WO2010150588A1 - Signal transmission line - Google Patents

Signal transmission line Download PDF

Info

Publication number
WO2010150588A1
WO2010150588A1 PCT/JP2010/056666 JP2010056666W WO2010150588A1 WO 2010150588 A1 WO2010150588 A1 WO 2010150588A1 JP 2010056666 W JP2010056666 W JP 2010056666W WO 2010150588 A1 WO2010150588 A1 WO 2010150588A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
axis direction
ground
signal lines
signal
Prior art date
Application number
PCT/JP2010/056666
Other languages
French (fr)
Japanese (ja)
Inventor
登 加藤
純 佐々木
聡 石野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2010150588A1 publication Critical patent/WO2010150588A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • H05K1/0227Split or nearly split shielding or ground planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09663Divided layout, i.e. conductors divided in two or more parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09672Superposed layout, i.e. in different planes

Definitions

  • the present invention relates to a signal line, and more particularly to a signal line through which a high-frequency signal is transmitted.
  • FIG. 5 is a cross-sectional structure diagram of the flexible substrate 500 described in Patent Document 1. As shown in FIG.
  • the flexible substrate 500 is configured by alternately arranging the cross-sectional structure shown in FIG. 5A and the cross-sectional structure shown in FIG. More specifically, the flexible substrate 500 includes insulating layers 502a to 502d, signal lines 504a and 504b, and ground layers 506a and 506b.
  • the insulating layers 502a to 502d are sheets made of a flexible material and are laminated.
  • the signal lines 504a and 504b are provided on the insulating layer 502c and extend in parallel to each other in the direction perpendicular to the paper surface of FIG.
  • the ground layer 506a is provided on the insulating layer 502b and is located on the upper side in the stacking direction of the signal lines 504a and 504b.
  • the ground layer 506b is provided on the insulating layer 502d and is located below the signal lines 504a and 504b in the stacking direction.
  • the ground layers 506a and 506b overlap the signal lines 504a and 504b in the stacking direction.
  • the ground layers 506a and 506b do not overlap the signal lines 504a and 504b in the stacking direction. That is, openings 508a and 508b are provided in the ground layers 506a and 506b, respectively.
  • the signal lines 504a and 504b and the ground layers 506a and 506b form a stripline structure.
  • the characteristic impedance of the signal lines 504a and 504b can be adjusted by adjusting the sizes of the openings 508a and 508b.
  • the flexible substrate 500 has a problem that a high-frequency signal leakage path is likely to occur between the signal lines 504a and 504b. More specifically, as shown in FIG. 5 (a), when the ground layers 506a and 506b exist between the signal lines 504a and 504b when viewed in plan from the stacking direction, the signals are transmitted via the ground layers 506a and 506b. A stray capacitance is generated between the lines 504a and 504b. That is, as shown in FIG. 5A, a stray capacitance C1 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504a.
  • a stray capacitance C2 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504b. Therefore, a stray capacitance in which the stray capacitance C1 and the stray capacitance C2 are connected in series is generated between the signal lines 504a and 504b. As a result, signals are transferred between the signal lines 504a and 504b via the stray capacitance (generation of stray capacitance between the lines). In the high-frequency signal line, the stray capacitance between the lines is not only a noise between the high-frequency lines but also an isolation deterioration between the high-frequency lines.
  • the high-frequency signal is, for example, a high-frequency signal in the UHF band or higher.
  • the signal lines 504a and 504b and the ground layers 506a and 506b are close to each other, so that stray capacitance between lines is particularly likely to occur.
  • an object of the present invention is to reduce the stray capacitance between lines in a signal line having a stripline structure or a microstripline structure and having a plurality of signal lines provided in parallel, It is to improve the isolation between the high frequency signal lines.
  • a signal line includes a main body in which a plurality of insulating sheets made of a flexible material are stacked, and a first signal line and a second signal line extending in the main body.
  • a first ground conductor provided on one side in the stacking direction with respect to the first signal line in the main body and overlapping the first signal line when viewed in plan from the stacking direction;
  • a second ground conductor provided on one side in the stacking direction with respect to the second signal line in the main body and overlapping the second signal line when viewed in plan from the stacking direction;
  • the first signal line The ground conductor and the second ground conductor are not connected. It features a.
  • the stray capacitance between the signal lines can be reduced and the high-frequency signal lines can be reduced. Can improve the isolation.
  • the effect of reducing the stray capacitance between lines when the characteristic impedance of the signal line is 50 ⁇ system and the electromagnetic field balance of the leakage path of the high frequency signal due to the magnetic coupling due to the high frequency current flowing in the high frequency signal line The degree of coupling of signal lines can be lowered. That is, with this structure, it is possible to configure a directional coupler having a very low degree of coupling between the high-frequency signal lines, and to improve the isolation between the high-frequency signal lines.
  • FIG. 2 is an exploded view of the signal line in FIG. 1. It is the figure which saw through the signal track
  • FIG. 2 is a cross-sectional structure diagram along AA in FIG. 1.
  • 2 is a cross-sectional structure diagram of a flexible substrate described in Patent Document 1.
  • FIG. 1 is an external perspective view of a signal line 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded view of the signal line 10 of FIG.
  • FIG. 3 is a perspective view of the signal line 10 from the stacking direction.
  • FIG. 4 is a sectional structural view taken along line AA in FIG. 1 to 4, the stacking direction of the signal line 10 is defined as the z-axis direction.
  • the longitudinal direction of the signal line 10 is defined as the x-axis direction, and the direction orthogonal to the x-axis direction and the z-axis direction is defined as the y-axis direction.
  • the signal line 10 connects two or more circuit boards in an electronic device such as a mobile phone. As shown in FIGS. 1 and 2, the signal line 10 includes a main body 12, external terminals 14 (14a to 14l), ground conductors 50 (50a, 50b), 54 (54a, 54b), and signal lines 52 (52a, 52b). ) And via-hole conductors b1 to b32.
  • the main body 12 includes a signal line portion 16 and connector portions 18, 20, 22, and 24 as shown in FIG.
  • the signal line portion 16 extends in the x-axis direction and is configured to be flexible so that it can be bent into a U shape.
  • the connector portions 18 and 22 are provided in two branches at the negative end of the signal line portion 16 in the x-axis direction, and are connected to a connector on a circuit board (not shown). More specifically, the connector portion 18 is drawn in a straight line on the negative direction side of the signal line portion 16 in the x-axis direction. On the other hand, the connector part 22 is drawn from the signal line part 16 to the positive direction side in the y-axis direction and then drawn to the negative direction side in the x-axis direction.
  • the connector parts 20 and 24 are provided in a state of being branched into two at the end of the signal line part 16 on the positive side in the x-axis direction, and are connected to a connector on a circuit board (not shown). More specifically, the connector 20 is drawn from the end portion of the signal line portion 16 on the positive direction side in the x-axis direction to the negative direction side in the y-axis direction. On the other hand, the connector 24 is drawn out from the end of the signal line portion 16 on the positive side in the x-axis direction to the positive direction side in the y-axis direction.
  • the main body 12 is configured by laminating insulating sheets 32 (32a to 32d) shown in FIG. 2 in this order from the positive direction side in the z-axis direction.
  • the insulating sheet 32 is made of a thermoplastic resin such as a liquid crystal polymer having flexibility.
  • the insulating sheets 32a to 32d are connected to the signal line portions 36 (36a to 36d) and the connector portions 38 (38a to 38d), 40 (40a to 40d), 42 (42a to 42d), 44 ( 44a to 44d).
  • the signal line portion 36 constitutes the signal line portion 16 of the main body 12
  • the connector portions 38, 40, 42, 44 constitute the connector portions 18, 20, 22, 24 of the main body 12, respectively.
  • the main surface on the positive direction side in the z-axis direction of the insulating sheet 32 is referred to as a front surface
  • the main surface on the negative direction side in the z-axis direction of the insulating sheet 32 is referred to as a back surface.
  • the external terminals 14a to 14c are provided on the surface of the connector portion 38a so as to be arranged in a line in the y-axis direction.
  • the external terminals 14a to 14c come into contact with the terminals in the connector when the connector portion 18 is inserted into the connector of the circuit board.
  • the external terminals 14a and 14c are in contact with a ground terminal in the connector, and the external terminal 14b is in contact with a signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14a and 14c, and a high-frequency signal (for example, about 2 GHz) is applied to the external terminal 14b.
  • a high-frequency signal for example, about 2 GHz
  • the external terminals 14d to 14f are provided on the surface of the connector portion 40a so as to be arranged in a line in the x-axis direction.
  • the external terminals 14d to 14f contact the terminals in the connector when the connector portion 20 is inserted into the connector of the circuit board.
  • the external terminals 14d and 14f are in contact with the ground terminal in the connector, and the external terminal 14e is in contact with the signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14d and 14f, and a high frequency signal is applied to the external terminal 14e.
  • the external terminals 14g to 14i are provided on the surface of the connector portion 42a so as to be arranged in a line in the y-axis direction.
  • the external terminals 14g to 14i contact the terminals in the connector when the connector portion 22 is inserted into the connector of the circuit board.
  • the external terminals 14g and 14i are in contact with the ground terminal in the connector, and the external terminal 14h is in contact with the signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14g and 14i, and a high frequency signal is applied to the external terminal 14h.
  • the external terminals 14j to 14l are provided on the surface of the connector portion 44a so as to be arranged in a line in the x-axis direction.
  • the external terminals 14j to 14l come into contact with the terminals in the connector when the connector portion 24 is inserted into the connector of the circuit board.
  • the external terminals 14j and 14l are in contact with the ground terminal in the connector, and the external terminal 14k is in contact with the signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14j and 14l, and a high frequency signal is applied to the external terminal 14k.
  • each of the signal lines 52a and 52b extends in the main body 12.
  • the signal lines 52a and 52b are provided on the surface of the insulating sheet 32c, and include intermediate portions 56a and 56b and end portions 58a, 58b, 60a, and 60b. .
  • the intermediate portions 56a and 56b extend in the x-axis direction in parallel with each other on the surface of the signal line portion 36c.
  • the intermediate portions 56a and 56b are portions where the signal lines 52a and 52b extend in parallel at a constant interval in the y-axis direction.
  • a region E exists between the intermediate portions 56a and 56b.
  • the end portions 58a and 58b are connected to the negative side in the x-axis direction of the intermediate portions 56a and 56b, and are provided on the surfaces of the connector portions 38c and 42c.
  • the end portions 60a and 60b are connected to the positive side of the intermediate portions 56a and 56b in the x-axis direction, and are provided on the surfaces of the connector portions 40c and 44c.
  • the ground conductors 50a and 50b are respectively provided on the positive side in the z-axis direction with respect to the signal lines 52a and 52b in the main body 12, and more specifically, provided on the surface of the insulating sheet 32b. ing.
  • the ground conductor 50a is provided so as to cover about half of the negative side of the insulating sheet 32b in the y-axis direction. As a result, the ground conductor 50a overlaps the signal line 52a when viewed in plan from the z-axis direction, as shown in FIGS.
  • the ground conductor 50b is provided so as to cover approximately half of the insulating sheet 32b on the positive side in the y-axis direction. Thereby, the ground conductor 50b overlaps with the signal line 52b when viewed in plan from the z-axis direction.
  • ground conductors 50a and 50b are not connected. Therefore, a slit S1 in which no conductor layer is provided is provided between the ground conductors 50a and 50b.
  • the slit S1 extends in the x-axis direction and overlaps the region E as shown in FIG. Thereby, the ground conductors 50a and 50b are sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel in an adjacent state when viewed in plan from the z-axis direction. Not connected at E.
  • the adjacent state means that there is no other wiring conductor or the like between the signal lines 52a and 52b (intermediate portions 56a and 56b).
  • the ground conductors 50a and 50b are arranged in the z-axis direction in the region E sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel while being adjacent to each other.
  • the signal lines 52a and 52b are not provided at intermediate positions (see FIG. 3). That is, the straight line L1 obtained by connecting the intermediate points of the signal lines 52a and 52b overlaps the slit S1 when viewed in plan from the z-axis direction.
  • the ground conductors 54a and 54b have substantially the same shape as the ground conductors 50a and 50b, respectively. As shown in FIG. 2, the ground conductors 54a and 54b are respectively provided on the negative side in the z-axis direction with respect to the signal lines 52a and 52b in the main body 12, and more specifically, provided on the surface of the insulating sheet 32d. ing. The ground conductor 54a is provided so as to cover approximately half of the negative side of the insulating sheet 32d in the y-axis direction. As a result, the ground conductor 54a overlaps the signal line 52a when viewed in plan from the z-axis direction, as shown in FIGS.
  • the ground conductor 54b is provided so as to cover approximately half of the positive side of the insulating sheet 32d in the y-axis direction. Thereby, the ground conductor 54b overlaps with the signal line 52b when viewed in plan from the z-axis direction.
  • ground conductors 54a and 54b are not connected. Therefore, a slit S2 in which no conductor layer is provided is provided between the ground conductors 54a and 54b.
  • the slit S2 extends in the x-axis direction and overlaps the region E as shown in FIG.
  • the ground conductors 54a and 54b are sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel in an adjacent state when viewed in plan from the z-axis direction. Not connected at E.
  • the ground conductors 54a and 54b are arranged in the z-axis direction in the region E sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel while being adjacent to each other.
  • the signal lines 52a and 52b are not provided at intermediate positions (see FIG. 3). That is, the straight line L1 obtained by connecting the intermediate points of the signal lines 52a and 52b overlaps the slit S2 when viewed in plan from the z-axis direction.
  • the via-hole conductors b1 and b3 are provided so as to penetrate the connector portion 38a in the z-axis direction, and connect the external terminals 14a and 14c and the ground conductor 50a.
  • the via-hole conductor b2 is provided so as to penetrate the connector portion 38a in the z-axis direction, and is connected to the external terminal 14b.
  • each of the via-hole conductors b13 and b15 is provided so as to penetrate the connector portion 38b in the z-axis direction, and is connected to the ground conductor 50a.
  • the via-hole conductor b14 is provided so as to penetrate the connector portion 38b in the z-axis direction, and connects the via-hole conductor b2 and the end portion 58a of the signal line 52a.
  • the ground conductor 50a is provided with a blank portion B1 in which no conductor layer is provided around the via-hole conductor b14.
  • the via-hole conductors b25 and b26 are provided so as to penetrate the connector portion 38c in the z-axis direction, and connect the via-hole conductors b13 and b15 and the ground conductor 54a. Accordingly, the external terminals 14a and 14c and the ground conductors 50a and 54a are connected via the via-hole conductors b1, b3, b13, b15, b25, and b26. The external terminal 14b and the end 58a of the signal line 52a are connected by via-hole conductors b2 and b14.
  • each of the via-hole conductors b4 and b6 is provided so as to penetrate the connector portion 40a in the z-axis direction, and connects the external terminals 14d and 14f and the ground conductor 50a.
  • the via-hole conductor b5 is provided so as to penetrate the connector portion 40a in the z-axis direction, and is connected to the external terminal 14e.
  • each of the via-hole conductors b16 and b18 is provided so as to penetrate the connector portion 40b in the z-axis direction, and is connected to the ground conductor 50a.
  • the via-hole conductor b17 is provided so as to penetrate the connector portion 40b in the z-axis direction, and connects the via-hole conductor b5 and the end portion 60a of the signal line 52a.
  • the ground conductor 50a is provided with a blank portion B2 where no conductor layer is provided around the via-hole conductor b17.
  • each of the via-hole conductors b27 and b28 is provided so as to penetrate the connector portion 40c in the z-axis direction, and connects the via-hole conductors b16 and b18 and the ground conductor 54a.
  • the external terminals 14d and 14f and the ground conductors 50a and 54a are connected via the via-hole conductors b4, b6, b16, b18, b27, and b28.
  • the external terminal 14e and the end 60a of the signal line 52a are connected by via-hole conductors b5 and b17.
  • each of the via-hole conductors b7 and b9 is provided so as to penetrate the connector portion 42a in the z-axis direction, and connects the external terminals 14g and 14i and the ground conductor 50b.
  • the via-hole conductor b8 is provided so as to penetrate the connector portion 42a in the z-axis direction, and is connected to the external terminal 14h.
  • each of the via-hole conductors b19 and b21 is provided so as to penetrate the connector portion 42b in the z-axis direction, and is connected to the ground conductor 50b.
  • the via-hole conductor b20 is provided so as to penetrate the connector portion 42b in the z-axis direction, and connects the via-hole conductor b8 and the end portion 58b of the signal line 52b.
  • the ground conductor 50b is provided with a blank portion B3 where no conductor layer is provided around the via-hole conductor b20.
  • each of the via-hole conductors b29 and b30 is provided so as to penetrate the connector portion 42c in the z-axis direction, and connects the via-hole conductors b19 and b21 and the ground conductor 54b. Accordingly, the external terminals 14g and 14i and the ground conductors 50b and 54b are connected via the via-hole conductors b7, b9, b19, b21, b29, and b30. The external terminal 14h and the end 58b of the signal line 52b are connected by via-hole conductors b8 and b20.
  • each of the via-hole conductors b10 and b12 is provided so as to penetrate the connector portion 44a in the z-axis direction, and connects the external terminals 14j and 14l and the ground conductor 50b.
  • the via-hole conductor b11 is provided so as to penetrate the connector portion 44a in the z-axis direction, and is connected to the external terminal 14k.
  • each of the via-hole conductors b22 and b24 is provided so as to penetrate the connector portion 44b in the z-axis direction, and is connected to the ground conductor 50b.
  • the via-hole conductor b23 is provided so as to penetrate the connector portion 44b in the z-axis direction, and connects the via-hole conductor b11 and the end portion 60b of the signal line 52b.
  • the ground conductor 50b is provided with a blank portion B4 where no conductor layer is provided around the via-hole conductor b23.
  • the via-hole conductors b31 and b32 are provided so as to penetrate the connector portion 44c in the z-axis direction, and connect the via-hole conductors b22 and b24 and the ground conductor 54b.
  • the external terminals 14j and 14l and the ground conductors 50b and 54b are connected via the via-hole conductors b10, b12, b22, b24, b31, and b32.
  • the external terminal 14k and the end 60b of the signal line 52b are connected by via-hole conductors b11 and b23.
  • the signal line 52a and the ground conductors 50a and 54a have a stripline structure. Further, the signal line 52b and the ground conductors 50b and 54b have a stripline structure.
  • an insulating sheet 32 having a copper foil formed on the entire surface is prepared.
  • the external terminals 14 shown in FIG. 2 are formed on the surface of the insulating sheet 32a by a photolithography process. Specifically, a resist having the same shape as that of the external terminal 14 shown in FIG. 2 is printed on the copper foil of the insulating sheet 32a. And the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed. Thereby, the external terminals 14 as shown in FIG. 2 are formed on the surface of the insulating sheet 32a.
  • ground conductors 50a and 50b shown in FIG. 2 are formed on the surface of the insulating sheet 32b by a photolithography process. Further, signal lines 52a and 52b shown in FIG. 2 are formed on the surface of the insulating sheet 32c by a photolithography process. Further, ground conductors 54a and 54b shown in FIG. 2 are formed on the surface of the insulating sheet 32d by a photolithography process. Note that these photolithography processes are the same as the photolithography process for forming the external terminals 14, and thus the description thereof is omitted.
  • a laser beam is irradiated from the back side to the position where the via hole conductors b1 to b32 of the insulating sheets 32a to 32c are formed, thereby forming a via hole.
  • the via holes formed in the insulating sheets 32a to 32c are filled with a conductive paste mainly composed of copper to form via hole conductors b1 to b32 shown in FIG.
  • the insulating sheets 32a to 32d are stacked in this order. Then, the insulating sheets 32a to 32d are pressure-bonded by applying force to the insulating sheets 32a to 32d from the positive side and the negative side in the z-axis direction. Thereby, the signal line 10 shown in FIG. 1 is obtained.
  • the stray capacitance between the signal lines 52a and 52b can be reduced as described below. More specifically, in the conventional flexible substrate 500, as shown in FIG. 5A, the ground layers 506a and 506b exist between the signal lines 504a and 504b when viewed in plan from the stacking direction. A stray capacitance is generated between the signal lines 504a and 504b via the ground layers 506a and 506b. That is, as shown in FIG. 5A, stray capacitance C1 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504a.
  • a stray capacitance C2 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504b. Therefore, a stray capacitance in which the stray capacitance C1 and the stray capacitance C2 are connected in series is generated between the signal lines 504a and 504b. As a result, a high-frequency signal leakage path is formed between the signal lines 504a and 504b via the stray capacitance. Since this leakage path is capacitive, the higher the frequency, the smaller the impedance between the signal lines, and the short between the signal lines. For this reason, the high-frequency signal and the isolation between the signal lines deteriorate.
  • the ground conductors 50 a and 50 b are sandwiched between the signal lines 52 a and 52 b (intermediate portions 56 a and 56 b) extending in parallel in an adjacent state when viewed in plan from the z-axis direction. Are not connected in the region E. Therefore, as shown in FIG. 4, stray capacitance does not occur between the portion between the ground conductors 50a and 50b and the signal line 52a. Similarly, no stray capacitance is generated between the portion between the ground conductors 50a and 50b and the signal line 52b. Therefore, in the signal line 10, stray capacitance is less likely to occur between the signal lines 52 a and 52 b than in the conventional flexible substrate 500.
  • the signal line 10 compared with the flexible substrate 500, for example, even if the distance between the two signal lines 52 a and 52 b is 300 ⁇ m or less, and further 150 ⁇ m or less, a high-frequency signal is transmitted between the signal lines 52 a and 52 b. Leakage path is unlikely to occur.
  • the ground conductors 54a and 54b can be said to be the same as the ground conductors 50a and 50b. However, the principle is the same and the description is omitted.
  • the distance between the adjacent ground conductors 50a and 50b and the distance between the ground conductors 54a and 54b are preferably 50 ⁇ m to 300 ⁇ m, for example, when the high frequency is 800 MHz to 5 GHz.
  • the leakage path of the high frequency signal between the signal lines 52a and 52b can be more effectively reduced as described below. More specifically, if the ground conductors 50a and 50b are provided in the middle of the signal lines 52a and 52b, stray capacitance is likely to occur between the signal lines 52a and 52b. Therefore, in the signal line 10, the ground conductors 50 a and 50 b are not provided at intermediate positions between the signal lines 52 a and 52 b (intermediate portions 56 a and 56 b) when viewed in plan from the z-axis direction. As a result, the leakage path of the high frequency signal between the signal lines 52a and 52b is reduced.
  • the ground conductors 54a and 54b can be said to be the same as the ground conductors 50a and 50b. However, the principle is the same and the description is omitted.
  • the signal line 10 configured as described above is not limited to that shown in the above embodiment, and can be changed within the scope of the gist thereof.
  • the signal lines 52a and 52b have a stripline structure, but may have a microstripline structure. Specifically, either one of the ground conductors 50a and 50b or the ground conductors 54a and 54b may not exist. Even in this case, by providing the slits S1 and S2 between the ground conductors 50a and 50b or the ground conductors 54a and 54b, the leakage path of the high-frequency signal between the signal lines 52a and 52b is reduced.
  • slits S1 and S2 are provided between the ground conductors 50a and 50b and between the ground conductors 54a and 54b, respectively. However, only one of the slits S1 and S2 needs to be provided.
  • the signal line 10 may be used with the signal line portion 16 bent in a U shape.
  • the bending direction of the signal line portion 16 is preferably the direction described below.
  • the ground conductors 50a and 50b are not connected, and the ground conductors 54a and 54b are connected. Therefore, the ground conductors 50a and 50b are easier to extend than the ground conductors 54a and 54b. Therefore, it is desirable that the signal line portion 16 (main body 12) be bent so that the ground conductors 50a and 50b are located on the outer peripheral side of the signal lines 52a and 52b. Thereby, the signal line portion 16 can be easily bent.
  • the ground conductors 50a and 50b and the ground conductors 54a and 54b are not connected. However, the ground conductors 50a and 50b and the ground conductors 54a and 54b may be connected. However, in this case, the ground conductors 50a and 50b and the ground conductors 54a and 54b need to be connected at portions other than the region E.
  • the two signal lines 52a and 52b are adjacent to each other, but three or more signal lines may be adjacent to each other.
  • the present invention is useful for signal lines, and is particularly excellent in that the leakage path of high-frequency signals between a plurality of signal lines provided in parallel can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Disclosed is a signal transmission line comprising a strip line structure or a microstrip line structure and provided with a plurality of signal lines arranged in parallel, wherein the isolation of high frequency signals between the signal lines is improved. The main body comprises a stack of insulation sheets (32a to 32d) comprising flexible material. The signal lines (52a, 52b) extend inside the main body. A ground conductor (50a) is provided at the forward direction side of a signal line in the z-axis direction and overlaps the signal line (52a) when seen in a plan view from the z-axis direction. A ground conductor (50b) is provided at the forward direction side of a signal line (52b) in the z-axis direction and overlaps the signal line (52b) when seen in a plan view from the z-axis direction. The ground conductors (50a, 50b) are not connected at a region (E) sandwiched by the signal lines (52a, 52b) extending parallel in a state neighboring each other when seen in a plan view from the z-axis direction.

Description

信号線路Signal line
 本発明は、信号線路に関し、より特定的には、高周波信号が伝送される信号線路に関する。 The present invention relates to a signal line, and more particularly to a signal line through which a high-frequency signal is transmitted.
 従来の信号線路としては、例えば、特許文献1に記載のフレキシブル基板が知られている。図5は、特許文献1に記載のフレキシブル基板500の断面構造図である。 As a conventional signal line, for example, a flexible substrate described in Patent Document 1 is known. FIG. 5 is a cross-sectional structure diagram of the flexible substrate 500 described in Patent Document 1. As shown in FIG.
 フレキシブル基板500は、図5(a)に示す断面構造と図5(b)に示す断面構造が交互に配置されることにより構成されている。より詳細には、フレキシブル基板500は、絶縁層502a~502d、信号線路504a,504b及びグランド層506a,506bを備えている。絶縁層502a~502dは、可撓性材料からなるシートであり、積層されている。信号線路504a,504bは、絶縁層502c上に設けられており、図5(a)の紙面の垂直方向に互いに平行に延在している。 The flexible substrate 500 is configured by alternately arranging the cross-sectional structure shown in FIG. 5A and the cross-sectional structure shown in FIG. More specifically, the flexible substrate 500 includes insulating layers 502a to 502d, signal lines 504a and 504b, and ground layers 506a and 506b. The insulating layers 502a to 502d are sheets made of a flexible material and are laminated. The signal lines 504a and 504b are provided on the insulating layer 502c and extend in parallel to each other in the direction perpendicular to the paper surface of FIG.
 グランド層506aは、図5(a)に示すように、絶縁層502b上に設けられており、信号線路504a,504bの積層方向の上側に位置している。グランド層506bは、図5(a)に示すように、絶縁層502d上に設けられており、信号線路504a,504bの積層方向の下側に位置している。このように、フレキシブル基板500では、図5(a)に示す断面構造図では、グランド層506a,506bは、信号線路504a,504bに積層方向に重なっている。ただし、フレキシブル基板500では、図5(b)に示す断面構造図では、グランド層506a,506bは、信号線路504a,504bに積層方向に重なっていない。すなわち、グランド層506a,506bにはそれぞれ、開口部508a,508bが設けられている。 As shown in FIG. 5A, the ground layer 506a is provided on the insulating layer 502b and is located on the upper side in the stacking direction of the signal lines 504a and 504b. As shown in FIG. 5A, the ground layer 506b is provided on the insulating layer 502d and is located below the signal lines 504a and 504b in the stacking direction. As described above, in the flexible substrate 500, in the cross-sectional structure diagram shown in FIG. 5A, the ground layers 506a and 506b overlap the signal lines 504a and 504b in the stacking direction. However, in the flexible substrate 500, in the cross-sectional structure diagram shown in FIG. 5B, the ground layers 506a and 506b do not overlap the signal lines 504a and 504b in the stacking direction. That is, openings 508a and 508b are provided in the ground layers 506a and 506b, respectively.
 以上のようなフレキシブル基板500では、信号線路504a,504bとグランド層506a,506bとがストリップライン構造をなしている。そして、開口部508a,508bの大きさを調整することにより、信号線路504a,504bの特性インピーダンスを調整することができる。 In the flexible substrate 500 as described above, the signal lines 504a and 504b and the ground layers 506a and 506b form a stripline structure. The characteristic impedance of the signal lines 504a and 504b can be adjusted by adjusting the sizes of the openings 508a and 508b.
 しかしながら、フレキシブル基板500は、信号線路504a,504b間において高周波信号の漏えい経路が発生しやすいという問題を有する。より詳細には、図5(a)に示すように、積層方向から平面視したときに、信号線路504a,504b間にグランド層506a,506bが存在すると、グランド層506a,506bを介して、信号線路504a,504b間に浮遊容量が発生してしまう。すなわち、図5(a)に示すように、信号線路504a,504b間に位置するグランド層506bの一部と信号線路504aとの間には、浮遊容量C1が発生する。そして、信号線路504a,504b間に位置するグランド層506bの一部と信号線路504bとの間には、浮遊容量C2が発生する。よって、信号線路504a,504b間には、浮遊容量C1と浮遊容量C2とが直列接続された浮遊容量が発生している。その結果、該浮遊容量を介して、信号線路504a,504b間において信号の行き来が生じる(線間の浮遊容量の発生)。線間の浮遊容量は高周波信号線路においては、単に高周波線間のノイズとしてだけでなく高周波線路間のアイソレーション劣化にもなる。このため従来のフレキシブル高周波線路は、各線路に個々のフレキシブルケーブルが使われていた。この場合の高周波信号とは、例えばUHF帯以上の高周波の信号である。特に、フレキシブル基板500を湾曲させたときに、信号線路504a,504bとグランド層506a,506bとが近づくので、線間の浮遊容量が特に発生しやすい。 However, the flexible substrate 500 has a problem that a high-frequency signal leakage path is likely to occur between the signal lines 504a and 504b. More specifically, as shown in FIG. 5 (a), when the ground layers 506a and 506b exist between the signal lines 504a and 504b when viewed in plan from the stacking direction, the signals are transmitted via the ground layers 506a and 506b. A stray capacitance is generated between the lines 504a and 504b. That is, as shown in FIG. 5A, a stray capacitance C1 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504a. A stray capacitance C2 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504b. Therefore, a stray capacitance in which the stray capacitance C1 and the stray capacitance C2 are connected in series is generated between the signal lines 504a and 504b. As a result, signals are transferred between the signal lines 504a and 504b via the stray capacitance (generation of stray capacitance between the lines). In the high-frequency signal line, the stray capacitance between the lines is not only a noise between the high-frequency lines but also an isolation deterioration between the high-frequency lines. For this reason, in the conventional flexible high-frequency line, individual flexible cables are used for each line. In this case, the high-frequency signal is, for example, a high-frequency signal in the UHF band or higher. In particular, when the flexible substrate 500 is bent, the signal lines 504a and 504b and the ground layers 506a and 506b are close to each other, so that stray capacitance between lines is particularly likely to occur.
特開2007-123740号公報JP 2007-123740 A
 そこで、本発明の目的は、ストリップライン構造又はマイクロストリップライン構造を有し、かつ、複数の信号線が平行に設けられた信号線路において、信号線間の線間の浮遊容量の低減を図り、高周波信号線間のアイソレーションを改善することである。 Therefore, an object of the present invention is to reduce the stray capacitance between lines in a signal line having a stripline structure or a microstripline structure and having a plurality of signal lines provided in parallel, It is to improve the isolation between the high frequency signal lines.
 本発明の一形態に係る信号線路は、可撓性材料からなる複数の絶縁シートが積層されてなる本体と、前記本体内において延在している第1の信号線及び第2の信号線と、前記本体内において前記第1の信号線に対して積層方向の一方側に設けられ、かつ、積層方向から平面視したときに、該第1の信号線と重なっている第1のグランド導体と、前記本体内において前記第2の信号線に対して積層方向の一方側に設けられ、かつ、積層方向から平面視したときに、該第2の信号線と重なっている第2のグランド導体と、を備え、積層方向から平面視したときに、隣り合った状態で平行に延在している前記第1の信号線及び前記第2の信号線に挟まれている領域において、前記第1のグランド導体及び前記第2のグランド導体が接続されていないこと、を特徴とする。 A signal line according to an aspect of the present invention includes a main body in which a plurality of insulating sheets made of a flexible material are stacked, and a first signal line and a second signal line extending in the main body. A first ground conductor provided on one side in the stacking direction with respect to the first signal line in the main body and overlapping the first signal line when viewed in plan from the stacking direction; A second ground conductor provided on one side in the stacking direction with respect to the second signal line in the main body and overlapping the second signal line when viewed in plan from the stacking direction; In a region sandwiched between the first signal line and the second signal line that extend in parallel in an adjacent state when viewed in plan from the stacking direction, the first signal line The ground conductor and the second ground conductor are not connected. It features a.
 本発明によれば、ストリップライン構造又はマイクロストリップライン構造を有し、かつ、複数の信号線が平行に設けられた高周波信号線路において、信号線間の浮遊容量の低減を図り、高周波信号線間のアイソレーションを改善することができる。言いかえると、信号線の特性インピーダンスを50Ω系とした時の線間の浮遊容量の低減効果と、高周波信号線に流れる高周波電流による磁気結合による高周波信号の漏えい経路の電磁界バランスをとり、高周波信号線路の結合度を下げることが出来る。つまりこの構造にすることで、高周波信号線路間は非常に結合度の悪い方向性結合器を構成することができ、高周波信号線路間のアイソレーションを改善することができる。 According to the present invention, in a high-frequency signal line having a stripline structure or a microstripline structure and having a plurality of signal lines provided in parallel, the stray capacitance between the signal lines can be reduced and the high-frequency signal lines can be reduced. Can improve the isolation. In other words, the effect of reducing the stray capacitance between lines when the characteristic impedance of the signal line is 50Ω system and the electromagnetic field balance of the leakage path of the high frequency signal due to the magnetic coupling due to the high frequency current flowing in the high frequency signal line The degree of coupling of signal lines can be lowered. That is, with this structure, it is possible to configure a directional coupler having a very low degree of coupling between the high-frequency signal lines, and to improve the isolation between the high-frequency signal lines.
本発明の一実施形態に係る信号線路の外観斜視図である。It is an appearance perspective view of a signal track concerning one embodiment of the present invention. 図1の信号線路の分解図である。FIG. 2 is an exploded view of the signal line in FIG. 1. 信号線路を積層方向から透視した図である。It is the figure which saw through the signal track | line from the lamination direction. 図1のA-Aにおける断面構造図である。FIG. 2 is a cross-sectional structure diagram along AA in FIG. 1. 特許文献1に記載のフレキシブル基板の断面構造図である。2 is a cross-sectional structure diagram of a flexible substrate described in Patent Document 1. FIG.
 以下に、本発明の実施形態に係る信号線路について図面を参照しながら説明する。 Hereinafter, a signal line according to an embodiment of the present invention will be described with reference to the drawings.
(信号線路の構成)
 以下に、本発明の一実施形態に係る信号線路の構成について図面を参照しながら説明する。図1は、本発明の一実施形態に係る信号線路10の外観斜視図である。図2は、図1の信号線路10の分解図である。図3は、信号線路10を積層方向から透視した図である。図4は、図1のA-Aにおける断面構造図である。図1ないし図4において、信号線路10の積層方向をz軸方向と定義する。また、信号線路10の長手方向をx軸方向と定義し、x軸方向及びz軸方向に直交する方向をy軸方向と定義する。
(Configuration of signal line)
The configuration of a signal line according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of a signal line 10 according to an embodiment of the present invention. FIG. 2 is an exploded view of the signal line 10 of FIG. FIG. 3 is a perspective view of the signal line 10 from the stacking direction. FIG. 4 is a sectional structural view taken along line AA in FIG. 1 to 4, the stacking direction of the signal line 10 is defined as the z-axis direction. The longitudinal direction of the signal line 10 is defined as the x-axis direction, and the direction orthogonal to the x-axis direction and the z-axis direction is defined as the y-axis direction.
 信号線路10は、例えば、携帯電話等の電子機器内において、2つ以上の回路基板を接続する。信号線路10は、図1及び図2に示すように、本体12、外部端子14(14a~14l)、グランド導体50(50a,50b),54(54a,54b)、信号線52(52a,52b)及びビアホール導体b1~b32を備えている。 The signal line 10 connects two or more circuit boards in an electronic device such as a mobile phone. As shown in FIGS. 1 and 2, the signal line 10 includes a main body 12, external terminals 14 (14a to 14l), ground conductors 50 (50a, 50b), 54 (54a, 54b), and signal lines 52 (52a, 52b). ) And via-hole conductors b1 to b32.
 本体12は、図1に示すように、信号線部16及びコネクタ部18,20,22,24を含んでいる。信号線部16は、x軸方向に延在しており、U字状に曲げることができるようにフレキシブルに構成されている。コネクタ部18,22は、信号線部16のx軸方向の負方向側の端部において2つに枝分かれした状態で設けられ、図示しない回路基板のコネクタに接続される。より具体的には、コネクタ部18は、信号線部16のx軸方向の負方向側に一直線に引き出されている。一方、コネクタ部22は、信号線部16からy軸方向の正方向側に引き出された後、x軸方向の負方向側に引き出されている。 The main body 12 includes a signal line portion 16 and connector portions 18, 20, 22, and 24 as shown in FIG. The signal line portion 16 extends in the x-axis direction and is configured to be flexible so that it can be bent into a U shape. The connector portions 18 and 22 are provided in two branches at the negative end of the signal line portion 16 in the x-axis direction, and are connected to a connector on a circuit board (not shown). More specifically, the connector portion 18 is drawn in a straight line on the negative direction side of the signal line portion 16 in the x-axis direction. On the other hand, the connector part 22 is drawn from the signal line part 16 to the positive direction side in the y-axis direction and then drawn to the negative direction side in the x-axis direction.
 コネクタ部20,24は、信号線部16のx軸方向の正方向側の端部において2つに枝分かれした状態で設けられ、図示しない回路基板のコネクタに接続される。より具体的には、コネクタ20は、信号線部16のx軸方向の正方向側の端部からy軸方向の負方向側に引き出されている。一方、コネクタ24は、信号線部16のx軸方向の正方向側の端部からy軸方向の正方向側に引き出されている。 The connector parts 20 and 24 are provided in a state of being branched into two at the end of the signal line part 16 on the positive side in the x-axis direction, and are connected to a connector on a circuit board (not shown). More specifically, the connector 20 is drawn from the end portion of the signal line portion 16 on the positive direction side in the x-axis direction to the negative direction side in the y-axis direction. On the other hand, the connector 24 is drawn out from the end of the signal line portion 16 on the positive side in the x-axis direction to the positive direction side in the y-axis direction.
 本体12は、図2に示す絶縁シート32(32a~32d)がz軸方向の正方向側からこの順に積層されて構成されている。絶縁シート32は、可撓性を有する液晶ポリマー等の熱可塑性樹脂により構成されている。絶縁シート32a~32dはそれぞれ、図2に示すように、信号線部36(36a~36d)及びコネクタ部38(38a~38d),40(40a~40d),42(42a~42d),44(44a~44d)により構成されている。信号線部36は、本体12の信号線部16を構成し、コネクタ部38,40,42,44はそれぞれ、本体12のコネクタ部18,20,22,24を構成している。なお、以下では、絶縁シート32のz軸方向の正方向側の主面を表面と称し、絶縁シート32のz軸方向の負方向側の主面を裏面と称す。 The main body 12 is configured by laminating insulating sheets 32 (32a to 32d) shown in FIG. 2 in this order from the positive direction side in the z-axis direction. The insulating sheet 32 is made of a thermoplastic resin such as a liquid crystal polymer having flexibility. As shown in FIG. 2, the insulating sheets 32a to 32d are connected to the signal line portions 36 (36a to 36d) and the connector portions 38 (38a to 38d), 40 (40a to 40d), 42 (42a to 42d), 44 ( 44a to 44d). The signal line portion 36 constitutes the signal line portion 16 of the main body 12, and the connector portions 38, 40, 42, 44 constitute the connector portions 18, 20, 22, 24 of the main body 12, respectively. Hereinafter, the main surface on the positive direction side in the z-axis direction of the insulating sheet 32 is referred to as a front surface, and the main surface on the negative direction side in the z-axis direction of the insulating sheet 32 is referred to as a back surface.
 外部端子14a~14cは、図2に示すように、コネクタ部38aの表面にy軸方向に一列に並ぶように設けられている。外部端子14a~14cは、コネクタ部18が回路基板のコネクタに挿入された際に、コネクタ内の端子に接触する。具体的には、外部端子14a,14cは、コネクタ内のグランド端子に接触し、外部端子14bは、コネクタ内の信号端子に接触する。したがって、外部端子14a,14cには、グランド電位が印加され、外部端子14bには、高周波信号(例えば、2GHz程度)が印加される。 As shown in FIG. 2, the external terminals 14a to 14c are provided on the surface of the connector portion 38a so as to be arranged in a line in the y-axis direction. The external terminals 14a to 14c come into contact with the terminals in the connector when the connector portion 18 is inserted into the connector of the circuit board. Specifically, the external terminals 14a and 14c are in contact with a ground terminal in the connector, and the external terminal 14b is in contact with a signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14a and 14c, and a high-frequency signal (for example, about 2 GHz) is applied to the external terminal 14b.
 外部端子14d~14fは、図2に示すように、コネクタ部40aの表面にx軸方向に一列に並ぶように設けられている。外部端子14d~14fは、コネクタ部20が回路基板のコネクタに挿入された際に、コネクタ内の端子に接触する。具体的には、外部端子14d,14fは、コネクタ内のグランド端子に接触し、外部端子14eは、コネクタ内の信号端子に接触する。したがって、外部端子14d,14fには、グランド電位が印加され、外部端子14eには、高周波信号が印加される。 As shown in FIG. 2, the external terminals 14d to 14f are provided on the surface of the connector portion 40a so as to be arranged in a line in the x-axis direction. The external terminals 14d to 14f contact the terminals in the connector when the connector portion 20 is inserted into the connector of the circuit board. Specifically, the external terminals 14d and 14f are in contact with the ground terminal in the connector, and the external terminal 14e is in contact with the signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14d and 14f, and a high frequency signal is applied to the external terminal 14e.
 外部端子14g~14iは、図2に示すように、コネクタ部42aの表面にy軸方向に一列に並ぶように設けられている。外部端子14g~14iは、コネクタ部22が回路基板のコネクタに挿入された際に、コネクタ内の端子に接触する。具体的には、外部端子14g,14iは、コネクタ内のグランド端子に接触し、外部端子14hは、コネクタ内の信号端子に接触する。したがって、外部端子14g,14iには、グランド電位が印加され、外部端子14hには、高周波信号が印加される。 As shown in FIG. 2, the external terminals 14g to 14i are provided on the surface of the connector portion 42a so as to be arranged in a line in the y-axis direction. The external terminals 14g to 14i contact the terminals in the connector when the connector portion 22 is inserted into the connector of the circuit board. Specifically, the external terminals 14g and 14i are in contact with the ground terminal in the connector, and the external terminal 14h is in contact with the signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14g and 14i, and a high frequency signal is applied to the external terminal 14h.
 外部端子14j~14lは、図2に示すように、コネクタ部44aの表面にx軸方向に一列に並ぶように設けられている。外部端子14j~14lは、コネクタ部24が回路基板のコネクタに挿入された際に、コネクタ内の端子に接触する。具体的には、外部端子14j,14lは、コネクタ内のグランド端子に接触し、外部端子14kは、コネクタ内の信号端子に接触する。したがって、外部端子14j,14lには、グランド電位が印加され、外部端子14kには、高周波信号が印加される。 As shown in FIG. 2, the external terminals 14j to 14l are provided on the surface of the connector portion 44a so as to be arranged in a line in the x-axis direction. The external terminals 14j to 14l come into contact with the terminals in the connector when the connector portion 24 is inserted into the connector of the circuit board. Specifically, the external terminals 14j and 14l are in contact with the ground terminal in the connector, and the external terminal 14k is in contact with the signal terminal in the connector. Therefore, a ground potential is applied to the external terminals 14j and 14l, and a high frequency signal is applied to the external terminal 14k.
 信号線52a,52bはそれぞれ、本体12内において延在している。具体的には、信号線52a,52bは、図2に示すように、絶縁シート32cの表面に設けられており、中間部56a,56b及び端部58a,58b,60a,60bにより構成されている。中間部56a,56bは、信号線部36cの表面において互いに平行にx軸方向に延在している。本実施形態において中間部56a,56bとは、信号線52a,52bがy軸方向において一定の間隔を保って平行に延在している部分である。そして、中間部56a,56b間には、領域Eが存在している。端部58a,58bは、中間部56a,56bのx軸方向の負方向側に接続されており、コネクタ部38c,42cの表面に設けられている。また、端部60a,60bは、中間部56a,56bのx軸方向の正方向側に接続されており、コネクタ部40c,44cの表面に設けられている。 Each of the signal lines 52a and 52b extends in the main body 12. Specifically, as shown in FIG. 2, the signal lines 52a and 52b are provided on the surface of the insulating sheet 32c, and include intermediate portions 56a and 56b and end portions 58a, 58b, 60a, and 60b. . The intermediate portions 56a and 56b extend in the x-axis direction in parallel with each other on the surface of the signal line portion 36c. In the present embodiment, the intermediate portions 56a and 56b are portions where the signal lines 52a and 52b extend in parallel at a constant interval in the y-axis direction. A region E exists between the intermediate portions 56a and 56b. The end portions 58a and 58b are connected to the negative side in the x-axis direction of the intermediate portions 56a and 56b, and are provided on the surfaces of the connector portions 38c and 42c. The end portions 60a and 60b are connected to the positive side of the intermediate portions 56a and 56b in the x-axis direction, and are provided on the surfaces of the connector portions 40c and 44c.
 グランド導体50a,50bはそれぞれ、図2に示すように、本体12内において信号線52a,52bよりもz軸方向の正方向側に設けられ、より詳細には、絶縁シート32bの表面に設けられている。グランド導体50aは、絶縁シート32bのy軸方向の負方向側の約半分を覆うように設けられている。これにより、グランド導体50aは、図3及び図4に示すように、z軸方向から平面視したときに、信号線52aと重なっている。一方、グランド導体50bは、絶縁シート32bのy軸方向の正方向側の約半分を覆うように設けられている。これにより、グランド導体50bは、z軸方向から平面視したときに、信号線52bと重なっている。 As shown in FIG. 2, the ground conductors 50a and 50b are respectively provided on the positive side in the z-axis direction with respect to the signal lines 52a and 52b in the main body 12, and more specifically, provided on the surface of the insulating sheet 32b. ing. The ground conductor 50a is provided so as to cover about half of the negative side of the insulating sheet 32b in the y-axis direction. As a result, the ground conductor 50a overlaps the signal line 52a when viewed in plan from the z-axis direction, as shown in FIGS. On the other hand, the ground conductor 50b is provided so as to cover approximately half of the insulating sheet 32b on the positive side in the y-axis direction. Thereby, the ground conductor 50b overlaps with the signal line 52b when viewed in plan from the z-axis direction.
 ここで、グランド導体50a,50bは、接続されていない。そこで、グランド導体50a,50bの間には、導体層が設けられてないスリットS1が設けられている。スリットS1は、x軸方向に延在しており、図3に示すように、領域Eと重なっている。これにより、グランド導体50a,50bは、z軸方向から平面視したときに、隣り合った状態で平行に延在している信号線52a,52b(中間部56a,56b)に挟まれている領域Eにおいて接続されていない。なお、隣り合った状態とは、信号線52a,52b(中間部56a,56b)間に他の配線導体等が存在していないことを意味する。 Here, the ground conductors 50a and 50b are not connected. Therefore, a slit S1 in which no conductor layer is provided is provided between the ground conductors 50a and 50b. The slit S1 extends in the x-axis direction and overlaps the region E as shown in FIG. Thereby, the ground conductors 50a and 50b are sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel in an adjacent state when viewed in plan from the z-axis direction. Not connected at E. The adjacent state means that there is no other wiring conductor or the like between the signal lines 52a and 52b (intermediate portions 56a and 56b).
 特に、本実施形態では、グランド導体50a,50bは、隣り合った状態で平行に延在している信号線52a,52b(中間部56a,56b)に挟まれている領域Eにおいて、z軸方向から平面視したときに、信号線52a,52b(中間部56a,56b)の中間の位置には設けられていない(図3参照)。すなわち、信号線52a,52bの中間点を繋いで得られる直線L1は、z軸方向から平面視したときに、スリットS1と重なっている。 In particular, in the present embodiment, the ground conductors 50a and 50b are arranged in the z-axis direction in the region E sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel while being adjacent to each other. When viewed from above, the signal lines 52a and 52b (intermediate portions 56a and 56b) are not provided at intermediate positions (see FIG. 3). That is, the straight line L1 obtained by connecting the intermediate points of the signal lines 52a and 52b overlaps the slit S1 when viewed in plan from the z-axis direction.
 グランド導体54a,54bはそれぞれ、グランド導体50a,50bと略同じ形状を有している。グランド導体54a,54bはそれぞれ、図2に示すように、本体12内において信号線52a,52bよりもz軸方向の負方向側に設けられ、より詳細には、絶縁シート32dの表面に設けられている。グランド導体54aは、絶縁シート32dのy軸方向の負方向側の約半分を覆うように設けられている。これにより、グランド導体54aは、図3及び図4に示すように、z軸方向から平面視したときに、信号線52aと重なっている。一方、グランド導体54bは、絶縁シート32dのy軸方向の正方向側の約半分を覆うように設けられている。これにより、グランド導体54bは、z軸方向から平面視したときに、信号線52bと重なっている。 The ground conductors 54a and 54b have substantially the same shape as the ground conductors 50a and 50b, respectively. As shown in FIG. 2, the ground conductors 54a and 54b are respectively provided on the negative side in the z-axis direction with respect to the signal lines 52a and 52b in the main body 12, and more specifically, provided on the surface of the insulating sheet 32d. ing. The ground conductor 54a is provided so as to cover approximately half of the negative side of the insulating sheet 32d in the y-axis direction. As a result, the ground conductor 54a overlaps the signal line 52a when viewed in plan from the z-axis direction, as shown in FIGS. On the other hand, the ground conductor 54b is provided so as to cover approximately half of the positive side of the insulating sheet 32d in the y-axis direction. Thereby, the ground conductor 54b overlaps with the signal line 52b when viewed in plan from the z-axis direction.
 ここで、グランド導体54a,54bは、接続されていない。そこで、グランド導体54a,54bの間には、導体層が設けられてないスリットS2が設けられている。スリットS2は、x軸方向に延在しており、図3に示すように、領域Eと重なっている。これにより、グランド導体54a,54bは、z軸方向から平面視したときに、隣り合った状態で平行に延在している信号線52a,52b(中間部56a,56b)に挟まれている領域Eにおいて接続されていない。 Here, the ground conductors 54a and 54b are not connected. Therefore, a slit S2 in which no conductor layer is provided is provided between the ground conductors 54a and 54b. The slit S2 extends in the x-axis direction and overlaps the region E as shown in FIG. Thus, the ground conductors 54a and 54b are sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel in an adjacent state when viewed in plan from the z-axis direction. Not connected at E.
 特に、本実施形態では、グランド導体54a,54bは、隣り合った状態で平行に延在している信号線52a,52b(中間部56a,56b)に挟まれている領域Eにおいて、z軸方向から平面視したときに、信号線52a,52b(中間部56a,56b)の中間の位置には設けられていない(図3参照)。すなわち、信号線52a,52bの中間点を繋いで得られる直線L1は、z軸方向から平面視したときに、スリットS2と重なっている。 In particular, in the present embodiment, the ground conductors 54a and 54b are arranged in the z-axis direction in the region E sandwiched between the signal lines 52a and 52b (intermediate portions 56a and 56b) extending in parallel while being adjacent to each other. When viewed from above, the signal lines 52a and 52b (intermediate portions 56a and 56b) are not provided at intermediate positions (see FIG. 3). That is, the straight line L1 obtained by connecting the intermediate points of the signal lines 52a and 52b overlaps the slit S2 when viewed in plan from the z-axis direction.
 ビアホール導体b1,b3はそれぞれ、図2に示すように、コネクタ部38aをz軸方向に貫通するように設けられ、外部端子14a,14cとグランド導体50aとを接続している。ビアホール導体b2は、図2に示すように、コネクタ部38aをz軸方向に貫通するように設けられ、外部端子14bに接続されている。 As shown in FIG. 2, the via-hole conductors b1 and b3 are provided so as to penetrate the connector portion 38a in the z-axis direction, and connect the external terminals 14a and 14c and the ground conductor 50a. As shown in FIG. 2, the via-hole conductor b2 is provided so as to penetrate the connector portion 38a in the z-axis direction, and is connected to the external terminal 14b.
 ビアホール導体b13,b15はそれぞれ、図2に示すように、コネクタ部38bをz軸方向に貫通するように設けられ、グランド導体50aに接続されている。ビアホール導体b14は、図2に示すように、コネクタ部38bをz軸方向に貫通するように設けられ、ビアホール導体b2と信号線52aの端部58aとを接続している。なお、ビアホール導体b14とグランド導体50aとが短絡しないように、グランド導体50aには、ビアホール導体b14の周囲に導体層が設けられていない空白部B1が設けられている。 As shown in FIG. 2, each of the via-hole conductors b13 and b15 is provided so as to penetrate the connector portion 38b in the z-axis direction, and is connected to the ground conductor 50a. As shown in FIG. 2, the via-hole conductor b14 is provided so as to penetrate the connector portion 38b in the z-axis direction, and connects the via-hole conductor b2 and the end portion 58a of the signal line 52a. In order to prevent short-circuiting between the via-hole conductor b14 and the ground conductor 50a, the ground conductor 50a is provided with a blank portion B1 in which no conductor layer is provided around the via-hole conductor b14.
 ビアホール導体b25,b26はそれぞれ、図2に示すように、コネクタ部38cをz軸方向に貫通するように設けられ、ビアホール導体b13,b15とグランド導体54aとを接続している。これにより、外部端子14a,14cとグランド導体50a,54aとがビアホール導体b1,b3,b13,b15,b25,b26を介して接続されている。また、外部端子14bと信号線52aの端部58aとがビアホール導体b2,b14により接続されている。 As shown in FIG. 2, the via-hole conductors b25 and b26 are provided so as to penetrate the connector portion 38c in the z-axis direction, and connect the via-hole conductors b13 and b15 and the ground conductor 54a. Accordingly, the external terminals 14a and 14c and the ground conductors 50a and 54a are connected via the via-hole conductors b1, b3, b13, b15, b25, and b26. The external terminal 14b and the end 58a of the signal line 52a are connected by via-hole conductors b2 and b14.
 ビアホール導体b4,b6はそれぞれ、図2に示すように、コネクタ部40aをz軸方向に貫通するように設けられ、外部端子14d,14fとグランド導体50aとを接続している。ビアホール導体b5は、図2に示すように、コネクタ部40aをz軸方向に貫通するように設けられ、外部端子14eに接続されている。 As shown in FIG. 2, each of the via-hole conductors b4 and b6 is provided so as to penetrate the connector portion 40a in the z-axis direction, and connects the external terminals 14d and 14f and the ground conductor 50a. As shown in FIG. 2, the via-hole conductor b5 is provided so as to penetrate the connector portion 40a in the z-axis direction, and is connected to the external terminal 14e.
 ビアホール導体b16,b18はそれぞれ、図2に示すように、コネクタ部40bをz軸方向に貫通するように設けられ、グランド導体50aに接続されている。ビアホール導体b17は、図2に示すように、コネクタ部40bをz軸方向に貫通するように設けられ、ビアホール導体b5と信号線52aの端部60aとを接続している。なお、ビアホール導体b17とグランド導体50aとが短絡しないように、グランド導体50aには、ビアホール導体b17の周囲に導体層が設けられていない空白部B2が設けられている。 As shown in FIG. 2, each of the via-hole conductors b16 and b18 is provided so as to penetrate the connector portion 40b in the z-axis direction, and is connected to the ground conductor 50a. As shown in FIG. 2, the via-hole conductor b17 is provided so as to penetrate the connector portion 40b in the z-axis direction, and connects the via-hole conductor b5 and the end portion 60a of the signal line 52a. In order to prevent short-circuiting between the via-hole conductor b17 and the ground conductor 50a, the ground conductor 50a is provided with a blank portion B2 where no conductor layer is provided around the via-hole conductor b17.
 ビアホール導体b27,b28はそれぞれ、図2に示すように、コネクタ部40cをz軸方向に貫通するように設けられ、ビアホール導体b16,b18とグランド導体54aとを接続している。これにより、外部端子14d,14fとグランド導体50a,54aとがビアホール導体b4,b6,b16,b18,b27,b28を介して接続されている。また、外部端子14eと信号線52aの端部60aとがビアホール導体b5,b17により接続されている。 As shown in FIG. 2, each of the via-hole conductors b27 and b28 is provided so as to penetrate the connector portion 40c in the z-axis direction, and connects the via-hole conductors b16 and b18 and the ground conductor 54a. Thus, the external terminals 14d and 14f and the ground conductors 50a and 54a are connected via the via-hole conductors b4, b6, b16, b18, b27, and b28. The external terminal 14e and the end 60a of the signal line 52a are connected by via-hole conductors b5 and b17.
 ビアホール導体b7,b9はそれぞれ、図2に示すように、コネクタ部42aをz軸方向に貫通するように設けられ、外部端子14g,14iとグランド導体50bとを接続している。ビアホール導体b8は、図2に示すように、コネクタ部42aをz軸方向に貫通するように設けられ、外部端子14hに接続されている。 As shown in FIG. 2, each of the via-hole conductors b7 and b9 is provided so as to penetrate the connector portion 42a in the z-axis direction, and connects the external terminals 14g and 14i and the ground conductor 50b. As shown in FIG. 2, the via-hole conductor b8 is provided so as to penetrate the connector portion 42a in the z-axis direction, and is connected to the external terminal 14h.
 ビアホール導体b19,b21はそれぞれ、図2に示すように、コネクタ部42bをz軸方向に貫通するように設けられ、グランド導体50bに接続されている。ビアホール導体b20は、図2に示すように、コネクタ部42bをz軸方向に貫通するように設けられ、ビアホール導体b8と信号線52bの端部58bとを接続している。なお、ビアホール導体b20とグランド導体50bとが短絡しないように、グランド導体50bには、ビアホール導体b20の周囲に導体層が設けられていない空白部B3が設けられている。 As shown in FIG. 2, each of the via-hole conductors b19 and b21 is provided so as to penetrate the connector portion 42b in the z-axis direction, and is connected to the ground conductor 50b. As shown in FIG. 2, the via-hole conductor b20 is provided so as to penetrate the connector portion 42b in the z-axis direction, and connects the via-hole conductor b8 and the end portion 58b of the signal line 52b. In order to prevent short-circuiting between the via-hole conductor b20 and the ground conductor 50b, the ground conductor 50b is provided with a blank portion B3 where no conductor layer is provided around the via-hole conductor b20.
 ビアホール導体b29,b30はそれぞれ、図2に示すように、コネクタ部42cをz軸方向に貫通するように設けられ、ビアホール導体b19,b21とグランド導体54bとを接続している。これにより、外部端子14g,14iとグランド導体50b,54bとがビアホール導体b7,b9,b19,b21,b29,b30を介して接続されている。また、外部端子14hと信号線52bの端部58bとがビアホール導体b8,b20により接続されている。 As shown in FIG. 2, each of the via-hole conductors b29 and b30 is provided so as to penetrate the connector portion 42c in the z-axis direction, and connects the via-hole conductors b19 and b21 and the ground conductor 54b. Accordingly, the external terminals 14g and 14i and the ground conductors 50b and 54b are connected via the via-hole conductors b7, b9, b19, b21, b29, and b30. The external terminal 14h and the end 58b of the signal line 52b are connected by via-hole conductors b8 and b20.
 ビアホール導体b10,b12はそれぞれ、図2に示すように、コネクタ部44aをz軸方向に貫通するように設けられ、外部端子14j,14lとグランド導体50bとを接続している。ビアホール導体b11は、図2に示すように、コネクタ部44aをz軸方向に貫通するように設けられ、外部端子14kに接続されている。 As shown in FIG. 2, each of the via-hole conductors b10 and b12 is provided so as to penetrate the connector portion 44a in the z-axis direction, and connects the external terminals 14j and 14l and the ground conductor 50b. As shown in FIG. 2, the via-hole conductor b11 is provided so as to penetrate the connector portion 44a in the z-axis direction, and is connected to the external terminal 14k.
 ビアホール導体b22,b24はそれぞれ、図2に示すように、コネクタ部44bをz軸方向に貫通するように設けられ、グランド導体50bに接続されている。ビアホール導体b23は、図2に示すように、コネクタ部44bをz軸方向に貫通するように設けられ、ビアホール導体b11と信号線52bの端部60bとを接続している。なお、ビアホール導体b23とグランド導体50bとが短絡しないように、グランド導体50bには、ビアホール導体b23の周囲に導体層が設けられていない空白部B4が設けられている。 As shown in FIG. 2, each of the via-hole conductors b22 and b24 is provided so as to penetrate the connector portion 44b in the z-axis direction, and is connected to the ground conductor 50b. As shown in FIG. 2, the via-hole conductor b23 is provided so as to penetrate the connector portion 44b in the z-axis direction, and connects the via-hole conductor b11 and the end portion 60b of the signal line 52b. In order to prevent short-circuiting between the via-hole conductor b23 and the ground conductor 50b, the ground conductor 50b is provided with a blank portion B4 where no conductor layer is provided around the via-hole conductor b23.
 ビアホール導体b31,b32はそれぞれ、図2に示すように、コネクタ部44cをz軸方向に貫通するように設けられ、ビアホール導体b22,b24とグランド導体54bとを接続している。これにより、外部端子14j,14lとグランド導体50b,54bとがビアホール導体b10,b12,b22,b24,b31,b32を介して接続されている。また、外部端子14kと信号線52bの端部60bとがビアホール導体b11,b23により接続されている。 As shown in FIG. 2, the via-hole conductors b31 and b32 are provided so as to penetrate the connector portion 44c in the z-axis direction, and connect the via-hole conductors b22 and b24 and the ground conductor 54b. Thus, the external terminals 14j and 14l and the ground conductors 50b and 54b are connected via the via-hole conductors b10, b12, b22, b24, b31, and b32. The external terminal 14k and the end 60b of the signal line 52b are connected by via-hole conductors b11 and b23.
 以上のように、信号線52a及びグランド導体50a,54aは、ストリップライン構造をなしている。また、信号線52b及びグランド導体50b,54bは、ストリップライン構造をなしている。 As described above, the signal line 52a and the ground conductors 50a and 54a have a stripline structure. Further, the signal line 52b and the ground conductors 50b and 54b have a stripline structure.
(信号線路の製造方法)
 以下に、信号線路10の製造方法について図面を参照しながら説明する。以下では、一つの信号線路10が作製される場合を例にとって説明するが、実際には、大判の絶縁シートが積層及びカットされることにより、複数の信号線路10が同時に作製される。
(Signal line manufacturing method)
Below, the manufacturing method of the signal track | line 10 is demonstrated, referring drawings. Hereinafter, a case where one signal line 10 is manufactured will be described as an example, but actually, a plurality of signal lines 10 are simultaneously manufactured by laminating and cutting large-sized insulating sheets.
 まず、表面の全面に銅箔が形成された絶縁シート32を準備する。次に、フォトリソグラフィ工程により、図2に示す外部端子14を絶縁シート32aの表面に形成する。具体的には、絶縁シート32aの銅箔上に、図2に示す外部端子14と同じ形状のレジストを印刷する。そして、銅箔に対してエッチング処理を施すことにより、レジストにより覆われていない部分の銅箔を除去する。その後、レジストを除去する。これにより、図2に示すような、外部端子14が絶縁シート32aの表面に形成される。 First, an insulating sheet 32 having a copper foil formed on the entire surface is prepared. Next, the external terminals 14 shown in FIG. 2 are formed on the surface of the insulating sheet 32a by a photolithography process. Specifically, a resist having the same shape as that of the external terminal 14 shown in FIG. 2 is printed on the copper foil of the insulating sheet 32a. And the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed. Thereby, the external terminals 14 as shown in FIG. 2 are formed on the surface of the insulating sheet 32a.
 次に、フォトリソグラフィ工程により、図2に示すグランド導体50a,50bを絶縁シート32bの表面に形成する。また、フォトリソグラフィ工程により、図2に示す信号線52a,52bを絶縁シート32cの表面に形成する。また、フォトリソグラフィ工程により、図2に示すグランド導体54a,54bを絶縁シート32dの表面に形成する。なお、これらのフォトリソグラフィ工程は、外部端子14を形成する際のフォトリソグラフィ工程と同様であるので、説明を省略する。 Next, ground conductors 50a and 50b shown in FIG. 2 are formed on the surface of the insulating sheet 32b by a photolithography process. Further, signal lines 52a and 52b shown in FIG. 2 are formed on the surface of the insulating sheet 32c by a photolithography process. Further, ground conductors 54a and 54b shown in FIG. 2 are formed on the surface of the insulating sheet 32d by a photolithography process. Note that these photolithography processes are the same as the photolithography process for forming the external terminals 14, and thus the description thereof is omitted.
 次に、絶縁シート32a~32cのビアホール導体b1~b32が形成される位置に対して、裏面側からレーザービームを照射して、ビアホールを形成する。その後、絶縁シート32a~32cに形成したビアホールに対して、銅を主成分とする導電性ペーストを充填し、図2に示すビアホール導体b1~b32を形成する。 Next, a laser beam is irradiated from the back side to the position where the via hole conductors b1 to b32 of the insulating sheets 32a to 32c are formed, thereby forming a via hole. Thereafter, the via holes formed in the insulating sheets 32a to 32c are filled with a conductive paste mainly composed of copper to form via hole conductors b1 to b32 shown in FIG.
 次に、絶縁シート32a~32dをこの順に積み重ねる。そして、絶縁シート32a~32dに対してz軸方向の正方向側及び負方向側から力を加えることにより、絶縁シート32a~32dを圧着する。これにより、図1に示す信号線路10が得られる。 Next, the insulating sheets 32a to 32d are stacked in this order. Then, the insulating sheets 32a to 32d are pressure-bonded by applying force to the insulating sheets 32a to 32d from the positive side and the negative side in the z-axis direction. Thereby, the signal line 10 shown in FIG. 1 is obtained.
(効果)
 信号線路10では、以下に説明するように、信号線52a,52b間の浮遊容量を低減できる。より詳細には、従来のフレキシブル基板500では、図5(a)に示すように、積層方向から平面視したときに、信号線路504a,504b間にグランド層506a,506bが存在しているので、グランド層506a,506bを介して、信号線路504a,504b間に浮遊容量が発生してしまう。すなわち、図5(a)に示すように、信号線路504a,504b間に位置するグランド層506bの一部と信号線路504aとの間には、浮遊容量C1が発生する。そして、信号線路504a,504b間に位置するグランド層506bの一部と信号線路504bとの間には、浮遊容量C2が発生する。よって、信号線路504a,504b間には、浮遊容量C1と浮遊容量C2とが直列接続された浮遊容量が発生している。その結果、該浮遊容量を介して、信号線路504a,504b間に高周波信号の漏えい経路ができる。この漏えい経路は、容量性であるので高周波になればなるほど信号線間のインピーダンスが小さくなり信号線間をショートした様になってしまう。このため高周波信号、信号線間のアイソレーションが劣化する。
(effect)
In the signal line 10, the stray capacitance between the signal lines 52a and 52b can be reduced as described below. More specifically, in the conventional flexible substrate 500, as shown in FIG. 5A, the ground layers 506a and 506b exist between the signal lines 504a and 504b when viewed in plan from the stacking direction. A stray capacitance is generated between the signal lines 504a and 504b via the ground layers 506a and 506b. That is, as shown in FIG. 5A, stray capacitance C1 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504a. A stray capacitance C2 is generated between a part of the ground layer 506b located between the signal lines 504a and 504b and the signal line 504b. Therefore, a stray capacitance in which the stray capacitance C1 and the stray capacitance C2 are connected in series is generated between the signal lines 504a and 504b. As a result, a high-frequency signal leakage path is formed between the signal lines 504a and 504b via the stray capacitance. Since this leakage path is capacitive, the higher the frequency, the smaller the impedance between the signal lines, and the short between the signal lines. For this reason, the high-frequency signal and the isolation between the signal lines deteriorate.
 そこで、信号線路10では、グランド導体50a,50bは、z軸方向から平面視したときに、隣り合った状態で平行に延在している信号線52a,52b(中間部56a,56b)に挟まれている領域Eにおいて接続されていない。よって、図4に示すように、グランド導体50a,50b間の部分と信号線52aとの間に浮遊容量が発生しない。同様に、グランド導体50a,50b間の部分と信号線52bとの間に浮遊容量が発生しない。そのため、信号線路10では、従来のフレキシブル基板500に比べて、信号線52a,52b間に浮遊容量が発生しにくい。その結果、信号線路10では、フレキシブル基板500に比べて、例えば、2つの信号線52a,52bの間隔が300μm以下、更には、150μm以下になっても、信号線52a,52b間に高周波信号の漏えい経路が発生しにくい。なお、グランド導体54a,54bについても、グランド導体50a,50bと同様のことが言えるが、原理については同じであるので説明を省略する。隣り合っているグランド導体50a,50bの間隔及びグランド導体54a,54bの間隔は、例えば、高周波の周波数が800MHz~5GHzの場合には、50μm~300μmが好ましい。これは例えば、信号線の特性インピーダンスを50Ω系とした時の線間の浮遊容量の低減効果と、高周波信号線に流れる高周波電流による信号線路間の磁気結合の向上による高周波信号の漏えい経路形成により、高周波信号の電磁界バランスをとることが可能となる。これにより、高周波信号線路の結合度を下げることが出来る。つまり、この構造にすることでフレキシブルな高周波信号線路間は、非常に結合度の悪い方向性結合器を構成することが可能となり、高周波信号線路間のアイソレーションが向上する。 Therefore, in the signal line 10, the ground conductors 50 a and 50 b are sandwiched between the signal lines 52 a and 52 b (intermediate portions 56 a and 56 b) extending in parallel in an adjacent state when viewed in plan from the z-axis direction. Are not connected in the region E. Therefore, as shown in FIG. 4, stray capacitance does not occur between the portion between the ground conductors 50a and 50b and the signal line 52a. Similarly, no stray capacitance is generated between the portion between the ground conductors 50a and 50b and the signal line 52b. Therefore, in the signal line 10, stray capacitance is less likely to occur between the signal lines 52 a and 52 b than in the conventional flexible substrate 500. As a result, in the signal line 10, compared with the flexible substrate 500, for example, even if the distance between the two signal lines 52 a and 52 b is 300 μm or less, and further 150 μm or less, a high-frequency signal is transmitted between the signal lines 52 a and 52 b. Leakage path is unlikely to occur. The ground conductors 54a and 54b can be said to be the same as the ground conductors 50a and 50b. However, the principle is the same and the description is omitted. The distance between the adjacent ground conductors 50a and 50b and the distance between the ground conductors 54a and 54b are preferably 50 μm to 300 μm, for example, when the high frequency is 800 MHz to 5 GHz. This is due to, for example, the effect of reducing the stray capacitance between lines when the characteristic impedance of the signal line is 50 Ω and the formation of a leakage path for high-frequency signals by improving the magnetic coupling between the signal lines due to the high-frequency current flowing in the high-frequency signal lines. It is possible to balance the electromagnetic field of the high frequency signal. Thereby, the coupling degree of the high frequency signal line can be lowered. That is, with this structure, it becomes possible to configure a directional coupler having a very poor coupling degree between flexible high-frequency signal lines, and the isolation between the high-frequency signal lines is improved.
 また、信号線路10では、以下に説明するように、信号線52a,52b間の高周波信号の漏えい経路をより効果的に低減できる。より詳細には、信号線52a,52bの中間位置にグランド導体50a,50bが設けられていると、信号線52a,52bとの間において浮遊容量が発生しやすい。そこで、信号線路10では、グランド導体50a,50bは、z軸方向から平面視したときに、信号線52a,52b(中間部56a,56b)の中間の位置には設けられていない。その結果、信号線52a,52b間の高周波信号の漏えい経路が低減される。なお、グランド導体54a,54bについても、グランド導体50a,50bと同様のことが言えるが、原理については同じであるので説明を省略する。 Also, in the signal line 10, the leakage path of the high frequency signal between the signal lines 52a and 52b can be more effectively reduced as described below. More specifically, if the ground conductors 50a and 50b are provided in the middle of the signal lines 52a and 52b, stray capacitance is likely to occur between the signal lines 52a and 52b. Therefore, in the signal line 10, the ground conductors 50 a and 50 b are not provided at intermediate positions between the signal lines 52 a and 52 b (intermediate portions 56 a and 56 b) when viewed in plan from the z-axis direction. As a result, the leakage path of the high frequency signal between the signal lines 52a and 52b is reduced. The ground conductors 54a and 54b can be said to be the same as the ground conductors 50a and 50b. However, the principle is the same and the description is omitted.
(その他の実施形態)
 以上のように構成された信号線路10は、前記実施形態に示されたものに限らず、その要旨の範囲内において変更可能である。
(Other embodiments)
The signal line 10 configured as described above is not limited to that shown in the above embodiment, and can be changed within the scope of the gist thereof.
 なお、信号線路10では、信号線52a,52bは、ストリップライン構造をとっているが、マイクロストリップライン構造をとっていてもよい。具体的には、グランド導体50a,50b又はグランド導体54a,54bのいずれか一方が存在しなくてもよい。この場合でも、グランド導体50a,50b又はグランド導体54a,54bの間にスリットS1,S2が設けられることにより、信号線52a,52b間の高周波信号の漏えい経路が低減される。 In the signal line 10, the signal lines 52a and 52b have a stripline structure, but may have a microstripline structure. Specifically, either one of the ground conductors 50a and 50b or the ground conductors 54a and 54b may not exist. Even in this case, by providing the slits S1 and S2 between the ground conductors 50a and 50b or the ground conductors 54a and 54b, the leakage path of the high-frequency signal between the signal lines 52a and 52b is reduced.
 また、信号線路10では、グランド導体50a,50b間及びグランド導体54a,54b間のそれぞれにスリットS1,S2が設けられている。しかしながら、スリットS1,S2は、少なくともいずれか一方のみが設けられていればよい。 In the signal line 10, slits S1 and S2 are provided between the ground conductors 50a and 50b and between the ground conductors 54a and 54b, respectively. However, only one of the slits S1 and S2 needs to be provided.
 なお、信号線路10は、信号線部16がU字状に曲げて用いられてもよい。ただし、スリットS1,S2のいずれか一方のみが設けられている場合には、信号線部16の曲げ方向は、以下に説明する方向であることが望ましい。例えば、スリットS1のみが設けられている場合には、グランド導体50a,50bが接続されておらず、グランド導体54a,54bが接続されている。したがって、グランド導体50a,50bは、グランド導体54a,54bに比べて伸びやすい。そこで、信号線部16(本体12)は、グランド導体50a,50bが信号線52a,52bよりも外周側に位置するように曲げられることが望ましい。これにより、信号線部16を容易に曲げることが可能となる。 The signal line 10 may be used with the signal line portion 16 bent in a U shape. However, when only one of the slits S1 and S2 is provided, the bending direction of the signal line portion 16 is preferably the direction described below. For example, when only the slit S1 is provided, the ground conductors 50a and 50b are not connected, and the ground conductors 54a and 54b are connected. Therefore, the ground conductors 50a and 50b are easier to extend than the ground conductors 54a and 54b. Therefore, it is desirable that the signal line portion 16 (main body 12) be bent so that the ground conductors 50a and 50b are located on the outer peripheral side of the signal lines 52a and 52b. Thereby, the signal line portion 16 can be easily bent.
 また、信号線路10では、グランド導体50a,50b間、及び、グランド導体54a,54b間は、接続されていないものとした。しかしながら、グランド導体50a,50b間、及び、グランド導体54a,54b間は、接続されていてもよい。ただし、この場合には、グランド導体50a,50b間、及び、グランド導体54a,54b間は、領域E以外の部分で接続されている必要がある。 In the signal line 10, the ground conductors 50a and 50b and the ground conductors 54a and 54b are not connected. However, the ground conductors 50a and 50b and the ground conductors 54a and 54b may be connected. However, in this case, the ground conductors 50a and 50b and the ground conductors 54a and 54b need to be connected at portions other than the region E.
 なお、信号線路10では、2本の信号線52a,52bが隣り合っているが、3本以上の信号線路が隣り合っていてもよい。 In the signal line 10, the two signal lines 52a and 52b are adjacent to each other, but three or more signal lines may be adjacent to each other.
 本発明は、信号線路に有用であり、特に、平行に設けられた複数の信号線間の高周波信号の漏えい経路を低減できる点において優れている。 The present invention is useful for signal lines, and is particularly excellent in that the leakage path of high-frequency signals between a plurality of signal lines provided in parallel can be reduced.
 B1~B4 空白部
 E 領域
 L1 直線
 S1,S2 スリット
 b1~b32 ビアホール導体
 10 信号線路
 12 本体
 14a~14l 外部端子
 16,36a~36d 信号線部
 18,20,22,24,38a~38d,40a~40d,42a~42d,44a~44d コネクタ部
 32a~32d 絶縁シート
 50a,50b,54a,54b グランド導体
 52a,52b 信号線
 56a,56b 中間部
 58a,58b,60a,60b 端部
B1 to B4 Blank portion E region L1 Straight line S1, S2 Slit b1 to b32 Via hole conductor 10 Signal line 12 Body 14a to 14l External terminal 16, 36a to 36d Signal line portion 18, 20, 22, 24, 38a to 38d, 40a to 40d, 42a to 42d, 44a to 44d Connector portion 32a to 32d Insulating sheet 50a, 50b, 54a, 54b Ground conductor 52a, 52b Signal line 56a, 56b Intermediate portion 58a, 58b, 60a, 60b End portion

Claims (6)

  1.  可撓性材料からなる複数の絶縁シートが積層されてなる本体と、
     前記本体内において延在している第1の信号線及び第2の信号線と、
     前記本体内において前記第1の信号線に対して積層方向の一方側に設けられ、かつ、積層方向から平面視したときに、該第1の信号線と重なっている第1のグランド導体と、
     前記本体内において前記第2の信号線に対して積層方向の一方側に設けられ、かつ、積層方向から平面視したときに、該第2の信号線と重なっている第2のグランド導体と、
     を備え、
     積層方向から平面視したときに、隣り合った状態で平行に延在している前記第1の信号線及び前記第2の信号線に挟まれている領域において、前記第1のグランド導体及び前記第2のグランド導体が接続されていないこと、
     を特徴とする信号線路。
    A main body in which a plurality of insulating sheets made of a flexible material are laminated;
    A first signal line and a second signal line extending in the main body;
    A first ground conductor provided on one side in the stacking direction with respect to the first signal line in the main body and overlapping the first signal line when viewed in plan from the stacking direction;
    A second ground conductor provided on one side in the stacking direction with respect to the second signal line in the main body and overlapping the second signal line when viewed in plan from the stacking direction;
    With
    In a region sandwiched between the first signal line and the second signal line, which are adjacent to each other when viewed in plan from the stacking direction, the first ground conductor and the The second ground conductor is not connected,
    A signal line characterized by
  2.  前記本体内において前記第1の信号線に対して積層方向の他方側に設けられ、かつ、積層方向から平面視したときに、該第1の信号線と重なっている第3のグランド導体と、
     前記本体内において前記第2の信号線に対して積層方向の他方側に設けられ、かつ、積層方向から平面視したときに、該第2の信号線と重なっている第4のグランド導体と、
     を更に備えていること、
     を特徴とする請求項1に記載の信号線路。
    A third ground conductor provided on the other side of the stacking direction with respect to the first signal line in the main body and overlapping the first signal line when viewed in plan from the stacking direction;
    A fourth ground conductor provided on the other side in the stacking direction with respect to the second signal line in the main body and overlapping the second signal line when viewed in plan from the stacking direction;
    Further comprising
    The signal line according to claim 1.
  3.  前記本体は、前記第1のグランド導体及び前記第2のグランド導体が前記第1の信号線路及び前記第2の信号線路よりも外周側に位置するように曲げられること、
     を特徴とする請求項2に記載の信号線路。
    The body is bent so that the first ground conductor and the second ground conductor are located on the outer peripheral side of the first signal line and the second signal line;
    The signal line according to claim 2.
  4.  前記第3のグランド導体及び前記第4のグランド導体は、積層方向から平面視したときに、前記第1の信号線及び前記第2の信号線が隣り合った状態で平行に延在している領域であって、かつ、該第1の信号線及び該第2の信号線に挟まれている領域においては、接続されていないこと、
     を特徴とする請求項2又は請求項3のいずれかに記載の信号線路。
    The third ground conductor and the fourth ground conductor extend in parallel in a state where the first signal line and the second signal line are adjacent to each other when viewed in plan from the stacking direction. A region that is sandwiched between the first signal line and the second signal line and is not connected;
    The signal line according to claim 2, wherein:
  5.  前記第1のグランド導体及び前記第2のグランド導体は、前記第1の信号線及び前記第2の信号線が隣り合った状態で平行に延在している領域であって、かつ、該第1の信号線及び該第2の信号線に挟まれている領域において、積層方向から平面視したときに、該第1の信号線及び該第2の信号線の中間の位置には設けられていないこと、
     を特徴とする請求項1ないし請求項4のいずれかに記載の信号線路。
    The first ground conductor and the second ground conductor are regions extending in parallel in a state where the first signal line and the second signal line are adjacent to each other, and In a region sandwiched between the first signal line and the second signal line, it is provided at a position intermediate between the first signal line and the second signal line when viewed in plan from the stacking direction. Not,
    The signal line according to claim 1, wherein:
  6.  前記第1のグランド導体と前記第2のグランド導体とは、接続されていないこと、
     を特徴とする請求項1ないし請求項5のいずれかに記載の信号線路。
    The first ground conductor and the second ground conductor are not connected;
    The signal line according to claim 1, wherein:
PCT/JP2010/056666 2009-06-24 2010-04-14 Signal transmission line WO2010150588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-149590 2009-06-24
JP2009149590 2009-06-24

Publications (1)

Publication Number Publication Date
WO2010150588A1 true WO2010150588A1 (en) 2010-12-29

Family

ID=43386369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056666 WO2010150588A1 (en) 2009-06-24 2010-04-14 Signal transmission line

Country Status (1)

Country Link
WO (1) WO2010150588A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201596A (en) * 2012-03-26 2013-10-03 Murata Mfg Co Ltd Transmission line
WO2014103509A1 (en) * 2012-12-25 2014-07-03 株式会社村田製作所 Circuit board and electronic apparatus
WO2014115607A1 (en) * 2013-01-23 2014-07-31 株式会社村田製作所 Transmission line and electronic device
JP5672418B2 (en) * 2012-10-31 2015-02-18 株式会社村田製作所 High frequency signal line and manufacturing method thereof
EP2811572A4 (en) * 2012-02-02 2015-11-11 Yokogawa Electric Corp Insulation circuit and communication equipment
JP2016194600A (en) * 2015-03-31 2016-11-17 住友大阪セメント株式会社 Optical Modulator Module
US9949368B2 (en) 2015-12-07 2018-04-17 Murata Manufacturing Co., Ltd. Resin substrate and electronic device
JP2019095800A (en) * 2019-02-06 2019-06-20 住友大阪セメント株式会社 Optical modulator module
WO2020022722A1 (en) * 2018-07-26 2020-01-30 삼성전자 주식회사 Printed circuit board including ground line for canceling electromagnetic waves generated by power line, and electronic device including same
JPWO2021149605A1 (en) * 2020-01-20 2021-07-29
WO2022172575A1 (en) * 2021-02-12 2022-08-18 株式会社村田製作所 Circuit board
US12004289B2 (en) 2018-11-14 2024-06-04 Murata Manufacturing Co., Ltd. Flexible substrate and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114265A (en) * 2002-07-24 2003-04-18 Nec Corp High frequency circuit and shielded loop field detector using the same
JP2004207949A (en) * 2002-12-25 2004-07-22 Toppan Printing Co Ltd Transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114265A (en) * 2002-07-24 2003-04-18 Nec Corp High frequency circuit and shielded loop field detector using the same
JP2004207949A (en) * 2002-12-25 2004-07-22 Toppan Printing Co Ltd Transmission line

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811572A4 (en) * 2012-02-02 2015-11-11 Yokogawa Electric Corp Insulation circuit and communication equipment
JP2013201596A (en) * 2012-03-26 2013-10-03 Murata Mfg Co Ltd Transmission line
US9774070B2 (en) 2012-10-31 2017-09-26 Murata Manufacturing Co., Ltd. High-frequency signal line and manufacturing method thereof
JP5672418B2 (en) * 2012-10-31 2015-02-18 株式会社村田製作所 High frequency signal line and manufacturing method thereof
JPWO2014069095A1 (en) * 2012-10-31 2016-09-08 株式会社村田製作所 High frequency signal line and manufacturing method thereof
WO2014103509A1 (en) * 2012-12-25 2014-07-03 株式会社村田製作所 Circuit board and electronic apparatus
JP5655985B2 (en) * 2012-12-25 2015-01-21 株式会社村田製作所 Circuit boards and electronic equipment
US9750132B2 (en) 2012-12-25 2017-08-29 Murata Manufacturing Co., Ltd. Circuit board and electronic device
JP5696819B2 (en) * 2013-01-23 2015-04-08 株式会社村田製作所 Transmission line and electronic equipment
WO2014115607A1 (en) * 2013-01-23 2014-07-31 株式会社村田製作所 Transmission line and electronic device
JPWO2014115607A1 (en) * 2013-01-23 2017-01-26 株式会社村田製作所 Transmission line and electronic equipment
US9666925B2 (en) 2013-01-23 2017-05-30 Murata Manufacturing Co., Ltd. Transmission line, a transmission line apparatus, and an electronic device
JP2016194600A (en) * 2015-03-31 2016-11-17 住友大阪セメント株式会社 Optical Modulator Module
US9949368B2 (en) 2015-12-07 2018-04-17 Murata Manufacturing Co., Ltd. Resin substrate and electronic device
WO2020022722A1 (en) * 2018-07-26 2020-01-30 삼성전자 주식회사 Printed circuit board including ground line for canceling electromagnetic waves generated by power line, and electronic device including same
KR20200012153A (en) * 2018-07-26 2020-02-05 삼성전자주식회사 printed circuit board including a ground wiring for canceling the electromagnetic wave generated in the power wiring and electronic device with the same
US11464103B2 (en) 2018-07-26 2022-10-04 Samsung Electronics Co., Ltd. Printed circuit board including ground line for canceling electromagnetic waves generated by power line, and electronic device including same
KR102616482B1 (en) 2018-07-26 2023-12-26 삼성전자주식회사 printed circuit board including a ground wiring for canceling the electromagnetic wave generated in the power wiring and electronic device with the same
US12004289B2 (en) 2018-11-14 2024-06-04 Murata Manufacturing Co., Ltd. Flexible substrate and electronic device
JP2019095800A (en) * 2019-02-06 2019-06-20 住友大阪セメント株式会社 Optical modulator module
JPWO2021149605A1 (en) * 2020-01-20 2021-07-29
WO2021149605A1 (en) * 2020-01-20 2021-07-29 株式会社村田製作所 Electronic apparatus
JP7268762B2 (en) 2020-01-20 2023-05-08 株式会社村田製作所 Electronics
WO2022172575A1 (en) * 2021-02-12 2022-08-18 株式会社村田製作所 Circuit board

Similar Documents

Publication Publication Date Title
WO2010150588A1 (en) Signal transmission line
JP5310949B2 (en) High frequency signal line
JP5505455B2 (en) Signal line
JP5582168B2 (en) High frequency signal line
JP5754562B1 (en) High frequency signal lines and electronic equipment
WO2013080887A1 (en) High-frequency signal wire paths, method for manufacturing the same, and electronic device
JP6233473B2 (en) High frequency signal transmission line and electronic equipment
JP5975059B2 (en) Directional coupler
WO2011021677A1 (en) Antenna module
WO2013099609A1 (en) High-frequency signal line and electronic device
US9564868B2 (en) Balun
WO2013114975A1 (en) High frequency signal transmission line and electronic device
JP5472556B2 (en) High frequency signal lines and electronic equipment
WO2013099286A1 (en) Multilayer wiring board
WO2013099603A1 (en) High frequency signal line and electronic apparatus
WO2014020999A1 (en) Flat cable
WO2014115678A1 (en) High frequency signal transmission line, and electronic apparatus
JP5375319B2 (en) Signal line and manufacturing method thereof
WO2013099604A1 (en) High-frequency signal line and electronic apparatus
JP4471281B2 (en) Multilayer high frequency circuit board
WO2014002763A1 (en) High-frequency signal line
JP2023168665A (en) High frequency circuit and radar device
JP2024031783A (en) Multilayer substrate
JP5660182B2 (en) Signal line manufacturing method
JP2013135173A (en) High frequency signal line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP