WO2011001127A1 - Esters gras de cellulose, procede de synthese et utilisations - Google Patents

Esters gras de cellulose, procede de synthese et utilisations Download PDF

Info

Publication number
WO2011001127A1
WO2011001127A1 PCT/FR2010/051403 FR2010051403W WO2011001127A1 WO 2011001127 A1 WO2011001127 A1 WO 2011001127A1 FR 2010051403 W FR2010051403 W FR 2010051403W WO 2011001127 A1 WO2011001127 A1 WO 2011001127A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
fatty
ester
fatty acid
ionic liquid
Prior art date
Application number
PCT/FR2010/051403
Other languages
English (en)
Other versions
WO2011001127A9 (fr
Inventor
Mathieu Mazza
Christine Cecutti
Carlos Vaca-Garcia
Marie-José VILLETTE
Denis Sens
Original Assignee
Institut National Polytechnique De Toulouse
Fibre Excellence Saint Gaudens Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Polytechnique De Toulouse, Fibre Excellence Saint Gaudens Sas filed Critical Institut National Polytechnique De Toulouse
Publication of WO2011001127A1 publication Critical patent/WO2011001127A1/fr
Publication of WO2011001127A9 publication Critical patent/WO2011001127A9/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials

Definitions

  • the present invention relates to particular cellulose esters, their use in particular for the manufacture of plastic parts and films, and a method of synthesis.
  • Cellulose is an abundant, inexpensive raw material that has interesting properties for the production of many products.
  • cellulose is very hydrophilic, which makes its use incompatible with many applications.
  • One known means for hydrophobing a cellulosic material is to graft a fatty substance on its alcohols functions, esterification reaction, and many methods have been proposed to achieve such a grafting. These methods make it possible to obtain fatty-chain cellulosic esters which have advantageous properties of hydrophobicity.
  • the cellulose esters have varying physicochemical properties.
  • a particularly studied property is the thermoplasticity of these compounds.
  • esters with a high degree of substitution consist predominantly of fatty chains.
  • a cellulose stearate with a degree of substitution of 3 is composed of 84% of fatty chains and 16% of cellulose only.
  • fatty acids are used to substitute cellulose, these are derived from edible vegetable oils, which poses significant problems because the fatty esters of cellulose then compete directly with the food crops and the ability to production of raw materials is limited, compared to the quantities consumed.
  • fatty esters of cellulose with low degrees of substitution consist mainly of cellulose. They can be synthesized under high-temperature solvent-free conditions generally in the presence of catalysts in emulsified medium.
  • esters obtained have a very low thermoplasticity, requiring temperatures much higher than 250 ° C. to melt them, so that they can not be used as a thermoplastic material.
  • the objective of the present invention is to overcome the disadvantages of the prior art by providing fatty esters of cellulose having a low degree of substitution and a high thermoplastic character, obtained under mild conditions, without volatile solvent or harmful reagent.
  • the invention is aimed in particular at fatty esters of cellulose, originating from the esterification of a cellulosic material with fatty acids or anhydrides of fatty acids, comprising at least 8 carbon atoms in their ester unit, having a degree of total substitution less than 0.3 and a glass transition temperature of less than 180 ° C.
  • cellulose fatty ester means the reaction product between the cellulose or a lignocellulosic material and an acylating agent chosen from fatty acids or anhydrides of fatty acids.
  • Cellulose fatty ester containing at least 8 carbon atoms in their ester unit is understood to mean the reaction product between the cellulose or a lignocellulosic material and an acylating agent chosen from fatty acids containing at least 8 carbon atoms or anhydrides of fatty acids with at least 8 carbon atoms.
  • the fatty esters of cellulose according to the invention are constituted by less than 17% of fat or even less than 1%, so that they do not enter or compete with the food industry, while having a thermoplastic nature. which allows their use in many areas.
  • cellulose fatty esters are capable of being obtained by a particular synthetic process which constitutes another aspect of the invention.
  • the process comprises reacting lignocellulosic material with at least 8 carbon fatty acid or at least 8 carbon atom fatty acid anhydride in an ionic liquid in the presence of a nonacidic catalyst.
  • Ionic liquids are known to be good cellulose solvents, weakly toxic, non-volatile and easily recyclable. They are used in particular to carry out reactions on cellulose such as etherification or enzymatic hydrolysis.
  • ionic liquids are also used for the esterification of cellulose with acyl chlorides, but the esters obtained have high degrees of substitution, which induces the disadvantages described above.
  • the specific combination of cellulose, ionic liquid, fatty acid or fatty acid anhydride and nonacidic catalyst makes it possible to obtain cellulose fatty esters having both a low degree of substitution, a homogeneous distribution on the whole of the cellulose chain of the esterification, and a thermoplastic character pushed.
  • lignocellulosic material any material rich in cellulose that may contain minor hemicelluloses and lignins.
  • ionic liquid any ionic compound having a melting point below 100 ° C.
  • degree of substitution is meant the average number of functionalized hydroxyl groups per unit of anhydroglucose in the cellulosic polymer. This is the total degree of substitution and not a partial degree of substitution.
  • the degree of total substitution is an absolute value, whatever its method of analysis. It can be determined by different methods depending on the degree of substitution. For high values (close to the maximum of 3), the degree of substitution can be determined by elemental analysis or Nuclear Magnetic Resonance (NMR). For lower values (close to 1), the degree of substitution can be determined by the saponification method. Finally, for very low values (close to 0), such as the degree of substitution values of the fatty esters of the present invention, it is possible to use a chrom ⁇ togr ⁇ phic method as described in the referenced publication:
  • the glass transition temperature (Tg) is defined as the temperature at which a material goes from the glassy state to the rubbery state. This transition is accompanied by changes in several physical properties: increase in the coefficient of thermal expansion, drastic decrease of the resistance modulus, increase in thermal capacity, etc. To highlight the glass transition temperature, simply measure one of these properties and demonstrate its change. In order, the properties can be measured by thermal analysis (TA), dynamic mechanical analysis (DMA) or differential scanning calorimetry (DSC). These measurement methods lead to extremely close glass transition temperature values.
  • TA thermal analysis
  • DMA dynamic mechanical analysis
  • DSC differential scanning calorimetry
  • the differences observed in the measurement of the glass transition temperature by these three methods vary only by a few degrees Celsius, always less than 10 ° C.
  • the method used will be DMA, because it is the method most used by the skilled person in the case of polymers.
  • the cellulose fatty esters obtained according to the invention can be used as thermoplastic polymers, especially for the formation of solid parts and plastic films.
  • FIG. 1 represents the evolution of the glass transition temperature as a function of the degree of substitution of cellulose fatty esters of the prior art
  • FIG. 2 represents the dynamic thermal analyzes (DMA) of the cellulose fatty esters according to the invention
  • FIG. 3 represents the NMR spectrum of the cellulose and a fatty ester of cellulose according to the invention.
  • FIG. 4 represents the evolution of the glass transition temperature as a function of the degree of substitution of cellulose fatty esters obtained by acylation with fatty acid chloride without ionic liquid.
  • the invention therefore relates to a cellulose fatty ester having at least 8 carbon atoms in their ester unit having a total degree of substitution of less than 0.3 and a glass transition temperature of less than 180 ° C.
  • This fatty ester is derived from the esterification of a cellulosic material with a fatty acid or an anhydrous fatty acid.
  • it is a fatty ester of cellulose having a total degree of substitution of less than 0.1 and a glass transition temperature of between 60 and 180 ° C.
  • it may be a cellulose fatty ester having a degree of substitution of 3.6 ⁇ 10 -2 and a glass transition temperature of 165 ° C.
  • the fatty esters of cellulose according to the invention may be obtained by reacting lignocellulosic material with a fatty acid or an anhydrous fatty acid in an ionic liquid capable of solubilizing the cellulose, in the presence of a nonacidic catalyst.
  • the ionic liquid can be chosen from all the ionic liquids solvents of cellulose.
  • the nonacidic catalyst is selected from carboxylic acid salts, such as, for example, sodium acetate, sodium octanoate, potassium octanoate or potassium laurate.
  • the nonacidic catalyst is potassium laurate.
  • the amount of nonacidic catalyst used for the reaction corresponds to between 0.01 and 0.1 OH equivalent of the lignocellulosic material.
  • the fatty acid may be chosen from any fatty acid comprising at least 8 carbons.
  • fatty acid comprising between 8 and 18 carbon atoms.
  • the fatty acid is octanoic acid.
  • fatty acid it is possible to use its anhydrous form, but not an acyl chloride since its use can lead to degradation of the polymer due to the release of hydrochloric acid during the reaction.
  • the anhydride does not destroy the cellulose and does not pollute the medium with a superfluous by-product.
  • the fatty acid or the anhydrous fatty acid is preferentially added in excess relative to the lignocellulosic material.
  • the amount of fatty acid or anhydride of fatty acid used for the corresponding reaction may be from 1 to 20 OH equivalent of the lignocellulosic material. Preferably, it corresponds to OH equivalent of the cellulose.
  • the process according to the invention can consist of dissolving the cellulose in the ionic liquid and then adding the fatty acid or the anhydrous fatty acid in this cellulose solution in the presence of the nonacidic catalyst.
  • the lignocellulosic material may be present at between 0.1 and 10% by weight in the ionic liquid before reaction, preferably at 2%.
  • the use of the ionic liquid under these conditions allows the reaction to be carried out in a homogeneous medium, since the cellulose is completely dissolved. Esterification is very regular throughout the cellulosic chain.
  • the method according to the invention can comprise at least the following steps:
  • the temperature of the reaction is preferably less than 180 0 C, to prevent degradation of the cellulose in the ionic liquid. Similarly, it is preferably greater than 60 ° C., more preferably still greater than 100 ° C. in order to ensure the molten state of the ionic liquid, therefore between 100 ° C. and 180 ° C. A particularly suitable reaction temperature is included between 115 and 130 ° C.
  • a degree of substitution of less than 0.3, preferably of between 0.2 ⁇ 10 -2 and 30 ⁇ 10 -2 , and
  • thermoplastic character a glass transition temperature of between 60 and 180 ° C., that is to say a low-temperature thermoplastic character, which makes it possible to use them as thermoplastic materials.
  • This unusual thermoplastic character can be explained by a homogeneity of the grafting of the fatty chains along the cellulose and the disorganization of the cellulose after solubilization in the ionic liquid.
  • the presence of the ionic liquid, associated with the nonacidic catalyst, is very important because without a solvent or with another solvent of the cellulose, the fatty esters obtained do not have the advantageous characteristics of the invention.
  • the cellulose fatty esters obtained according to the invention can be used as hydrophobic thermoplastic material, in particular for the production of massive parts such as parts obtained by extrusion or by thermoinjection such as, for example, window frames of toys, packaging etc. Because of their specific characteristics, they are particularly suitable for these applications, especially since they require lower shaping temperatures than other cellulosic plastics for a given plasticizer content.
  • octanoic acid is reacted with cellulose (CeII-OH) in the presence of potassium laurate (KL) in BMIMCI.
  • the precipitation of the modified cellulose is carried out by pouring the reaction medium into a large quantity of ethanol.
  • the purification of the solid synthesized after filtration is carried out by extraction under pressure (ASE) with ethanol at 120 ° C. and under 100 bar.
  • the synthesis method comprises the implementation of the following steps:
  • the liquid after filtration can be recovered, the ethanol evaporated and the remainder recycled for later use.
  • the fatty esters of cellulose synthesized by this process have a maximum degree of substitution of 3.6 ⁇ 10 -2 (determined by a chromatographic method object of the referenced publication: J. Peydecastaing, Vaca- Garc ⁇ C 1 Borredon E. (2009) Cellulose 16, 289-297) and glass transition temperatures revealed by DMA (Mechanical Dynamical Analysis) analyzes.
  • Elemental analyzes performed on the synthesized cellulose esters prove the absence of residual ionic liquids. This excludes the assumption of a plasticizing effect of BMIMCI.
  • DMA thermal analyzes
  • the cellulose fatty esters obtained thus have a degree of substitution of 3.6 ⁇ 10 -2 and a glass transition temperature of 165 ° C.
  • the cellulose fatty esters of the prior art, having a degree of substitution of 3.6 ⁇ 10 -2 have a glass transition temperature greater than 250 ° C.
  • those having a glass transition temperature of 165 ° C. have a degree of substitution of between 2 and 3.
  • Thermopressing at 170 ° C. at 50 bars makes it possible to obtain materials showing the fusion and cohesion of the grains with each other.
  • the process can be carried out with octanoic anhydride.
  • the reaction is carried out in a 25OmL reactor equipped with a condenser and a mechanical stirrer. In this device are introduced the ionic liquid and the cellulose to dissolve.
  • the octanoic anhydride is added to the reactor.
  • the synthesis is carried out with stirring (500 rpm) at 125 ° C. for 2 hours.
  • the reactor is cooled to a temperature of 80 ° C.
  • the reaction mixture is poured into 2 liters of ethanol in order to precipitate the cellulose and the esterified biopolymer.
  • the solid is separated by filtration, washed with ethanol and then purified by extraction with ethanol using an ASE apparatus.
  • the product thus obtained is dried in an oven at 105 ° C. for 24 hours.
  • the cellulose fatty esters obtained have a degree of substitution of 0.26 and a glass transition temperature of 75 ° C.
  • FIG. 4 represents the evolution of the glass transition temperature as a function of the degree of substitution of cellulose fatty esters obtained by acylation with fatty acid chloride without ionic liquid.
  • the C8 to C16 fatty esters are obtained by putting 10 g of cellulose in suspension in 25OmL of pyridine at 20 ° C. for 30 minutes. A variable amount of fatty acid chloride (between 0.5 and 2eq / OH) was introduced into the reactor and the reaction was continued for 2 hours at 130 ° C. with mechanical stirring. The mixture was then cooled to 100 0 C and 25OmL of 50% ethanol was added to destroy the remaining acid chloride. The solid product was recovered by filtration and washed thoroughly with ethanol and acetone using a Soxhlet apparatus. The cellulose esters obtained were dried at 50 ° C. until constant weight.
  • the cellulose fatty esters obtained comprising at least 8 carbon atoms in their ester unit, have a temperature of glass transition above 180 0 C for a total degree of substitution of less than 0.3.
  • Example 4 Comparative Example with a Solvent Other than an Ionic Liquid
  • the cellulose fatty esters obtained have glass transition temperatures well above 250 ° C. for degrees of substitution of less than 0.3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

L'objet de l' invention est un ester gras de cellulose comportant au moins 8 atomes de carbone dans son motif ester, caractérisé en ce qu'il présente un degré de substitution total inférieur à 0,3 et une température de transition vitreuse inférieure à 180° C. L'invention se rapporte également à un procédé de fabrication d'un tel ester gras de cellulose, par réaction de matière lignocellulosique avec un acide gras ou un anhydride d'acide gras dans un liquide ionique en présence d'un catalyseur non acide, ainsi qu'à son utilisation en tant que matériau plastique hydrophobe pour la fabrication de pièces plastiques.

Description

ESTERS GkAS DE CELLULOSE, PROCEDE DE SYNTHESE
ET UTILISATIONS
La présente invention concerne des esters de cellulose particuliers, leur utilisation notamment pour la fabrication de pièces et films plastiques, ainsi qu'un procédé de synthèse.
La cellulose est une matière première abondante, peu coûteuse qui présente des propriétés intéressantes pour la réalisation de nombreux produits. Toutefois, la cellulose est très hydrophile, ce qui rend son utilisation incompatible avec de nombreuses applications.
Un moyen connu pour rendre hydrophobe une matière cellulosique consiste à greffer un corps gras sur ses fonctions alcools, réaction d'estérif ication, et de nombreux procédés ont été proposés pour réaliser un tel greffage. Ces procédés permettent d'obtenir des esters cellulosiques à chaînes grasses qui présentent des propriétés intéressantes d'hydrophobicité.
En fonction des procédés utilisés, les esters de cellulose présentent des propriétés physico-chimiques variables. Une propriété particulièrement étudiée est la thermoplasticité de ces composés.
Avec les procédés d'estérification actuels, seuls les esters gras de cellulose hautement substitués présentent des propriétés thermoplastiques intéressantes. Plus la cellulose est substituée, c'est-à-dire plus le degré de substitution tend vers 3, plus les températures de transitions thermiques sont basses, comme représenté sur la figure 1.
Or, la préparation d'esters gras de cellulose hautement substitués (avec un degré de substitution généralement compris entre 1 et 3) requiert généralement l'utilisation de composés très réactifs tels que des chlorures d'acyle et la présence de solvants toxiques comme la pyridine.
Ces procédés ne sont donc pas satisfaisants car ils utilisent des réactifs gras nocifs et des solvants volatils dangereux pour l'environnement, et coûteux.
De plus les esters avec un degré de substitution élevé sont constitués majoritairement de chaînes grasses. Par exemple un stéarate de cellulose avec un degré de substitution de 3 est composé de 84% de chaînes grasses et de 16% de cellulose seulement. Or, lorsqu'on utilise des acides gras pour substituer la cellulose, ceux-ci sont issus d'huiles végétales comestibles, ce qui pose des problèmes importants car les esters gras de cellulose entrent alors en compétition directe avec les cultures alimentaires et la capacité de production des matières premières est limitée, comparée aux quantités consommées.
Au contraire, les esters gras de cellulose à faibles degrés de substitution sont constitués majoritairement de cellulose. Ils peuvent être synthétisés dans des conditions sans solvant à haute température généralement en présence de catalyseurs en milieu émulsionné.
Toutefois, malgré des propriétés remarquables, notamment d'hydrophobicité, d'absorption sélective et de perméabilité au gaz, les esters obtenus présentent une très faible thermoplasticité, nécessitant des températures très supérieures à 2500C pour les faire fondre, si bien qu'ils ne peuvent pas être utilisés en tant que matière thermoplastique.
En outre dans tous les procédés existants, ne recourant pas à un solvant de la cellulose, l'estérification n'est pas homogène et les corps gras greffés sur les fonctions OH de la cellulose ne sont pas répartis ni sur l'ensemble des chaînes ni tout le long de la chaîne.
C'est pourquoi l'objectif de la présente invention est de pallier les inconvénients de l'art antérieur en proposant des esters gras de cellulose présentant un faible degré de substitution ainsi qu'un caractère thermoplastique poussé, obtenu dans des conditions douces, sans solvant volatil ou réactif nocif.
L'invention vise en particulier des esters gras de cellulose, issus de l'estérification d'une matière cellulosique par des acides gras ou des anhydres d'acides gras, comportant au moins 8 atomes de carbone dans leur motif ester, présentant un degré de substitution total inférieur à 0,3 et une température de transition vitreuse Inférieure à 1800C.
Par ester gras de cellulose au sens de la présente invention, on entend le produit de réaction entre la cellulose ou une matière lignocellulosique et un agent acylant choisi parmi les acides gras ou les anhydrides d'acides gras.
Par ester gras de cellulose comportant au moins 8 atomes de carbone dans leur motif ester on entend le produit de réaction entre la cellulose ou une matière lignocellulosique et un agent acylant choisi parmi les acides gras à au moins 8 atomes de carbone ou les anhydrides d'acides gras à au moins 8 atomes de carbone.
Les esters gras de cellulose selon l'invention sont constitués par moins de 17% de cnaînes grasses, voire moins de 1%, si bien qu'ils n'entrent pas ou peu en compétition asec le secteur agroalimentaire, tout en présentant un caractère thermoplastique qui permet leur utilisation dans de nombreux domaines.
Ces esters gras de cellulose sont susceptibles d'être obtenus par un procédé de synthèse particulier qui constitue un autre aspect de l'invention. Ce procédé consiste à faire réagir une matière lignocellulosique asec un acide gras à au moins 8 atomes de carbone ou un anhydride d'acide gras à au moins 8 atomes de carbone, dans un liquide ionique, en présence d'un catalyseur non acide.
Avantageusement il s'agit d'un procédé écologique, à faible impact environnemental et efficace, aboutissant à la synthèse d'esters gras de cellulose présentant à la fois un caractère thermoplastique, un faible degré de substitution et une répartition homogène de l'estérification. On sait que les liquides ioniques constituent de bons solvants de la cellulose, faiblement toxiques, non volatils et aisément recyclables. Ils sont utilisés notamment pour réaliser des réactions sur la cellulose comme l'éthérification ou l'hydrolyse enzymatique. Dans la demande WO-2008/100566, les liquides ioniques sont également utilisés pour l'estérification de la cellulose avec des chlorures d'acyle, mais les esters obtenus présentent des degrés de substitution élevés, ce qui induit les inconvénients exposés précédemment.
Selon l'invention, l'association spécifique cellulose, liquide ionique, acide gras ou anhydride d'acides gras et catalyseur non acide permet d'obtenir des esters gras de cellulose présentant à la fois un faible degré de substitution, une répartition homogène sur l'ensemble de la chaîne de cellulose de l'estérification, et un caractère thermoplastique poussé.
Par matière lignocellulosique on entend toute matière riche en cellulose pouvant contenir minoritairement des hémicelluloses et des lignines.
La cellulose pure sans composé mineur est bien entendu préférée.
Par liquide ionique on entend tout composé ionique ayant une température de fusion inférieure à 1000C.
Par degré de substitution on entend le nombre moyen de groupements hydroxyles fonctionnalisés par unité d'anhydroglucose dans le polymère cellulosique. Il s'agit du degré de substitution total et non un degré de substitution partiel.
Le degré de substitution total (DS) est une valeur absolue, quelle que soit sa méthode d'analyse. Il peut être déterminé par différentes méthodes en fonction du degré de substitution. Pour les valeurs élevées (proche du maximum de 3), le degré de substitution peut être déterminé par analyse élémentaire ou Résonance Magnétique Nucléaire (RMN). Pour les valeurs plus faibles (proches de 1), le degré de substitution peut être déterminé par la méthode de saponification. Enfin pour les valeurs très faibles (proches de 0), comme les valeurs de degré de substitution des esters gras de la présente invention, il est possible d'utiliser une méthode chromαtogrαphique telle que décrite dans la publication référencée :
Peydecastaing J., Vaca-Garc\a C1 Borredon E. (2009) Accurate détermination of the degree of substitution of long chain cellulose esters. Cellulose 16, 289-297. La température de transition vitreuse (Tg) est définie comme la température à laquelle une matière passe de l'état vitreux à l'état caoutchouteux. Cette transition s'accompagne de changements de plusieurs propriétés physiques : augmentation du coefficient d'expansion thermique, diminution drastique du module de résistance, augmentation de la capacité thermique, etc. Pour mettre en évidence la température de transition vitreuse, il suffit de mesurer l'une de ces propriétés et de démontrer son changement. Dans l'ordre les propriétés peuvent être mesurées par analyse thermique (TA), par analyse mécanique dynamique (DMA) ou bien par calorimétrie différentiel à balayage (DSC). Ces méthodes de mesures conduisent à des valeurs de température de transition vitreuse extrêmement proches. Les différences observées dans la mesure de la température de transition vitreuse par ces trois méthodes ne varient que de quelques degrés Celsius, toujours moins de 100C. Pour la présente invention, on peut donc utiliser indifféremment chacune de ces méthodes. De façon préférée la méthode utilisée sera la DMA, car c'est la méthode la plus utilisée par l'homme du métier dans le cas des polymères.
Les esters gras de cellulose obtenus selon l'invention peuvent être utilisés en tant que polymères thermoplastiques, notamment pour la formation de pièces massives et films plastiques.
D'autres caractéristiques et avantages de l'invention ressortiront de la description en détail qui va suivre, description donnée à titre d'exemple uniquement, en regard notamment des dessins annexés sur lesquels :
- la figure 1 représente l'évolution de la température de transition vitreuse en fonction du degré de substitution d'esters gras de cellulose de l'art antérieur, - la figure 2 représente les analyses thermiques dynamiques (DMA) des esters gras de cellulose selon l'invention,
- la figure 3 représente le spectre RMN de la cellulose et d'un ester gras de cellulose selon l'invention, et
- la figure 4 représente l'évolution de la température de transition vitreuse en fonction du degré de substitution d'esters gras de cellulose obtenus par acylation avec chlorure d'acide gras sans liquide ionique.
L'invention vise donc un ester gras de cellulose comportant au moins 8 atomes de carbone dans leur motif ester présentant un degré de substitution total inférieur à 0,3 et une température de transition vitreuse inférieure à 1800C.
Cet ester gras est issu de l'estérif ication d'une matière cellulosique par un acide gras ou un anhydre d'acide gras.
Préférentiellement il s'agit d'un ester gras de cellulose présentant un degré de substitution total inférieur à 0,1 et une température de transition vitreuse comprise entre 60 et 1800C.
A titre d'exemple il peut s'agir d'un ester gras de cellulose présentant un degré de substitution de 3,6.10"2 et une température de transition vitreuse de 165°C.
Les esters gras de cellulose selon l'invention sont susceptibles d'être obtenus par réaction de matière lignocellulosique avec un acide gras ou un anhydre d'acide gras dans un liquide ionique capable de solubiliser la cellulose, en présence d'un catalyseur non acide.
Le liquide ionique peut être choisi parmi tous les liquides ioniques solvants de la cellulose.
Il s'agit préférentiellement de liquides ioniques solvants de la cellulose possédant des cations ammonium, pyridinium ou imidazolium.
Selon un mode de réalisation particulièrement adapté, il s'agit du l-butyl-3- methylimidazolium chloride (BMIMCI). Le catalyseur non acide peut être choisi parmi les sels d'acides carboxyliques, comme par exemple l'acétate de sodium, l'octanoate de sodium, l'octanoate de potassium ou le laurate de potassium.
De façon préférée, le catalyseur non acide est le laurate de potassium.
Préférentiellement la quantité de catalyseur non acide utilisé pour la réaction correspond à entre 0,01 et 0,1 Equivalent par OH de la matière lignocellulosique.
Très préférentiellement elle correspond à 10"2 Equivalent par OH de la matière lignocellulosique.
L'acide gras peut être choisi parmi tous les acides gras comprenant au moins 8 carbones.
Préférentiellement il s'agit d'un acide gras comprenant entre 8 et 18 atomes de carbone.
Selon un mode réalisation particulièrement adapté de la présente invention, l'acide gras est l'acide octanoïque.
A la place de l'acide gras il est possible d'utiliser sa forme anhydre, mais pas un chlorure d'acyle car son utilisation peut conduire à la dégradation du polymère à cause de la libération d'acide chlorhydrique lors de la réaction. L'anhydride ne détruit pas la cellulose et ne pollue pas le milieu par un sous-produit superflu.
L'acide gras ou l'anhydre d'acide gras est préférentiellement ajouté en excès par rapport à la matière lignocellulosique. La quantité d'acide gras ou d'anhydre d'acide gras utilisé pour la réaction correspondante peut être comprise entre 1 et 20 Equivalent par OH de la matière lignocellulosique. De façon préférée elle correspond à 10 Equivalent par OH de la cellulose.
Le procédé selon l'invention peut consister à dissoudre la cellulose dans le liquide ionique puis à ajouter l'acide gras ou l'anhydre d'acide gras dans cette solution de cellulose en présence du catalyseur non acide.
Le matière lignocellulosique peut être présente à entre 0,1 et 10% en masse dans le liquide ionique avant réaction, préférentiellement à 2%. Avantageusement l'utilisation du liquide ionique dans ces conditions, permet à la réaction de s'effectuer dans un milieu homogène, puisque la cellulose est complètement dissoute. L'estérification est très régulière tout au long de la chaîne cellulosique.
Le procédé selon l'invention peut comprendre au moins les étapes suivantes :
- dissolution de la matière lignocellulosique dans le liquide ionique,
- ajout d'acide gras ou d'anhydre d'acide gras dans cette solution de cellulose, en présence du catalyseur non acide,
- maintien de la température de réaction pendant une durée donnée et sous agitation,
- précipitation de l'ester de cellulose formé en versant le milieu réactionnel dans de l'éthanol, et
- f iltrations et purifications.
La température de la réaction est de façon préférée inférieure à 1800C, pour éviter la dégradation de la cellulose dans le liquide ionique. De même elle est préférentiellement supérieure à 600C, encore plus préférentiellement supérieure à 1000C afin d'assurer l'état fondu du liquide ionique, donc comprise entre 1000C et 1800C. Une température de réaction particulièrement adaptée est comprise entre 115 et 1300C.
Le procédé selon l'invention permet donc d'obtenir des esters gras de cellulose particuliers, présentant :
- un degré de substitution inférieur à 0,3 , préférentiellement compris entre 0,2.10"2 et 30.10"2, et
- une température de transition vitreuse comprise entre 60 et 1800C, c'est-à-dire un caractère thermoplastique à faible température, qui permet de les utiliser en tant que matériaux thermoplastiques. Ce caractère thermoplastique inhabituel peut s'expliquer par une homogénéité du greffage des chaînes grasses le long de la cellulose et de la désorganisation de la cellulose après solubilisation dans le liquide ionique.
Ces deux phénomènes sont la conséquence de la dissolution de la cellulose dans le liquide ionique et de l'utilisation du système réactionnel faisant appel à un catalyseur non acide en association.
La présence du liquide ionique, associé au catalyseur non acide, est très importante car sans solvant ou asec un autre solvant de la cellulose, les esters gras obtenus ne présentent pas les caractéristiques avantageuses de l'invention. Les esters gras de cellulose obtenus selon l'invention peuvent être utilisés en tant que matériau thermoplastique hydrophobe, en particulier pour la réalisation de pièces massives telles que des pièces obtenues par extrusion ou par thermoinjection comme par exemple des cadres de fenêtres des jouets, des emballages, etc. Du fait de leurs caractéristiques spécifiques, ils sont particulièrement adaptés pour ces applications, notamment car ils requièrent des températures de mise en forme inférieures à celles d'autres plastiques cellulosiques pour un taux de plastifiant donné.
L'invention est maintenant décrite en regard d'exemples particuliers de l'invention.
Exemple 1
Dans cet exemple, on fait réagir de l'acide octanoïque sur la cellulose (CeII-OH) en présence de Laurate de potassium (KL) dans du BMIMCI.
La réaction qui se produit est la suivante :
CeII-OH + ^^^^^^ ^f ^ -^^^^^ ^ C e|| + H2O
O BMIMCI O La réaction est réalisée en réacteur batch en excès d'acide octanoïque (10
Equivalent par OH de cellulose) avec une solution de cellulose dans le liquide ionique de 2% en masse et en présence de laurate de potassium (10~2 Equivalent par OH de la cellulose) à 125°C. La durée de la réaction est de 3 heures.
A la fin de la réaction, on réalise la précipitation de la cellulose modifiée en versant le milieu réactionnel dans une grande quantité d'éthanol.
La purification du solide synthétisé après filtration est réalisée par extraction sous pression (A. S. E.) par éthanol à 1200C et sous 100 bars.
Le procédé de synthèse comporte la mise en oeuvre des étapes suivantes :
- dissolution de la cellulose dans le BMIMCI à 125°C sous agitation (500 tr/min) pour une proportion de 2 g de cellulose pour 100 g de liquide ionique,
- lorsque la cellulose est totalement dissoute, ajout du catalyseur (le laurate de potassium) et de l'agent acylant (l'acide octanoïque) au milieu à 125°C et sous agitation (500 tr/min),
- après 3 heures de réaction, refroidissement du milieu avant de le verser dans une grande quantité d'éthanol sous agitation (500 tr/min) afin de précipiter l'ester de cellulose formé,
- filtration du solide sur un filtre Buchner,
- purification du solide à l'aide d'un soxhlet à l'éthanol pendant plusieurs heures ou à l'aide d'un appareil ASE à l'éthanol en effectuant 4 cycles de purification à 1200C et sous 100 bars (chauffage de la matière pendant 5 min et mise en contact avec le solvant pendant 5 min), et
- séchage de l'ester de cellulose synthétisé à l'étuve à 1030C pendant une nuit.
Le liquide après filtration peut être récupéré, I" éthanol évaporé et le restant recyclé pour une utilisation ultérieure. Les esters gras de cellulose synthétisés par ce procédé possèdent un degré de substitution maximum de 3,6.10"2 (déterminé par une méthode chromatographique objet de la publication référencée : Peydecastaing J., Vaca- Garc\a C1 Borredon E. (2009) Accurate détermination of the degree of substitution of long chain cellulose esters. Cellulose 16, 289-297) et des températures de transition vitreuse révélées par des analyses DMA (Analyse Dynamique Mécanique).
Les analyses élémentaires effectuées sur les esters de cellulose synthétisés prouvent l'absence de liquides ioniques résiduels. Cela exclut l'hypothèse d'un effet plastifiant du BMIMCI.
Les analyses thermiques (DMA), représentées sur la figure 2, de ces esters gras de cellulose à faible degré de substitution synthétisés selon l'invention, montrent deux transitions viscoélastiques (à 700C et à 165°C), la première étant une transition bêta et la seconde étant la transition vitreuse.
Les esters gras de cellulose obtenus présentent donc un degré de substitution de 3,6.10~2 et une température de transition vitreuse de 165°C. Or, les esters gras de cellulose de l'art antérieur, présentant un degré de substitution de 3,6.10~2 ont une température de transition vitreuse supérieure à 2500C, et ceux présentant une température de transition vitreuse de 165°C, ont un degré de substitution compris entre 2 et 3.
L'analyse RMN des esters gras de cellulose obtenus selon l'invention, représentée sur la figure 3, confirme le greffage par liaisons covalentes des chaînes grasses sur la cellulose.
Le thermopressage à 1700C sous 50 bars permet d'obtenir des matériaux montrant la fusion et la cohésion des grains les uns aux autres.
Exemple 2
Selon une variante, le procédé peut être réalisé avec l'anhydride octanoïque. La réaction est effectuée dans un réacteur de 25OmL équipé d'un réfrigérant et d'un agitateur mécanique. Dans ce dispositif sont introduits le liquide ionique et la cellulose à dissoudre. Lorsque le système est limpide, l'anhydride octanoïque est ajouté dans le réacteur. La synthèse se déroule sous agitation (500 tours par minute) à 125°C pendant 2 heures. En fin de réaction, le réacteur est refroidi jusqu'à une température de 800C. Le mélange réactionnel est versé dans 2 litres d'éthanol afin de faire précipiter la cellulose et le biopolymère estérifié. Le solide est séparé par filtration, lavé à l'éthanol puis purifié par extraction à l'éthanol à l'aide d'un appareil ASE. Le produit ainsi obtenu est séché dans une étuve à 1050C pendant 24 heures.
Les esters gras de cellulose obtenus présentent un degré de substitution de 0,26 et une température de transition vitreuse de 75°C.
Exemple 3 : exemple comparatif sans solvant
La figure 4 représente l'évolution de la température de transition vitreuse en fonction du degré de substitution d'esters gras de cellulose obtenus par acylation avec chlorure d'acide gras sans liquide ionique.
Les esters gras C8 à C16 sont obtenus en mettant 10g de cellulose en suspension dans 25OmL de pyridine à 200C pendant 30 minutes. Une quantité variable de chlorure d'acide gras (entre 0,5 et 2eq/OH) a été introduite dans le réacteur et la réaction a été poursuivie pendant 2 heures à 1300C sous agitation mécanique. Le mélange a été ensuite refroidi à 1000C et 25OmL d'éthanol à 50% a été ajouté pour détruire le chlorure d'acide restant. Le produit solide a été récupéré par filtration et parfaitement lavé à l'éthanol et à l'acétone à l'aide d'un appareil Soxhlet. Les esters de cellulose obtenus ont été séchés à 500C jusqu'à poids constant.
On constate que les esters gras de cellulose obtenus, comportant au moins 8 atomes de carbone dans leur motif ester, présentent une température de transition vitreuse supérieure à 1800C pour un degré de substitution total inférieur à 0,3.
Exemple 4 : exemple comparatif avec un autre solvant qu'un liquide ionique
Un essai a été réalisé dans les mêmes conditions que l'exemple 1, en remplaçant le liquide ionique par du DMAc/LiCI.
Là encore les esters gras de cellulose obtenus présentent des températures de transition vitreuse bien supérieures à 2500C pour des degrés de substitution inférieurs à 0,3.

Claims

REVENDICATIONS
1. Ester gras de cellulose comportant au moins 8 atomes de carbone dans son motif ester, caractérisé en ce qu'il présente un degré de substitution total inférieur à 0,3 et une température de transition vitreuse inférieure à 1800C.
2. Ester gras de cellulose comportant au moins 8 atomes de carbone dans son motif ester selon la revendication 1, caractérisé en ce qu'il présente un degré de substitution inférieur à 0,1 et une température de transition vitreuse comprise entre 600C et 1800C.
3. Procédé de synthèse d'un ester gras de cellulose selon la revendication 1 ou 2, par réaction d'une matière lignocellulosique asec un acide gras ou un anhydre d'acide gras comprenant au moins 8 atomes de carbone, dans un liquide ionique capable de solubiliser la cellulose, en présence d'un catalyseur non acide.
4. Procédé de fabrication d'un ester gras de cellulose selon la revendication 3, caractérisé en ce que le liquide ionique est le l-butyl-3- methylimidazolium chloride.
5. Procédé de synthèse d'un ester gras de cellulose selon l'une des revendications 3 ou 4, caractérisé en ce que le catalyseur non acide est le laurate de potassium.
6. Procédé de fabrication d'un ester gras de cellulose selon l'une des revendications 3 à 5, caractérisé en ce que l'acide gras est l'acide octanoïque ou l'anhydre d'acide gras est l'anhydride octanoïque.
7. Procédé de fabrication d'un ester gras de cellulose selon l'une des revendications 3 à 6, caractérisé en ce que la matière lignocellulosique est présente entre 0,1% et 10% en masse dans le liquide ionique avant réaction.
8. Procédé de fabrication d'un ester gras de cellulose selon l'une des revendications 3 à 7, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- dissolution de la matière lignocellulosique dans le liquide ionique, et - ajout d'acide gras ou d'anhydre d'acide gras dans cette solution de cellulose en présence du catalyseur non acide.
9. Procédé de fabrication d'un ester gras de cellulose selon l'une des revendications 3 à 8, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- dissolution de la matière lignocellulosique dans le liquide ionique,
- ajout d'acide gras ou d'anhydre d'acide gras dans cette solution de cellulose, en présence du catalyseur non acide,
- maintien de la température de réaction pendant une durée donnée et sous agitation,
- précipitation de l'ester de cellulose formé en versant le milieu réactionnel dans de l'éthanol, et
- f iltrations et purifications.
10. Utilisation d'un ester gras de cellulose selon la revendication 1 ou 2, ou d'un ester gras de cellulose obtenu par la mise en oeuvre d'un procédé selon l'une des revendications 3 à 9, en tant que matériau plastique hydrophobe pour la fabrication de pièces plastiques.
PCT/FR2010/051403 2009-07-03 2010-07-02 Esters gras de cellulose, procede de synthese et utilisations WO2011001127A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0954566A FR2947553B1 (fr) 2009-07-03 2009-07-03 Esters gras de cellulose, procede de synthese et utilisations
FR0954566 2009-07-03

Publications (2)

Publication Number Publication Date
WO2011001127A1 true WO2011001127A1 (fr) 2011-01-06
WO2011001127A9 WO2011001127A9 (fr) 2011-02-24

Family

ID=41495672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051403 WO2011001127A1 (fr) 2009-07-03 2010-07-02 Esters gras de cellulose, procede de synthese et utilisations

Country Status (2)

Country Link
FR (1) FR2947553B1 (fr)
WO (1) WO2011001127A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175746A (zh) * 2015-07-29 2015-12-23 广东省微生物研究所 一种木质纤维均相转酯化改性方法
US10058101B2 (en) 2013-06-26 2018-08-28 Indigo Agriculture, Inc. Methods of use of seed-origin endophyte populations
US10104862B2 (en) 2013-02-05 2018-10-23 University Of Saskatchewan Endophytic microbial symbionts in plant prenatal care
US10136646B2 (en) 2013-06-26 2018-11-27 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
US10212944B2 (en) 2015-05-01 2019-02-26 Indigo Agriculture, Inc. Designed complex endophyte compositions and methods for improved plant traits
US10212940B2 (en) 2015-05-01 2019-02-26 Indigo Agriculture, Inc. Isolated complex endophyte compositions and methods for improved plant traits
US10212911B2 (en) 2014-06-26 2019-02-26 Indigo Agriculture, Inc. Endophytes, associated compositions, and methods of use thereof
US10271554B2 (en) 2013-12-24 2019-04-30 Ait Austrian Institute Of Technology Gmbh Plants containing beneficial endophytes
US10306890B2 (en) 2014-06-26 2019-06-04 Ait Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor
US10375966B2 (en) 2013-11-06 2019-08-13 The Texas A&M University System Fungal endophytes for improved crop yields and protection from pests
US10462990B2 (en) 2014-06-20 2019-11-05 The Flinders University Of South Australia Inoculants and methods for use thereof
US10624351B2 (en) 2016-12-01 2020-04-21 Indigo Ag, Inc. Modulated nutritional quality traits in seeds
US10640783B2 (en) 2017-03-01 2020-05-05 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits
US10645938B2 (en) 2017-03-01 2020-05-12 Indigo Ag, Inc. Endophyte compositions and the methods for improvement of plant traits
US10667523B2 (en) 2014-12-30 2020-06-02 Indigo Ag, Inc. Seed endophytes across cultivars and species, associated compositions, and methods of use thereof
US10750711B2 (en) 2015-06-08 2020-08-25 Indigo Ag, Inc. Streptomyces endophyte compositions and methods for improved agronomic traits in plants
US10932469B2 (en) 2013-12-24 2021-03-02 Ait Austrian Institute Of Technology Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds
US11186527B2 (en) 2012-06-22 2021-11-30 Ait Austrian Institute Of Technology Gmbh Method for producing plant seed containing endophytic micro-organisms
US11263707B2 (en) 2017-08-08 2022-03-01 Indigo Ag, Inc. Machine learning in agricultural planting, growing, and harvesting contexts
US11589579B2 (en) 2017-09-22 2023-02-28 Biotenzz Gesellschaft Für Biotechnologie Mbh Polymeric particles containing microorganisms
US11751515B2 (en) 2015-12-21 2023-09-12 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance
US11754553B2 (en) 2013-09-04 2023-09-12 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
US11807586B2 (en) 2016-12-23 2023-11-07 The Texas A&M University System Fungal endophytes for improved crop yields and protection from pests
US11882838B2 (en) 2017-04-27 2024-01-30 The Flinders University Of South Australia Bacterial inoculants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789995A1 (fr) * 1999-02-23 2000-08-25 Toulouse Inst Nat Polytech Procede pour conferer un caractere hydrophobe a une matiere solide cellulosique ou amylacee
WO2000050493A1 (fr) * 1999-02-23 2000-08-31 Institut National Polytechnique De Toulouse (I.N.P.T.) Procede de fabrication d'un ester gras de cellulose ou d'amidon par esterification ou transesterification
US20080194807A1 (en) * 2007-02-14 2008-08-14 Eastman Chemical Company Reformation of ionic liquids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2185596B1 (fr) * 2007-08-24 2018-06-13 Eastman Chemical Company Esters de cellulose mélangés possédant une faible biréfringence et films fabriqués à partir de ces compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789995A1 (fr) * 1999-02-23 2000-08-25 Toulouse Inst Nat Polytech Procede pour conferer un caractere hydrophobe a une matiere solide cellulosique ou amylacee
WO2000050493A1 (fr) * 1999-02-23 2000-08-31 Institut National Polytechnique De Toulouse (I.N.P.T.) Procede de fabrication d'un ester gras de cellulose ou d'amidon par esterification ou transesterification
US20080194807A1 (en) * 2007-02-14 2008-08-14 Eastman Chemical Company Reformation of ionic liquids
WO2008100566A1 (fr) 2007-02-14 2008-08-21 Eastman Chemical Company Esters de cellulose et leur production dans des liquides ioniques carboxylés

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PEYDECASTAING J ET AL: "Long chain cellulose esters with very low DS obtained with non-acidic catalysts", CELLULOSE, KLUWER ACADEMIC PUBLISHERS, DO, vol. 13, no. 1, 1 February 2006 (2006-02-01), pages 95 - 103, XP019234600, ISSN: 1572-882X *
PEYDECASTAING J.; VACA-6ARCIA C.; BORREDON E.: "Accurate détermination of the degree of substitution of long chain cellulose esters", CELLULOSE, vol. 16, 2009, pages 289 - 297
PEYDECASTAING J.; VACA-GARCIA C.; BORREDON E.: "Accurate détermination of the degree of substitution of long chain cellulose esters", CELLULOSE, vol. 16, 2009, pages 289 - 297
SARAH KÖHLER ET AL: "Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride", CELLULOSE, KLUWER ACADEMIC PUBLISHERS, DO, vol. 14, no. 5, 28 June 2007 (2007-06-28), pages 489 - 495, XP019524884, ISSN: 1572-882X *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186527B2 (en) 2012-06-22 2021-11-30 Ait Austrian Institute Of Technology Gmbh Method for producing plant seed containing endophytic micro-organisms
US11064673B2 (en) 2013-02-05 2021-07-20 University Of Saskatchewan Endophytic microbial symbionts in plant prenatal care
US10212912B2 (en) 2013-02-05 2019-02-26 University Of Saskatchewan Endophytic microbial symbionts in plant prenatal care
US10104862B2 (en) 2013-02-05 2018-10-23 University Of Saskatchewan Endophytic microbial symbionts in plant prenatal care
US11076573B2 (en) 2013-02-05 2021-08-03 University Of Saskatchewan Endophytic microbial symbionts in plant prenatal care
US10076120B2 (en) 2013-06-26 2018-09-18 Indigo Agriculture, Inc. Seed-origin endophyte populations, compositions, and methods of use
US10492497B2 (en) 2013-06-26 2019-12-03 Indigo Ag, Inc. Seed-origin endophyte populations, compositions, and methods of use
US11793202B2 (en) 2013-06-26 2023-10-24 Indigo Ag, Inc. Methods of use of seed-origin endophyte populations
US10499653B2 (en) 2013-06-26 2019-12-10 Indigo Ag, Inc. Methods of use of seed-origin endophyte populations
US10499652B2 (en) 2013-06-26 2019-12-10 Indigo Ag, Inc. Methods of use of seed-origin endophyte populations
US10058101B2 (en) 2013-06-26 2018-08-28 Indigo Agriculture, Inc. Methods of use of seed-origin endophyte populations
US11166465B2 (en) 2013-06-26 2021-11-09 Indigo Ag, Inc. Methods of use of seed-origin endophyte populations
US10499654B2 (en) 2013-06-26 2019-12-10 Indigo Ag, Inc. Seed-origin endophyte populations, compositions, and methods of use
US10136646B2 (en) 2013-06-26 2018-11-27 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
US10912303B2 (en) 2013-06-26 2021-02-09 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
US11754553B2 (en) 2013-09-04 2023-09-12 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
US10375966B2 (en) 2013-11-06 2019-08-13 The Texas A&M University System Fungal endophytes for improved crop yields and protection from pests
US10813359B2 (en) 2013-11-06 2020-10-27 The Texas A & M University System Fungal endophytes for improved crop yields and protection from pests
US11771090B2 (en) 2013-11-06 2023-10-03 The Texas A&M Unversity System Fungal endophytes for improved crop yields and protection from pests
US10932469B2 (en) 2013-12-24 2021-03-02 Ait Austrian Institute Of Technology Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds
US11753618B2 (en) 2013-12-24 2023-09-12 Indigo Ag, Inc. Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds
US11254908B2 (en) 2013-12-24 2022-02-22 Indigo Ag, Inc. Plants containing beneficial endophytes
US10271554B2 (en) 2013-12-24 2019-04-30 Ait Austrian Institute Of Technology Gmbh Plants containing beneficial endophytes
US10362787B2 (en) 2013-12-24 2019-07-30 Ait Austrian Institute Of Technology Gmbh Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds
US11425912B2 (en) 2014-06-20 2022-08-30 The Flinders University Of South Australia Inoculants and methods for use thereof
US10462990B2 (en) 2014-06-20 2019-11-05 The Flinders University Of South Australia Inoculants and methods for use thereof
US11445729B2 (en) 2014-06-20 2022-09-20 The Flinders University Of South Australia Inoculants and methods for use thereof
US11747316B2 (en) 2014-06-26 2023-09-05 Ait Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor
US11570993B2 (en) 2014-06-26 2023-02-07 Indigo Ag, Inc. Endophytes, associated compositions, and methods of use
US10306890B2 (en) 2014-06-26 2019-06-04 Ait Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor
US11119086B2 (en) 2014-06-26 2021-09-14 Ait Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor
US10212911B2 (en) 2014-06-26 2019-02-26 Indigo Agriculture, Inc. Endophytes, associated compositions, and methods of use thereof
US10667523B2 (en) 2014-12-30 2020-06-02 Indigo Ag, Inc. Seed endophytes across cultivars and species, associated compositions, and methods of use thereof
US11751571B2 (en) 2015-05-01 2023-09-12 Indigo Ag, Inc. Isolated complex endophyte compositions and methods for improved plant traits
US10212944B2 (en) 2015-05-01 2019-02-26 Indigo Agriculture, Inc. Designed complex endophyte compositions and methods for improved plant traits
US11064702B2 (en) 2015-05-01 2021-07-20 Indigo Ag, Inc. Isolated complex endophyte compositions and methods for improved plant traits
US11197457B2 (en) 2015-05-01 2021-12-14 Indigo Ag, Inc. Designed complex endophyte compositions and methods for improved plant traits
US10212940B2 (en) 2015-05-01 2019-02-26 Indigo Agriculture, Inc. Isolated complex endophyte compositions and methods for improved plant traits
US10750711B2 (en) 2015-06-08 2020-08-25 Indigo Ag, Inc. Streptomyces endophyte compositions and methods for improved agronomic traits in plants
US11819027B2 (en) 2015-06-08 2023-11-21 Indigo Ag, Inc. Streptomyces endophyte compositions and methods for improved agronomic traits in plants
CN105175746A (zh) * 2015-07-29 2015-12-23 广东省微生物研究所 一种木质纤维均相转酯化改性方法
CN105175746B (zh) * 2015-07-29 2017-07-18 广东省微生物研究所 一种木质纤维均相转酯化改性方法
US11751515B2 (en) 2015-12-21 2023-09-12 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance
US11766045B2 (en) 2016-12-01 2023-09-26 Indigo Ag, Inc. Modulated nutritional quality traits in seeds
US10624351B2 (en) 2016-12-01 2020-04-21 Indigo Ag, Inc. Modulated nutritional quality traits in seeds
US11178876B2 (en) 2016-12-01 2021-11-23 Indigo Ag, Inc. Modulated nutritional quality traits in seeds
US11807586B2 (en) 2016-12-23 2023-11-07 The Texas A&M University System Fungal endophytes for improved crop yields and protection from pests
US11516989B2 (en) 2017-03-01 2022-12-06 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits
US10645938B2 (en) 2017-03-01 2020-05-12 Indigo Ag, Inc. Endophyte compositions and the methods for improvement of plant traits
US10640783B2 (en) 2017-03-01 2020-05-05 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits
US11985931B2 (en) 2017-03-01 2024-05-21 Indigo Ag, Inc. Endophyte compositions and the methods for improvement of plant traits
US11882838B2 (en) 2017-04-27 2024-01-30 The Flinders University Of South Australia Bacterial inoculants
US11263707B2 (en) 2017-08-08 2022-03-01 Indigo Ag, Inc. Machine learning in agricultural planting, growing, and harvesting contexts
US11589579B2 (en) 2017-09-22 2023-02-28 Biotenzz Gesellschaft Für Biotechnologie Mbh Polymeric particles containing microorganisms

Also Published As

Publication number Publication date
WO2011001127A9 (fr) 2011-02-24
FR2947553A1 (fr) 2011-01-07
FR2947553B1 (fr) 2012-02-03

Similar Documents

Publication Publication Date Title
WO2011001127A1 (fr) Esters gras de cellulose, procede de synthese et utilisations
Ahammed et al. Improvement of the water resistance and ductility of gelatin film by zein
Rahman et al. Thermal behaviour and interactions of cassava starch filled with glycerol plasticized polyvinyl alcohol blends
CA2712818A1 (fr) Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions
EP0579546B1 (fr) Composition thermoformable, son procédé de préparation et son utilisation pour l'obtention d'articles thermoformés
WO2012007397A1 (fr) Nouveaux matériaux composites à base de cellulose
FR2934272A1 (fr) Procede de preparation de compositions a base de matiere amylacee et de polymere synthetique.
CA2712901A1 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.
CA2712898A1 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
CA2739051A1 (fr) Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
FR2859729A1 (fr) Dispersions aqueuses d'au moins un polymere biodegradable
FR2597485A1 (fr) Procede pour la fabrication de cyclodextrines modifiees.
JP3619592B2 (ja) セルロースアセテート溶液およびその調製方法
WO2006097656A1 (fr) Synthese d'evoh-greffe-polylactone
WO2011042677A1 (fr) Procede de preparation de derives acetyles de matiere amylacee
EP2539503B1 (fr) Procédé de préparation de biomatériaux hydrophobisés, biomatériaux hydrophobisés tels qu'obtenus et leurs utilisations
Muiruri et al. Rapid dissolution of high concentration poly (3-hydroxybutyrate) using neoteric biosolvents: experiment and molecular dynamics simulation
Sehn et al. Structure–Property Relationships of Short Chain (Mixed) Cellulose Esters Synthesized in a DMSO/TMG/CO2 Switchable Solvent System
NL2029164B1 (en) Modification of biopolymers using polyols and polyacids
Chen et al. Mechanical properties and water resistance of an acetylated starch–based plastic
JP2004035814A (ja) セルロースエステル組成物の製造方法
BE1030773B1 (fr) Compositions pour former de l'amidon thermoplastique et leurs utilisations
FR2774380A1 (fr) Cellulose de parenchyme substituee par des groupements carboxyalkyle
Park et al. Exploring potential of cellulose acetate sulfate films for sustainable packaging: tuning characteristics via sulfate group variation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10742188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10742188

Country of ref document: EP

Kind code of ref document: A1