storage control unit.
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の修飾語等(例えば、英語の場合は「a」、「an」、「the」等の冠詞など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当上記分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present invention will be described while showing the best mode. Throughout this specification, it should be understood that the singular forms also include the plural concept unless specifically stated otherwise. Therefore, it is understood that singular modifiers (for example, articles such as “a”, “an”, “the”, etc. in the case of English) also include the plural concept thereof unless otherwise specified. Should be. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the above field unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
 以下、図面を参照して、本発明の自動分析装置にかかる実施の形態について説明する。なお、この実施の形態によりこの発明が限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments of the automatic analyzer according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments, and various modifications can be made without departing from the gist of the present invention. In the description of the drawings, the same parts are denoted by the same reference numerals.
 図1は、本発明の一実施の形態にかかる自動分析装置の概略構成を示す模式図である。図1に示すように、本発明の一実施の形態にかかる自動分析装置1は、試薬と検体とを反応容器20に分注し、反応容器20内で反応させ、この反応液の吸光度を測定する測定機構2と、測定機構2を含む自動分析装置1全体の制御を行うとともに測定機構2における測定結果の分析を行う制御機構3と、を備える。自動分析装置1は、これらの2つの機構が連携することによって複数の検体の分析を自動的に行う。 FIG. 1 is a schematic diagram showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention. As shown in FIG. 1, the automatic analyzer 1 according to one embodiment of the present invention dispenses a reagent and a sample into a reaction container 20, reacts them in the reaction container 20, and measures the absorbance of the reaction solution. And a control mechanism 3 that controls the entire automatic analyzer 1 including the measurement mechanism 2 and analyzes the measurement result in the measurement mechanism 2. The automatic analyzer 1 automatically performs analysis of a plurality of samples by cooperation of these two mechanisms.
 まず、測定機構2について説明する。図1に示すように、測定機構2は、血液や尿等の液体である検体を収容した複数の検体容器11aを保持する検体ラック11bを図中の矢印方向に順次移送する検体移送部11と、検体移送部11上の検体吸引位置P1で停止した検体容器11aから検体を吸引して反応容器20に検体を分注する検体分注機構12と、反応容器20内に分注される試薬が収容された試薬容器13を複数収納する試薬庫14と、試薬庫14の試薬吸引位置P2で停止した分注対象の試薬容器13から試薬を吸引して反応容器20に試薬を分注する試薬分注機構15と、反応容器20内に分注された試薬と検体とを攪拌する攪拌部16と、反応容器20内に分注された液体の吸光度を測定する測光部17と、測光部17による測定が終了した反応容器20を洗浄する洗浄部18と、反応容器20への検体や試薬の分注、攪拌、測光および洗浄を行うために反応容器20を所定の位置まで搬送する反応槽19と、を備える。 First, the measurement mechanism 2 will be described. As shown in FIG. 1, the measurement mechanism 2 includes a sample transport unit 11 that sequentially transports a sample rack 11b holding a plurality of sample containers 11a containing a sample such as blood or urine, in the direction of the arrow in the figure. The sample dispensing mechanism 12 for aspirating the sample from the sample container 11a stopped at the sample aspirating position P1 on the sample transfer unit 11 and dispensing the sample into the reaction container 20, and the reagent dispensed in the reaction container 20 A reagent container 14 for storing a plurality of stored reagent containers 13 and a reagent container for aspirating the reagent from the dispensing target reagent container 13 stopped at the reagent suction position P2 of the reagent container 14 and dispensing the reagent to the reaction container 20 By the injection mechanism 15, the stirring unit 16 that stirs the reagent and the sample dispensed in the reaction container 20, the photometric unit 17 that measures the absorbance of the liquid dispensed in the reaction container 20, and the photometric unit 17 Wash reaction vessel 20 after measurement That includes a cleaning unit 18, the dispensing of the specimen and the reagent into the reaction vessel 20, stirring, and a reaction vessel 19 for conveying the reaction vessel 20 to a predetermined position in order to perform the photometry and washing, the.
 つぎに、制御機構3について説明する。制御機構3は、CPU等によって実現され、自動分析装置1の各部の処理および動作を制御する制御部31と、キーボード、マウス、入出力機能を備えたタッチパネル等によって実現され、検体の分析に必要な情報や自動分析装置1の操作情報が入力される入力部32と、測光部17によって測定された吸光度の測定結果に基づいて検体の成分分析を行う分析部33と、試薬庫14に収容された分注対象の試薬容器13を試薬吸引位置P2まで移送するように制御する試薬庫制御部34と、ハードディスクやメモリ等によって実現され、自動分析装置1の各部の処理および動作にかかる各種プログラムや検体の分析に関する情報を含む各種情報を記憶する記憶部35と、ディスプレイやプリンタ等によって実現され、検体の分析に関する情報等を出力する出力部36と、を備える。 Next, the control mechanism 3 will be described. The control mechanism 3 is realized by a CPU or the like, and is realized by a control unit 31 that controls processing and operation of each unit of the automatic analyzer 1, a keyboard, a mouse, a touch panel having an input / output function, and the like, and is necessary for analysis of a sample. Stored in the reagent storage 14, an input unit 32 for inputting detailed information and operation information of the automatic analyzer 1, an analysis unit 33 for analyzing the components of the specimen based on the measurement result of the absorbance measured by the photometry unit 17, and the reagent storage 14. The reagent container control unit 34 that controls the reagent container 13 to be dispensed to the reagent suction position P2, and a hard disk, a memory, and the like. Various programs for processing and operation of each unit of the automatic analyzer 1 Information related to sample analysis is realized by a storage unit 35 for storing various types of information including information related to sample analysis, a display, a printer, and the like. And an output unit 36 that outputs, a.
 以上のように構成された自動分析装置1では、反応槽19上で順次移送される複数の反応容器20に対して、試薬分注機構15が試薬庫14の試薬吸引位置P2で停止した分注対象の試薬容器13から試薬を分注後、検体分注機構12が検体吸引位置P1で停止した検体容器11aから検体を分注する。その後、測光部17が試薬および検体を反応させた状態の反応液の吸光度を測定し、この測定結果をもとに分析部33が分析することによって、検体の成分分析等が自動的に行われる。その後、洗浄部18が測光部17による測定が終了した後に搬送される反応容器20を搬送させながら洗浄し、反応容器20を再利用する。その後、洗浄された反応容器20を再利用し、複数の分析処理を行う。 In the automatic analyzer 1 configured as described above, the reagent dispensing mechanism 15 dispenses with the plurality of reaction containers 20 sequentially transferred on the reaction tank 19 stopped at the reagent suction position P <b> 2 of the reagent storage 14. After dispensing the reagent from the target reagent container 13, the specimen dispensing mechanism 12 dispenses the specimen from the specimen container 11a stopped at the specimen aspirating position P1. Thereafter, the photometry unit 17 measures the absorbance of the reaction solution in a state where the reagent and the sample are reacted, and the analysis unit 33 analyzes based on the measurement result, so that the component analysis of the sample is automatically performed. . Thereafter, the cleaning unit 18 cleans the reaction vessel 20 being conveyed after the measurement by the photometry unit 17 is completed, and reuses the reaction vessel 20. Thereafter, the washed reaction vessel 20 is reused to perform a plurality of analysis processes.
 つぎに、図1に示した試薬庫14、試薬分注機構15および試薬庫制御部34について説明する。図2は、試薬庫14および試薬分注機構15および試薬庫制御部34を含んだ構成を示す模式図である。試薬庫14は、図2に示すように、収納部14a、駆動部14b、本体部14c、蓋14dおよび読取部14eを有する。 Next, the reagent store 14, the reagent dispensing mechanism 15, and the reagent store control unit 34 shown in FIG. 1 will be described. FIG. 2 is a schematic diagram showing a configuration including the reagent storage 14, the reagent dispensing mechanism 15, and the reagent storage control unit 34. As shown in FIG. As shown in FIG. 2, the reagent store 14 includes a storage portion 14a, a drive portion 14b, a main body portion 14c, a lid 14d, and a reading portion 14e.
 収納部14aは、円盤状に形成され、上面に複数の収納室が周方向に沿って等間隔に形成される。収納部14aは、各収納室に試薬容器13が着脱自在に収納され、試薬吸引位置P2に分注対象の試薬容器13を移送する。駆動部14bは、パルスモータによって実現され、試薬庫制御部34の制御のもと、試薬庫14の中心を通る鉛直線を回転軸として収納部14aを回転させる。本体部14cは、収納部14aの側面および底面を一体に覆うように円筒状に形成され、外気が内部に浸入することを防止する。本体部14cの側壁の一部分には、窓部14fが設けられている。窓部14fは、透明な素材、たとえば、ガラス等によって実現される。蓋14dは、本体部14cに対して開閉自在であり、収納部14aの上部に設けられ、試薬容器13に収容した試薬の蒸発や変性を防止する。蓋14dには、試薬分注機構15による試薬を吸引するための試薬吸引位置P2として孔部14gが設けられている。 The storage portion 14a is formed in a disc shape, and a plurality of storage chambers are formed on the upper surface at equal intervals along the circumferential direction. The storage unit 14a detachably stores the reagent container 13 in each storage chamber, and transfers the reagent container 13 to be dispensed to the reagent suction position P2. The drive unit 14b is realized by a pulse motor, and rotates the storage unit 14a around the vertical line passing through the center of the reagent store 14 under the control of the reagent store control unit 34. The main body portion 14c is formed in a cylindrical shape so as to integrally cover the side surface and the bottom surface of the storage portion 14a, and prevents outside air from entering the inside. A window portion 14f is provided in a part of the side wall of the main body portion 14c. The window portion 14f is realized by a transparent material such as glass. The lid 14d is openable and closable with respect to the main body part 14c, and is provided on the upper part of the storage part 14a to prevent evaporation and denaturation of the reagent stored in the reagent container 13. The lid 14d is provided with a hole 14g as a reagent aspirating position P2 for aspirating the reagent by the reagent dispensing mechanism 15.
 読取部14eは、バーコードリーダ等によって実現され、窓部14fを介して収納部14aに収納された試薬容器13に設けられた記憶媒体(図示せず)から試薬情報を読み取る。読取部14eは、試薬容器13に設けられた記憶媒体から読み取った試薬情報を収納部14aにおける試薬容器13の収納位置に対応させて試薬庫制御部34に出力する。記憶媒体は、バーコードまたは2次元コード等で実現され、試薬情報を記憶する。ここで、試薬情報とは、少なくとも試薬容器13の形状と試薬の種類を含む情報をいう。また、試薬の種類毎に対応して粘度が設定される。読取部14eは、分析の開始前、たとえば、自動分析装置1の電源が入れられた初期化時、または収納部14aに新たな試薬容器13が収納される度に試薬容器13に設けられた記憶媒体から試薬情報を読み取る。また、読取部14eは、試薬容器13が読取部14eを横切る度に試薬容器13に設けられた記憶媒体から試薬情報を読み取る。 The reading unit 14e is realized by a barcode reader or the like, and reads reagent information from a storage medium (not shown) provided in the reagent container 13 stored in the storage unit 14a via the window unit 14f. The reading unit 14e outputs the reagent information read from the storage medium provided in the reagent container 13 to the reagent storage control unit 34 in association with the storage position of the reagent container 13 in the storage unit 14a. The storage medium is realized by a barcode or a two-dimensional code, and stores reagent information. Here, the reagent information refers to information including at least the shape of the reagent container 13 and the type of reagent. Further, the viscosity is set corresponding to each type of reagent. The reading unit 14e is a memory provided in the reagent container 13 before the start of analysis, for example, at the time of initialization when the automatic analyzer 1 is turned on or whenever a new reagent container 13 is stored in the storage unit 14a. Read reagent information from the medium. The reading unit 14e reads reagent information from a storage medium provided in the reagent container 13 every time the reagent container 13 crosses the reading unit 14e.
 試薬分注機構15は、図2に示すように、分注ノズル15a、アーム15b、駆動部15c、連結部15dおよび液面検知部15eを有する。分注ノズル15aは、ステンレス等によって棒管状に形成されたものからなり、アーム15bに装着される。アーム15bは、駆動部15cの駆動によって動作するものであり、アーム15bと駆動部15cとを連結する連結部15dを介して、鉛直方向への昇降および連結部15dを通る鉛直軸を中心とする回転を行う。液面検知部15eは、分注ノズル15aと試薬容器13に収容された試薬との接触による電気的な信号変化の変化量に基づいて試薬の液面の高さを検知する。液面検知部15eは、検知した試薬の液面の高さを試薬庫制御部34に出力する。 As shown in FIG. 2, the reagent dispensing mechanism 15 includes a dispensing nozzle 15a, an arm 15b, a driving unit 15c, a connecting unit 15d, and a liquid level detecting unit 15e. The dispensing nozzle 15a is made of a rod-like tube made of stainless steel or the like, and is attached to the arm 15b. The arm 15b is operated by driving of the driving unit 15c, and is centered on a vertical axis passing through the connecting unit 15d and moving up and down in the vertical direction via the connecting unit 15d connecting the arm 15b and the driving unit 15c. Rotate. The liquid level detection unit 15e detects the height of the liquid level of the reagent based on the change amount of the electrical signal change caused by the contact between the dispensing nozzle 15a and the reagent accommodated in the reagent container 13. The liquid level detection unit 15 e outputs the detected liquid level of the reagent to the reagent storage control unit 34.
 試薬庫制御部34は、図2に示すように、移送長さ算出部34a、液量算出部34b、移送制御部34cおよび記憶部34dを有する。移送長さ算出部34aは、分注対象の試薬容器13の収納位置から試薬吸引位置P2までの移送長さを算出する。ここで、算出される移送長さは、パルスモータに出力するパルス数として換算される。液量算出部34bは、液面検知部15eが検知した分注対象の試薬容器13に収容された試薬の液面の高さと読取部14eが読み取った試薬情報に含まれる分注対象の試薬容器13の形状とに基づいて、分注対象の試薬容器13に収容された試薬の液量を算出する。移送制御部34cは、収納部14aが分注対象の試薬容器13を試薬吸引位置P2に移送する場合に、読取部14eが読み取った試薬情報と移送長さ算出部34aが算出した移送長さと液量算出部34bが算出した試薬の液量とに基づいて、分注対象の試薬容器13の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で収容部14aを制御する。記憶部34dは、分注対象の試薬容器13の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度を記憶する。 As shown in FIG. 2, the reagent storage control unit 34 includes a transfer length calculation unit 34a, a liquid amount calculation unit 34b, a transfer control unit 34c, and a storage unit 34d. The transfer length calculation unit 34a calculates the transfer length from the storage position of the reagent container 13 to be dispensed to the reagent suction position P2. Here, the calculated transfer length is converted as the number of pulses output to the pulse motor. The liquid amount calculation unit 34b is a dispensing target reagent container included in the reagent information read by the reading unit 14e and the height of the liquid level of the reagent contained in the dispensing target reagent container 13 detected by the liquid level detection unit 15e. Based on the shape of 13, the amount of the reagent contained in the reagent container 13 to be dispensed is calculated. When the storage unit 14a transfers the reagent container 13 to be dispensed to the reagent suction position P2, the transfer control unit 34c transfers the reagent information read by the reading unit 14e and the transfer length and liquid calculated by the transfer length calculation unit 34a. Based on the amount of the reagent calculated by the amount calculation unit 34b, the storage unit 14a is controlled at a preset transfer speed so as to reduce the shaking of the reagent when stopped due to the transfer of the reagent container 13 to be dispensed. . The storage unit 34d stores a transfer speed that is set in advance so as to reduce the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container 13 to be dispensed.
 ここで、記憶部34dが記憶する収納部14aの移送速度について説明する。図3は、収納部14aの移送速度が設定された移送速度テーブルを示す図である。自動分析装置1は、通常、一定のシーケンスによって分析処理をしており、各部の動作時間が設定される。このため、収納部14aは、所定の時間内に分注対象の試薬容器13を試薬吸引位置P2に移送を終えるように設定される。すなわち、収納部14aは、試薬の種類(粘度)、試薬容器13の形状、試薬の液量および移送長さを考慮することなく、分注対象の試薬容器13を試薬吸引位置P2に所定の時間内で移送を終えるように設定される。このため、収納部14aが所定の移送速度で分注対象の試薬容器13を試薬吸引位置P2に移送した場合、試薬の種類(粘度)、試薬容器13の形状、試薬の液量および移送長さそれぞれによって試薬容器13の移送に伴う停止時の試薬の揺れが異なる。 Here, the transfer speed of the storage unit 14a stored in the storage unit 34d will be described. FIG. 3 is a diagram illustrating a transfer speed table in which the transfer speed of the storage unit 14a is set. The automatic analyzer 1 normally performs analysis processing according to a certain sequence, and the operation time of each part is set. For this reason, the storage unit 14a is set so as to finish transferring the reagent container 13 to be dispensed to the reagent suction position P2 within a predetermined time. That is, the storage unit 14a takes the reagent container 13 to be dispensed to the reagent suction position P2 for a predetermined time without considering the type (viscosity) of the reagent, the shape of the reagent container 13, the amount of the reagent, and the transfer length. Set to finish the transfer within. Therefore, when the storage unit 14a transfers the reagent container 13 to be dispensed to the reagent suction position P2 at a predetermined transfer speed, the type (viscosity) of the reagent, the shape of the reagent container 13, the amount of the reagent, and the transfer length The shaking of the reagent at the time of stopping accompanying the transfer of the reagent container 13 differs depending on each.
 そこで、図3が示すように、移送速度テーブルR1は、試薬の種類(粘度)、試薬容器形状、液量および移送長さそれぞれの情報に対応させて、分注対象の試薬容器13の移送に伴う停止時の試薬の揺れを低減するように収納部14aの移送速度が設定される。たとえば、図3において、試薬「A」、試薬容器形状「α」、液量「a~b」および移送長さ「d3」の場合、収納部14aの移送速度「s3」を設定する。すなわち、移送制御部34cは、収納部14aが分注対象の試薬容器13を試薬吸引位置P2に移送する場合、図3に示す移送速度テーブルR1を用いて、読取部14eが読み取った試薬情報と移送長さ算出部14aが算出した移送長さと液量算出部34bが算出した試薬の液量とに基づいて、分注対象の試薬容器13の移送に伴う停止時の試薬の揺れを低減する移送速度を記憶部34dから取得し、この取得した移送速度で収納部14aを制御する。これにより、収納部14aによる試薬吸引位置P2の停止時における試薬の揺れは、試薬の種類(粘度)、試薬容器13の形状、試薬の液量および移送長さそれぞれに対応させて収納部14aの移送速度を設定しない場合と比較して大幅に低減することができる。なお、上述した図3の移送速度テーブルR1における収納部14aの移送速度は、実験およびシミュレーション等によって予め求めて設定する。 Therefore, as shown in FIG. 3, the transfer speed table R <b> 1 is used to transfer the reagent container 13 to be dispensed according to the information on the reagent type (viscosity), reagent container shape, liquid amount, and transfer length. The transfer speed of the storage portion 14a is set so as to reduce the shaking of the reagent at the time of stopping. For example, in FIG. 3, in the case of the reagent “A”, the reagent container shape “α”, the liquid amount “ab” and the transfer length “d3”, the transfer speed “s3” of the storage portion 14a is set. That is, when the storage unit 14a transfers the reagent container 13 to be dispensed to the reagent suction position P2, the transfer control unit 34c uses the transfer speed table R1 shown in FIG. 3 and the reagent information read by the reading unit 14e. Transfer that reduces the shaking of the reagent when stopped due to the transfer of the reagent container 13 to be dispensed, based on the transfer length calculated by the transfer length calculation unit 14a and the reagent liquid amount calculated by the liquid amount calculation unit 34b The speed is acquired from the storage unit 34d, and the storage unit 14a is controlled at the acquired transfer speed. As a result, the shaking of the reagent when the reagent aspirating position P2 is stopped by the storage unit 14a corresponds to the type (viscosity) of the reagent, the shape of the reagent container 13, the amount of the reagent, and the transfer length of the storage unit 14a. Compared with the case where the transfer speed is not set, it can be greatly reduced. Note that the transfer speed of the storage portion 14a in the transfer speed table R1 of FIG. 3 described above is obtained and set in advance by experiments and simulations.
 また、収納部14aによる移送速度は、試薬容器13の移送長さが長い場合に比べて短いほど遅く設定する。具体的には、収納部14aは、所定の時間内で試薬容器13の移送を終えるように設定されているため、移送長さが短い場合、移送速度を遅くして所定の時間内で試薬容器13の移送を終えればよい。これにより、停止に伴う慣性力による反動を低減することができ、試薬の揺れを低減することができる。さらに、移送速度は、試薬容器13の形状の容量および試薬の液量が多くなるほど遅く設定する。具体的には、停止に伴う慣性力による反動が液量(重量)と移送速度とによって決まるため、液量が多い場合、収納部14aによる移送速度を遅くするように設定する。これにより、停止に伴う慣性力による反動を低減することができるため、試薬の揺れを低減することができる。 In addition, the transfer speed by the storage unit 14a is set to be slower as the transfer length of the reagent container 13 is shorter than that when the transfer length is longer. Specifically, since the storage unit 14a is set to finish the transfer of the reagent container 13 within a predetermined time, when the transfer length is short, the transfer speed is slowed down and the reagent container within the predetermined time. What is necessary is just to finish 13 transfers. Thereby, the reaction caused by the inertial force accompanying the stop can be reduced, and the shaking of the reagent can be reduced. Further, the transfer speed is set to be slower as the volume of the shape of the reagent container 13 and the amount of the reagent liquid increase. Specifically, since the reaction due to the inertial force accompanying the stop is determined by the liquid amount (weight) and the transfer speed, when the liquid amount is large, the transfer speed by the storage portion 14a is set to be slow. Thereby, since the reaction caused by the inertial force accompanying the stop can be reduced, the shaking of the reagent can be reduced.
 図4は、移送長さに対応して設定される収納部14aの移送速度を示す図である。図4において、横軸が時間を示し、縦軸が速度を示し、折れ線L1~L4が図3の移送速度テーブルR1における移送速度s1~s4それぞれを示す。具体的には、図3の移送速度テーブルR1で移送速度「s3」を設定した場合、折れ線L3となる。この場合、図5に示すように、試薬吸引位置P2の停止時における分注対象の試薬容器13に収容された試薬の揺れが低減されていることが確認されている。また、図4においては、加速時間および減速時間が移送長さに関わらず同じとしたが、試薬の種類(粘度)、試薬容器13の形状および試薬の種類それぞれに対応させて加速時間および減速時間を調整するようにしてもよい。たとえば、試薬の液量が多い場合、加速時間を短くするとともに減速時間を長くし、減速時の加速度を緩やかな傾斜にする。これにより、停止時における慣性力の反動を低減することによって試薬容器13に収容された試薬の揺れを低減することができる。 FIG. 4 is a diagram showing the transfer speed of the storage portion 14a set corresponding to the transfer length. In FIG. 4, the horizontal axis indicates time, the vertical axis indicates speed, and the broken lines L1 to L4 indicate the transfer speeds s1 to s4 in the transfer speed table R1 of FIG. Specifically, when the transfer speed “s3” is set in the transfer speed table R1 of FIG. 3, it becomes a broken line L3. In this case, as shown in FIG. 5, it has been confirmed that the shaking of the reagent stored in the reagent container 13 to be dispensed when the reagent suction position P2 is stopped is reduced. In FIG. 4, the acceleration time and the deceleration time are the same regardless of the transfer length. However, the acceleration time and the deceleration time correspond to the reagent type (viscosity), the shape of the reagent container 13 and the reagent type, respectively. May be adjusted. For example, when the amount of reagent solution is large, the acceleration time is shortened and the deceleration time is lengthened, and the acceleration at the time of deceleration is made a gentle slope. Thereby, the shaking of the reagent accommodated in the reagent container 13 can be reduced by reducing the reaction of the inertial force at the time of stopping.
 ここで、図6に示すフローチャートを参照して、試薬庫制御部34が行う試薬容器移送処理について説明する。まず、試薬庫制御部34は、新たに受付された検体があるか否かを判断する(ステップS101)。具体的には、操作者によって入力部32に入力された情報に基づいて新たな検体が受付されたか否かを判断する。新たに受付された検体がないと判断した場合(ステップS101:No)、このステップS101の判断処理を繰り返す。一方、新たに受付された検体があると判断した場合(ステップS101:Yes)、試薬庫制御部34は、検体の分析項目に対応する試薬が収容された分注対象の試薬容器13の試薬情報と収納部14aにおける分注対象の試薬容器13の収納位置とを記憶部34dから取得し(ステップS102)、移送長さ算出部34aは、試薬庫制御部34が取得した収納部14aにおける分注対象の試薬容器13の収納位置から試薬吸引位置P2までの移送長さを算出する(ステップS103)。 Here, the reagent container transfer process performed by the reagent storage control unit 34 will be described with reference to the flowchart shown in FIG. First, the reagent storage control unit 34 determines whether there is a newly accepted sample (step S101). Specifically, it is determined whether a new sample has been received based on information input to the input unit 32 by the operator. When it is determined that there is no newly received sample (step S101: No), the determination process in step S101 is repeated. On the other hand, when it is determined that there is a newly received sample (step S101: Yes), the reagent storage control unit 34 sets the reagent information of the reagent container 13 to be dispensed in which the reagent corresponding to the analysis item of the sample is stored. And the storage position of the reagent container 13 to be dispensed in the storage unit 14a is acquired from the storage unit 34d (step S102), and the transfer length calculation unit 34a dispenses in the storage unit 14a acquired by the reagent storage control unit 34. The transfer length from the storage position of the target reagent container 13 to the reagent suction position P2 is calculated (step S103).
 その後、液量算出部34bは、分注対象の試薬容器13の試薬情報と液面検知部15eが検知した分注対象の試薬容器13の液面の高さとをもとに分注対象の試薬容器13に収容された試薬の液量を算出する(ステップS104)。 Thereafter, the liquid amount calculation unit 34b dispenses the reagent to be dispensed based on the reagent information of the reagent vessel 13 to be dispensed and the liquid level of the reagent vessel 13 to be dispensed detected by the liquid level detection unit 15e. The amount of the reagent stored in the container 13 is calculated (step S104).
 その後、移送制御部34cは、分注対象の試薬容器13の試薬情報と移送長さと試薬の液量とに基づいて、分注対象の試薬容器13の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度を記憶部34dから取得する(ステップS105)。 Thereafter, the transfer control unit 34c reduces the shaking of the reagent at the time of stoppage accompanying the transfer of the reagent container 13 to be dispensed based on the reagent information, the transfer length, and the amount of the reagent of the reagent container 13 to be dispensed. The preset transfer speed is acquired from the storage unit 34d (step S105).
 その後、移送制御部34cは、取得した移送速度で収納部14aを制御し、試薬吸引位置P2に分注対象の試薬容器13を移送させる(ステップS106)。具体的には、図3に示すように、分注対象の試薬容器13に収容された試薬「A」、分注対象の試薬容器13の形状「α」、液量「a~b」および移送長さ「d3」とした場合、移送制御部34cは、移送速度「s3」を記憶部34dの移送速度テーブルR1から取得し、この移送速度「s3」で収納部14aを制御し、分注対象の試薬容器13を試薬吸引位置P2まで移送させる。 Thereafter, the transfer control unit 34c controls the storage unit 14a at the acquired transfer speed and transfers the reagent container 13 to be dispensed to the reagent suction position P2 (step S106). Specifically, as shown in FIG. 3, the reagent “A” accommodated in the reagent container 13 to be dispensed, the shape “α” of the reagent container 13 to be dispensed, the liquid amount “ab” and the transfer When the length is “d3”, the transfer control unit 34c acquires the transfer rate “s3” from the transfer rate table R1 of the storage unit 34d, and controls the storage unit 14a with this transfer rate “s3” to be dispensed. The reagent container 13 is transferred to the reagent suction position P2.
 その後、試薬庫制御部34は、制御部31より分析終了の指示があるか否かを判断する(ステップS107)。分析終了の指示がない場合(ステップS107:No)、ステップS101に戻り、上述したステップS101~ステップS106までの処理を繰り返す。一方、試薬庫制御部34は、制御部31より分析終了の指示がある場合(ステップS107:Yes)、試薬容器移送処理を終了する。 Thereafter, the reagent storage controller 34 determines whether or not there is an instruction to end the analysis from the controller 31 (step S107). If there is no instruction to end the analysis (step S107: No), the process returns to step S101, and the processes from step S101 to step S106 described above are repeated. On the other hand, when there is an analysis end instruction from the control unit 31 (step S107: Yes), the reagent storage control unit 34 ends the reagent container transfer process.
 本発明の一実施の形態では、収納部14aが分注対象の試薬容器13を試薬吸引位置P2に移送する場合に、読取部14eが読み取った分注対象の試薬容器13の試薬情報と移送長さ算出部34aが算出した移送長さと液量算出部34bが算出した試薬の液量とに基づいて、移送制御部34cが記憶部34dに記憶された分注対象の試薬容器13の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度を取得し、この取得した移送速度で収納部14aを制御することによって、試薬吸引位置P2の停止時における分注対象の試薬容器13に収容された試薬の揺れを低減することができる。 In one embodiment of the present invention, when the storage unit 14a transfers the reagent container 13 to be dispensed to the reagent suction position P2, the reagent information and the transfer length of the reagent container 13 to be dispensed read by the reading unit 14e. Based on the transfer length calculated by the height calculator 34a and the reagent liquid amount calculated by the liquid amount calculator 34b, the transfer controller 34c accompanies the transfer of the reagent container 13 to be dispensed stored in the storage unit 34d. By acquiring a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping, and controlling the storage unit 14a at this acquired transfer speed, the reagent container 13 to be dispensed when the reagent suction position P2 is stopped. The shaking of the reagent accommodated in the container can be reduced.
 図1に示される制御機構3の記憶部35(図2にも記憶部が示される)には、自動分析装置1によって実行される処理を制御する制御プログラムがインストールされている。一般に、このような制御プログラムをコンピュータのメモリにインストールすることによって、そのコンピュータを制御機構3(図1。なお、図2では図示されていない)の一部または全部として機能させることが可能である。このような制御プログラムは、コンピュータの出荷前にメモリにインストールされてもよいし、コンピュータの出荷後にメモリにインストールされてもよい。記録媒体に記録されたプログラムを読み出すことによってプログラムをコンピュータのメモリにインストールしてもよいし、インターネット等のネットワーク経由でダウンロードされたプログラムをコンピュータのメモリにインストールしてもよい。コンピュータとしては任意のタイプのコンピュータを使用することが可能である。上記に詳述した図6の全部または一部の機能は、ソフトウェア(例えば、プログラムによって実現されることに限定されない。図5および図6に示される各ステップの機能をハードウェア(例えば、回路、ボード、半導体チップ)によって実現してもよいし、ソフトウェアとハードウェアとの組み合わせによって実現してもよい。 A control program for controlling processing executed by the automatic analyzer 1 is installed in the storage unit 35 (also shown in FIG. 2) of the control mechanism 3 shown in FIG. Generally, by installing such a control program in the memory of a computer, the computer can function as a part or all of the control mechanism 3 (FIG. 1, not shown in FIG. 2). . Such a control program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped. The program may be installed in the computer memory by reading the program recorded in the recording medium, or the program downloaded via a network such as the Internet may be installed in the computer memory. Any type of computer can be used as the computer. 6 described in detail above is not limited to being implemented by software (for example, a program. The functions of each step shown in FIGS. 5 and 6 are implemented by hardware (for example, a circuit, Board, semiconductor chip), or a combination of software and hardware.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and references cited herein should be incorporated by reference in their entirety as if the contents themselves were specifically described herein. Understood.
 本出願は、日本国出願特願2009-154289に対して優先権を主張するものであり、その全体の内容は、具体的に本明細書に記載されているのと同様に本明細書の一部を構成するものとして援用されるべきであることが理解される。 This application claims priority to Japanese Patent Application No. 2009-154289, the entire contents of which are the same as those described in this specification. It should be understood that it should be incorporated as a component.
 以上のように、本発明の分注装置、自動分析装置およびその制御方法は、検体と試薬との反応物を分析する分析装置に有用であり、特に、試薬容器の移送に伴う停止時の試薬の揺れを低減することが要求される分野に適している。 As described above, the dispensing device, the automatic analyzer, and the control method thereof according to the present invention are useful for an analyzer that analyzes a reaction product between a sample and a reagent, and in particular, a reagent at the time of stopping accompanying the transfer of a reagent container It is suitable for the field where it is required to reduce the fluctuation of the vibration.
 1       自動分析装置
 2       測定機構
 3       制御機構
 11      検体移送部
 11a     検体容器
 11b     検体ラック
 12      検体分注機構
 13      試薬容器
 14      試薬庫
 14a     収納部
 14b,15c 駆動部
 14c     本体部
 14d     蓋
 14e     読取部
 14f     窓部
 14g     孔部
 15      試薬分注機構
 15a     分注ノズル
 15b     アーム
 15d     連結部
 15e     液面検知部
 16      攪拌部
 17      測光部
 18      洗浄部
 19      反応槽
 20      反応容器
 31      制御部
 32      入力部
 33      分析部
 34      試薬庫制御部
 34a     移送長さ算出部
 34b     液量算出部
 34c     移送制御部
 34d,35  記憶部
 36      出力部
 P1      検体吸引位置
 P2      試薬吸引位置
 R1      移送速度テーブル
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Measurement mechanism 3 Control mechanism 11 Specimen transfer part 11a Specimen container 11b Specimen rack 12 Specimen dispensing mechanism 13 Reagent container 14 Reagent storage 14a Storage part 14b, 15c Drive part 14c Main part 14d Lid 14e Reading part 14f Window part 14g Hole 15 Reagent dispensing mechanism 15a Dispensing nozzle 15b Arm 15d Connection 15e Liquid level detection unit 16 Stirring unit 17 Photometric unit 18 Washing unit 19 Reaction tank 20 Reaction vessel 31 Control unit 32 Input unit 33 Analysis unit 34 Reagent control Unit 34a transfer length calculation unit 34b liquid amount calculation unit 34c transfer control unit 34d, 35 storage unit 36 output unit P1 specimen suction position P2 reagent suction position R1 transfer speed table

Claims (7)

  1.  検体を分析する自動分析装置であって、
     試薬と前記検体とを反応容器に分注する、液面検知手段を有する分注機構と、
     前記反応容器内で反応した反応液の吸光度を測定する測定手段と、
     前記検体を分析する分析手段と、
     前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、
     前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と、
     前記記憶媒体から前記試薬情報を読み取る読取手段と、
     前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出する移送長さ算出手段と、
     前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出する液量算出手段と、
     前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御する移送制御手段と、を備える自動分析装置。
    An automatic analyzer for analyzing a sample,
    A dispensing mechanism having a liquid level detection means for dispensing the reagent and the sample into a reaction container;
    Measuring means for measuring the absorbance of the reaction solution reacted in the reaction vessel;
    An analysis means for analyzing the specimen;
    A transfer means for storing a plurality of reagent containers containing the reagents and transferring a reagent container to be dispensed to a reagent suction position;
    A storage medium that is provided in each of the reagent containers housed in the transfer means and stores reagent information including the shape of the reagent container and the type of reagent;
    Reading means for reading the reagent information from the storage medium;
    A transfer length calculating means for calculating a transfer length from a storage position of the reagent container to be dispensed in the transfer means to the reagent suction position;
    Based on the height of the liquid level of the reagent contained in the reagent container to be dispensed detected by the liquid level detection means and the reagent information, the amount of the reagent contained in the reagent container to be dispensed is determined. A liquid amount calculating means for calculating;
    When the transfer means transfers the reagent container to be dispensed to the reagent suction position, the reagent container to be dispensed is transferred based on the reagent information, the transfer length, and the amount of the reagent liquid. An automatic analyzer comprising: transfer control means for controlling the transfer means at a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping.
  2. 前記移送速度は、前記分注対象の試薬容器の形状が大きいほど遅い請求項1に記載の自動分析装置。 The automatic analyzer according to claim 1, wherein the transfer speed is slower as the shape of the reagent container to be dispensed is larger.
  3. 前記移送速度は、前記移送長さが短いほど遅い請求項1に記載の自動分析装置。 The automatic analyzer according to claim 1, wherein the transfer speed is slower as the transfer length is shorter.
  4. 前記移送速度は、前記分注対象の試薬容器に収容された試薬の液量が多いほど遅い請求項1に記載の自動分析装置。 The automatic analyzer according to claim 1, wherein the transfer speed is slower as the amount of reagent contained in the reagent container to be dispensed is larger.
  5. 液面検知手段を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置であって、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と備える自動分析装置を制御する方法であって、前記方法は、
     前記記憶媒体から前記試薬情報を読み取るステップと、
     前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出するステップと、
     前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出するステップと、
     前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御するステップと、を包含する方法。
    An automatic analyzer that analyzes a sample by dispensing a reagent and a sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel, A plurality of reagent containers containing the reagent, and a transfer means for transferring a reagent container to be dispensed to a reagent suction position; and a plurality of reagent containers stored in the transfer means, each having a shape of the reagent container and A method of controlling an automatic analyzer equipped with a storage medium storing reagent information including the type of reagent, the method comprising:
    Reading the reagent information from the storage medium;
    Calculating a transfer length from a storage position of the reagent container to be dispensed in the transfer means to the reagent suction position;
    Based on the height of the liquid level of the reagent contained in the reagent container to be dispensed detected by the liquid level detection means and the reagent information, the amount of the reagent contained in the reagent container to be dispensed is determined. A calculating step;
    When the transfer means transfers the reagent container to be dispensed to the reagent suction position, the reagent container to be dispensed is transferred based on the reagent information, the transfer length, and the amount of the reagent liquid. Controlling the transfer means at a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping.
  6. 液面検知手段を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置であって、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と備える自動分析装置において用いられる制御プログラムであって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は
     前記記憶媒体から前記試薬情報を読み取るステップと、
     前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出するステップと、
     前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出するステップと、
     前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御するステップと、を包含する制御プログラム。
    An automatic analyzer that analyzes a sample by dispensing a reagent and a sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel, A plurality of reagent containers containing the reagent, and a transfer means for transferring a reagent container to be dispensed to a reagent suction position; and a plurality of reagent containers stored in the transfer means, each having a shape of the reagent container and A control program used in an automatic analyzer provided with a storage medium storing reagent information including reagent types, the control program for implementing a method for controlling the automatic analyzer, the method Reading the reagent information from the storage medium;
    Calculating a transfer length from a storage position of the reagent container to be dispensed in the transfer means to the reagent suction position;
    Based on the height of the liquid level of the reagent contained in the reagent container to be dispensed detected by the liquid level detection means and the reagent information, the amount of the reagent contained in the reagent container to be dispensed is determined. A calculating step;
    When the transfer means transfers the reagent container to be dispensed to the reagent suction position, the reagent container to be dispensed is transferred based on the reagent information, the transfer length, and the amount of the reagent liquid. And a step of controlling the transfer means at a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping.
  7. 液面検知手段を有する分注機構によって試薬と検体とを反応容器に分注し、前記反応容器内で反応した反応液の吸光度を測定することによって前記検体を分析する自動分析装置であって、前記試薬を収容した試薬容器を複数収納するとともに分注対象の試薬容器を試薬吸引位置まで移送する移送手段と、前記移送手段に複数収納された前記試薬容器それぞれに設けられ、試薬容器の形状および試薬の種類を含む試薬情報を記憶した記憶媒体と備える自動分析装置において用いられる制御プログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は
     前記記憶媒体から前記試薬情報を読み取るステップと、
     前記移送手段における前記分注対象の試薬容器の収納位置から前記試薬吸引位置までの移送長さを算出するステップと、
     前記液面検知手段が検知した前記分注対象の試薬容器に収容された試薬の液面の高さと前記試薬情報とをもとに前記分注対象の試薬容器に収容された試薬の液量を算出するステップと、
     前記移送手段が前記分注対象の試薬容器を前記試薬吸引位置に移送する場合に、前記試薬情報と前記移送長さと前記試薬の液量とに基づいて、前記分注対象の試薬容器の移送に伴う停止時の試薬の揺れを低減させるよう予め設定された移送速度で前記移送手段を制御するステップと、を包含する記録媒体。
    An automatic analyzer that analyzes a sample by dispensing a reagent and a sample into a reaction vessel by a dispensing mechanism having a liquid level detection means, and measuring the absorbance of the reaction solution reacted in the reaction vessel, A plurality of reagent containers containing the reagent, and a transfer means for transferring a reagent container to be dispensed to a reagent suction position; and a plurality of reagent containers stored in the transfer means, each having a shape of the reagent container and A computer-readable recording medium that records a control program used in an automatic analyzer equipped with a storage medium storing reagent information including the type of reagent, and the control program implements a method for controlling the automatic analyzer Reading the reagent information from the storage medium; and
    Calculating a transfer length from a storage position of the reagent container to be dispensed in the transfer means to the reagent suction position;
    Based on the height of the liquid level of the reagent contained in the reagent container to be dispensed detected by the liquid level detection means and the reagent information, the amount of the reagent contained in the reagent container to be dispensed is determined. A calculating step;
    When the transfer means transfers the reagent container to be dispensed to the reagent suction position, the reagent container to be dispensed is transferred based on the reagent information, the transfer length, and the amount of the reagent liquid. And a step of controlling the transfer means at a preset transfer speed so as to reduce the shaking of the reagent at the time of stopping.
PCT/JP2010/004217 2009-06-29 2010-06-24 Automatic analysis device WO2011001645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-154289 2009-06-29
JP2009154289A JP2011007760A (en) 2009-06-29 2009-06-29 Automatic analyzer

Publications (1)

Publication Number Publication Date
WO2011001645A1 true WO2011001645A1 (en) 2011-01-06

Family

ID=43410733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004217 WO2011001645A1 (en) 2009-06-29 2010-06-24 Automatic analysis device

Country Status (2)

Country Link
JP (1) JP2011007760A (en)
WO (1) WO2011001645A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119328A (en) * 2012-12-17 2014-06-30 Hitachi High-Technologies Corp Reagent storage box and automatic analyzer including reagent storage box
JP2015017912A (en) * 2013-07-11 2015-01-29 株式会社日立ハイテクノロジーズ Automatic analyzer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409564B2 (en) * 2010-09-16 2014-02-05 株式会社日立ハイテクノロジーズ Automatic analyzer
US9744102B2 (en) 2012-12-10 2017-08-29 Nipro Corporation Connection device
JP6004398B2 (en) * 2012-12-19 2016-10-05 株式会社日立ハイテクノロジーズ Automatic analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048801A (en) * 2000-07-31 2002-02-15 Olympus Optical Co Ltd Autoanalyzer
JP2005083777A (en) * 2003-09-05 2005-03-31 Hitachi High-Technologies Corp Analyzer and reagent container
JP3120179U (en) * 2006-01-11 2006-03-23 株式会社日立ハイテクノロジーズ Automatic analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048801A (en) * 2000-07-31 2002-02-15 Olympus Optical Co Ltd Autoanalyzer
JP2005083777A (en) * 2003-09-05 2005-03-31 Hitachi High-Technologies Corp Analyzer and reagent container
JP3120179U (en) * 2006-01-11 2006-03-23 株式会社日立ハイテクノロジーズ Automatic analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119328A (en) * 2012-12-17 2014-06-30 Hitachi High-Technologies Corp Reagent storage box and automatic analyzer including reagent storage box
JP2015017912A (en) * 2013-07-11 2015-01-29 株式会社日立ハイテクノロジーズ Automatic analyzer

Also Published As

Publication number Publication date
JP2011007760A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP2018077230A (en) Automatic analyzer
JP5850625B2 (en) Analysis apparatus and position confirmation method
JP4812352B2 (en) Automatic analyzer and its dispensing method
WO2011001645A1 (en) Automatic analysis device
JP2009180605A (en) Dispensing device
CN109725166B (en) Calibration line Generation method and automatic analyzer
JP4891749B2 (en) Automatic analyzer
JP2008224245A (en) Washer and autoanalyzer
JP2009121993A (en) Automatic analyzing apparatus
JP2009085616A (en) Automatic analyzer, and dispensation control method of liquid sample in automatic analyzer
JP5839987B2 (en) Automatic analyzer
WO2010035532A1 (en) Stirrer, method for stirring, and automatic analyzer
JP2011227092A (en) Automatic analyzing apparatus
JP6791690B2 (en) Automatic analyzer
JP2010217047A (en) Automatic analysis device and its specimen carrying method thereof
JP5738696B2 (en) Biochemical analyzer
JP2010276547A (en) Dispensing device, analyzer, and dispensation control method of the dispensing device
JP7054616B2 (en) Automatic analyzer
JP6249653B2 (en) Automatic analyzer
WO2021134610A1 (en) Sample analysis device and sample analysis method
JP2007316011A (en) Dispensing device and analyzer
JP6850155B2 (en) Automatic analyzer
JP6004398B2 (en) Automatic analyzer
JP2010117176A (en) Analyzer and dispensation controlling method therefor
JP6611569B2 (en) Automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793819

Country of ref document: EP

Kind code of ref document: A1