WO2011095060A1 - 一种频率复用组网方法及设备 - Google Patents

一种频率复用组网方法及设备 Download PDF

Info

Publication number
WO2011095060A1
WO2011095060A1 PCT/CN2011/000186 CN2011000186W WO2011095060A1 WO 2011095060 A1 WO2011095060 A1 WO 2011095060A1 CN 2011000186 W CN2011000186 W CN 2011000186W WO 2011095060 A1 WO2011095060 A1 WO 2011095060A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
allocated
sub
subband
neighboring cell
Prior art date
Application number
PCT/CN2011/000186
Other languages
English (en)
French (fr)
Inventor
姜大洁
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010191140215A external-priority patent/CN102143500A/zh
Priority claimed from CN2010102687231A external-priority patent/CN102386989A/zh
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to JP2012551476A priority Critical patent/JP5536235B2/ja
Priority to US13/576,715 priority patent/US20130021999A1/en
Priority to KR1020127022337A priority patent/KR101468789B1/ko
Priority to EP11739339.7A priority patent/EP2533557B1/en
Publication of WO2011095060A1 publication Critical patent/WO2011095060A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects

Definitions

  • Time Division-Synchronous Code Division Multiple Access Long Term Evolution is an advanced technology that can improve the peak data rate, cell edge rate, and spectrum utilization of the system.
  • the existing system has made the following changes:
  • the CDMA technology is changed to Orthogonal Frequency Division Multiplexing (OFDM) technology to achieve effective multi-path interference against broadband systems.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM technology originated in the 1960s and has since been continuously improved and developed. After the 1990s, with the development of signal processing technology, it has been widely used in digital broadcasting, digital subscriber line (DSL) and wireless local area network. OFDM technology has the advantages of anti-multipath interference, simple implementation, flexible support, different bandwidth, high spectrum utilization, and efficient adaptive scheduling. It is recognized as the future 4G reserve technology.
  • MIMO technology can utilize the spatial channel characteristics of a multi-antenna system to simultaneously transmit multiple data streams, thereby effectively increasing data rate and frequency efficiency.
  • NodeB-RNC-CN in order to reduce the delay of control and user plane, to meet the requirements of low latency (control plane delay less than 100ms, user plane delay less than 5ms), the structure of NodeB-RNC-CN in the existing system must be simplified, The RNC will no longer exist as a physical entity, and the NodeB will have some functions of the RC to become an eNodeB.
  • the eNodeBs are meshed through the X2 interface and directly connected to the CN.
  • the LTE system mainly adopts the following two networking modes:
  • Networking mode 1 Use the networking mode with the frequency reuse factor being N, where N is a positive integer greater than 1.
  • N is a positive integer greater than 1.
  • the value of the frequency reuse factor N is different, and the total available frequency band of the LTE system is divided into multiple sub-bands, and there is no overlapping part between each sub-band, and different cells occupy different sub-bands.
  • the bandwidth occupied by the total available frequency band of the LTE system is 60M
  • the bandwidth of the 60M is divided into three sub-bands of sub-band 1, sub-band 2, and sub-band 3.
  • Each sub-band occupies a bandwidth of 20 MHz, and each sub-band Do not overlap each other.
  • cell A, cell B, and cell C occupy subband 1, subband 2, and subband 3, respectively.
  • the bandwidth of the total available frequency band of the LTE system is N times the sub-band bandwidth required by a single cell. Therefore, the required LTE system bandwidth is larger, and the frequency utilization rate of the entire system is higher. low.
  • Networking mode 2 A networking mode with a frequency reuse factor of 1.
  • the total available frequency band of the LTE system is regarded as a sub-band, and each cell occupies the total available frequency band, that is, each cell occupies the same frequency band.
  • N the frequency reuse factor
  • LTE 6 When the bandwidth occupied by the total available frequency band of the system is 20M, the bandwidth of the 20M is shared by the cell A, the cell B, and the cell C.
  • the embodiment of the invention provides a frequency reuse networking method and device, which are used to simultaneously solve the problem that the frequency utilization rate is too low and the inter-cell co-channel interference is large.
  • a frequency reuse networking method which divides a total available frequency band of the system into multiple sub-bands; the method for frequency reuse networking includes:
  • the divided sub-bands are allocated to each cell, wherein at least two cell-allocated sub-bands overlap.
  • a frequency reuse networking device where the device includes:
  • a dividing module configured to divide the total available frequency band of the system into multiple sub-bands in advance
  • an allocation module configured to allocate the divided sub-bands to each cell, where at least two cell allocated sub-bands overlap.
  • the total available frequency band of the system is divided into multiple sub-bands, and if the sub-bands with at least two cell allocations are ensured to be overlapped, the divided sub-bands are allocated to each cell, and therefore, relative to the current
  • the sub-band orthogonal networking method in which the frequency reuse factor is N the utilization of the system frequency is improved, and at the same time, compared with the networking method in which the frequency reuse factor of the prior art is 1, the reduction is performed.
  • FIG. 6 are schematic diagrams of three networking diagrams in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a networking in the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method for frequency reuse networking in Embodiment 2 of the present invention.
  • 9(a) and 9(b) are schematic diagrams showing two networking diagrams in Embodiment 2 of the present invention.
  • FIG. 12 are schematic diagrams of three networking technologies in Embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram of reducing the same-frequency interference mode 1 between PBCH/SS and PDSCH of a neighboring cell according to Embodiment 3 of the present invention.
  • 14(a), 14(b) and 14(c) are schematic diagrams of three networking diagrams in the third embodiment of the present invention.
  • FIG. 15 is a schematic diagram of reducing the same-frequency interference mode 2 between PBCH/SS and PDSCH of a neighboring cell according to Embodiment 3 of the present invention.
  • FIG. 16 is a schematic diagram of a method 1 for reducing co-channel interference between a PUCCH and a PUSCH of a neighboring cell according to Embodiment 4 of the present invention
  • 17(a), 17(b) and 17(c) are schematic diagrams showing three networking diagrams in the fourth embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a method 2 for reducing co-channel interference between a PUCCH and a PUSCH of a neighboring cell according to Embodiment 4 of the present invention
  • FIG. 19 is a schematic diagram of a method for reducing co-channel interference between adjacent cells according to Embodiment 5;
  • FIG. 20 is a schematic diagram of the networking and OI information of the cell A and the cell B in the fifth embodiment;
  • FIG. 21 is a schematic diagram of the frequency reuse networking device in the fifth embodiment.
  • the embodiment of the present invention provides a frequency reuse networking solution, which divides the total available frequency band of the system into multiple sub-bands. In the case of ensuring that at least two cell allocation sub-bands overlap, the divided sub-bands are allocated to each cell, thereby improving the system frequency compared to the prior art networking mode 1. Compared with the networking mode 2 of the prior art, the utilization of the same-frequency interference between cells is reduced.
  • the frequency reuse networking mode involved in the embodiments of the present invention may also be referred to as a "Frequency Shifted Frequency Reuse” (FSFR) networking.
  • FSFR Frequency Shifted Frequency Reuse
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 it is a schematic diagram of a method for frequency reuse networking in Embodiment 1 of the present invention, where the method includes the following steps:
  • Step 101 The system generally divides the total available frequency band into multiple sub-bands.
  • the number of divided sub-bands may be the same as the frequency reuse factor N.
  • the plurality of divided sub-bands at least two sub-bands have overlapping portions, that is, at least two sub-bands do not intersect. There are two specific situations:
  • Either subband has an overlap with the rest of the sub-band, or only a portion of the sub-band has an overlap, and the remaining sub-band does not overlap with the remaining sub-bands.
  • the overlap between the two sub-bands involved in the first embodiment may mean that the bandwidth occupied by the two sub-bands partially overlaps, or that the bandwidth occupied by the two sub-bands completely overlaps.
  • Step 101 is performed when the sub-band needs to be re-divided when the system changes. Step 101 is not required to be performed every time the networking is performed.
  • the solution in the first embodiment is not limited to the case where step 101 is executed each time.
  • the size of the occupied bandwidth of each subband may be the same or different.
  • Step 102 Assign the divided sub-bands to each cell, and at least two cell-assigned sub-bands overlap.
  • sub-band division may be performed in units of cells, or a set of multiple neighboring cells may be defined as a cell cluster, and the total available frequency band is divided into a bandwidth subset, and each bandwidth subset includes multiple sub-bands.
  • a subband is allocated for a cell, multiple subbands in one bandwidth subset may be allocated to multiple cells in one cell cluster.
  • two sub-bands can be allocated for each cell:
  • sub-band 1 can be allocated to cell A
  • subband 2 is allocated to cell B
  • subband 3 is allocated to cell C, where cells A, B, and C are neighboring cells of the same site.
  • each sub-band (sub-band 1, sub-band 2, and sub-band 3) also occupies a 20M bandwidth, with some overlap between any two sub-bands.
  • the embodiment of the present invention can also be applied to other available frequency bands, such as the total available frequency bands of 15 MHz, 25 MHz, 35 MHz, and 45 MHz.
  • the second allocation method allocates multiple sub-bands for at least one cell.
  • the second allocation mode in order to make the inter-resource interference of the same cell allocation smaller, it is required to allocate to the same, and the plurality of sub-bands of the area do not overlap, that is, two or two orthogonal.
  • sub-band 1 sub-band 2
  • sub-band 3 sub-band 4
  • subband 5 are allocated to cell C (subband 4 and sub Band 5 orthogonal).
  • the first distribution method described above can be applied in a single carrier system, and the second allocation method can be applied in a multi-carrier system, such as an effective application in a time division multiplexing long term evolution (LTE TDD) system, and a long-term evolution of frequency division multiplexing ( LTE FDD) systems, advanced time division multiplexing long-term evolution (LTE-ATDD) systems, advanced frequency division multiplexing long-term evolution (LTE-A FDD) systems, global microwave interconnect access (WiMAX) systems, and IEEE802, 16m systems in.
  • LTE TDD time division multiplexing long term evolution
  • LTE FDD long-term evolution of frequency division multiplexing
  • LTE-ATDD advanced time division multiplexing long-term evolution
  • LTE-A FDD advanced frequency division multiplexing long-term evolution
  • WiMAX global microwave interconnect access
  • IEEE802 16m systems in.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment of the present invention is a detailed description of the first embodiment based on the first embodiment.
  • a schematic diagram of a method according to Embodiment 2 of the present invention includes the following steps: Step 201: The total available frequency band of the system is divided into multiple sub-bands in advance.
  • Step 202 Determine a correlation between the plurality of subbands obtained by the division.
  • the correlation between the sub-bands is first determined between the sub-bands allocated to the cells, and the correlation is small.
  • a cell with a relatively close physical distance is allocated to a cell with a relatively large physical distance to minimize the co-channel interference between cells with a relatively close physical distance.
  • the specific algorithm is: The larger the quotient obtained by dividing the bandwidth occupied by the overlapping portions of the two sub-bands by the total bandwidth occupied by the two sub-bands, the greater the correlation between the two sub-bands.
  • the quotient is 0, and the two sub-bands are irrelevant; when the two sub-bands partially overlap, the quotient is greater than 0 and less than 1; When the two sub-bands completely overlap, the quotient is 1.
  • the bandwidth occupied by the overlapping portion of the subband 1 and the subband 2 is 10M
  • the total bandwidth occupied by subband 1 and subband 2 is 30M
  • the quotient of the bandwidth occupied by the overlap of subband 1 and subband 2 divided by the total bandwidth occupied by the two subbands is 1/3
  • subband 1 and subband 3 The overlapped part occupies 15M
  • the total bandwidth occupied by subband 1 and subband 3 is 30M.
  • the bandwidth occupied by the overlap of subband 1 and subband 3 is divided by the total bandwidth occupied by the two subbands. . Therefore, the correlation between sub-band 1 and sub-band 2 is less than the correlation between sub-band 1 and sub-band 3.
  • Step 203 The closer the physical distance between the two cells, the smaller the correlation between the sub-bands allocated to the two cells.
  • the correlation between subband 1 and subband 3 is large, the cell C farthest from cell D is allocated subband 3, subband 1 can be allocated in cell D, but cell A far from cell D has Subband 1 is allocated, therefore, subband 1 allocated in cell D and subband 1 in cell A will have certain co-channel interference; on the other hand, when subband 3 is allocated in cell D, although subband 2 and subband The correlation between the bands 3 is relatively high, but since the distance between the cell D and the cell C is the farthest, the cell D allocation sub-band 3 can reduce the co-channel interference between the cell D and the cell C.
  • the physical distance between the cells is taken as an example to describe the manner in which the sub-bands are allocated to the cell, and the embodiment of the present invention is not limited to the manner in which the sub-bands are allocated to the cell by other principles.
  • Step 204 Determine whether the load of the neighboring cell is lower than the negative threshold for the neighboring cells with overlapping sub-occupations; if yes, go to step 205; otherwise, go to step 206.
  • the cell may be used according to the overlap between the subbands of the neighboring cell. Configure the conditions for the use of subband resources.
  • the total available frequency band is 30 MHz, which is divided into two subbands, subband 1 and subband 2, each subband occupying a bandwidth of 20M, subband 1 and subband 2 There is an overlap portion of 10 M bandwidth (slashed portion in Fig. 9 (b)), subband 1 is allocated to cell 1, and subband 2 is allocated to cell 2 adjacent to cell 1.
  • cell A preferentially uses the left 10M bandwidth resource of subband 1
  • cell B preferentially uses the right 10M bandwidth resource of subband 2, that is, both cell A and cell B preferentially use the frequency band of the subband as the overlapping portion.
  • Dispatch business When the load of cell A and cell B is lighter (below the load threshold), the 10M bandwidth of subband 1 is not overlapped enough to bear the load of cell A, and the 10M bandwidth of subband 2 is not enough to bear cell B.
  • cell A and cell B may use only non-overlapping portions of the respective sub-bands to reduce co-channel interference between cells.
  • the cell A When the load of the cell A rises to not lower than the load threshold, the cell A can use the entire sub-band 1. If the cell B is lower than the load threshold, the cell B can continue to use the right side of the sub-band 2 10M bandwidth.
  • the service priorities to be scheduled in the cell 1 are arranged in descending order, and the services in the sub-band 1 that are not overlapped in the frequency band are scheduled to have high priority.
  • the services of the high-priority priority are transmitted on the resources with the same low-frequency interference to ensure the correct execution of the high-priority services.
  • Step 205 The cell schedules the service by using the frequency band of the non-overlapping part, and ends.
  • Step 206 The cell whose load is not lower than the bearer threshold uses the frequency band scheduling service of the non-overlapping part of the allocated sub-band to have a higher priority than the frequency band scheduling service using the overlapping part, and ends.
  • a larger frequency reuse factor can be supported in a case where the total available frequency band is smaller, and the utilization rate of the system frequency is improved; and, according to the correlation between the sub-bands, according to the correlation
  • the sub-band is properly allocated for the cell, the cell with smaller load is required to be used. Resources in the subband that do not overlap with subbands of other neighboring cells, so as to further reduce co-channel interference between cells; require that cells with larger bearers preferentially use subbands that do not overlap with other neighboring cells.
  • Sub-bands have overlapping resources to schedule high-priority services, and use resources in the sub-band overlapping with sub-bands of other neighboring cells to schedule low-priority services, so that high-priority services can have low co-channel interference. Transfer on resources to ensure the correct execution of high-priority services.
  • the process of self-band division and sub-band allocation to the cell is foreseeable, and the network does not dynamically change, and the scheduling algorithm is also easy to implement.
  • FIG. 10 to FIG. 12 The advantages of the first embodiment and the second embodiment of the present invention are illustrated in FIG. 10 to FIG. 12, and FIG. 10 to FIG. 12 are exemplary illustrations of the first embodiment and the second embodiment, which are not limited to the embodiments of the present invention. .
  • the total available frequency band assumed in Figure 10 ⁇ 12 is 30MHz, divided into three sub-bands, each sub-band occupies a bandwidth of 20M, where sub-band 1 is allocated to cell A, sub-band 2 is allocated to cell B, sub-band 3 is allocated to cell C, and cells A, B, and C are neighbor cells of the same site.
  • the Physical Downlink Control Channel (PDCCH), Physical HARQ Indicator Channel (PHICH), or Physical Control Format Indicator Channel (PCFICH) occupies the entire subband of the cell.
  • the implementation of the present invention is compared with the networking mode 2 shown in FIG. After the networking mode of the example, the intra-cell co-channel interference received by the PDCCH is smaller than the inter-cell co-channel interference received in the networking mode 2 shown in FIG. 2 .
  • the occupancy of the PHICH and the PCFICH in the subband is the same as that of the PDCCH, and will not be described here.
  • the broadcast channel (PBCH) and the synchronization channel (SS) occupy the middle portion of each cell allocation subband, and the width is 1.08 MHz
  • the physical downlink shared channel (PDSCH) occupies the PBCH and SS except the 1.08 MHz in the subband. Outside the frequency band.
  • the frequency bands occupied by the PBCH and the SS of the neighboring cells A, B, and C are orthogonal to each other. Since the PDSCH occupies the frequency band other than 1,08 MHz, the PDSCH is rarely used for information transmission when the cell is loaded. Therefore, the co-channel interference between the adjacent cells A, B and C on the PBCH and SS is small.
  • the physical uplink control channel occupies both ends of the entire subband of the cell.
  • the frequency band, the physical uplink shared channel (PUSCH) occupies other frequency bands than the PUCCH.
  • the frequency bands occupied by the PUCCHs of the adjacent cells A, B, and C are orthogonal to each other, when the cell bearer is small, the PUSCH is rarely used for information transmission, and therefore, the PUCCH of each cell is received by the same cell.
  • the frequency interference is small.
  • the PBCH/SS of the neighboring cell and the PDSCH are completely coincident (that is, in the same frequency band).
  • the PDSCH is rarely used for information transmission, and the PBCH/SS is subjected to the same frequency.
  • the interference is small.
  • the cell bearer is large, when the PBCH/SS and the PDSCH of the neighboring cell are in the same frequency band and are simultaneously transmitted, the co-channel interference between the PBCH/SS and the PDSCH of the neighboring cell is Will appear, and even seriously affect the performance of PBCH / SS.
  • the PUCCH of the neighboring cell is completely coincident with the PUSCH (that is, in the same frequency band).
  • the PUSCH is rarely used for information transmission, and the PUCCH receives less co-channel interference, but
  • the bearer of the cell is large, when the PUCCH and the PUSCH of the neighboring cell are in the same frequency band and are simultaneously transmitted, the co-channel interference between the PUCCH and the PUSCH of the neighboring cell may occur, and the PUCCH may be seriously affected. performance.
  • the third embodiment and the fourth embodiment of the present invention respectively provide a networking optimization scheme for the downlink channel and a networking optimization scheme for the uplink channel, to solve the same frequency between the PBCH/SS and the PDSCH of the neighboring cell. Interference and the problem of co-channel interference between PUCCH and PUSCH of neighboring cells.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the manner of reducing the co-channel interference between the PBCH/SS and the PDSCH of the neighboring cell in the third embodiment of the present invention includes, but is not limited to, the following two modes, which are respectively described below.
  • Step 301 Determine, for any cell that has allocated a subband, from the subband allocated to the neighboring cell of the cell, the RB occupied by the designated downlink channel of the neighboring cell.
  • the designated downlink channel in this embodiment includes a PBCH and/or an SS, and may also include other downlink channels. Since the PBCH/SS is generally located at the center of the subband, in this step, the center frequency of the neighboring cell and the bandwidth of the subband allocated to the neighboring cell may be allocated to the center in the subband of the neighboring cell.
  • the RB occupied by the frequency band of the set length is used as the RB occupied by the designated downlink channel of the neighboring cell, and the frequency band of the set length may be the frequency band of the center of 1.08 MHz, that is, the frequency band of 0.54 MHz around the center point of the subband.
  • the total available bandwidth is divided into 5 sub-bands, sub-band 1 and sub-band 2 are allocated to cell A, sub-band 3 is allocated to cell B, sub-band 4 and sub-band 5 are allocated to cell C.
  • the cells A, B, and C are adjacent cells of the same site.
  • the resource block (RB) occupied by the designated downlink channel in the subband 3 allocated by the cell B and the RB occupied by the designated downlink channel in the subband 4 and the subband 5 allocated by the cell C are determined.
  • Step 302 Determine an RB occupied by the PDSCH in the subband allocated for the cell.
  • FIG. 14( a ) the case where a plurality of sub-bands are allocated to at least one cell is taken as an example.
  • the cell A is allocated two sub-bands, wherein the sub-band 1 and the sub-band 2 are both
  • the steps shown in Figure 13 are performed separately to reduce co-channel interference between sub-band 1 and sub-band 2 and other sub-bands.
  • the sub-band 1 is taken as an example.
  • the RB occupied by the PDSCH except the hatched padding portion in the sub-band 1 in FIG. 14(a) is determined.
  • Step 303 Select, from the RBs occupied by the PDSCH, RBs that do not overlap with the RBs occupied by the designated downlink channel of the neighboring cell (ie, RBs orthogonal to the designated downlink channel of the neighboring cell).
  • subband 1 in FIG. 14(a) it is necessary to select an RB orthogonal to PBCH/SS of subband 3, subband 4, and subband 5 from the RB occupied by the PDSCH of subband 1, due to the subband 1 and subband 5 are completely orthogonal. Therefore, this step actually selects an RB orthogonal to the PBCH/SS of the subband 3 and the subband 4 from the RB occupied by the PDSCH of the subband 1, that is, in FIG. 14(a) Part of the band in the labeled subband 1.
  • Step 304 The PDSCH of the cell is carried by using the selected RB.
  • the cell A When the cell A uses the PDSCH of the sub-band 1 to perform information transmission, the cell A preferentially utilizes the PDSCH of the selected RB to carry the cell A, and ensures that the PDSCH of the sub-band 1 and the sub-band 3 and the sub-band 5 simultaneously perform a message.
  • the PDSCH of subband 1 has less co-channel interference to subband 3 and PBCH/SS of subband 5.
  • the mode 2 for reducing co-channel interference between the PBCH/SS and the PDSCH of the neighboring cell includes the following steps:
  • Step 401 Determine, for any cell that has allocated a subband, from the subband allocated to the neighboring cell of the cell, the RB occupied by the designated downlink channel of the neighboring cell.
  • the cell B determines the sub-band allocated to the downlink specified 3
  • Step 402 Determine, from the subbands allocated to the cell, RBs that overlap with the RBs occupied by the designated downlink channel of the neighboring cell.
  • Fig. 14 (b) the RBs in the sub-band 1 which overlap with the RBs occupied by the PBCH /SS of the sub-band 3 and the sub-band 5 are determined, that is, the portion marked in Fig. 14 (b).
  • Step 403 Reduce the determined scheduling priority or transmit power of the determined overlapping RB.
  • the scheduling priority of the overlapping RBs determined in the subband 1 is reduced to a scheduling priority lower than other RBs of the subband 1, or the overlapping RBs determined in the subband 1 are
  • the transmission power is reduced to be lower than the transmission power of the other RBs of the sub-band 1.
  • the transmission power of the overlapped RB determined in the sub-band 1 can also be reduced to 0, which is not used for transmitting information.
  • Step 404 Perform information transmission by using the subband with the priority or the transmit power adjustment.
  • the cell A When the cell A uses the PDSCH of the subband 1 for information transmission, the cell A preferentially uses the RB orthogonal to the PBCH/SS of the subband 3 and the subband 5, so that the PDSCH of the subband 1 is subband 3 and the PBCH/SS of the subband 5 The same frequency interference is small.
  • Figure 14 (a) and Figure 14 (b) are modes in which the frequency bands are continuously allocated, that is, multiple sub-bands allocated to the same cell occupy two consecutive frequency bands, and the priority point is the total occupied.
  • the available frequency band is small.
  • the scheme of the third embodiment of the present invention can also be applied to the manner in which the frequency bands are discontinuously allocated as shown in FIG. 14(c), in order to further reduce the same-frequency interference.
  • the purpose is to make the RB occupied by the PDSCH of a certain cell and the RBs occupied by the PBCH/SS of the neighboring cell are mutually offset in frequency, so that the cell The interference between the PDSCH and the PBCH/SS of the neighboring cell is minimized.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the manner of reducing the co-channel interference between the PUCCH and the PUSCH of the neighboring cell in the fourth embodiment of the present invention includes, but is not limited to, the following two modes, which are respectively described below.
  • the method 1 for reducing co-channel interference between PUCCH and PUSCH of a neighboring cell includes the following steps:
  • Step 501 Determine, for any cell that has allocated the subband, the RB occupied by the PUCCH of the neighboring cell from the subband allocated to the neighboring cell of the cell.
  • the PUCCH is located at the two ends of the subband. Therefore, in this step, the RB occupied by the PUCCH of the neighboring cell may be determined according to the center frequency of the neighboring cell and the bandwidth of the subband allocated to the neighboring cell.
  • the specific approach is:
  • the neighboring cells can mutually inform each other of the number of PUCCH RBs through the X2 or S1 interface in a static, semi-static or dynamic manner. For a certain cell, according to the center frequency of the neighboring cell and the bandwidth of the subband allocated to the neighboring cell, determine the RBs at both ends of the subband allocated to the neighboring cell, and then allocate M/2 of the two ends of the subband allocated to the neighboring cell.
  • the RB is an RB occupied by the PUCCH of the neighboring cell.
  • the total available bandwidth is divided into five sub-bands, sub-band 1 and sub-band 2 are allocated to the cell ⁇ , sub-band 3 is allocated to the cell B, and sub-band 4 and sub-band 5 are allocated to the cell C.
  • Cells A, B, and C are neighboring cells of the same site.
  • the RB occupied by the PUCCH in the subband 3 allocated by the cell B and the RB allocated in the subband 4 allocated by the cell C and the PUCCH in the subband 5 are determined.
  • Step 502 Determine an RB occupied by a PUSCH in a subband allocated for the cell.
  • This step is to determine the RB occupied by the PUSCH in subband 1 of Figure 17 (a).
  • Step 503 Select, from the RBs occupied by the determined PUSCH, RBs that do not overlap with the RBs occupied by the PUCCH of the neighboring cell.
  • subband 1 in FIG. 17(a) it is necessary to select an RB orthogonal to the PUCCH of subband 3 and subband 4 from the RBs occupied by the PUSCH of subband 1, that is, the subtitles in FIG. 17(a) Belt 1 Part of the band.
  • Step 504 The PUSCH of the cell is carried by using the selected RB.
  • the cell A When the cell A uses the PUSCH of the sub-band 1 to perform information transmission, the cell A preferentially utilizes the PUSCH of the selected RB bearer cell A to ensure that the PUSCH of the sub-band 1 and the sub-band 3 and the sub-band 5 simultaneously transmit information, and the sub-band 1
  • the PUSCH has less co-channel interference to the PUCCH of subband 3 and subband 5.
  • Step 601 Determine, for any cell that has allocated the subband, the RB occupied by the PUCCH of the neighboring cell from the subband allocated to the neighboring cell of the cell.
  • This step is the same as step 501.
  • Step 602 Determine, from the subbands allocated to the cell, RBs that overlap with the RBs occupied by the PUCCH of the neighboring cell.
  • this step determines the occupation of PUCCH in sub-band 1 and sub-band 3 and sub-band 5.
  • RB has overlapping RBs, which are the parts marked in Figure 17 (b).
  • Step 603 Reduce the determined scheduling priority or transmit power of the determined overlapping RB.
  • the scheduling priority of the overlapped RB determined in the subband 1 is reduced to be lower than the scheduling priority of the other RBs of the subband 1, or the transmission power of the overlapping RB determined in the subband 1 is lowered. Up to the transmission power of other RBs lower than the sub-band 1, in the extreme, the transmission power of the overlapped RB determined in the sub-band 1 can also be reduced to 0, which is not used for transmitting information.
  • Step 604 Perform information transmission by using the subband with the priority or the transmit power adjustment.
  • the cell A When the cell A uses the PDSCH of the subband 1 to perform information transmission, the cell A preferentially utilizes the RBs orthogonal to the PUCCHs of the subband 3 and the subband 5, so that the PUSCH of the subband 1 is compared with the PUCCH of the subband 5 by the same frequency interference. small.
  • Figure 17 (a) and Figure 17 (b) are methods of continuous allocation of frequency bands
  • the scheme of the fourth embodiment of the invention can also be applied to the manner in which the frequency bands are discontinuously allocated as shown in Fig. 17(c).
  • Embodiment 5 :
  • the third embodiment is an optimization scheme for reducing the interference between the downlink channels
  • the fourth embodiment is an optimization scheme for reducing the interference between the uplink channels.
  • the fifth embodiment further provides an interference reduction function that can be applied to both the uplink channel and the downlink channel. Program.
  • the method for reducing co-channel interference between adjacent cells in the fifth embodiment includes the following steps:
  • Step 701 Receive, for any cell that has been allocated a subband, an overload indicator (OI) information sent by another neighboring cell.
  • OI overload indicator
  • the OI information of each RB has two bits, which is used to indicate the size of the interference that the RB is subjected to, such as indicating that the RB is subjected to high, medium, and low interference.
  • each cell After determining the OI information of each RB of the occupied subband, each cell sends the OI information to the adjacent one or more cells.
  • Step 702 Determine, in the subband allocated to the neighboring cell, the RB that the interference meets the set condition. Assume that the OI information of the cell B received by the cell A is as shown in FIG. 20, and the OI information carries the interference size of 10 RBs in the subband occupied by the cell B. When the setting condition is that the RB is subjected to high interference, in this step, the cell A determines that the received 01 information, and RB_B2 and RB_B3 are subjected to high interference.
  • Step 703 Determine, from the subbands allocated to the cell, RBs that overlap with the RBs whose interference meets the set condition.
  • the cell A compares the subbands occupied by the cell A, and determines that the RBs overlapping with the RB_B2 and the RB_B3 are RB_A4 and RB_A5.
  • Step 704 Decrease the determined scheduling priority or transmit power of the overlapped RB.
  • Step 705 Perform information transmission by using the subband with the priority or the transmit power adjustment.
  • the RBs involved in the third, fourth, and fifth embodiments of the present invention include 14 OFDM symbols. Regardless of the manner of reducing the same-frequency interference, the RB determined in each step may not be a complete RB, but A partial RB containing less than 14 OFDM symbols, therefore, when the determined RB is a partial RB containing less than 14 OFDM symbols, the remaining OFDM symbols of the determined partial RB may be padded to obtain a completed RB.
  • step 402 among the RBs that are overlapped with the RBs occupied by the PBCH/SS of the subband 3 and the subband 5 determined in the subband 1, 10 OFDM symbols and subbands 3 and 5 of the RBs
  • the RBs occupied by the PBCH/SS overlap, and the remaining 4 OFDM symbols do not overlap with the RBs occupied by the PBCH/SS of the subband 3 and the subband 5. Since RB is the smallest unit of channel transmission, 4 non-overlapping units can be used.
  • the OFDM symbol together with the overlapping 10 OFDM symbols serves as RBs overlapping the RBs occupied by the PBCH/SS of the subband 3 and the subband 5.
  • the sixth embodiment of the present invention provides a frequency multiplexing networking device.
  • the device includes a dividing module 11 and an allocating module 12, where: the dividing module 11 is configured to divide the total available frequency bands of the system into multiple The sub-bands are used to allocate the sub-bands obtained by the partition to each cell, wherein at least two cell-assigned sub-bands overlap.
  • the allocation module 12 is specifically configured to allocate one sub-band to each cell; or, allocate multiple sub-bands for at least one cell, and allocate multiple sub-bands of the same cell, and any two sub-bands have no overlap.
  • the allocation module 12 includes a correlation determination sub-module 21 and an execution sub-module 22, wherein: the correlation determination sub-module 21 is configured to determine a correlation between each sub-band, wherein an overlapping portion of any two sub-bands The greater the ratio of the bandwidth occupied by the two sub-bands to the total bandwidth, the greater the correlation between the two sub-bands; the execution sub-module 22 is configured to allocate the sub-bands according to the correlation between the sub-bands. For each cell, the closer the physical distance between the two cells, the less the correlation between the sub-bands allocated to the two cells.
  • the device further includes a load determining module 13 and a scheduling module 14, wherein: the load determining module 13 is configured to determine a load of the neighboring cell for the neighboring cells with overlapping sub-bands; When the load of the neighboring cell is lower than the load threshold, the neighboring cell is instructed to use the non-overlapping part of the frequency band scheduling service, and when the load of any cell is not lower than the load threshold, indicating The priority of the frequency band scheduling service in which the cell uses the non-overlapping portion of the allocated sub-band is higher than the priority of the frequency band scheduling service using the overlapping portion.
  • the apparatus of the sixth embodiment has functional modules for implementing the third embodiment to the fifth embodiment in addition to the configuration shown in Fig. 21, which will be separately described below.
  • the mode 1 for reducing the co-channel interference between the PUCCH and the PUSCH of the neighboring cell shown in FIG. 16 in the fourth embodiment includes the following functional modules in the device of the sixth embodiment:
  • a neighboring cell RB determining module a neighboring cell RB determining module, an RB selecting module, and an indicating module, where:
  • the neighboring cell RB determining module is configured to determine, according to any cell of the allocated subband, the RB occupied by the PUCCH of the neighboring cell from the subband allocated to the neighboring cell of the cell;
  • An RB selection module configured to determine a physical uplink shared channel in a subband allocated for the cell
  • An RB that is occupied by the PUSCH, and an RB that does not overlap with the RB occupied by the PUCCH is selected from the RBs occupied by the PUSCH;
  • the indication module is configured to instruct the cell to use the selected RB to carry the PUSCH.
  • the following functional modules are included in the device of the sixth embodiment:
  • Neighboring cell RB determining module, RB selecting module and adjusting module wherein:
  • a neighboring cell RB determining module configured to determine, according to any cell of the allocated subband, an RB occupied by a PUCCH of the neighboring cell from a subband allocated to the neighboring cell of the cell;
  • An RB selection module configured to determine, from a subband allocated for the cell, an RB that overlaps with an RB occupied by a PUCCH of a neighboring cell;
  • an adjusting module configured to reduce the determined scheduling priority of the overlapped RBs to a scheduling priority lower than other RBs in the subband allocated for the cell, or the determined overlapping RBs to be determined The transmit power is reduced below the transmit power of the other RBs in the subband allocated for the cell.
  • the neighboring cell RB determining module in the foregoing 1, 2 is specifically configured to determine, according to a center frequency point of the neighboring cell and a bandwidth of a subband allocated to the neighboring cell, RBs allocated to the two ends of the subband of the neighboring cell, and
  • the number of RBs occupied by the PUCCH of the neighboring cell is the number of RBs occupied by the PUCCH of the neighboring cell.
  • the information receiving module is configured to receive, according to any cell of the allocated subband, the OI information of the over-delivery indication sent between the neighboring cells, where The OI information includes the interference size of each RB in the subband allocated for the neighboring cell;
  • a neighboring cell RB determining module configured to determine, in the subband allocated to the neighboring cell, the RB that is subjected to the interference to meet the set condition
  • An RB selection module configured to determine, from a subband allocated for the cell, an RB that overlaps with an RB that is subjected to the interference satisfying the set condition
  • an adjusting module configured to reduce the determined scheduling priority of the overlapped RBs to a scheduling priority lower than other RBs in the subband allocated for the cell, or the determined overlapping RBs to be determined The transmit power is reduced below the transmit power of the other RBs in the subband allocated for the cell.
  • the following functional modules are included in the device of the sixth embodiment:
  • a neighboring cell RB determining module a neighboring cell RB determining module, an RB selecting module, and an indicating module, where:
  • a neighboring cell RB determining module configured to determine, from the subband allocated to the neighboring cell of the cell, the RB occupied by the designated downlink channel of the neighboring cell, for any cell that has allocated the subband;
  • An RB selection module configured to determine, according to the RB allocated by the PDSCH, the RB that is occupied by the PDSCH, and select an RB that does not overlap with the RB occupied by the specified downlink channel, and the indication module is used to indicate the RB.
  • the cell carries the PDSCH by using the selected RB.
  • the following functional modules are included in the device of the sixth embodiment:
  • Neighboring cell RB determining module, RB selecting module and adjusting module wherein:
  • a neighboring cell RB determining module configured to target any cell of the allocated subband, from the cell to the cell In the subband allocated by the neighboring cell, determining the RB occupied by the designated downlink channel of the neighboring cell;
  • An RB selection module configured to determine, from a subband allocated for the cell, an RB that overlaps with an RB occupied by a designated downlink channel of the neighboring cell;
  • an adjusting module configured to reduce the determined scheduling priority of the overlapped RBs to a scheduling priority of other RBs in the subband allocated for the cell, or the determined overlapping RBs to be determined The transmit power is reduced below the transmit power of the other RBs in the subband allocated for the cell.
  • the neighboring cell RB determining module in the foregoing 4, 5 is specifically configured to determine, according to a center frequency point of the neighboring cell and a bandwidth of a subband allocated to the neighboring cell, a frequency band set in the center of the subband allocated to the neighboring cell.
  • the occupied RB is used as the RB occupied by the designated downlink channel of the neighboring cell, and the frequency band of the set length may be a frequency band of 1.08 MHz.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a
  • the terminal device (which may be a cell phone, a personal computer, a server, or a network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种频率复用组网方法及设备 本申请要求在 2010 年 02 月 03 日提交中国专利局、 申请号为 201019114021.5发明名称为"一种小区带宽配置方法和设备"以及在 2010年 08 月 31 日提交中国专利局、 申请号为 201010268723.1发明名称为 "一种频率复 用组网方法和系统" 的两件中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域 本发明涉及通信技术领域, 特别是涉及一种频率复用组网方法及设备。 背景技术
时分同步码分多址的长期演进 ( Time Division-Synchronous Code Division Multiple Access Long Term Evolution, TD-LTE )作为一种先进的技术, 可以提 高系统的峰值数据速率、 小区边缘速率、 频谱利用率。
为了使 TD-LTE系统能够和现有系统(2G/2.5G/3G )共存, 实现系统的前 后向兼容, 现有系统做出了如下改变:
改变 1、 在无线接入网 (Radio Access Network, RAN )侧, 由 CDMA技 术改变为正交频分调制( Orthogonal Frequency Division Multiplexing, OFDM ) 技术, 以达到有效对抗宽带系统多径干扰的目的。
所述 OFDM技术源于 20世纪 60年代,其后不断完善和发展,在 90年代 后随着信号处理技术的发展, 在数字广播、 数字用户线路(DSL )和无线局域 网等领域得到广泛应用。 OFDM技术具有抗多径干扰、 实现简单、 灵活支持 不同带宽、 频谱利用率高支持高效自适应调度等优点, 是公认的未来 4G储备 技术。
改变 2、 为进一步提高频谱效率, 在 TD-LTE 系统中采用多输入 /多输出 ( Multiple-Input Multiple-Out-put, MIMO )技术。
MIMO技术能够利用多天线系统的空间信道特性, 同时传输多个数据流, 从而有效提高数据速率和频语效率。
改变 3、 为了降低控制和用户平面的时延, 满足低时延(控制面延迟小于 100ms,用户面时延小于 5ms )的要求, 现有系统中的 NodeB-RNC-CN的结构 必须得到简化, RNC作为物理实体将不复存在, NodeB将具有 R C的部分 功能, 成为 eNodeB。 eNodeB间通过 X2接口进行网状互联, 直接接入到 CN 中。
目前, LTE系统主要采用以下两种组网方式:
组网方式 1、 采用频率复用因子为 N的组网方式, 其中, N为大于 1的 正整数。 在本组网方式中, 居频率复用因子 N的取值不同, 将 LTE系统总 的可用频段划分为多个子带, 每个子带之间没有重叠部分, 不同的小区占用 不同的子带。
如图 1所示, 为频率复用因子 N=3时, LTE系统的组网示意图。 在 LTE 系统总的可用频段占用的带宽是 60M时, 将这 60M的带宽划分为子带 1、 子 带 2和子带 3这 3个子带, 每个子带占用的带宽是 20MHz, 且各个子带之间 彼此不重叠。 此时, 小区 A、 小区 B和小区 C分别占用子带 1、 子带 2和子 带 3。
在采用组网方式 1 进行组网时, 由于任意两个小区占用的子带不同, 且 每个子带之间没有重叠部分, 因此, 小区之间的干扰比较小, 且实际的网络 规划也比较简单, 易于实现。 但是, 在采用组网方式 1进行组网时, LTE系 统总的可用频段的带宽是单个小区需要的子带带宽的 N倍,因此,需要的 LTE 系统带宽较大, 整个系统的频率利用率较低。
组网方式 2、 采用频率复用因子为 1的组网方式。 在本组网方式下, LTE 系统总的可用频段看作是一个子带, 各个小区都占用该总的可用频段, 即每 个小区都占用相同的频段。
如图 2所示, 为频率复用因子 N=l时, LTE系统的组网示意图。 在 LTE 6 系统总的可用频段占用的带宽是 20M时, 小区 A、 小区 B和小区 C共用这 20M的带宽。
在采用组网方式 2进行组网时, 整个系统的频率利用率较高, 但是, 由 于各个小区之间占用同一段频段, 小区间的同频干扰较大, 特别是小区间的 边缘用户受到的干扰可能会非常严重, 导致边缘用户的控制信道无法正常工 作。
由此可见, 在 LTE系统的现有組网方式下, 存在频率利用率过^ (氐或小区 间同频干扰较大的问题, 导致系统整体性能受到不利影响。 发明内容
本发明实施例提供一种频率复用组网方法及设备, 用以同时解决频率利 用率过低和小区间同频干扰较大的问题。
一种频率复用组网方法, 将系统总的可用频段划分为多个子带; 所述频率复用组网的方法包括:
将划分得到的所述子带分配给每个小区, 其中, 至少有两个小区分配的 子带有重叠。
一种频率复用组网设备, 所述设备包括:
划分模块, 用于预先将系统总的可用频段划分为多个子带;
分配模块, 用于将划分得到的所述子带分配给每个小区, 其中, 至少有 两个小区分配的子带有重叠。
本发明有益效果如下:
本发明实施例将系统总的可用频段划分为多个子带, 在确保至少有两个 小区分配的子带有重叠的情况下, 将划分得到的子带分配给每个小区, 因此, 相对于现有技术的频率复用因子为 N的子带正交组网方式而言, 提高了系统 频率的利用率, 同时, 相对于现有技术的频率复用因子为 1的组网方式而言, 降低了小区间的同频干扰。 附图说明
为了更清楚地说明本发明或现有技术中的技术方案, 下面将对本发明或 现有技术描述中所需要使用的附图作简单的介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中频率复用因子 N=3时, 系统的组网示意图; 图 2为现有技术中频率复用因子 N=l时, 系统的组网示意图; 图 3为本发明实施例一中频率复用组网的方法示意图;
图 4〜图 6为本发明实施例一中三种组网示意图;
图 7为本发明实施例一中一种組网示意图;
图 8为本发明实施例二中频率复用組网的方法示意图;
图 9 (a)和图 9 (b)为本发明实施例二中两种组网示意图;
图 10〜图 12为本发明实施例二中三种组网示意图;
图 13为本发明实施例三中降低相邻小区的 PBCH/SS和 PDSCH之间的 同频千扰方式 1的示意图;
图 14 (a)、 图 14 (b)和图 14 (c) 为本发明实施例三中三种组网示意 图;
图 15为本发明实施例三中降低相邻小区的 PBCH/SS和 PDSCH之间的 同频干扰方式 2的示意图;
图 16为本发明实施例四中降低相邻小区的 PUCCH和 PUSCH之间的同 频干扰的方式 1的示意图;
图 17 (a)、 图 17 (b)和图 17 (c)为本发明实施例四中三种组网示意 图;
图 18为本发明实施例四中降低相邻小区的 PUCCH和 PUSCH之间的同 频干扰的方式 2的示意图;
图 19为本实施例五中降低相邻小区之间的同频干扰的方法示意图; 图 20为本实施例五中小区 A和小区 B的组网以及 OI信息示意图; 图 21为本实施例五中频率复用组网设备示意图。 具体实施方式
为了解决现有技术中存在的不能在充分利用系统频率的同时减少小区 间同频干扰的问题, 本发明实施例提供一种频率复用组网方案, 将系统总的 可用频段划分为多个子带, 在确保至少有两个小区分配的子带有重叠的情况 下, 将划分得到的子带分配给每个小区, 以此, 相对于现有技术的組网方式 1 而言, 提高了系统频率的利用率, 相对于现有技术的组网方式 2 而言, 降低 了小区间的同频干扰。
本发明各实施例中涉及的频率复用组网方式也可称为 "频率移位频率复 用 " ( Frequency Shifted Frequency Reuse, FSFR )组网, 下面结合说明书附图 对本发明实施例进行详细说明。
实施例一:
如图 3所示, 为本发明实施例一中频率复用组网的方法示意图, 所述方 法包括以下步骤:
步骤 101 : 预先将系统总的可用频段划分为多个子带。
本步骤中, 划分的子带个数可以与频率复用因子 N相同, 在划分得到的 多个子带中, 至少存在两个子带有重叠部分, 即至少存在两个子带不相交。 具体的情况可以有以下两种:
任一子带与其余子带有重叠部分, 或只有部分子带之间有重叠部分, 剩 余部分子带与其余子带之间不重叠。
本实施例一中涉及的两个子带之间有重叠可以指两个子带占用的带宽 有部分重叠, 也可以指两个子带占用的带宽完全重叠。
本步骤是预处理步骤, 在系统发生变化需要重新划分子带时才执行步骤 101, 不必每次进行组网时都执行步驟 101。 当然, 本实施例一的方案中也不 限于每次执行步骤 101的情况。 本实施例中的 N个子带中,每个子带占用带宽的大小可以相同也可以不 同。
步骤 102: 将划分得到的所述子带分配给每个小区, 至少有两个小区分 配的子带有重叠。
本步骤中可以以小区为单位进行子带的划分, 也可以将多个相邻小区的 集合定义为小区簇, 将总的可用频段划分为带宽子集, 每个带宽子集中包含 多个子带。 在为小区分配子带时, 可以将一个带宽子集中的多个子带分配给 一个小区簇中的多个小区。
在本实施例一的方案中, 为每个小区分配子带可以有两种分配方式: 第一种分配方式: 为每个小区分配一个子带。
如图 4所示, 在总的可用频段为 30MHz时, 将该总的可用频段划分为 3 个子带: 子带 1、 子带 2和子带 3, 每个子带占用 20M带宽, 任意两个子带之 间有部分重叠。 此时, 可以将子带 1分配给小区 A、 子带 2分配给小区 B、 子 带 3分配给小区 C, 其中, 小区 A、 B和 C是同站址的相邻小区。
如果总的可用频段是 40MHz或 50MHz, 总的可用频段划分方式可以如 图 5、 图 6所示。 在图 5、 图 6中, 每个子带 (子带 1、 子带 2和子带 3 )也 占用 20M带宽, 任意两个子带之间有部分重叠。
比较图 4〜图 6可以看出, 随着总的可用频段的增加, 在划分的子带个数 相同时, 任意两个子带之间的重叠部分减少, 因此, 系统规避干扰的能力增 强, 小区间的同频干扰降低。
除了图 4~图 6所示的情况,本发明实施例还可以适用于其他可用频段的 情况, 如适用于 15MHz、 25MHz, 35MHz、 45MHz的总的可用频段。
第二种分配方式: 为至少一个小区分配多个子带。
在第二种分配方式下, 为了使同一小区分配得到的资源间干扰较小, 要 求分配给同一, 区的多个子带之间两两无重叠, 即两两正交。
如图 7所示,在总的可用频段为 50MHz时, 将该总的可用频段划分为 5 个子带: 子带 1、 子带 2、 子带 3、 子带 4和子带 5, 每个子带占用 20MHz带 宽。 此时, 可以将子带 1、 子带 2分配给小区 A (子带 1和子带 2正交)、 子 带 3分配给小区 B、 子带 4和子带 5分配给小区 C (子带 4和子带 5正交)。
上述第一种分配方式可以应用在单栽波系统中, 第二种分配方式可以应 用在多载波系统中, 如有效应用在时分复用长期演进(LTE TDD ) 系统、 频 分复用长期演进(LTE FDD ) 系统、 高级的时分复用长期演进(LTE-ATDD ) 系统、 高级的频分复用长期演进(LTE-A FDD ) 系统、 全球微波互联接入 ( WiMAX ) 系统和 IEEE802, 16m等系统中。
本发明各实施例中涉及的方案都可以应用在单载波系统和多载波系统 中。
下面结合具体的实例对本发明实施例一的方案进行详细说明。
实施例二:
本发明实施例二是在实施例一的基础上对实施例一的详细说明。
如图 8所示,为本发明实施例二的方法示意图,所述方法包括以下步骤: 步骤 201 : 预先将系统总的可用频段划分为多个子带。
步骤 202: 确定划分得到的多个子带之间的相关性。
在本实施例的方案中, 由于相关性越小的子带间的干扰也就越小, 因此, 在为小区分配子带之间首先确定子带之间的相关性, 将相关性小的子带分配 给物理距离比较近的小区, 将相关性大的子带分配给物理距离比较远的小区, 以最大程度地降低物理距离较近的小区之间的同频干扰。
在确定两个子带之间的相关性时, 两个子带之间的重叠部分的带宽占这 两个子带占用的总带宽比例越大, 所述两个子带的相关性越大。 具体算法是: 将两个子带重叠部分占用的带宽除以两个子带占用的总带宽所得的商越大, 则两个子带的相关性越大。
当两个子带无重叠部分(即两个子带正交) 时, 所述商为 0, 此时两个 子带不相关; 当两个子带有部分重叠时, 所述商大于 0且小于 1; 当两个子带 完全重叠时, 所述商为 1。
以图 4划分得到的子带为例, 子带 1和子带 2的重叠部分占用的带宽为 10M, 子带 1和子带 2占用的总带宽为 30M, 则子带 1和子带 2重叠部分占 用的带宽除以两个子带占用的总带宽所得的商为 1/3; 子带 1和子带 3的重叠 部分占用的带宽为 15M, 子带 1和子带 3占用的总带宽为 30M, 则子带 1和 子带 3重叠部分占用的带宽除以两个子带占用的总带宽所得的商为 1/2。因此, 子带 1和子带 2之间的相关性小于子带 1和子带 3之间的相关性。
步骤 203: 两个小区之间的物理距离越近, 分配给所述两个小区的子带 之间的相关性越小。
仍以图 4划分得到的子带为例, 如图 9 ( a )所示, 在部署了 4个站址的 区域内, 每个站址下分别有 3、 1、 3和 2个小区。 在将子带 1〜子带 3分配给 小区 A~小区 C时, 由于小区 A~小区 C是相邻小区, 两两小区之间的物理距 离相同, 因此, 子带卜子带 3可以任意分配给小区 A〜小区 C。
在图 9 ( a )所示的示意图中, 在将子带 1〜子带 3分配给小区 A~小区 D 时, 小区 A〜小区 C已分配子带, 此时, 小区 D可以分配子带 1或子带 3 , 这 是因为:
一方面, 子带 1和子带 3之间的相关性大, 与小区 D距离最远的小区 C 分配了子带 3, 在小区 D可以分配子带 1, 但与小区 D次远的小区 A已分配 子带 1, 因此, 小区 D中分配的子带 1与小区 A中的子带 1将会有一定的同 频干扰; 另一方面, 在小区 D分配子带 3时, 虽然子带 2和子带 3之间的相 关性较高, 但由于小区 D与小区 C的距离最远, 因此, 小区 D分配子带 3可 以降低小区 D与小区 C之间的同频干扰。
图 9 ( a ) 中小区 E〜小区 I分配子带的过程与小区 D相似。
需要说明的是, 本发明实施例中以小区之间的物理距离为例来说明子带 分配给小区的方式, 本发明实施例也不限于其他原则将子带分配给小区的方 式。
步骤 204: 针对占用的子带有重叠的相邻小区, 判断相邻小区的负载是 否都低于负栽阈值; 若是, 则执行步骤 205; 否则, 执行步骤 206。
在为小区分配子带后, 可以根据相邻小区的子带之间的重叠情况为小区 配置子带资源的使用条件。
以图 9 ( b ) 划分的子带为例, 总的可用频段是 30MHz, 划分为 2个子 带, 分别为子带 1和子带 2, 每个子带占用的带宽为 20M, 子带 1和子带 2 之间有 10M带宽的重叠部分(图 9 ( b ) 中斜线部分), 子带 1分配给小区 1 , 子带 2分配给与小区 1相邻的小区 2。
在执行本步骤时,小区 A优先使用子带 1的左边 10M带宽资源,小区 B 优先使用子带 2的右边 10M带宽资源,即小区 A和小区 B都优先使用子带中 为重叠部分的频段来调度业务。 在小区 A和小区 B的负栽较轻(低于负载阈 值)时, 子带 1未重叠的 10M带宽足以承栽小区 A的负栽, 子带 2未重叠的 10M带宽也足以承栽小区 B的负栽时,小区 A和小区 B可以只使用各自子带 中未重叠的部分, 以减少小区之间的同频干扰。
当小区 A的负栽上升到不低于负栽阈值时,小区 A可以使用整个子带 1, 如果此时小区 B的负栽低于负栽阈值时, 小区 B可以继续使用子带 2中右边 10M带宽。
当小区 A使用整个子带 1时,小区 1中待调度的业务优先级按照从高到 低的顺序进行排列, 将子带 1中未重叠的部分频段调度业务优先级高的业务, 将子带 1 中重叠的部分频段调度业务优先级低的业务, 使得高调度优先级的 业务能够在同频干扰小的资源上传输, 确保高优先级业务的正确执行。
步骤 205: 小区使用未重叠部分的频段调度业务, 并结束。
步骤 206: 负载不低于负栽阈值的小区使用分配的子带中未重叠部分的 频段调度业务的优先级高于使用重叠部分的频段调度业务的优先级, 并结束。
根据本发明实施例二的方案, 可以在总的可用频段较小的情况下支持较 大的频率复用因子, 提高系统频率的利用率; 同时, 根据子带之间的相关性, 按照相关性越大的子带分配给物理距离越远小区的原则为小区分配子带, 可 以最小化小区间的同频干扰; 在为小区合理分配子带后的组网时, 要求负载 较小的小区使用子带中不与其他相邻小区的子带重叠的资源, 以进一步降低 小区间的同频干扰; 要求负栽较大的小区优先使用子带中不与其他相邻小区 的子带重叠的资源来调度高优先级的业务, 使用子带中与其他相邻小区的子 带重叠的资源来调度低优先级的业务, 使高优先级的业务能够在同频干扰小 的资源上传输, 确保高优先级业务的正确执行。 本发明实施例中自带划分以 及子带分配给小区的过程都可预见, 且网络不会发生动态变化, 调度算法也 易于实现。
下面以图 10〜图 12 来说明本发明实施例一和实施例二的有益效杲, 图 10~图 12是对实施例一和实施例二方案的示例性说明, 并非对本发明实施例 的限定。
图 10~图 12中假定的总的可用频段为 30MHz, 划分为 3个子带, 每个 子带占用的带宽为 20M, 其中, 子带 1分配给小区 A, 子带 2分配给小区 B, 子带 3分配给小区 C, 小区 A、 B、 C是同站址的邻小区。
在图 10 中, 物理下行控制信道(PDCCH )、 物理 HARQ指示符信道 ( PHICH )或物理控制格式指示信道(PCFICH ) 占用小区的整个子带。 由图 10可见, 由于小区八、 B和 C中 PDCCH占用的子带并没有完全重叠 (即子 带部分正交), 因此, 与图 2所示的组网方式 2相比, 采用本发明实施例的组 网方式后, PDCCH受到的小区间同频干扰小于图 2所示的组网方式 2中受到 的小区间同频干扰。 PHICH和 PCFICH在子带中的占用情况与 PDCCH相同, 此处不再赘述。
在图 11中, 广播信道(PBCH )和同步信道(SS ) 占用各小区分配子带 的中间部分, 宽度为 1.08MHz, 物理下行共享信道(PDSCH ) 占用子带中除 该 1.08MHz的 PBCH和 SS之外的频段。 由图 11可见, 相邻小区 A、 B和 C 的 PBCH和 SS占用的频段相互正交,由于 PDSCH占用该 1,08MHz以外的频 段, 在小区负栽小时, PDSCH很少用于信息的发送, 因此, 相邻小区 A、 B 和 C之间在 PBCH和 SS上受到的同频干扰较小。
图 10和图 11都是以下行信道来说明本发明的有益效果的, 图 12以上 行信道为例来说明本发明的有益效杲。
在图 12中, 物理上行控制信道(PUCCH ) 占用小区整个子带两端部分 的频段, 物理上行共享信道(PUSCH ) 占用 PUCCH以外的其他频段。 由图 12可见, 由于相邻小区 A、 B和 C的 PUCCH占用的频段相互正交, 在小区 负栽较小时, PUSCH很少用于信息的发送, 因此, 各小区的 PUCCH受到的 小区间同频干扰较小。
在图 11所示的情况下, 相邻小区的 PBCH/SS与 PDSCH完全重合(即 处于相同的频段),在小区负栽较小时, PDSCH很少用于信息传输, PBCH/SS 受到的同频干扰较小, 但是, 在小区的负栽较大时, 当相邻小区的 PBCH/SS 和 PDSCH处于相同的频段且同时发送时, 相邻小区的 PBCH/SS和 PDSCH 之间的同频干扰就会出现, 甚至会严重影响 PBCH/SS的性能。
在图 12所示的情况下, 相邻小区的 PUCCH与 PUSCH完全重合(即处 于相同的频段), 在小区负载较小时, PUSCH很少用于信息传输, PUCCH受 到的同频干扰较小, 但是, 在小区的负栽较大时, 当相邻小区的 PUCCH和 PUSCH处于相同的频段且同时发送时, 相邻小区的 PUCCH和 PUSCH之间 的同频干扰就会出现, 甚至会严重影响 PUCCH的性能。
对此, 本发明实施例三和实施例四分别提出一种针对下行信道的组网优 化方案和针对上行信道的组网优化方案, 以解决相邻小区的 PBCH/SS 和 PDSCH之间的同频干扰以及相邻小区的 PUCCH和 PUSCH之间的同频干扰 的问题。
实施例三:
本发明实施例三中降低相邻小区的 PBCH/SS和 PDSCH之间的同频干扰 的方式包括但不限于以下两种方式, 下面分别加以说明。
如图 13所示, 为降低相邻小区的 PBCH/SS和 PDSCH之间的同频干扰 的方式 1, 包括以下步骤:
步骤 301 : 针对已分配子带的任一小区, 从为该小区的邻小区分配的子 带中, 确定邻小区的指定下行信道占用的 RB。
本实施例中的指定下行信道包括 PBCH和 /或 SS, 也可以包括其他下行 信道。 由于 PBCH/SS —般位于子带的中心位置, 因此, 在本步骤中, 可以根 据邻小区的中心频点和分配给邻小区的子带的带宽, 将分配给邻小区的子带 中的中心设定长度的的频段占用的 RB 作为邻小区的指定下行信道占用的 RB, 所述设定长度的频段可以是中心 1.08MHz的频段, 即子带中心点左右各 0.54MHz的频段。
支设以图 14 ( a )所示, 总的可用带宽划分为 5个子带, 子带 1和子带 2 分配给小区 A,子带 3分配给小区 B,子带 4和子带 5分配给小区 C,小区 A、 B、 C是同站址的相邻小区。 针对小区 A而言, 确定小区 B分配的子带 3中 指定下行信道占用的资源块(RB )和小区 C分配的子带 4和子带 5中指定下 行信道占用的 RB。
步骤 302: 确定为该小区分配的子带中 PDSCH占用的 RB。
在图 14 ( a ) 中, 是以为至少一个小区分配多个子带的情况为例来说明 的, 在本实施例的方案中, 小区 A分配了两个子带, 其中, 子带 1和子带 2 都要分别执行图 13所示的步骤, 以此来降低子带 1和子带 2与其他子带之间 的同频干扰。
支设本实施例以子带 1 为例, 则在本步骤中, 确定图 14 ( a ) 中子带 1 中除斜线填充部分外为 PDSCH占用的 RB。
步骤 303:从 PDSCH占用的 RB中选取与邻小区的指定下行信道占用的 RB不重叠的 RB (即与邻小区的指定下行信道正交的 RB )。
以图 14 ( a )中的子带 1为例, 需要从子带 1的 PDSCH占用的 RB中选 取与子带 3、 子带 4、 子带 5的 PBCH /SS正交的 RB, 由于子带 1和子带 5 完全正交, 因此, 本步骤实际上是从子带 1的 PDSCH占用的 RB中选取与子 带 3、 子带 4的 PBCH /SS正交的 RB, 即图 14 ( a )中标注的子带 1中的部分 频段。
步骤 304: 利用选取的 RB承栽该小区的 PDSCH。
小区 A在使用子带 1的 PDSCH进行信息传输时, 优先利用选取的 RB 承载小区 A的 PDSCH, 确保子带 1的 PDSCH与子带 3、 子带 5同时进行信 息传输时,子带 1的 PDSCH对子带 3和子带 5的 PBCH /SS的同频干扰较小。 如图 15所示, 为降低相邻小区的 PBCH/SS和 PDSCH之间的同频干扰 的方式 2, 包括以下步骤:
步骤 401: 针对已分配子带的任一小区, 从为该小区的邻小区分配的子 带中, 确定邻小区的指定下行信道占用的 RB。
以图 14(b)为例(图 14(b)的子带划分以及子带分配方式与图 l4(a) 相同),针对小区 A而言,确定小区 B分配的子带 3中指定下行信道占用的资 源块(RB)和小区 C分配的子带 4和子带 5中指定下行信道占用的 RB。
步骤 402: 从为该小区分配的子带中确定与邻小区的指定下行信道占用 的 RB有重叠的 RB。
在图 14 (b) 中, 确定子带 1中与子带 3和子带 5的 PBCH /SS占用的 RB有重叠的 RB, 即图 14 (b) 中标注的部分。
步骤 403: 降低确定的有重叠的 RB的调度优先级或发射功率。
在本步骤中, 由于确定的子带 1中有重叠的 RB承栽信道传输信息时, 会与子带 3、 子带 5中的 PBCH/SS产生同频干扰, 因此, 为了降低产生的同 频干扰, 将子带 1中确定的所述有重叠的 RB的调度优先级降 ^至低于子带 1 的其他 RB的调度优先级, 或者, 将子带 1中确定的所述有重叠的 RB的发射 功率降低至低于子带 1的其他 RB的发射功率,极端地,还可以将子带 1中确 定的所述有重叠的 RB的发射功率降低为 0, 不用于传输信息。
步骤 404: 利用优先级或发射功率调整后的子带进行信息的传输。
小区 A在使用子带 1的 PDSCH进行信息传输时, 优先利用与子带 3和 子带 5的 PBCH /SS正交的 RB,使子带 1的 PDSCH对子带 3和子带 5的 PBCH /SS的同频干扰较小。
针对任一小区, 图 14 (a)和图 14 (b)是采用频段连续分配的方式, 即 分配给同一小区的多个子带所占用的是连续的两个频段, 其优先点是占用的 总的可用频段较小。 如果为了进一步降低同频干扰, 本发明实施例三的方案 也可以应用于如图 14 (c)所示的频段不连续分配的方式。 在本发明实施例三的两种降低同频干扰的方式中, 其目的都是为了使某 一小区的 PDSCH占用的 RB与邻小区的 PBCH/SS占用的 RB在频率上相互错 开, 使该小区的 PDSCH与邻小区的 PBCH/SS之间的干扰降到最低。
实施例四:
本发明实施例四中降低相邻小区的 PUCCH和 PUSCH之间的同频干扰 的方式包括但不限于以下两种方式, 下面分别加以说明。
如图 16所示, 为降低相邻小区的 PUCCH和 PUSCH之间的同频干扰的 方式 1, 包括以下步骤:
步骤 501 : 针对已分配子带的任一小区, 从为该小区的邻小区分配的子 带中, 确定邻小区的 PUCCH占用的 RB。
由于 PUCCH—般位于子带的两端位置, 因此, 在本步骤中, 可以根据 邻小区的中心频点和分配给邻小区的子带的带宽确定邻小区的 PUCCH 占用 的 RB。 具体做法为:
相邻小区之间可以以静态、半静态或动态方式, 通过 X2或 S1接口相互 告知各自的 PUCCH RB个数 M。 针对某一小区, 根据邻小区的中心频点和分 配给邻小区的子带的带宽, 确定分配给邻小区的子带两端的 RB, 然后将分配 给邻小区的子带两端的 M/2个 RB作为邻小区的 PUCCH占用的 RB。
假设以图 17 ( a )所示, 总的可用带宽划分为 5个子带, 子带 1和子带 2 分配给小区 Λ,子带 3分配给小区 B,子带 4和子带 5分配给小区 C,小区 A、 B、 C是同站址的相邻小区。 针对小区 A而言, 确定小区 B分配的子带 3中 PUCCH占用的 RB和小区 C分配的子带 4和子带 5中 PUCCH占用的 RB。
步骤 502: 确定为该小区分配的子带中 PUSCH占用的 RB。
本步骤要确定图 17 ( a ) 的子带 1中 PUSCH占用的 RB。
步骤 503:从确定的 PUSCH占用的 RB中选取与相邻小区的所述 PUCCH 占用的 RB不重叠的 RB。
以图 17 ( a )中的子带 1为例, 需要从子带 1的 PUSCH占用的 RB中选 取与子带 3和子带 4的 PUCCH正交的 RB, 即图 17 ( a ) 中标注的子带 1中 的部分频段。
步骤 504: 利用选取的 RB承栽该小区的 PUSCH。
小区 A在使用子带 1的 PUSCH进行信息传输时, 优先利用选取的 RB 承栽小区 A的 PUSCH, 确保子带 1的 PUSCH与子带 3、 子带 5同时进行信 息传输时, 子带 1的 PUSCH对子带 3和子带 5的 PUCCH的同频干扰较小。
如图 18所示, 为降低相邻小区的 PUCCH和 PUSCH之间的同频干扰的 方式 2, 包括以下步骤:
步骤 601: 针对已分配子带的任一小区, 从为该小区的邻小区分配的子 带中, 确定邻小区的 PUCCH占用的 RB。
本步骤与步骤 501相同。
步骤 602: 从为该小区分配的子带中确定与邻小区的 PUCCH占用的 RB 有重叠的 RB。
以图 17 ( b )为例(图 17 ( b )的子带划分以及子带分配方式与图 17 ( a ) 相同), 本步骤确定子带 1中与子带 3和子带 5的 PUCCH占用的 RB有重叠 的 RB, 即图 17 ( b ) 中标注的部分。
步骤 603: 降低确定的有重叠的 RB的调度优先级或发射功率。
在本步骤中, 由于确定的子带 1中有重叠的 RB承载信道传输信息时, 会与子带 3、 子带 5中的 PUCCH产生同频干扰, 因此, 为了降低产生的同频 干扰, 将子带 1 中确定的所述有重叠的 RB的调度优先级降低至低于子带 1 的其他 RB的调度优先级, 或者, 将子带 1中确定的所述有重叠的 RB的发射 功率降低至低于子带 1的其他 RB的发射功率,极端地,还可以将子带 1中确 定的所述有重叠的 RB的发射功率降低为 0, 不用于传输信息。
步骤 604: 利用优先级或发射功率调整后的子带进行信息的传输。
小区 A在使用子带 1的 PDSCH进行信息传输时, 优先利用与子带 3和 子带 5的 PUCCH正交的 RB,使子带 1的 PUSCH对子带 3和子带 5的 PUCCH 的同频干扰较小。
针对任一小区, 图 17 ( a )和图 17 ( b )是采用频段连续分配的方式, 本 发明实施例四的方案也可以应用于如图 17( c )所示的频段不连续分配的方式。 实施例五:
上述实施例三是降低下行信道之间干扰的优化方案, 实施例四是降低上 行信道之间干扰的优化方案, 本实施例五还提供一种可同时应用于上行信道 和下行信道的降低干扰的方案。
如图 19 所示, 为本实施例五中降低相邻小区之间的同频干扰的方法, 包括以下步骤:
步骤 701: 针对已分配子带的任一小区, 接收其他相邻小区发送的过载 指示 ( overload indicator, OI )信息。
每个 RB的 OI信息有两比特, 用于表示该 RB受到干扰的大小, 如表示 RB受到高、 中、 低干扰。 每一小区确定占用的子带的各 RB的 OI信息后, 发送给相邻的一个或多个小区。
步骤 702:确定为邻小区分配的子带中,受到的干扰满足设定条件的 RB。 假设小区 A接收到小区 B的 OI信息如图 20所示, 该 OI信息携带有小 区 B占用的子带中 10个 RB受到的干扰大小。 在所述设定条件是 RB受到高 干扰时, 本步骤中, 小区 A确定接收到的 01信息中, RB—B2、 RB— B3受到 高干扰。
步骤 703: 从为该小区分配的子带中确定与受到的干扰满足设定条件的 RB有重叠的 RB。
小区 A对照自身占用的子带, 确定与 RB一 B2、 RB_B3 重叠的 RB 为 RB— A4、 RB— A5。
步骤 704: 降低确定的有重叠的 RB的调度优先级或发射功率。
在本步骤中,由于小区 A的子带中与小区 B受高干扰影响的 RB有重叠, 将会导致小区 A和小区 B之间的同频干扰严重, 因此, 将小区 A的子带中有 重叠的 RB的调度优先级降低至低于为该小区分配的子带中的其他 RB的调度 优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分 配的子带中的其他 RB的发射功率。 步骤 705: 利用优先级或发射功率调整后的子带进行信息的传输。
需要说明的是, 本发明实施例三、 四、五中涉及的 RB包含 14个 OFDM 符号, 不论何种降低同频干扰的方式下,每一步骤确定的 RB可能不是一个完 整的 RB, 而是包含少于 14个 OFDM符号的部分 RB, 因此, 在确定的 RB 是包含少于 14个 OFDM符号的部分 RB时, 可以将确定的部分 RB的剩余 OFDM符号进行填充, 得到一个完成的 RB。
例如, 在步骤 402中, 子带 1中确定的与子带 3和子带 5的 PBCH /SS 占用的 RB有重叠的 RB中, 某一个 RB中的 10个 OFDM符号与子带 3和子 带 5的 PBCH /SS占用的 RB重叠,剩余的 4个 OFDM符号与子带 3和子带 5 的 PBCH /SS占用的 RB不重叠, 则由于 RB是信道传输的最小单位, 因此, 可以将不重叠的 4个 OFDM符号与重叠的 10个 OFDM符号一起作为与子带 3和子带 5的 PBCH /SS占用的 RB重叠的 RB。
实施例六:
本发明实施例六提供一种频率复用组网设备, 如图 21 所示, 所述设备 包括划分模块 11和分配模块 12, 其中: 划分模块 11用于预先将系统总的可 用频段划分为多个子带; 分配模块 12用于将划分得到的所述子带分配给每个 小区, 其中, 至少有两个小区分配的子带有重叠。
所述分配模块 12具体用于为每个小区分配一个子带; 或, 为至少一个 小区分配多个子带, 且分配给同一小区的多个子带中, 任意两个子带无重叠。
具体地, 所述分配模块 12包括相关性确定子模块 21和执行子模块 22, 其中: 相关性确定子模块 21用于确定各子带之间的相关性, 其中, 任意两个 子带的重叠部分的带宽占所述两个子带占用的总带宽比例越大, 所述两个子 带的相关性越大; 执行子模块 22用于根据各子带之间的相关性, 将划分得到 的子带分配给各小区, 其中, 两个小区之间的物理距离越近, 分配给所述两 个小区的子带之间的相关性越小。
所述设备还包括负栽确定模块 13和调度模块 14, 其中: 负栽确定模块 13用于针对占用的子带有重叠的相邻小区, 确定相邻小区的负载; 调度模块 14用于当所述相邻小区的负栽都低于负栽阈值时, 指示所述相邻小区使用未 重叠部分的频段调度业务, 当任一小区的负载不低于负载阈值时, 指示该小 区使用分配的子带中未重叠部分的频段调度业务的优先级高于使用重叠部分 的频段调度业务的优先级。
本实施例六中的设备除了图 21 所示的结构外, 还具有实现实施例三至 实施例五的功能模块, 下面分别加以说明。
1、 针对实施例四中图 16所示的降低相邻小区的 PUCCH和 PUSCH之 间的同频干扰的方式 1, 在本实施例六的设备中包括以下功能模块:
邻小区 RB确定模块、 RB选取模块和指示模块, 其中:
邻小区 RB确定模块用于针对已分配子带的任一小区, 从为该小区的邻 小区分配的子带中, 确定邻小区的 PUCCH占用的 RB;
RB 选取模块, 用于 居为该小区分配的子带中确定物理上行共享信道
PUSCH占用的 RB,并从 PUSCH占用的 RB中选取与所述 PUCCH占用的 RB 不重叠的 RB;
指示模块, 用于指示该小区利用选取的 RB承栽 PUSCH。
2、 针对实施例四中图 18所示的降低相邻小区的 PUCCH和 PUSCH之 间的同频干扰的方式 2, 在本实施例六的设备中包括以下功能模块:
邻小区 RB确定模块、 RB选取模块和调整模块, 其中:
邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的 PUCCH占用的 RB;
RB选取模块,用于从为该小区分配的子带中确定与邻小区的 PUCCH占 用的 RB有重叠的 RB;
调整模块, 用于将确定的所述有重叠的 RB的调度优先级降低至低于为 该小区分配的子带中的其他 RB的调度优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分配的子带中的其他 RB的发射功率。
在上述 1、 2中的邻小区 RB确定模块,具体用于根据邻小区的中心频点 和分配给邻小区的子带的带宽, 确定分配给邻小区的子带两端的 RB, 并将分 配给邻小区的子带两端的 M/2个 RB作为邻小区的 PUCCH占用的 RB, 所述 M是邻小区的 PUCCH占用的 RB个数。
3、 针对实施例五中图 19所示的降低相邻小区之间的同频干扰的方式, 在本实施例六的设备中包括以下功能模块:
信息接收模块、 邻小区 RB确定模块、 RB选取模块和调整模块, 其中: 信息接收模块, 用于针对已分配子带的任一小区, 接收相邻小区之间发 送的过栽指示 OI信息, 所述 OI信息中包含为邻小区分配的子带中, 各 RB 受到的干扰大小;
邻小区 RB确定模块, 用于确定为邻小区分配的子带中, 受到的干扰满 足设定条件的 RB;
RB 选取模块, 用于从为该小区分配的子带中确定与受到的干扰满足设 定条件的 RB有重叠的 RB;
调整模块, 用于将确定的所述有重叠的 RB的调度优先级降低至低于为 该小区分配的子带中的其他 RB的调度优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分配的子带中的其他 RB的发射功率。
4、针对实施例三中图 13所示的降低相邻小区的 PBCH/SS和 PDSCH之 间的同频干扰的方式 1, 在本实施例六的设备中包括以下功能模块:
邻小区 RB确定模块、 RB选取模块和指示模块, 其中:
邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的指定下行信道占用的 RB;
RB选取模块,用于根据为该小区分配的子带中确定 PDSCH占用的 RB, 并从 PDSCH占用的 RB中选取与所述指定下行信道占用的 RB不重叠的 RB; 指示模块, 用于指示该小区利用选取的 RB承载 PDSCH。
5、针对实施例三中图 15所示的降低相邻小区的 PBCH/SS和 PDSCH之 间的同频干扰的方式 2, 在本实施例六的设备中包括以下功能模块:
邻小区 RB确定模块、 RB选取模块和调整模块, 其中:
邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的指定下行信道占用的 RB;
RB 选取模块, 用于从为该小区分配的子带中确定与邻小区的指定下行 信道占用的 RB有重叠的 RB;
调整模块, 用于将确定的所述有重叠的 RB的调度优先级降低至低亍为 该小区分配的子带中的其他 RB的调度优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分配的子带中的其他 RB的发射功率。
在上述 4、 5中的邻小区 RB确定模块,具体用于根据邻小区的中心频点 和分配给邻小区的子带的带宽, 确定分配给邻小区的子带中, 中心设定长度 的频段占用的 RB作为邻小区的指定下行信道占用的 RB, 所述设定长度的频 段可以是 1.08MHz的频段。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案 本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台终端 设备(可以是手机, 个人计算机, 服务器, 或者网络设备等)执行本发明各 个实施例所述的方法。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润 饰, 这些改进和润饰也应视本发明的保护范围。

Claims

权 利 要 求
1、 一种频率复用组网方法, 其特征在于, 将系统总的可用频段划分为 多个子带;
所述频率复用组网的方法包括:
将划分得到的所述子带分配给每个小区, 其中, 至少有两个小区分配的 子带有重叠。
2、 如权利要求 1 所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区, 具体包括:
根据各子带之间的相关性, 将划分得到的子带分配给各小区;
其中, 任意两个子带的重叠部分的带宽占所述两个子带占用的总带宽比 例越大, 所述两个子带的相关性越大。
3、 如权利要求 2所述的方法, 其特征在于, 根据各子带之间的相关性, 将划分得到的子带分配给各小区, 具体包括:
按照两个小区之间的物理距离越近, 分配给所述两个小区的子带之间的 相关性越小的原则, 将划分得到的子带分配给各小区。
4、 如权利要求 1 所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区之后, 所述方法还包括:
针对占用的子带有重叠的相邻小区, 当所述相邻小区的负载都低于负载 阈值时, 所述相邻小区使用未重叠部分的频段调度业务;
当任一小区的负载不低于负栽阈值时, 该小区使用分配的子带中未重叠 部分的频段调度业务的优先级高于使用重叠部分的频段调度业务的优先级。
5、 如权利要求 1 所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区之后, 所述方法还包括:
针对已分配子带的任一小区, 从为该小区的邻小区分配的子带中, 确定 邻小区的物理上行控制信道 PUCCH占用的资源块 RB;
根据为该小区分配的子带中确定物理上行共享信道 PUSCH占用的 RB, 并从 PUSCH占用的 RB中选取与所述 PUCCH占用的 RB不重叠的 RB,利用 选取的 RB承载该小区的 PUSCH。
6、 如权利要求 1 所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区之后, 所述方法还包括:
针对已分配子带的任一小区, 从为该小区的邻小区分配的子带中, 确定 邻小区的 PUCCH占用的 RB;
从为该小区分配的子带中确定与邻小区的 PUCCH占用的 RB有重叠的
RB;
将确定的所述有重叠的 RB的调度优先级降低至低于为该小区分配的子 带中的其他 RB的调度优先级, 或者, 将确定的所述有重叠的 RB的发射功率 P条低至低于为该小区分配的子带中的其他 RB的发射功率。
7、 如权利要求 5或 6所述的方法, 其特征在于, 确定邻小区的 PUCCH 占用的 RB, 具体包括:
根据邻小区的中心频点和分配给邻小区的子带的带宽, 确定邻小区的 PUCCH占用的 RB。
8、 如权利要求 7所述的方法, 其特征在于, 确定邻小区的 PUCCH占用 的 RB, 具体包括:
根据邻小区的中心频点和分配给邻小区的子带的带宽, 确定分配给邻小 区的子带两端的 RB;
将分配给邻小区的子带两端的 M/2个 RB作为邻小区的 PUCCH占用的 RB, 所述 M是邻小区的 PUCCH占用的 RB个数。
9、 如权利要求 1 所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区之后, 所述方法还包括:
针对已分配子带的任一小区, 接收相邻小区之间发送的过栽指示 OI信 息, 所述 OI信息中包含为邻小区分配的子带中, 各 RB受到的干扰大小; 确定为邻小区分配的子带中, 受到的干扰满足设定条件的 RB, 并从为 该小区分配的子带中确定与受到的干扰满足设定条件的 RB有重叠的 RB; 将确定的所述有重叠的 RB的调度优先级降低至低于为该小区分配的子 带中的其他 RB的调度优先级, 或者, 将确定的所述有重叠的 RB的发射功率 降低至低于为该小区分配的子带中的其他 RB的发射功率。
10、 如权利要求 1所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区之后, 所述方法还包括:
针对已分配子带的任一小区, 从为该小区的邻小区分配的子带中, 确定 邻小区的指定下行信道占用的 RB;
根据为该小区分配的子带中确定物理下行共享信道 PDSCH占用的 RB, 并从 PDSCH占用的 RB中选取与所述指定下行信道占用的 RB不重叠的 RB, 利用选取的 RB承栽该小区的 PDSCH。
11、 如权利要求 1所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区之后, 所述方法还包括:
针对已分配子带的任一小区, 从为该小区的邻小区分配的子带中, 确定 邻小区的指定下行信道占用的 RB;
从为该小区分配的子带中确定与邻小区的指定下行信道占用的 RB有重 叠的 RB;
将确定的所述有重叠的 RB的调度优先级降低至低于为该小区分配的子 带中的其他 RB的调度优先级, 或者, 将确定的所述有重叠的 RB的发射功率 降低至低于为该小区分配的子带中的其他 RB的发射功率。
12、 如权利要求 10或 11所述的方法, 其特征在于,
所述指定下行信道是广播信道 PBCH和 /或同步信道 SS。
13、 如权利要求 10或 11所述的方法, 其特征在于, 确定邻小区的指定 下行信道占用的 RB, 具体包括:
根据邻小区的中心频点和分配给邻小区的子带的带宽, 确定分配给邻小 区的子带中,中心设定长度的频段占用的 RB作为邻小区的指定下行信道占用 的 RB。
14、 如权利要求 1所述的方法, 其特征在于, 将划分得到的所述子带分 配给每个小区, 具体包括:
为每个小区分配一个子带; 或
为至少一个小区分配多个子带, 且分配给同一小区的多个子带中, 任意 两个子带无重叠。
15、 一种频率复用组网设备, 其特征在于, 所述设备包括:
划分模块, 用于预先将系统总的可用频段划分为多个子带;
分配模块, 用于将划分得到的所迷子带分配给每个小区, 其中, 至少有 两个小区分配的子带有重叠。
16、 如权利要求 15所述的设备, 其特征在于, 所述分配模块, 包括: 相关性确定子模块, 用于确定各子带之间的相关性, 其中, 任意两个子 带的重叠部分的带宽占所述两个子带占用的总带宽比例越大, 所述两个子带 的相关性越大;
执行子模块, 用于根据各子带之间的相关性, 将划分得到的子带分配给 各小区。
17、 如权利要求 16所述的设备, 其特征在于,
所述执行子模块, 具体用于按照两个小区之间的物理距离越近, 分配给 所述两个小区的子带之间的相关性越小的原则, 将划分得到的子带分配给各 小区。
18、 如权利要求 15所述的设备, 其特征在于, 所述设备还包括: 负载确定模块, 用于针对占用的子带有重叠的相邻小区, 确定相邻小区 的负载;
调度模块, 用于当所述相邻小区的负栽都低于负载阈值时, 指示所述相 邻小区使用未重叠部分的频段调度业务, 当任一小区的负载不低于负栽闹值 时, 指示该小区使用分配的子带中未重叠部分的频段调度业务的优先级高于 使用重叠部分的频段调度业务的优先级。
19、 如权利要求 15所述的设备, 其特征在于, 所述设备还包括: 邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的 PUCCH占用的 RB;
RB 选取模块, 用于根据为该小区分配的子带中确定物理上行共享信道 PUSCH占用的 RB,并从 PUSCH占用的 RB中选取与所述 PUCCH占用的 RB 不重叠的 RB;
指示模块, 用于指示该小区利用选取的 RB承载 PUSCH。
20、 如权利要求 15所述的设备, 其特征在于, 所述设备还包括: 邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的 PUCCH占用的 RB;
RB选取模块,用于从为该小区分配的子带中确定与邻小区的 PUCCH占 用的 RB有重叠的 RB;
调整模块, 用于将确定的所迷有重叠的 RB的调度优先级降低至低于为 该小区分配的子带中的其他 RB的调度优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分配的子带中的其他 RB的发射功率。
21、 如权利要求 19或 20任一所述的设备, 其特征在于,
所述邻小区 RB确定模块, 具体用于根据邻小区的中心频点和分配给邻 小区的子带的带宽, 确定分配给邻小区的子带两端的 RB, 并将分配给邻小区 的子带两端的 M/2个 RB作为邻小区的 PUCCH占用的 RB,所述 M是邻小区 的 PUCCH占用的 RB个数。
22、 如权利要求 15所述的设备, 其特征在于, 所述设备还包括: 信息接收模块, 用于针对已分配子带的任一小区, 接收相邻小区之间发 送的过载指示 OI信息, 所述 OI信息中包含为邻小区分配的子带中, 各 RB 受到的干扰大小;
邻小区 RB确定模块, 用于确定为邻小区分配的子带中, 受到的干扰满 足设定条件的 RB;
RB 选取模块, 用于从为该小区分配的子带中确定与受到的干扰满足设 定条件的 RB有重叠的 RB;
调整模块, 用于将确定的所述有重叠的 RB的调度优先级降低至低于为 该小区分配的子带中的其他 RB的调度优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分配的子带中的其他 RB的发射功率。
23、 如权利要求 15所述的设备, 其特征在于, 所述设备还包括: 邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的指定下行信道占用的 RB;
RB选取莫块,用于根据为该小区分配的子带中确定 PDSCH占用的 RB, 并从 PDSCH占用的 RB中选取与所述指定下行信道占用的 RB不重叠的 RB; 指示模块, 用于指示该小区利用选取的 RB承载 PDSCH。
24、 如权利要求 15所述的设备, 其特征在于, 所述设备还包括: 邻小区 RB确定模块, 用于针对已分配子带的任一小区, 从为该小区的 邻小区分配的子带中, 确定邻小区的指定下行信道占用的 RB;
RB 选取模块, 用于从为该小区分配的子带中确定与邻小区的指定下行 信道占用的 RB有重叠的 RB;
调整模块, 用于将确定的所述有重叠的 RB的调度优先级降低至低于为 该小区分配的子带中的其他 RB的调度优先级,或者,将确定的所述有重叠的 RB的发射功率降低至低于为该小区分配的子带中的其他 RB的发射功率。
25、 如权利要求 23或 24任一所述的设备, 其特征在于,
所述邻小区 RB确定模块, 具体用于根据邻小区的中心频点和分配给邻 小区的子带的带宽, 确定分配给邻小区的子带中, 中心设定长度的频段占用 的 RB作为邻小区的指定下行信道占用的 RB。
26、 如权利要求 15所述的设备, 其特征在于,
所述分配模块, 具体用于为每个小区分配一个子带; 或, 为至少一个小 区分配多个子带, 且分配给同一小区的多个子带中, 任意两个子带无重叠。
PCT/CN2011/000186 2010-02-03 2011-01-31 一种频率复用组网方法及设备 WO2011095060A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012551476A JP5536235B2 (ja) 2010-02-03 2011-01-31 周波数再利用ネットワーキング方法および機器
US13/576,715 US20130021999A1 (en) 2010-02-03 2011-01-31 Networking method and device for frequency reuse
KR1020127022337A KR101468789B1 (ko) 2010-02-03 2011-01-31 주파수 재사용 네트워크 방법, 및 설비
EP11739339.7A EP2533557B1 (en) 2010-02-03 2011-01-31 Networking method and device for frequency reuse

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201019114021.5 2010-02-03
CN2010191140215A CN102143500A (zh) 2010-02-03 2010-02-03 一种小区带宽配置方法和设备
CN201010268723.1 2010-08-31
CN2010102687231A CN102386989A (zh) 2010-08-31 2010-08-31 一种频率复用组网方法和系统

Publications (1)

Publication Number Publication Date
WO2011095060A1 true WO2011095060A1 (zh) 2011-08-11

Family

ID=44354944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000186 WO2011095060A1 (zh) 2010-02-03 2011-01-31 一种频率复用组网方法及设备

Country Status (5)

Country Link
US (1) US20130021999A1 (zh)
EP (1) EP2533557B1 (zh)
JP (1) JP5536235B2 (zh)
KR (1) KR101468789B1 (zh)
WO (1) WO2011095060A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165647A (ja) * 2013-02-25 2014-09-08 Kyocera Corp 無線通信システム、無線通信システムの制御方法、基地局および移動局
CN106793098A (zh) * 2016-04-01 2017-05-31 北京展讯高科通信技术有限公司 空口帧结构框架及其配置方法、基站

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553680B1 (en) * 2012-04-02 2017-01-24 Sprint Communications Company L.P. Uplink interference mitigation
US10039116B1 (en) 2012-04-02 2018-07-31 Sprint Communications Company L.P. Long term evolution scheduler to mitigate interference
WO2014119246A1 (ja) 2013-01-29 2014-08-07 京セラ株式会社 通信システム、通信方法、及び通信装置
JP6091227B2 (ja) * 2013-01-29 2017-03-08 京セラ株式会社 通信システム、通信方法、及び通信装置
JP2014146994A (ja) * 2013-01-29 2014-08-14 Kyocera Corp 通信システム、通信方法、及び通信装置
CN106102076B (zh) * 2016-06-15 2020-11-13 惠州Tcl移动通信有限公司 一种用于室内覆盖网络的自适应频率调节方法及系统
KR102475187B1 (ko) 2017-11-16 2022-12-06 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 통신 네트워크에서의 사용자 장비, 네트워크 노드 및 방법
US10667258B2 (en) * 2017-12-12 2020-05-26 Nec Corporation System and method for improving transmission in wireless networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227889A1 (en) * 2002-06-07 2003-12-11 Jianming Wu Systems and methods for channel allocation for forward-link multi-user systems
CN1914944A (zh) * 2004-02-12 2007-02-14 诺基亚公司 Tdma蜂窝通信系统中分配无线资源的方法,系统,设备和计算机程序
US20090195453A1 (en) * 2008-01-31 2009-08-06 Nokia Corporation MIMO-OFDM wireless communication system
CN101600210A (zh) * 2008-12-30 2009-12-09 上海无线通信研究中心 基于不同带宽的移动通信系统网络的频率复用分配方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266478A (ja) * 1998-01-14 1999-09-28 Hitachi Ltd Tdma移動体通信システム
JP2003018091A (ja) * 2001-07-05 2003-01-17 Mitsubishi Materials Corp 無線データ通信システム、無線データ通信方法およびそのプログラム
US7769073B2 (en) * 2002-05-03 2010-08-03 Sprint Spectrum L.P. Method and system using overlapping frequency bands in a hybrid frequency reuse plan
WO2005079094A1 (en) * 2004-02-12 2005-08-25 Nokia Corporation Method, system, apparatus and computer program for allocating radio resources in tdma cellular telecommunications system
US7257406B2 (en) * 2004-07-23 2007-08-14 Qualcomm, Incorporated Restrictive reuse set management
US7548752B2 (en) * 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
US8320924B2 (en) * 2006-05-25 2012-11-27 Nokia Corporation Interference control in a communication system
US8031688B2 (en) * 2007-06-11 2011-10-04 Samsung Electronics Co., Ltd Partitioning of frequency resources for transmission of control signals and data signals in SC-FDMA communication systems
GB0725053D0 (en) * 2007-12-21 2008-01-30 Fujitsu Lab Of Europ Ltd Communications system
GB0725052D0 (en) * 2007-12-21 2008-01-30 Fujitsu Lab Of Europ Ltd Communications system
US8335176B2 (en) * 2008-04-07 2012-12-18 Qualcomm Incorporated Transmission of overhead channels with timing offset and blanking
JP5200701B2 (ja) * 2008-07-02 2013-06-05 富士通株式会社 基地局装置、周波数割当て方法、移動通信システム、及び通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227889A1 (en) * 2002-06-07 2003-12-11 Jianming Wu Systems and methods for channel allocation for forward-link multi-user systems
CN1914944A (zh) * 2004-02-12 2007-02-14 诺基亚公司 Tdma蜂窝通信系统中分配无线资源的方法,系统,设备和计算机程序
US20090195453A1 (en) * 2008-01-31 2009-08-06 Nokia Corporation MIMO-OFDM wireless communication system
CN101600210A (zh) * 2008-12-30 2009-12-09 上海无线通信研究中心 基于不同带宽的移动通信系统网络的频率复用分配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165647A (ja) * 2013-02-25 2014-09-08 Kyocera Corp 無線通信システム、無線通信システムの制御方法、基地局および移動局
CN106793098A (zh) * 2016-04-01 2017-05-31 北京展讯高科通信技术有限公司 空口帧结构框架及其配置方法、基站

Also Published As

Publication number Publication date
JP2013519269A (ja) 2013-05-23
KR20120127472A (ko) 2012-11-21
JP5536235B2 (ja) 2014-07-02
KR101468789B1 (ko) 2014-12-03
EP2533557B1 (en) 2018-06-06
EP2533557A1 (en) 2012-12-12
EP2533557A4 (en) 2016-11-23
US20130021999A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
US10887068B2 (en) Methods and apparatus for an extensible and scalable control channel for wireless networks
WO2011095060A1 (zh) 一种频率复用组网方法及设备
US8934361B2 (en) Downlink inter-cell interference coordination method and eNB
EP2870805B1 (en) Interference control in hetnets
WO2013040951A1 (zh) 小区间资源协调的方法和设备
WO2012136100A1 (zh) 一种进行小区间干扰协调的方法及装置
US11991722B2 (en) Application of an uplink (UL) cancellation indication in a wireless communications network
WO2010034268A1 (zh) 一种子信道共享的方法、装置和系统
KR102161007B1 (ko) 업링크 채널 송신 방법 및 장치
US11696315B2 (en) Uplink cancellation indication configuration for wireless communications network
WO2013071719A1 (zh) 一种下行控制信道的功率的协调系统、方法及基站
WO2010096946A1 (zh) 资源调度方法、调度器和基站
US10772114B2 (en) Scheduling method and system
WO2012006887A1 (zh) 正交频分复用系统中资源分配方法与装置
JP7205557B2 (ja) リソーススケジューリング指示方法及びその装置、通信システム
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
WO2012003695A1 (zh) 下行资源分配方法及基站
US20140016588A1 (en) Apparatus and Corresponding Method for Allocating a Component Carrier to a Cell in a Communication System
WO2015084222A1 (en) Physical downlink control channel power coordination
WO2021109060A1 (en) Control resource set (coreset) design for subbands in a multi-carrier system
JP7484934B2 (ja) リソース確定方法、リソーススケジューリング方法及び装置
US20230254702A1 (en) Shared spectrum resource allocation in open radio access networks
WO2017024570A1 (zh) 一种确定小区簇子帧配置的方法及装置
CN116667977A (zh) 接收和发送信息的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012551476

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022337

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011739339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13576715

Country of ref document: US