WO2010150898A1 - 無線通信システム、無線基地局及び無線通信方法 - Google Patents

無線通信システム、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2010150898A1
WO2010150898A1 PCT/JP2010/060910 JP2010060910W WO2010150898A1 WO 2010150898 A1 WO2010150898 A1 WO 2010150898A1 JP 2010060910 W JP2010060910 W JP 2010060910W WO 2010150898 A1 WO2010150898 A1 WO 2010150898A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
base station
radio base
radio terminal
terminal
Prior art date
Application number
PCT/JP2010/060910
Other languages
English (en)
French (fr)
Inventor
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/379,577 priority Critical patent/US20120099512A1/en
Priority to JP2011519956A priority patent/JP5373899B2/ja
Publication of WO2010150898A1 publication Critical patent/WO2010150898A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present invention relates to a radio communication system, a radio base station, and a radio communication method in which a plurality of radio base stations communicate with one radio terminal using the same radio resource.
  • MIMO that transmits and receives wireless signals using the same wireless resource (combination of frequency and time) using a plurality of antennas on each of the transmitting side and the receiving side (Multi-Input Multi-Output) communication is known.
  • the JP type is a cooperative communication system in which a plurality of wireless base stations simultaneously communicate with wireless terminals. For example, the first radio base station and the second radio base station perform data transmission to one radio terminal using the same radio resource.
  • the data transmitted by the first radio base station and the second radio base station are basically the same data, and the radio terminal combines the data at the time of reception.
  • JP-type cooperative communication when the propagation path quality between the second radio base station and the wireless terminal is good, the communication performance improvement effect by the cooperative communication becomes small.
  • MCS combination of modulation multi-level number and coding rate
  • an object of the present invention is to provide a radio communication system, a radio base station, and a radio communication method that can effectively use radio resources used for cooperative communication.
  • the present invention has the following features.
  • a first radio terminal radio terminal UE1
  • a second radio terminal radio terminal UE2
  • a radio resource radio resource R1 defined by a combination of frequency and time.
  • a first radio base station radio base station BS1 to be allocated to the first radio terminal; and a second radio base station (radio base station BS2) to allocate the same radio resource as the radio resource to the first radio terminal.
  • a wireless communication system in which the first wireless base station and the second wireless base station perform cooperative communication (CoMP) with the first wireless terminal using the wireless resource, A predetermined condition indicating that the communication state between the second radio base station and the first radio terminal is good is satisfied, and between the first radio base station and the first radio terminal No. 1
  • the first radio base station The gist is to assign the radio resource to the second radio terminal instead of the first radio terminal.
  • the first The radio base station allocates radio resources used for cooperative communication to the second radio terminal instead of the first radio terminal.
  • wireless resource can be used effectively.
  • the first radio terminal When the first radio base station allocates the radio resource to the second radio terminal, the first radio terminal cannot temporarily execute communication with the first radio base station. This is not a problem because the communication state with the wireless terminal is good and the second wireless base station can communicate with the first wireless terminal.
  • a second feature of the present invention includes a resource allocating unit (resource allocating unit 121) that allocates radio resources defined by a combination of frequency and time to a radio terminal (radio terminal UE1), and uses the same radio resource as the radio resource.
  • a radio base station (radio base station BS1) that performs coordinated communication with the radio terminal together with another radio base station (radio base station BS2) to be allocated to the radio terminal, the other radio base station and the radio terminal
  • the resource allocating unit assigns the radio resource to the radio And summarized in that allocated to the other wireless terminals instead of the end.
  • the predetermined condition may be that a third channel quality between the other radio base station and the radio terminal is better than a predetermined quality.
  • an MCS Modulation and Coding scheme
  • Adaptive modulation that can be switched based on quality is adopted, and the predetermined condition is that the MCS used for communication between the other radio base station and the radio terminal is a specific MCS. Good.
  • the specific MCS may be an MCS having the highest throughput among all MCS usable in the adaptive modulation.
  • the specific MCS is an MCS that satisfies a throughput required for communication between the other radio base station and the radio terminal in all MCS usable in the adaptive modulation. May be.
  • the specific MCS may be the set MCS.
  • the resource allocation unit may allocate the radio resource again to the radio terminal.
  • a transmission unit transmission / reception unit 110 that performs data transmission using the radio resource
  • a transmission power control unit transmission power
  • Control unit 124 wherein the resource allocation unit satisfies the predetermined condition, the second channel quality is better than the first channel quality, and the first propagation
  • the radio resource is replaced with the radio terminal and the other
  • the transmission power control unit is configured to transmit power to the radio terminal when the resource allocation unit allocates the radio resource to the other radio terminal instead of the radio terminal.
  • the resource allocation unit cancels the cooperative communication While omitting the procedure, the radio resource may be allocated to the other radio terminal instead of the radio terminal.
  • the third feature of the present invention is that the first radio base station allocates radio resources defined by a combination of frequency and time to the first radio terminal, and the second radio base station assigns the same radio resources as the radio resources. Allocating to the first radio terminal, the first radio base station and the second radio base station performing cooperative communication with the first radio terminal using the radio resource, and the second radio terminal A first condition between the first radio base station and the first radio terminal is satisfied, and a predetermined condition indicating that a communication state between the base station and the first radio terminal is good is satisfied When the second propagation path quality between the first radio base station and the second radio terminal is better than the path quality, the first radio base station sends the radio resource to the first radio terminal. Instead, the second wireless terminal And summarized in that a radio communication method comprising the steps of assigning to.
  • the present invention it is possible to provide a radio communication system, a radio base station, and a radio communication method that can effectively use radio resources used for cooperative communication.
  • FIG. 5 is a sequence diagram showing an operation sequence example 2 of the wireless communication system according to the first embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing an operation sequence example 3 of the wireless communication system according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart which shows schematic operation
  • FIG. 1 is a schematic configuration diagram of a radio communication system 1 according to the first embodiment.
  • the wireless communication system 1 has a configuration based on LTE-Advanced, which is positioned as a fourth generation (4G) mobile phone system, and supports CoMP (cooperative communication).
  • 4G fourth generation
  • CoMP cooperative communication
  • a radio communication system 1 includes a radio base station BS1 (first radio base station), a radio base station BS2 (second radio base station), a radio terminal UE1 (first radio terminal), and a radio terminal UE2. (Second wireless terminal) and the control device 11.
  • the radio terminal UE1 is located in an overlapping portion between a cell C1 that is a communication area formed by the radio base station BS1 and a cell C2 that is a communication area formed by the radio base station BS2.
  • the radio terminal UE2 is located in the cell C1.
  • Each of the radio base station BS1, the radio base station BS2, the radio terminal UE1, and the radio terminal UE2 can periodically transmit (broadcast) a known signal (so-called pilot signal) that is a known signal sequence on the receiving side. Further, each of the radio base station BS1, the radio base station BS2, the radio terminal UE1, and the radio terminal UE2 can measure the channel quality with the transmission side using the received pilot signal.
  • the propagation path quality means various parameters indicating the quality of the wireless propagation path such as an attenuation amount, a phase rotation amount, and a delay amount received when a signal passes through the wireless propagation path.
  • the channel quality Q3 with UE1 is measured.
  • Each measured channel quality may be an instantaneous channel quality or an average channel quality in a short period.
  • the radio base station BS1 and the radio base station BS2 are connected to each other via a backhaul network 10 which is a wired communication network.
  • the control device 11 is provided in the backhaul network 10 and controls the radio base station BS1 and the radio base station BS2 via the backhaul network 10.
  • the radio base station BS1 and the radio base station BS2 can directly perform communication between base stations via a communication connection called an X2 interface without going through the control device 11.
  • the radio base station BS1 allocates a radio resource (hereinafter, radio resource R1) defined by a combination of frequency (subchannel) and time (time slot) to the radio terminal UE1.
  • a radio resource R1 is referred to as a resource block (RB).
  • the radio base station BS2 allocates a radio resource R1 to the radio terminal UE1.
  • the radio base station BS1 and the radio base station BS2 perform CoMP with the radio terminal UE1 using the radio resource R1 allocated to the radio terminal UE1.
  • data transmitted by the radio base station BS1 using the radio resource R1 and data transmitted by the radio base station BS2 using the radio resource R1 are basically the same data. . That is, the data transmitted by the radio base station BS1 and the radio base station BS2 are combined by the radio terminal UE1, so that the reception quality at the radio terminal UE1 is improved.
  • FIG. 2 is a block diagram showing the configuration of the radio base station BS1.
  • the radio base station BS1 includes an antenna unit ANT, a transmission / reception unit 110, a control unit 120, a storage unit 130, and a wired communication unit 140.
  • the transmission / reception unit 110 is configured using, for example, an RF circuit, a BB circuit, and the like, and performs signal transmission / reception and also performs signal modulation / demodulation, encoding / decoding, and the like.
  • the transmission / reception unit 110 constitutes a transmission unit that performs data transmission using the radio resource R1.
  • the control unit 120 is configured using, for example, a CPU, and controls various functions provided in the radio base station BS1.
  • the storage unit 130 is configured using a memory, for example, and stores various types of information used for controlling the radio base station BS1.
  • the wired communication unit 140 communicates with the radio base station BS2 and the control device 11 via the backhaul network 10.
  • the control unit 120 includes a resource allocation unit 121, a channel quality measurement unit 122, a channel quality comparison unit 123, and a transmission power control unit 124.
  • the resource allocation unit 121 allocates the radio resource R1 to the radio terminal UE1 when performing CoMP with the radio terminal UE1.
  • the propagation path quality measurement unit 122 measures the propagation path quality Q1 using the pilot signal 1 received from the radio terminal UE1, and measures the propagation path quality Q2 using the pilot signal 2 received from the radio terminal UE2.
  • the propagation path quality comparison unit 123 compares the propagation path quality Q1 and the propagation path quality Q2 measured by the propagation path quality measurement unit 122, and determines a difference between the propagation path quality Q1 and the propagation path quality Q2 by a predetermined value (predetermined threshold). Compare with a predetermined value (predetermined threshold).
  • the resource allocation unit 121 satisfies a predetermined condition indicating that the communication state between the radio base station BS2 and the radio terminal UE1 is good, and the channel quality Q2 is better than the channel quality Q1 (Hereinafter referred to as channel quality Q1 ⁇ channel quality Q2), radio resource R1 is assigned to radio terminal UE2 instead of radio terminal UE1.
  • the resource allocation unit 121 replaces the condition of channel quality Q1 ⁇ channel quality Q2 with channel quality Q1 instead of channel quality Q1 as a condition for allocating radio resource R1 to radio terminal UE2 instead of radio terminal UE1. It is preferable to satisfy the condition that is better than a predetermined threshold (hereinafter referred to as propagation path quality Q1 ⁇ propagation path quality Q2). Note that when allocating the radio resource R1 to the radio terminal UE2, the procedure for releasing CoMP is omitted.
  • the predetermined condition is that the propagation path quality Q3 is better than the predetermined quality (hereinafter referred to as “predetermined quality ⁇ propagation path quality Q3”).
  • the lower limit of the predetermined quality may be a propagation path quality when the radio terminal UE1 can demodulate data only with a transmission signal from the radio base station BS2.
  • the predetermined quality may be stored in the storage unit 130 in advance.
  • the transmission power control unit 124 controls transmission power when the transmission / reception unit 110 performs data transmission.
  • the transmission power control unit 124 determines the transmission power to the radio terminal UE2 rather than the transmission power when performing data transmission to the radio terminal UE1. Reduce transmission power when performing data transmission.
  • the resource allocation unit 121 allocates the radio resource R1 to the radio terminal UE1 again when the predetermined condition is not satisfied after the radio resource R1 is allocated to the radio terminal UE2.
  • FIG. 3 is a flowchart showing a schematic operation of the wireless communication system 1.
  • the control device 11, the radio base station BS1, the radio base station BS2, and the radio terminal UE1 perform a setting procedure for starting CoMP.
  • this setting procedure it is assumed that the radio resource R1 is determined to be used for CoMP.
  • step S11 the radio base station BS1 and the radio base station BS2 perform JP-type CoMP with the radio terminal UE1 using the radio resource R1.
  • the radio base station BS1 or the radio terminal UE1 measures the channel quality Q1 between the radio base station BS1 and the radio terminal UE1.
  • the radio base station BS1 or the radio terminal UE2 measures the channel quality Q2 between the radio base station BS1 and the radio terminal UE2.
  • the radio base station BS2 or the radio terminal UE1 measures the channel quality Q3 between the radio base station BS2 and the radio terminal UE1.
  • the radio base station BS1 compares the channel quality Q1 and the channel quality Q2, and compares the difference between the channel quality Q1 and the channel quality Q2 with a predetermined threshold value.
  • the control device 11 or the radio base station BS1 compares the channel quality Q3 with the predetermined quality.
  • the radio base station BS1 When the predetermined quality ⁇ the channel quality Q3 and the channel quality Q1 ⁇ the channel quality Q2 (step S13; YES), the radio base station BS1 replaces the radio resource R1 with the radio terminal UE1 in step S14. Assign to UE2. Further, the radio base station BS1 reduces the transmission power in the radio resource R1. On the other hand, when at least one condition of predetermined quality ⁇ channel quality Q3 or channel quality Q1 ⁇ channel quality Q2 is not satisfied (step S13; NO), the process returns to step S11.
  • step S15 the radio base station BS1 communicates with the radio terminal UE2 using the radio resource R1 assigned to the radio terminal UE2.
  • step S16 the radio base station BS2 or the radio terminal UE1 measures the channel quality Q3 between the radio base station BS2 and the radio terminal UE1.
  • step S16 For the channel quality Q3 measured in step S16, when the condition of predetermined quality ⁇ channel quality Q3 is no longer satisfied (step S17; NO), in step S18, the radio base station BS1 reassigns the radio resource R1 to the radio terminal. Assign to UE1. On the other hand, when the condition of predetermined quality ⁇ channel quality Q3 is satisfied (step S17; YES), the process returns to step S15.
  • FIG. 4 is a sequence diagram showing an operation sequence example 1 of the wireless communication system 1.
  • step S100 the control device 11, the radio base station BS1, the radio base station BS2, and the radio terminal UE1 perform a setting procedure for starting CoMP.
  • step S101 the radio base station BS1 and the radio base station BS2 perform CoMP with the radio terminal UE1 using the radio resource R1.
  • step S102 the radio terminal UE2 transmits a pilot signal 2.
  • step S103 the radio terminal UE1 transmits a pilot signal 1. Each pilot signal is periodically transmitted thereafter.
  • step S104 the channel quality measurement unit 122 of the radio base station BS1 measures the channel quality Q1 from the pilot signal 1 received from the radio terminal UE1, and determines the channel quality Q2 from the pilot signal 2 received from the radio terminal UE2. taking measurement.
  • step S105 the radio base station BS2 measures the channel quality Q3 from the pilot signal 1 received from the radio terminal UE1.
  • step S106 the radio base station BS2 transmits the propagation path quality Q3 (or the index of the propagation path quality Q3) measured in step S105 to the control device 11.
  • step S107 the control device 11 compares the predetermined quality with the channel quality Q3 received from the radio base station BS2 in step S106.
  • the result of the comparison is predetermined quality ⁇ channel quality Q3.
  • step S108 the control device 11 transmits information indicating a comparison result between the predetermined quality and the propagation path quality Q3 to the radio base station BS1.
  • step S109 the channel quality comparison unit 123 of the radio base station BS1 compares the channel quality Q1 and the channel quality Q2 measured by the channel quality measurement unit 122.
  • the result of the comparison is propagation path quality Q1 ⁇ propagation path quality Q2.
  • step S110 the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE2. At that time, the release procedure for releasing CoMP is omitted, and the state in which CoMP is set is maintained.
  • step S111 the transmission / reception unit 110 of the radio base station BS1 transmits an assignment notification notifying that the radio resource R1 is assigned to the radio terminal UE2.
  • step S112 the transmission power control unit 124 of the radio base station BS1 controls to reduce the transmission power of the transmission signal using the radio resource R1.
  • step S113 the transceiver unit 110 of the radio base station BS1 performs data transmission to the radio terminal UE2 using the radio resource R1 allocated to the radio terminal UE2.
  • step S114 the radio base station BS2 performs data transmission to the radio terminal UE1 using the radio resource R1.
  • step S115 the radio base station BS2 again measures the channel quality Q3 from the pilot signal 1 newly received from the radio terminal UE1.
  • step S116 the radio base station BS2 transmits the channel quality Q3 (or the index of the channel quality Q3) measured in step S115 to the control device 11.
  • step S117 the control device 11 compares the predetermined quality with the channel quality Q3 received from the radio base station BS2.
  • the result of the comparison is predetermined quality> channel quality Q3.
  • step S118 the control device 11 transmits information indicating a comparison result between the predetermined quality and the propagation path quality Q3 to the radio base station BS1.
  • step S122 the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE1 again. Note that since the release procedure for releasing CoMP is omitted, a setup procedure for resetting CoMP is not necessary.
  • FIG. 5 is a sequence diagram showing an operation sequence example 2 of the wireless communication system 1.
  • the control device 11 performs comparison between the predetermined quality and the propagation path quality Q3.
  • the comparison is performed by the radio base station BS1.
  • steps S200 to S205 are executed in the same manner as steps S100 to S105 of the operation sequence example 1 described above.
  • step S206 the radio base station BS2 transmits the channel quality Q3 (or the index of the channel quality Q3) measured in step S205 to the radio base station BS1 using inter-base station communication.
  • step S207 the channel quality comparison unit 123 of the radio base station BS1 compares the channel quality Q1 and the channel quality Q2 measured in step S204.
  • the result of the comparison is propagation path quality Q1 ⁇ propagation path quality Q2.
  • the resource assignment unit 121 compares the channel quality Q3 received from the radio base station BS2 in step S206 with a predetermined quality. In this operation example, it is assumed that the result of the comparison is predetermined quality ⁇ channel quality Q3.
  • step S208 the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE2. At that time, the release procedure for releasing CoMP is omitted, and the state in which CoMP is set is maintained.
  • step S209 the transmission / reception unit 110 of the radio base station BS1 transmits an assignment notification notifying that the radio resource R1 is assigned to the radio terminal UE2.
  • step S210 the transmission power control unit 124 of the radio base station BS1 controls to reduce the transmission power of the transmission signal using the radio resource R1.
  • step S211 the transmission / reception unit 110 of the radio base station BS1 performs data transmission to the radio terminal UE2 using the radio resource R1 assigned to the radio terminal UE2.
  • step S212 the radio base station BS2 performs data transmission to the radio terminal UE1 using the radio resource R1.
  • step S213 the radio base station BS2 again measures the channel quality Q3 from the pilot signal 1 newly received from the radio terminal UE1.
  • step S214 the radio base station BS2 transmits the channel quality Q3 (or the index of the channel quality Q3) measured in step S215 to the radio base station BS1 using inter-base station communication.
  • step S215 the resource allocation unit 121 of the radio base station BS1 compares the channel quality Q3 received from the radio base station BS2 in step S214 with a predetermined quality.
  • a predetermined quality In this operation example, it is assumed that the result of the comparison is predetermined quality> channel quality Q3.
  • step S216 the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE1 again. Note that since a release procedure for releasing CoMP is omitted, a setting procedure for setting CoMP again is not necessary.
  • the radio resource R1 can be reassigned without depending on the control device 11.
  • FIG. 6 is a sequence diagram showing an operation sequence example 3 of the wireless communication system 1.
  • the channel quality is measured by the radio base station BS1 and the radio base station BS2, but in this operation example, the radio terminal UE1 and the radio terminal UE2 perform the measurement.
  • steps S300 to S301 are executed in the same manner as steps S100 to S101 of the operation sequence example 1 described above.
  • step S302 the radio base station BS2 transmits a pilot signal 2.
  • step S303 the radio base station BS1 transmits a pilot signal 1. Each pilot signal is periodically transmitted thereafter.
  • step S304 the radio terminal UE1 measures the channel quality Q1 from the pilot signal 1 received from the radio base station BS1, and measures the channel quality Q3 from the pilot signal 2 received from the radio base station BS2.
  • step S305 the radio terminal UE1 transmits the channel quality Q1 and the channel quality Q3 (or their indexes) measured in step S304 to the radio base station BS1.
  • step S306 the radio terminal UE2 measures the channel quality Q2 from the pilot signal 1 received from the radio base station BS1.
  • step S307 the radio terminal UE2 transmits the channel quality Q2 (or the index of the channel quality Q2) measured in step S306 to the radio base station BS1.
  • step S308 the transmission / reception unit 110 of the radio base station BS1 transmits the channel quality Q3 (or the index of the channel quality Q3) received from the radio terminal UE1 in step S305 to the control device 11.
  • step S309 the control device 11 compares the predetermined quality with the channel quality Q3 received from the radio base station BS2 in step S308.
  • the result of the comparison is predetermined quality ⁇ channel quality Q3.
  • step S310 the control device 11 transmits information indicating a comparison result between the predetermined quality and the propagation path quality Q3 to the radio base station BS1.
  • step S311 the channel quality comparison unit 123 of the radio base station BS1 compares the channel quality Q1 received in step S305 with the channel quality Q2 received in step S307.
  • the result of the comparison is propagation path quality Q1 ⁇ propagation path quality Q2.
  • step S312 the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE2. At that time, the release procedure for releasing CoMP is omitted, and the state in which CoMP is set is maintained.
  • step S313 the transmission / reception unit 110 of the radio base station BS1 transmits an assignment notification notifying that the radio resource R1 is assigned to the radio terminal UE2.
  • step S314 the transmission power control unit 124 of the radio base station BS1 controls to reduce the transmission power of the transmission signal using the radio resource R1.
  • step S315 the transmission / reception unit 110 of the radio base station BS1 performs data transmission to the radio terminal UE2 using the radio resource R1 assigned to the radio terminal UE2.
  • step S316 the radio base station BS2 performs data transmission to the radio terminal UE1 using the radio resource R1.
  • step S317 the radio terminal UE1 again measures the channel quality Q3 from the pilot signal 2 newly received from the radio base station BS2.
  • step S318 the radio terminal UE1 transmits the channel quality Q3 (or the index of the channel quality Q3) measured in step S317 to the radio base station BS1.
  • step S319 the transmission / reception unit 110 of the radio base station BS1 transmits the channel quality Q3 (or the index of the channel quality Q3) received from the radio terminal UE1 in step S305 to the control device 11.
  • step S320 the control device 11 compares the predetermined quality with the channel quality Q3 received from the radio base station BS2 in step S308.
  • the result of the comparison is predetermined quality> channel quality Q3.
  • step S321 the control device 11 transmits information indicating a comparison result between the predetermined quality and the propagation path quality Q3 to the radio base station BS1.
  • step S322 the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE1 again. Note that since a release procedure for releasing CoMP is omitted, a setting procedure for setting CoMP again is not necessary.
  • the downlink channel quality can be measured, which is effective when the duplex method is FDD.
  • the predetermined quality ⁇ the channel quality Q3 and the channel quality Q1 ⁇ the channel quality Q2.
  • the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to be used for CoMP to the radio terminal UE2 instead of the radio terminal UE1, without following the procedure for canceling CoMP. Thereby, the radio resource R1 can be effectively used.
  • the radio base station BS1 allocates the radio resource R1 to the radio terminal UE2, the radio terminal UE1 is in a state where data should have been transmitted from the radio base station BS1, and the radio base station BS1 to the radio terminal UE2
  • the transmission signal becomes an interference signal to the radio terminal UE1 as it is.
  • the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE2 having a better channel quality than the radio terminal UE1, the transmission power to the radio terminal UE2 can be kept low. It is.
  • the transmission power control unit 124 of the radio base station BS1 transmits the data to the radio terminal UE2 more than the transmission power when performing the data transmission to the radio terminal UE1 after the radio resource R1 is allocated to the radio terminal UE2.
  • the transmission power when performing is reduced.
  • the radio terminal UE1 since the signal transmitted from the radio base station BS1 to the radio terminal UE2 appears sufficiently small, the communication between the radio base station BS1 and the radio terminal UE2 is performed between the radio base station BS2 and the radio terminal UE1. Interference with communication with can be reduced.
  • the radio terminal UE1 is not able to detect a signal that should have been transmitted from the radio base station BS1 to the radio terminal UE1, but is transmitting from the radio base station BS2. There is no problem because it is possible to demodulate data with only a signal.
  • the resource allocation unit 121 of the radio base station BS1 omits the procedure for releasing CoMP, and allocates the radio resource R1 used for CoMP to the radio terminal UE2 instead of the radio terminal UE1. .
  • the resource allocation unit 121 of the radio base station BS1 allocates the radio resource R1 to the radio terminal UE1 again.
  • the predetermined condition is that the propagation path quality Q3 is better than the predetermined quality, but in the second embodiment, the predetermined condition is a wireless condition.
  • the MCS Modulation and Coding Scheme
  • the predetermined condition is that the channel quality Q3 between the radio base station BS2 and the radio terminal UE1 satisfies the quality required by a specific MCS.
  • a plurality of MCSs are determined in advance, and any MCS selected from these MCSs communicates between the wireless base station BS1 and the wireless terminal UE1, and Used for communication between the radio base station BS2 and the radio terminal UE1.
  • the modulation efficiency which is the number of bits that can be transmitted per symbol, differs for each MCS. The higher the modulation efficiency, the higher the throughput, but the lower the error tolerance. The lower the modulation efficiency, the higher the error tolerance but the lower the throughput.
  • MCS is also called an MCS level.
  • the predetermined condition is that the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is a specific MCS.
  • the specific MCS is, for example, one of the following (a) to (c).
  • the required throughput is determined according to an application used when the radio terminal UE1 communicates with the radio base station BS2.
  • each MCS that satisfies the required throughput of the VoIP application (small capacity), each MCS that satisfies the required throughput of the moving picture streaming application (large capacity), and the like are defined in advance. That is, the condition (b) is to adaptively determine the MCS for each subframe so as to satisfy the required throughput.
  • the MCS set at the start of communication between the radio base station BS2 and the radio terminal UE1 is determined by the required throughput of an application used when the radio terminal UE1 communicates with the radio base station BS2.
  • the MCS required for the radio terminal UE1 is determined from the interval between subframes and the number of resource blocks allocated to the radio terminal UE1 by the radio base station BS2 and the required throughput. That is, the condition (c) reserves a future MCS assignment in advance so as to satisfy the required throughput.
  • FIG. 7 is a flowchart showing a schematic operation of the wireless communication system 1 according to the second embodiment.
  • the control device 11, the radio base station BS1, the radio base station BS2, and the radio terminal UE1 perform a setting procedure for starting CoMP.
  • this setting procedure it is assumed that the radio resource R1 is determined to be used for CoMP.
  • the specific MCS is (b) above, in the setting procedure, an MCS that satisfies the required throughput is determined according to the application used by the radio terminal UE1. Further, when the specific MCS is (c), the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is set in the setting procedure.
  • step S21 the radio base station BS1 and the radio base station BS2 perform JP-type CoMP with the radio terminal UE1 using the radio resource R1.
  • the radio base station BS1 or the radio terminal UE1 measures the channel quality Q1 between the radio base station BS1 and the radio terminal UE1.
  • the radio base station BS1 or the radio terminal UE2 measures the channel quality Q2 between the radio base station BS1 and the radio terminal UE2.
  • the radio base station BS1 compares the channel quality Q1 and the channel quality Q2, and compares the difference between the channel quality Q1 and the channel quality Q2 with a predetermined threshold value.
  • the control device 11 or the radio base station BS1 compares the MCS used for communication between the radio base station BS2 and the radio terminal UE1 with a specific MCS.
  • the radio base station in step S24 BS1 assigns radio resource R1 to radio terminal UE2 instead of radio terminal UE1. Further, the radio base station BS1 reduces the transmission power in the radio resource R1.
  • the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is a specific MCS, or when at least one of the conditions of the channel quality Q1 ⁇ channel quality Q2 is not satisfied (step S23; NO) ), The process returns to step S21.
  • step S25 the radio base station BS1 communicates with the radio terminal UE2 using the radio resource R1 assigned to the radio terminal UE2.
  • step S26 the control device 11 or the radio base station BS1 compares the MCS used for communication between the radio base station BS2 and the radio terminal UE1 with a specific MCS.
  • step S26 When the condition that the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is a specific MCS is not satisfied (step S26; NO), the radio base station BS1 uses the radio resource R1 in step S27. Assign to the radio terminal UE1 again.
  • step S26 when the condition that the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is a specific MCS is satisfied (step S26; YES), the process returns to step S25.
  • the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is a specific MCS. If there is a channel quality Q1 ⁇ channel quality Q2, the resource allocation unit 121 of the radio base station BS1 sets the radio resource R1 used for CoMP to the radio terminal UE1 without following the procedure for releasing CoMP. Instead, it is assigned to the radio terminal UE2. Thereby, the radio resource R1 can be effectively used.
  • the MCS used for communication between the radio base station BS2 and the radio terminal UE1 is the highest MCS, MCS that satisfies the required throughput, or the radio base station BS2 and the radio terminal UE1 at the start of communication between the radio base station BS2 and the radio terminal UE1.
  • MCS MCS that satisfies the required throughput
  • the radio base station BS2 and the radio terminal UE1 at the start of communication between the radio base station BS2 and the radio terminal UE1.
  • the radio resource R1 is assigned to the radio terminal UE1. Instead, it can be assigned to the radio terminal UE2. Therefore, the condition for allocating the radio resource R1 to the radio terminal UE2 instead of the radio terminal UE1 can be changed according to the application used by the radio terminal UE1, so that the radio resource R1 can be effectively utilized more flexibly. it can.
  • control device 11 or the radio base station BS1 compares the predetermined quality with the channel quality Q3.
  • a device other than the control device 11 or the radio base station BS1 for example, the radio terminal UE1 Alternatively, the radio base station BS2 may compare the predetermined quality with the propagation path quality Q3.
  • the control device 11 or the radio base station BS1 compares the MCS used for communication between the radio base station BS2 and the radio terminal UE1 with a specific MCS.
  • an apparatus other than the radio base station BS1 for example, the radio terminal UE1 or the radio base station BS2 may compare the MCS used for communication between the radio base station BS2 and the radio terminal UE1 with a specific MCS. .
  • the wireless communication system 1 has a configuration based on LTE-Advanced.
  • the wireless communication system is not limited to LTE-Advanced and may be any wireless communication system that supports cooperative communication. The invention can be applied.
  • Modification example 7 In the above-described embodiment, the configuration in which each of the radio base station BS1 and the radio base station BS2 performs baseband (BB) processing has been described. However, the configuration may be such that the BB processing is performed on the control device 11 side.
  • the RRH is mainly composed of an antenna and a radio frequency (RF) circuit.
  • each of the radio base station BS1 and the radio base station BS2 is configured as an RRH
  • each of the radio base station BS1 and the radio base station BS2 is connected to the control device 11 by an optical fiber line or the like.
  • the control device 11 transmits / receives a BB signal to / from each of the radio base station BS1 and the radio base station BS2 via an optical fiber line or the like.
  • FIG. 8 is a block diagram illustrating a configuration of the control device 11 when each of the radio base station BS1 and the radio base station BS2 is configured as an RRH.
  • the control device 11 includes an interface unit 211, an interface unit 212, a control unit 220, a storage unit 230, and a wired communication unit 240.
  • the interface unit 211 is configured using a BB circuit or the like, and functions as an interface with the radio base station BS1.
  • the interface unit 212 is configured using a BB circuit or the like, and functions as an interface with the radio base station BS2.
  • the control unit 220 is configured using, for example, a CPU, and controls various functions included in the radio base station BS1, the radio base station BS2, and the control device 11.
  • the storage unit 230 is configured using, for example, a memory, and stores various types of information used for controlling the radio base station BS1, the radio base station BS2, and the control device 11.
  • the storage unit 230 and the wired communication unit 240 are connected to a backhaul network.
  • the control unit 220 includes a resource allocation unit 221, a channel quality measurement unit 222, a channel quality comparison unit 223, and a transmission power control unit 224.
  • the resource allocation unit 221 controls the radio base station BS1 to allocate the radio resource R1 to the radio terminal UE1 when the radio base station BS1 performs CoMP with the radio terminal UE1.
  • the propagation path quality measurement unit 222 measures the propagation path quality Q1 using the pilot signal 1 received by the radio base station BS1 from the radio terminal UE1, and uses the pilot signal 2 received by the radio base station BS1 from the radio terminal UE2.
  • the propagation path quality Q2 is measured.
  • the propagation path quality comparison unit 223 compares the propagation path quality Q1 and the propagation path quality Q2 measured by the propagation path quality measurement unit 222, and the difference between the propagation path quality Q1 and the propagation path quality Q2 is a predetermined value (predetermined threshold). Compare with
  • the resource allocation unit 221 satisfies a predetermined condition indicating that the communication state between the radio base station BS2 and the radio terminal UE1 is good, and the channel quality Q2 is better than the channel quality Q1 (Hereinafter referred to as channel quality Q1 ⁇ channel quality Q2), the radio base station BS1 is controlled to allocate the radio resource R1 to the radio terminal UE2 instead of the radio terminal UE1.
  • the resource allocation unit 221 replaces the condition of channel quality Q1 ⁇ channel quality Q2 with the condition of channel quality Q1 instead of channel quality Q1 as a condition for allocating the radio resource R1 to the radio terminal UE2 instead of the radio terminal UE1.
  • propagation path quality Q1 propagation path quality Q2 ⁇ propagation path quality Q2. Note that when allocating the radio resource R1 to the radio terminal UE2, the procedure for releasing CoMP is omitted.
  • the predetermined condition is that the propagation path quality Q3 is better than the predetermined quality (hereinafter referred to as predetermined quality ⁇ propagation path quality Q3).
  • the lower limit of the predetermined quality may be a propagation path quality when the radio terminal UE1 can demodulate data only with a transmission signal from the radio base station BS2.
  • the predetermined quality may be stored in the storage unit 230 in advance.
  • the transmission power control unit 224 controls transmission power when the radio base station BS1 performs data transmission.
  • the transmission power control unit 224 performs data transmission to the radio terminal UE2 rather than transmission power used to transmit data to the radio terminal UE1.
  • the radio base station BS1 is controlled so as to reduce the transmission power.
  • the resource allocation unit 221 controls the radio base station BS1 to allocate the radio resource R1 to the radio terminal UE1 again when the predetermined condition is not satisfied after the radio resource R1 is allocated to the radio terminal UE2.
  • radio resources used for cooperative communication can be used effectively, which is useful in radio communication such as mobile communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 周波数及び時間の組み合わせにより規定される無線リソースを無線端末UE1に割り当てる無線基地局BS1と、当該無線リソースと同一無線リソースを無線端末UE1に割り当てる無線基地局BS2とが、当該無線リソースを使用して無線端末UE1との協調通信を行う無線通信システム1において、無線基地局BS2と無線端末UE1との通信の状態が良好であることを示す所定の条件が満たされており、且つ、無線基地局BS1と無線端末UE1との間の伝搬路品質Q1よりも、無線基地局BS1と無線端末UE2との間の伝搬路品質Q2が良好である場合、無線基地局BS1は、当該無線リソースを無線端末UE1に代えて無線端末UE2に割り当てる。

Description

無線通信システム、無線基地局及び無線通信方法
 本発明は、複数の無線基地局が同一の無線リソースを使用して1つの無線端末との通信を行う無線通信システム、無線基地局及び無線通信方法に関する。
 従来、無線通信システムにおいて周波数利用効率を向上可能な技術の1つとして、送信側及び受信側がそれぞれ複数本のアンテナを用い、同一の無線リソース(周波数及び時間の組み合わせ)で無線信号を送受信するMIMO(Multi-Input Multi-Output)通信が知られている。
 近年では、MIMO通信を発展させた技術として、基地局間通信を利用し、複数の無線基地局が同一の無線リソースを使用して1つの無線端末と通信する協調MIMO通信(以下、適宜“協調通信”と称する)が注目されている(例えば、特許文献1参照)。無線通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、上記協調通信はマルチポイント協調送受信(CoMP:Coordinated MultiPoint transmission/reception)と称されており、CoMPの仕様策定に向けた議論がなされている。
 CoMPの方式の1つとして、結合処理(JP:Joint Processing)型と称される方式がある。JP型とは、複数の無線基地局が同時に無線端末との通信を行う協調通信の方式である。例えば、第1無線基地局及び第2無線基地局が、同一の無線リソースを用いて1つの無線端末へのデータ送信を行う。JP型の協調通信において第1無線基地局及び第2無線基地局が送信する各データは基本的には同じデータであり、無線端末は当該各データを受信時に合成する。
特表2008-523665号公報
 しかしながら、協調通信(CoMP)は、通常のMIMO通信よりも通信性能を改善できるものの、第1無線基地局及び第2無線基地局それぞれで無線リソースが消費されるために、通常のMIMO通信よりも周波数利用効率が低下する。さらに、JP型の協調通信には、次のような問題がある。
 具体的には、JP型の協調通信においては、第2無線基地局と無線端末との間の伝播路品質が良好である場合、協調通信による通信性能の改善効果が小さくなる。特に、伝搬路品質に応じてMCS(変調多値数と符号化率との組み合わせ)が切り替えられる適応変調をサポートする無線通信システムにおいては、第2無線基地局と無線端末との間の伝播路品質が良好である場合、所要スループットを満たすMCSあるいは最大のMCSでスループットが頭打ちとなる。
 このような場合、第2無線基地局のみで十分なスループットが得られるため、第1無線基地局が協調通信に使用する無線リソースが無駄に消費される問題があった。
 そこで、本発明は、協調通信に使用される無線リソースを有効活用できる無線通信システム、無線基地局及び無線通信方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。まず、本発明の第1の特徴は、第1無線端末(無線端末UE1)と、第2無線端末(無線端末UE2)と、周波数及び時間の組み合わせにより規定される無線リソース(無線リソースR1)を前記第1無線端末に割り当てる第1無線基地局(無線基地局BS1)と、前記無線リソースと同一無線リソースを前記第1無線端末に割り当てる第2無線基地局(無線基地局BS2)とを有し、前記第1無線基地局及び前記第2無線基地局が、前記無線リソースを使用して前記第1無線端末との協調通信(CoMP)を行う無線通信システム(無線通信システム1)であって、前記第2無線基地局と前記第1無線端末との通信の状態が良好であることを示す所定の条件が満たされており、且つ、前記第1無線基地局と前記第1無線端末との間の第1伝搬路品質(伝搬路品質Q1)よりも、前記第1無線基地局と前記第2無線端末との間の第2伝搬路品質(伝搬路品質Q2)が良好である場合、前記第1無線基地局は、前記無線リソースを前記第1無線端末に代えて前記第2無線端末に割り当てることを要旨とする。
 このような特徴によれば、第2無線基地局と第1無線端末との通信の状態が良好であり、且つ、第1伝搬路品質よりも第2伝搬路品質が良好である場合、第1無線基地局が、協調通信に使用する無線リソースを第1無線端末に代えて第2無線端末に割り当てる。これにより、当該無線リソースを有効活用することができる。
 なお、第1無線基地局が当該無線リソースを第2無線端末に割り当てると、第1無線端末が第1無線基地局との通信を一時的に実行できなくなるが、第2無線基地局と第1無線端末との通信の状態が良好であり、第2無線基地局が第1無線端末との通信を行うことができるため問題とはならない。
 本発明の第2の特徴は、周波数及び時間の組み合わせにより規定される無線リソースを無線端末(無線端末UE1)に割り当てるリソース割当部(リソース割当部121)を備え、前記無線リソースと同一無線リソースを前記無線端末に割り当てる他の無線基地局(無線基地局BS2)と共に、前記無線端末との協調通信を行う無線基地局(無線基地局BS1)であって、前記他の無線基地局と前記無線端末との通信の状態が良好であることを示す所定の条件が満たされており、且つ、前記無線基地局と前記無線端末との間の第1伝搬路品質(伝搬路品質Q1)よりも、前記無線基地局と他の無線端末(無線端末UE2)との間の第2伝搬路品質(伝搬路品質Q2)が良好である場合、前記リソース割当部は、前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当てることを要旨とする。
 本発明の上記の特徴において、前記所定の条件とは、前記他の無線基地局と前記無線端末との間の第3伝搬路品質が所定品質よりも良好となったことでもよい。
 本発明の上記の特徴において、前記他の無線基地局と前記無線端末との通信には、MCS(Modulation and Coding Scheme)が前記他の無線基地局と前記無線端末との間の第3伝搬路品質に基づいて切り替え可能な適応変調が採用されており、前記所定の条件とは、前記他の無線基地局と前記無線端末との通信に使用される前記MCSが特定のMCSとなったことでもよい。
 本発明の上記の特徴において、前記特定のMCSとは、前記適応変調で使用可能な全てのMCSにおいて、スループットが最も高いMCSであってもよい。
 本発明の上記の特徴において、前記特定のMCSとは、前記適応変調で使用可能な全てのMCSにおいて、前記他の無線基地局と前記無線端末との通信に要求されるスループットを満たすMCSであってもよい。
 本発明の上記の特徴において、前記他の無線基地局と前記無線端末との通信開始時に、前記他の無線基地局と前記無線端末との通信に使用される前記MCSが予め設定された場合、前記特定のMCSとは、前記設定されたMCSであってもよい。
 本発明の上記の特徴において、前記所定の条件が満たされなくなった場合、前記リソース割当部は、前記無線リソースを再び前記無線端末に割り当ててもよい。
 本発明の上記の特徴において、前記無線リソースを使用してデータ送信を行う送信部(送受信部110)と、前記送信部がデータ送信を行う際の送信電力を制御する送信電力制御部(送信電力制御部124)とをさらに備え、前記リソース割当部は、前記所定の条件が満たされており、前記第1伝搬路品質よりも前記第2伝搬路品質が良好であり、且つ、前記第1伝搬路品質と前記第2伝搬路品質との間に所定値(所定の閾値)以上の差がある(伝搬路品質Q1≪伝搬路品質Q2)場合、前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当て、前記送信電力制御部は、前記リソース割当部が前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当てる場合、前記無線端末へのデータ送信を行う際の送信電力よりも、前記他の無線端末へのデータ送信を行う際の送信電力を低下させてもよい。
 本発明の上記の特徴において、前記所定の条件が満たされ、且つ、前記第1伝搬路品質よりも前記第2伝搬路品質が良好である場合、前記リソース割当部は、前記協調通信を解除する手順を省略するとともに、前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当ててもよい。
 本発明の第3の特徴は、周波数及び時間の組み合わせにより規定される無線リソースを第1無線基地局が第1無線端末に割り当てるステップと、前記無線リソースと同一無線リソースを第2無線基地局が前記第1無線端末に割り当てるステップと、前記第1無線基地局及び前記第2無線基地局が、前記無線リソースを使用して前記第1無線端末との協調通信を行うステップと、前記第2無線基地局と前記第1無線端末との通信の状態が良好であることを示す所定の条件が満たされており、且つ、前記第1無線基地局と前記第1無線端末との間の第1伝搬路品質よりも、前記第1無線基地局と前記第2無線端末との間の第2伝搬路品質が良好である場合、前記第1無線基地局が、前記無線リソースを前記第1無線端末に代えて前記第2無線端末に割り当てるステップとを含む無線通信方法であることを要旨とする。
 本発明の特徴によれば、協調通信に使用される無線リソースを有効活用できる無線通信システム、無線基地局及び無線通信方法を提供できる。
本発明の第1実施形態及び第2実施形態に係る無線通信システムの概略構成図である。 本発明の第1実施形態及び第2実施形態に係る無線基地局の構成を示すブロック図である。 本発明の第1実施形態に係る無線通信システムの概略動作を示すフローチャートである。 本発明の第1実施形態に係る無線通信システムの動作シーケンス例1を示すシーケンス図である。 本発明の第1実施形態に係る無線通信システムの動作シーケンス例2を示すシーケンス図である。 本発明の第1実施形態に係る無線通信システムの動作シーケンス例3を示すシーケンス図である。 本発明の第2実施形態に係る無線通信システムの概略動作を示すフローチャートである。 その他の実施形態に係る制御装置の構成を示すブロック図である。
 次に、図面を参照して、本発明の第1実施形態、第2実施形態、その他の実施形態を説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 [第1実施形態]
 以下において、本発明の第1実施形態に係る無線通信システムについて、図面を参照しながら説明する。具体的には、(1)無線通信システムの構成、(2)無線基地局の構成、(3)無線通信システムの動作、(4)第1実施形態の効果について説明する。
 (1)無線通信システムの構成
 図1は、第1実施形態に係る無線通信システム1の概略構成図である。無線通信システム1は、第4世代(4G)携帯電話システムとして位置づけられているLTE-Advancedに基づく構成を有しており、CoMP(協調通信)をサポートしている。
 図1に示すように、無線通信システム1は、無線基地局BS1(第1無線基地局)、無線基地局BS2(第2無線基地局)、無線端末UE1(第1無線端末)、無線端末UE2(第2無線端末)、及び制御装置11を有する。
 無線端末UE1は、無線基地局BS1によって形成される通信エリアであるセルC1と、無線基地局BS2によって形成される通信エリアであるセルC2との重複部分に位置している。無線端末UE2は、セルC1内に位置している。
 無線基地局BS1、無線基地局BS2、無線端末UE1、及び無線端末UE2それぞれは、受信側が既知の信号系列である既知信号(いわゆる、パイロット信号)を周期的に送信(ブロードキャスト)できる。また、無線基地局BS1、無線基地局BS2、無線端末UE1、及び無線端末UE2それぞれは、受信したパイロット信号を用いて、送信側との間の伝搬路品質を測定できる。ここで伝搬路品質とは、無線伝搬路を信号が通過する際に受ける減衰量、位相回転量、遅延量等の、無線伝搬路の品質を示す各種パラメータを意味する。無線通信システム1においては、無線基地局BS1と無線端末UE1との間の伝搬路品質Q1と、無線基地局BS1と無線端末UE2との間の伝搬路品質Q2と、無線基地局BS2と無線端末UE1との間の伝搬路品質Q3とが測定される。測定される各伝搬路品質は、瞬時の伝搬路品質でもよく、短期間における平均伝搬路品質でもよい。
 無線基地局BS1及び無線基地局BS2は、有線通信網であるバックホールネットワーク10を介して互いに接続されている。制御装置11は、バックホールネットワーク10に設けられ、バックホールネットワーク10を介して無線基地局BS1及び無線基地局BS2を制御する。ただし、無線基地局BS1及び無線基地局BS2は、制御装置11を介さずに、X2インタフェースと称される通信コネクションを介して、直接的に基地局間通信を行うことができる。
 無線基地局BS1は、周波数(サブチャネル)及び時間(時間スロット)の組み合わせにより規定される無線リソース(以下、無線リソースR1)を無線端末UE1に割り当てる。このような無線リソースR1は、リソースブロック(RB)と称される。無線基地局BS2は、無線リソースR1を無線端末UE1に割り当てる。無線基地局BS1及び無線基地局BS2は、無線端末UE1に割り当てた無線リソースR1を使用して無線端末UE1とのCoMPを行う。
 JP型のCoMPにおいては、無線基地局BS1が無線リソースR1を使用して送信するデータと、無線基地局BS2が無線リソースR1を使用して送信するデータとは、基本的には同じデータである。すなわち、無線基地局BS1及び無線基地局BS2が送信する各データが無線端末UE1で合成されることで無線端末UE1における受信品質が改善される。
 (2)無線基地局の構成
 図2は、無線基地局BS1の構成を示すブロック図である。図2に示すように、無線基地局BS1は、アンテナ部ANT、送受信部110、制御部120、記憶部130、及び有線通信部140を有する。
 送受信部110は、例えばRF回路やBB回路等を用いて構成され、信号の送受信を行うとともに、信号の変調/復調や符号化/復号等を行う。送受信部110は、無線リソースR1を使用してデータ送信を行う送信部を構成する。
 制御部120は、例えばCPUを用いて構成され、無線基地局BS1が具備する各種の機能を制御する。記憶部130は、例えばメモリを用いて構成され、無線基地局BS1の制御等に用いられる各種の情報を記憶する。有線通信部140は、バックホールネットワーク10を介して無線基地局BS2及び制御装置11と通信する。
 制御部120は、リソース割当部121、伝搬路品質測定部122、伝搬路品質比較部123、及び送信電力制御部124を有する。
 リソース割当部121は、無線端末UE1とのCoMPを行う際に、無線端末UE1に無線リソースR1を割り当てる。
 伝搬路品質測定部122は、無線端末UE1から受信するパイロット信号1を用いて伝搬路品質Q1を測定し、無線端末UE2から受信するパイロット信号2を用いて伝搬路品質Q2を測定する。
 伝搬路品質比較部123は、伝搬路品質測定部122によって測定された伝搬路品質Q1及び伝搬路品質Q2を比較し、伝搬路品質Q1及び伝搬路品質Q2の差を所定値(所定の閾値)と比較する。
 リソース割当部121は、無線基地局BS2と無線端末UE1との通信の状態が良好であることを示す所定の条件が満たされており、且つ、伝搬路品質Q1よりも、伝搬路品質Q2が良好である(以下、伝搬路品質Q1<伝搬路品質Q2と表記する)場合、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる。リソース割当部121は、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる条件として、伝搬路品質Q1<伝搬路品質Q2という条件に代えて、伝搬路品質Q1よりも、伝搬路品質Q2が所定の閾値以上良好である(以下、伝搬路品質Q1≪伝搬路品質Q2と表記する)という条件とすることが好ましい。なお、無線リソースR1を無線端末UE2に割り当てる際に、CoMPを解除する手順は省略される。
 ここで、第1実施形態においては、所定の条件とは、伝搬路品質Q3が所定品質よりも良好である(以下、所定品質<伝搬路品質Q3と表記する)ことである。なお、所定品質の下限は、無線基地局BS2からの送信信号のみで無線端末UE1がデータを復調することが可能である場合における伝播路品質としてもよい。所定品質は、予め記憶部130に記憶されていてもよい。
 送信電力制御部124は、送受信部110がデータ送信を行う際の送信電力を制御する。リソース割当部121が無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる場合、送信電力制御部124は、無線端末UE1へのデータ送信を行う際の送信電力よりも、無線端末UE2へのデータ送信を行う際の送信電力を低下させる。
 リソース割当部121は、無線リソースR1を無線端末UE2に割り当てた後に上記所定の条件が満たされなくなった場合、無線リソースR1を再び無線端末UE1に割り当てる。
 (3)無線通信システムの動作
 次に、第1実施形態に係る無線通信システム1の動作について、(3.1)概略動作、(3.2)動作シーケンス例の順に説明する。
 (3.1)概略動作
 図3は、無線通信システム1の概略動作を示すフローチャートである。まず、制御装置11、無線基地局BS1、無線基地局BS2、及び無線端末UE1は、CoMPを開始するための設定手順を行う。当該設定手順において、CoMPに無線リソースR1を使用すると決定されたものとする。
 ステップS11において、無線基地局BS1及び無線基地局BS2が、無線リソースR1を使用して無線端末UE1とのJP型のCoMPを行う。
 ステップS12において、無線基地局BS1又は無線端末UE1は、無線基地局BS1と無線端末UE1との間の伝搬路品質Q1を測定する。無線基地局BS1又は無線端末UE2は、無線基地局BS1と無線端末UE2との間の伝搬路品質Q2を測定する。無線基地局BS2又は無線端末UE1は、無線基地局BS2と無線端末UE1との間の伝搬路品質Q3を測定する。
 ステップS13において、無線基地局BS1は、伝搬路品質Q1と伝搬路品質Q2とを比較するとともに、伝搬路品質Q1と伝搬路品質Q2との差を所定の閾値と比較する。制御装置11又は無線基地局BS1は、伝搬路品質Q3と所定品質とを比較する。
 所定品質<伝搬路品質Q3、且つ、伝搬路品質Q1≪伝搬路品質Q2である場合(ステップS13;YES)、ステップS14において無線基地局BS1は、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる。また、無線基地局BS1は、無線リソースR1における送信電力を低下させる。一方、所定品質<伝搬路品質Q3、又は伝搬路品質Q1≪伝搬路品質Q2の少なくとも一方の条件が満たされない場合(ステップS13;NO)、処理がステップS11に戻る。
 ステップS15において、無線基地局BS1は、無線端末UE2に割り当てた無線リソースR1を使用して無線端末UE2との通信を行う。
 ステップS16において、無線基地局BS2又は無線端末UE1は、無線基地局BS2と無線端末UE1との間の伝搬路品質Q3を測定する。
 ステップS16で測定された伝搬路品質Q3について、所定品質<伝搬路品質Q3の条件が満たされなくなった場合(ステップS17;NO)、ステップS18において無線基地局BS1は、無線リソースR1を再び無線端末UE1に割り当てる。一方、所定品質<伝搬路品質Q3の条件が満たされている場合(ステップS17;YES)、処理がステップS15に戻る。
 (3.2)動作シーケンス例
 次に、第1実施形態に係る無線通信システム1の動作シーケンス例1~3について説明する。ただし、以下で説明する各動作シーケンスは一例であり、各種変更が可能であることに留意されたい。
 (3.2.1)動作シーケンス例1
 図4は、無線通信システム1の動作シーケンス例1を示すシーケンス図である。
 ステップS100において、制御装置11、無線基地局BS1、無線基地局BS2、及び無線端末UE1は、CoMPを開始するための設定手順を行う。
 ステップS101において、無線基地局BS1及び無線基地局BS2が、無線リソースR1を使用して無線端末UE1とのCoMPを行う。
 ステップS102において無線端末UE2はパイロット信号2を送信する。ステップS103において無線端末UE1はパイロット信号1を送信する。なお、各パイロット信号は以降においても周期的に送信される。
 ステップS104において、無線基地局BS1の伝搬路品質測定部122は、無線端末UE1から受信したパイロット信号1から伝搬路品質Q1を測定し、無線端末UE2から受信したパイロット信号2から伝搬路品質Q2を測定する。
 ステップS105において、無線基地局BS2は、無線端末UE1から受信したパイロット信号1から伝搬路品質Q3を測定する。
 ステップS106において、無線基地局BS2は、ステップS105で測定した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を制御装置11に送信する。
 ステップS107において、制御装置11は、所定品質と、ステップS106で無線基地局BS2から受信した伝搬路品質Q3とを比較する。本動作例では、当該比較の結果が所定品質<伝搬路品質Q3であるものとする。
 ステップS108において、制御装置11は、所定品質と伝搬路品質Q3との比較結果を示す情報を無線基地局BS1に送信する。
 ステップS109において、無線基地局BS1の伝搬路品質比較部123は、伝搬路品質測定部122が測定した伝搬路品質Q1及び伝搬路品質Q2を比較する。本動作例では、当該比較の結果が伝搬路品質Q1≪伝搬路品質Q2であるものとする。
 ステップS110において、無線基地局BS1のリソース割当部121は、無線リソースR1を無線端末UE2に割り当てる。その際、CoMPを解除するための解除手順は省略されており、CoMPが設定された状態が維持される。
 ステップS111において、無線基地局BS1の送受信部110は、無線リソースR1を割り当てることを通知する割当通知を無線端末UE2に送信する。
 ステップS112において、無線基地局BS1の送信電力制御部124は、無線リソースR1を用いる送信信号の送信電力を低下させるよう制御する。
 ステップS113において、無線基地局BS1の送受信部110は、無線端末UE2に割り当てられた無線リソースR1を用いて、無線端末UE2へのデータ送信を行う。
 ステップS114において、無線基地局BS2は、無線リソースR1を用いて無線端末UE1へのデータ送信を行う。
 ステップS115において、無線基地局BS2は、無線端末UE1から新たに受信したパイロット信号1から伝搬路品質Q3を改めて測定する。
 ステップS116において、無線基地局BS2は、ステップS115で測定した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を制御装置11に送信する。
 ステップS117において、制御装置11は、所定品質と、無線基地局BS2から受信した伝搬路品質Q3とを比較する。本動作例では、当該比較の結果が所定品質>伝搬路品質Q3であるものとする。
 ステップS118において、制御装置11は、所定品質と伝搬路品質Q3との比較結果を示す情報を無線基地局BS1に送信する。
 ステップS122において、無線基地局BS1のリソース割当部121は、無線リソースR1を再び無線端末UE1に割り当てる。なお、CoMPを解除するための解除手順が省略されているため、CoMPを再設定するための設定手順は不要である。
 (3.2.2)動作シーケンス例2
 図5は、無線通信システム1の動作シーケンス例2を示すシーケンス図である。上述した動作シーケンス例1では所定品質と伝搬路品質Q3との比較を制御装置11が行っていたが、本動作例では当該比較を無線基地局BS1が行う。
 ステップS200~S205の処理は、上述した動作シーケンス例1のステップS100~S105と同様に実行される。
 ステップS206において、無線基地局BS2は、ステップS205で測定した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を、基地局間通信を利用して無線基地局BS1に送信する。
 ステップS207において、無線基地局BS1の伝搬路品質比較部123は、ステップS204で測定した伝搬路品質Q1及び伝搬路品質Q2を比較する。本動作例では、当該比較の結果が伝搬路品質Q1≪伝搬路品質Q2であるものとする。また、リソース割当部121は、ステップS206で無線基地局BS2から受信した伝搬路品質Q3と、所定品質とを比較する。本動作例では、当該比較の結果が所定品質<伝搬路品質Q3であるものとする。
 ステップS208において、無線基地局BS1のリソース割当部121は、無線リソースR1を無線端末UE2に割り当てる。その際、CoMPを解除するための解除手順は省略されており、CoMPが設定された状態が維持される。
 ステップS209において、無線基地局BS1の送受信部110は、無線リソースR1を割り当てることを通知する割当通知を無線端末UE2に送信する。
 ステップS210において、無線基地局BS1の送信電力制御部124は、無線リソースR1を用いる送信信号の送信電力を低下させるよう制御する。
 ステップS211において、無線基地局BS1の送受信部110は、無線端末UE2に割り当てられた無線リソースR1を用いて、無線端末UE2へのデータ送信を行う。
 ステップS212において、無線基地局BS2は、無線リソースR1を用いて無線端末UE1へのデータ送信を行う。
 ステップS213において、無線基地局BS2は、無線端末UE1から新たに受信したパイロット信号1から伝搬路品質Q3を改めて測定する。
 ステップS214において、無線基地局BS2は、ステップS215で測定した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を、基地局間通信を利用して無線基地局BS1に送信する。
 ステップS215において、無線基地局BS1のリソース割当部121は、ステップS214で無線基地局BS2から受信した伝搬路品質Q3と、所定品質とを比較する。本動作例では、当該比較の結果が所定品質>伝搬路品質Q3であるものとする。
 ステップS216において、無線基地局BS1のリソース割当部121は、無線リソースR1を再び無線端末UE1に割り当てる。なお、CoMPを解除するための解除手順が省略されているため、CoMPを改めて設定するための設定手順は不要である。
 このように、本動作シーケンスによれば、制御装置11に依存せずに、無線リソースR1の再割り当てが可能になる。
 (3.2.3)動作シーケンス例3
 図6は、無線通信システム1の動作シーケンス例3を示すシーケンス図である。上述した動作シーケンス例1及び2では伝搬路品質の測定を無線基地局BS1及び無線基地局BS2が行っていたが、本動作例では当該測定を無線端末UE1及び無線端末UE2が行う。
 ステップS300~S301の処理は、上述した動作シーケンス例1のステップS100~S101と同様に実行される。
 ステップS302において無線基地局BS2はパイロット信号2を送信する。ステップS303において無線基地局BS1はパイロット信号1を送信する。なお、各パイロット信号は以降においても周期的に送信される。
 ステップS304において、無線端末UE1は、無線基地局BS1から受信したパイロット信号1から伝搬路品質Q1を測定し、無線基地局BS2から受信したパイロット信号2から伝搬路品質Q3を測定する。
 ステップS305において、無線端末UE1は、ステップS304で測定した伝搬路品質Q1及び伝搬路品質Q3(又はそれらのインデックス)を無線基地局BS1に送信する。
 ステップS306において、無線端末UE2は、無線基地局BS1から受信したパイロット信号1から伝搬路品質Q2を測定する。
 ステップS307において、無線端末UE2は、ステップS306で測定した伝搬路品質Q2(又は伝搬路品質Q2のインデックス)を無線基地局BS1に送信する。
 ステップS308において、無線基地局BS1の送受信部110は、ステップS305で無線端末UE1から受信した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を、制御装置11に送信する。
 ステップS309において、制御装置11は、所定品質と、ステップS308で無線基地局BS2から受信した伝搬路品質Q3とを比較する。本動作例では、当該比較の結果が所定品質<伝搬路品質Q3であるものとする。
 ステップS310において、制御装置11は、所定品質と伝搬路品質Q3との比較結果を示す情報を無線基地局BS1に送信する。
 ステップS311において、無線基地局BS1の伝搬路品質比較部123は、ステップS305で受信した伝搬路品質Q1と、ステップS307で受信した伝搬路品質Q2とを比較する。本動作例では、当該比較の結果が伝搬路品質Q1≪伝搬路品質Q2であるものとする。
 ステップS312において、無線基地局BS1のリソース割当部121は、無線リソースR1を無線端末UE2に割り当てる。その際、CoMPを解除するための解除手順は省略されており、CoMPが設定された状態が維持される。
 ステップS313において、無線基地局BS1の送受信部110は、無線リソースR1を割り当てることを通知する割当通知を無線端末UE2に送信する。
 ステップS314において、無線基地局BS1の送信電力制御部124は、無線リソースR1を用いる送信信号の送信電力を低下させるよう制御する。
 ステップS315において、無線基地局BS1の送受信部110は、無線端末UE2に割り当てられた無線リソースR1を用いて、無線端末UE2へのデータ送信を行う。
 ステップS316において、無線基地局BS2は、無線リソースR1を用いて無線端末UE1へのデータ送信を行う。
 ステップS317において、無線端末UE1は、無線基地局BS2から新たに受信したパイロット信号2から伝搬路品質Q3を改めて測定する。
 ステップS318において、無線端末UE1は、ステップS317で測定した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を無線基地局BS1に送信する。
 ステップS319において、無線基地局BS1の送受信部110は、ステップS305で無線端末UE1から受信した伝搬路品質Q3(又は伝搬路品質Q3のインデックス)を、制御装置11に送信する。
 ステップS320において、制御装置11は、所定品質と、ステップS308で無線基地局BS2から受信した伝搬路品質Q3とを比較する。本動作例では、当該比較の結果が所定品質>伝搬路品質Q3であるものとする。
 ステップS321において、制御装置11は、所定品質と伝搬路品質Q3との比較結果を示す情報を無線基地局BS1に送信する。
 ステップS322において、無線基地局BS1のリソース割当部121は、無線リソースR1を再び無線端末UE1に割り当てる。なお、CoMPを解除するための解除手順が省略されているため、CoMPを改めて設定するための設定手順は不要である。
 このように、本動作シーケンスによれば、ダウンリンクの伝搬路品質が測定できるため、複信方式がFDDである場合に有効である。
 (4)第1実施形態の効果
 以上説明したように、第1実施形態によれば、JP型のCoMPにおいて、所定品質<伝搬路品質Q3、且つ、伝搬路品質Q1≪伝搬路品質Q2である場合、無線基地局BS1のリソース割当部121が、CoMPを解除する手順を踏まずに、CoMPに使用する無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる。これにより、無線リソースR1を有効活用することができる。
 無線基地局BS1が無線リソースR1を無線端末UE2に割り当てている間、無線端末UE1は無線基地局BS1からデータを送信されているはずの状態となっており、無線基地局BS1から無線端末UE2への送信信号はそのまま無線端末UE1への干渉信号となる。
 ここで、無線基地局BS1のリソース割当部121は、無線リソースR1を無線端末UE1よりも伝播路品質のよい無線端末UE2に割り当てているため、無線端末UE2への送信電力は低く抑えることが可能である。
 そこで、無線基地局BS1の送信電力制御部124は、無線リソースR1が無線端末UE2に割り当てられた後、無線端末UE1へのデータ送信を行う際の送信電力よりも、無線端末UE2へのデータ送信を行う際の送信電力を低下させる。
 これにより、無線端末UE1においては、無線基地局BS1から無線端末UE2に送信している信号が十分小さく見えるため、無線基地局BS1と無線端末UE2との通信が、無線基地局BS2と無線端末UE1との通信に与える干渉を低減できる。
 無線基地局BS1が送信電力を低下させた結果、無線端末UE1は、無線基地局BS1から無線端末UE1に送信されるはずだった信号は検出不可能であっても、無線基地局BS2からの送信信号のみでデータを復調することが可能であるため問題はない。
 また、第1実施形態によれば、無線基地局BS1のリソース割当部121は、CoMPを解除する手順を省略するとともに、CoMPに使用する無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる。
 JP型のCoMPにおいて所定品質<伝搬路品質Q3ではなくなった場合、無線基地局BS1のリソース割当部121は、無線リソースR1を再び無線端末UE1に割り当てる。
 このような処理により、CoMPを解除することなく、無線リソースR1を一時的に無線端末UE2に割り当て可能になり、CoMPの設定又は解除に伴う、制御装置11等の処理負荷増を回避できるとともに、バックホールネットワーク10のトラフィック増を回避できる。
 [第2実施形態]
 以下において、本発明の第2実施形態に係る無線通信システムについて、(1)無線通信システムの構成、(2)無線基地局の構成、(3)無線通信システムの動作、(4)第2実施形態の効果の順に説明する。ただし、第1実施形態と異なる点についてのみ説明し、重複する説明を省略する。
 具体的には、上述した第1実施形態においては、所定の条件が、伝搬路品質Q3が所定品質よりも良好であることであったが、第2実施形態においては、所定の条件が、無線基地局BS2と無線端末UE1との通信に使用されるMCS(Modulation and Coding Scheme)が、特定のMCSとなったことである。つまり、第2実施形態においては、所定の条件とは、無線基地局BS2と無線端末UE1との間の伝搬路品質Q3が、特定のMCSで要求される品質を満たすことである。
 (1)無線通信システムの構成
 無線通信システム1においては、無線基地局BS1と無線端末UE1との間、及び無線基地局BS2と無線端末UE1との間に、変調多値数と符号化率との組み合わせにより規定されるMCSが切り替え可能な適応変調が採用されている。無線基地局BS1と無線端末UE1との通信に使用されるMCSは、無線基地局BS1と無線端末UE1との間の伝搬路品質Q1に基づいて切り替えられる。無線基地局BS2と無線端末UE1との通信に使用されるMCSは、無線基地局BS2と無線端末UE1との間の伝搬路品質Q3に基づいて切り替えられる。
 適応変調を採用する無線通信システム1においては、複数のMCSが予め定められており、これらのMCSの中から選択された何れかのMCSが、無線基地局BS1と無線端末UE1との通信、及び無線基地局BS2と無線端末UE1との通信に使用される。適応変調において、1シンボル当たりに伝送可能なビット数である変調効率は、MCS毎に異なっている。変調効率が高いほど、スループットが高くなるが、誤り耐性は低くなる。変調効率が低いほど、誤り耐性は高くなるが、スループットが低くなる。なお、LTE-Advancedにおいては、MCSはMCSレベルとも呼ばれる。
 (2)無線基地局の構成
 第2実施形態においては、所定の条件とは、無線基地局BS2と無線端末UE1との通信に使用されるMCSが、特定のMCSとなったことである。特定のMCSとは、例えば以下の(a)~(c)の何れかである。
(a)適応変調で使用可能な全てのMCSにおいて、スループットが最も高いMCS(以下、「最高MCS」と表記する)。
(b)適応変調で使用可能な全てのMCSにおいて、無線基地局BS2と無線端末UE1との通信に要求されるスループット(以下、「要求スループット」と表記する)を満たすMCS。ここで、要求スループットは、無線端末UE1が無線基地局BS2との通信を行う際に使用するアプリケーションに応じて定められる。例えば、VoIPアプリケーション(小容量)の要求スループットを満たす各MCSや、動画ストリーミングアプリケーション(大容量)の要求スループットを満たす各MCS等が、予め定義されている。つまり、条件(b)は、要求スループットを満たすように、サブフレーム毎に適応的にMCSを決定するものである。
(c)無線基地局BS2と無線端末UE1との通信開始時に、無線基地局BS2と無線端末UE1との通信に使用されるMCSとして設定されたMCS。ここで、無線基地局BS2と無線端末UE1との通信開始時に設定されるMCSは、無線端末UE1が無線基地局BS2との通信を行う際に使用するアプリケーションの要求スループットによって決定される。より具体的には、無線基地局BS2が無線端末UE1に対して割り当てるサブフレームの間隔及びリソースブロック数と、要求スループットとから、無線端末UE1に必要なMCSが決定される。つまり、条件(c)は、要求スループットを満たすように、予め将来のMCSの割り当てを予約しておくものである。
 (3)無線通信システムの動作
 次に、第2実施形態に係る無線通信システム1の動作について説明する。図7は、第2実施形態に係る無線通信システム1の概略動作を示すフローチャートである。
 まず、制御装置11、無線基地局BS1、無線基地局BS2、及び無線端末UE1は、CoMPを開始するための設定手順を行う。当該設定手順において、CoMPに無線リソースR1を使用すると決定されたものとする。特定のMCSが上記(b)である場合、当該設定手順において、要求スループットを満たすMCSが、無線端末UE1によって使用されるアプリケーションに応じて定められる。また、特定のMCSが上記(c)である場合、当該設定手順において、無線基地局BS2と無線端末UE1との通信に使用されるMCSが設定される。
 ステップS21において、無線基地局BS1及び無線基地局BS2が、無線リソースR1を使用して無線端末UE1とのJP型のCoMPを行う。
 ステップS22において、無線基地局BS1又は無線端末UE1は、無線基地局BS1と無線端末UE1との間の伝搬路品質Q1を測定する。無線基地局BS1又は無線端末UE2は、無線基地局BS1と無線端末UE2との間の伝搬路品質Q2を測定する。
 ステップS23において、無線基地局BS1は、伝搬路品質Q1と伝搬路品質Q2とを比較するとともに、伝搬路品質Q1と伝搬路品質Q2との差を所定の閾値と比較する。制御装置11又は無線基地局BS1は、無線基地局BS2と無線端末UE1との通信に使用されるMCSと、特定のMCSとを比較する。
 無線基地局BS2と無線端末UE1との通信に使用されるMCSが特定のMCSであり、且つ、伝搬路品質Q1≪伝搬路品質Q2である場合(ステップS23;YES)、ステップS24において無線基地局BS1は、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる。また、無線基地局BS1は、無線リソースR1における送信電力を低下させる。一方、無線基地局BS2と無線端末UE1との通信に使用されるMCSが特定のMCSであること、又は伝搬路品質Q1≪伝搬路品質Q2の少なくとも一方の条件が満たされない場合(ステップS23;NO)、処理がステップS21に戻る。
 ステップS25において、無線基地局BS1は、無線端末UE2に割り当てた無線リソースR1を使用して無線端末UE2との通信を行う。
 ステップS26において、制御装置11又は無線基地局BS1は、無線基地局BS2と無線端末UE1との通信に使用されるMCSと、特定のMCSとを比較する。
 無線基地局BS2と無線端末UE1との通信に使用されるMCSが特定のMCSであるという条件が満たされなくなった場合(ステップS26;NO)、ステップS27において無線基地局BS1は、無線リソースR1を再び無線端末UE1に割り当てる。
一方、無線基地局BS2と無線端末UE1との通信に使用されるMCSが特定のMCSであるという条件が満たされている場合(ステップS26;YES)、処理がステップS25に戻る。
 (4)第2実施形態の効果
 以上説明したように、第2実施形態によれば、JP型のCoMPにおいて、無線基地局BS2と無線端末UE1との通信に使用されるMCSが特定のMCSであり、且つ、伝搬路品質Q1≪伝搬路品質Q2である場合、無線基地局BS1のリソース割当部121が、CoMPを解除する手順を踏まずに、CoMPに使用する無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる。これにより、無線リソースR1を有効活用することができる。
 第2実施形態では、無線基地局BS2と無線端末UE1との通信に使用されるMCSが、最高MCS、要求スループットを満たすMCS、あるいは無線基地局BS2と無線端末UE1との通信開始時に、無線基地局BS2と無線端末UE1との通信に使用されるMCSとして設定されたMCSである場合には、無線基地局BS2のみで十分なスループットが得られるため、無線端末UE1は、無線基地局BS2からの送信信号のみでデータを復調することが可能である。
 特に、特定のMCSが上記(b)である場合、最高MCS未満のMCSが無線基地局BS2と無線端末UE1との通信に使用されている場合であっても、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てることができる。従って、無線端末UE1によって使用されるアプリケーションに応じて、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる条件を変更することができるため、より柔軟に無線リソースR1を有効活用することができる。
 [その他の実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 (1)変更例1
 上述した第1実施形態及び第2実施形態では、無線基地局BS1、無線基地局BS2及び無線端末UE1がJP型のCoMPを行う場合について説明したが、これに限るものではなく、無線基地局BS1、無線基地局BS2及び無線端末UE1は協調スケジューリング(CS:Coordinated Scheduling)型のCoMPを行ってもよい。CS型とは、複数の無線基地局のうち無線端末との間の伝播路品質の良好な無線基地局が、無線端末との通信を行う協調通信の方式である。例えば、同一の無線リソースを用いる無線基地局BS1及び無線基地局BS2のうち何れか一方が、選択的に無線端末へのデータ送信を行う方式である。
 (2)変更例2
 上述した第1実施形態では、所定品質と伝搬路品質Q3との比較を制御装置11又は無線基地局BS1が行っていたが、制御装置11又は無線基地局BS1以外の装置(例えば、無線端末UE1又は無線基地局BS2)が所定品質と伝搬路品質Q3との比較を行ってもよい。
 (3)変更例3
 上述した第2実施形態では、無線基地局BS2と無線端末UE1との通信に使用されるMCSと、特定のMCSとの比較を制御装置11又は無線基地局BS1が行っていたが、制御装置11又は無線基地局BS1以外の装置(例えば、無線端末UE1又は無線基地局BS2)が無線基地局BS2と無線端末UE1との通信に使用されるMCSと、特定のMCSとの比較を行ってもよい。
 (4)変更例4
 上述した第1実施形態及び第2実施形態では、無線基地局BS2と無線端末UE1との通信の状態が良好であることを示す所定の条件が満たされており、且つ、伝搬路品質Q1≪伝搬路品質Q2である場合に、無線リソースR1が無線端末UE2に割り当てられていた。しかしながら、伝搬路品質Q1≪伝搬路品質Q2の条件を伝搬路品質Q1<伝搬路品質Q2に変更してもよい。
 (5)変更例5
 上述した第1実施形態及び第2実施形態では、無線通信システム1がLTE-Advancedに基づく構成を有していたが、LTE-Advancedに限らず、協調通信をサポートする無線通信システムであれば本発明を適用可能である。
 (6)変更例6
 上述した第1実施形態及び第2実施形態では、2つの無線基地局(無線基地局BS1及び無線基地局BS2)と、無線端末UE1とがCoMPを行う場合について説明したが、これに限るものではなく、無線基地局BS1を含む3つ以上の無線基地局と、無線端末UE1とがCoMPを行ってもよい。この場合、無線基地局BS1は、無線基地局BS1以外の複数の無線基地局のうち少なくとも1つの無線基地局と、無線端末UE1との通信の状態が良好であることを示す所定の条件が満たされており、且つ、伝搬路品質Q1<伝搬路品質Q2である場合に、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てることが好ましい。
 (7)変更例7
 上述した実施形態では、無線基地局BS1及び無線基地局BS2のそれぞれがベースバンド(BB)処理を行う構成について説明したが、当該BB処理を制御装置11側で行う構成としてもよい。BB処理を行う部分を外部に設けることで小型化された無線基地局の形態は、リモート・レディオ・ヘッド(RRH)と称される。RRHは、主にアンテナ及び無線周波数(RF)回路によって構成される。
 無線基地局BS1及び無線基地局BS2のそれぞれがRRHとして構成される場合、無線基地局BS1及び無線基地局BS2のそれぞれは、光ファイバ回線等により制御装置11に接続される。制御装置11は、光ファイバ回線等を介して、無線基地局BS1及び無線基地局BS2のそれぞれとBB信号を送受信する。
 図8は、無線基地局BS1及び無線基地局BS2のそれぞれがRRHとして構成される場合の制御装置11の構成を示すブロック図である。図8に示すように、制御装置11は、インタフェース部211、インタフェース部212、制御部220、記憶部230、及び有線通信部240を有する。
 インタフェース部211は、BB回路等を用いて構成され、無線基地局BS1とのインタフェースとして機能する。インタフェース部212は、BB回路等を用いて構成され、無線基地局BS2とのインタフェースとして機能する。
 制御部220は、例えばCPUを用いて構成され、無線基地局BS1、無線基地局BS2、及び制御装置11が具備する各種の機能を制御する。記憶部230は、例えばメモリを用いて構成され、無線基地局BS1、無線基地局BS2、及び制御装置11の制御等に用いられる各種の情報を記憶する。記憶部230は、有線通信部240は、バックホールネットワークに接続される。
 制御部220は、リソース割当部221、伝搬路品質測定部222、伝搬路品質比較部223、及び送信電力制御部224を有する。
 リソース割当部221は、無線基地局BS1が無線端末UE1とのCoMPを行う際に、無線端末UE1に無線リソースR1を割り当てるよう無線基地局BS1を制御する。
 伝搬路品質測定部222は、無線端末UE1から無線基地局BS1が受信するパイロット信号1を用いて伝搬路品質Q1を測定し、無線端末UE2から無線基地局BS1が受信するパイロット信号2を用いて伝搬路品質Q2を測定する。
 伝搬路品質比較部223は、伝搬路品質測定部222によって測定された伝搬路品質Q1及び伝搬路品質Q2を比較し、伝搬路品質Q1及び伝搬路品質Q2の差を所定値(所定の閾値)と比較する。
 リソース割当部221は、無線基地局BS2と無線端末UE1との通信の状態が良好であることを示す所定の条件が満たされており、且つ、伝搬路品質Q1よりも、伝搬路品質Q2が良好である(以下、伝搬路品質Q1<伝搬路品質Q2と表記する)場合、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てるよう無線基地局BS1を制御する。リソース割当部221は、無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる条件として、伝搬路品質Q1<伝搬路品質Q2という条件に代えて、伝搬路品質Q1よりも、伝搬路品質Q2が所定の閾値以上良好である(以下、伝搬路品質Q1≪伝搬路品質Q2と表記する)という条件とすることが好ましい。なお、無線リソースR1を無線端末UE2に割り当てる際に、CoMPを解除する手順は省略される。
 所定の条件とは、上述したように、伝搬路品質Q3が所定品質よりも良好である(以下、所定品質<伝搬路品質Q3と表記する)ことである。なお、所定品質の下限は、無線基地局BS2からの送信信号のみで無線端末UE1がデータを復調することが可能である場合における伝播路品質としてもよい。所定品質は、予め記憶部230に記憶されていてもよい。
 送信電力制御部224は、無線基地局BS1がデータ送信を行う際の送信電力を制御する。無線リソースR1を無線端末UE1に代えて無線端末UE2に割り当てる場合、送信電力制御部224は、無線端末UE1へのデータ送信を行う際の送信電力よりも、無線端末UE2へのデータ送信を行う際の送信電力を低下させるよう無線基地局BS1を制御する。
 リソース割当部221は、無線リソースR1を無線端末UE2に割り当てた後に上記所定の条件が満たされなくなった場合、無線リソースR1を再び無線端末UE1に割り当てるよう無線基地局BS1を制御する。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2009-151663号(2009年6月25日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線通信システム、無線基地局及び無線通信方法によれば、協調通信に使用される無線リソースを有効活用できるため、移動体通信などの無線通信において有用である。

Claims (11)

  1.  第1無線端末と、第2無線端末と、周波数及び時間の組み合わせにより規定される無線リソースを前記第1無線端末に割り当てる第1無線基地局と、前記無線リソースと同一無線リソースを前記第1無線端末に割り当てる第2無線基地局とを有し、
     前記第1無線基地局及び前記第2無線基地局が、前記無線リソースを使用して前記第1無線端末との協調通信を行う無線通信システムであって、
     前記第2無線基地局と前記第1無線端末との通信の状態が良好であることを示す所定の条件が満たされており、且つ、前記第1無線基地局と前記第1無線端末との間の第1伝搬路品質よりも、前記第1無線基地局と前記第2無線端末との間の第2伝搬路品質が良好である場合、前記第1無線基地局は、前記無線リソースを前記第1無線端末に代えて前記第2無線端末に割り当てる無線通信システム。
  2.  周波数及び時間の組み合わせにより規定される無線リソースを無線端末に割り当てるリソース割当部を備え、
     前記無線リソースと同一無線リソースを前記無線端末に割り当てる他の無線基地局と共に、前記無線端末との協調通信を行う無線基地局であって、
     前記他の無線基地局と前記無線端末との通信の状態が良好であることを示す所定の条件が満たされており、且つ、前記無線基地局と前記無線端末との間の第1伝搬路品質よりも、前記無線基地局と他の無線端末との間の第2伝搬路品質が良好である場合、前記リソース割当部は、前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当てる無線基地局。
  3.  前記所定の条件とは、前記他の無線基地局と前記無線端末との間の第3伝搬路品質が所定品質よりも良好となったことである請求項2に記載の無線基地局。
  4.  前記他の無線基地局と前記無線端末との通信には、MCS(Modulation and Coding Scheme)が前記他の無線基地局と前記無線端末との間の第3伝搬路品質に基づいて切り替え可能な適応変調が採用されており、
     前記所定の条件とは、前記他の無線基地局と前記無線端末との通信に使用される前記MCSが特定のMCSとなったことである請求項2に記載の無線基地局。
  5.  前記特定のMCSとは、前記適応変調で使用可能な全てのMCSにおいて、スループットが最も高いMCSである請求項4に記載の無線基地局。
  6.  前記特定のMCSとは、前記適応変調で使用可能な全てのMCSにおいて、前記他の無線基地局と前記無線端末との通信に要求されるスループットを満たすMCSである請求項4に記載の無線基地局。
  7.  前記他の無線基地局と前記無線端末との通信開始時に、前記他の無線基地局と前記無線端末との通信に使用される前記MCSが予め設定された場合、前記特定のMCSとは、前記設定されたMCSである請求項4に記載の無線基地局。
  8.  前記所定の条件が満たされなくなった場合、前記リソース割当部は、前記無線リソースを再び前記無線端末に割り当てる請求項2に記載の無線基地局。
  9.  前記無線リソースを使用してデータ送信を行う送信部と、
     前記送信部がデータ送信を行う際の送信電力を制御する送信電力制御部と
    をさらに備え、
     前記リソース割当部は、前記所定の条件が満たされており、前記第1伝搬路品質よりも前記第2伝搬路品質が良好であり、且つ、前記第1伝搬路品質と前記第2伝搬路品質との間に所定値以上の差がある場合、前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当て、
     前記送信電力制御部は、前記リソース割当部が前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当てる場合、前記無線端末へのデータ送信を行う際の送信電力よりも、前記他の無線端末へのデータ送信を行う際の送信電力を低下させる請求項2に記載の無線基地局。
  10.  前記所定の条件が満たされ、且つ、前記第1伝搬路品質よりも前記第2伝搬路品質が良好である場合、前記リソース割当部は、前記協調通信を解除する手順を省略するとともに、前記無線リソースを前記無線端末に代えて前記他の無線端末に割り当てる請求項2に記載の無線基地局。
  11.  周波数及び時間の組み合わせにより規定される無線リソースを第1無線基地局が第1無線端末に割り当てるステップと、
     前記無線リソースと同一無線リソースを第2無線基地局が前記第1無線端末に割り当てるステップと、
     前記第1無線基地局及び前記第2無線基地局が、前記無線リソースを使用して前記第1無線端末との協調通信を行うステップと、
     前記第2無線基地局と前記第1無線端末との通信の状態が良好であることを示す所定の条件が満たされており、且つ、前記第1無線基地局と前記第1無線端末との間の第1伝搬路品質よりも、前記第1無線基地局と前記第2無線端末との間の第2伝搬路品質が良好である場合、前記第1無線基地局が、前記無線リソースを前記第1無線端末に代えて前記第2無線端末に割り当てるステップと
    を含む無線通信方法。
PCT/JP2010/060910 2009-06-25 2010-06-25 無線通信システム、無線基地局及び無線通信方法 WO2010150898A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/379,577 US20120099512A1 (en) 2009-06-25 2010-06-25 Radio communication system, radio base station, and radio communication method
JP2011519956A JP5373899B2 (ja) 2009-06-25 2010-06-25 無線通信システム、無線基地局及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009151663 2009-06-25
JP2009-151663 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150898A1 true WO2010150898A1 (ja) 2010-12-29

Family

ID=43386665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060910 WO2010150898A1 (ja) 2009-06-25 2010-06-25 無線通信システム、無線基地局及び無線通信方法

Country Status (3)

Country Link
US (1) US20120099512A1 (ja)
JP (2) JP5373899B2 (ja)
WO (1) WO2010150898A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018857A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 端末、通信システムおよび通信方法
WO2013018856A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 端末、通信システムおよび通信方法
JP2014508465A (ja) * 2011-02-11 2014-04-03 クゥアルコム・インコーポレイテッド 異種ネットワークにおけるマクロノードおよびリモートラジオヘッドの協働
WO2015037048A1 (ja) * 2013-09-10 2015-03-19 富士通株式会社 無線通信システム、基地局装置、及び無線通信システムにおける無線通信方法
US8995400B2 (en) 2011-02-11 2015-03-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US9054842B2 (en) 2011-02-14 2015-06-09 Qualcomm Incorporated CRS (common reference signal) and CSI-RS (channel state information reference signal) transmission for remote radio heads (RRHs)
JP2016195406A (ja) * 2012-01-19 2016-11-17 京セラ株式会社 基地局及び通信制御方法
US9544108B2 (en) 2011-02-11 2017-01-10 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US10154478B2 (en) 2012-03-19 2018-12-11 Kyocera Corporation Mobile communication system and mobile communication method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774894B2 (en) * 2012-03-13 2017-09-26 Cisco Technology, Inc. Coordinating video delivery with radio frequency conditions
US8942251B2 (en) * 2012-05-17 2015-01-27 Telefonaktiebolaget L M Ericsson (Publ) Shared cell receiver for uplink capacity improvement in wireless communication networks
US9432950B2 (en) * 2014-03-06 2016-08-30 Mediatek Inc. Method for transmission power shaping and communications apparatus utilizing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363979A (ja) * 2003-06-05 2004-12-24 Nec Commun Syst Ltd 移動体通信システム
JP2005311626A (ja) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd 制御局装置及びハンドオーバ方法
JP2008172753A (ja) * 2007-01-08 2008-07-24 Mitsubishi Electric Research Laboratories Inc セルラネットワークにおいて通信する方法
WO2008090624A1 (ja) * 2007-01-26 2008-07-31 Fujitsu Limited 基地局装置及びセル切り替え決定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521227C2 (sv) * 1999-02-22 2003-10-14 Ericsson Telefon Ab L M Mobilradiosystem och ett förfarande för kanallokering i ett mobilradiosystem
JP3821636B2 (ja) * 2000-08-21 2006-09-13 松下電器産業株式会社 通信端末装置、基地局装置および無線通信方法
CN100452677C (zh) * 2002-04-03 2009-01-14 日本电气株式会社 移动通信系统、移动台、基站及它们所用的通信路径质量估算方法
JP2004235910A (ja) * 2003-01-30 2004-08-19 Nec Corp チャネル決定方法及びにそれに用いる無線局並びに端末装置
US7616610B2 (en) * 2005-10-04 2009-11-10 Motorola, Inc. Scheduling in wireless communication systems
US7526036B2 (en) * 2006-04-20 2009-04-28 Mitsubishi Electric Research Laboratories, Inc. System and method for transmitting signals in cooperative base station multi-user mimo networks
US8811198B2 (en) * 2007-10-24 2014-08-19 Qualcomm Incorporated Pilot report based on interference indications in wireless communication systems
US7826848B2 (en) * 2007-10-31 2010-11-02 Mitisubishi Electric Research Laboratories, Inc. Cooperative communication in wireless cellular networks
CN104168098B (zh) * 2008-10-20 2017-11-14 交互数字专利控股公司 在wtru内实施的利用载波聚合传送ul控制信息的方法和wtru
JP5296587B2 (ja) * 2009-03-27 2013-09-25 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム及び無線通信方法
US8423066B2 (en) * 2010-02-23 2013-04-16 Research In Motion Limited Method and apparatus for opportunistic communication scheduling in a wireless communication network using motion information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363979A (ja) * 2003-06-05 2004-12-24 Nec Commun Syst Ltd 移動体通信システム
JP2005311626A (ja) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd 制御局装置及びハンドオーバ方法
JP2008172753A (ja) * 2007-01-08 2008-07-24 Mitsubishi Electric Research Laboratories Inc セルラネットワークにおいて通信する方法
WO2008090624A1 (ja) * 2007-01-26 2008-07-31 Fujitsu Limited 基地局装置及びセル切り替え決定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NEC GROUP: "Potential gain of DL CoMP with joint transmission", 3GPP TSG RAN WG1#57, R1-091688, 3GPP, 4 May 2009 (2009-05-04) *
NTT DOCOMO: "Evaluation of DL CoMP Gain Considering RS Overhead for LTE-Advanced", 3GPP TSG RAN WG1#56BIS, R1-091484, 3GPP, 23 March 2009 (2009-03-23) *
SAMSUNG: "Discussions on CoMP SU-MIMO", 3GPP TSG RAN WG1#56, R1-090613, 3GPP, 9 February 2009 (2009-02-09) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508465A (ja) * 2011-02-11 2014-04-03 クゥアルコム・インコーポレイテッド 異種ネットワークにおけるマクロノードおよびリモートラジオヘッドの協働
US9544108B2 (en) 2011-02-11 2017-01-10 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US8995400B2 (en) 2011-02-11 2015-03-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US9357557B2 (en) 2011-02-11 2016-05-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
US9369930B2 (en) 2011-02-11 2016-06-14 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US9426703B2 (en) 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US9054842B2 (en) 2011-02-14 2015-06-09 Qualcomm Incorporated CRS (common reference signal) and CSI-RS (channel state information reference signal) transmission for remote radio heads (RRHs)
WO2013018857A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 端末、通信システムおよび通信方法
WO2013018856A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 端末、通信システムおよび通信方法
JP2016195406A (ja) * 2012-01-19 2016-11-17 京セラ株式会社 基地局及び通信制御方法
US9750010B2 (en) 2012-01-19 2017-08-29 Kyocera Corporation Base station and communication control method for managing CoMP cooperating set
US10154478B2 (en) 2012-03-19 2018-12-11 Kyocera Corporation Mobile communication system and mobile communication method
WO2015037048A1 (ja) * 2013-09-10 2015-03-19 富士通株式会社 無線通信システム、基地局装置、及び無線通信システムにおける無線通信方法
JPWO2015037048A1 (ja) * 2013-09-10 2017-03-02 富士通株式会社 無線通信システム、基地局装置、及び無線通信システムにおける無線通信方法

Also Published As

Publication number Publication date
US20120099512A1 (en) 2012-04-26
JPWO2010150898A1 (ja) 2012-12-10
JP5373899B2 (ja) 2013-12-18
JP2013258775A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5373899B2 (ja) 無線通信システム、無線基地局及び無線通信方法
EP3110031B1 (en) Method and device for selecting and allocating transmission beam index having priority
CN104938008B (zh) 用于无线通信网络中的资源分配的方法和设备
US9065501B2 (en) Method and arrangement in a wireless communication system
JP6174110B2 (ja) 移動通信システム、通信装置、及びd2d端末
US10098129B2 (en) Handling of simultaneous network communication transmission and D2D communication reception or simultaneous network communication reception and D2D communication transmission
US8422940B2 (en) Resource management and interference mitigation techniques for relay-based wireless networks
KR101879593B1 (ko) 단말간 직접 통신 및 단말 릴레잉 방법
KR101752229B1 (ko) 무선통신 시스템에서 셀 간 협력 방법 및 장치
EP3831136A1 (en) Devices and methods for receiver-based sidelink resource selection
WO2013103219A1 (ko) 무선 접속 시스템에서 하향링크 전송 전력 설정 방법 및 이를 위한 장치
KR20090071301A (ko) 협력적 mimo 수행을 위한 피드백 정보 전송방법
US8452284B2 (en) Base station apparatus, mobile communication system and cell selection communication method
US20150103778A1 (en) Cooperation multi-input multi-output transmitting or receiving method
JPWO2008146469A1 (ja) 移動体通信システム、無線通信中継局装置および中継送信方法
JP5244975B2 (ja) 無線通信システム、無線基地局及び無線通信方法
US10820309B2 (en) Communications in a wireless system
CN111510190B (zh) 一种波束处理方法和装置
US10742277B2 (en) Terminal, base station, wireless communication system, and method of acquiring channel state information
CN106465473B (zh) 基站装置及其通信控制方法、移动台装置及其通信控制方法、无线通信系统
CN115842598A (zh) 一种通信方法和设备
KR102591142B1 (ko) 셀 간 협력 전송 기반 송수신 방법
WO2020166010A1 (ja) 端末装置、基地局装置、および無線通信システム
US20170208458A1 (en) Inter-cell cooperative transmission-based transmission and reception method
KR20150007232A (ko) Lte d2d 통신에서의 디스커버리 송출 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519956

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13379577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792216

Country of ref document: EP

Kind code of ref document: A1