WO2011000242A1 - 一种资源度量值的接收方法、发送方法及基站和终端 - Google Patents

一种资源度量值的接收方法、发送方法及基站和终端 Download PDF

Info

Publication number
WO2011000242A1
WO2011000242A1 PCT/CN2010/072813 CN2010072813W WO2011000242A1 WO 2011000242 A1 WO2011000242 A1 WO 2011000242A1 CN 2010072813 W CN2010072813 W CN 2010072813W WO 2011000242 A1 WO2011000242 A1 WO 2011000242A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource metric
frequency
metric value
resource
base station
Prior art date
Application number
PCT/CN2010/072813
Other languages
English (en)
French (fr)
Inventor
刘锟
鲁照华
刘颖
罗薇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012518010A priority Critical patent/JP5302459B2/ja
Publication of WO2011000242A1 publication Critical patent/WO2011000242A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method for receiving a resource metric value, a sending method, and a base station and a terminal. Background technique
  • a base station refers to a device that provides services for a terminal.
  • the base station communicates with the terminal through an uplink/downlink.
  • the downlink or forward direction refers to the direction of the base station to the terminal, and the uplink or the reverse refers to the terminal to the base station. direction.
  • a plurality of terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink.
  • the scheduling of all resources of the system is normally allocated by the base station, and these are all scheduled and allocated by the base station.
  • Orthogonal Frequency Division Multiplexing when the base station in the same cell performs downlink data transmission with different terminals, since these downlinks are orthogonal to each other, intra-cell interference can be avoided.
  • the downlinks between different cells may not be orthogonal, and therefore, each terminal may be subject to downlink interference from other neighboring cell base stations, i.e., inter-cell interference.
  • AFR Adaptive Frequency Reuse
  • FIG. 1 is a frequency resource allocation manner of adjacent sectors in the prior art and each frequency partition Schematic diagram of the transmission power limitation of (Frequency Partition, FP), as shown in Figure 1, the main principles of the AFR scheme are:
  • the frequency reuse factor of FPi, FP 2 , and FP 3 is 3 (ie, Reuse3, also called Reusel/3), and the frequency resources in FP l5 FP 2 and FP 3 are allocated to one of three adjacent sectors.
  • the frequency reuse factor of FP 4 , FP 5 , and FP 6 is 3/2 ( That is, Reuse 3/2, also called Reuse2/3), the frequency resources in FP 4 , FP 5 , and FP 6 are allocated to two sectors of three adjacent sectors, and the third sector cannot use the frequency.
  • the resource may need to use the frequency of the subcarrier transmit power limiting the frequency resource to use the frequency resource; the FP 7 frequency reuse factor is 1 (ie, Reuse 1 ), which can be used by three adjacent sectors.
  • the base station allocates one Resource Metric (RM) for each FP, that is, [RMi, RM 2 , RM 3 , RM 4 , RM 5 , RM 6 , RM 7 ], and notifies the terminal of the resource metric value.
  • RM Resource Metric
  • the channel quality information (CQI) of the FP is greater than or equal to 1 FP to the base station, and the base station performs resource allocation according to the CQI condition of the FP reported by the terminal.
  • the base station adaptively adjusts the size of each FP, the transmit power of each subcarrier in each FP, and the RM value of each FP, and notifies all terminals in the sector.
  • the manner in which the base station sends all FP RMs to the terminal each time significantly increases the overhead of the system.
  • the present invention provides a method for receiving a resource metric value, a sending method, and a base station and a terminal, which are used to solve the problem that the base station existing in the prior art sends all FP RMs to the terminal each time, resulting in consumption.
  • the problem of fee system resources are used to solve the problem that the base station existing in the prior art sends all FP RMs to the terminal each time, resulting in consumption.
  • the present invention provides a method for sending a resource metric value, including:
  • the base station selects the resource metric value of the corresponding frequency partition in the frequency partition set according to the set selection rule, and sends the selected resource metric value to the terminal through the downlink channel in the determined time period.
  • the selection rule is: selecting a resource metric value of a partial frequency partition, where the resource metric value of the partial frequency partition is a resource metric value and frequency of A n -1 frequency partitions in a frequency partition set with a frequency reuse factor of q a resource metric of a frequency partition in a frequency partition set with a reuse factor of 1; or a resource metric of an A n -1 frequency partition in a frequency partition set with a frequency reuse factor of q; or a frequency with a frequency reuse factor of q Resource metrics for A n frequency partitions in the partition set;
  • a n is the number of frequency partitions in the frequency partition set whose frequency reuse factor is q or the number of different transmit power levels in the frequency partition set whose frequency reuse factor is q; the frequency reuse factor q is a positive number not equal to 1.
  • the transmitting method provided by the present invention further has the following features:
  • the base station selects the resource metric value of the part of the frequency partition in the frequency partition set according to the selection rule, the selected resource metric value is divided into N sub-collections, and the resource metric values corresponding to each sub-set are respectively passed in the determined time period.
  • the downlink channel is sent to the terminal, where N is greater than or equal to 1 and less than or equal to the selected number of frequency partitions;
  • the base station selects resource metric values of all frequency partitions in the frequency partition set according to the selection rule, the selected resource metric value is divided into M sub-sets, and the resource metric values corresponding to each sub-set are respectively passed through the downlink channel in the determined time period.
  • the M is greater than 1 and less than or equal to the total number of frequency partitions.
  • the determining the time period is one of one or more subframes, one or more frames, one or more superframes, and one or more other time units.
  • the present invention also provides a method for receiving a resource metric value, including:
  • the terminal receives and decodes the resource metric value sent by the base station in the determined time period, and recovers the resource metric value of all unknown frequency partitions based on the decoded resource metric value.
  • the resource metric value of recovering all the unknown frequency partitions based on the decoded resource metric value is specifically: if the decoded resource metric value is a partial resource metric value in a frequency reuse set of different frequency reuse factors, according to the predicted each The sum of the resource metric values of the frequency partitions in the frequency partition set and the decoded resource metric values, and the resource metric values of all unknown frequency partitions are recovered by the subtraction algorithm; if the decoded resource metric values are different frequency reuse factor frequency partition sets When all resource metrics are in the middle, the decoded resource metric is the resource metric for all unknown frequency partitions.
  • the invention also provides a base station, comprising:
  • a resource metric value selecting unit configured to select a resource metric value of a corresponding frequency partition in the frequency partition set according to the set selection rule
  • the resource metric value sending unit is configured to send the selected resource metric value to the terminal through the downlink channel within the determined time period.
  • the resource metric value selection unit selects a resource metric value of a middle partition or a total frequency partition of the frequency partition set according to the selection rule;
  • the resource metric value sending unit selects the resource metric value of the partial frequency partition, the resource metric value sending unit divides the selected resource metric value into N sub-collections, and respectively respectively respectively the resources corresponding to the sub-collections in the determined time period.
  • the metric value is sent to the terminal through the downlink channel; when the resource metric value selection unit selects the resource metric value of all frequency partitions, the selected resource metric value is divided into M sub-collections, and each sub-collection is respectively corresponding in the determined time period.
  • the resource metric is sent to the terminal through the downlink channel;
  • the N is greater than or equal to 1 and less than or equal to the selected number of frequency partitions; the M is greater than 1 and less than or equal to the total number of frequency partitions.
  • the invention also provides a terminal, comprising:
  • a resource metric receiving unit configured to receive and decode a resource metric value sent by the base station in the determined time period
  • the resource metric value restoring unit is configured to recover resource metric values of all unknown frequency partitions based on resource metric values decoded by the resource metric value receiving unit.
  • the resource metric value restoring unit when the resource metric value decoded by the resource metric value receiving unit is a partial resource metric value in a frequency partition set of different frequency reuse factors, according to a frequency partition in a predetermined frequency partition set.
  • the sum of the resource metric values and the decoded resource metric value, the resource metric value of all unknown frequency partitions is recovered by the subtraction algorithm; the resource metric value decoded by the resource metric value receiving unit is the frequency partition of the different frequency reuse factor
  • the decoded resource metric is the resource metric for all unknown frequency partitions.
  • the present invention has the following advantages:
  • the method for transmitting resource metrics the method for transmitting the same, and the base station and the terminal, the base station sends the resource metric value of the partial frequency partition to the terminal, and the terminal decodes and restores the resource metric value of all the frequency partitions by using the decoding algorithm,
  • each resource metric value of the frequency partition is sent to the terminal each time, and the invention greatly improves the utilization of system resources and reduces the overhead of the system.
  • FIG. 2 is a flowchart of a method for sending a resource metric value according to the present invention
  • FIG. 3 is a first, second, sixth, seventh, eighth, thirteenth, fourteenth and fifteenth phase of the present invention.
  • FIG. 4 is a third, fourth, fifth, ninth, tenth, eleventh and twelveth embodiment of the present invention. Adjacent sector
  • FIG. 5 is a structural diagram of a base station according to the present invention.
  • FIG. 6 is a structural diagram of a terminal provided by the present invention. Detailed ways
  • FIG. 2 is a flowchart of a method for sending a resource metric value according to the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step S201 The base station selects resource metric values of corresponding frequency partitions in the frequency partition set according to the set selection rule.
  • the selection rule may be a resource metric value for selecting a partial frequency partition, and the resource metric value of the partial frequency partition is a resource metric value and a frequency reuse factor of the A n ⁇ 1 frequency partitions in the frequency partition set with the frequency reuse factor q. a resource metric of a frequency partition in a frequency partition set of 1; or a resource metric of A n -1 frequency partitions in a frequency partition set having a frequency reuse factor of q; or a frequency partition set having a frequency reuse factor of q Resource metrics of the medium frequency partitions;
  • a n is the number of frequency partitions in the frequency partition set whose frequency reuse factor is q or the number of different transmit power levels in the frequency partition set whose frequency reuse factor is q; the frequency reuse factor q is a positive number not equal to 1.
  • the selection rule can also be a resource metric that selects all frequency partitions.
  • the method for selecting the resource metric value of the A n -1 frequency partitions in the frequency partition set with the frequency reuse factor q according to the selection rule may be determined according to specific requirements, and specifically, may be selected to be sent in the frequency partition set.
  • the lowest power A n -1 can also be divided in frequency
  • the A n -1 with the lowest frequency partition number is selected in the region set, and may also be selected according to other characteristic information of the frequency partition, and the present invention does not limit its specific selection form.
  • Step S202 The base station sends the selected resource metric value to the terminal through the downlink channel in the determined time period.
  • the step is specifically: when the base station selects the resource metric value of the partial frequency partition in the frequency partition set according to the selection rule, the selected resource metric value is divided into N sub-collections, and the resource metric values corresponding to each sub-set are respectively determined in the determined time period. Transmitting to the terminal through the downlink channel, where N is greater than or equal to 1 and less than or equal to the selected number of frequency partitions;
  • the base station selects the resource metric values of all frequency partitions in the frequency partition set according to the selection rule, the selected resource metric value is divided into M sub-sets, and the resource metric values corresponding to each sub-set are respectively sent to the downlink channel through the downlink channel in the determined time period.
  • the M is greater than 1 and less than and equal to the total number of frequency partitions.
  • the determining time period may be one of one or more subframes, one or more frames, one or more superframes, and one or more other time units; the base station may be in unicast, multicast, or broadcast. One way to send the resource metrics to the terminal.
  • the foregoing resource metric value is sent to the terminal through the downlink channel, and the resource metric value is added to the channel interference control signaling, and then sent to the terminal through the downlink channel.
  • the present invention also provides a method for receiving a resource metric value, including:
  • the terminal receives and decodes the resource metric value sent by the base station in the determined time period, and recovers the resource metric value of all unknown frequency partitions based on the decoded resource metric value.
  • the resource metric value of all the unknown frequency partitions is recovered based on the decoded resource metric value: if the decoded resource metric value is part of the resource metric value in the frequency reuse partition frequency set, according to the predicted frequency partition The sum of the resource metric values of the frequency partition in the set and the decoded resource metric value, and the resource metric value of all unknown frequency partitions is recovered by using the subtraction algorithm; if the decoded resource metric value is different frequency reuse factor frequency partition set When the resource metric is used, the decoded resource metric is the resource metric for all unknown frequency partitions.
  • the determining time period is one of one or more subframes, one or more frames, one or more superframes, and one or more other time units;
  • the sum of the resource metric values of the frequency partitions in each frequency partition set is sent by the upper layer network element to the terminal through the base station; or determined by the base station to be sent to the terminal; or stored as a default configuration in the terminal.
  • the method for transmitting and receiving the resource metric value provided by the present invention realizes that the base station sends the resource metric value of the partial frequency partition to the terminal each time, and the terminal decodes and restores the resource metric value of all the frequency partitions by using the decoding algorithm, which is compared with the prior art.
  • the method provided by the invention greatly improves the utilization of system resources and reduces the overhead of the system. The specific implementation process of the sending and receiving methods.
  • This embodiment divides the frequency resource into four FPs.
  • the frequency reuse factor of [FPi, FP 2 , FP 3 ] is Reusel/3
  • the frequency reuse factor of FP 4 is Reusel
  • the frequency resource allocation mode of adjacent sectors in the first embodiment and the transmission power limitation of each sub-band
  • the transmit power of [FP l FP 2 , FP 3 , FP 4 ] in sector one is [P HIGH , PLOWI, PLOW 2, P REU ]
  • [FP L FP 2 , FP 3 , FP 4 ] has a transmit power of
  • the transmit power of the FP is [P L .
  • the basic configuration information is notified to the corresponding base station by the upper layer network element through the air interface and/or the backbone network, and then the basic configuration information is sent by the base station to the terminal through corresponding signaling.
  • the upper layer network element refers to a device on the upper layer of the base station in the communication system, and may be a base station, a relay device, a base station controller, an access service network, a connection service network, or a core network gateway.
  • the upper layer network element notifies the corresponding base station of the FP selection rule of the FP through the air interface and/or the backbone network. And the base station sends the RM selection rule of the FP to the terminal by using the related signaling; or the base station determines the RM selection rule of the FP, and sends the RM selection rule of the FP to the terminal by using related signaling; or the FP selection rule of the FP is used as the default.
  • the configuration is stored in the base station and the terminal.
  • the RM selection rule of the FP in this embodiment is: selecting the RM of the k n -l FP with the lowest transmission power in the FP set with the frequency reuse factor of Reuse q (q not equal to 1), where k n is the frequency reuse factor is Reuse The number of FPs in the FP set of q.
  • the base station is further sent to the terminal by the base station through corresponding signaling; or stored in the base station and the terminal as a default configuration.
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • the base station selects two FPs with the lowest transmit power of the FP set of Reuse 1/3, that is, the RM of [FP 2 , FP 3 ] according to the RM selection rule of the FP.
  • the resource metric values [RM RM 2 , RM 3 ] of the current time [FPi, FP 2 , FP 3 ] are [1.8, 0.7, 0.5]
  • the base station selects [RM 2 , RM 3 ] or [ 0.7, 0.5], and [0.7, 0.5] are sent out for receiving by the terminal, wherein the base station specifically adds the selected resource metric value to the channel interference control signaling, and sends the interference control signaling through the downlink channel.
  • the subsequent embodiments are sent in this manner, and will not be explained.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 2 , RM 3 ] of [FP 2 , FP 3 ] by decoding [0.7, 0.5], and according to the previously obtained Reusel/3
  • Specific embodiment 2 Shown.
  • the RM selection rule of the FP in this embodiment is: selecting the RM of the k n -l FP with the lowest transmission power in the FP set with the frequency reuse factor being Reuse q (q not equal to 1), where k n is frequency reuse The factor is the number of FPs in the FP set of Reuse q (q is not equal to 1).
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • the base station selects two FPs of the FP set of Reusel/3, ie, the RM of [FP 2 , FP 3 ], according to the resource metric value RM selection rule of the FP.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 2 ] of [FP 2 ], that is, [0.7].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, that is, the superframe (N+M)
  • the base station selects [RM 3 ] or [ 0.5]
  • [0.5] is added to the interference control signaling for transmission for the terminal to receive.
  • the terminal receives a base station transmits control signaling, recovered by decoding [FP 3] resource metric [RM 3] that is [0.5].
  • this embodiment divides the frequency resource into four FPs. Among them, the frequency reuse factor of [FP l5 FP 2 FP 3 ] is Reusel/3, and the frequency reuse factor of FP 4 is Reusel.
  • the transmit power of [FPi, FP 2 , FP 3 , FP 4 ] in sector one is [P High , P Low , P Low , P reusel ] , and in sector 2 [FP FP 2 ,
  • the basic configuration information is notified to the corresponding base station by the upper layer network element through the air interface and/or the backbone network, and then the basic configuration information is sent by the base station to the terminal through corresponding signaling.
  • the upper layer network element notifies the RM selection rule of the FP to the corresponding base station through the air interface and/or the backbone network, and then the base station sends the RM selection rule of the FP to the terminal by using related signaling; or the base station determines the RM selection rule of the FP, and The RM selection rule of the FP is sent to the terminal through related signaling; or the RM selection rule of the FP is stored in the base station and the terminal as a default configuration.
  • the RM selection rule of the FP in this embodiment is: selecting the RM of the lowest L n -1 transmit power level FP among the FP sets whose Reuse q (q is not equal to 1), where L n is the frequency reuse factor Reuse q (q is not equal to 1) is the number of transmit power levels in the FP.
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • the base station selects the RM corresponding to the lowest one of the Reuse 1/3FP sets according to the RM selection rule of the FP.
  • the current time [FPi, FP 2 , FP 3 ] is assumed.
  • the resource metric [RM RM 2 , RM 3 ] is [1.8, 0.6, 0.6], and the base station selects [RM 2 ] or [RM 3] or [0.6] and adds it to the interference control signaling and sends it to the terminal.
  • the terminal receives the interference control signaling sent by the base station. Because the RM of the same transmission power level FP in the FP set of the frequency reuse factor Reuse q (q is not equal to 1) is the same, the terminal recovers by decoding [FP 2 , FP 3 ]
  • the RM selection rule of the FP in this embodiment is: selecting the RM of the Q n -1 FP with the smallest sequence number of the FP in the FP set of the frequency reuse factor Reuse q (q not equal to 1).
  • Q n is the number of FPs in the FP set of the frequency reuse factor Reuse q (q is not equal to 1).
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value of [FP l FP 2 ] by decoding, that is, [RM l RM 2 ] is [1.8, 0.6], and according to the pre-acquired Reuse 1/ 3
  • Specific Embodiment 5 As shown.
  • the RM selection rule of the FP in this embodiment is: selecting the RM of the Q n -1 FP with the smallest sequence number of the FP in the FP set of the frequency reuse factor Reuse q (q not equal to 1).
  • Q n is the number of FPs in the FP set for the frequency reuse factor Reuse q (q is not equal to 1).
  • the base station is further sent to the terminal by the base station through corresponding signaling; or stored in the base station and the terminal as a default configuration.
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • H is not the current time is the N-th superframe, i.e., superframe N, [FP l5 FP 2, FP 3] resource metric [RMi, RM 2, RM 3 ] to [1.8, 0.6, 0.6], Then, the base station selects the resource metric value [RMJ] of [FPi], and sends [1.8] to the terminal for reception through the interference control signaling.
  • the terminal receives the interference control signaling sent by the base station, and recovers the restored resource metric value, that is, [RMi] is [1.8].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, ie, the superframe (N+M)
  • the base station selects [RM 2 ] or [ 0.6]
  • [0.6] is added to the interference control signaling for transmission for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value RM of [FP 2 ] by decoding, that is, [RM 2 ] is [0.6].
  • the terminal is based on each of the pre-acquired Reusel/3 FP collections
  • the base station selects two FPs with the lowest transmission power in the FP set of Reuse 1/3, that is, the RM of [FP 2 , FP 3 ] and the RM of FP 4 in Reuse 1 according to the RM selection rule of the FP.
  • Resource metric of the present embodiment assumed that the current time [FPi, FP 2, FP 3 , FP 4] to [RMi, RM 2, RM 3 , RM 4] to [1.8, 0.7, 0.5, 1], the base station selection [RM 2 , RM 3 , RM 4 ], ie [0.7, 0.5, 1], and send [0.7, 0.5, 1] to the terminal for reception through interference control signaling.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 2 , RM 3 , RM 4 ] of [FP 2 , FP 3 , FP 4 ] by decoding, which is [0.7, 0.5, 1].
  • the base station selects two FPs with the lowest transmit power in the FP set of Reusel/3, that is, the RM of [FP 2 , FP 3 ] and the RM of FP 4 in Reuse 1 according to the RM selection rule of the FP.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 2 , RM 4 ] of [FP 2 , FP 4 ] by decoding, which is [0.7, 1].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, that is, the superframe (N+M)
  • the base station selects [RM 3 ] or [ 0.5]
  • [0.5] is sent out through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value RM of [FP 3 ] by decoding, that is, [RM 3 ] is [0.5].
  • Specific Embodiment 8 As shown.
  • the base station selects two FPs with the lowest transmit power in the FP set of Reusel/3, that is, the RM of [FP 2 , FP 3 ] and the RM of FP 4 in Reuse 1 according to the RM selection rule of the FP.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 2 ] of [FP 2 ] by decoding [0.7].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, that is, the superframe (N+M)
  • the base station selects [RM 3 ] or [ 0.5]
  • [0.5] is sent out through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 3 ] of [FP 3 ] by decoding [0.5].
  • L is an integer greater than or equal to 1, L may be equal to or not equal to M), that is, the current time is the (N+M+L) superframes, ie, superframes (N+M) +L ), the base station selects [RM 4 ] as [1] and sends [1] through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value RM of [FP 4 ] by decoding, that is, [RM 4 ] is [1].
  • the RM selection rule of the FP in this embodiment is: selecting the frequency reuse factor as Reuse q (q is not equal to 1) FP RM and selecting the frequency reuse factor Reuse q (q not equal to 1) the lowest L in the FP set n -1 RM corresponding to the FP of the transmission power level, where L n is the number of transmission power levels in the FP set of the frequency reuse factor Reuse q (q is not equal to 1).
  • the default configuration is stored in the base station and terminal.
  • the base station selects the RM corresponding to the lowest one of the Reuse 1/3 FP sets and the RM of the FP in the Reusel according to the RM selection rule of the FP.
  • the resource metric [RMi, RM 2 , RM 3 , RM 4 ] is [1.8, 0.6, 0.6, 1]
  • the base station selects [RM 2 or RM 3 , RM 4 ] for [0.6, 1]
  • the interference control signaling is sent to the terminal.
  • the FP of the FP set has the smallest sequence number.
  • (3 ⁇ 4 is the frequency reuse factor Reuse q (q is not equal to 1) the number of FPs in the FP set.
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • (3 ⁇ 4 is the frequency reuse factor Reuse q (q is not equal to 1) the number of FPs in the FP set.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM l RM 4 ] of [FP l FP 4 ] by decoding to [1.8, 1].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, ie, the superframe (N+M)
  • the base station selects [RM 2 ] or [ 0.7]
  • [0.7] is sent out through interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value of [FP 2 ] by decoding, that is, [RM 2 ] is [0.7].
  • the FP of the FP set has the smallest sequence number.
  • (3 ⁇ 4 is the frequency reuse factor Reuse q (q is not equal to 1) the number of FPs in the FP set.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RMd is [1.8].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, ie, the superframe (N+M)
  • the base station selects [RM 2 ] or [ 0.7]
  • [0.7] is sent out through interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value of [FP 2 ] by decoding, that is, [RM 2 ] is [0.7].
  • L is an integer greater than or equal to 1, L may be equal to or not equal to M), that is, the current time is the (N+M+L) superframes, ie, the superframe (N+M) +L), the base station selects [RM 4 ] or [1], and sends [1] through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value of [FP 4 ] by decoding, that is, [RM 4 ] is [1].
  • Specific Example 13 Shown. Specifically, the RM selection rule of the FP in this embodiment is: sending the frequency in a period of time.
  • the reuse factor is the RM of each FP in the FP set of R euse q (q is not equal to 1).
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • H is not the current time is the N-th superframe, i.e., superframe N, [FP l5 FP 2, FP 3] resource metric [RMi, RM 2, RM 3 ] to [1.8, 0.7, 0.5], Then the base station first selects [RMJ is [1.8], and sends [1.8] through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RMd is [1.8].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, ie, the superframe (N+M)
  • the base station selects [RM 2 ] or [ 0.7]
  • [0.7] is sent out through interference control signaling for the terminal to receive.
  • the terminal receives the base station transmits the control signaling to recover the [FP 2] resource metric [RM 2] i.e., [0.7] by decoding.
  • L is an integer greater than or equal to 1, L may be equal to or not equal to M), that is, the current time is the (N+M+L) superframes, ie, superframes (N+M) +L ), the base station selects [RM 3 ] or [0.5], and sends [0.5] through the interference control signaling for the terminal to receive.
  • Interference (6) terminal receives a base station transmits control signaling, recovered by decoding [FP 3] resource metric [RM 3] that is [0.5].
  • RM selection rules embodiment of the present embodiment is FP: transmitting over time RM FP FP of frequency reuse factor set R euse q (q is not equal to 1) in the RM, and each FP of Reusel.
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RMd is [1.8].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, ie, the superframe (N+M)
  • the base station selects [RM 2 ] or [ 0.7]
  • [0.7] is sent out through interference control signaling for the terminal to receive.
  • the terminal receives the base station transmits the control signaling to recover the [FP 2] resource metric [RM 2] i.e., [0.7] by decoding.
  • L is an integer greater than or equal to 1, L may be equal to or not equal to M), that is, the current time is the (N+M+L) superframes, ie, superframes (N+M) +L), the base station selects [RM 3 ] or [0.5], and sends [0.5] through the interference control signaling for the terminal to receive.
  • Interference (6) terminal receives a base station transmits control signaling, recovered by decoding [FP 3] resource metric [RM 3] that is [0.5].
  • K is an integer greater than or equal to 1, K may be equal to or not equal to M), that is, the current time is the (N+M+L+K) superframes, ie, superframes (N +M+L+K), the base station selects [RM 4 ] or [1], and sends [1] through the interference control signaling for the terminal to receive.
  • RM selection rules embodiment of the present embodiment is FP: transmitting over time RM FP FP of frequency reuse factor set R euse q (q is not equal to 1) in the RM, and each FP of Reusel.
  • the sector 1 is taken as an example to describe the method for transmitting the resource metric value and its corresponding receiving method:
  • (1) assumes that the current time is the N-th superframe, i.e., superframe N, [FP l5 FP 2, FP 3, FP 4] resource metric [RMi, RM 2, RM 3 , RM 4] to [1.8, 0.7, 0.5, 1], the base station first selects [RM ⁇ RM 2 ] or [1.8, 0.7], and sends [1.8, 0.7] through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM l RM 2 ] of [FP l FP 2 ] by decoding [1.8, 0.7].
  • M is an integer greater than or equal to 1
  • the current time is the (N+M)th superframe, that is, the superframe (N+M)
  • the base station selects [RM 3 , RM 4 That is [0.5, 1], and [0.5, 1] is sent out through the interference control signaling for the terminal to receive.
  • the terminal receives the interference control signaling sent by the base station, and recovers the resource metric value [RM 3 , RM 4 ] of [FP 3 , FP 4 ] by decoding [0.5, 1].
  • the method for transmitting and receiving resource metrics provided by the embodiment of the present invention enables the base station to send the resource metric value of the partial frequency partition to the terminal as control interference signaling, and the terminal decodes and recovers resources of all frequency partitions by using the decoding algorithm.
  • the metric value is compared with the prior art that all resource metric values of the frequency partition are sent to the terminal each time.
  • the method provided by the invention greatly improves the utilization of system resources and reduces the overhead of the system.
  • FIG. 5 is a structural diagram of a base station according to the present invention.
  • the base station includes: a resource metric value selection unit 510 and a resource metric value sending unit. 520; Among them,
  • the resource metric value selecting unit 510 is configured to select, according to the set selection rule, a resource metric value of a corresponding frequency partition in the frequency partition set;
  • the resource metric value sending unit 520 is configured to send the selected resource metric value to the terminal through the downlink channel within the determined time period.
  • the selection rule is a resource metric value for selecting a partial frequency partition
  • the resource metric value of the partial frequency partition is a resource metric value and a frequency reuse factor of the A n -1 frequency partitions in the frequency partition set with a frequency reuse factor of q.
  • a n is the number of frequency partitions in the frequency partition set with frequency reuse factor q or the number of different transmit power levels in the frequency partition set with frequency reuse factor q; frequency reuse factor q is a positive number not equal to 1;
  • the above determined time period is one of one or more subframes, one or more frames, one or more superframes, and one or more other time units.
  • the base station provided by the present invention has the following features:
  • the resource metric value extracting unit 510 selects resource metric values of some or all frequency partitions in the frequency partition set according to the selection rule;
  • the resource metric value sending unit 520 when the resource metric value selecting unit 510 selects the resource metric value of the partial frequency partition, divides the selected resource metric value into N sub-collections, and respectively sets the resource metric values corresponding to the respective sub-sets in the determined time period.
  • the resource metric value is divided into M sub-collections, and the resource metrics corresponding to the sub-sets are respectively determined in the determined time period.
  • the value is sent to the terminal through the downlink channel; Where N is greater than or equal to 1 and less than or equal to the selected number of frequency partitions; M is greater than 1 and less than or equal to the total number of frequency partitions.
  • FIG. 6 is a structural diagram of a terminal according to the present invention. As shown in FIG. 6, the terminal includes: a resource metric value receiving unit 610 and a resource metric value restoring unit 620;
  • a resource metric receiving unit 610 configured to receive and decode a resource metric value sent by the base station in the determined time period
  • the resource metric recovery unit 620 is configured to recover resource metric values of all unknown frequency partitions based on the resource metric values decoded by the resource metric receiving unit.
  • the resource metric value restoring unit 620 when the resource metric value decoded by the resource metric value receiving unit 610 is a partial resource metric value in a frequency partition set of different frequency reuse factors, according to the resource metric of the frequency partition in the predicted frequency partition set.
  • the sum value of the value and the decoded resource metric value are used to recover the resource metric values of all unknown frequency partitions by using the subtraction algorithm; the resource metric values decoded by the resource metric value receiving unit 610 are all in the frequency partition set of different frequency reuse factors.
  • the decoded resource metric is the resource metric for all unknown frequency partitions.
  • the determining time period is one of one or more subframes, one or more frames, one or more superframes, and one or more other time units;
  • the sum of the resource metric values of the frequency partitions in each frequency partition set is sent by the upper layer network element to the terminal through the base station; or is determined by the base station to be sent to the terminal; or stored as a default configuration in the terminal.
  • the invention realizes that the base station sends the resource metric value of the partial frequency partition to the terminal each time, and the terminal decodes and recovers the resource metric value of all the frequency partitions by using the decoding algorithm, compared with the total resource metric of the frequency partition each time in the prior art.
  • the value is sent to the terminal, which greatly improves the utilization of system resources and reduces the overhead of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种资源度量值的接收方法、 发送方法及基站和终端 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种资源度量值的接收方法、 发送方法及基站和终端。 背景技术
在无线通信系统中, 基站是指为终端提供服务的设备, 基站通过上 /下 行链路与终端进行通信, 下行或前向是指基站到终端的方向, 上行或反向 是指终端到基站的方向。 多个终端可同时通过上行链路向基站发送数据, 也可以通过下行链路同时从基站接收数据。
釆用基站调度控制的数据传输系统中, 系统所有资源的调度分配通常 行传输时所能使用的资源情况等, 这些都由基站调度分配。
在正交频分复用 ( Orthogonal Frequency Division Multiplexing , OFDM ) 系统中, 同一小区内基站与不同终端进行下行数据传输时, 由于这些下行 链路是彼此正交的, 因此可以避免小区内干扰。 然而, 不同小区之间的下 行链路可能不是正交的, 因此, 每一个终端都可能受到来自其它相邻小区 基站的下行干扰, 即小区间干扰。
降低小区间干扰对系统性能的影响是蜂窝系统设计的一个重要目标, 如果小区间的干扰严重, 则会降低系统容量, 特别是小区边缘用户的传输 能力, 进而影响系统的覆盖能力以及终端的性能。 为了克服小区间干扰, 可以釆用自适应频率重用 (Adaptive Frequency Reuse, AFR )方案, 将不同 子带资源分配给终端, 以降低小区间干扰强度。
图 1 为现有技术中相邻扇区的频率资源分配方式及各个频率分区 ( Frequency Partition, FP ) 的发射功率限制情况的示意图, 如图 1所示, AFR方案的主要原理为:
首先,将可用频率资源划分为 N个 FP, N为大于零的整数,假设 N=7 , 即将可用频率资源划分为 [FPi, FP2, FP3, FP4, FP5, FP6, FP7]。 其中, FPi, FP2, FP3的频率重用因子为 3 (即 Reuse3 , 也称作 Reusel/3 ), FPl5 FP2, FP3中的 频率资源分配给三个相邻扇区中一个扇区, 而其他两个扇区不能使用该频 率资源或者需要釆用限制该频率资源的子载波发射功率的方法来使用该频 率资源; FP4, FP5, FP6的频率重用因子为 3/2(即 Reuse 3/2,也称作 Reuse2/3 ), FP4, FP5, FP6中的频率资源分配给三个相邻扇区中两个扇区, 而第三个扇区 不能使用该频率资源或者需要釆用限制该频率资源的子载波发射功率的方 法来使用该频率资源; FP7频率重用因子为 1 (即 Reuse 1 ), 三个相邻扇区 都可以使用该频率资源。
然后, 基站为每个 FP分配一个资源度量值(Resource Metric, RM ), 即 [RMi, RM 2, RM 3, RM 4, RM 5, RM 6, RM 7] , 并且将该资源度量值通知终 端, 每个终端通过测量各个 FP 的频谱效率(Spectral Efficiency, SE ), 并 且通过计算各个 FP的 nS ( nSEi = SEj/RMi, 其中 i为 FP的索引号) 的大 小, 反馈 nS 最大的 M ( M大于等于 1 )个 FP的信道质量信息 (Channel Quality Information, CQI )到基站, 基站根据终端上报的 FP的 CQI情况进 行资源分配。
最后, 基站自适应调整各个 FP的大小、 各个 FP中子载波的发射功率 及各个 FP的 RM值, 并且通知本扇区内的所有终端。 然而, 基站每次都将 所有 FP的 RM发送给终端的方式, 会明显增加系统的开销。 发明内容
本发明提供一种资源度量值的接收方法、 发送方法及基站和终端, 用 以解决现有技术中存在的基站每次都将所有 FP的 RM发送给终端,导致耗 费系统资源的问题。
本发明提供一种资源度量值的发送方法, 包括:
基站根据设置的选择规则选取频率分区集合中相应的频率分区的资源 度量值, 在确定时间段内, 将选取的资源度量值通过下行信道发送至终端。
其中, 所述选择规则为: 选择部分频率分区的资源度量值, 所述部分 频率分区的资源度量值为频率重用因子为 q的频率分区集合中 An-1个频率 分区的资源度量值和频率重用因子为 1 的频率分区集合中的频率分区的资 源度量值; 或者, 频率重用因子为 q的频率分区集合中 An-1个频率分区的 资源度量值; 或者, 频率重用因子为 q的频率分区集合中 An个频率分区的 资源度量值;
或者, 选择全部频率分区的资源度量值;
其中, An为频率重用因子为 q的频率分区集合中频率分区的数量或频 率重用因子为 q 的频率分区集合中不同发射功率级别的数量; 频率重用因 子 q为不等于 1的正数。
本发明提供的发送方法进一步具有以下特点:
所述基站根据选择规则选取频率分区集合中所述部分频率分区的资源 度量值时, 将选取的资源度量值分为 N个子集合, 在确定时间段内分别将 各子集合对应的资源度量值通过下行信道发送至终端, 所述 N大于等于 1 小于等于选择的频率分区数;
所述基站根据选择规则选取频率分区集合中全部频率分区的资源度量 值时, 将选取的资源度量值分为 M个子集合, 在确定时间段内分别将各子 集合对应的资源度量值通过下行信道发送至终端, 所述 M大于 1小于等于 全部频率分区数。
具体的, 上述确定时间段为一个或多个子帧、 一个或多个帧、 一个或 多个超帧以及一个或多个其他时间单位中的一种。 本发明还提供一种资源度量值的接收方法, 包括:
终端接收并解码基站在确定时间段内发送的资源度量值, 并基于解码 出的资源度量值恢复出所有未知频率分区的资源度量值。
其中, 所述基于解码出的资源度量值恢复出所有未知频率分区的资源 度量值具体为: 若解码出的资源度量值为不同频率重用因子频率分区集合 中部分资源度量值时, 根据预知的各频率分区集合中频率分区的资源度量 值的和值和解码出的资源度量值, 利用减法算法恢复出所有未知频率分区 的资源度量值; 若解码出的资源度量值为不同频率重用因子频率分区集合 中全部资源度量值时, 解码出的资源度量值为所有未知频率分区的资源度 量值。
本发明还提供一种基站, 包括:
资源度量值选取单元, 用于根据设置的选择规则选取频率分区集合中 相应的频率分区的资源度量值;
资源度量值发送单元, 用于在确定时间段内, 将选取的资源度量值通 过下行信道发送至终端。
其中, 所述资源度量值选取单元根据选择规则选取频率分区集合中部 分或全部频率分区的资源度量值;
所述资源度量值发送单元在所述资源度量值选取单元选取部分频率分 区的资源度量值时, 将选取的资源度量值分为 N个子集合, 在确定时间段 内分别将各子集合对应的资源度量值通过下行信道发送至终端; 在所述资 源度量值选取单元选取全部频率分区的资源度量值时, 将选取的资源度量 值分为 M个子集合, 在确定时间段内分别将各子集合对应的资源度量值通 过下行信道发送至终端;
其中, 所述 N大于等于 1且小于等于选择的频率分区数; 所述 M大于 1且小于等于全部频率分区数。 本发明还提供一种终端, 包括:
资源度量值接收单元, 用于接收并解码基站在确定时间段内发送的资 源度量值;
资源度量值恢复单元, 用于基于资源度量值接收单元解码出的资源度 量值恢复出所有未知频率分区的资源度量值。
其中, 所述资源度量值恢复单元在所述资源度量值接收单元解码出的 资源度量值为不同频率重用因子的频率分区集合中部分资源度量值时, 根 据预知的各频率分区集合中频率分区的资源度量值的和值和解码出的资源 度量值, 利用减法算法恢复出所有未知频率分区的资源度量值; 在所述资 源度量值接收单元解码出的资源度量值为不同频率重用因子的频率分区集 合中全部资源度量值时, 解码出的资源度量值为所有未知的频率分区的资 源度量值。
与现有技术相比, 本发明具有以下优点:
本发明提供的资源度量值的接收方法、 发送方法及基站和终端, 基站 每次将部分频率分区的资源度量值发送至终端, 终端利用解码算法解码并 恢复出所有频率分区的资源度量值, 相对于现有技术中每次将频率分区的 全部资源度量值发送至终端, 本发明极大的提高了系统资源的利用率, 减 少了系统的开销。 附图说明 射功率限制情况的示意图;
图 2为本发明提供的一种资源度量值的发送方法流程图;
图 3 为本发明实施例一、 二、 六、 七、 八、 十三、 十四以及十五中相 图 4为本发明实施例三、 四、 五、 九、 十、 十一以及十二中相邻扇区 图 5为本发明提供的一种基站的结构图;
图 6为本发明提供的一种终端的结构图。 具体实施方式
下面将结合实施例及附图, 对本发明的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实 施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明提供的一种资源度量值的发送方法流程图, 如图 2所示, 该方法包括以下步骤:
步骤 S201 : 基站根据设置的选择规则选取频率分区集合中相应的频率 分区的资源度量值。
其中, 选择规则可以为选择部分频率分区的资源度量值, 所述部分频 率分区的资源度量值为频率重用因子为 q的频率分区集合中 An-1个频率分 区的资源度量值和频率重用因子为 1 的频率分区集合中的频率分区的资源 度量值; 或者, 频率重用因子为 q的频率分区集合中 An-1个频率分区的资 源度量值; 或者, 频率重用因子为 q的频率分区集合中八„个频率分区的资 源度量值;
其中, An为频率重用因子为 q的频率分区集合中频率分区的数量或频 率重用因子为 q 的频率分区集合中不同发射功率级别的数量; 频率重用因 子 q为不等于 1的正数。
选择规则也可以为选择全部频率分区的资源度量值。
进一步的, 根据选择规则在频率重用因子为 q的频率分区集合中选择 An-1 个频率分区的资源度量值的选择方法可以根据具体要求来确定, 具体 的, 可以在频率分区集合中选择发送功率最低的 An-1个, 也可以在频率分 区集合中选择频率分区序号最低的 An-1个, 还可以根据频率分区的其他特 征信息进行选取, 本发明不限定其具体选择形式。
步骤 S202: 基站在确定时间段内, 将选取的资源度量值通过下行信道 发送至终端。
该步骤具体为: 基站根据选择规则选取频率分区集合中部分频率分区 的资源度量值时, 将选取的资源度量值分为 N个子集合, 在确定时间段内 分别将各子集合对应的资源度量值通过下行信道发送至终端, 所述 N大于 等于 1且小于等于选择的频率分区数;
基站根据选择规则选取频率分区集合中全部频率分区的资源度量值 时, 将选取的资源度量值分为 M个子集合, 在确定时间段内分别将各子集 合对应的资源度量值通过下行信道发送至终端, 所述 M大于 1小于且等于 全部频率分区数。
其中, 上述确定时间段可以为一个或多个子帧、 一个或多个帧、 一个 或多个超帧以及一个或多个其他时间单位中的一种; 基站可以通过单播、 组播或广播中的一种方式将所述资源度量值发送至终端。
需要说明的是, 上述将选取的资源度量值通过下行信道发送至终端具 体是将资源度量值添加道干扰控制信令中后通过下行信道发送至终端的。
本发明还提供一种资源度量值的接收方法, 包括:
终端接收并解码基站在确定时间段内发送的资源度量值, 并且基于解 码出的资源度量值恢复出所有未知频率分区的资源度量值。
其中, 基于解码出的资源度量值恢复出所有未知频率分区的资源度量 值具体为: 若解码出的资源度量值为不同频率重用因子频率分区集合中部 分资源度量值时, 根据预知的各频率分区集合中频率分区的资源度量值的 和值和解码出的资源度量值, 利用减法算法恢复出所有未知频率分区的资 源度量值; 若解码出的资源度量值为不同频率重用因子频率分区集合中全 部资源度量值时, 解码出的资源度量值为所有未知频率分区的资源度量值。 上述确定时间段为一个或多个子帧、 一个或多个帧、 一个或多个超帧 以及一个或多个其他时间单位中的一种;
所述各频率分区集合中频率分区的资源度量值的和值由上层网元通过 基站发送至终端; 或者由基站确定发送至终端; 或者作为默认配置存储与 终端内。
本发明提供的资源度量值的收发方法, 实现了基站每次将部分频率分 区的资源度量值发送至终端, 终端利用解码算法解码并恢复出所有频率分 区的资源度量值, 相对于现有技术中每次将频率分区的全部资源度量值发 送至终端, 本发明提供的方法极大的提高了系统资源的利用率减少了系统 的开销。 送、 接收方法的具体实现过程。
具体实施例一:
本实施例将频率资源划分成四个 FP。 其中 [FPi, FP2, FP3]的频率重用因 子为 Reusel/3 , FP4的频率重用因子为 Reusel , 实施例一中相邻扇区的频率 资源分配方式及各个子带的发射功率限制情况如图 3 所示, 扇区一中 [FPl FP2, FP3, FP4]的发射功率为 [PHIGH, PLOWI, PLOW2, PREU』,扇区二中 [FPL FP2, FP3, FP4]的发射功率为
Figure imgf000010_0001
FP 的 发射功率为 [PLWL, PLOW2, Pffigh, Preusel] , 并且满足条件 Pffigh>
Figure imgf000010_0002
PLOW1> =PL。W2。 上述基本配置信息由上层网元通过空口和 /或骨干网通知给相应的 基站, 然后由基站通过相应信令将上述基本配置信息发送给终端。 其中, 上层网元是指通信系统中基站上层的设备, 可以是基站、 中继设备、 基站 控制器、 接入服务网、 连接服务网或核心网网关等。
上层网元通过空口和 /或骨干网将 FP的 RM选择规则通知相应的基站, 进而由基站通过相关信令将 FP的 RM选择规则发送给终端;或者基站确定 FP的 RM选择规则, 并且通过相关信令将该 FP的 RM选择规则发送给终 端; 或者 FP的 RM选择规则作为默认配置存储于基站和终端内。
本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q(q不 等于 1)的 FP集合中发射功率最低的 kn-l个 FP的 RM, 其中 kn为频率重用 因子为 Reuse q的 FP集合中的 FP的数量。
Reuse 1/3的 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 )以及 Reuse 1的 FP的 RM为 b (本实施例中 b=l )由上层网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作为默认配置存储于基站 和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )基站根据 FP的 RM选择规则选取 Reuse 1/3的 FP集合中发射功率 最低的两个 FP即 [FP2, FP3]的 RM。本实施例中,假设当前时刻 [FPi, FP2, FP3] 的资源度量值 [RM RM 2, RM 3]为 [1.8、 0.7、 0.5] , 则基站选取 [RM 2, RM3] 即 [0.7、 0.5] , 并将 [0.7、 0.5]发送出去, 以供终端接收, 其中, 基站具体是 将选取的资源度量值添加道干扰控制信令中, 并通过下行信道将该干扰控 制信令发送至终端, 后续的各实施例均釆用该方式发送, 不再做解释说明。
( 2 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2, FP3]的 资源度量值 [RM2, RM 3]即 [0.7、 0.5] , 并且根据预先获得的 Reusel/3的 FP 集合中各个 FP的 Resource Metric的和值 a = 3 , 计算得到 [FPi]的资源度量 值 RMl 即 RMi = a- RM2- RM3 = 3-0.7-0.5 = 1.8。
( 3 )终端根据预先获得的 Reusel的 FP集合中 FP的 RM为 b=l , 获得 [FP4]的 RM4 = 1。 具体实施例二: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q(q不等于 1)的 FP集合中发射功率最低的 kn-l个 FP的 RM,其中 kn 为频率重用因子为 Reuse q(q不等于 1)的 FP集合中的 FP的数量。
Reusel/3的 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 )以及
Reuse 1的 FP的资源度量(Resource Metric ) 为 b (本实施例中 b=l ) 由上 层网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或 者作为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )基站根据 FP的资源度量值 RM选择规则选取 Reusel/3的 FP集合 中发射功率最低的两个 FP即 [FP2, FP3]的 RM。
( 2 ) W iJ 当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3] 的资源度 量值 [RMi, RM 2, RM 3]为 [1.8、 0.7、 0.5] ,则基站选取 [RM 2]即 [0.7] ,并将 [0.7] 添加到干扰控制信令中发送出去, 以供终端接收。
( 3 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值 [RM 2]即 [0.7]。
( 4 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 ( N+M ), 基站选取 [RM3]即 [0.5] , 并将 [0.5]添加到干扰控 制信令中发送出去, 以供终端接收。
( 5 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP3]的资源 度量值 [RM3]即 [0.5]。 终端根据预先获得的 Reusel/3的 FP集合中各个 FP 的资源度量值的和值 a = 3 , 计算得到 [FPd的资源度量值 RMl 即 RM1 = a-RM2-RM3 = 3-0.7-0.5 = 1.8。
( 6 )终端根据预先获得的 Reusel的 FP集合中 FP的 RM为 b=l , 获得 [FP4]的 RM 4=1。 具体实施例三: 率限制情况如图 4所示,本实施例将频率资源划分成四个 FP。其中, [FPl5 FP2 FP3]的频率重用因子为 Reusel/3 , FP4的频率重用因子为 Reusel。 扇区一中 [FPi, FP2, FP3, FP4]的发射功率为 [PHigh, PLow, PLow, Preusel] , 扇区二中 [FP FP2,
FP3, FP4]的发射功率为 [PLW, PHigh, PLOW, Preusel] , 扇区三中 [FPi, FP2, FP3, FP4] 的发射功率为 [PLOW, PL。W, Pffigh, Preusel] , 并且满足条件 PHigh>=Preusel>PLow。 上 述基本配置信息由上层网元通过空口和 /或骨干网通知给相应的基站, 然后 由基站通过相应信令将上述基本配置信息发送给终端。
上层网元通过空口和 /或骨干网将 FP的 RM选择规则通知给相应的基 站, 进而由基站通过相关信令将 FP的 RM选择规则发送给终端; 或者由基 站确定 FP的 RM选择规则, 并且通过相关信令将 FP的 RM选择规则发送 给终端; 或者 FP的 RM选择规则作为默认配置存储于基站和终端内。
本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q(q不 等于 1)的 FP集合中最低的 Ln-1个发射功率级别 FP的 RM, 其中, Ln为频 率重用因子 Reuse q(q不等于 1)为 FP中的发射功率级别的数量。
Reusel/3的 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 )以及 Reuse 1的 FP的 RM为 b (本实施例中 b=l ) 由上层网元确定并通知基站, 进而由基站通过相应信令将其发送给终端; 或者作为默认配置存储于基站 和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )基站根据 FP的 RM选择规则选取 Reuse 1/3FP的集合中最低的一 个发射功率级别 FP对应的 RM。 本实施例中, 假设当前时刻 [FPi , FP2, FP3] 的资源度量值 [RM RM 2, RM 3]为 [1.8、 0.6、 0.6] , 则基站选取 [RM 2]或 [RM 3]即 [0.6]添加到干扰控制信令中发送给终端。
( 2 )终端接收基站发送的干扰控制信令, 由于频率重用因子 Reuse q(q 不等于 1)的 FP集合中相同发射功率级别 FP的 RM相同, 终端通过解码恢 复出 [FP2, FP3]的资源度量值 [RM2, RM3]为 [0.6、 0.6] , 并且根据预先获得的 Reuse 1/3FP的集合中各个 FP的 RM的和值 a=3 ,计算得到 的资源度量 值 [RMi] , 即 RMi = a- RM2- RM3 = 3-0.6-0.6 = 1.8。
( 3 )终端根据预先获得的 Reusel中 FP的 RM为 b=l ,获得 [FP4]的 RM4
= 1。 具体实施例四: 具体的, 本实施例中 FP的 RM选择规则为: 选取频率重用因子 Reuse q(q 不等于 1)的 FP集合中 FP的序号最小的 Qn-1个 FP的 RM。 其中 Qn为频率 重用因子 Reuse q(q不等于 1)FP集合中 FP的数量。
Reuse 1/3 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 ) 以及 Reusel的 FP的 RM为 b (本实施例中 b=l )由上层网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作为默认配置存储于基站 和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )本实施例中,假设当前时刻 [FPi, FP2, FP3]的资源度量值 [RMi, RM 2, RM3]为 [1.8、 0.6、 0.6] ,则基站选取 [FPi, FP2]的资源度量值 [RM , RM 2]即 [1.8、 0.6] , 并通过干扰控制信令将 [1.8、 0.6]发送给供终端接收。
( 2 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FPl FP2]的 资源度量值, 即 [RMl RM2]为 [1.8、 0.6] , 并且根据预先获得的 Reuse 1/3的 FP集合中各个 FP的 RM的和值 a=3 , 计算得到 [FP3]的资源度量值 [RM3] , 即 RM3=a-RM广 RM2
( 3 )终端才艮据预先获得的 Reuse 1的 FP的 Resource Metric为 b =1 , 获 得 [FP4]的 [RM4]=1。 具体实施例五: 所示。具体的,本实施例中 FP的 RM选择规则为:选取频率重用因子 Reuse q ( q不等于 1 ) 的 FP集合中 FP的序号最小的 Qn-1个 FP的 RM。 其中 Qn 为频率重用因子 Reuse q ( q不等于 1 ) FP集合中 FP的数量。
Reuse 1/3 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 ) 以及 Reuse 1的 FP的 Resource Metric为 b (本实施例中 b=l ) 由上层网元确定并 通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作为默认配 置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 ) H没当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3]的资源度 量值 [RMi, RM2, RM3]为 [1.8、 0.6、 0.6] ,则基站选取 [FPi]的资源度量值 [RMJ 即 [1.8] , 并通过干扰控制信令将 [1.8]发送给供终端接收。
( 2 )终端接收基站发送的干扰控制信令, 通过解码恢复出 的资源 度量值, 即 [RMi]为 [1.8]。
( 3 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 ( N+M ), 基站选取 [RM2]即 [0.6] , 并将 [0.6]添加到干扰控 制信令中发送出去, 以供终端接收。
( 4 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值 RM, 即 [RM2]为 [0.6]。终端根据预先获得的 Reusel/3 FP集合中各个 FP 的 RM 的和值 a=3 , 计算得到 [FP3]的资源度量值 RM3 , 即 RM3 = a-RM RM2 = 3-1.8-0.6 = 0.6。
( 5 )终端才艮据预先获得的 Reuse 1的 FP的 Resource Metric为 b = 1 , 获 得 [FP4]的 RM4 = 1。 具体实施例六: 所示。 具体的, 本实施例中 FP 的 RM选择规则为: 选取频率重用因子为 Reuse q(q = 1)的 FP 的 RM以及选取频率重用因子为 Reuse q(q不等于 1) FP 集合中的发射功率最低的 kn-l个 FP 的 RM, 其中, kn为频率重用因子为 Reuse q(q不等于 1)FP集合中的 FP 的数量。
Reuse 1/3 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 ) 由上层 网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者 作为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收方 法:
( 1 )基站根据 FP的 RM选择规则选取 Reuse 1/3的 FP集合中发射功率 最低的两个 FP即 [FP2, FP3]的 RM以及 Reuse 1中 FP4的 RM。 本实施例中, 假设当前时刻 [FPi, FP2, FP3, FP4]的资源度量值 [RMi, RM2, RM3, RM4]为 [1.8、 0.7、 0.5、 1] , 则基站选取 [RM2, RM3, RM4] , 即 [0.7、 0.5、 1] , 并通 过干扰控制信令将 [0.7、 0.5、 1]发送给终端接收。
( 2 )终端接收基站发送的干扰控制信令,通过解码恢复出 [FP2, FP3, FP4] 的资源度量值 [RM2, RM3 , RM4] , 为 [0.7、 0.5、 1] , 并且根据预先获得的 Reuse 1/3的 FP集合中的各个 FP的资源度量值 RM的和值 a=3 ,计算得到 的资源度量值 RMi , 为 RMi = a- RM2- RM3 = 3-0.7-0.5 = 1.8。 具体实施例七: 所示。 具体的, 本实施例中 FP 的 RM选择规则为: 选取频率重用因子为 Reuse q(q = 1)的 FP 的 RM以及选取频率重用因子为 Reuse q(q不等于 1) FP 集合中的发射功率最低的 kn-l个 FP 的 RM, 其中, kn为频率重用因子为 Reuse q(q不等于 1) FP集合中的 FP 的数量。
Reusel/3 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 ) 由上层 网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者 作为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收方 法:
( 1 )基站根据 FP的 RM选择规则选取 Reusel/3的 FP集合中发射功率 最低的两个 FP即 [FP2, FP3]的 RM以及 Reuse 1中 FP4的 RM。
( 2 )假设当前时刻为第 N个超帧, 即超帧 N , [FPl5 FP2, FP3, FP4]的资 源度量值 [RM RM2, RM3, RM4]为 [1.8、 0.7、 0.5、 1] ,则基站首先选取 [RM2, RM4] , 即 [0.7、 1] , 并通过干扰控制信令将 [0.7、 1]发送给终端接收。
( 3 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2, FP4]的 资源度量值 [RM2, RM4] , 为 [0.7、 1]。
( 4 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 (N+M ), 基站选取 [RM3]即 [0.5] , 并将 [0.5]通过干扰控制 信令发送出去, 以供终端接收。
( 5 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP3]的资源 度量值 RM, 即 [RM3]为 [0.5]。 终端根据预先获得的 Reusel/3的 FP集合中 的各个 FP的 Resource Metric的和值 a=3 ,计算得到 的资源度量值 RMi , 为 RMi = a- RM2- RM3 = 3-0.7-0.5 = 1.8。 具体实施例八: 所示。 具体的, 本实施例中 FP 的 RM选择规则为: 选取频率重用因子为 Reuse q(q = 1)的 FP 的 RM以及选取频率重用因子为 Reuse q(q不不等于 1) FP集合中的发射功率最低的 kn-l个 FP 的 RM, 其中, 1¾为频率重用因子 为 Reuse q(q不不等于 1) FP集合中的 FP 的数量。
Reusel/3 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 ) 由上层 网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者 作为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收方 法:
( 1 )基站根据 FP的 RM选择规则选取 Reusel/3的 FP集合中发射功率 最低的两个 FP即 [FP2, FP3]的的 RM以及 Reuse 1中 FP4的 RM 。
( 2 )假设当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3, FP4] 资源 度量值 [RMi, RM2, RM3, RM4]为 [1.8、 0.7、 0.5、 1] , 则基站首先选取 [RM2] , 即 [0.7] , 并通过干扰控制信令将 [0.7]发送给终端接收。
( 3 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值 [RM2]为 [0.7]。
( 4 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 (N+M ), 基站选取 [RM3]即 [0.5] , 并将 [0.5]通过干扰控制 信令发送出去, 以供终端接收。
( 5 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP3]的资源 度量值 [RM3]为 [0.5]。终端根据预先获得的 Reusel/3的 FP集合中的各个 FP 的 Resource Metric的和值 a=3 , 计算得到 的资源度量值 RMl 为 RMi = a- RM2- RM3 = 3-0.7-0.5 = 1.8。 ( 6 )L个超帧之后(L为大于或等于 1的整数, L可以等于或不等于 M ), 即当前时刻为第 (N+M+L ) 个超帧, 即超帧 (N+M+L ), 基站选取 [RM4] 为 [1] , 并将 [1]通过干扰控制信令发送出去, 以供终端接收。
( 7 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP4]的资源 度量值 RM, 即 [RM4]为 [1]。 具体实施方式九: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q ( q不等于 1 ) FP的 RM以及选取频率重用因子 Reuse q ( q不等于 1 ) FP集合中的最低的 Ln-1个发射功率级别的 FP对应的 RM, 其中, Ln 为频率重用因子 Reuse q ( q不等于 1 ) FP集合中的发射功率级别的数量。
Reuse 1/3的 FP集合中各个 FP的 RM的和值 a (本实施例中 a=3 )由上 层网元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或 者作为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收方 法:
( 1 )基站根据 FP的 RM选择规则选取 Reuse 1/3FP集合中最低的一个 发射功率级别 FP对应的 RM以及 Reusel中 FP的 RM。 本实施例中, 假设 当前时刻
Figure imgf000019_0001
的的资源度量值 [RMi, RM2, RM3, RM4]为 [1.8、 0.6、 0.6、 1] , 则基站选取 [RM2或 RM3, RM4] , 为 [0.6、 1] , 通过干扰控制 信令发送给终端。
( 2 )终端接收基站发送的干扰控制信令, 由于频率重用因子 Reuse q(q 不等于 1) FP集合中相同发射功率级别 FP的 RM相同, 终端通过解码恢复 出 [FP2,FP3,FP4]的资源度量值 RM, 即, [RM2, RM3, RM4]为 [0.6、 0.6、 1] , 并且根据预先获得的 Reusel/3FP集合中各个 FP的 RM的和值 a=3 ,计算得 到 [FP^的资源度量值 RMi = a-RM2-RM3 = 3-0.6-0.6 = 1.8。 具体实施方式十: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q ( q = 1 ) FP的 RM以及选取频率重用因子 Reuse q ( q不等于 1 ) FP 集合中 FP的序号最小的 Qn-1个 FP的 RM。其中,(¾为频率重用因子 Reuse q ( q不等于 1 ) FP集合中 FP的数量。
Reuse 1/3FP集合中各 FP的 RM的和值 a (本实施例中 a=3 ) 由上层网 元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作 为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )本实施例中, 假设当前时刻 [FPi, FP2, FP3, FP4]的资源度量值 [RM RM 2, RM3, RM4]为 [1.8、 0.6、 0.6、 1] , 则基站选取 [FPi, FP2, FP4]的资源度 量值 [RMi, RM 2, RM4]为 [1.8、 0.6、 1] , 并通过干 4尤控制信令将 [1.8、 0.6、
1]以发送给终端。
( 2 )终端接收基站发送的干扰控制信令,通过解码恢复出 [FPl FP2, FP4] 的资源度量值, 即, [RMl RM 2, RM4]为 [1.8、 0.6、 1] , 并且根据预先获得 的 Reusel/3FP集合中各个 FP的 RM的和值 a=3 ,计算得到 [FP3]的资源度量 值 RM3, 为 RM3 = a- RMi- RM2 = 3-1.8-0.6 = 0.6。 具体实施方式十一: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q ( q = 1 ) FP的 RM以及选取频率重用因子 Reuse q ( q不等于 1 ) FP 集合中 FP的序号最小的 Qn-1个 FP的 RM。其中,(¾为频率重用因子 Reuse q ( q不等于 1 ) FP集合中 FP的数量。
Reuse 1/3FP集合中各 FP的 RM的和值 a (本实施例中 a=3 ) 由上层网 元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作 为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收方 法:
( 1 )假设当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3, FP4]的资 源度量值 [RM RM 2, RM3, RM4]为 [1.8、 0.7、 0.5、 1] , 则基占首先选取 [RM RM4] , 即 [1.8、 1] , 并通过干扰控制信令将 [1.8、 1]发送给终端接收。
( 2 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FPl FP4]的 资源度量值 [RMl RM4]为 [1.8、 1]。
( 3 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 (N+M ), 基站选取 [RM2]即 [0.7] , 并将 [0.7]通过干扰控制 信令发送出去, 以供终端接收。
( 4 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值, 即 [RM2]即为 [0.7]。终端根据预先获得的 Reusel/3FP集合中的各个 FP的 RM的和值 a=3 ,计算得到 [FP3]的资源度量值 RM3, 为 RM3 = a- RM RM2 = 3-1.8-0.7 = 0.5。 具体实施方式十二: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 选取频率重用因子为 Reuse q ( q = 1 ) FP的 RM以及选取频率重用因子 Reuse q ( q不等于 1 ) FP 集合中 FP的序号最小的 Qn-1个 FP的 RM。其中,(¾为频率重用因子 Reuse q ( q不等于 1 ) FP集合中 FP的数量。 Reuse 1/3FP集合中各 FP的 RM的和值 a (本实施例中 a=3 ) 由上层网 元确定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作 为默认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收方 法:
( 1 )假设当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3, FP4]的资 源度量值 [RMi, RM2, RM3, RM4]为 [1.8、 0.7、 0.5、 1],则基站首先选取 [RMJ, 即 [1.8], 并通过干扰控制信令将 [1.8]发送给终端。
(2)终端接收基站发送的干扰控制信令, 通过解码恢复出 的资源 度量值 [RMd为 [1.8]。
( 3 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M) 个超帧, 即超帧 (N+M), 基站选取 [RM2]即 [0.7], 并将 [0.7]通过干扰控制 信令发送出去, 以供终端接收。
(4)终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值, 即 [RM2]即为 [0.7]。终端根据预先获得的 Reusel/3FP集合中的各个 FP的 RM的和值 a=3, 计算得到 [FP3]的的资源度量值即 [RM3], 为 RM3 = a- RMi- RM2 = 3-1.8-0.7 = 0.5。
( 6 )L个超帧之后(L为大于或等于 1的整数, L可以等于或不等于 M), 即当前时刻为第 (N+M+L) 个超帧, 即超帧 (N+M+L), 基站选取 [RM4] 即 [1], 并将 [1]通过干扰控制信令发送出去, 以供终端接收。
(7)终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP4]的资源 度量值, 即 [RM4]为 [1]。 具体实施例十三: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 在一段时间内发送频率 重用因子为 Reuse q(q不等于 1)的 FP集合中各个 FP的 RM。
Reuse 1的 FP的 Resource Metric为 b (本实施例中 b=l ) 由上层网元确 定并通知给基站, 进而由基站通过相应信令将其发送给终端; 或者作为默 认配置存储于基站和终端内。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 ) H没当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3]的资源度 量值 [RMi, RM2, RM3]为 [1.8、 0.7、 0.5] , 则基站首先选取 [RMJ即 [1.8] , 并 将 [1.8]通过干扰控制信令发送出去, 以供终端接收。
( 2 )终端接收基站发送的干扰控制信令, 通过解码恢复出 的资源 度量值 [RMd即 [1.8]。
( 3 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 (N+M ), 基站选取 [RM2]即 [0.7] , 并将 [0.7]通过干扰控制 信令发送出去, 以供终端接收。
( 4 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值 [RM2]即 [0.7]。
( 5 )L个超帧之后(L为大于或等于 1的整数, L可以等于或不等于 M ), 即当前时刻为第 (N+M+L ) 个超帧, 即超帧 (N+M+L ), 基站选取 [RM3] 即 [0.5] , 并将 [0.5]通过干扰控制信令发送出去, 以供终端接收。
( 6 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP3]的资源 度量值 [RM3]即 [0.5]。
( 7 )终端根据预先获得的 Reusel的 FP集合中 FP的资源度量值 RM为 b=l , 获得 [FP4]的资源度量值 [RM4]为 [1]。 具体实施例十四:
示意图继续如图 3 所示。 具体的 , 本实施例中 FP的 RM选择规则为: 在一段时间内发送频率 重用因子为 Reuse q(q不等于 1)的 FP集合中各个 FP的 RM以及 Reusel的 FP的 RM。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )假设当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3, FP4]的资 源度量值 [RM , RM2, RM3, RM4]为 [1.8、 0.7、 0.5、 1],则基站首先选取 [RMJ 即 [1.8], 并将 [1.8]通过干扰控制信令发送出去, 以供终端接收。
(2)终端接收基站发送的干扰控制信令, 通过解码恢复出 的资源 度量值 [RMd即 [1.8]。
( 3 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M) 个超帧, 即超帧 (N+M), 基站选取 [RM2]即 [0.7], 并将 [0.7]通过干扰控制 信令发送出去, 以供终端接收。
(4)终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP2]的资源 度量值 [RM2]即 [0.7]。
( 5 )L个超帧之后(L为大于或等于 1的整数, L可以等于或不等于 M), 即当前时刻为第 (N+M+L) 个超帧, 即超帧 (N+M+L), 基站选取 [RM3] 即 [0.5], 并将 [0.5]通过干扰控制信令发送出去, 以供终端接收。
(6)终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP3]的资源 度量值 [RM3]即 [0.5]。
(7) K个超帧之后 (K为大于或等于 1的整数, K可以等于或不等于 M), 即当前时刻为第 (N+M+L+K)个超帧, 即超帧 (N+M+L+K), 基站 选取 [RM4]即 [1], 并将 [1]通过干扰控制信令发送出去, 以供终端接收。
(8)终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP4]的资源 度量值 [RM4]即 [1]。 具体实施例十五: 所示。 具体的, 本实施例中 FP的 RM选择规则为: 在一段时间内发送频率 重用因子为 Reuse q(q不等于 1)的 FP集合中各个 FP的 RM以及 Reusel的 FP的 RM。
下面以扇区一为例, 具体描述资源度量值的发送方法及其对应的接收 方法:
( 1 )假设当前时刻为第 N个超帧, 即超帧 N, [FPl5 FP2, FP3, FP4] 的资 源度量值 [RMi, RM2, RM3, RM4]为 [1.8、 0.7、 0.5、 1] ,则基站首先选取 [RM^ RM2]即 [1.8、 0.7] , 并将 [1.8、 0.7]通过干扰控制信令发送出去, 以供终端接 收。
( 2 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FPl FP2]的 资源度量值 [RMl RM2]即 [1.8、 0.7]。
( 3 )M个超帧之后(M为大于或等于 1的整数),即当前时刻为第(N+M ) 个超帧, 即超帧 ( N+M ), 基站选取 [RM3, RM4]即 [0.5、 1] , 并将 [0.5、 1] 通过干扰控制信令发送出去, 以供终端接收。
( 4 )终端接收基站发送的干扰控制信令, 通过解码恢复出 [FP3, FP4]的 资源度量值 [RM3, RM4]即 [0.5、 1]。
本发明实施例提供的资源度量值的发送和接收方法, 实现了基站每次 将部分频率分区的资源度量值作为控制干扰信令发送至终端, 终端利用解 码算法解码并恢复出所有频率分区的资源度量值, 相对于现有技术中每次 将频率分区的全部资源度量值发送至终端, 本发明提供的方法极大的提高 了系统资源的利用率减少了系统的开销。
本发明还提供一种基站, 图 5 为本发明提供的一种基站的结构图, 如 图 5所示, 该基站包括: 资源度量值选取单元 510和资源度量值发送单元 520; 其中,
资源度量值选取单元 510,用于根据设置的选择规则选取频率分区集合 中相应的频率分区的资源度量值;
资源度量值发送单元 520, 用于在确定时间段内, 将选取的资源度量值 通过下行信道发送至终端。
其中, 选择规则为选择部分频率分区的资源度量值, 所述部分频率分 区的资源度量值为频率重用因子为 q的频率分区集合中 An-1个频率分区的 资源度量值和频率重用因子为 1 的频率分区集合中的频率分区的资源度量 值; 或者, 频率重用因子为 q的频率分区集合中 An-1个频率分区的资源度 量值; 或者, 频率重用因子为 q的频率分区集合中 An个频率分区的资源度 量值; 其中, An为频率重用因子为 q的频率分区集合中频率分区的数量或 频率重用因子为 q的频率分区集合中不同发射功率级别的数量; 频率重用 因子 q为不等于 1的正数;
或者, 选择全部频率分区的资源度量值。
上述确定时间段为一个或多个子帧、 一个或多个帧、 一个或多个超帧 以及一个或多个其他时间单位中的一种。
进一步的, 本发明提供的基站具有以下特点:
资源度量值选取单元 510根据选择规则选取频率分区集合中部分或全 部频率分区的资源度量值;
资源度量值发送单元 520在资源度量值选取单元 510选取部分频率分 区的资源度量值时, 将选取的资源度量值分为 N个子集合, 在确定时间段 内分别将各子集合对应的资源度量值通过下行信道发送至终端; 在资源度 量值选取单元 510选取全部频率分区的资源度量值时, 将选取的资源度量 值分为 M个子集合, 在确定时间段内分别将各子集合对应的资源度量值通 过下行信道发送至终端; 其中, N大于等于 1且小于等于选择的频率分区数; M大于 1且小于 等于全部频率分区数。
本发明还提供一种终端, 图 6为本发明提供的一种终端的结构图, 如 图 6所示, 该终端包括: 资源度量值接收单元 610和资源度量值恢复单元 620; 其中,
资源度量值接收单元 610,用于接收并解码基站在确定时间段内发送的 资源度量值;
资源度量值恢复单元 620,用于基于资源度量值接收单元解码出的资源 度量值恢复出所有未知频率分区的资源度量值。
其中, 资源度量值恢复单元 620在资源度量值接收单元 610解码出的 资源度量值为不同频率重用因子的频率分区集合中部分资源度量值时, 根 据预知的各频率分区集合中频率分区的资源度量值的和值和解码出的资源 度量值, 利用减法算法恢复出所有未知频率分区的资源度量值; 在资源度 量值接收单元 610解码出的资源度量值为不同频率重用因子的频率分区集 合中全部资源度量值时, 解码出的资源度量值为所有未知的频率分区的资 源度量值。
其中, 确定时间段为一个或多个子帧、 一个或多个帧、 一个或多个超 帧以及一个或多个其他时间单位中的一种;
各频率分区集合中频率分区的资源度量值的和值由上层网元通过基站 发送至终端; 或者由基站确定发送至终端; 或者作为默认配置存储与终端 内。
本发明实现了基站每次将部分频率分区的资源度量值发送至终端, 终 端利用解码算法解码并恢复出所有频率分区的资源度量值, 相对于现有技 术中每次将频率分区的全部资源度量值发送至终端, 极大的提高了系统资 源的利用率减少了系统的开销。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种资源度量值的发送方法, 其特征在于, 该方法包括:
基站根据设置的选择规则选取频率分区集合中相应的频率分区的资源 度量值;
在确定时间段内, 将选取的资源度量值通过下行信道发送至终端。
2、 如权利要求 1所述的方法, 其特征在于, 所述选择规则为: 选择部分频率分区的资源度量值, 所述部分频率分区的资源度量值为 频率重用因子为 q的频率分区集合中 An-1个频率分区的资源度量值和频率 重用因子为 1 的频率分区集合中的频率分区的资源度量值; 或者, 频率重 用因子为 q的频率分区集合中 An-1个频率分区的资源度量值; 或者, 频率 重用因子为 q 的频率分区集合中 An个频率分区的资源度量值; 其中, An 为频率重用因子为 q的频率分区集合中频率分区的数量或频率重用因子为 q 的频率分区集合中不同发射功率级别的数量; 频率重用因子 q为不等于 1 的正数;
或者, 选择全部频率分区的资源度量值。
3、 如权利要求 2所述的方法, 其特征在于, 所述基站根据选择规则选 取频率分区集合中所述部分频率分区的资源度量值为: 将选取的资源度量 值分为 N个子集合, 在确定时间段内分别将各子集合对应的资源度量值通 过下行信道发送至终端,所述 N大于等于 1且小于等于选择的频率分区数; 所述基站根据选择规则选取频率分区集合中全部频率分区的资源度量 值为: 将选取的资源度量值分为 M个子集合, 在确定时间段内分别将各子 集合对应的资源度量值通过下行信道发送至终端, 所述 M大于 1且小于等 于全部频率分区数。
4、 如权利要求 1至 3任一项所述的方法, 其特征在于,
所述确定时间段为一个或多个子帧、 一个或多个帧、 一个或多个超帧 以及一个或多个其他时间单位中的一种。
5、 一种资源度量值的接收方法, 其特征在于, 该方法包括: 终端接收并解码基站在确定时间段内发送的资源度量值, 并基于解码 出的资源度量值恢复出所有未知频率分区的资源度量值。
6、 如权利要求 5所述的方法, 其特征在于, 所述基于解码出的资源度 量值恢复出所有未知频率分区的资源度量值为:
解码出的资源度量值为不同频率重用因子频率分区集合中部分资源度 量值时, 则根据预知的各频率分区集合中频率分区的资源度量值的和值和 解码出的资源度量值, 利用减法算法恢复出所有未知频率分区的资源度量 值; 解码出的资源度量值为不同频率重用因子频率分区集合中全部资源度 量值, 则解码出的资源度量值为所有未知频率分区的资源度量值。
7、 一种基站, 其特征在于, 该基站包括: 资源度量值选取单元和资源 度量值发送单元; 其中,
所述资源度量值选取单元, 用于根据设置的选择规则选取频率分区集 合中相应的频率分区的资源度量值;
所述资源度量值发送单元, 用于在确定时间段内, 将选取的资源度量 值通过下行信道发送至终端。
8、 如权利要求 7所述的基站, 其特征在于,
所述资源度量值选取单元根据选择规则选取频率分区集合中相应的频 率分区的资源度量值为: 资源度量值选取单元根据选择规则选取频率分区 集合中部分或全部频率分区的资源度量值;
所述资源度量值发送单元在确定时间段内, 将选取的资源度量值通过 下行信道发送至终端为: 在所述资源度量值选取单元选取部分频率分区的 资源度量值时, 将选取的资源度量值分为 N个子集合, 在确定时间段内分 别将各子集合对应的资源度量值通过下行信道发送至终端; 在所述资源度 量值选取单元选取全部频率分区的资源度量值时, 将选取的资源度量值分 为 M个子集合, 在确定时间段内分别将各子集合对应的资源度量值通过下 行信道发送至终端, 其中, 所述 N大于等于 1且小于等于选择的频率分区 数; 所述 M大于 1小于且等于全部频率分区数。
9、 一种终端, 其特征在于, 该终端包括: 资源度量值接收单元和资源 度量值恢复单元; 其中,
所述资源度量值接收单元, 用于接收并解码基站在确定时间段内发送 的资源度量值;
所述资源度量值恢复单元, 用于基于资源度量值接收单元解码出的资 源度量值恢复出所有未知频率分区的资源度量值。
10、 如权利要求 9所述的终端, 其特征在于, 所述资源度量值恢复单 元基于资源度量值接收单元解码出的资源度量值恢复出所有未知频率分区 的资源度量值为: 所述资源度量值恢复单元在所述资源度量值接收单元解 码出的资源度量值为不同频率重用因子的频率分区集合中部分资源度量值 时, 根据预知的各频率分区集合中频率分区的资源度量值的和值和解码出 的资源度量值, 利用减法算法恢复出所有未知频率分区的资源度量值; 在 所述资源度量值接收单元解码出的资源度量值为不同频率重用因子的频率 分区集合中全部资源度量值时, 解码出的资源度量值为所有未知的频率分 区的资源度量值。
PCT/CN2010/072813 2009-07-01 2010-05-14 一种资源度量值的接收方法、发送方法及基站和终端 WO2011000242A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518010A JP5302459B2 (ja) 2009-07-01 2010-05-14 リソースメトリック値の受信方法、送信方法及び基地局と端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910148723.5 2009-07-01
CN2009101487235A CN101938747B (zh) 2009-07-01 2009-07-01 一种资源度量值的收发方法及装置

Publications (1)

Publication Number Publication Date
WO2011000242A1 true WO2011000242A1 (zh) 2011-01-06

Family

ID=43391830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072813 WO2011000242A1 (zh) 2009-07-01 2010-05-14 一种资源度量值的接收方法、发送方法及基站和终端

Country Status (3)

Country Link
JP (1) JP5302459B2 (zh)
CN (1) CN101938747B (zh)
WO (1) WO2011000242A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021727A1 (en) * 2002-08-28 2004-03-11 The University Court Of The University Of Edinburgh Method of operating a telecommunications system
CN1503486A (zh) * 2002-11-07 2004-06-09 ���ǵ�����ʽ���� 正交频分复用移动通信系统中频率重用的方法
CN101133615A (zh) * 2005-01-05 2008-02-27 三星电子株式会社 用于在通信系统中发送/接收信道质量信息的装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403505B2 (en) * 2002-12-31 2008-07-22 Telefonaktiebolaget Lm Ericsson (Publ) Resource granting in multi-carrier CDMA systems
CN101094213A (zh) * 2006-06-20 2007-12-26 华为技术有限公司 一种频率软复用系统及方法
CN101945465B (zh) * 2009-07-03 2015-01-28 中兴通讯股份有限公司 干扰控制功能指示信令的发送及接收方法、终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021727A1 (en) * 2002-08-28 2004-03-11 The University Court Of The University Of Edinburgh Method of operating a telecommunications system
CN1503486A (zh) * 2002-11-07 2004-06-09 ���ǵ�����ʽ���� 正交频分复用移动通信系统中频率重用的方法
CN101133615A (zh) * 2005-01-05 2008-02-27 三星电子株式会社 用于在通信系统中发送/接收信道质量信息的装置和方法

Also Published As

Publication number Publication date
JP5302459B2 (ja) 2013-10-02
JP2012531854A (ja) 2012-12-10
CN101938747A (zh) 2011-01-05
CN101938747B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101939052B1 (ko) 무선 자원 할당 방법 및 이를 수행하는 무선 자원 할당 장치
CN110784284B (zh) 使用喷泉码通过授权和未授权频段进行联合传输的系统和方法
WO2010031321A1 (zh) 无线通信系统中干扰控制信令的发送与接收方法
US10716119B2 (en) Scheduling of successive multi-user (MU) transmissions in a wireless local area network (LAN)
WO2011050719A1 (zh) 信道盲检测方法、装置
CN106937256A (zh) 一种基于非正交多址接入技术的协作多播传输方法
KR20120087173A (ko) 다중?사용자 통신 방식들에서 클라이언트 개시 전송들을 관리하기 위한 방법 및 장치
WO2007052812A1 (ja) 上りリンクの送信パラメータを決定する装置及び方法
CN107979824B (zh) 一种无线网络虚拟化场景下的d2d多播资源分配方法
WO2011021155A1 (en) Method and apparatus for transmission mode selection in cooperative relay
WO2011095060A1 (zh) 一种频率复用组网方法及设备
WO2009152694A1 (zh) 用户专属参考符号的功率分配方法及设备
WO2012075780A1 (zh) 基于终端服务等级的上行mu-mimo传输方法及基站
CN110663238B (zh) 发射器通信设备和视频数据发送方法
KR20110004567A (ko) 협력적 무선 자원 관리 방법
WO2011097908A1 (zh) 协作资源调度方法、装置、基站及系统
CN103634256B (zh) 基带信号的旁瓣功率抑制、旁瓣功率抑制处理方法及装置
WO2017067576A1 (en) Scheduling method and system
WO2011000242A1 (zh) 一种资源度量值的接收方法、发送方法及基站和终端
US10104679B2 (en) Apparatus and method for transmitting broadcast channel in broadband wireless access system
WO2007128183A1 (fr) Sélection d'antennes de transmission et procédé de modulation adaptatif
CN110446266B (zh) 一种WiFi载波聚合技术的分量载波选择方法
WO2015015543A1 (ja) 基地局、無線通信方法及び無線通信システム
WO2012151960A1 (zh) 一种控制信令的传输方法及系统
WO2014056518A1 (en) Frequency resource allocation for semi-persistent scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518010

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793537

Country of ref document: EP

Kind code of ref document: A1