WO2010148933A1 - 大型风电机组独立变桨控制方法 - Google Patents

大型风电机组独立变桨控制方法 Download PDF

Info

Publication number
WO2010148933A1
WO2010148933A1 PCT/CN2010/073598 CN2010073598W WO2010148933A1 WO 2010148933 A1 WO2010148933 A1 WO 2010148933A1 CN 2010073598 W CN2010073598 W CN 2010073598W WO 2010148933 A1 WO2010148933 A1 WO 2010148933A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
deviation
expected
component
same
Prior art date
Application number
PCT/CN2010/073598
Other languages
English (en)
French (fr)
Inventor
叶杭冶
许国东
应有
Original Assignee
浙江运达风力发电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江运达风力发电工程有限公司 filed Critical 浙江运达风力发电工程有限公司
Priority to EP10791439.2A priority Critical patent/EP2447527B1/en
Priority to DK10791439.2T priority patent/DK2447527T3/da
Priority to ES10791439.2T priority patent/ES2645671T3/es
Publication of WO2010148933A1 publication Critical patent/WO2010148933A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0292Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power to reduce fatigue
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the current method of reducing the imbalance of sheep is to measure the azimuth.
  • the same genre does not depend on the position, but under certain factors (everything, slanting)
  • control can be reduced, and the spindle, yaw bearing and the bearing can be reduced. But the control is more and more, the system is non-domain, and, therefore, it is very direct control, but it uses modern control.
  • This provides a large-scale control method, including the control of the ⁇ control and the control of the deviation control.
  • the same control force is used to complete the special control with the P control, and the same deviation is obtained.
  • the P-transformed component and the yaw component are controlled by the component and the yaw component, respectively, to obtain the expected d and q on d and q.
  • the expected P is obtained by the deviation control, and the expected deviation is the same as the expected deviation of the same market, and the expected deviation is obtained.
  • the P control is used to complete the special control, and the same city that is expected to be released is the same as the rest of the city.
  • the specific deviation AoU is obtained, and the following Plass is the same as expected.
  • the main controller will be the root.
  • Y3 P get component r and yaw component
  • the number of scales of the controller, the private branch of the P controller is the same as the constant 3), and the (d) expected on the d-axis and q, Deviate the expected deviation of the deviation control
  • the deviation from the expected same market and deviation control is expected to be obtained by the following formula, and A + A is obtained from the following formula, which is the same as expected. 2) Controlling the expected deviation A 2A Controlling the desired . , the main controller will be the root.
  • the y3 P front includes the following low filter of Plass root (
  • the natural frequency of the low filter the natural frequency of the low filter. , in the following prass, respectively, the sum of the expected forwards on q and the yaw component Laplace filter
  • the control of the wood is composed of the same control and deviation, that is, the output of the control (expected) is obtained from the output of the deviation control (the expected deviation part) of the same control output (the same part of the expectation).
  • the same control and deviation control line solution, the same control function, P control completes the special control and the deviation control reduces the imbalance of the mask.
  • the unbalanced r sum that is concealed is caused by the upper (unbalanced force). If the deviation control reduces the P (P represents the special frequency multiple) component of the mid-happiness, the mask imbalance can be effectively reduced.
  • P the special frequency multiple
  • p Xiangfan V
  • the domain in the case of the assumption that V is not, in the vicinity of the work, the domain can be rationalized into a domain ratio, so to reduce the P component, the same frequency (P) is required.
  • the wood of the deviation control considers reducing the P component of the mid-happiness.
  • P, y y3 is fixed to -q, and the d component and the q component are obtained, and the d component and the q component represent the unbalanced sums of the masks, respectively.
  • the low filter In the deviation control, the low filter and the trap filter, the low filter is used to reduce the sensitivity of the higher frequency controller, the trap filter is used for the 3P component, the fixed download 3P component controller is large, the yaw bearing, the household larger.
  • the above purpose, special and easier to understand are as follows, and the following is a description of the method of rest.
  • the control method includes near deviation control including 1), measuring 4 y3) of the root and azimuth
  • the main controller will root 4 y3) P to get the component r and yaw component
  • n d Wyaw (the ratio of the TTg controller, the private value of the P controller is the same as the constant 3), and the expected ( ) P on the d-axis and q, the deviation is expected to be obtained.
  • the component of 2a can be, medium, and frequency P has a very large specific gravity, and has other components such as 2P, 3P, and 4P.
  • the main components are 3P, 6P P, and other components can cancel each other out.
  • the other components of the above cannot be offset each other and will be unbalanced (2b). Unbalanced, spindle, and yaw bearings are very large, and life is very unfavorable.
  • the same control unit is mounted on the encoder Zart, low filter and trap filter, and then reference.
  • the phase deviation is obtained, and the P control is obtained, which is the same as expected.
  • Low filtering reduces the sensitivity of the controller at higher frequencies, and the trap filter is used to prevent unnecessary frequencies at frequencies close to 6P.
  • the gain table lookup method in the P the gain table is compiled as a function of the mean.
  • the force density R to C The number of moments is more effective than the V of A. Since the gravity load and the inertia phase are small, they are ignored. With the same uniform distribution, the phase angle force is 120. .
  • the main shaft, the yaw bearing and the frame, the special must be fixed to (3b).
  • the enthalpy is fixed on the upper y component and z, the physical moment n represented by the component and the yaw moment Under the formula
  • P (Equation 5), to obtain the expectation of the same frequency (P) to reduce the P component in the middle.
  • the P component Pa in the control of the P controller is replaced by a fixed moment component and a yaw moment component of 0, which is the reference 0 of the controller. Since the deviation is higher than the rated value and lower than the rated condition, and the system is non-domain, the gain of the P controller and the forest market are all checked.
  • the root of the sensor is at the root of the sensor (W. y3 , and the incremental encoder mounted on the azimuth
  • the main controller will root (W. y3 low filter, then P (formula 5), rM component, respectively, filter, 3P component, P controller control, yield ( ), P
  • This wood is the new requirement frequency P, which is less than 0.5 z at present, so it is ok to use it at present.
  • the current large-scale is basically the same, so the control does not require physical knots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Feedback Control In General (AREA)

Description

大型 控制方法
本 要求于 2009 6 22 提交中 利局、
200910100064.8、 大型凡 控制方法 的中
的 先 , 其全部內容 引用結合在本 中。
木領域
本 于大型凡 的控制方法,尤其是大型凡 控制 方法。 背景 木
凡 、 凡湍流、 、 偏航偏差等因素 大型凡 的 戶生 不均衡 。 果凡 的羊 容量越大, 則凡 直往也越大, 介凡 受力的不均衡 就越 , 掩上不均衡 也就越 。 掩上的不均衡
軸承、 、主軸、偏航軸承、 等重要部件造成很大的 。 目前大型 凡 乎都 功的 同 木,也就是三套 的 得到的是同 的位置指令,但 凡
在 中不能消除不均衡 的影 。
上分析, 休情況 控制有可能減小 掩上的不均衡 。
目前減小不均衡 的 羊方法是測量 方位角。 在 凡況中, 同的凡 化 不特別依靠 位置 , 但是 于 些特定 因素 (凡 、 、 凡 傾斜), 上的某 在 功力 下
方位角 化。 上說, 只要 化是 的, 則 的 可以按照 方位角的 , 而減小上述 造成的 化。 凡 化而 化, 但是可以 凡向 此 校 。 果 的凡向 也 使用, 那 也可以 偏航 校 。
但 凡物中, 湍流 的 化 地位, 所以通 往 以 理想效果,特別是 于大型 未說,這 的 位置的 化 有所不同, 所以最 的效果 都迷不到。
果 不 的測量, 通 控制減小 神不 , 就可以 減小 、 、 主軸、 偏航軸承及 的 。 但是 控制是多 和多 , 統 具有非域性、 和 , 因此, 般很 直接 控制 未 但是利用現代控制
各, 而且很 休 。
內容
了克服現有凡 的 控制方法不能有效減小 掩上的不均 、容易出現較大的 的不足,本 提供了 神通 測量不均衡 、 兔出現較大的 的大型凡 控制方法。
本 提供 大型凡 控制方法, 包括 將狙 控制解 同 控制 和偏差 控制 所述 同 控制 程力 利用 P 控制完成 特 控制, 得到 同 期望 出的 同市 所述偏差 控制 程力 測量得到的 根部
P 換得到 分量和偏航 分量 由 分量和偏航 分量分別 P 控制 得到 d 和q 上期望 出的 由 d 和q 上 期望 出的 P 換得到偏差 控制期望 出的偏差 所述 同 期望 出的 同市 偏差 控制期望 出的偏 差 和得到 控制期望的
控制。 , 所述利用 P 控制完成 特 控制, 得到 同 期望 出的 同市 休 札特 ,將 札特 參考特 。相 得出特 偏差 AoU, 以下 普拉斯 得出 同 期望 出的 同市
( 乙 +sTc), 其中 P 控制器的比例 數, P 控制器的私分 A 』)
同常數。 , 所述偏差 控制 休 1)、 測量得到 根部的 。 y3 和 方位角
起 主控制器, 主控制器將 根部 。
Figure imgf000005_0001
y3 P , 得到 分量 r 和偏航 分量
2)、 以下 普拉斯 分別得到 d 和 q 上期望 出的
( ) (
1十 ), 1十 ), 其中 、 P 控 m ( u WWy sT
制器的比例 數, 、 P 控制器的私分 同常數 3)、 將所述d軸和q 上期望 出的 ( ) P , 得出偏差 控制期望 出的偏差
,所述 所述 同 期望 出的 同市 和偏差 控制期 望 出的偏差 得到 控制期望的 , 由以下公式得到 A +A 十 十 其中, 同 期望 出的 同市 2 ) 控制期 望 出的偏差 A 2A 控制期望的 。 , 所述主控制器將 根部 。 y3 P 前近包括 按以下 普拉斯 根部 低 濾波 (
(s) s 十 oo
"
其中 123, 和 分別 濾波前和濾波 的根部 ,
"
低 濾波器的固有頻率, 低 濾波器的固有頻率。 ,在所述 以下 普拉斯 分別得 和q 上期望 出的 前近包括 吋所述 分量 和偏航 分量
Figure imgf000006_0001
分別 以下 普拉斯 陷濾波
W (s +2 2
r s/ +s / "。(s 2
_\+2r +s / .
n 十 / +s / 十 』/ 十s / 其中, 濾波 的 分量,
"。 濾波 的偏航 分量, 、 陷濾波器的固有頻率, 、 陷濾波器的 比。 , 所述P 3/2 。 , 所述將 札特 參考特 。相 得出特 偏差A 前 近包括 將友 札特 以下 普拉斯 濾波 "(S) \+2n 0 十 /
" .
S) S 十2 ,十 2 十 oof 其中, 濾波 的 札特 , 低 濾波器的固有頻率, 低 濾波器的 比, 、 陷濾波器的固有頻率, 、 陷濾波器 的 比。 ,所述 根部的 y3)是由裝在 根部的光仟 感器 出的。 , 所述 方位角 是由裝在 上的增量 編碼器 出的。 本 的有益效果主要表現在 、 能有效減小 掩上的不均衡 , 而降低 軸承、 主軸、 、 偏航軸承、 架上的 , 因此提高了 各可靠性和 了 各使用 2、 可以戶生 介反映 凡 的偏航 ,使凡 可以在不使用偏航 的情況下 凡 的 凡 ' 。
說明
1 凡 分布 ,X 高度,Y 中 的水平 , Z 凡
2a
2b
3 a 于分析 的 特
3b 于分析 、 等凡 部件 固定 4力本 明技木的 控制原理
5 所述偏差控制器 函數 。
其中 平均值, 同 期望 出的 同市 , 、 、 偏差 期望 出的偏差 , A、 、
期望 , 、 必 d 和q 上期望 出的 , ,、 、
Figure imgf000008_0001
。 的根部 , 、 d 和q 上的 分量, 札特 , e 特子參考 , Ao 特 偏差, 方位角, 、 、 P 控制器的增益, 、 、 P 控制器的私分 同常數, 、 低 濾波器的固有頻率, 、 低 濾波器的 比, 、 、 、 陷 濾波器的固有頻率, 、 、 、 陷濾波器的 比。
休 方式
了 本領域 木 更好地理解和 本 ,下面介紹本 的 和基本原理。
本 的 木 用的 控制由 同 控制和偏差 組成, 即 控制的 出量 ( 期望 出的 )由 同 控制的 出量( 期望 的相同部分) 上偏差 控制的 出量 ( 期望 的偏差部分)得到。 同 控制和偏差 控制 行解 , 同 控制 功能, P 控制完成 特 控制 而偏差 控制 于減小 掩上的不均衡 。
掩上的不均衡 r 和 是由 上的 ( 受 力不均衡)引起的。 果 偏差 控制 減小 中 休的 P( P 代表 特 頻率 倍) 分量, 就能有效減小 掩上的不均衡 。 p、 相 凡 V有 , 在假定相 凡 V不 情況下, 在工作 附近, 可以把 域性化 理成域性比例 , 因此 減小 中的 P 分量, 就需要 同頻率 ( P) 。
因此,所述偏差 控制的 木 考慮減小 中 休的 P 分量。 利用 常用的P , 將 y y3) 到 固定 中 -q 上, 得到 d 分量和q 分量, 而d 分量和q 分量 剛好分別代表 掩上的不均衡 和 。 分 別 d 分量和q 分量 P 控制 (控制 0), 得到 d 和q 上期望 出的 c ), pa 換得到 P頻率 化的偏差 A), 以減小 中 休的 P 分量。 在偏 差控制中 低 濾波器和 陷濾波器,低 濾波器用于降低較高頻率 控制器的 敏度, 陷濾波器用于 3P 分量, 因 固定 下 載 的 3P 分量 控制器 大 , 、 偏航軸承、 戶生較大的 。 本 的上述目的、特 和 更 易懂, 下面結合 本 的 休 方式 的說明。
參照 1 5, 本 提供的 大型凡 控制方 法, 包括 同 控制 , 所述 同 控制 程力 札特 , 將 札特 參考特 。相 得出特 偏差 , 以下 普拉斯 得出 同 期望 出的 同市 /6c(
+sTc , 其中 P A ) 控制器的比例 數, P 控制器的私分 同常數。 所述 控制方法近包括偏差 控制 ,所述偏差 控制 包括 1)、 測量得到 根部的 4 y3)和 方位角
起 主控制器, 主控制器將 根部 4 y3) P , 得到 分量 r和偏航 分量
2)、 以下 普拉斯 分別得到 d 和 q 上期望 出的
( ) (5
(1十 d)), (5
1十 ), 其中 、 P 控 yy
n d Wyaw( TTg 制器的比例 數, 、 P 控制器的私分 同常數 3)、 將所述d軸和q 上期望 出的 ( ) P , 得出偏差 控制期望 出的偏差
同 期望 出的 同市 和偏差 控制期望 出的偏差 得出 控制期望的 A
A 十 十 , 所述期望 (/8 /82 /83 )分別控制各 伺服
上的凡 在 同上和 同上都是 化的,因 1表示凡 分 布 的 介 。 由于凡的 , 凡 高度增 而增 , 因此 特 , 垂直向上 比垂直向下 遭受更大的凡 ,凡 在 特 上 形成 。 此外, 在同 高度, 風速可以分成 分量, 第 介分量是此 高度的平均凡 , 另 介凡 是由湍流戶生的隨和凡 。凡速不均勻分布 戶生不均衡的 。
2a和 2 , 凡 某 工況下的 和
n , 況 特 .2p , 即 P 0.287 z。 由 2a可 , 中, 頻率 P 的 分量 非常大的比重, 同 近有 2P, 3P, 4P 等其它 分量。 在理想凡況下, 于 凡 , 上的 主要是3P, 6P P等 分量,而其它 分量是可以 相互抵消 的。但在 凡況中, 上 的其它 分量是不能 相互抵消, 將戶生不平衡 ( 2b 所示)。 不平衡的 、 主軸、 偏航軸承戶生很大 , 凡 命是很不利的。
4, 把 控制 dvd a p ch Co o 同 控制 (Co ec vep chCo o )和偏差 控制 d ee a p chCo o 同 控制利用 的P 控制器完成 特 控制 ( 控制功能), 偏差 控制 于減小 同的不均衡 。 控制期望 角力 同 期望 出的 同市 上偏差 期望 出的偏差 。
同 控制 程力 裝在 上的編碼器 札特 , 低 濾波和 陷濾波,再 參考特 。相 得出特 偏差 , P 控制, 得出 同 期望 出的 同市 。低 濾波 于降低在較高頻率 控制 器的 敏性, 陷濾波器用于在頻率接近6P 阻止不必要的 。 考慮 到 統的非域性, P 器中的增益 查表法 , 增益表編制力 于 平均值 的函數。
下面 偏差 控制方法, 首先 凡札什 的 分析。 3 a是 常用于分析 的 特 , 在 特 上, 根部的 力矩 " 2
其中, 力空 密度 R 往 C
Figure imgf000012_0001
) 的 力矩 數 的 比 A 的 V 的有效凡 。 由 于 重力 荷及慣性 相 較小, 因此忽略不 。 同 凡 均勻分布, 相 角力 120。。 了 凡 、 主軸、 偏航軸承及 架上的 , 必須把 特 中 , 到 固定 ( 3b ) 。 化, 被吏 固定 上y 上 分量和z 上 , 分量代表的物理 力矩 n和偏航力矩
Figure imgf000012_0002
, 公式 下
3
以刃co ) ] (2)
3
3
Z S ) (3) 其中, 凡札特 , 即 P 由公式 (2)和 (3)可 , 控制中常用的 P 可以 特 中 固定 上的 。 本 木用到的3/2 交換公式
Figure imgf000012_0003
3/2 交換公式 (5)
Figure imgf000013_0001
其中, 方位角, oU 。
中的 P 分量 P 公式4), 固定 下 力矩 的 P 分量和偏航力矩 的 P 分量, 分別 P 控制,得到 出量( c
2 ), P (公式5) ,得出同頻率( P) 化的期望 , 以減小 中的 P 分量。 P 控制器的控制 中的 P 分量 Pa 換成 固定 中的 力矩 分量和偏航力矩 分量 都 0, 即控制器的參考 0。 由于偏差 在高于額定凡 和低于額定凡 況 都 ,且 統 是 非域性的, 因此P 控制器的增益及 林市的 都 查表法 。
休 5所示,裝在 根部的光仟 感器 根 部的 (W。 y3 , 和裝在 上的增量 編碼器 方位角
起 主控制器, 主控制器將 根部 (W。 y3低 濾 波, 再 P (公式5), rM 分量, 然 分別 陷 濾波, 3P 分量, P 控制器控制,得出 出量( ), P
(公式6), 得出偏差控制期望 出的偏差 凡
最 , 得 出 控制 的 期望
十 A 八 八+ ), 分別特 V + V 固的控制 ,通 控制伺服控制器特 定 固內的 , 控制 。
此 木 是新增 統 要求頻率 P, 于目前大型凡 , P 般小于0.5 z, 因此, 于目前大型凡 已 用的 是可以 的。 另 是目前大型凡 基本是都是 功的 同 木, 因此 于 控制不需要物理結 。
以上所述, 是本 的較佳 而已, 非 本 任何形式上的 限制。 然本 已以較佳 揭露 上, 然而 非用以限定本 。 任何 熟悉本領域的 木 ,在不 本 明技木 固情況下,都可利用上述 揭示的方法和 木內容 本 明技木 做出許多可能的 和修飾,或修改 等同 化的等 。 因此, 凡是未 本 明技木 的內容, 依 本 的 木 以上 所做的任何 羊修 、等同 化及修飾, 仍 于本 明技木 的 固內。

Claims

要 求
1、 大型凡 控制方法, 其特 在于, 包括 將狙 控制解 同 控制 和偏差 控制 所述 同 控制 程力 利用 P 控制完成 特 控制, 得到 同 期望 出的 同市 所述偏差 控制 程力 測量得到的 根部的 P 換得到 分量和偏航 分量 由 分量和偏航 分量分別 P 控制 得到 d 和q 上期望 出的 由 d 和q 上期望 出的 P 換得到偏差 控制期望 出的偏差
所述 同 期望 出的 同市 偏差 控制期望 出的偏 差 得 和到 控制期望的 由 控制期望的 控制各 伺服 控制。
2、 要求1所述的大型凡 控制方法,其特 在于, 所述利用 P 控制完成 特 控制, 得到 同 期望 出的 同市 休
札特 ,將 札特 參考特 。相 得出特 偏差 , 以下 普拉斯 得出 同 期望 出的 同市
(s
+sTc), 其中 P 控制器的比例 數, P 控制器的私分 A
同常數。
3、 要求1所述的大型凡 控制方法,其特 在于, 所述偏差 控制 休 1)、 測量得到 根部的 (W。 y3)和 方位角
起 主控制器, 主控制器將 根部 W。
Figure imgf000016_0001
y3) P , 得到 分量 r和偏航 分量
2)、 以下 普拉斯 分別得到 d 和 q 上期望 出的
( ) (s (s
1十 ), 1 w), 其中 、 P 控 m ( d Wyaw(s sTg
制器的比例 數, 、 P 控制器的私分 同常數 3)、 將所述d軸和q 上期望 出的 ( ) P , 得出偏差 控制期望 出的偏差 )
4、 要求3所述的大型凡 控制方法,其特 在于, 所述 所述 同 期望 出的 同市 和偏差 控制期望 出的偏 差 得到 控制期望的 , 由以下公式得到 A + c 十 十 其中, 同 期望 出的 同市
Figure imgf000016_0002
望 出的偏差 A A 控制期望的 。
5、 要求3所述的大型凡 控制方法,其特 在于, 所述主控制器將 根部 W。 y3) P 前近包括 按以下 普拉斯 根部 低 濾波 s) 0
( 十 s+
"
其中 23, 和 分別 濾波前和濾波 的根部 ,
"
低 濾波器的固有頻率, 低 濾波器的固有頻率。
6、 要求3所述的大型凡 控制方法,其特 在于,
包括 吋所述 分量 r 和偏航 分量
Figure imgf000017_0001
分別 以下 普拉斯
陷濾波
(s +2 s/ +s , s /
"。(s + / + 2 .
r ) 2n 十 / 十 / 十s / 其中, 濾波 的 分量, 濾波 的偏航 分量, 、 陷濾波器的固有頻率, 、 陷濾波器的 比。
7、 要求 1或2所述的大型凡 控制方法, 其特 在于, 所述P 3/2 。
8、 要求2所述的大型凡 控制方法,其特 在于, 所述將 札特 參考特 e相 得出特 偏差A 前近包括 將友 札特 以下 普拉斯 濾波 "( ) \+2n 十 /
" .
(s) s +2 十 1+2n s/ 十 其中, 濾波 的 札特 , 低 濾波器的固有頻率, 低 濾波器的 比, 、 陷濾波器的固有頻率, 、 陷濾波器 的
9、 要求3所述的大型凡 控制方法,其特 在于, 所述 根部的 。
Figure imgf000018_0001
y3 是由裝在 根部的光仟 感器 出的。
10、 要求3所述的大型凡 控制方法,其特 在于,
PCT/CN2010/073598 2009-06-22 2010-06-07 大型风电机组独立变桨控制方法 WO2010148933A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10791439.2A EP2447527B1 (en) 2009-06-22 2010-06-07 Individual pitch control method for large wind generating set
DK10791439.2T DK2447527T3 (da) 2009-06-22 2010-06-07 Fremgangsmåde til individuel pitchstyring for stort vindgeneratoranlæg
ES10791439.2T ES2645671T3 (es) 2009-06-22 2010-06-07 Método de control de paso individual para gran conjunto generador eólico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101000648A CN101592127B (zh) 2009-06-22 2009-06-22 一种大型风电机组独立变桨控制方法
CN200910100064.8 2009-06-22

Publications (1)

Publication Number Publication Date
WO2010148933A1 true WO2010148933A1 (zh) 2010-12-29

Family

ID=41406959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073598 WO2010148933A1 (zh) 2009-06-22 2010-06-07 大型风电机组独立变桨控制方法

Country Status (5)

Country Link
EP (1) EP2447527B1 (zh)
CN (1) CN101592127B (zh)
DK (1) DK2447527T3 (zh)
ES (1) ES2645671T3 (zh)
WO (1) WO2010148933A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080627A (zh) * 2011-03-03 2011-06-01 北京科诺伟业科技有限公司 双馈风力发电机组的安全链单元
CN102182631A (zh) * 2011-05-03 2011-09-14 苏州能健电气有限公司 风力发电设备主控装置
WO2012136279A3 (en) * 2011-04-07 2013-04-04 Siemens Aktiengesellschaft Method of controlling pitch systems of a wind turbine
CN114109742A (zh) * 2021-11-22 2022-03-01 西安热工研究院有限公司 桨距角偏差引起的风力机风轮不平衡根因定位及矫正方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592127B (zh) * 2009-06-22 2011-09-14 浙江运达风电股份有限公司 一种大型风电机组独立变桨控制方法
CN101839806B (zh) * 2010-03-25 2012-05-23 三一电气有限责任公司 风力发电机组及其疲劳载荷监测系统
CN102102630B (zh) * 2010-10-26 2012-09-19 重庆大学 变速变桨风力发电机组独立变桨控制方法
CN102619683A (zh) * 2011-01-30 2012-08-01 华锐风电科技(集团)股份有限公司 一种风力发电机变桨与偏航的分布式控制系统
CN102182633B (zh) * 2011-06-07 2013-07-24 浙江运达风电股份有限公司 一种大型风电机组独立变桨控制方法及装置
CN102506011B (zh) * 2011-12-30 2013-12-04 国电联合动力技术有限公司 变桨距风力发电机组桨距位置同步校正方法
CN102636367B (zh) * 2012-04-23 2014-08-27 浙江大学 一种模拟风力及海流载荷的多自由度动力加载装置
WO2013182204A1 (en) * 2012-06-08 2013-12-12 Vestas Wind Systems A/S A method of operating a wind turbine as well as a system suitable therefore
CN102865192B (zh) * 2012-10-24 2016-02-03 南车株洲电力机车研究所有限公司 一种削减风电机组尖峰载荷的变桨控制方法
CN103527405B (zh) * 2013-01-17 2016-01-13 成都阜特科技股份有限公司 一种双馈式风力发电机组变桨距控制方法
DK2784303T3 (en) 2013-03-27 2017-01-30 Alstom Renovables Espana Sl Method of operating a wind turbine
CN104214044A (zh) * 2013-05-30 2014-12-17 成都阜特科技股份有限公司 双馈式变速变桨风力发电机组的独立变桨距控制方法
CN104214045B (zh) * 2013-05-30 2017-03-08 成都阜特科技股份有限公司 双馈式变速变桨风力发电机组的独立变桨距控制方法
CN103742362B (zh) * 2014-01-15 2017-03-01 北京金风科创风电设备有限公司 直驱永磁风力发电机组的独立变桨控制系统及方法
CN103835881B (zh) * 2014-03-05 2016-09-28 沈阳华创风能有限公司 基于电动有效阻尼的独立变桨系统及变桨方法
CN103925156B (zh) * 2014-05-04 2016-08-17 中船重工(重庆)海装风电设备有限公司 一种风力发电机组变桨控制方法和系统
CN104320030B (zh) * 2014-09-19 2017-06-27 北京天诚同创电气有限公司 永磁同步风力发电机的整流电压的控制方法及控制装置
US9567978B2 (en) 2014-10-27 2017-02-14 General Electric Company System and method for adaptive rotor imbalance control
CN104732060B (zh) * 2015-01-19 2017-09-29 湖南科技大学 一种大型风电机组叶片多重载荷在线识别方法
CN106321352B (zh) * 2015-06-30 2018-11-27 中国船舶重工集团海装风电股份有限公司 一种等效变桨微分控制方法及装置
CN105332856A (zh) * 2015-11-02 2016-02-17 浙江运达风电股份有限公司 一种基于测量固定坐标系下主轴载荷的风电机组独立变桨控制方法
CN105226716B (zh) * 2015-11-04 2017-07-21 浙江运达风电股份有限公司 一种分布式双馈风力发电机组自动电压控制方法
CN105986961B (zh) * 2016-04-28 2018-07-31 华北电力大学 一种变速变桨风力机功率优化控制方法
CN106014857B (zh) * 2016-05-16 2019-11-15 国网冀北电力有限公司秦皇岛供电公司 抑制风电机组载荷的独立变桨控制方法及装置
CN106773685A (zh) * 2016-12-08 2017-05-31 国家电网公司 一种用于风电偏航系统的角度pi控制器整定方法
EP3607198B1 (en) * 2017-04-05 2022-12-21 Vestas Wind Systems A/S Air density dependent turbine operation
CN108443065A (zh) * 2018-03-06 2018-08-24 浙江运达风电股份有限公司 一种大型风力发电机组独立变桨控制优化方法
US11421652B2 (en) 2018-05-09 2022-08-23 Vestas Wind Systems A/S Rotor control system for reducing structural vibrations based on m-blade transformation
DE102018130636A1 (de) * 2018-12-03 2020-06-04 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
CN111379665B (zh) * 2018-12-27 2024-02-23 北京金风科创风电设备有限公司 风力发电机组的变桨控制方法及系统
CN114258459A (zh) * 2019-05-28 2022-03-29 维斯塔斯风力系统集团公司 利用叶片载荷信号减少沿边振动
CN110259637B (zh) * 2019-06-25 2021-03-23 中国船舶重工集团海装风电股份有限公司 风力发电机组的叶片气动不平衡矫正方法、装置及设备
CN110296046B (zh) * 2019-06-28 2020-05-12 湘电风能有限公司 一种风力发电机变桨控制方法
DE102019117934A1 (de) * 2019-07-03 2021-01-07 aerodyn product + license GmbH Verfahren zur aerodynamischen Leistungsregelung einer eine Mehrzahl von Rotorblättern aufweisenden Windenergieanlage
CN110439747B (zh) * 2019-08-02 2020-08-11 明阳智慧能源集团股份公司 一种降低风电塔筒左右方向振动及载荷的ipc控制方法
CN113027699B (zh) * 2019-12-25 2022-07-12 新疆金风科技股份有限公司 风力发电机组的监测方法、装置和系统
CN113031527B (zh) * 2019-12-25 2023-05-30 新疆金风科技股份有限公司 多轴同步变桨控制方法、装置以及系统
CN111075650B (zh) * 2019-12-30 2021-01-26 明阳智慧能源集团股份公司 风力发电机组基于激光雷达前馈测风的独立变桨控制方法
CN112196735B (zh) * 2020-09-30 2023-07-21 重庆科凯前卫风电设备有限责任公司 基于双馈风力发电机组的变桨控制方法
KR102228726B1 (ko) * 2020-10-30 2021-03-17 한밭대학교 산학협력단 게인-스케쥴링을 이용한 풍력터빈 개별피치제어 시스템 및 제어방법
KR102228727B1 (ko) * 2020-11-10 2021-03-17 한밭대학교 산학협력단 블레이드 모드 노치필터를 적용한 풍력터빈의 개별피치제어 시스템 및 제어방법
CN117561377A (zh) * 2021-05-17 2024-02-13 维斯塔斯风力系统集团公司 带不可用叶片负载传感器的单独桨距控制
CN114483448A (zh) * 2022-01-18 2022-05-13 浙江大学 用于大型风力发电机组独立变桨控制的变桨限幅方法
CN117191130A (zh) * 2023-09-27 2023-12-08 深圳市英博伟业科技有限公司 一种多场景在线温湿度监控方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117353A (ja) * 1992-10-05 1994-04-26 Yamaha Motor Co Ltd 風力発電装置
JP2005061300A (ja) * 2003-08-11 2005-03-10 Fuji Heavy Ind Ltd 水平軸風車及びその制御方法
CN1860292A (zh) * 2003-09-03 2006-11-08 通用电气公司 风力涡轮机的冗余叶片节距控制系统和控制风力涡轮机的方法
US20080247873A1 (en) * 2007-04-04 2008-10-09 Siemens Aktiengsellschaft Method of reducing a structural unbalance in a wind turbine rotor and device for performing the method
CN101404476A (zh) * 2008-10-15 2009-04-08 东南大学 并网变速恒频风力发电机组运行控制方法
CN101592127A (zh) * 2009-06-22 2009-12-02 浙江运达风力发电工程有限公司 一种大型风电机组独立变桨控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994947B2 (ja) * 2007-05-21 2012-08-08 三菱重工業株式会社 風力発電装置および風力発電装置のヨー旋回駆動方法
ES2375310T3 (es) * 2007-09-12 2012-02-28 Siemens Aktiengesellschaft Controlador para sistema de guiñada para una turbina eólica y método para reducir las cargas que actúan sobre tal sistema de guiñada.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117353A (ja) * 1992-10-05 1994-04-26 Yamaha Motor Co Ltd 風力発電装置
JP2005061300A (ja) * 2003-08-11 2005-03-10 Fuji Heavy Ind Ltd 水平軸風車及びその制御方法
CN1860292A (zh) * 2003-09-03 2006-11-08 通用电气公司 风力涡轮机的冗余叶片节距控制系统和控制风力涡轮机的方法
US20080247873A1 (en) * 2007-04-04 2008-10-09 Siemens Aktiengsellschaft Method of reducing a structural unbalance in a wind turbine rotor and device for performing the method
CN101404476A (zh) * 2008-10-15 2009-04-08 东南大学 并网变速恒频风力发电机组运行控制方法
CN101592127A (zh) * 2009-06-22 2009-12-02 浙江运达风力发电工程有限公司 一种大型风电机组独立变桨控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XING GANG ET AL.: "Method for collective pitch control of wind turbine generator system", TRANSACTIONS OF THE CSAE, vol. 24, no. 5, May 2008 (2008-05-01), pages 181 - 186, XP008164560 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080627A (zh) * 2011-03-03 2011-06-01 北京科诺伟业科技有限公司 双馈风力发电机组的安全链单元
WO2012136279A3 (en) * 2011-04-07 2013-04-04 Siemens Aktiengesellschaft Method of controlling pitch systems of a wind turbine
CN102182631A (zh) * 2011-05-03 2011-09-14 苏州能健电气有限公司 风力发电设备主控装置
CN114109742A (zh) * 2021-11-22 2022-03-01 西安热工研究院有限公司 桨距角偏差引起的风力机风轮不平衡根因定位及矫正方法
CN114109742B (zh) * 2021-11-22 2024-02-09 西安热工研究院有限公司 桨距角偏差引起的风力机风轮不平衡根因定位及矫正方法

Also Published As

Publication number Publication date
EP2447527A4 (en) 2016-03-23
DK2447527T3 (da) 2017-11-27
EP2447527B1 (en) 2017-08-09
EP2447527A1 (en) 2012-05-02
CN101592127A (zh) 2009-12-02
ES2645671T3 (es) 2017-12-07
CN101592127B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2010148933A1 (zh) 大型风电机组独立变桨控制方法
JP5446988B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
JP6494514B2 (ja) 入力風速の予測値を使用した風力タービン制御方法
CN104300863B (zh) 一种变负载永磁同步电机调速的自适应滑模控制方法
CN103758699B (zh) 一种风力发电机组的桨距角控制方法及桨距角控制器
CN105322859B (zh) 电动机控制装置、电动机的磁通估计装置及磁通估计方法
CN110023618A (zh) 阻尼风力涡轮机塔架振荡
JP2010041734A (ja) モータ制御装置
EP2132437A2 (en) Wind turbine with pitch control arranged to reduce life shortening loads on components thereof
CN106786666B (zh) 一种超前相位自适应型电力系统稳定器的参数整定方法
US11319925B2 (en) Tower damping in wind turbine power production
CN106647843A (zh) 一种基于复合分数重复控制器的磁悬浮转子谐波电流抑制方法
CN110494648A (zh) 基于位置对机舱运动的减振
JP6174245B2 (ja) 浮体式風力タービンの傾斜減衰
CN105099319B (zh) 控制感应电机的装置
US20160305404A1 (en) Method to control the operation of a wind turbine
CN108488036B (zh) 基于模型失配补偿器的风电磁悬浮偏航系统悬浮控制方法
US11293401B2 (en) Tower damping in wind turbine power production
DE112012005063T5 (de) Ein Verfahren zur Realisierung des dynamischen Gleichgewichts der Magnetschwebe-Molekularpumpe
CN112352097A (zh) 多转子风力涡轮机振荡衰减
EP2080851A3 (en) Riding concrete trowel with stabilizer
KR101788423B1 (ko) 풍력 발전 설비 및 풍력 발전 설비를 운전하기 위한 방법
CN109724297A (zh) 压缩机转速波动控制方法
CN111277181B (zh) 同步电机齿槽转矩的补偿方法及补偿设备
Praboo et al. Simulation work on Fractional Order PI {\lambda} Control Strategy for speed control of DC motor based on stability boundary locus method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791439

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010791439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010791439

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE