WO2010034268A1 - 一种子信道共享的方法、装置和系统 - Google Patents
一种子信道共享的方法、装置和系统 Download PDFInfo
- Publication number
- WO2010034268A1 WO2010034268A1 PCT/CN2009/074297 CN2009074297W WO2010034268A1 WO 2010034268 A1 WO2010034268 A1 WO 2010034268A1 CN 2009074297 W CN2009074297 W CN 2009074297W WO 2010034268 A1 WO2010034268 A1 WO 2010034268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink
- downlink
- mobile station
- subchannel
- scheduling
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/20—Repeater circuits; Relay circuits
- H04L25/24—Relay circuits using discharge tubes or semiconductor devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
Definitions
- the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a system for subchannel sharing. Background technique
- the spectrum resources of the low-frequency band are basically allocated, and the newly added wireless communication technologies (such as WiMax, 3GPP LTE, etc.) can only use high-frequency bands, such as 2.6GHz, 3.5GHz, or even 5GHz. Since the radio frequency signal attenuates as the transmission distance increases, the attenuation increases as the frequency increases. That is, the higher the frequency band, the faster the attenuation, and the increasing frequency band causes the cell coverage to shrink. It is difficult to meet the needs of wireless communication.
- the prior art introduces a secondary system OR (Opportunistic Radio), which coexists with the 3G UMTS system (the 3G UMTS system is called the primary system), by sensing the upstream spectrum of the 3G UMTS system.
- the use case utilizes the uplink frequency band, and simultaneously measures its own interference to the base station to control the transmission power, and reduces interference to the uplink reception of the 3G UMTS system.
- the prior art 2 proposes to use a multi-hop transmission method in a CDMA/FDD-based cellular system to transmit downlink data using the uplink spectrum in the second hop, so as to solve the problem that the downlink spectrum resources are insufficient when the uplink and downlink services are asymmetric. problem.
- the inventor has found that the prior art has at least the following problems:
- the prior art 1 is not applicable to an OFDMA system, and the spectrum sharing efficiency is low; the channel resources that are not used by the primary system are required to be used, resulting in low spectrum sharing efficiency, and the primary system and the secondary system are two.
- An independent mutual communication system leads to increased interference and low sharing efficiency.
- the premise of the implementation of the prior art 2 is that the two systems must use the same wireless access technology, so that The flexibility of the system is reduced and the flexibility of resource sharing is reduced. Summary of the invention
- Embodiments of the present invention provide a method, an apparatus, and a system for subchannel sharing, which can improve sharing efficiency and flexibility, and greatly improve overall traffic.
- an embodiment of the present invention provides a method for seed channel sharing, including:
- the embodiment of the invention further provides a method for seed channel sharing, including:
- the power control information is sent to another scheduling unit.
- an embodiment of the present invention provides an apparatus for uplink spectrum sharing, including: an acquiring module, configured to acquire downlink state information of a subchannel and uplink state information of a subchannel; and a scheduling module, configured to be used according to the subchannel Downlink state information and uplink state information, scheduling the subchannels, and allocating the subchannels to an uplink mobile station and/or a downlink mobile station.
- An embodiment of the present invention further provides an apparatus for uplink spectrum sharing, including:
- a channel scheduling module configured to schedule the subchannel according to status information of the subchannel
- a scheduling command sending module configured to send a scheduling command to the uplink or downlink mobile station
- a measuring module configured to measure uplink or downlink interference received
- a comparison module configured to compare an uplink or downlink interference measured by the measurement module with a preset threshold, and when greater than a preset threshold, trigger an information sending module;
- the information sending module is configured to send power control information by another scheduling unit.
- An embodiment of the present invention provides a system for uplink spectrum sharing, including: a base station, an uplink mobile station, a relay station, and a downlink mobile station;
- the base station is configured to acquire downlink state information of the subchannel and uplink state information of the subchannel; perform scheduling on the subchannel according to downlink state information and uplink state information of the subchannel, and allocate the subchannel to an uplink.
- the uplink mobile station is configured to receive a scheduling command sent by the base station;
- the downlink mobile station is configured to measure status information of the downlink subchannel and report the status information
- the relay station After receiving the status information sent by the downlink mobile station, the relay station sends status information of the downlink subchannel to the base station.
- the embodiment of the present invention further provides a system for uplink spectrum sharing, including: an uplink scheduling unit, an uplink mobile station, a downlink scheduling unit, and a downlink mobile station;
- the uplink scheduling unit is configured to: after scheduling the subchannel according to the status information of the subchannel, send a scheduling command to the uplink mobile station; measure the received uplink interference; when the uplink interference is greater than a preset threshold, Transmitting power control information to the downlink scheduling unit;
- the downlink scheduling unit is configured to: after scheduling the subchannel according to the status information of the subchannel, send a scheduling command to the downlink mobile station; measure the received downlink interference; when the downlink interference is greater than a preset threshold, Transmitting power control information to the uplink scheduling unit;
- the uplink mobile station is configured to receive a scheduling command sent by the uplink scheduling unit;
- the downlink mobile station is configured to receive a scheduling command sent by the downlink scheduling unit.
- the embodiment of the invention has the following advantages:
- the uplink subchannel is scheduled according to the downlink subchannel state information and the state information of the uplink subchannel, and the uplink subchannel is allocated to the uplink mobile station and/or the downlink mobile station, and then moved upward.
- the station and the downlink mobile station send scheduling commands.
- the state information of the uplink subchannel and the downlink subchannel are comprehensively considered, and the efficiency and flexibility of spectrum sharing are improved.
- FIG. 1 is a flowchart of a method for subchannel sharing in an embodiment of the present invention
- FIG. 2 is a flowchart of a method for subchannel sharing in another embodiment of the present invention.
- FIG. 3 is a flowchart of a method for subchannel sharing in an embodiment of the present invention.
- FIG. 5 is a flowchart of a method for subchannel sharing in an embodiment of the present invention.
- FIG. 6 is a schematic diagram of an apparatus for subchannel sharing in an embodiment of the present invention.
- FIG. 7 is a schematic diagram of an apparatus for subchannel sharing in an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a system for subchannel sharing in an embodiment of the present invention.
- FIG. 9 is a schematic diagram of a system for subchannel sharing in an embodiment of the present invention. detailed description
- the embodiment of the invention provides a method, a device and a system for sharing a seed channel, which can improve sharing efficiency and flexibility, and greatly improve overall traffic.
- the embodiment of the present invention provides a method for sharing a seed channel.
- the method includes: Step 101: Obtain downlink state information of a subchannel and uplink state information of a subchannel.
- the downlink mobile station measures downlink state information of the subchannel, and sends the information to the relay station; the relay station then sends the status information
- the information (either processed or unprocessed) is sent to the base station; at the same time, the base station also measures the state of the uplink mobile station in the uplink of the subchannel, and obtains relevant uplink state information.
- Step 102 Schedule the subchannel according to downlink state information and uplink state information of the subchannel, and allocate the subchannel to an uplink mobile station and/or a downlink mobile station.
- the base station schedules the subchannel according to a preset scheduling algorithm
- the scheduling algorithm is: calculating, according to the interference information and the channel quality in the uplink status information and the downlink status information of the subchannel, the uplink traffic of the uplink mobile station corresponding to the subchannel and the downlink traffic of the corresponding downlink mobile station, and selecting the traffic. And the largest subchannel and the corresponding uplink mobile station and the downlink mobile station, and the selected subchannels are allocated to the corresponding uplink mobile station and the downlink mobile station; for example, according to the interference information in the uplink status information of the subchannel and the downlink status information.
- the channel quality is used as an input to perform scheduling, selecting a subchannel and an uplink and downlink mobile station with the highest channel quality and the least interference in the uplink and downlink state information, and allocating the selected subchannel to the uplink mobile station and the downlink mobile station;
- the scheduling algorithm may further be: selecting, according to channel quality and interference in the uplink state information, a subchannel with the largest channel quality and interference ratio and a corresponding uplink mobile station as a combination; according to channel quality and interference in the downlink state information.
- the subchannels in the combination are allocated to the uplink mobile station or the downlink mobile station in the combination; the subchannel can be allocated to one of the uplink mobile station and the downlink mobile station by using the algorithm, which is more suitable for the distance between the uplink mobile station and the downlink mobile station. The near situation is because the interference between each other is large.
- the subchannels are scheduled according to the uplink state information and the downlink state information of the subchannel, and the subchannels are allocated to the uplink mobile station and/or the downlink mobile station, and the uplink state information and the downlink state information are comprehensively considered due to the scheduling. , improving the efficiency of subchannel sharing, and better reducing interference.
- the method provided by the foregoing embodiment may be used to allocate a base station control subchannel to an uplink mobile station and/or a downlink mobile station.
- Another embodiment of the present invention further provides a method for seed channel sharing, using an uplink scheduling list.
- the element allocates a subchannel for the uplink mobile station
- the downlink scheduling unit allocates a subchannel for the downlink mobile station, and controls the transmit power of the uplink mobile station and the downlink mobile station, thereby reducing mutual interference, as shown in FIG. 2, including:
- Step 201 After scheduling the subchannel according to status information of the subchannel, send a scheduling command to the uplink or downlink mobile station.
- the uplink scheduling unit and the downlink scheduling unit perform scheduling of the subchannels by using the state information of the subchannel as an input of a predetermined algorithm.
- the uplink scheduling unit selects, according to the channel quality and interference in the uplink state information, the subchannel with the largest channel quality and the smallest interference and the corresponding uplink mobile station as a combination, and allocates the subchannels in the combination to the combination.
- the downlink scheduling unit selects, according to channel quality and interference in the downlink state information, a subchannel with the largest channel quality and the smallest interference and the corresponding downlink mobile station as a combination, and allocates the subchannel in the combination to The downstream mobile station in the combination.
- Step 202 Measure the uplink or downlink interference received.
- the downlink mobile station measures the downlink interference received; the uplink scheduling unit or the uplink mobile station measures the uplink interference received, and the measurement can be implemented by using the prior art.
- Step 203 When the uplink or downlink interference is greater than a preset threshold, send power control information to another scheduling unit.
- the power control information is sent to the downlink scheduling unit; when the downlink interference is greater than the preset threshold, the power control information is sent to the uplink scheduling unit; after the uplink scheduling unit receives the power control information, Sending an adjustment command to the uplink mobile station to adjust the transmission power or; after receiving the power control information, the downlink scheduling unit sends an adjustment command to the downlink mobile station to adjust the transmission power.
- the uplink scheduling unit schedules the subchannels according to the uplink state information
- the downlink scheduling unit schedules the subchannels according to the downlink state information, and simultaneously controls power through each other to minimize mutual interference.
- a method for subchannel sharing provided by the embodiment of the present invention is described in detail below by using a specific embodiment, where a base station allocates a subchannel to an uplink channel according to uplink state information and downlink state information of a subchannel.
- the mobile station and/or the downlink mobile station, as shown in FIG. 3, include:
- Step 301 The downlink mobile station measures downlink state information of the subchannel, including information such as interference and channel quality.
- the subchannel here may be one subcarrier in OFDMA, or a subcarrier set in which a plurality of subcarriers are combined according to a certain rule, or a radio channel resource combined by two latitudes according to time and frequency, and other forms of radio channels. Resources.
- the downlink subchannel is mainly used for the downlink mobile station to transmit data to the relay station.
- Step 302 The downlink mobile station sends downlink status information of the measured subchannel to the relay station.
- Step 304 The relay station sends the processed measurement report to the base station.
- Step 305 The base station measures uplink state information of the subchannel, and the measurement is performed for each uplink mobile station and each subchannel. This step has no relationship with steps 301 to 304 in time, and may be earlier than any of steps 301 to 304, or may be performed simultaneously.
- Step 306 The base station schedules the subchannel according to the subchannel uplink state information and the subchannel downlink state information, and selects the mobile station.
- the base station obtains the subchannel uplink state information and the subchannel downlink state information through the above steps 304 and 305, and performs scheduling on the subchannel according to the information, that is, according to some algorithms, the subchannel is allocated to the downlink mobile station and/or the uplink mobile station.
- the subchannel allocated to the downlink mobile station is used by the relay station to transmit downlink data to the downlink mobile station; and the subchannel allocated to the uplink mobile station is used by the uplink mobile station to transmit uplink data to the base station.
- a downlink mobile station or an uplink mobile station may allocate one, multiple or zero subchannels.
- a subchannel may be allocated only to the downlink mobile station, or may be assigned only to the uplink mobile station, or may be allocated to both the downlink mobile station and the uplink mobile station.
- Step 307 The base station sends a scheduling command to the relay station, where the scheduling command includes subchannel information allocated to the downlink mobile station.
- Step 308 The base station sends a scheduling command to the uplink mobile station, where the scheduling command includes subchannel information allocated to the uplink mobile station.
- Step 308 and step 307 have no relationship in time, that is, steps 308 may be performed before step 307 or simultaneously.
- Step 309 After receiving the scheduling command sent by the base station, the relay station forwards the scheduling command to the downlink mobile station.
- Step 311 The uplink mobile station sends data to the base station by using the allocated subchannel. Step 311 is after step 308, and steps 307, 309, and 310 have no prioritized sequence. In step 306 of the above embodiment, the base station can perform scheduling of subchannels and selection of mobile stations according to different algorithms.
- Scheduling Algorithm 1 Scheduling the upstream and downstream traffic and maximizing the way.
- the scheduling algorithm can allocate the subchannels to the uplink mobile station and the downlink mobile station at the same time, and is more suitable for the case where the uplink mobile station and the downlink mobile station are far apart, so that the mutual interference is small when the subchannels are shared.
- the upstream traffic of the uplink mobile station is added to the downlink traffic of the downlink mobile station to obtain the traffic sum, and then the traffic sum is maximized to maximize the overall traffic.
- the greedy algorithm of joint subchannel scheduling is proposed here.
- the simulation shows that the algorithm can greatly improve the overall traffic.
- the details are as follows: Suppose there are K downlink mobile stations, M uplink mobile stations, and N subchannels.
- the K downlink mobile stations measure the channel quality in each subchannel as " ⁇ ⁇ 0,l,. ⁇ ; « e ⁇ 0,l,...N ⁇ .
- Each downlink mobile station measures the interference in each subchannel. They are respectively k E ⁇ , ⁇ , ⁇ , -N ⁇ .
- the channel quality of the M uplink mobile stations measured by the base station in each subchannel is me ⁇ 0,l ..iW" ⁇ ; « e ⁇ 0 , l ..N ⁇ .
- the comparison function value is calculated one by one according to the channel quality and interference of the downlink mobile station in each subchannel, and the channel quality of the uplink mobile station and the number of subchannels that have been allocated by other mobile stations.
- the channel quality (or channel gain) on the nth subchannel for the downlink mobile station k is the channel quality of the uplink mobile station m on the nth subchannel
- ⁇ is the interference received by the downlink mobile station k on the nth subchannel
- the number of subchannels that have been allocated for the uplink mobile station m is as follows:
- Step 401 Perform parameter initialization, put unallocated subchannels in all subchannels into set A, and have N elements; all downlink mobile stations are placed in set B, and there are N elements; all uplink mobile stations are put into set C. There are M elements; set N empty sets respectively; set M empty sets respectively; set M values, respectively Lm;
- Step 402 Calculate a comparison function according to N subchannels in A, a downlink mobile station in B, and C y k _ ⁇ n kn ⁇ 2 . ⁇ K- I 2
- the three-dimensional calculation comparison function value '" has a total of K*M*N values.
- Step 403 jointly select the subchannel and the mobile station, and select a comparison function with the largest value from the K*M*N comparison function values, and assume that Vk*, m*, n*, and the subscript thereof is k*, m*, n*, select k*, m*, .
- Step 404 set update, remove n* from set A, put k*, m* into the set, put n* into the set *, Lm* force port 1.
- Step 405 Determine whether the set A is empty, that is, whether all subchannels are allocated, and if the allocation is completed, the scheduling ends; if not, the step 402 is performed.
- the scheduling algorithm considers the channel quality considerations of the downlink mobile station and the uplink mobile station in combination, and simultaneously allocates the subchannels to the downlink mobile station and the uplink mobile station simultaneously in one selection. Since the power of the uplink mobile station is distributed in each uplink mobile station, the size of the traffic is also related to the size of the power. If an uplink mobile station allocates more subchannels, its transmission power on each subchannel is smaller. Then, the traffic on each subchannel is reduced, so the subchannel is allocated to the uplink mobile station with a smaller number of subchannels that have been allocated, so that the uplink and downlink traffic is maximized.
- Scheduling Algorithm 2 Scheduling in such a manner that subchannels are not overlapped and allocated.
- the algorithm can allocate the subchannel to one of the uplink mobile station and the downlink mobile station, which is more suitable for the case where the uplink mobile station and the downlink mobile station are close to each other because the mutual interference is large.
- the base station allocates one subchannel to only one uplink mobile station or downlink mobile station, that is, according to the channel quality of the uplink mobile station and the channel quality and interference of the downlink mobile station, respectively, respectively, the comparison function values are calculated one by one, and finally the comparison function value is selected to be the largest.
- Subchannel and corresponding mobile station may be an uplink mobile station or a downlink mobile station).
- the comparison function value is calculated as: 1 for all subchannels and downlink mobile stations in the unassigned subchannel set, and 1 for all subchannels and uplink mobile stations in the unassigned subchannel set, The interference of the relay station to the base station. Select a k*, n* so that 1 is the largest among all Ds ; then select an m' and n ' to make Is the biggest among all
- the subchannel n* is assigned to k*, and the n* is unassigned to the subchannel set; otherwise, the subchannel n' is assigned to m', and n' has never been Deleted in the assigned subchannel set. Repeat the above calculation and selection process of the comparison function value until the unassigned subchannel set is
- a sub-channel can be allocated by using a base station, and different scheduling algorithms are used according to different situations, which improves the efficiency and flexibility of sub-channel allocation, and also improves the overall traffic of the system, so that the uplink is idle.
- the spectrum can be effectively utilized while passing through the power control unit System, can effectively reduce interference.
- Another embodiment of the present invention provides a method for seed channel sharing. As shown in FIG. 5, the method includes: Step 501: A downlink mobile station measures state information of each downlink subchannel.
- the status information includes information such as interference, channel quality, and the like.
- the subchannel here may be one subcarrier in OFDMA, or a subcarrier set in which a plurality of subcarriers are combined according to a certain rule, or a radio channel resource combined by two latitudes according to time and frequency, and other forms of radio channels. Resources.
- the downlink subchannel is mainly used for the downlink mobile station to transmit data to the relay station.
- Step 502 The downlink mobile station sends the measured status information to the relay station.
- Step 503 The relay station performs scheduling of the subchannel for the downlink mobile station and selects the downlink mobile station, that is, allocates the appropriate subchannel to the appropriate downlink mobile station.
- Step 504 The relay station sends a scheduling command to the selected downlink mobile station.
- Step 505 The relay station sends data to the corresponding downlink mobile station in the allocated subchannel.
- Step 501 ′ the base station measures uplink state information of the uplink mobile station in the subchannel, and the measurement is performed for each uplink mobile station and each subchannel.
- Step 502' The base station performs subchannel scheduling for the uplink mobile station and selects the uplink mobile station.
- Step 503' The base station sends a scheduling command to the selected uplink mobile station.
- Step 504' the uplink mobile station transmits data to the base station on the subchannel allocated to it.
- Step a the downlink mobile station measures and calculates the interference it receives;
- Step b After the interference is greater than a preset threshold, the downlink mobile station sends a measurement report about the interference information to the relay station;
- Step c The relay station sends power control information or interference information to the base station according to the measurement report.
- Step d The base station calculates, according to the power control information or the interference information, a transmit power that the uplink mobile station needs to adjust;
- Step e The base station sends a transmit power adjustment command to the uplink mobile station.
- Step f The uplink mobile station adjusts the uplink transmit power according to the command
- Step a' the base station measures and calculates the uplink interference received
- Step b' after the uplink interference is greater than a preset threshold, the base station sends power control to the relay station.
- Step c' the relay station adjusts the downlink transmit power according to the power control information
- steps 501 to 505 are processes for the relay station to schedule an uplink subchannel for the downlink mobile station;
- Step 50 to step 504' are a procedure for the base station to schedule an uplink subchannel for the uplink mobile station;
- Step a Step f is an interference avoidance mechanism for the downlink mobile station;
- steps a' through d' are interference avoidance mechanisms for the uplink mobile station.
- the scheduling algorithm used in the above step 503 is:
- the scheduling algorithm used in the above step 502' is:
- the embodiment of the present invention reduces the consumption of the relay station transmitting the measurement report to the base station and the base station transmitting the control signaling to the relay station.
- the embodiment of the present invention further provides an apparatus for uplink spectrum sharing, where the apparatus is located in a base station, as shown in FIG. 6, including:
- the obtaining module 610 is configured to acquire downlink state information of the subchannel and uplink state information of the subchannel.
- the scheduling module 620 is configured to schedule the subchannel according to the downlink state information and the uplink state information of the subchannel.
- the subchannels are allocated to the uplink mobile station and/or the downlink mobile station.
- the above scheduling module 620 includes:
- the first scheduling sub-module 6201 is configured to calculate, according to the interference information and the channel quality in the uplink status information and the downlink status information of the subchannel, the uplink traffic of the uplink mobile station corresponding to the subchannel and the downlink traffic of the corresponding downlink mobile station. And selecting the traffic and the largest subchannel and the corresponding uplink mobile station and the downlink mobile station, and assigning the selected subchannel to the corresponding uplink mobile station and the downlink mobile station; for example, according to the subchannel uplink state information and the downlink state information.
- the interference information and the channel quality are used as input to perform scheduling, selecting a subchannel and an uplink and downlink mobile station with the largest value obtained by dividing the channel quality and the interference in the uplink and downlink state information, and allocating the selected subchannel to the uplink.
- Mobile station and downlink mobile station are used as input to perform scheduling, selecting a subchannel and an uplink and downlink mobile station with the largest value obtained by dividing the channel quality and the interference in the uplink and downlink state information, and allocating the selected subchannel to the uplink.
- a second scheduling sub-module 6202 configured to select, according to channel quality and interference in the uplink state information, a subchannel with the largest channel quality and interference ratio and a corresponding uplink mobile station as a combination; according to the channel quality in the downlink state information And the interference as an input, selecting a subchannel with the smallest channel quality and interference ratio and the corresponding downlink mobile station as a combination; comparing the ratio of the uplink channel quality and interference to the ratio of the downlink channel quality and interference, and comparing the ratio The channels in the larger combination are allocated to the corresponding upstream mobile station or downstream mobile station.
- the subchannel is scheduled according to the uplink state information and the downlink state information of the subchannel, and the subchannel is allocated to the uplink mobile station and/or the downlink mobile station, and the scheduling is comprehensively considered
- the row status information and the downlink status information improve the efficiency of subchannel sharing and better reduce interference.
- the embodiment of the present invention further provides an apparatus for uplink spectrum sharing. As shown in FIG. 7, the method includes: a channel scheduling module 710, configured to schedule the subchannel according to status information of a subchannel; and a scheduling command sending module 720. Used to send a scheduling command to an uplink or downlink mobile station; a measurement module 730, configured to measure received uplink or downlink interference;
- the comparison module 740 is configured to compare the uplink or downlink interference measured by the measurement module with a preset threshold, and when greater than the preset threshold, trigger the information sending module 750;
- the information sending module 750 is configured to send power control information by another scheduling unit.
- the channel scheduling module 710 When the channel scheduling module 710 is located in the uplink scheduling unit, it is configured to select, according to channel quality and interference in the uplink state information, a subchannel with the largest channel quality and the smallest interference and a corresponding uplink mobile station as a combination, and combine the combination.
- the subchannels in the allocation are assigned to the upstream mobile stations in the combination.
- the channel scheduling module 710 When the channel scheduling module 710 is located in the downlink scheduling unit, it is configured to select, according to channel quality and interference in the downlink state information, a subchannel with the largest channel quality and the smallest interference and a corresponding downlink mobile station as a combination, and combine the combination.
- the channel in the channel is assigned to the downstream mobile station in the combination.
- the device also includes:
- the information receiving module 760 is configured to receive power control information sent by another scheduling unit.
- the information calculating module 770 is configured to calculate, according to the power control information received by the information receiving module, a transmit power value that needs to be adjusted.
- the second information sending module 780 is configured to send an adjustment command to the uplink mobile station or the downlink mobile station.
- the above device is located in an uplink scheduling unit or a downlink scheduling unit.
- the uplink scheduling unit schedules the subchannels according to the uplink state information
- the downlink scheduling unit schedules the subchannels according to the downlink state information, and simultaneously controls power with each other to minimize mutual interference.
- An embodiment of the present invention further provides an uplink spectrum sharing system, as shown in FIG. 8, including:
- an uplink mobile station 820 an uplink mobile station 820, a relay station 830, and a downlink mobile station 840;
- the base station 810 is configured to acquire downlink state information of the subchannel and uplink state information of the subchannel; perform scheduling on the subchannel according to downlink state information and uplink state information of the subchannel, and allocate the subchannel to Uplink mobile station and/or downlink mobile station;
- the uplink mobile station 820 is configured to receive a scheduling command sent by the base station;
- the downlink mobile station 840 is configured to measure status information of the downlink subchannel and report the status information;
- the relay station 830 is configured to send status information of the downlink subchannel to the base station after receiving the status information sent by the downlink mobile station.
- the embodiment of the present invention further provides an uplink spectrum sharing system, as shown in FIG. 9, including: an uplink scheduling unit 910, an uplink mobile station 920, a downlink scheduling unit 930, and a downlink mobile station 940;
- the uplink scheduling unit 910 is configured to: after scheduling the subchannel according to the status information of the subchannel, send a scheduling command to the uplink mobile station 920; measure the received uplink interference; when the uplink interference is greater than a preset threshold, Transmitting power control information to the downlink scheduling unit 930;
- the downlink scheduling unit 930 is configured to: after scheduling the subchannel according to the status information of the subchannel, send a scheduling command to the downlink mobile station 940; measure the received downlink interference; when the downlink interference is greater than a preset threshold, Transmitting power control information to the uplink scheduling unit 910;
- An uplink mobile station 920 configured to receive a scheduling command sent by the uplink scheduling unit
- the downlink mobile station 940 is configured to receive a scheduling command sent by the downlink scheduling unit.
- the downlink scheduling unit 930 is further configured to receive power control information sent by the uplink scheduling unit 910, calculate transmit power that needs to be adjusted according to the power control information, and send an adjustment command to the downlink mobile station 940;
- the downlink mobile station 940 is further configured to receive, by the downlink scheduling unit 930, an adjustment command, to adjust a transmit power.
- the uplink scheduling unit 910 is further configured to receive power control information sent by the downlink scheduling unit 930, calculate transmit power that needs to be adjusted according to the power control information, and send an adjustment command to the uplink mobile station 920;
- the uplink mobile station 920 is further configured to receive the uplink scheduling unit to send an adjustment command, and adjust the transmit power.
- the method, the device and the system provided by the embodiments of the present invention can be shared to the relay station when the subcarriers of the uplink frequency band are not used by the uplink mobile station, and are used by the relay station to send data to the downlink mobile station.
- No interference when the subcarriers of some uplink frequency bands are used by the uplink mobile station, but the mobile station is far away from the downlink mobile station, and the interference to the downlink mobile station can be controlled, the relay station can simultaneously transmit data to the downlink on these subcarriers.
- the mobile station, but the corresponding power control is required to ensure that the interference to the base station can be limited to an acceptable range.
- different embodiments of the present invention provide different subcarrier scheduling algorithms and the like according to different needs.
- the present invention can be implemented by hardware or by software plus a necessary general hardware platform.
- the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Description
一种子信道共享的方法、 装置和系统 本申请要求于 2008年 9月 28日提交中国专利局、申请号为 200810168816.X、 发明名称为 "一种子信道共享的方法、 装置和系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通讯领域, 尤其涉及一种子信道共享的方法、 装置和系统。 背景技术
目前低频频段的频谱资源基本都巳经分配完毕, 后面新增加的无线通信技 术(比如 WiMax, 3GPP LTE等), 只能使用高频频段, 比如 2.6GHz, 3.5GHz, 甚至 5GHz以上。由于无线射频信号随着传输距离的增加而衰减,而其衰减的大 小是随着频率的增加而增加, 即频段越高, 其衰减越快, 同时频段的不断升高 导致小区覆盖范围缩小, 这样难以满足无线通信的需要。
因此共享频谱成为当务之急,现有技术一引入一个次系统 OR (Opportunistic Radio, 机会无线电), 该系统同 3G UMTS系统共存 (3G UMTS系统被称为主 系统), 通过感知 3G UMTS系统的上行频谱的使用情况来利用上行频段, 同时 测量自己到基站的干扰来控制发射功率,减小对 3G UMTS系统的上行接收的干 扰。现有技术二提出在一个基于 CDMA/FDD的蜂窝系统中,利用多跳传输的方 法, 在第 2跳, 使用上行频谱传输下行的数据, 这样能够解决上下行业务不对 称时下行频谱资源不足的问题。
发明人发现现有技术至少存在以下问题: 现有技术一不适用于 OFDMA系 统, 频谱共享效率低; 需要利用主系统未使用的信道资源, 导致频谱共享效率 低, 而且主系统和次系统是两个独立的互不通信系统, 导致干扰加大, 共享效 率低。 现有技术二实现的前提为两个系统必须使用相同的无线接入技术, 使得
系统的灵活性降低, 资源共享的灵活性降低。 发明内容
本发明实施例提供一种子信道共享的方法、 装置和系统, 可以提高共享的 效率和灵活性, 较大的提高整体流量。
一方面, 本发明实施例提供了一种子信道共享的方法, 包括:
获取子信道的下行状态信息和子信道的上行状态信息;
根据所述子信道的下行状态信息和上行状态信息, 对所述子信道进行调度, 将所述子信道分配到上行移动台和 /或下行移动台。
本发明实施例还提供了一种子信道共享的方法, 包括:
根据子信道的状态信息对所述子信道进行调度后, 向上行或下行移动台发 送调度命令;
测量受到的上行或下行干扰;
当所述上行或下行干扰大于预设门限值时, 向另一个调度单元发送功率控 制信息。
另一方面, 本发明实施例提供了一种上行频谱共享的装置, 包括: 获取模块, 用于获取子信道的下行状态信息和子信道的上行状态信息; 调度模块, 用于根据所述子信道的下行状态信息和上行状态信息, 对所述 子信道进行调度, 将所述子信道分配到上行移动台和 /或下行移动台。
本发明实施例还提供了一种上行频谱共享的装置, 包括:
信道调度模块, 用于根据子信道的状态信息对所述子信道进行调度; 调度命令发送模块, 用于向上行或下行移动台发送调度命令;
测量模块, 用于测量受到的上行或下行干扰;
比较模块, 用于将所述测量模块测量的上行或下行干扰与预设门限值作比 较, 当大于预设门限值时, 触发信息发送模块;
信息发送模块, 用于另一个调度单元发送功率控制信息。
本发明实施例提供了一种上行频谱共享的系统, 包括: 基站、 上行移动台、 中继站和下行移动台;
所述基站, 用于获取子信道的下行状态信息和子信道的上行状态信息; 根 据所述子信道的下行状态信息和上行状态信息, 对所述子信道进行调度, 将所 述子信道分配到上行移动台和 /或下行移动台;
所述上行移动台, 用于接收所述基站发送的调度命令;
所述下行移动台, 用于测量下行子信道的状态信息并上报;
所述中继站用于接收所述下行移动台发送的状态信息后, 向所述基站发送 下行子信道的状态信息。
本发明实施例还提供了一种上行频谱共享的系统, 包括: 上行调度单元、 上行移动台、 下行调度单元和下行移动台;
所述上行调度单元, 用于根据子信道的状态信息对所述子信道进行调度后, 向上行移动台发送调度命令; 测量受到的上行干扰; 当所述上行干扰大于预设 门限值时, 向下行调度单元发送功率控制信息;
所述下行调度单元, 用于根据子信道的状态信息对所述子信道进行调度后, 向下行移动台发送调度命令; 测量受到的下行干扰; 当所述下行干扰大于预设 门限值时, 向上行调度单元发送功率控制信息;
所述上行移动台, 用于接收所述上行调度单元发送的调度命令;
所述下行移动台, 用于接收所述下行调度单元发送的调度命令。
与现有技术相比, 本发明实施例具有以下优点:
通过本发明实施例提供的方法, 根据下行子信道态信息和上行子信道的状 态信息, 对上行子信道进行调度, 将上行子信道分配到上行移动台和 /或下行移 动台, 然后向上行移动台和下行移动台发送调度命令。 这样综合考虑上行子信 道和下行子信道的状态信息, 提高了频谱共享的效率和灵活性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1 是本发明实施例中子信道共享的方法流程图;
图 2是本发明另一实施例中子信道共享的方法流程图;
图 3 是本发明实施例中子信道共享的方法流程图;
图 4是本发明实施例中调度算法一的流程图;
图 5 是本发明实施例中子信道共享的方法流程图;
图 6是本发明实施例中子信道共享的装置示意图;
图 7是本发明实施例中子信道共享的装置示意图;
图 8是本发明实施例中子信道共享的系统示意图;
图 9是本发明实施例中子信道共享的系统示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅是本发明一部分实施例, 而不是全 部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种子信道共享的方法、 装置和系统, 可以提高共享 的效率和灵活性, 较大的提高整体流量。
下面结合附图和具体实施例对本发明实施例提供的子信道共享的方法和装 置进行详细说明。
本发明实施例提供了一种子信道共享的方法, 如图 1所示, 包括: 步骤 101、获取子信道的下行状态信息和子信道的上行状态信息。下行移动 台测量子信道的下行状态信息, 将该信息发送到中继站; 中继站再将该状态信
息 (经过处理或未经处理) 发送到基站; 同时基站也会测量上行移动台在子信 道上行的状态, 得到相关的上行状态信息。
歩骤 102、根据所述子信道的下行状态信息和上行状态信息, 对所述子信道 进行调度, 将所述子信道分配到上行移动台和 /或下行移动台。 基站根据预设的 调度算法对子信道进行调度;
该调度算法为: 根据子信道上行状态信息和下行状态信息中的干扰信息和 信道质量, 计算该子信道对应的上行移动台的上行流量与对应的下行移动台的 下行流量的流量和, 选择流量和最大的子信道与对应的上行移动台和下行移动 台, 将所选择的子信道分配给对应的上行移动台和下行移动台; 例如根据子信 道上行状态信息和下行状态信息中的干扰信息和信道质量作为输入来进行调 度, 选择上下行状态信息中信道质量最大以及干扰最小的子信道与上下行移动 台, 将所述选择的子信道分配到所述上行移动台和下行移动台;
该调度算法还可以为: 根据上行状态信息中的信道质量和干扰作为输入, 选择信道质量和干扰比值最大的子信道和对应的上行移动台作为一个组合; 根 据下行状态信息中的信道质量和干扰作为输入, 选择信道质量和干扰比值最小 的子信道和对应的下行移动台作为一个组合; 将所述上行信道质量和干扰的比 值与所述下行信道质量和干扰的比值做比较, 将比值大的组合中的子信道分配 给该组合中的上行移动台或下行移动台; 通过该算法可以将子信道分配给上行 移动台和下行移动台中的一个, 较适用于上行移动台和下行移动台距离较近的 情况, 因为彼此的干扰较大。
通过上述歩骤, 根据子信道的上行状态信息和下行状态信息对子信道进行 调度, 将子信道分配给上行移动台和 /或下行移动台, 由于调度时综合考虑了上 行状态信息和下行状态信息, 提高了子信道共享的效率, 而且较好的减少了干 扰。
上述实施例提供的方法可以使基站控制子信道分配给上行移动台和 /或下行 移动台, 本发明另一实施例还提供了一种子信道共享的方法, 利用上行调度单
元为上行移动台分配子信道, 下行调度单元为下行移动台分配子信道, 同时控 制上行移动台与下行移动台的发射功率, 以此减少彼此的干扰, 如图 2所示, 包括:
步骤 201、根据子信道的状态信息对所述子信道进行调度后, 向上行或下行 移动台发送调度命令。 上行调度单元和下行调度单元将子信道的状态信息作为 预定算法的输入进行子信道的调度。 其中上行调度单元根据上行状态信息中的 信道质量和干扰作为输入, 选择信道质量最大以及干扰最小的子信道和对应的 上行移动台作为一个组合, 并将该组合中的子信道分配给组合中的上行移动台; 下行调度单元根据下行状态信息中的信道质量和干扰作为输入, 选择信道质量 最大以及干扰最小的子信道和对应的下行移动台作为一个组合, 并将该组合中 的子信道分配给组合中的下行移动台。
步骤 202、 测量受到的上行或下行干扰。 下行移动台测量受到的下行干扰; 上行调度单元或上行移动台测量受到的上行干扰, 测量时可以利用现有技术实 现。
步骤 203、当所述上行或下行干扰大于预设门限值时, 向另一个调度单元发 送功率控制信息。 当上行干扰大于预设门限值时, 向下行调度单元发送功率控 制信息; 当下行干扰大于预设门限值时, 向上行调度单元发送功率控制信息; 上行调度单元接收到功率控制信息后, 向上行移动台发送调整命令, 调整发射 功率或; 下行调度单元接收到功率控制信息后, 向下行移动台发送调整命令, 调整发射功率。
通过上述歩骤, 上行调度单元根据上行状态信息对子信道进行调度, 下行 调度单元根据下行状态信息对子信道进行调度, 同时彼此通过功率控制, 尽量 减少彼此的干扰。 下面通过具体实施例对本发明实施例提供的一种子信道共享的方法进行详 细说明, 基站根据子信道的上行状态信息和下行状态信息, 将子信道分配给上
行移动台和 /或下行移动台, 如图 3所示, 包括:
步骤 301、下行移动台测量子信道的下行状态信息, 包括干扰、信道质量等 信息。 这里的子信道可以是 OFDMA中的一个子载波, 也可以是多个子载波根 据某种规则组合成的子载波集合, 或者按照时间和频率两个纬度组合的无线信 道资源, 以及其他形式的无线信道资源。 下行子信道主要用于下行移动台向中 继站发送数据。
步骤 302、 下行移动台将测量的子信道的下行状态信息发送给中继站。 步骤 303、中继站对子信道下行状态信息进行处理, 这些处理可能包括将状 态信息进行过滤、 平滑等, 或多个下行移动台的状态信息聚合, 可能还包括其 他的处理。
步骤 304、 中继站将处理后的测量报告发送给基站。
步骤 305、基站测量子信道的上行状态信息, 这种测量是针对每个上行移动 台以及每个子信道进行的。 该歩骤在时间上同步骤 301〜304没有关系, 可能早 于步骤 301~304中的任何一步, 也可能同时进行。
步骤 306、基站根据子信道上行状态信息和子信道下行状态信息,对子信道 进行调度, 并选择移动台。 基站通过上述步骤 304和 305得到了子信道上行状 态信息和子信道下行状态信息, 根据这些信息对子信道进行调度, 也就是根据 一些算法, 把子信道分配给下行移动台和 /或上行移动台。 其中, 分配给下行移 动台的子信道是用于中继站发送下行数据给下行移动台; 而分配给上行移动台 的子信道是用于上行移动台发送上行数据给基站。 一个下行移动台或上行移动 台可能分配 1个、 多个或 0个子信道。 一个子信道可能只分配给下行移动台, 也可能只分配给上行移动台, 也可能同时分配给下行移动台和上行移动台。
歩骤 307、基站将调度命令发送给中继站,这个调度命令包含分配给下行移 动台的子信道信息。
步骤 308、基站将调度命令发送给上行移动台, 这个调度命令包含分配给上 行移动台的子信道信息。 步骤 308和步骤 307在时间上没有关系, 也就是步骤
308可以在步骤 307之前进行, 也可以同时进行。
步骤 309、中继站收到基站发来的调度命令后,将调度命令转发给下行移动 台 步骤 310、中继站在所分配的子信道上发送数据给相应的下行移动台。下行 移动台及其对应的子信道是在步骤 306中确定的。
歩骤 311、上行移动台通过分配的子信道向基站发送数据。步骤 311在步骤 308之后, 同步骤 307、 309、 310没有时间上的先后顺序。 在上述实施例的步骤 306 中, 基站可以根据不同的算法来进行子信道的调 度和移动台的选择。
调度算法一: 使上下行流量和达到最大化的方式来进行调度。
该调度算法可以将子信道同时分配给上行移动台和下行移动台, 较适用于 上行移动台和下行移动台距离较远的情况, 这样共用子信道时彼此的干扰较小。
将上行移动台的上行流量加上下行移动台的下行流量得到流量和, 然后使 该流量和尽量达到最大, 从而实现整体流量的最大化。 此处提出联合子信道调 度的贪心算法, 通过仿真表明该算法可以大大提高整体流量。 其具体描述如下: 假设有 K个下行移动台, M个上行移动台, N个子信道。 K个下行移动台 测量到各个子信道中的信道质量为 " ^ {0,l,. }; « e {0,l,...N}。 各个下行移动 台测量到各个子信道中的干扰分别为 k E {Ο,Ι,··· ,-N} . 基站测量的 M 个 上 行 移 动 台 在 各 个 子 信 道 中 的 信 道 质 量 分 别 为 m e {0,l ..iW"}; « e {0,l ..N}。 针对每个子信道, 按照每个下行移动台的在该子信道中的信道质量和干扰, 以及上行移动台的信道质量和其他移动台已经分配得到的子信道个数, 逐个计 算比较函数值
, 其中的 "为下行移动台 k在第 n个子信道上的信 道质量(或称为信道增益), 为上行移动台 m在第 n个子信道上的信道质量,
^为下行移动台 k在第 n个子信道上受到的干扰, 为上行移动台 m已经分配 得到的子信道个数。 如图 4所示, 具体过程如下:
歩骤 401、 进行参数初始化, 将所有子信道中未分配的子信道放入集合 A, 共有 N个元素; 所有下行移动台放入集合 B, 有 N个元素; 所有上行移动台放 入集合 C,有 M个元素;设置 N个空集合分别为 ;设置 M个空集合分别为 ; 设置 M个数值, 分别为 Lm ;
步骤 402、计算比较函数,按照 A中的 N个子信道、 B中的下行移动台和 C yk _ \ nk n \2 . \ K- I2
中的上行移动台三维计算比较函数值 '" , 共有 K*M*N个值。
步骤 404、集合更新, 将 n*从集合 A中删除, 将 k*, m*放入集合 将 n* 放入集合 *, Lm*力口 1。
步骤 405、 判断集合 A是否为空, 即所有子信道是否分配完毕, 若巳分配 完毕, 本调度结束; 若未分配完毕, 执行步骤 402。
本调度算法通过联合下行移动台和上行移动台的信道质量考虑, 在一次选 择中, 同时将子信道同时分配给下行移动台和上行移动台。 由于上行移动台的 功率是分布在各个上行移动台中, 流量的大小也同功率的大小有关系, 如果一 个上行移动台分配的子信道多, 则它在每个子信道上的发射功率也就小, 则每 个子信道上的流量就会降低, 所以将子信道分配给已经得到分配的子信道数较 少的上行移动台, 这样保证了上下行的流量和达到最大。
子信道调度完毕后, 需要进行功率分配和控制, 针对下行移动台的功率分 配可以采用注水算法对每个子信道分配功率, 也可以采用平均分配, 也就是对 每个子信道平均分配下行移动台的功率。 针对下行移动台的功率分配可以在中
继站进行, 也可以在基站进行, 如果是在基站进行需要将功率分配结果发送给 中继站; 针对上行移动台的功率分配在上行移动台中进行, 可以按照注水算法, 也可以按照平均分配算法。
调度算法二: 按照子信道不重叠分配的方式进行调度。
该算法可以将子信道分配给上行移动台和下行移动台中的一个, 较适用于 上行移动台和下行移动台距离较近的情况, 因为彼此的干扰较大。
基站将一个子信道只分配给一个上行移动台或下行移动台, 也就是按照上 行移动台的信道质量和下行移动台的信道质量和干扰, 分别逐个计算其比较函 数值, 最后选择比较函数值最大的子信道以及对应的移动台 (可能是某个上行 移动台或下行移动台)。
其比较函数值的计算为: 对未分配子信道集合中的所有子信道和下行移动 台, 计算 1 , 以及对未分配子信道集合中的所有子信道和上行移动台, 计算
为中继站对基站的干扰。 选择一个 k*, n*, 使得 1 在所有 的 D 中最大; 接着选择一个 m'和 n', 使得
在所有的 中是最大
I2 I I2
的; 再比较 和 , 当前者大, 则将子信道 n*分配给 k*, 将 n*从未 分配子信道集合中删除; 否则将子信道 n'分配给 m', 并将 n'从未分配子信道集 合中删除。 重复上述的比较函数值的计算和选择过程直到未分配子信道集合为
当然也可以综合调度算法一和调度算法二来实现子信道的调度, 即一部分 子信道按照调度算法一进行调度, 另外一部分子信道按照调度算法二进行调度。
通过本发明实施例提供的方法, 可以利用基站分配子信道, 并根据不同的 情况使用不同的调度算法, 提高了子信道分配的效率和灵活性, 也提高了系统 的整体流量, 使得上行的空闲频谱能够得到有效的利用, 同时通过功率控制机
制, 能够有效地降低干扰。 本发明另一实施例提供了一种子信道共享的方法, 如图 5所示, 包括: 歩骤 501、 下行移动台测量自身在各个下行子信道的状态信息。 该状态信 息包括干扰、信道质量等信息。这里的子信道可以是 OFDMA中的一个子载波, 也可以是多个子载波根据某种规则组合成的子载波集合, 或者按照时间和频率 两个纬度组合的无线信道资源, 以及其他形式的无线信道资源。 下行子信道主 要用于下行移动台向中继站发送数据。
步骤 502、 下行移动台将测量的状态信息发送给中继站。
步骤 503、中继站针对下行移动台进行子信道的调度并选择下行移动台, 也 就是将合适的子信道分配给合适的下行移动台。
歩骤 504、 中继站发送调度命令给被选择的下行移动台。
步骤 505、 中继站在所分配的子信道中向相应的下行移动台发送数据。 歩骤 501 '、 基站测量上行移动台在子信道中的上行状态信息, 这种测量是 针对每个上行移动台以及每个子信道进行的。
步骤 502'、 基站针对上行移动台进行子信道调度并选择上行移动台。
步骤 503'、 基站将调度命令发送给被选择的上行移动台。
步骤 504'、 上行移动台在分配给它的子信道上发送数据给基站。 步骤 a、 下行移动台测量并计算自己所受到的干扰;
步骤 b、当该干扰大于预设的门限值后, 下行移动台向中继站发送关于干扰 信息的测量报告;
歩骤 c、 中继站根据测量报告, 向基站发送功率控制信息或干扰信息; 步骤 d、基站根据该功率控制信息或干扰信息计算上行移动台需要调整的发 射功率;
步骤 e、 基站将发射功率调整命令发送给上行移动台;
步骤 f、 上行移动台根据命令调整上行发射功率;
歩骤 a'、 基站测量并计算所受到的上行干扰;
步骤 b'、 当该上行干扰大于预设的门限值后, 基站向中继站发送功率控制 自 .
I Η Έ、;
歩骤 c'、 中继站根据该功率控制信息调整下行发射功率;
上述歩骤可以分为四个部分, 其中步骤 501到步骤 505为中继站为下行移 动台调度上行子信道的流程; 步骤 50Γ到步骤 504'为基站为上行移动台调度上 行子信道的流程; 步骤 a到步骤 f为针对下行移动台的干扰避免机制; 步骤 a' 到歩骤 d'是针对上行移动台的干扰避免机制。 这四个部分在时间顺序上是不相 关的。
上述歩骤 503中使用的调度算法为:
\ D k" \2
对未分配子信道集合中的所有子信道和下行移动台, 计算 , 其中其中 的 '"为下行移动台 k在第 n个子信道上的信道质量 (或称为信道增益), ^为
I |2 下行移动台 k在第 n个子信道上受到的干扰; 选择一个 k*, n*, 使得 达 到最大值; 将 n*从未分配子信道集合中删除; 重复上述的比较函数值的计算和 选择过程直到未分配子信道集合为空。
上述歩骤 502' 中使用的调度算法为:
\ Kn I2
对未分配子信道集合中的所有子信道和上行移动台, 计算 , 其中 为上行移动台 m在第 n个子信道上的信道质量, ^为上行移动台 m已经分配得 到的子信道个数, 7^为中继站对基站的干扰; 选择一个 m'和 n', 使得 达 到最大值; 将子信道 n'分配给 m', 并将 n'从未分配子信道集合中删除。 重复上 述的比较函数值的计算和选择过程直到未分配子信道集合为空。
本发明实施例同上一实施例相比, 减少了中继站向基站发送测量报告以及 基站向中继站发送控制信令的消耗。 当下行移动台或中继站数目比较多的情况 下, 可以节省不少的信令消耗, 提高系统的性能。 为实现本发明实施例提供的方法, 本发明实施例还提供了一种上行频谱共 享的装置, 该装置位于基站中, 如图 6所示, 包括:
获取模块 610, 用于获取子信道的下行状态信息和子信道的上行状态信息; 调度模块 620,用于根据所述子信道的下行状态信息和上行状态信息,对所 述子信道进行调度, 将所述子信道分配到上行移动台和 /或下行移动台。
上述调度模块 620包括:
第一调度子模块 6201, 用于根据子信道上行状态信息和下行状态信息中的 干扰信息和信道质量, 计算该子信道对应的上行移动台的上行流量与对应的下 行移动台的下行流量的流量和, 选择流量和最大的子信道与对应的上行移动台 和下行移动台, 将所选择的子信道分配给对应的上行移动台和下行移动台; 例 如根据子信道上行状态信息和下行状态信息中的干扰信息和信道质量作为输入 来进行调度, 选择上下行状态信息中信道质量与干扰相除后得到的值最大的子 信道与上下行移动台, 将所述选择的子信道分配到所述上行移动台和下行移动 台.
第二调度子模块 6202, 用于根据上行状态信息中的信道质量和干扰作为输 入, 选择信道质量和干扰比值最大的子信道和对应的上行移动台作为一个组合; 根据下行状态信息中的信道质量和干扰作为输入, 选择信道质量和干扰比值最 小的子信道和对应的下行移动台作为一个组合; 将所述上行信道质量和干扰的 比值与所述下行信道质量和干扰的比值做比较, 将比值较大的组合中的信道分 配给对应的上行移动台或下行移动台。
通过上述装置, 根据子信道的上行状态信息和下行状态信息对子信道进行 调度, 将子信道分配给上行移动台和 /或下行移动台, 由于调度时综合考虑了上
行状态信息和下行状态信息, 提高了子信道共享的效率, 而且较好的减少了干 扰。 本发明实施例还提供了一种上行频谱共享的装置, 如图 7所示, 包括: 信道调度模块 710, 用于根据子信道的状态信息对所述子信道进行调度; 调度命令发送模块 720, 用于向上行或下行移动台发送调度命令; 测量模块 730, 用于测量受到的上行或下行干扰;
比较模块 740,用于将所述测量模块测量的上行或下行干扰与预设门限值作 比较, 当大于预设门限值时, 触发信息发送模块 750;
信息发送模块 750, 用于另一个调度单元发送功率控制信息。
上述信道调度模块 710位于上行调度单元时, 用于根据上行状态信息中的 信道质量和干扰作为输入, 选择信道质量最大以及干扰最小的子信道和对应的 上行移动台作为一个组合, 并将该组合中的子信道分配给组合中的上行移动台。
上述信道调度模块 710位于下行调度单元时, 用于根据下行状态信息中的 信道质量和干扰作为输入, 选择信道质量最大以及干扰最小的子信道和对应的 下行移动台作为一个组合, 并将该组合中的信道分配给组合中的下行移动台。
该装置还包括:
信息接收模块 760, 用于接收另一调度单元发送的功率控制信息; 信息计算模块 770, 用于根据所述信息接收模块接收的功率控制信息,计算 需要调整的发射功率值
第二信息发送模块 780, 用于向上行移动台或下行移动台发送调整命令。 上述装置位于上行调度单元或下行调度单元中。
通过上述装置, 上行调度单元根据上行状态信息对子信道进行调度, 下行 调度单元根据下行状态信息对子信道进行调度, 同时彼此通过功率控制, 尽量 减少彼此的干扰。
本发明实施例还提供了一种上行频谱共享系统, 如图 8所示, 包括: 基站
810、 上行移动台 820、 中继站 830和下行移动台 840;
所述基站 810, 用于获取子信道的下行状态信息和子信道的上行状态信息; 根据所述子信道的下行状态信息和上行状态信息, 对所述子信道进行调度, 将 所述子信道分配到上行移动台和 /或下行移动台;
所述上行移动台 820, 用于接收所述基站发送的调度命令;
所述下行移动台 840, 用于测量下行子信道的状态信息并上报;
所述中继站 830,用于接收所述下行移动台发送的状态信息后, 向所述基站 发送下行子信道的状态信息。 本发明实施例还提供了一种上行频谱共享系统, 如图 9所示, 包括: 上行 调度单元 910、 上行移动台 920、 下行调度单元 930和下行移动台 940;
上行调度单元 910, 用于根据子信道的状态信息对所述子信道进行调度后, 向上行移动台 920发送调度命令; 测量受到的上行干扰; 当所述上行干扰大于 预设门限值时, 向下行调度单元 930发送功率控制信息;
下行调度单元 930, 用于根据子信道的状态信息对所述子信道进行调度后, 向下行移动台 940发送调度命令; 测量受到的下行干扰; 当所述下行干扰大于 预设门限值时, 向上行调度单元 910发送功率控制信息;
上行移动台 920, 用于接收所述上行调度单元发送的调度命令;
下行移动台 940, 用于接收所述下行调度单元发送的调度命令。 上述下行调度单元 930,还用于接收所述上行调度单元 910发送的功率控制 信息; 根据所述功率控制信息计算需要调整的发射功率; 向所述下行移动台 940 发送调整命令;
上述下行移动台 940,还用于接收所述下行调度单元 930发送调整命令,调 整发射功率;
上述上行调度单元 910,还用于接收所述下行调度单元 930发送的功率控制 信息; 根据所述功率控制信息计算需要调整的发射功率; 向所述上行移动台 920 发送调整命令;
上述上行移动台 920,还用于接收所述上行调度单元发送调整命令, 调整发 射功率。
通过本发明实施例提供的方法、 装置和系统, 当某些上行频段的子载波没 有给上行移动台使用的时候, 可以共享给中继站, 用于中继站向下行移动台发 送数据, 这个时候相互之间没有干扰; 当某些上行频段的子载波被上行移动台 使用, 但该移动台距离下行移动台比较远, 对下行移动台的干扰可以控制, 则 中继站可以同时在这些子载波上传输数据给下行移动台, 但需要进行相应的功 率控制, 保证对基站的干扰可以限制在可接受的范围内。 同时, 根据不同的需 要, 本发明实施例还提供了不同的子载波调度算法等。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明 可以通过硬件实现, 也可以借助软件加必要的通用硬件平台的方式来实现。 基 于这样的理解, 本发明的技术方案可以以软件产品的形式体现出来, 该软件产 品可以存储在一个非易失性存储介质(可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或 者网络设备等) 执行本发明各个实施例所述的方法。
以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局限于此, 任何本领域的技术人员能思之的变化都应落入本发明的保护范围。
Claims
1、 一种子信道共享的方法, 其特征在于, 该方法包括:
获取子信道的下行状态信息和子信道的上行状态信息;
根据所述子信道的下行状态信息和上行状态信息, 对所述子信道进行调度, 将所述子信道分配到上行移动台和 /或下行移动台。
2、 如权利要求 1所述的方法, 其特征在于, 所述获取子信道的下行状态信 息和子信道的上行状态信息的歩骤包括:
基站接收从下行移动台发出的子信道下行状态信息, 以及基站测量子信道 的上行状态信息。
3、 如权利要求 2所述的方法, 其特征在于, 所述基站接收从下行移动台发 出的子信道下行状态信息经过中继站进行处理后发送至基站的。
4、 如权利要求 1所述的方法, 其特征在于, 所述根据所述子信道下行状态 信息和上行状态信息, 对所述子信道进行调度的步骤包括:
根据子信道上行状态信息和下行状态信息中的干扰信息和信道质量, 计算 该子信道对应的上行移动台的上行流量与对应的下行移动台的下行流量的流量 和, 选择流量和最大的子信道与对应的上行移动台和下行移动台, 将所选择的 子信道分配给对应的上行移动台和下行移动台。
5、 如权利要求 1所述的方法, 其特征在于, 所述根据所述子信道下行状态 信息和上行状态信息, 对所述子信道进行调度的步骤包括:
根据上行状态信息中的信道质量和干扰作为输入, 选择信道质量和干扰比 值最大的子信道和对应的上行移动台作为一个组合;
根据下行状态信息中的信道质量和干扰作为输入, 选择信道质量和干扰比 值最小的子信道和对应的下行移动台作为一个组合;
将所述上行信道质量和干扰的比值与所述下行信道质量和干扰的比值做比 较, 将比值较大的组合中的子信道分配给该组合中的上行移动台或下行移动台。
6、 一种子信道共享的方法, 其特征在于, 该方法包括:
根据子信道的状态信息对所述子信道进行调度后, 向上行或下行移动台发 送调度命令;
测量受到的上行或下行干扰;
当所述上行或下行干扰大于预设门限值时, 向另一个调度单元发送功率控 制信息。
7、 如权利要求 6所述的方法, 其特征在于, 所述根据子信道的状态信息对 所述子信道进行调度的步骤包括:
上行调度单元根据上行状态信息中的信道质量和干扰作为输入, 选择信道 质量最大以及干扰最小的子信道和对应的上行移动台作为一个组合, 并将该组 合中的子信道分配给组合中的上行移动台;
下行调度单元根据下行状态信息中的信道质量和干扰作为输入, 选择信道 质量最大以及干扰最小的子信道和对应的下行移动台作为一个组合, 并将该组 合中的子信道分配给组合中的下行移动台。
8、 如权利要求 6所述的方法, 其特征在于, 所述另一个调度单元接收到功 率控制信息后向上行或下行移动台发送调整命令以调整发射功率。
9、 一种上行频谱共享的装置, 其特征在于, 该装置包括:
获取模块, 用于获取子信道的下行状态信息和子信道的上行状态信息; 调度模块, 用于根据所述子信道的下行状态信息和上行状态信息, 对所述 子信道进行调度, 将所述子信道分配到上行移动台和 /或下行移动台。
10、 如权利要求 9所述的装置, 其特征在于, 所述调度模块包括: 第一调度子模块, 用于根据子信道上行状态信息和下行状态信息中的干扰 信息和信道质量, 计算该子信道对应的上行移动台的上行流量与对应的下行移 动台的下行流量的流量和, 选择流量和最大的子信道与对应的上行移动台和下 行移动台, 将所选择的子信道分配给对应的上行移动台和下行移动台;
第二调度子模块, 用于根据上行状态信息中的信道质量和干扰作为输入,
选择信道质量和干扰比值最大的子信道和对应的上行移动台作为一个组合; 根 据下行状态信息中的信道质量和千扰作为输入, 选择信道质量和千扰比值最 '小 的子信道和对应的下行移动台作为一个组合; 将所述上行信道质量和干扰的比 值与所述下行信道质量和干扰的比值做比较, 将比值较大的组合中的子信道分 配给该组合中的上行移动台或下行移动台。
11、 如权利要求 9所述的装置, 其特征在于, 所述装置位于基站中。
12、 一种上行频谱共享的装置, 其特征在于, 该装置包括:
信道调度模块, 用于根据子信道的状态信息对所述子信道进行调度; 调度命令发送模块, 用于向上行或下行移动台发送调度命令;
测量模块, 用于测量受到的上行或下行千扰;
比较模块, 用于将所述测量模块测量的上行或下行干扰与预设门限值作比 较, 当大于预设门限值时, 触发信息发送模块;
信息发送模块, 用于另一个调度单元发送功率控制信息。
13、 如权利要求 12所述的装置, 其特征在于, 所述信道调度模块位于上行 调度单元时, 用于根据上行状态信息中的信道质量和干扰作为输入, 选择信道 质量最大以及干扰最小的子信道和对应的上行移动台作为一个组合, 并将该组 合中的子信道分配给组合中的上行移动台。
14、 如权利要求 12所述的装置, 其特征在于, 所述信道调度模块位于下行 调度单元时, 用于根据下行状态信息中的信道质量和干扰作为输入, 选择信道 质量最大以及干扰最小的子信道和对应的下行移动台作为一个组合, 并将该组 合中的子信道分配给组合中的下行移动台。
15、 如权利要求 13所述的装置, 其特征在于, 所述装置还包括: 信息接收模块, 用于接收另一调度单元发送的功率控制信息;
信息计算模块, 用于根据所述信息接收模块接收的功率控制信息, 计算需 要调整的发射功率值;
第二信息发送模块, 用于向上行移动台或下行移动台发送调整命令。 替换 (细则第 26奈)
16、 如权利要求 12所述的装置, 其特征在于, 所述装置位于上行调度单元 或下行调度单元中。
17、 一种上行频谱共享系统, 其特征在于, 该系统包括: 基站、 上行移动 台、 中继站和下行移动台;
所述基站, 用于获取子信道的下行状态信息和子信道的上行状态信息; 根 据所述子信道的下行状态信息和上行状态信息, 对所述子信道进行调度, 将所 述子信道分配到上行移动台和 /或下行移动台;
所述上行移动台, 用于接收所述基站发送的调度命令;
所述下行移动台, 用于测量下行子信道的状态信息并上报;
所述中继站, 用于接收所述下行移动台发送的状态信息后, 向所述基站发 送下行子信道的状态信息。
18、 一种上行频谱共享系统, 其特征在于, 该系统包括: 上行调度单元、 上行移动台、 下行调度单元和下行移动台;
所述上行调度单元, 用于根据子信道的状态信息对所述子信道进行调度后, 向上行移动台发送调度命令; 测量受到的上行干扰; 当所述上行干扰大于预设 门限值时, 向下行调度单元发送功率控制信息;
所述下行调度单元, 用于根据子信道的状态信息对所述子信道进行调度后, 向下行移动台发送调度命令; 测量受到的下行干扰; 当所述下行干扰大于预设 门限值时, 向上行调度单元发送功率控制信息;
所述上行移动台, 用于接收所述上行调度单元发送的调度命令;
所述下行移动台, 用于接收所述下行调度单元发送的调度命令。
19、 如权利要求 18所述的系统, 其特征在于,
所述下行调度单元, 还用于接收所述上行调度单元发送的功率控制信息; 根据所述功率控制信息计算需要调整的发射功率; 向所述下行移动台发送调整 命令;
所述下行移动台, 还用于接收所述下行调度单元发送调整命令, 调整发射 替换页(细则第 26条)
功率;
所述上行调度单元, 还用于接收所述下行调度单元发送的功率控制信息; 根据所述功率控制信息计算需要调整的发射功率; 向所述上行移动台发送调整 命令;
所述上行移动台, 还用于接收所述上行调度单元发送调整命令, 调整发射 功率。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09815637.5A EP2330769B1 (en) | 2008-09-28 | 2009-09-28 | Method, device and system for sharing sub-channel |
US13/073,051 US8576738B2 (en) | 2008-09-28 | 2011-03-28 | Method, apparatus and system for sharing a subchannel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810168816.X | 2008-09-28 | ||
CN200810168816XA CN101686466B (zh) | 2008-09-28 | 2008-09-28 | 一种子信道共享的方法、装置和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/073,051 Continuation US8576738B2 (en) | 2008-09-28 | 2011-03-28 | Method, apparatus and system for sharing a subchannel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010034268A1 true WO2010034268A1 (zh) | 2010-04-01 |
Family
ID=42049370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/074297 WO2010034268A1 (zh) | 2008-09-28 | 2009-09-28 | 一种子信道共享的方法、装置和系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8576738B2 (zh) |
EP (1) | EP2330769B1 (zh) |
CN (1) | CN101686466B (zh) |
WO (1) | WO2010034268A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101686466B (zh) | 2008-09-28 | 2012-11-21 | 华为技术有限公司 | 一种子信道共享的方法、装置和系统 |
CN102196542B (zh) * | 2011-05-27 | 2014-06-25 | 上海华为技术有限公司 | 功率控制方法、设备和系统 |
JP5688332B2 (ja) * | 2011-06-20 | 2015-03-25 | 株式会社日立国際電気 | 無線通信システム |
CN102857926A (zh) * | 2011-06-29 | 2013-01-02 | 中兴通讯股份有限公司 | 实现动态频谱资源共享的方法及装置 |
US8848521B1 (en) * | 2011-12-22 | 2014-09-30 | Landis+Gyr Technologies, Llc | Channel allocation and device configuration |
CN103313345A (zh) * | 2012-03-14 | 2013-09-18 | 中兴通讯股份有限公司 | 一种选择接入信道的方法和移动终端 |
US20150029983A1 (en) * | 2012-04-11 | 2015-01-29 | Hitachi Kokusai Electric Inc. | Radio system, radio base station, and management apparatus |
US9019841B2 (en) * | 2012-10-19 | 2015-04-28 | Qualcomm Incorporated | Architecture for relays in LTE using D2D |
JP6151965B2 (ja) * | 2013-05-13 | 2017-06-21 | 株式会社日立国際電気 | 無線通信システム |
CN105519019B (zh) * | 2013-05-27 | 2017-07-21 | 华为技术有限公司 | 一种检测干扰信号的方法及装置 |
JP6423524B2 (ja) | 2014-05-30 | 2018-11-14 | 華為技術有限公司Huawei Technologies Co.,Ltd. | ダウンリンク制御情報送信方法及び装置、並びに、ダウンリンク制御情報受信方法及び装置 |
CN105553605B (zh) * | 2014-11-04 | 2019-04-05 | 中国电信股份有限公司 | 通信方法、系统以及基站和终端 |
CN107005853B (zh) * | 2015-01-29 | 2019-10-25 | 华为技术有限公司 | 一种上报参考信息的方法、装置和终端 |
CN107295544B (zh) * | 2016-09-27 | 2021-01-01 | 京信通信系统(中国)有限公司 | 基站工作频点自优化方法及装置 |
US10158555B2 (en) | 2016-09-29 | 2018-12-18 | At&T Intellectual Property I, L.P. | Facilitation of route optimization for a 5G network or other next generation network |
US10171214B2 (en) | 2016-09-29 | 2019-01-01 | At&T Intellectual Property I, L.P. | Channel state information framework design for 5G multiple input multiple output transmissions |
US10206232B2 (en) | 2016-09-29 | 2019-02-12 | At&T Intellectual Property I, L.P. | Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks |
US10644924B2 (en) | 2016-09-29 | 2020-05-05 | At&T Intellectual Property I, L.P. | Facilitating a two-stage downlink control channel in a wireless communication system |
US10602507B2 (en) | 2016-09-29 | 2020-03-24 | At&T Intellectual Property I, L.P. | Facilitating uplink communication waveform selection |
US10355813B2 (en) | 2017-02-14 | 2019-07-16 | At&T Intellectual Property I, L.P. | Link adaptation on downlink control channel in a wireless communications system |
CN110831205A (zh) * | 2019-09-24 | 2020-02-21 | 普联技术有限公司 | 一种无线网络信道分配方法、装置及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449205A (zh) * | 2002-04-02 | 2003-10-15 | 深圳市中兴通讯股份有限公司上海第二研究所 | 功率控制的动态优化方法和装置 |
CN1909440A (zh) * | 2005-08-01 | 2007-02-07 | 上海原动力通信科技有限公司 | 宽带时分双工系统的通信方法 |
CN101079660A (zh) * | 2007-07-02 | 2007-11-28 | 重庆邮电大学 | 多用户jt mimo系统中的下行链路功率分配方法 |
CN101132204A (zh) * | 2006-08-21 | 2008-02-27 | 北京三星通信技术研究有限公司 | 上行调度指配的传输方法及设备 |
US20080219213A1 (en) * | 2007-03-08 | 2008-09-11 | Motorola, Inc. | Dynamic sharing of wireless resources among different communication networks |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5982760A (en) * | 1997-06-20 | 1999-11-09 | Qualcomm Inc. | Method and apparatus for power adaptation control in closed-loop communications |
US6067458A (en) * | 1997-07-01 | 2000-05-23 | Qualcomm Incorporated | Method and apparatus for pre-transmission power control using lower rate for high rate communication |
US6154659A (en) * | 1997-12-24 | 2000-11-28 | Nortel Networks Limited | Fast forward link power control in a code division multiple access system |
US6169759B1 (en) * | 1999-03-22 | 2001-01-02 | Golden Bridge Technology | Common packet channel |
US6434367B1 (en) * | 1999-06-11 | 2002-08-13 | Lucent Technologies Inc. | Using decoupled power control sub-channel to control reverse-link channel power |
KR100526523B1 (ko) * | 2001-10-29 | 2005-11-08 | 삼성전자주식회사 | 이동통신시스템에서 순방향 공통전력제어채널의 전력을제어하기 위한 장치 및 방법 |
KR100830491B1 (ko) * | 2001-10-31 | 2008-05-21 | 엘지전자 주식회사 | 순방향 공통 전력 제어 채널의 전력 제어 방법 |
US7418269B2 (en) * | 2003-07-03 | 2008-08-26 | Nortel Networks Limited | Uplink interference reduction in wireless communications systems |
US20050070320A1 (en) * | 2003-09-26 | 2005-03-31 | Dent Paul W. | Method and apparatus to reduce dispatch delays in dispatch communication networks |
CN1960352A (zh) | 2005-10-31 | 2007-05-09 | 华为技术有限公司 | 基于ofdma-fdd的无线中转通信系统及方法 |
KR101084147B1 (ko) * | 2006-01-02 | 2011-11-17 | 엘지전자 주식회사 | 릴레이 스테이션을 이용한 핸드오버 제어 방법 |
US8223703B2 (en) * | 2006-05-26 | 2012-07-17 | Mitsubishi Electric Corporation | Scheduling method and communication apparatus |
WO2007147231A1 (en) * | 2006-05-31 | 2007-12-27 | Nortel Networks Limited | Methods and systems for wireless networks with relays |
JP4430052B2 (ja) * | 2006-06-19 | 2010-03-10 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信システム、ユーザ装置及び送信方法 |
US8416762B2 (en) * | 2006-08-07 | 2013-04-09 | Qualcomm Incorporated | Message exchange scheme for asynchronous wireless communication |
US8310996B2 (en) * | 2006-08-07 | 2012-11-13 | Qualcomm Incorporated | Conditional scheduling for asynchronous wireless communication |
US7917149B2 (en) * | 2006-08-18 | 2011-03-29 | Fujitsu Limited | System and method for reusing wireless resources in a wireless network |
KR101397292B1 (ko) * | 2007-08-31 | 2014-05-21 | 연세대학교 산학협력단 | 통신 시스템에서 신호 송수신 시스템 및 방법 |
US9374791B2 (en) * | 2007-09-21 | 2016-06-21 | Qualcomm Incorporated | Interference management utilizing power and attenuation profiles |
JP5251191B2 (ja) * | 2008-03-19 | 2013-07-31 | 富士通株式会社 | 移動通信端末装置及び通信制御方法 |
US8446852B2 (en) * | 2008-08-27 | 2013-05-21 | Fujitsu Limited | System and method for selecting an access link in a multi-hop relay network |
CN101686466B (zh) | 2008-09-28 | 2012-11-21 | 华为技术有限公司 | 一种子信道共享的方法、装置和系统 |
-
2008
- 2008-09-28 CN CN200810168816XA patent/CN101686466B/zh active Active
-
2009
- 2009-09-28 EP EP09815637.5A patent/EP2330769B1/en active Active
- 2009-09-28 WO PCT/CN2009/074297 patent/WO2010034268A1/zh active Application Filing
-
2011
- 2011-03-28 US US13/073,051 patent/US8576738B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449205A (zh) * | 2002-04-02 | 2003-10-15 | 深圳市中兴通讯股份有限公司上海第二研究所 | 功率控制的动态优化方法和装置 |
CN1909440A (zh) * | 2005-08-01 | 2007-02-07 | 上海原动力通信科技有限公司 | 宽带时分双工系统的通信方法 |
CN101132204A (zh) * | 2006-08-21 | 2008-02-27 | 北京三星通信技术研究有限公司 | 上行调度指配的传输方法及设备 |
US20080219213A1 (en) * | 2007-03-08 | 2008-09-11 | Motorola, Inc. | Dynamic sharing of wireless resources among different communication networks |
CN101079660A (zh) * | 2007-07-02 | 2007-11-28 | 重庆邮电大学 | 多用户jt mimo系统中的下行链路功率分配方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2330769A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2330769B1 (en) | 2020-02-05 |
US8576738B2 (en) | 2013-11-05 |
CN101686466B (zh) | 2012-11-21 |
US20110176445A1 (en) | 2011-07-21 |
EP2330769A1 (en) | 2011-06-08 |
EP2330769A4 (en) | 2012-02-22 |
CN101686466A (zh) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010034268A1 (zh) | 一种子信道共享的方法、装置和系统 | |
Jacobsen et al. | System level analysis of uplink grant-free transmission for URLLC | |
KR102341820B1 (ko) | 무선 통신 시스템에서 채널 액세스를 위한 장치 및 방법 | |
JP4620149B2 (ja) | 無線通信システムのアップリンク送信を制御するための方法および装置 | |
RU2714104C2 (ru) | Системы и способы одновременного использования диапазона частот в активно используемом диапазоне частот | |
KR101049325B1 (ko) | 비동기식 무선 통신을 위한 모니터 기간 | |
US11540235B2 (en) | Apparatus and method for power control in wireless communication system | |
JP7218290B2 (ja) | アクティブに使用されるスペクトル内での干渉を緩和するためのシステム及び方法 | |
WO2011095060A1 (zh) | 一种频率复用组网方法及设备 | |
CN113678534A (zh) | 用于无线网络的针对带宽部分的资源配置 | |
CN114051759B (zh) | 基于双连接的半静态方向的功率控制 | |
WO2018171494A1 (zh) | 波束指示方法及装置 | |
WO2013163905A1 (zh) | 使用时分双工通信制式的系统中的上下行配置方法和设备 | |
US10218489B2 (en) | Wireless backhaul configuration | |
WO2014082274A1 (zh) | 一种基于长期演进系统的载波聚合通信方法、装置及系统 | |
WO2010096946A1 (zh) | 资源调度方法、调度器和基站 | |
JP7205557B2 (ja) | リソーススケジューリング指示方法及びその装置、通信システム | |
CN116134942A (zh) | 侧链路通信抢占 | |
US11290162B2 (en) | Systems and methods for mitigating interference within actively used spectrum | |
CN106921975B (zh) | 一种基于230m无线通信专网的中继传输方法和装置 | |
KR102152922B1 (ko) | 비직교 다중 접속 시스템 및 그의 다중 유저 스케줄링 방법 | |
CN116325530A (zh) | 频率选择性相位跟踪参考信号(ptrs)分配 | |
TWI389489B (zh) | 無線通信系統、基地台、頻道分配方法及程式 | |
Molisch et al. | Device‐to‐Device Communications | |
JP6299024B1 (ja) | 無線通信装置および無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09815637 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009815637 Country of ref document: EP |