WO2011001475A1 - 方向性結合器 - Google Patents
方向性結合器 Download PDFInfo
- Publication number
- WO2011001475A1 WO2011001475A1 PCT/JP2009/003095 JP2009003095W WO2011001475A1 WO 2011001475 A1 WO2011001475 A1 WO 2011001475A1 JP 2009003095 W JP2009003095 W JP 2009003095W WO 2011001475 A1 WO2011001475 A1 WO 2011001475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- signal
- shift
- phase shifter
- input
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
Definitions
- the present invention relates to a directional coupler.
- Circulators, duplexers, directional couplers, etc. are used to separate the transmit and receive signals.
- a general directional coupler is composed of a phase shifter that shifts the phase of a signal by ⁇ / 2, and a passive element with high impedance such as a capacitor or a resistor.
- the transmission wave coming from the transmitter to the receiver is branched into two, and the phase is shifted through ⁇ / 2 by the phase shifter and the phase not shifted through the receiver, respectively. It is removed by being added by the side.
- the loss amount of the transmission wave varies depending on the path. If the loss amount of the transmission wave is different, there is a difference in the amplitude of the transmission wave depending on the route through which there is a problem, and there is a problem that the transmission wave can not be completely removed even if the transmission waves are combined.
- the present invention has been made to solve this problem, and it is an object of the present invention to provide a directional coupler with high isolation performance and high suppression of transmission wave wraparound with high accuracy.
- an input terminal to which a first input signal is input, and a first output signal obtained by converting the first input signal are output, and an input and output to which a second input signal is input
- a directional coupler comprising a terminal and an output terminal for outputting a second output signal obtained by converting the second input signal, wherein the phase of the first input signal is phase shifted by a first shift amount, A first phase shifter for obtaining a first phase shift signal, a second phase shifter for obtaining a second phase shift signal by shifting the phase of the first input signal by a second shift amount, and the first phase shift signal Phase-shifting the phase shift signal by a 1-1 shift amount to obtain a 1-1 phase shift signal, and the 1st phase shift signal shifts a phase 1-2 shift amount, and A 1-2 phase shifter for obtaining a phase shift signal, and a phase 2-1 phase shift of the phase of the second phase shift signal, and a phase 2-2 which is in phase with the phase of the 1-1 phase shift signal.
- a 2-1 phase shifter for obtaining a single phase shift signal, and a phase shift of the second phase shift signal with a 2-2 phase shift And a 2-2 phase shifter for obtaining a 2-2 phase shift signal which is phase-shifted and in anti-phase with that of the 1-2 phase shift signal;
- the phase of the second input signal is phase shifted by a 1-1 shift amount to obtain a third phase shift signal
- the 2-1 phase shifter further shifts the phase of the second input signal to a 2-1 shift amount
- a phase shift is performed to obtain a fourth phase shift signal
- the 1-2 phase shifter further phase shifts the phase of the third phase shift signal by a 1-2 shift amount to obtain a 3-1 phase shift signal.
- the 2-2 phase shifter further shifts the phase of the fourth phase shift signal by a 2-2 shift amount, and the 4-1 phase shift is in phase with the phase of the 3-1 phase shift signal.
- a directional coupler is provided, characterized in that a signal is obtained and the second output signal is synthesized from the (3-1) phase shift signal and the (4-1) phase shift signal.
- FIG. 6 is a diagram for explaining the operation of the directional coupler 1.
- FIG. 6 is a diagram for explaining the operation of the directional coupler 1.
- FIG. 6 is a diagram for explaining the operation of the directional coupler 1.
- FIG. 8 is a view showing a modified example 1 of the directional coupler 1 according to the first embodiment.
- the figure which shows the directional coupler 3 which concerns on 2nd Embodiment.
- the figure which shows the directional coupler 4 which concerns on 2nd Embodiment.
- the figure which shows the directional coupler 5 which concerns on 3rd Embodiment.
- the figure which shows the modification of the directional coupler 7 which concerns on 4th Embodiment. 7 is a graph showing the characteristics of the directional coupler 7;
- (a) is a figure which shows an example of a voltage-current converter
- (b) is a figure which shows an example of an impedance converter.
- FIG. 1 is a view showing the configuration of a directional coupler 1 according to a first embodiment of the present invention.
- the directional coupler 1 of FIG. 1 outputs a first output signal S12 obtained from the first input signal S11 input from the input terminal 101 from the input / output terminal 102, and a second input input from the input / output terminal 102.
- the second output signal S22 obtained from the signal S21 is output from the output terminal 103.
- the directional coupler 1 shifts the phase of the first input signal S11 by the first shift amount to obtain the first phase shift signal S110, and the second phase shift of the phase of the first input signal S11
- a second phase shifter 120 for obtaining a second phase shift signal S120 by phase shift, and a first phase shift signal S111 for obtaining a first phase shift signal S111
- -1 phase shifter 111, a first 1-2 phase shifter 112 which phase-shifts the first phase shift signal S110 by a 1-2 shift amount to obtain a 1-2 phase shift signal S112, and a second phase shift signal
- a second 2-1 phase shifter 121 for phase shifting the phase of S120 by a 2-1 shift amount to obtain a 2-1 phase shift signal S121 that is in phase with the phase of the 1-1 phase shift signal S111
- the phase shift signal S120 is phase-shifted by the shift amount 2-2 to obtain the phase shift signal S122 which is the reverse phase of the phase shift signal S112.
- the first output signal S12 is a signal obtained by
- the 1-1st phase shifter 111 shifts the phase of the second input signal S21 by the 1-1st shift amount to obtain a third phase shift signal S230.
- the 2-1 phase shifter 121 shifts the phase of the second input signal S 21 by the 2-1 shift amount to obtain a fourth phase shift signal S 240.
- the 1-2nd phase shifter 112 shifts the phase of the third phase shift signal S230 by the 1-2nd shift amount to obtain the 3-1st phase shift signal S231.
- the 2-2 phase shifter 122 shifts the phase of the fourth phase shift signal S240 by 2-2 phase shift amount, and is the 4-1 phase shift signal which is in phase with the phase of the 3-1 phase shift signal S231. Get S241.
- the second output signal S22 is a signal obtained by combining the 3-1st phase shift signal S231 and the 4th-1 phase shift signal S241.
- one end is connected to the first phase shifter 110 connected to the input terminal 101, one end is connected to the first phase shifter 110, and the other end is connected to the input / output terminal 102
- a 2-2 phase shifter 122 whose other end is connected to the output terminal 103.
- the first phase shifter 110 when simply referred to as a phase shifter, the first phase shifter 110, the 1-1 phase shifter 111, the 1-2 phase shifter 112, the second phase shifter 120, the 2-1 phase shifter It indicates all of the phase shifter 121 and the second and second phase shifters 122.
- the difference between the first shift amount of the first phase shifter 110 and the second shift amount of the second phase shifter 120 is 90 degrees.
- the difference between the 1-1 shift amount of the 1-1 phase shifter 111 and the 2-1 shift amount of the 2-1 phase shifter 121 is 90 degrees.
- the difference between the 1-2nd shift amount of the 1-2 phase shifter 112 and the 2-2 shift amount of the 2-2 phase shifter 122 is 90 degrees.
- the difference between the first shift amount of the first phase shifter 110 and the 1-1 shift amount of the 1-1 phase shifter 111 is 90 degrees.
- the first shift amount of the first phase shifter 110 and the 1-2nd shift amount of the 1-2nd phase shifter 112 have the same value.
- the first shift amount is “0” degree
- the second shift amount is “90” degree
- the 1-1st shift amount is “90” degree
- the 2-1st shift amount is “0” degree
- the first shift amount is “0” degree
- the second shift amount is “90” degree
- the 2-2 shift amount is "90” degree.
- the shift amount of “0” means that the phase is not phase shifted, which means that the phase of the signal input to the phase shifter is the same as the phase of the output signal.
- phase shifter 110 used in the directional coupler 1 will be described with reference to FIG.
- the first phase shifter 110 will be described here because any phase shifter can be configured similarly.
- the first phase shifter 110 shown in FIG. 2 has a first inductor element 116 whose one end (terminal A) is connected to the input terminal 101, one end is connected to the first inductor element 116, and the other end (terminal B) is 1-1, a second inductor element 117 connected to the phase shifter 111 and the 1-2 phase shifter 112, and a capacitor element 118 whose one end is connected to the other end of the first inductor element and whose other end is grounded Equipped with By setting the inductance L of the first and second inductor elements 116 and 117 and the capacitance C of the capacitor element 118 to an appropriate value, the first phase shifter 110 shifts the phase of the signal passing from the terminal A to the terminal B by the first Phase shift.
- first shift amount "45” degree
- second shift amount "-45” degree
- 1-1 shift amount "-45” degree
- the 1-2nd shift amount “45” degree
- the 2-2 shift amount “ ⁇ 45” degree.
- FIG. 3 is a diagram for explaining the operation of the directional coupler 1.
- the first and second phase shifters 112 and 122 unnecessary for the description are omitted.
- the path of the signal passing through the first phase shifter 110 and the 1-1st phase shifter 111 is called a path P1-1.
- the path of the signal passing through the second phase shifter 120 and the 2-1 phase shifter 121 is referred to as a path P1-2.
- the (1-1) th phase shift signal S111 and the (2-1) th phase shift signal S121 are synthesized to generate a first output signal S12, which is output from the input / output terminal 102.
- the path of signals passing through the first phase shifter 110 and the first and second phase shifters 112 is referred to as a path P2-1.
- the first input signal S11 is also input to the second phase shifter 120.
- the path of the signal passing through the second phase shifter 120 and the second phase shifter 122 is referred to as a path P2-2.
- the output terminal 103 outputs a signal obtained by combining the 1-2 phase shift signal S112 and the 2-2 phase shift signal S122, but the 1-2 phase shift signal S112 and the 2-2 phase shift signal Since the phase difference with S122 is 180 degrees and cancels each other out, no signal is output from the output terminal 103.
- the first and second phase shifters 110 and 120 unnecessary for the description are omitted.
- the phase signal S230 is obtained.
- the second input signal S21 is also input to the 2-1 phase shifter 121.
- the third phase shift signal S 231 and the fourth phase shift signal S 241 are combined to generate a second output signal S 22, which is output from the output terminal 103.
- the signal passes through the path P2-1 because it passes through the two phase shifters regardless of which of the path P2-1 and the path P2-2 passes.
- the amount of signal loss and the amount of signal loss through the path P2-2 are the same. Therefore, the amplitude of the 1-2nd phase shift signal S112 passed through the path P2-1 and the amplitude of the 2nd phase shift signal S122 passed through the path P2-2 can be equalized.
- the phase signal S112 and the 2-2nd phase shift signal S122 can cancel each other with high accuracy.
- the delay characteristic of the signal passing through path P2-1 and the signal passing through path P2-2 pass through two phase shifters, whichever passes through either path P2-1 or path P2-2. The delay characteristics are the same.
- the amplitude of the 1-2nd phase shift signal S112 that has passed through the path P2-1 and the phase of the 2nd phase shift signal S122 that has passed through the path P2-2 can be reversed in phase with the wide band.
- the -2 phase shift signal S112 and the 2nd-2 phase shift signal S122 can cancel each other in a wide band.
- the wraparound from the input terminal 101 to the output terminal 103 can be suppressed with high accuracy.
- the first input signal S11 input to the directional coupler 1 passes through two phase shifters regardless of which of the path P1-1 and the path P1-2 passes. Therefore, the phase ⁇ and the amplitude of the 1-1st phase shift signal S111 passed through the path P1-1 become equal to the phase ⁇ and the amplitude of the 2-1 phase shift signal S121 passed through the path P1-2. Since the phases and amplitudes of the 1-1st phase shift signal S111 and the 2-1 phase shift signal S121 are equal, a first output signal obtained by combining the 1-1 phase shift signal S111 and the 2-1 phase shift signal S121 The amplitude of S12 also increases.
- the wraparound of the signal from the input terminal 101 to the output terminal 103 is accurately suppressed in a wide band, and a large signal is output from the input terminal 101 to the input / output terminal 102 And the isolation performance can be improved.
- FIG. 6 (Modification 1) In FIG. 6, the modification 1 of the directional coupler 1 which concerns on 1st Embodiment is shown.
- the directional coupler 2 shown in FIG. 6 is provided between the input terminal 101 and the first phase shifter 110 and the second phase shifter 120 in addition to the configuration of the directional coupler 1 shown in FIG.
- a second divider / combiner 131 provided between the first divider / combiner 130, the input / output terminal 102, and the 1-1st phase shifter 111 and the 2-1 phase shifter 121, an output terminal 103, and And a third divider / combiner 132 provided between the (1-2) phase shifter 112 and the (2--2) phase shifter 122.
- the distributor / combiners 130, 131, 132 may use, for example, Wilkinson type or branch line type distributor / combiners.
- FIG. 7 shows a modification 2 of the directional coupler according to the first embodiment.
- the impedance of the output has a higher value than the impedance seen from the input / output terminal 102 and the output terminal 103. It further comprises a first element 140 and a second element.
- the first element 140 is provided between the first phase shifter 110 and the 1-1st phase shifter 111 and the 1-2nd phase shifter 112. Further, the second element 141 is provided between the second phase shifter 120 and the (2-1) th phase shifter and the (2-2) th phase shifter 122.
- the first and second elements 140 and 141 are elements whose output impedance is higher than the impedance seen from the input / output terminal 102 and the output terminal 103.
- an element such as an amplifier, an impedance converter, or a capacitor may be used. .
- first element 140 may be provided between the input terminal 101 and the first phase shifter 110, and the second element 141 includes the input terminal 101, the first phase shifter 110, and the second phase shifter 120. It may be provided between
- the directional coupler 4 according to the second embodiment is different in that a variable phase shifter is provided instead of the phase shifter of the directional coupler 1 shown in FIG. 1.
- the first and second variable phase shifters 210 and 220, the first 1-1 and 1-2 variable phase shifters 211 and 212, and the second 2-1 and 2-2 variable phase shifters 221 and 222 are all variable phase shifted at one end. It is called a container.
- the directional coupler 3 shown in FIG. 8 has the first and second variable phase shifters 210 and 220 instead of the first and second phase shifters 110 and 120, and the first and second variable phase shifters 111 and 112 instead of the first and second phase shifters 111 and 112.
- the second and third variable phase shifters 221 and 222 are provided in place of the first and second phase shifters 121 and 122, respectively.
- the directional coupler 4 detects the phase of the signal output from the output terminal 103, and, based on the phase, a detector 231 that determines an adjustment amount of at least one shift amount of each variable phase shifter;
- the control unit 232 further controls a shift amount of at least one of the variable phase shifters based on the shift amount adjustment amount determined by the detector 119.
- the first variable phase shifter 210 is connected in series to the plurality of first inductor elements 116-1 to 116-n connected in parallel and each first inductor element 116-1 to 116-n, and each is connected in parallel Of a plurality of second inductor elements 117-1 to 117-n connected to one end, a plurality of first inductor elements 116-1 to 116-n at one end, and a plurality of second inductor elements 117-1 to 117-n at one end
- a third selector 242 for selecting at least one of the plurality of second induct
- the first selector 240 also includes switches SW-11 and SW-21 inserted between the terminal A and the first inductor elements 116-1 and 116-2.
- the second selector 241 includes switches SW-12 and 22 inserted between the terminal B and the respective second inductor elements 117-1 and 117-2.
- the third selector 242 includes switches SW31 and SW32 inserted between the first inductor element 116- and the second inductor element 117 and the capacitor elements 118-1 and 118-3.
- the control unit 232 controls the shift amount of the first variable phase shifter 210 by switching on and off of the switches SW-11 to SW32 described above.
- the first input signal S11 input to the terminal A of the first variable phase shifter 210 is shifted in phase by the shift amount and output from the terminal B.
- the other variable phase shifters have the same configuration as that of the first variable phase shifter 210, and therefore the description thereof is omitted.
- the first input signal input from the input terminal 101 is converted to the first output signal. And output from the input / output terminal 102 but not from the output terminal 103.
- the resistance value of each element changes depending on the environment, and the phase and amplitude of the signal change according to the first and second input signals S11 and S21, etc. Even if determined in advance, the phase difference between the first and second phase shift signals S112 and S122 may not be 180 degrees.
- the detector 231 detects the phase of the signal output from the output terminal 103.
- the detector 231 determines the phase shift of the signal output from the output terminal 103 as the adjustment amount of the shift amount adjusted by each variable phase shifter. For example, the detector 231 determines the adjustment amount of the shift amount as “+ ⁇ ” when the phase of the signal is advanced by ⁇ degrees, and “ ⁇ ” when it is delayed by ⁇ degrees.
- the control unit 232 controls each variable phase shifter based on the adjustment amount of the shift amount notified from the detector 231. For example, when the adjustment amount of the phase is “+ ⁇ ”, the control unit 232 controls so that the shift amount in each variable phase shifter decreases by ⁇ . Specifically, the shift amount of the first input signal S11 shifted by the first variable phase shifter 210 may be reduced by ⁇ , and the shift amount of the first input signal S11 shifted by the second variable phase shifter 220 It may be reduced by ⁇ . Although the shift amounts of other variable phase shifters may be controlled, in any case, the control unit 120 controls the phase shift of the phase shift signal S112 before the phase shift of the phase shift signal S112 is controlled. Control is performed so as to be shifted by "-.alpha. Degrees" relative to the phase of the signal S122.
- the directional coupler 4 according to the second embodiment can obtain the same effect as that of the first embodiment, and detect the phase of the signal output from the output terminal 103, according to the detection result.
- the variable phase shifters By controlling the variable phase shifters, it is possible to accurately suppress the wraparound of the first input signal S11 to the output terminal 103. For example, even if the adjustment amount of the shift amount of each signal of the directional coupler 3 changes due to a manufacturing error of the directional coupler 3 or a change in the use environment, etc., the first input signal S11 wraps around to the output terminal 103. It can be accurately suppressed.
- control unit 232 controls all of the two variable phase shifters, but at least one variable phase shifter may be controlled.
- the directional coupler 4 can suppress the wraparound of the first input signal S11 to the output terminal 103 more accurately than in the case where no control is performed at all. .
- the directional coupler 5 according to the third embodiment will be described with reference to FIG.
- the directional coupler 5 shown in FIG. 10 includes, in addition to the directional coupler 1 shown in FIG. 1, the first phase shifter 110, the 1-1st phase shifter 111, and the 1-2nd phase shifter 112.
- the capacitance values of the first and second capacitors 401 and 402 are set such that the impedance seen from the input terminal 101 has a higher value than the impedance seen from the input / output terminal 102 and the output terminal 103.
- the first phase shift signal S110 output from the first phase shifter 110 is less likely to be input to the 1-2nd phase shifter 112.
- the second phase shift signal S120 output from the second phase shifter 120 is less likely to be input to the 2-2 phase shifter 122.
- the first input signal S11 input from the input terminal 101 is less likely to get around the output terminal 103.
- the directional coupler 5 according to the third embodiment can obtain the same effect as that of the directional coupler 1 according to the first embodiment, and can be input by providing the first and second capacitors 401 and 402. It becomes difficult for the first input signal S11 input from the terminal 101 to wrap around to the output terminal 103.
- the first input signal S11 is prevented from coming into the output terminal 103 with only the phase shifter, but in the present embodiment, the first and second capacitors 401 and 402 are further provided. Thus, it is possible to prevent the first input signal S11 from getting into the output terminal 103.
- the first capacitor 401 is interposed between the first phase shifter 110 and the 1-2nd phase shifter 112, and the second capacitor 120 is placed between the second phase shifter 120 and the 2-2 phase shifter 122.
- the second capacitor 402 is provided in each of the first and second phase shifters 112 and 112, respectively, between the output terminal 103 and the second phase shifter 122.
- the second capacitor 402 may be provided on the Alternatively, a capacitor may be provided between the output terminal 103 and the 1-2nd phase shifter 112 and the 2-2nd phase shifter 122. In this case, the number of capacitors can be one.
- the directional coupler 1 of FIG. 1 is provided with a capacitor in the present embodiment, even if directional couplers 2 to 4 shown in the modified examples 1 and 2 and the second embodiment are provided with a capacitor in the same manner. Good.
- FIG. 11 shows a directional coupler 6 according to a fourth embodiment.
- the directional coupler 6 is provided with first and second amplifiers 501 and 502 instead of the first and second capacitors 401 and 402 of the directional coupler 5 according to the third embodiment.
- the directional coupler 5 shown in FIG. 11 is provided between a first amplifier 501 provided between the input terminal 101 and the first phase shifter 110, and between the input terminal 101 and the second phase shifter 120. And a two amplifier 502.
- the first and second amplifiers 501 and 502 amplify the first input signal S11 and output the amplified first input signal S11 to the first and second phase shifters 110 and 120.
- the directional coupler 6 according to the fourth embodiment obtains the same effect as the directional coupler 5 according to the third embodiment, and amplifies and outputs the first input signal S11. It becomes possible. Therefore, it is not necessary to provide an amplification means such as a power amplifier at the front stage of the directional coupler 5, or an amplification means having a small gain can be provided.
- the directional coupler 6 is also between the first phase shifter 110 and the 1-1, 1-2 phase shifters 111 and 112, similarly to the directional coupler 5 shown in FIG.
- the amplifier 501 may be provided between the second phase shifter 120 and the 2-1 and 2-2 phase shifters 121 and 122.
- the amplifiers 501 and 502 as shown in FIG. 11, it is possible to provide a matching circuit (not shown) in the previous stage of the amplifiers 501 and 502, and the gains of the amplifiers 501 and 502 can be increased.
- FIG. 12 shows a modification 3 according to the present embodiment.
- the directional coupler 7 according to the third modification differs from the directional coupler 6 in FIG. 11 in that the positions of the wiring and the input / output terminal 102 are changed.
- the input / output terminal 102 of the directional coupler 7 shown in FIG. 12 includes a 1-1 phase shifter 111, a 1-2 phase shifter 112, a 2-1 phase shifter 121, and a 2-2 phase shift. It is provided inside a closed path surrounded by a wire connecting the devices 122.
- the wiring connecting the 2-1 phase shifter 121 and the 2-2 phase shifter 122 overlaps the wiring connecting the first phase shifter 110 and the 1-1, 1-2 phase shifters 111 and 112. There is no such thing (see FIG. 11). If a circuit diagram is designed such that a wire overlaps another wire, a loss will occur at the point where the wires overlap. Input / output inside the closed path surrounded by the wiring connecting the 1st-1 phase shifter 111, the 1st-2 phase shifter 112, the 2nd 2-1 phase shifter 121, and the 2nd-2 phase shifter 122 By providing the terminal 102, it is possible to suppress a signal loss generated due to overlapping of the wirings. FIG.
- the input / output terminal 102 may be provided inside the closed path surrounded by the wiring connecting the -1 phase shifter 121 and the second-2 phase shifter 122.
- FIG. 13 is a graph showing the characteristics of the directional coupler 7.
- the horizontal axis of the graph of FIG. 13 indicates the frequency of the first and second input signals S11 and S21, and the vertical axis indicates the output gain at each of the terminals 101 to 103.
- the ratio (gain of the first input signal) of the first output signal S12 obtained from the input / output terminal 102 to the first input signal S11 obtained when the first input signal S11 is input to the input terminal 101 is indicated by an alternate long and short dash line. There is.
- a ratio (round-around) between a signal obtained from the output terminal 103 and the first input signal is indicated by a two-dot chain line.
- the ratio (gain of the second input signal) of the second output signal S22 obtained from the output terminal 103 to the second input signal S21 obtained when the second input signal S21 is input to the input / output terminal 102 is indicated by a solid line.
- the desired frequency is the operating frequency of the directional coupler 6 according to this modification, and as described later, when the directional coupler 7 is mounted on a wireless device, the wireless device uses it for transmitting and receiving signals. Frequency.
- the wraparound at the desired frequency is sharply reduced, and the first input signal is hardly output to the output terminal 103 at the desired frequency. Recognize. Also, the gain of the second input signal hardly changes with the frequency. This indicates that the second input signal S21 input to the input / output terminal 102 is output from the output terminal 103 with almost no loss in the directional coupler 6.
- FIG. 14 shows a directional coupler 8 according to the present embodiment.
- the gate terminal is connected to the input terminal 101 via the matching circuit 701, and the drain terminal is connected to the first and second phase shifters 110 and 120.
- Voltage-current converter 702 that converts the first input signal S11, which is a voltage signal, into a first input signal S11, which is a current signal, and the first phase shifter 110 has a source terminal.
- the drain terminal is connected to the 1-1, 1-2 phase shifters 111, 112, and the impedance as viewed from the first phase shifter 110 is 1-1, the first gate grounded type MOS transistor M2.
- the first impedance converter 703 which is higher than the impedance viewed from the 1-2 phase shifters 111 and 112, the source terminal is connected to the first phase shifter 110, and the drain terminals are for the 2-1 and 2-2 phase shifters 121 and 122.
- the second gate grounded MOS transistor M2 is connected, and the impedance viewed from the first phase shifter 110 is from the 2-1, 2-2 phase shifters 121, 122.
- a second impedance converter 704, higher than the impedance further comprises a.
- Matching circuit 701 matches the voltage-current converter 702 with a circuit (not shown) connected to input terminal 101 such as a transmitter circuit. Therefore, the first input signal S11 input to the input terminal 101 is input to the voltage-current converter 702 with high efficiency.
- the matching circuit 701 may be omitted.
- FIG. 15A shows an example of the voltage-current converter 702.
- the voltage-current converter 702 includes a source-grounded MOS transistor M1 to which the first input signal S11 is applied to the gate terminal through the matching circuit 701. That is, the source terminal of the MOS transistor M1 of the voltage-current converter 702 is grounded, the gate terminal is connected to the input terminal 101 via the matching circuit 701, and the drain terminal is connected to the first and second phase shifters 110 and 120.
- the voltage-current converter 702 converts the first input signal S11, which is a voltage signal input from the input terminal 101, into a first input signal S11, which is a current signal, and outputs the first input signal S11 from the drain terminal.
- FIG. 15 (b) is a diagram showing an example of the first impedance converter 703.
- the first impedance converter 703 includes a first gate-grounded MOS transistor M2.
- the source terminal of the MOS transistor M2 is connected to the first phase shifter 110, and the drain terminal is connected to the first and second phase shifters 110 and 120.
- a predetermined voltage (Vbias) is applied to the gate terminal of the MOS transistor M2.
- the MOS transistor M2 constitutes a cascode amplifier together with the MOS transistor M1 included in the current-voltage converter 702, and the first phase shift signal input to the source terminal according to a predetermined voltage value applied to the gate terminal
- the amplitude of S111 is amplified and output from the drain terminal.
- the gate-grounded MOS transistor M2 is characterized in that the output impedance is larger than the input impedance. Therefore, the gate-grounded MOS transistor M2 efficiently outputs the signal input from the source terminal from the drain terminal, but hardly outputs the signal input from the drain terminal from the source terminal.
- the directional coupler 8 provides the same effects as those of the fourth embodiment, and also allows the first and second phase shifters 110 and 120 and the phase shifts of the 1-1 and 2-2.
- the influence of parasitic capacitance generated at the phase shifter output can be reduced. This is because when the current-voltage converter 702 and the first and second impedance converters 703 and 704 are directly connected, a parasitic capacitance is generated at the phase shifter output, and the first input signal S11 flows in this parasitic capacitance. I'll come back.
- the first and second gate grounded MOS transistors M2 are disposed between the first and second phase shifters 110 and 120 and the first and second phase shifters 111 and 122. , And the current-voltage converter 702 and the first and second impedance converters 703 and 704 are not directly connected. This can suppress the loss of the first input signal S11 due to parasitic capacitance.
- FIG. 16 is a diagram showing an application example when the directional coupler 7 shown in FIG. 12 is mounted on the wireless device 800. As shown in FIG.
- the transmission circuit 801, an oscillator 802 that outputs an oscillation signal according to a digital signal output from the transmission circuit 801, and an oscillation signal of the oscillator 802 are input as a first input signal S11, and a first output signal
- a low noise amplifier 804 connected to the output terminal 103 for amplifying the second output signal S22 to obtain an amplified signal, a frequency converter 805 for converting the frequency of the amplified signal to obtain a baseband signal, and a baseband signal And a reception circuit 806 that performs reception processing.
- the transmission circuit 801 outputs a digital signal of “0” or “1”.
- the oscillator 802 outputs an oscillation signal while the digital signal is "1". This connects between the oscillator 802 and the input terminal 101 of the directional coupler 6 of FIG. 11 with a switch (not shown), turns on the switch when the digital signal is “1”, “0” It can be realized by turning off the switch.
- the oscillation signal is input to the transmission / reception antenna 803 via the directional coupler 6 and transmitted.
- the transmit / receive antenna 803 inputs the received signal to the low noise amplifier 804 via the directional coupler 6.
- the low noise amplifier 804 amplifies the received signal to obtain an amplified signal.
- the amplified signal is multiplied by the oscillation signal output from the oscillator 802 in the frequency converter 805 and converted into a baseband signal.
- the baseband signal is subjected to demodulation processing, digital signal processing, and the like in the reception circuit 806 to be a data signal.
- the frequency at which the oscillator 802 oscillates is the operating frequency of the directional coupler 6 and corresponds to the desired frequency in FIG.
- the oscillation signal is transmitted from the transmission / reception antenna 803 without being input to the reception circuit 806.
- the reception signal is not input to the transmission circuit 801.
- the directional coupler 6 shown in FIG. 12 a highly efficient wireless device 800 with small reflection loss can be realized.
- the sixth embodiment shows an application example of the directional coupler 7, the directional couplers shown in the first to fifth embodiments and the modifications 1 to 3 and directional coupling combining these embodiments are described. Can be applied to wireless devices as well.
- the present invention is not limited to one that transmits an oscillation signal as in the wireless device 800 to which the directional coupler 7 shown in FIG. 12 is applied, and any wireless device that shares an antenna for transmission and reception can be applied.
- the present invention is not limited to the above embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
- various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.
Landscapes
- Amplifiers (AREA)
Abstract
入力端子から入力される第1入力信号から得た第1出力信号を入出力端子から出力し、前記入出力端子から入力される第2入力信号から得た第2出力信号を出力端子から出力する方向性結合器であって、一端が前記入力端子に接続された第1移相器と、一端が前記第1移相器に接続され他端が前記入出力端子に接続された第1-1移相器と、一端が前記第1移相器に接続され他端が前記出力端子に接続された第1-2移相器と、一端が前記入力端子に接続された第2移相器と、一端が前記第2移相器に接続され他端が前記入出力端子に接続された第2-1移相器と、一端が前記第2移相器に接続され他端が前記出力端子に接続された第2-2移相器122と、を備えていることを特徴とする方向性結合器を提供する。
Description
本発明は、方向性結合器に関する。
ひとつのアンテナを送受両方に利用する無線装置では、送信信号が受信側に回り込む自己干渉のために受信感度が劣化する課題がある。送受信号を分離するために、サーキュレータ、デュプレクサ、方向性結合器などが用いられている。
一般的な方向性結合器は、例えば、非特許文献1に示すように、信号の位相をπ/2シフトさせる移相器と、キャパシタや抵抗といったインピーダンスの高い受動素子とで構成されている。
J.-W. Jung, et al., IEEE Electronics Letters, vol. 43, No.13, pp.719-720(2007).
上述した方向性結合器では、送信部から受信部へ回り込む送信波は2分岐され、位相が移相器でπ/2シフトされる経路と、位相がシフトされない経路とをそれぞれ経由し、受信部側で足し合わされることで除去される。しかしながら、経路によって通過する素子が異なる(移相器を通過するか否かが異なる)ため、経路によって送信波の損失量が異なってしまう。送信波の損失量が異なると経由した経路によって送信波の振幅に差が生じ、送信波を合成しても送信波を完全に除去できないという問題がある。
本発明は、この問題を解決するためになされたものであり、送信波の回り込みを広帯域に高精度に抑制できアイソレーション性能が高い方向性結合器を提供することを目的とする。
本発明の一観点によると、第1入力信号が入力される入力端子と、該第1入力信号を変換して得られる第1出力信号を出力し、かつ第2入力信号が入力される入出力端子と、該第2入力信号を変換して得られる第2出力信号を出力する出力端子とを有する方向性結合器であって、前記第1入力信号の位相を第1シフト量移相し、第1移相信号を得る第1移相器と、前記第1入力信号の位相を第2シフト量移相し、第2移相信号を得る第2移相器と、前記第1移相信号を第1-1シフト量移相し、第1-1移相信号を得る第1-1移相器と、前記第1移相信号を第1-2シフト量移相し、第1-2移相信号を得る第1-2移相器と、前記第2移相信号の位相を第2-1シフト量移相し、前記第1-1移相信号の位相と同相である第2-1移相信号を得る第2-1移相器と、前記第2移相信号の位相を第2-2シフト量移相し、前記第1-2移相信号の位相と逆相である第2-2移相信号を得る第2-2移相器と、を有し、前記第1出力信号を前記第1-1移相信号と前記第2-1移相信号とから合成し、前記第1-2移相信号と前記第2-2移相信号を合成し、前記第1-1移相器はさらに前記第2入力信号の位相を第1-1シフト量移相し、第3移相信号を得、前記第2-1移相器はさらに前記第2入力信号の位相を第2-1シフト量移相し、第4移相信号を得、前記第1-2移相器はさらに前記第3移相信号の位相を第1-2シフト量移相し、第3-1移相信号を得、前記第2-2移相器はさらに前記第4移相信号の位相を第2-2シフト量移相し、前記第3-1移相信号の位相と同相である第4-1移相信号を得、前記第2出力信号を前記第3-1移相信号と前記第4-1移相信号とから合成すること、を特徴とする方向性結合器を提供する。
本発明によれば、送信波の回り込みを広帯域に高精度に抑制できアイソレーション性能が高い方向性結合器を提供することができる。
以下、図面を参照し本発明の実施の形態を説明する。なお、以下の実施形態中では、同一の番号を付した部分については同様の動作を行うものとし、重ねての説明を省略する。
(第1実施形態)
図1は、本発明の第1実施形態に係る方向性結合器1の構成を示す図である。図1の方向性結合器1は、入力端子101から入力される第1入力信号S11から得た第1出力信号S12を入出力端子102から出力し、入出力端子102から入力される第2入力信号S21から得た第2出力信号S22を出力端子103から出力する。方向性結合器1は、第1入力信号S11の位相を第1シフト量移相し、第1移相信号S110を得る第1移相器110と、第1入力信号S11の位相を第2シフト量移相し、第2移相信号S120を得る第2移相器120と、第1移相信号S110を第1-1シフト量移相し、第1-1移相信号S111を得る第1-1移相器111と、第1移相信号S110を第1-2シフト量移相し、第1-2移相信号S112を得る第1-2移相器112と、第2移相信号S120の位相を第2-1シフト量移相し、第1-1移相信号S111の位相と同相である第2-1移相信号S121を得る第2-1移相器121と、第2移相信号S120の位相を第2-2シフト量移相し、第1-2移相信号S112の位相と逆相である第2-2移相信号S122を得る第2-2移相器122と、を有している。なお、第1出力信号S12は、第1-1移相信号S111と、第2-1移相信号S121とを合成した信号である。
図1は、本発明の第1実施形態に係る方向性結合器1の構成を示す図である。図1の方向性結合器1は、入力端子101から入力される第1入力信号S11から得た第1出力信号S12を入出力端子102から出力し、入出力端子102から入力される第2入力信号S21から得た第2出力信号S22を出力端子103から出力する。方向性結合器1は、第1入力信号S11の位相を第1シフト量移相し、第1移相信号S110を得る第1移相器110と、第1入力信号S11の位相を第2シフト量移相し、第2移相信号S120を得る第2移相器120と、第1移相信号S110を第1-1シフト量移相し、第1-1移相信号S111を得る第1-1移相器111と、第1移相信号S110を第1-2シフト量移相し、第1-2移相信号S112を得る第1-2移相器112と、第2移相信号S120の位相を第2-1シフト量移相し、第1-1移相信号S111の位相と同相である第2-1移相信号S121を得る第2-1移相器121と、第2移相信号S120の位相を第2-2シフト量移相し、第1-2移相信号S112の位相と逆相である第2-2移相信号S122を得る第2-2移相器122と、を有している。なお、第1出力信号S12は、第1-1移相信号S111と、第2-1移相信号S121とを合成した信号である。
また第1-1移相器111は、第2入力信号S21の位相を第1-1シフト量移相し、第3移相信号S230を得る。第2-1移相器121は、第2入力信号S21の位相を第2-1シフト量移相し、第4移相信号S240を得る。第1-2移相器112は、第3移相信号S230の位相を第1-2シフト量移相し、第3-1移相信号S231を得る。第2-2移相器122は、第4移相信号S240の位相を第2-2シフト量移相し、第3-1移相信号S231の位相と同相である第4-1移相信号S241を得る。なお、第2出力信号S22は、第3-1移相信号S231と第4-1移相信号S241とを合成した信号である。
すなわち、図1に示す方向性結合器1は、一端が入力端子101に接続された第1移相器110と、一端が第1移相器110に接続され他端が入出力端子102に接続された第1-1移相器111と、一端が第1移相器110に接続され他端が出力端子103に接続された第1-2移相器112と、一端が入力端子101に接続された第2移相器120と、一端が第2移相器120に接続され他端が入出力端子102に接続された第2-1移相器121と、一端が第2移相器120に接続され他端が出力端子103に接続された第2-2移相器122と、を備えている。なお、以下、単に移相器と称する場合は、第1移相器110、第1-1移相器111、第1-2移相器112、第2移相器120、第2-1移相器121、第2-2移相器122全てを指す。
第1移相器110の第1シフト量と第2移相器120の第2シフト量との差は90度である。第1-1移相器111の第1-1シフト量と第2-1移相器121の第2-1シフト量との差は90度である。第1-2移相器112の第1-2シフト量と第2-2移相器122の第2-2シフト量との差は90度である。第1移相器110の第1シフト量と第1-1移相器111の第1-1シフト量との差は90度である。第1移相器110の第1シフト量と第1-2移相器112の第1-2シフト量とは同じ値となる。
例えば、第1シフト量が「0」度の場合、第2シフト量は「90」度、第1-1シフト量は「90」度、第2-1シフト量は「0」度、第1-2シフト量は「0」度、第2-2シフト量は「90」度となる。ここで、シフト量が「0」度とは位相を移相しないことを意味し、移相器に入力される信号と出力される信号の位相が等しいことを意味する。
次に、図2を用いて方向性結合器1に用いられる移相器の一例を説明する。いずれの移相器も同様に構成することが可能なため、ここでは第1移相器110について説明する。
図2に示す第1移相器110は、一端(端子A)が入力端子101に接続された第1インダクタ素子116と、一端が第1インダクタ素子116に接続され他端(端子B)が第1-1移相器111及び第1-2移相器112に接続された第2インダクタ素子117と、一端が前記第1インダクタ素子の他端に接続され他端が接地されたキャパシタ素子118とを備える。第1,2インダクタ素子116,117のインダクタンスLと、キャパシタ素子118のキャパシタンスCを適切な値とすることで、第1移相器110は、端子Aから端子Bへ通過する信号の位相を第1シフト量移相する。
次に図3~5を用いて方向性結合器1の動作を説明する。ここでは、各移相器のシフト量を、第1シフト量=「45」度、第2シフト量=「-45」度、第1-1シフト量=「-45」度、第2-1シフト量=「45」度、第1-2シフト量=「45」度、第2-2シフト量=「-45」度とする。
図3は、方向性結合器1の動作を説明するための図である。図3では説明に不要な第1-2,2-2移相器112,122を省略している。まず第1入力信号S11から第1出力信号を得る動作について説明する。
入力端子101に入力された第1入力信号S11は、第1移相器110によって位相が第1シフト量(=45度)移相され、第1移相信号S110となる。第1入力信号S11の位相をθ度とすると、第1移相信号S110の位相はθ+45度となる。第1移相信号S110は、第1-1移相器111で第1-1シフト量(=-45度)移相され、位相がθ度である第1-1移相信号111となる。第1移相器110及び第1-1移相器111を通る信号の経路を経路P1-1と呼ぶ。
一方、第1入力信号S11は、第2移相器120にも入力され、位相が第2シフト量(=-45度)移相され、θ-45度の第2移相信号120となる。第2移相信号120は、第2-1移相器121で第2-1シフト量(=45度)移相され、位相がθ度の第2-1移相信号S121となる。第2移相器120及び第2-1移相器121を通る信号の経路を経路P1-2と呼ぶ。
第1-1移相信号S111と第2-1移相信号S121とが合成され、第1出力信号S12が生成されて入出力端子102から出力される。
続いて、図4を用いて、第1入力信号S11が出力端子103へ回り込む場合について説明する。図4では、説明に不要な第1-1,2-1移相器111,121を省略している。
第1入力信号S11は、第1移相器110に入力され、第1シフト量(=45度)移相されて、位相がθ+45度の第1移相信号S110となる。第1移相信号S110は、第1-2移相器112で第1-2シフト量(=45度)移相され、位相がθ+90度の第1-2移相信号S112となる。第1移相器110及び第1-2移相器112を通る信号の経路を経路P2-1と呼ぶ。
一方、第1入力信号S11は、第2移相器120にも入力される。第1入力信号S11は、第2移相器120で第2シフト量(=-45度)移相され、位相がθ-45度の第2移相信号S120となる。第2移相信号S120は、第2-2移相器122で第2-2シフト量(=-45度)移相し、位相がθ-90度の第2-2移相信号S122となる。第2移相器120及び第2-2移相器122を通る信号の経路を経路P2-2と呼ぶ。
出力端子103では、第1-2移相信号S112と第2-2移相信号S122とが合成された信号が出力されるが、第1-2移相信号S112と第2-2移相信号S122との位相差は180度となり互いに打ち消しあうため、出力端子103からは信号が出力されない。
次に、図3,5を用いて第2入力信号S21から第2出力信号S22を得る動作について説明する。
図5では説明に不要な第1,2移相器110,120を省略している。入出力端子102に入力された第2入力信号S21は、第1-1移相器111で第1-1シフト量(=-45度)移相され、位相がθ-45度の第3移相信号S230となる。第3移相信号S230は、第1-2移相器112で第1-2シフト量(=45度)移相され、位相がθ度の第3-1移相信号S231となる。
一方、第2入力信号S21は、第2-1移相器121にも入力される。第2入力信号S21は、第2-1移相器121で第2-1シフト量(=45度)移相され、位相がθ+45度の第4移相信号S240となる。第4移相信号S240は、第2-2移相器122で第2-2シフト量(=-45度)移相され、位相がθ度の第4-1移相信号S241となる。
第3-1移相信号S231と第4-1移相信号S241とが合成され、第2出力信号S22が生成されて出力端子103から出力される。
以上のように、本実施形態に係る方向性結合器1では、経路P2-1と経路P2-2のどちらを通過しても、2つの移相器を通過するため、経路P2-1を通る信号の損失量と経路P2-2を通る信号の損失量とが同じになる。従って、経路P2-1を通過した第1-2移相信号S112の振幅と経路P2-2を通過した第2-2移相信号S122の振幅とを等しくすることができ、第1-2移相信号S112と第2-2移相信号S122とが精度よく打ち消しあうことができる。また、同様に経路P2-1と経路P2-2のどちらを通過しても、2つの移相器を通過するため、経路P2-1を通る信号の遅延特性と経路P2-2を通る信号の遅延特性とが同じになる。従って、経路P2-1を通過した第1-2移相信号S112の振幅と経路P2-2を通過した第2-2移相信号S122の位相を広帯域に逆位相とすることができ、第1-2移相信号S112と第2-2移相信号S122とが広帯域に打ち消しあうことができる。このように、入力端子101から出力端子103への回り込みを精度よく抑制することができる。
また、方向性結合器1に入力された第1入力信号S11は、経路P1-1と経路P1-2のどちらを通過しても2つの移相器を通過する。従って、経路P1-1を通過した第1-1移相信号S111の位相θ及び振幅と、経路P1-2を通過した第2-1移相信号S121の位相θ及び振幅とが等しくなる。第1-1移相信号S111及び第2-1移相信号S121の位相と振幅が等しいため、この第1-1移相信号S111及び第2-1移相信号S121を合成した第1出力信号S12の振幅も大きくなる。このように、本実施形態に係る方向性結合器1によると、入力端子101から出力端子103への信号の回り込みを広帯域に精度よく抑制し、入力端子101から入出力端子102へ大きな信号を出力することができ、アイソレーション性能を向上させることができる。
(変形例1)
図6に、第1の実施形態に係る方向性結合器1の変形例1を示す。図6に示す方向性結合器2は、図1に示す方向性結合器1の構成に加え、入力端子101と、第1移相器110及び第2移相器120との間に設けられる第1分配・合成器130と、入出力端子102と、第1-1移相器111及び第2-1移相器121との間に設けられる第2分配・合成器131と、出力端子103と、第1-2移相器112及び第2-2移相器122との間に設けられる第3分配・合成器132と、をさらに備えている。分配・合成器130,131,132は、例えばウィルキンソン型やブランチライン型の分配・合成器を用いてもよい。
図6に、第1の実施形態に係る方向性結合器1の変形例1を示す。図6に示す方向性結合器2は、図1に示す方向性結合器1の構成に加え、入力端子101と、第1移相器110及び第2移相器120との間に設けられる第1分配・合成器130と、入出力端子102と、第1-1移相器111及び第2-1移相器121との間に設けられる第2分配・合成器131と、出力端子103と、第1-2移相器112及び第2-2移相器122との間に設けられる第3分配・合成器132と、をさらに備えている。分配・合成器130,131,132は、例えばウィルキンソン型やブランチライン型の分配・合成器を用いてもよい。
(変形例2)
図7に、第1の実施形態に係る方向性結合器の変形例2を示す。本変形例2に係る方向性結合器3は、図1に示す方向性結合器1の構成に加え、出力のインピーダンスが、入出力端子102、出力端子103から見たインピーダンスに比べ高い値となる第1素子140と、第2素子、と、をさらに備えている。
図7に、第1の実施形態に係る方向性結合器の変形例2を示す。本変形例2に係る方向性結合器3は、図1に示す方向性結合器1の構成に加え、出力のインピーダンスが、入出力端子102、出力端子103から見たインピーダンスに比べ高い値となる第1素子140と、第2素子、と、をさらに備えている。
図7の例では、第1素子140は、第1移相器110と、第1-1移相器111及び第1-2移相器112との間に設けられている。また第2素子141は、第2移相器120と、第2-1移相器および第2-2移相器122との間に設けられている。第1,2素子140,141は、出力のインピーダンスが、入出力端子102、出力端子103から見たインピーダンスに比べ高い値となる素子であり、例えば増幅器、インピーダンス変換器、キャパシタなどの素子を用いればよい。
なお、第1素子140は、入力端子101と第1移相器110との間に設けてもよく、第2素子141は、入力端子101と第1移相器110及び第2移相器120との間に設けてもよい。
(第2実施形態)
図8に示すように、第2実施形態に係る方向性結合器4は、図1に示す方向性結合器1の移相器の代わりに可変移相器を備えている点が異なる。なお、以下、第1,2可変移相器210,220, 第1-1,1-2可変移相器211,212, 第2-1,2-2可変移相器221,222全てを含めて端に可変移相器と称する。
図8に示すように、第2実施形態に係る方向性結合器4は、図1に示す方向性結合器1の移相器の代わりに可変移相器を備えている点が異なる。なお、以下、第1,2可変移相器210,220, 第1-1,1-2可変移相器211,212, 第2-1,2-2可変移相器221,222全てを含めて端に可変移相器と称する。
図8に示す方向性結合器3は、第1,2移相器110,120の代わりに第1,2可変移相器210,220を、第1-1,1-2移相器111,112の代わりに第1-1,1-2可変移相器211,212を、第2-1,2-2移相器121,122の代わりに第2-1,2-2可変移相器221,222を備えている。方向性結合器4は、出力端子103から出力される信号の位相を検出し、該位相に基づいて、各可変移相器のうち少なくとも1つのシフト量の調整量を決定する検出器231と、検出器119により決定されたシフト量の調整量に基づいて各可変移相器のうち少なくとも1つのシフト量を制御する制御部232をさらに備えている。
図9に、第1可変移相器210の一例を示す。第1可変移相器210は、並列に接続された複数の第1インダクタ素子116-1~116-nと、各第1インダクタ素子116-1~116-nに直列に接続され、それぞれが並列に接続された複数の第2インダクタ素子117-1~117-nと、一端が複数の第1インダクタ素子116-1~116-nと複数の第2インダクタ素子117-1~117-nとの間に接続され他端が接地された複数のキャパシタ素子118-1~118-mと、複数の第1インダクタ素子116-1~116-nの中から少なくとも1つの素子を選択する第1選択器240と、複数の第2インダクタ素子117-1~117-nの中から少なくとも1つの素子を選択する第2選択器241と、複数のキャパシタ素子118-1~118-mの中から少なくとも1つの素子を選択する第3選択器242と、を備え、第1可変移相器210のシフト量は、第1~3選択器240~242が選択する素子によって変化することを特徴とする。なお、n,mは、1以上の整数である。
図9に示す例では、m=n=3の場合の第1可変移相器210を示している。また、第1選択器240は、端子Aと各第1インダクタ素子116-1,116-2の間に挿入されたスイッチSW-11,SW-21を備えている。第2選択器241は、端子Bと各第2インダクタ素子117-1,117-2の間に挿入されたスイッチSW-12,22を備えている。第3選択器242は、第1インダクタ素子116-及び第2インダクタ素子117と、キャパシタ素子118-1,118-3の間に挿入されたスイッチSW31,32を備えている。制御部232は、上述したスイッチSW-11~SW32のオン・オフを切り替えることで、第1可変移相器210のシフト量を制御する。第1可変移相器210の端子Aに入力された第1入力信号S11は、シフト量だけ位相がシフトされて端子Bから出力される。なお他の可変移相器も第1可変移相器210と同様の構成であるため説明を省略する。
ここで、方向性結合器4のどの素子でも位相のずれが発生しない場合は、第1の実施形態で説明した通り、入力端子101から入力された第1入力信号は、第1出力信号に変換されて入出力端子102から出力されるが、出力端子103からは出力されない。しかしながら、環境によって各素子の抵抗値が変化したり入力される第1,2入力信号S11,S21などに応じて信号の位相や振幅が変化したりするため、各可変移相器のシフト量を予め決めておいても、第1-2移相信号S112と、第2-2移相信号S122との位相差が180度にならない場合がある。
そこで、本実施形態に係る方向性結合器4では、検出器231によって、出力端子103から出力される信号の位相を検出する。第1入力信号S11が入力されている場合、出力端子103からは信号が出力されないことが望ましい。検出器231は、出力端子103から出力される信号の位相のずれを、各可変移相器で調整するシフト量の調整量として決定する。例えば、検出器231は、シフト量の調整量を、信号の位相がα度進んでいる場合は「+α」と、β度遅れている場合は「-β」と決定する。
制御部232は、検出器231から通知されるシフト量の調整量に基づいて各可変移相器を制御する。例えば、制御部232は、位相の調整量が「+α」であった場合、各可変移相器でのシフト量がα減るように制御する。具体的には、第1可変移相器210がシフトする第1入力信号S11のシフト量をαだけ減らしてもよく、第2可変移相器220がシフトする第1入力信号S11のシフト量をαだけ減らしてもよい。また、他の可変移相器のシフト量を制御してもよいが、いずれにしても制御部120は、第1-2移相信号S112の位相が、制御する前の第2-2移相信号S122の位相に比べて「-α度」ずれるように制御する。
以上のように、第2実施形態に係る方向性結合器4は、第1実施形態と同様の効果が得られるとともに、出力端子103から出力される信号の位相を検出し、検出した結果に応じて各可変移相器を制御することで、第1入力信号S11の出力端子103への回り込みを精度よく抑制することができる。例えば、方向性結合器3の製造誤差や使用環境の変化などにより、方向性結合器3の各信号のシフト量の調整量が変化しても第1入力信号S11の出力端子103への回り込みを精度よく抑制することができる。
なお、本実施形態では、制御部232は、全ての2可変移相器を制御しているが、少なくとも1つの可変移相器を制御するようにしてもよい。方向性結合器4は、可変移相器の少なくとも1つを制御することで、まったく制御しなかった場合に比べ第1入力信号S11の出力端子103への回り込みをより精度よく抑制することができる。
(第3実施形態)
図10を用いて第3実施形態に係る方向性結合器5を説明する。図10に示す方向性結合器5は、図1に示す方向性結合器1に加え、第1移相器110及び第1-1移相器111と、第1-2移相器112との間に設けられた第1キャパシタ401と、第2移相器120及び第2-1移相器121と、第2-2移相器122との間に設けられた第2キャパシタ402と、をさらに備えている。
図10を用いて第3実施形態に係る方向性結合器5を説明する。図10に示す方向性結合器5は、図1に示す方向性結合器1に加え、第1移相器110及び第1-1移相器111と、第1-2移相器112との間に設けられた第1キャパシタ401と、第2移相器120及び第2-1移相器121と、第2-2移相器122との間に設けられた第2キャパシタ402と、をさらに備えている。
第1,2キャパシタ401,402は、入力端子101から見たインピーダンスが、入出力端子102、出力端子103から見たインピーダンスに比べ高い値となるようキャパシタンス値が設定されている。これにより第1移相器110から出力される第1移相信号S110が、第1-2移相器112へ入力されにくくなる。また、第2移相器120から出力される第2移相信号S120が、第2-2移相器122へ入力されにくくなる。すなわち、入力端子101から入力される第1入力信号S11が出力端子103に回り込みにくくなる。
以上のように、第3実施形態に係る方向性結合器5は、第1実施形態に係る方向性結合器1と同様の効果が得られるとともに、第1,2キャパシタ401,402を設けることで、入力端子101から入力される第1入力信号S11が出力端子103に回り込みにくくなる。第1実施形態に係る方向性結合器1では移相器のみで第1入力信号S11が出力端子103に回り込まないようにしているが、本実施形態では、さらに第1,2キャパシタ401,402を設けることでさらに第1入力信号S11が出力端子103に回り込まないようにすることが可能となる。
なお、本実施形態では、第1移相器110と第1-2移相器112との間に第1キャパシタ401を、第2移相器120と第2-2移相器122との間に第2キャパシタ402を、それぞれ設けているが、出力端子103と第1-2移相器112との間に第1キャパシタ401を、出力端子103と第2-2移相器122との間に第2キャパシタ402を設けてもよい。または、出力端子103と第1-2移相器112及び第2-2移相器122との間にキャパシタを設けてもよい。この場合はキャパシタの個数を1つにすることができる。
なお、本実施形態では、図1の方向性結合器1にキャパシタを設けているが、変形例1,2や第2実施形態に示す方向性結合器2~4に同様にキャパシタを設けてもよい。
(第4実施形態)
図11に、第4実施形態に係る方向性結合器6を示す。方向性結合器6は、第3実施形態に係る方向性結合器5の第1,2キャパシタ401,402の代わりに、第1,2増幅器501,502を設けている。
図11に、第4実施形態に係る方向性結合器6を示す。方向性結合器6は、第3実施形態に係る方向性結合器5の第1,2キャパシタ401,402の代わりに、第1,2増幅器501,502を設けている。
図11に示す方向性結合器5は、入力端子101と第1移相器110との間に設けられる第1増幅器501と、入力端子101と第2移相器120との間に設けられる第2増幅器502とを備えている。
第1,2増幅器501,502は、第1入力信号S11を増幅して第1,2移相器110,120へ出力する。
以上のように、第4の実施形態に係る方向性結合器6は、第3実施形態に係る方向性結合器5と同様の効果が得られるとともに、第1入力信号S11を増幅して出力することが可能となる。従って、方向性結合器5の前段にパワーアンプ等の増幅手段を設ける必要がない、又は利得の小さな増幅手段を設けることができるようになる。
なお、本実施形態に係る方向性結合器6も、図10に示す方向性結合器5と同様に、第1移相器110と第1-1,1-2移相器111,112との間に増幅器501を、第2移相器120と第2-1,2-2移相器121,122との間に増幅器502を設けてもよい。ただし、図11のように増幅器501,502を設置することで、増幅器501,502の前段に整合回路(図示せず)を設けることが可能となり、増幅器501,502の利得を高くすることができる。
(変形例3)
図12に本実施形態に係る変形例3を示す。本変形例3に係る方向性結合器7は、図11の方向性結合器6と比べて配線と入出力端子102の位置を変更している点が異なる。
図12に本実施形態に係る変形例3を示す。本変形例3に係る方向性結合器7は、図11の方向性結合器6と比べて配線と入出力端子102の位置を変更している点が異なる。
図12に示す方向性結合器7の入出力端子102は、第1-1移相器111、第1-2移相器112、第2-1移相器121、及び第2-2移相器122を接続する配線で囲まれた閉路の内側に設けられる。
これにより第2-1移相器121と第2-2移相器122とを結ぶ配線が、第1移相器110と第1-1,1-2移相器111,112とを結ぶ配線と重なることがない(図11参照)。配線が別の配線と重なるように回路図を設計すると、配線が重なった箇所でロスが発生してしまう。第1-1移相器111、第1-2移相器112、第2-1移相器121、及び第2-2移相器122を接続する配線で囲まれた閉路の内側に入出力端子102を設けることで、配線が重なることにより発生する信号損失を抑制することができる。なお、図12は、回路図の一例を示すもので、必ずしも図11に示すような回路配置にする必要はなく、第1-1移相器111、第1-2移相器112、第2-1移相器121、及び第2-2移相器122を接続する配線で囲まれた閉路の内側に入出力端子102を設ければよい。
図13は、方向性結合器7の特性を示すグラフである。図13のグラフの横軸は、第1,2入力信号S11,21の周波数、縦軸は各端子101~103における出力利得を示している。
第1入力信号S11を入力端子101に入力した場合に入出力端子102から得られる第1出力信号S12と、第1入力信号S11との比(第1入力信号の利得)を一点鎖線で示している。第1入力信号S11を入力端子101に入力した場合に出力端子103から得られる信号と、第1入力信号との比(回り込み)を二点鎖線で示している。また、第2入力信号S21を入出力端子102に入力した場合に出力端子103から得られる第2出力信号S22と、第2入力信号S21との比(第2入力信号の利得)を実線で示している。なお、所望周波数とは、本変形例に係る方向性結合器6の動作周波数であり、後述するように方向性結合器7が無線装置に実装された場合は、無線装置が信号の送受信に使用する周波数である。
図13に示すグラフからわかるように、本変形例に係る方向性結合器7では、所望周波数における回り込みが急激に下がっており、所望周波数において第1入力信号が出力端子103にほとんど出力されないことがわかる。また、第2入力信号の利得は、周波数によってほとんど変化していない。これは、入出力端子102に入力された第2入力信号S21が方向性結合器6でほとんど損失することなく出力端子103から出力されていることを示している。
なお、本変形例では、図11の方向性結合器6の配線、及び入出力端子102の配置について変更しているが、第1~3実施形態及び変形例1,2に係る方向性結合器1~6についても同様に配置することができる。
(第5実施形態)
図14に本実施形態に係る方向性結合器8を示す。方向性結合器8は、図1に示す方向性結合器1の構成に加え、ゲート端子が整合回路701を介して入力端子101に接続され、ドレイン端子が第1,2移相器110,120に接続されるソース接地型MOSトランジスタM1を有し、電圧信号である第1入力信号S11を電流信号である第1入力信号S11に変換する電圧電流変換器702と、ソース端子が第1移相器110に接続され、ドレイン端子が第1-1,1-2移相器111,112に接続された第1ゲート接地型MOSトランジスタM2を有し、第1移相器110からみたインピーダンスが第1-1,1-2移相器111,112からみたインピーダンスよりも高い第1インピーダンス変換器703と、ソース端子が第1移相器110に接続され、ドレイン端子が第2-1,2-2移相器121,122に接続された第2ゲート接地型MOSトランジスタM2を有し、第1移相器110からみたインピーダンスが第2-1,2-2移相器121,122からみたインピーダンスよりも高い第2インピーダンス変換器704と、をさらに備える。
図14に本実施形態に係る方向性結合器8を示す。方向性結合器8は、図1に示す方向性結合器1の構成に加え、ゲート端子が整合回路701を介して入力端子101に接続され、ドレイン端子が第1,2移相器110,120に接続されるソース接地型MOSトランジスタM1を有し、電圧信号である第1入力信号S11を電流信号である第1入力信号S11に変換する電圧電流変換器702と、ソース端子が第1移相器110に接続され、ドレイン端子が第1-1,1-2移相器111,112に接続された第1ゲート接地型MOSトランジスタM2を有し、第1移相器110からみたインピーダンスが第1-1,1-2移相器111,112からみたインピーダンスよりも高い第1インピーダンス変換器703と、ソース端子が第1移相器110に接続され、ドレイン端子が第2-1,2-2移相器121,122に接続された第2ゲート接地型MOSトランジスタM2を有し、第1移相器110からみたインピーダンスが第2-1,2-2移相器121,122からみたインピーダンスよりも高い第2インピーダンス変換器704と、をさらに備える。
整合回路701は、例えば送信回路といった入力端子101に接続される回路(図示せず)と電圧電流変換器702との間の整合をとる。従って、入力端子101に入力される第1入力信号S11は、高効率に電圧電流変換器702へと入力される。なお、整合回路701を省略しても構わない。
図15(a)は、電圧電流変換器702の一例を示す図である。電圧電流変換器702は、第1入力信号S11が整合回路701を介してゲート端子に印加されるソース接地型MOSトランジスタM1を有している。すなわち、電圧電流変換器702のMOSトランジスタM1は、ソース端子が接地され、ゲート端子が整合回路701を介して入力端子101に、ドレイン端子が第1,2移相器110,120に接続されている。電圧電流変換器702は、入力端子101から入力された電圧信号である第1入力信号S11を電流信号である第1入力信号S11に変換してドレイン端子から出力する。
図15(b)は、第1インピーダンス変換器703の一例を示す図である。第1インピーダンス変換器703は、第1ゲート接地型MOSトランジスタM2を備えている。MOSトランジスタM2のソース端子は第1移相器110に、ドレイン端子は第1,2移相器110,120に接続されている。またMOSトランジスタM2のゲート端子は所定の電圧(Vbias)が印加されている。MOSトランジスタM2は、電流電圧変換器702が有するMOSトランジスタM1とともにカスコード型増幅器を構成しており、ゲート端子に印加される所定の電圧値に応じて、ソース端子に入力された第1移相信号S111の振幅を増幅し、ドレイン端子から出力する。
ゲート接地型MOSトランジスタM2は、入力インピーダンスに比べて出力インピーダンスが大きいという特徴をもつ。従って、ゲート接地型MOSトランジスタM2は、ソース端子から入力される信号を効率よくドレイン端子から出力するが、ドレイン端子から入力される信号を、ソース端子からはほとんど出力しない。
なお、第2インピーダンス変換器704の構成は、第1インピーダンス変換器703と同様であるため説明を省略する。
以上のように、本実施形態に係る方向性結合器8は、第4実施形態と同様の効果が得られるとともに、第1,2移相器110,120と、第1-1~2-2移相器111~122との間に第1,2カスコード接続型MOSトランジスタM2を設けることで、移相器出力で発生する寄生容量の影響を小さくすることができる。これは、電流電圧変換器702と第1,2インピーダンス変換器703,704とを直接接続してしまうと、移相器出力に寄生容量が発生してしまい、第1入力信号S11がこの寄生容量に流れこんでしまう。本実施形態に係る方向性結合器7では、第1,2移相器110,120と、第1-1~2-2移相器111~122との間に第1,2ゲート接地型MOSトランジスタM2を設け、電流電圧変換器702と第1,2インピーダンス変換器703,704が直接接続されない構成としている。これにより第1入力信号S11が寄生容量によって損失してしまうことを抑制できる。
(第6実施形態)
図16は、図12に示す方向性結合器7を無線装置800に実装した場合の応用例を示す図である。
図16は、図12に示す方向性結合器7を無線装置800に実装した場合の応用例を示す図である。
無線装置800は、送信回路801と、送信回路801から出力されるデジタル信号に応じて発振信号を出力する発振器802と、発振器802の発振信号が第1入力信号S11として入力され、第1出力信号S12を出力する図12に示す方向性結合器7と、入出力端子102に接続され、第1出力信号S12を送信し、受信信号を第2入力信号S21として入出力端子102に入力する送受信アンテナ803と、出力端子103に接続され、第2出力信号S22を増幅し増幅信号を得る低雑音アンプ804と、増幅信号を周波数変換し、ベースバンド信号を得る周波数変換器805と、ベースバンド信号に対し、受信処理を行う受信回路806と、を備える。
送信回路801は、「0」又は「1」のデジタル信号を出力する。発振器802は、デジタル信号が「1」の間、発振信号を出力する。これは、発振器802と図11の方向性結合器6の入力端子101との間をスイッチ(図示せず)で接続し、デジタル信号が「1」のときにスイッチをオンとし、「0」のときにスイッチをオフとすることで実現できる。発振信号は、方向性結合器6を介して送受信アンテナ803に入力され送信される。
送受信アンテナ803は、方向性結合器6を介して受信信号を低雑音アンプ804に入力する。低雑音アンプ804は、受信信号を増幅し、増幅信号を得る。増幅信号は、周波数変換器805で発振器802が出力する発振信号と乗算され、ベースバンド信号に変換される。ベースバンド信号は、受信回路806で、復調処理やデジタル信号処理等が施されデータ信号となる。
なお、発振器802が発振する周波数が、方向性結合器6の動作周波数であり、図12の所望周波数に該当する。
以上のように第6実施形態に係る無線装置800は、図12に示す方向性結合器7を用いることで、発振信号が受信回路806に入力されることなく送受信アンテナ803から送信される。また受信信号が送信回路801に入力されることもない。このように図12に示す方向性結合器6を用いることで反射損が小さく高効率な無線装置800を実現することができる。
なお、第6実施形態では方向性結合器7の応用例について示したが、第1~第5実施形態や変形例1~3に示す方向性結合器やこれらの実施形態を組み合わせた方向性結合器も同様に無線装置に応用することができる。
また、図12に示す方向性結合器7を応用する無線装置800のように発振信号を送信するものに限らず、送受信でアンテナを共用する無線装置であればいずれにも応用することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
110~112,120~122, 210~212,220~222 移相器
231 検出器
232 制御部
501,502 増幅器
701 整合回路
702 電圧電流変換器
703,704 インピーダンス変換器
231 検出器
232 制御部
501,502 増幅器
701 整合回路
702 電圧電流変換器
703,704 インピーダンス変換器
Claims (5)
- 第1入力信号が入力される入力端子と、該第1入力信号を変換して得られる第1出力信号を出力し、かつ第2入力信号が入力される入出力端子と、該第2入力信号を変換して得られる第2出力信号を出力する出力端子とを有する方向性結合器であって
前記第1入力信号の位相を第1シフト量移相し、第1移相信号を得る第1移相器と、
前記第1入力信号の位相を第2シフト量移相し、第2移相信号を得る第2移相器と、
前記第1移相信号を第1-1シフト量移相し、第1-1移相信号を得る第1-1移相器と、
前記第1移相信号を第1-2シフト量移相し、第1-2移相信号を得る第1-2移相器と、
前記第2移相信号の位相を第2-1シフト量移相し、前記第1-1移相信号の位相と同相である第2-1移相信号を得る第2-1移相器と、
前記第2移相信号の位相を第2-2シフト量移相し、前記第1-2移相信号の位相と逆相である第2-2移相信号を得る第2-2移相器と、
を有し、
前記第1出力信号を前記第1-1移相信号と前記第2-1移相信号とから合成し、
前記第1-2移相信号と前記第2-2移相信号を合成し、
前記第1-1移相器はさらに前記第2入力信号の位相を第1-1シフト量移相し、第3移相信号を得、
前記第2-1移相器はさらに前記第2入力信号の位相を第2-1シフト量移相し、第4移相信号を得、
前記第1-2移相器はさらに前記第3移相信号の位相を第1-2シフト量移相し、第3-1移相信号を得、
前記第2-2移相器はさらに前記第4移相信号の位相を第2-2シフト量移相し、前記第3-1移相信号の位相と同相である第4-1移相信号を得、
前記第2出力信号を前記第3-1移相信号と前記第4-1移相信号とから合成すること、を特徴とする方向性結合器。 - 前記第1移相器の前記第1シフト量と前記第2移相器の前記第2シフト量との差は90度であり、かつ前記第1-1移相器の前記第1-1シフト量と前記第2-1移相器の前記第2-1シフト量との差は90度であり、かつ前記第1-2移相器の前記第1-2シフト量と前記第2-2移相器の前記第2-2シフト量との差は90度であり、かつ前記第1移相器の前記第1シフト量と前記第1-1移相器の前記第1-1シフト量との差は90度であり、かつ前記第1移相器の前記第1シフト量と前記第1-2移相器の前記第1-2シフト量とは同じ値となることを特徴とする請求項1記載の方向性結合器。
- 前記出力端子から出力される信号の位相を検出し、該位相に基づいて前記第1,2移相器,前記1-1,1-2移相器、前記2-1,2-2移相器のうち少なくとも1つのシフト量の調整量を決定する検出器と前記検出器により決定された前記シフト量の調整量に基づいて前記第1,2移相器,前記1-1,1-2移相器、前記2-1,2-2移相器うち少なくとも1つのシフト量を制御する制御部と、をさらに備えることを特徴とする請求項2に記載する方向性結合器。
- 前記入力端子と前記第1移相器との間に設けられる第1増幅器と、前記入力端子と前記第2移相器との間に設けられる第2増幅器をさらに有することを特徴とする請求項3記載の方向性結合器。
- ゲート端子が前記入力端子に接続され、ドレイン端子が前記第1,2移相器に接続されるソース接地型MOSトランジスタを有し、電圧信号である前記第1入力信号を電流信号である前記第1入力信号に変換する電圧電流変換器と、ソース端子が前記第1移相器に接続され、ドレイン端子が前記第1-1,1-2移相器に接続された第1ゲート接地型MOSトランジスタを有し、前記第1移相器からみたインピーダンスが前記第1-1,1-2移相器からみたインピーダンスよりも高い第1インピーダンス変換器と、ソース端子が前記第1移相器に接続され、ドレイン端子が前記第2-1,2-2移相器に接続された第2ゲート接地型MOSトランジスタを有し、前記第1移相器からみたインピーダンスが前記第2-1,2-2移相器からみたインピーダンスよりも高い第2インピーダンス変換器と、をさらに備えることを特徴とする請求項4記載の方向性結合器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/003095 WO2011001475A1 (ja) | 2009-07-03 | 2009-07-03 | 方向性結合器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/003095 WO2011001475A1 (ja) | 2009-07-03 | 2009-07-03 | 方向性結合器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001475A1 true WO2011001475A1 (ja) | 2011-01-06 |
Family
ID=43410577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003095 WO2011001475A1 (ja) | 2009-07-03 | 2009-07-03 | 方向性結合器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011001475A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006295562A (ja) * | 2005-04-11 | 2006-10-26 | Ntt Docomo Inc | 90度ハイブリッド回路 |
-
2009
- 2009-07-03 WO PCT/JP2009/003095 patent/WO2011001475A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006295562A (ja) * | 2005-04-11 | 2006-10-26 | Ntt Docomo Inc | 90度ハイブリッド回路 |
Non-Patent Citations (1)
Title |
---|
J.-W. JUNG ET AL.: "RF-IPD directional coupler for mobile RFID handset applications", ELECTRONICS LETTERS, vol. 43, no. 13, 21 June 2007 (2007-06-21) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101084591B1 (ko) | 방향성 결합기 | |
US8290453B2 (en) | Power combiner, amplifier, and transmitter | |
US7071869B2 (en) | Radar system using quadrature signal | |
US7541890B2 (en) | Quasi active MIMIC circulator | |
US8558549B2 (en) | Detector circuit and semiconductor device using same | |
JP2004503172A (ja) | ソフトウェア無線のためのユニバーサルプラットフォーム | |
JP2021525482A (ja) | ミリ波5g通信用再構成可能バンド幅を用いたワイドバンド低雑音増幅器(lna) | |
US20080242235A1 (en) | Circuit arrangement with improved decoupling | |
US8742981B2 (en) | Microstrip coupler combining transmit-receive signal separation and differential to single ended conversion | |
US11569555B2 (en) | Phase shifter with active signal phase generation | |
US10644763B1 (en) | Technique for single antenna full duplex | |
US8107892B2 (en) | Directional coupler and transmitting/receiving apparatus | |
US8970445B2 (en) | Radio device | |
US9112482B2 (en) | Receiver | |
WO2016034740A1 (en) | Iq signal generator system and method | |
WO2015054699A1 (en) | Signal processing device, amplifier, and method | |
JPWO2002091564A1 (ja) | 復調器およびそれを用いた受信機 | |
WO2011001475A1 (ja) | 方向性結合器 | |
KR20110060735A (ko) | 고주파 변압기를 이용한 다중 대역 전력증폭기 | |
JP2007158987A (ja) | 無線通信装置 | |
JP6837573B2 (ja) | 線形性強化ミキサ | |
JP2007158380A (ja) | 可変利得増幅器 | |
JP4888486B2 (ja) | 送信機 | |
WO2011004419A1 (ja) | 方向性結合器 | |
KR100573013B1 (ko) | 밸런스 구조를 이용한 레이더 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09846770 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09846770 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |