WO2010146673A1 - 通信装置、通信システムおよび通信方法 - Google Patents

通信装置、通信システムおよび通信方法 Download PDF

Info

Publication number
WO2010146673A1
WO2010146673A1 PCT/JP2009/061034 JP2009061034W WO2010146673A1 WO 2010146673 A1 WO2010146673 A1 WO 2010146673A1 JP 2009061034 W JP2009061034 W JP 2009061034W WO 2010146673 A1 WO2010146673 A1 WO 2010146673A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
unit
mode
acquisition unit
switches
Prior art date
Application number
PCT/JP2009/061034
Other languages
English (en)
French (fr)
Inventor
章 伊藤
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP09846166.8A priority Critical patent/EP2445287A4/en
Priority to PCT/JP2009/061034 priority patent/WO2010146673A1/ja
Priority to CN200980159919.2A priority patent/CN102804885B/zh
Priority to KR1020117029976A priority patent/KR101335868B1/ko
Priority to JP2011519352A priority patent/JPWO2010146673A1/ja
Publication of WO2010146673A1 publication Critical patent/WO2010146673A1/ja
Priority to US13/323,374 priority patent/US9774483B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present invention relates to a communication device, a communication system, and a communication method for performing communication.
  • LTE Long Term Evolution
  • an LTE system carrier for example, a maximum of 20 MHz
  • wireless data communication is performed using a plurality of lines by a multilink method.
  • a wireless data communication method includes a stabilization unit that performs line selection by switching data paths based on monitoring information obtained by monitoring a line state (for example, the following patent document) 1).
  • the wired line connecting the base station apparatus and the switching center is composed of a shared channel that can be used in common by the plurality of terminals and a dedicated channel that can be used by only one terminal, and is transferred from the terminal.
  • a dedicated channel is allocated to the terminal, and when transferring data using the dedicated channel, the data transferred from the terminal is awaited due to an excessive amount of transferred data,
  • another dedicated channel is newly allocated to the terminal until the amount of waiting data becomes equal to or less than a predetermined delay data amount restoration value.
  • a packet transfer method for transferring data using the dedicated channel and the additional dedicated channel is disclosed (for example, the following patents) Document 2 reference.).
  • JP 2000-174770 A Japanese Patent Laid-Open No. 2001-024706
  • the above-described conventional technology has a problem that physical resources cannot be used efficiently. For example, when there is no data to be transmitted or when there is little data to be transmitted, transmission / reception of a plurality of component carriers causes waste of power consumption.
  • the receiving side communication device receives multiple component carriers to check whether data is stored even when there is no data to be transmitted or when there is little data to be transmitted. The waste of power is great.
  • the component carrier defined in LTE-Advanced but also a general communication system that divides and transmits data to a plurality of communication carriers has the same problem.
  • An object of one aspect of the present invention is to efficiently use physical resources.
  • a transmission unit that can receive data transmitted by being divided into a plurality of communication carriers and has a plurality of communication modes with different numbers of communication carriers to be received, and a change in the communication state of the reception unit It is assumed that a communication device including an acquisition unit that acquires information to be displayed and a switching unit that switches the communication mode based on the information acquired by the acquisition unit is used.
  • FIG. 1 is a block diagram showing a configuration of a communication system according to a first exemplary embodiment. It is a figure which shows the communication carrier used in a communication system. It is a block diagram which shows the structure of the terminal device concerning Embodiment 2.
  • FIG. FIG. 3 is a block diagram illustrating a configuration of a base station apparatus according to a second embodiment. 10 is a flowchart illustrating an example of an operation of the terminal device according to the second exemplary embodiment; 6 is a flowchart illustrating an example of an operation of the base station apparatus according to the second embodiment; FIG. 10 is a sequence diagram illustrating an example of operation of the communication system according to the second exemplary embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of a terminal device according to a third embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of a base station apparatus according to a third embodiment.
  • 10 is a flowchart illustrating an example of an operation of a terminal device according to a third exemplary embodiment.
  • 10 is a flowchart illustrating an example of an operation of the base station apparatus according to the third embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of a terminal device according to a fourth embodiment;
  • FIG. 6 is a block diagram illustrating a configuration of a base station apparatus according to a fourth embodiment.
  • 6 is a flowchart illustrating an example of an operation of a terminal device according to a fourth embodiment;
  • 10 is a flowchart illustrating an example of an operation of the base station apparatus according to the fourth embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of operation of the communication system according to the fourth exemplary embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of a terminal device according to a fifth embodiment; 10 is a flowchart illustrating an example of an operation of a terminal device according to a fifth embodiment; 10 is a flowchart showing an example of operation of the base station apparatus according to the fifth exemplary embodiment;
  • FIG. 10 is a block diagram illustrating a configuration of a terminal device according to a sixth embodiment;
  • FIG. 10 is a block diagram illustrating a configuration of a base station apparatus according to a sixth embodiment.
  • FIG. 14 is a flowchart illustrating an example of an operation of a terminal device according to a sixth embodiment; 14 is a flowchart showing an example of operation of the base station apparatus according to the sixth embodiment;
  • FIG. 10 is a block diagram of a first modification of the terminal device according to the seventh embodiment;
  • FIG. 10 is a block diagram illustrating a second modification of the terminal device according to the seventh embodiment;
  • FIG. 1 is a block diagram of a configuration of the communication system according to the first embodiment.
  • the communication system 100 according to the first embodiment includes a first communication device 110 and a second communication device 120.
  • a configuration for transmitting data from the first communication device 110 to the second communication device 120 in the first communication device 110 and the second communication device 120 will be described.
  • the first communication device 110 and the second communication device 120 may have a configuration for transmitting data from the second communication device 120 to the first communication device 110.
  • the first communication device 110 includes a transmission unit 111, an acquisition unit 112, and a switching unit 113.
  • the transmission unit 111 can transmit data by dividing it into a plurality of communication carriers, and has a plurality of communication modes with different numbers of communication carriers to be transmitted.
  • the transmission unit 111 has a multi-carrier mode and a single carrier mode as communication modes.
  • the multi-carrier mode is a communication mode in which a plurality of communication carriers are transmitted.
  • the transmission unit 111 divides data into a plurality of communication carriers and transmits the data.
  • the single carrier mode is a communication mode in which a communication carrier to transmit is a single.
  • the transmission unit 111 transmits data using a single carrier in the single carrier mode.
  • the acquisition unit 112 acquires information indicating a change in the communication state of the transmission unit 111.
  • the change in the communication state of the transmission unit 111 is, for example, a change in the amount of data transmitted by the transmission unit 111.
  • the change in the communication state of the transmission unit 111 may be a change in the presence / absence of data transmitted by the transmission unit 111.
  • the acquisition unit 112 outputs the acquired information to the switching unit 113.
  • the switching unit 113 switches the communication mode of the transmission unit 111 based on the information acquired by the acquisition unit 112. For example, when information indicating that the amount of data transmitted by the transmission unit 111 is greater than a predetermined amount is output from the acquisition unit 112, the switching unit 113 switches the communication mode of the transmission unit 111 to the multi-carrier mode. Further, when information indicating that the amount of data transmitted by the transmission unit 111 is equal to or less than a predetermined amount is output from the acquisition unit 112, the switching unit 113 switches the communication mode of the transmission unit 111 to the single carrier mode.
  • the switching unit 113 may switch the communication mode of the transmission unit 111 to the multiple carrier mode. Further, when information indicating that there is no data to be transmitted by the transmission unit 111 is output from the acquisition unit 112, the switching unit 113 may switch the communication mode of the transmission unit 111 to the single carrier mode.
  • the second communication device 120 includes a receiving unit 121, an acquiring unit 122, and a switching unit 123.
  • the receiving unit 121 can receive data transmitted by being divided into a plurality of communication carriers, and has a plurality of communication modes having different numbers of communication carriers to be received. For example, the receiving unit 121 has a multi-carrier mode and a single carrier mode as communication modes.
  • the multi-carrier mode is a communication mode in which a plurality of communication carriers are received.
  • the receiving unit 121 receives data transmitted by being divided into a plurality of communication carriers.
  • a communication carrier to receive is a single communication mode.
  • the receiving unit 121 receives data transmitted by a single communication carrier.
  • the acquisition unit 122 acquires information indicating a change in the communication state of the reception unit 121.
  • the change in the communication state of the receiving unit 121 is, for example, a change in the amount of data received by the receiving unit 121.
  • the change in the communication state of the reception unit 121 may be a change in the presence or absence of data received by the reception unit 121.
  • the acquisition unit 122 outputs the acquired information to the switching unit 123.
  • the switching unit 123 switches the communication mode of the receiving unit 121 based on the information acquired by the acquiring unit 122. For example, when information indicating that the amount of data received by the reception unit 121 is greater than a predetermined amount is output from the acquisition unit 122, the switching unit 123 switches the communication mode of the reception unit 121 to the multi-carrier mode. In addition, when information indicating that the amount of data received by the reception unit 121 is equal to or less than a predetermined amount is output from the acquisition unit 122, the switching unit 123 switches the communication mode of the reception unit 121 to the single carrier mode.
  • the switching unit 123 may switch the communication mode of the receiving unit 121 to the multiple carrier mode when information indicating that there is data to be received by the receiving unit 121 is output from the acquiring unit 122. In this case, when information indicating that there is no data received by the reception unit 121 is output from the acquisition unit 122, the switching unit 123 switches the communication mode of the reception unit 121 to the single carrier mode.
  • the transmission unit 111 of the first communication device 110 is realized by a wireless communication interface such as an antenna or a communication control circuit, for example.
  • the acquisition unit 112 of the first communication device 110 is realized by information processing means such as a DSP (Digital Signal Processor).
  • the acquisition unit 112 stores the acquired information in the memory of the first communication device 110.
  • the switching unit 113 of the first communication device 110 is realized by information processing means such as a DSP, for example.
  • the switching unit 113 reads the information stored in the memory by the acquisition unit 112 and switches the communication mode based on the read information.
  • the receiving unit 121 of the second communication device 120 is realized by a wireless communication interface such as an antenna or a communication control circuit, for example.
  • the acquisition unit 122 of the second communication device 120 is realized by information processing means such as a DSP, for example.
  • the acquisition unit 122 stores the acquired information in the memory of the second communication device 120.
  • the switching unit 123 of the second communication device 120 is realized by information processing means such as a DSP, for example.
  • the switching unit 123 reads the information stored in the memory by the acquisition unit 122, and switches the communication mode based on the read information.
  • FIG. 2 is a diagram illustrating communication carriers used in the communication system.
  • the horizontal axis represents frequency.
  • Each of the communication carriers 201 to 203 represents a system carrier divided by frequency.
  • the transmission unit 111 of the first communication device 110 divides and transmits data to each of the communication carriers 201 to 203, for example.
  • the transmission part 111 of the 1st communication apparatus 110 transmits data by the communication carrier 201, for example, in single carrier mode.
  • the receiving unit 121 of the second communication device 120 receives data transmitted by being divided into communication carriers 201 to 203, for example. Moreover, the transmission part 111 of the 1st communication apparatus 110 receives the data transmitted, for example by the communication carrier 201, in the single carrier mode.
  • the communication system 100 switches a plurality of communication modes having different numbers of component carriers according to the communication state.
  • communication modes having different numbers of component carriers according to the communication state.
  • a communication mode with a large number of component carriers for example, a multi-carrier mode.
  • the power consumption of the first communication device 110 and the second communication device 120 can be suppressed by switching to a communication mode with a small number of component carriers (for example, a single carrier mode). it can.
  • a communication mode with a small number of component carriers (for example, a single carrier mode). it can.
  • component carriers for example, a single carrier mode
  • FIG. 3 is a block diagram of a configuration of the terminal device according to the second embodiment.
  • the terminal device 300 according to the second embodiment includes an antenna 301, an RF processing unit 302, a demodulation unit 303, a decoding unit 304, a logical channel analysis unit 305, and a transmission timing control unit 306.
  • the terminal device 300 has a configuration corresponding to, for example, the second communication device 120 illustrated in FIG.
  • the terminal device 300 is a terminal device that supports, for example, LTE-Advanced.
  • the terminal device 300 can receive data transmitted by being divided into a plurality of component carriers (communication carriers), and has a plurality of communication modes with different numbers of communication carriers to be received.
  • the terminal device 300 has a multi-carrier mode in which a plurality of communication carriers are received and a single carrier mode in which a single communication carrier is received as communication modes.
  • the antenna 301, the RF processing unit 302, the demodulating unit 303, and the decoding unit 304 have a configuration corresponding to, for example, the receiving unit 121 illustrated in FIG.
  • the logical channel analysis unit 305 has a configuration corresponding to, for example, the acquisition unit 122 illustrated in FIG.
  • the carrier number switching unit 307 has a configuration corresponding to, for example, the switching unit 123 illustrated in FIG.
  • Antenna 301 is an antenna for performing wireless communication with a base station apparatus (for example, base station apparatus 400 in FIG. 4). Specifically, the antenna 301 receives a signal transmitted from the base station apparatus and outputs the signal to the RF processing unit 302. Moreover, the antenna 301 transmits the delivery confirmation signal (Ack or Nack) output from the RF processing unit 302 to the base station apparatus.
  • a base station apparatus for example, base station apparatus 400 in FIG. 4
  • the antenna 301 receives a signal transmitted from the base station apparatus and outputs the signal to the RF processing unit 302. Moreover, the antenna 301 transmits the delivery confirmation signal (Ack or Nack) output from the RF processing unit 302 to the base station apparatus.
  • Ack delivery confirmation signal
  • the RF processing unit 302 converts the frequency of the signal output from the antenna 301 from high frequency (RF) to baseband, and outputs the frequency-converted signal to the demodulation unit 303. Further, the RF processing unit 302 converts the frequency of the delivery confirmation signal output from the modulation unit 310 from baseband to high frequency, and outputs the delivery confirmation signal obtained by converting the frequency to the antenna 301.
  • RF radio frequency
  • the demodulator 303 demodulates the signal output from the RF processor 302 and outputs the demodulated signal to the decoder 304.
  • Decoding section 304 decodes the signal output from demodulation section 303 and outputs data obtained by the decoding to logical channel analysis section 305. For example, the decoding unit 304 performs signal error correction decoding (FEC: Forward Error Correction), and notifies the Ack / Nack generation unit 308 of the result of error correction decoding.
  • FEC Forward Error Correction
  • the logical channel analysis unit 305 performs logical channel analysis on the data output from the decoding unit 304. For example, the logical channel analysis unit 305 acquires binary data included in the data, and outputs the acquired binary data to the subsequent stage.
  • the binary data is user data transmitted from a base station device, for example.
  • the logical channel analysis unit 305 acquires the timing command included in the data as information indicating a change in the communication state.
  • the logical channel analysis unit 305 detects an ID indicating a timing command from the area where the logical channel ID of the data is stored, and acquires the timing command from the area corresponding to the detected ID.
  • the timing command is a command indicating the timing at which the terminal device 300 transmits data to the base station device.
  • the timing command is indicated by a difference from the previous transmission timing of the terminal device 300.
  • the timing command has an expiration date.
  • the length of the expiration date is set by the base station device when the terminal device 300 first connects to the base station device, for example.
  • the logical channel analyzer 305 outputs the acquired timing command to the transmission timing controller 306.
  • the transmission timing control unit 306 controls the transmission timing of data (user data) by the terminal device 300 based on the timing command output from the logical channel analysis unit 305. However, in FIG. 3, the configuration for transmitting data from the terminal device 300 is not shown. Further, the transmission timing control unit 306 notifies the carrier number switching unit 307 that the timing command has been acquired.
  • the carrier number switching unit 307 has a function of a synchronous timer that times the expiration date of the timing command. When notified from the transmission timing control unit 306 that the timing command has been acquired, the carrier number switching unit 307 starts counting the expiration date by the synchronization timer. Then, the carrier number switching unit 307 switches the communication mode of the terminal device 300 based on the expiration date of the timing command timed by the synchronization timer.
  • the carrier number switching unit 307 sets the communication mode to the multiple carrier mode within the expiration date of the timing command. Also, the carrier number switching unit 307 sets the communication mode to the single carrier mode outside the expiration date of the timing command.
  • the carrier number switching unit 307 sets the communication mode to the multi-carrier mode by setting the RF processing unit 302 and the demodulating unit 303 to perform reception operation using a plurality of compo- tation carriers. Also, the carrier number switching unit 307 sets the communication mode to the single carrier mode by setting the RF processing unit 302 and the demodulating unit 303 to perform a reception operation using a single compote carrier.
  • the Ack / Nack generation unit 308 generates a delivery confirmation signal based on the error correction decoding result notified from the decoding unit 304. For example, the Ack / Nack generation unit 308 generates an Ack when notified from the decoding unit 304 that there is no error or successful error correction, and generates an Nack when notified that the error correction has failed. To do. The Ack / Nack generation unit 308 outputs the generated delivery confirmation signal to the encoding unit 309.
  • the encoding unit 309 encodes the delivery confirmation signal output from the Ack / Nack generation unit 308.
  • the encoding unit 309 outputs the encoded delivery confirmation signal to the modulation unit 310.
  • Modulating section 310 modulates the delivery confirmation signal output from encoding section 309.
  • Modulation section 310 outputs the modulated delivery confirmation signal to RF processing section 302.
  • FIG. 4 is a block diagram of a configuration of the base station apparatus according to the second embodiment.
  • the base station apparatus 400 according to the second embodiment includes a scheduler unit 401, a transmission timing control unit 402, a binary data buffer unit 403, an encoding unit 404, a modulation unit 405, and an RF A processing unit 406, an antenna 407, a demodulation unit 408, an Ack / Nack determination unit 409, and a carrier number switching unit 410 are provided.
  • Base station apparatus 400 has a configuration corresponding to, for example, first communication apparatus 110 shown in FIG.
  • Base station apparatus 400 is a base station apparatus compatible with LTE-Advanced, for example.
  • the base station apparatus 400 can transmit data by dividing it into a plurality of component carriers (communication carriers), and has a plurality of communication modes with different numbers of communication carriers to be transmitted.
  • base station apparatus 400 has, as communication modes, a plurality of carrier modes for transmitting communication carriers and a single carrier mode for transmitting single communication carriers.
  • the scheduler unit 401, the transmission timing control unit 402, the encoding unit 404, the modulation unit 405, the RF processing unit 406, and the antenna 407 have a configuration corresponding to, for example, the transmission unit 111 illustrated in FIG.
  • the demodulating unit 408 and the Ack / Nack determining unit 409 have a configuration corresponding to, for example, the acquiring unit 112 illustrated in FIG.
  • the carrier number switching unit 410 has a configuration corresponding to, for example, the switching unit 113 illustrated in FIG.
  • the scheduler unit 401 performs communication scheduling between the terminal device 300 and the base station device 400. For example, scheduler section 401 determines the number of bits of data transmitted from base station apparatus 400 to each terminal apparatus. Further, scheduler section 401 determines a component carrier to be used in each communication based on the communication mode of base station apparatus 400 set by carrier number switching section 410.
  • the scheduler unit 401 when the carrier unit switching unit 410 sets the multi-carrier mode, the scheduler unit 401 performs scheduling so as to transmit data using a plurality of compo- tation carriers.
  • the scheduler unit 401 performs scheduling so as to transmit data using a single compote carrier.
  • the scheduler unit 401 notifies the transmission timing control unit 402 and the modulation unit 405 of the scheduling result. In addition, the scheduler unit 401 outputs a data output instruction to the binary data buffer unit 403 based on the scheduling result.
  • the binary data buffer unit 403 stores data (binary data) to be transmitted to the terminal device 300.
  • the binary data buffer unit 403 outputs the stored data to the encoding unit 404.
  • the transmission timing control unit 402 generates a timing command indicating the timing at which the terminal device 300 transmits a delivery confirmation signal for data transmitted from the base station device 400, based on the scheduling result notified from the scheduler unit 401.
  • the transmission timing control unit 402 outputs the generated timing command to the encoding unit 404.
  • the encoding unit 404 stores the timing command output from the transmission timing control unit 402 in the data output from the binary data buffer unit 403. Then, the encoding unit 404 encodes the data that stores the timing command, and outputs the encoded data to the modulation unit 405. Modulation section 405 modulates the data output from coding section 404 and outputs a signal obtained by the modulation to RF processing section 406.
  • the modulation unit 405 modulates data with communication resources (physical resources) corresponding to the component carrier indicated by the scheduling result notified from the scheduler unit 401. For example, when notified that data is transmitted by being divided into a plurality of component carriers, the modulation unit 405 modulates the data with each communication resource corresponding to the plurality of component carriers. In addition, when notified that data is transmitted by a single component carrier, the modulation unit 405 modulates data using communication resources corresponding to the single component carrier.
  • the RF processing unit 406 converts the frequency of the signal output from the modulation unit 405 from baseband to high frequency, and outputs the frequency-converted signal to the antenna 407. Further, the RF processing unit 406 converts the frequency of the delivery confirmation signal output from the antenna 407 from a high frequency to a baseband, and outputs the delivery confirmation signal obtained by converting the frequency to the demodulation unit 408.
  • the antenna 407 is an antenna for performing wireless communication with the terminal device 300. Specifically, the antenna 407 receives the delivery confirmation signal transmitted from the terminal device 300 and outputs it to the RF processing unit 406. Further, the antenna 407 transmits the signal output from the RF processing unit 406 to the terminal device 300.
  • the demodulation unit 408 demodulates the delivery confirmation signal output from the RF processing unit 406 and outputs the demodulated delivery confirmation signal to the Ack / Nack determination unit 409.
  • the Ack / Nack determination unit 409 determines the delivery confirmation signal output from the demodulation unit 408. For example, the Ack / Nack determination unit 409 determines which signal the delivery confirmation signal is for, and determines whether the delivery confirmation signal is Ack or Nack. The Ack / Nack determination unit 409 notifies the determination result to the carrier number switching unit 410.
  • the carrier number switching unit 410 switches the communication mode of the base station apparatus 400 based on the determination result notified from the Ack / Nack determination unit 409. Specifically, when the determination result indicating that Ack for the timing command has been received is notified from Ack / Nack determination unit 409, carrier number switching unit 410 switches the communication mode to the multi-carrier mode.
  • the carrier number switching unit 410 has a function of a synchronization timer that counts the expiration date of the timing command transmitted from the base station apparatus 400 to the terminal apparatus 300. Based on the synchronization timer, the carrier number switching unit 410 switches the communication mode to the single carrier mode when the timing command expires.
  • the carrier number switching unit 410 sets the communication mode of the base station apparatus 400 to the multi-carrier mode by setting the scheduler unit 401 to perform scheduling with a plurality of compote carriers. Further, the carrier number switching unit 410 sets the communication mode of the base station apparatus 400 to the single carrier mode by performing setting for performing scheduling by a single compote carrier in the scheduler unit 401.
  • FIG. 5 is a flowchart of an example of the operation of the terminal device according to the second embodiment.
  • the terminal device 300 (see FIG. 3) performs, for example, the following operation.
  • the carrier number switching unit 307 determines whether or not it has received a timing command from the base station apparatus 400 (step S501).
  • step S501 determines whether or not it has received a timing command from the base station apparatus 400.
  • step S501 determines whether or not it has received (step S501: No)
  • the process proceeds to step S504.
  • step S501 When the timing command is received in step S501 (step S501: Yes), the carrier number switching unit 307 starts the operation of the synchronization timer that times the expiration date of the timing command (step S502). Next, the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the multi-carrier mode (step S503). Next, the carrier number switching unit 307 determines whether or not the expiration of the synchronization timer whose operation has been started in step S502 has expired (step S504).
  • step S504 if the synchronization timer has not expired (step S504: No), the process returns to step S501 to continue the process.
  • step S504: Yes the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the single carrier mode (step S505), returns to step S501, and continues the processing. .
  • the terminal device 300 can switch the communication mode based on the expiration date of the acquired timing command.
  • FIG. 6 is a flowchart of an example of operation of the base station apparatus according to the second embodiment.
  • Base station apparatus 400 (see FIG. 4) performs, for example, the following operation.
  • the Ack / Nack determination unit 409 determines whether or not an Ack for the timing command transmitted to the terminal device 300 has been received (step S601). If Ack has not been received (step S601: NO), the process proceeds to step S604.
  • step S601 when the Ack for the timing command is received (step S601: Yes), the carrier number switching unit 410 starts the operation of the synchronization timer that times the expiration date of the timing command (step S602). Next, the carrier number switching unit 410 switches the communication mode to the multi-carrier mode (step S603). Next, the carrier number switching unit 410 determines whether or not the expiration of the synchronization timer whose operation has been started in step S602 has expired (step S604).
  • step S604 if the synchronization timer has not expired (step S604: No), the process returns to step S601 to continue the process. If the synchronization timer has expired (step S604: Yes), the carrier number switching unit 410 switches the communication mode to the single carrier mode (step S605), returns to step S601, and continues the processing.
  • the base station device 400 can acquire the delivery confirmation signal from the terminal device 300 in response to the timing command transmitted to the terminal device 300, and switch the communication mode based on the acquired delivery confirmation signal. it can.
  • FIG. 7 is a sequence diagram of an example of the operation of the communication system according to the second embodiment.
  • the base station apparatus 400 transmits a timing command to the terminal apparatus 300 (step S702).
  • the time limit t1 indicates the expiration date of the timing command transmitted in step S702.
  • the base station apparatus 400 transmits a part of the transmission data generated in step S701 to the terminal apparatus 300 (step S703).
  • the terminal apparatus 300 transmits Ack for the data transmitted in step S703 to the base station apparatus 400 (step S704).
  • the base station apparatus 400 transmits a timing command to the terminal apparatus 300 (step S705).
  • the term t2 indicates the term of validity of the timing command transmitted in step S705.
  • the base station apparatus 400 transmits untransmitted data among the transmission data generated in step S701 to the terminal apparatus 300 (step S706).
  • the terminal device 300 transmits Ack for the data transmitted in step S706 to the base station device 400 (step S707). It is assumed that the transmission data generated in step S701 is all received by the terminal device 300 through the above steps.
  • the base station apparatus 400 ends the transmission process (step S708) and ends a series of operations.
  • the communication mode is the multi-carrier mode in the period T in which at least one of the time limit t1 and the time limit t2 is being measured.
  • the communication mode is the single carrier mode in periods other than period T.
  • step S703 and step S706 are normally received by the terminal device 300, and Ack is transmitted from the terminal device 300 to the base station apparatus 400 was demonstrated.
  • the base station apparatus 400 transmits the transmitted data to the terminal apparatus 300 again. Send.
  • the base station apparatus 400 may start counting the time limit t1 after receiving an Ack (not shown) from the terminal apparatus 300 for the transmitted timing command. Also in this case, for example, when data is transmitted in step S703 and step S706, the communication mode of base station apparatus 400 can be switched to the multi-carrier mode.
  • the base station apparatus 400 periodically transmits a timing command to the terminal apparatus 300 during the data transmission process. Thereby, during the data transmission processing, the terminal device 300 and the base station device 400 are switched to the multi-carrier mode, and communication with high throughput can be performed.
  • the base station apparatus 400 finishes the data transmission process, the base station apparatus 400 stops transmitting the timing command. Thereby, after the data transmission process, the validity period of the timing command expires, and the terminal apparatus 300 and the base station apparatus 400 are switched to the single carrier mode. For this reason, the power consumption of the terminal device 300 and the base station apparatus 400 can be suppressed.
  • the terminal device 300 acquires the timing command indicating the timing at which the terminal device 300 transmits a signal as information indicating the change in the communication state.
  • the timing command is a timing command indicating the timing at which the terminal apparatus 300 transmits a delivery confirmation signal for data received by the terminal apparatus 300, for example.
  • the terminal device 300 switches the communication mode based on the expiration date of the acquired timing command.
  • the existing timing command can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the base station apparatus 400.
  • the terminal apparatus 300 since there is a high possibility that data is transmitted from the base station apparatus 400 within the validity period of the timing command, the terminal apparatus 300 performs communication with high throughput by switching to the multi-carrier mode within the validity period of the timing command. be able to. In addition, since it is unlikely that data is transmitted from the base station device 400 when the timing command is not valid, the terminal device 300 suppresses power consumption by switching to the single carrier mode when the timing command is not valid. Can do.
  • communication resources can be used efficiently without major design changes.
  • the compression of communication resources due to transmission / reception of new control information can be suppressed. Further, it is possible to avoid delaying the switching of the communication mode by transmitting / receiving new control information.
  • the base station apparatus 400 acquires a delivery confirmation signal from the terminal apparatus 300 in response to the timing command transmitted to the terminal apparatus 300 as information indicating a change in the communication state, and performs communication based on the delivery confirmation signal. Switch modes. Thereby, since an existing timing command can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the terminal device 300.
  • the base station device 400 switches to the multiple carrier mode within the timing command expiration date, and the single carrier mode outside the timing command expiration date. Switch to. Thereby, since it is possible to switch the communication mode after confirming that the timing command has been normally received by the terminal device 300, the communication mode of the base station device 400 can be switched together with the switching of the communication mode by the terminal device 300. it can.
  • the base station device 400 does not transmit the timing command for transmitting the delivery confirmation signal to the terminal device 300. It becomes a mode. In many cases, the amount of data is small in communications that do not transmit / receive a delivery confirmation signal. In this case, sufficient throughput can be obtained even in the single carrier mode, and power consumption can be suppressed.
  • PCCH Policy Control Channel
  • BCCH Broadcast Control Channel
  • the timing command may be a timing command indicating a timing at which the terminal device 300 transmits data (user data) to the base station device 400. For example, when transmission data for base station apparatus 400 is generated, terminal apparatus 300 obtains a timing command for transmitting data from base station apparatus 400 by performing random access to base station apparatus 400. .
  • the base station apparatus 400 can efficiently use communication resources by switching the communication mode based on the expiration date of the acquired timing command.
  • the number of component carriers in the multiple carrier mode may be different between the downlink from the base station apparatus 400 to the terminal apparatus 300 and the uplink from the terminal apparatus 300 to the base station apparatus 400.
  • FIG. 8 is a block diagram of the configuration of the terminal device according to the third embodiment.
  • the terminal device 300 according to the third embodiment has an RRC information analysis unit 801 and an RRC completion signal in place of the transmission timing control unit 306 and the Ack / Nack generation unit 308 in the configuration illustrated in FIG. 3.
  • a generation unit 802 is provided.
  • the decoding unit 304 outputs the error correction decoding result to the RRC completion signal generation unit 802.
  • the logical channel analysis unit 305 acquires an RRC (Radio Resource Control) message included in the data output from the decoding unit 304.
  • the logical channel analysis unit 305 outputs the acquired RRC message to the RRC information analysis unit 801.
  • the RRC information analysis unit 801 detects DRX (discontinuous reception) information from the RRC message output from the logical channel analysis unit 305.
  • the DRX information includes a DRX setting signal that requests the terminal device 300 (self device) to set a DRX cycle, and a DRX release signal that requests the terminal device 300 to cancel the DRX cycle setting.
  • the RRC information analysis unit 801 outputs the detected DRX information to the demodulation unit 303 and the carrier number switching unit 307.
  • the demodulation unit 303 performs intermittent reception based on the DRX information output from the RRC information analysis unit 801. Specifically, when the DRX setting signal is output from the RRC information analysis unit 801, the demodulation unit 303 sets the DRX cycle based on the DRX setting signal and performs intermittent reception. Further, when the DRX cancellation signal is output from the RRC information analysis unit 801, the demodulation unit 303 cancels the DRX cycle and ends intermittent reception.
  • the carrier number switching unit 307 switches the communication mode based on the DRX information output from the RRC information analysis unit 801. Specifically, when the DRX setting signal is output from the RRC information analysis unit 801, the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the multi-carrier mode. Further, when the DRX release signal is output from the RRC information analysis unit 801, the demodulation unit 303 switches the communication mode of the terminal device 300 to the single carrier mode.
  • the RRC completion signal generation unit 802 generates an RRC completion signal based on the error correction decoding result notified from the decoding unit 304. Specifically, the RRC completion signal generation unit 802 generates an RRC completion signal when notified from the decoding unit 304 that error correction has been successful. The RRC completion signal generation unit 802 outputs the generated RRC completion signal to the encoding unit 309.
  • the encoding unit 309 encodes the RRC completion signal output from the RRC completion signal generation unit 802. Encoding section 309 outputs the encoded RRC completion signal to modulation section 310. Modulating section 310 modulates the RRC completion signal output from encoding section 309. Modulation section 310 outputs the modulated RRC completion signal to RF processing section 302. The RF processing unit 302 converts the frequency of the RRC completion signal output from the modulation unit 310 from baseband to high frequency, and outputs the RRC completion signal whose frequency has been converted to the antenna 301. Antenna 301 transmits the RRC completion signal output from RF processing section 302 to base station apparatus 400.
  • FIG. 9 is a block diagram of a configuration of the base station apparatus according to the third embodiment.
  • the base station apparatus 400 according to the third embodiment includes a DRX cycle setting control unit 901, a decoding unit 902, and a transmission timing control unit 402 and an Ack / Nack determination unit 409 illustrated in FIG.
  • An RRC completion signal determination unit 903 is provided.
  • the scheduler unit 401 determines the setting of the DRX cycle of the terminal device 300 and the cancellation of the setting in scheduling. For example, the scheduler unit 401 determines to set a DRX cycle in the terminal device 300 when there is no data to be transmitted to the terminal device 300 or when there is little data. In addition, when there is a lot of data to be transmitted to the terminal device 300, the scheduler unit 401 determines to release the DRX cycle set in the terminal device 300.
  • the scheduler unit 401 notifies the scheduling result to the DRX cycle setting control unit 901 and the modulation unit 405.
  • the DRX cycle setting control unit 901 generates DRX information based on the scheduling result notified from the scheduler unit 401.
  • the DRX information is, for example, a setting signal that requests the terminal device 300 to set a DRX cycle or a cancellation signal that requests the terminal device 300 to cancel the DRX cycle setting.
  • the DRX cycle setting control unit 901 outputs an RRC message including the generated DRX information to the encoding unit 404.
  • the encoding unit 404 stores the RRC message output from the DRX cycle setting control unit 901 in the data output from the binary data buffer unit 403.
  • Encoding section 404 encodes the data storing the RRC message, and outputs the encoded data to modulation section 405.
  • the antenna 407 receives the RRC completion signal transmitted from the terminal device 300 and outputs it to the RF processing unit 406.
  • the RF processing unit 406 converts the frequency of the RRC completion signal output from the antenna 407 from a high frequency to a baseband, and outputs the RRC completion signal whose frequency has been converted to the demodulation unit 408.
  • Demodulation section 408 demodulates the RRC completion signal output from RF processing section 406 and outputs the demodulated RRC completion signal to decoding section 902.
  • the decoding unit 902 decodes the RRC completion signal output from the demodulation unit 408. Decoding section 902 outputs the decoded RRC completion signal to RRC completion signal determination section 903.
  • the RRC completion signal determination unit 903 determines the RRC completion signal output from the decoding unit 902. For example, the RRC completion signal determination unit 903 determines whether the RRC completion signal is an RRC completion signal for the DRX setting signal or an RRC completion signal for the DRX release signal. The RRC completion signal determination unit 903 notifies the determination result to the carrier number switching unit 410.
  • the carrier number switching unit 410 switches the communication mode of the base station device 400 based on the determination result notified from the RRC completion signal determination unit 903. Specifically, when the RRC completion signal determination unit 903 notifies that the RRC completion signal for the DRX setting signal has been acquired, the carrier number switching unit 410 switches the communication mode to the single carrier mode. Further, when the RRC completion signal determination unit 903 notifies that the RRC completion signal for the DRX release signal has been acquired, the carrier number switching unit 410 switches the communication mode to the multi-carrier mode.
  • FIG. 10 is a flowchart of an example of the operation of the terminal device according to the third embodiment.
  • the terminal device 300 (see FIG. 8) performs the following operation, for example.
  • the carrier number switching unit 307 determines whether or not a DRX setting signal from the base station apparatus 400 has been received (step S1001).
  • step S1001: No the process proceeds to step S1003.
  • step S1001 when the DRX setting signal is received from the base station apparatus 400 (step S1001: Yes), the carrier number switching unit 307 switches the communication mode of the terminal apparatus 300 to the multi-carrier mode (step S1002). Next, the carrier number switching unit 307 determines whether or not the DRX release signal from the base station apparatus 400 has been received (step S1003).
  • step S1003 when the DRX release signal has not been received (step S1003: No), the process returns to step S1001 to continue the process.
  • step S1003: Yes when the DRX release signal is received (step S1003: Yes), the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the single carrier mode (step S1004), returns to step S1001, and continues the processing.
  • the terminal device 300 can switch the communication mode based on the acquired setting signal and cancellation signal.
  • FIG. 11 is a flowchart of an example of the operation of the base station apparatus according to the third embodiment.
  • Base station apparatus 400 (see FIG. 9) performs the following operation, for example.
  • the RRC completion signal determination unit 903 determines whether an RRC completion signal corresponding to the DRX setting signal transmitted to the terminal device 300 has been received (step S1101).
  • step S1101: No the process proceeds to step S1103.
  • step S1101 when the RRC completion signal for the DRX setting signal is received (step S1101: Yes), the carrier number switching unit 410 switches the communication mode of the base station apparatus 400 to the single carrier mode (step S1102).
  • step S1103 determines whether an RRC completion signal for the DRX release signal transmitted to the terminal device 300 has been received (step S1103).
  • step S1103 when the RRC completion signal for the DRX release signal has not been received (step S1103: No), the process returns to step S1101 to continue the process.
  • step S1103: Yes when the RRC completion signal for the DRX release signal is received (step S1103: Yes), the carrier number switching unit 410 switches the communication mode of the base station device 400 to the multi-carrier mode (step S1104), and returns to step S1101 for processing. To continue.
  • base station apparatus 400 can switch the communication mode based on the RRC completion signal for the DRX setting signal and the DRX release signal.
  • the terminal apparatus 300 includes a DRX setting signal that requests the terminal apparatus 300 to set a DRX cycle, and a DRX release signal that requests the terminal apparatus 300 to cancel the DRX cycle setting. And get. Then, the terminal device 300 switches the communication mode based on the acquired DRX setting signal and DRX release signal.
  • the existing DRX setting signal and DRX release signal can be used as information indicating a change in communication state, communication resources can be used efficiently without transmitting / receiving new control information to / from base station apparatus 400. be able to.
  • the terminal apparatus 300 since there is a high possibility that data is transmitted from the base station apparatus 400 when the DRX cycle is released, the terminal apparatus 300 performs communication with high throughput by switching to the multi-carrier mode when receiving the DRX release signal. be able to. In addition, since it is unlikely that data is transmitted from the base station apparatus 400 when the DRX cycle is set, the terminal apparatus 300 suppresses power consumption by switching to the single carrier mode when receiving the DRX setting signal. Can do.
  • the base station apparatus 400 acquires an RRC completion signal from the terminal apparatus 300 in response to the DRX setting signal or DRX release signal transmitted to the terminal apparatus 300, and based on the acquired RRC completion signal, the communication mode Switch.
  • the existing RRC completion signal can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the terminal device 300.
  • the base station apparatus 400 switches to the multi-carrier mode when the RRC completion signal from the terminal apparatus 300 with respect to the DRX release signal transmitted to the terminal apparatus 300 is acquired. Moreover, the base station apparatus 400 switches to single carrier mode, when the RRC completion signal from the terminal device 300 with respect to the DRX setting signal transmitted to the terminal device 300 is acquired. Thereby, since it is possible to switch the communication mode after confirming that the DRX release signal or the DRX setting signal is normally received by the terminal device 300, the communication of the base station device 400 is performed together with the switching of the communication mode by the terminal device 300. You can switch modes.
  • FIG. 12 is a block diagram of the configuration of the terminal device according to the fourth embodiment.
  • the terminal apparatus 300 according to the fourth embodiment includes a data channel decoding unit 1201, a control channel decoding unit 1202, and a binary data buffer unit instead of the decoding unit 304, logical channel analysis unit 305, and transmission timing control unit 306 shown in FIG. 1203.
  • Demodulation section 303 outputs the demodulated signal to data channel decoding section 1201 and control channel decoding section 1202.
  • the data channel decoding unit 1201 decodes the data channel included in the signal output from the demodulation unit 303 based on the reception allocation information output from the control channel decoding unit 1202. For example, the data channel decoding unit 1201 performs error correction decoding of the signal and notifies the Ack / Nack generation unit 308 of the error correction decoding result. Further, the data channel decoding unit 1201 outputs the decoded data to the subsequent stage.
  • the control channel decoding unit 1202 decodes the control channel included in the signal output from the demodulation unit 303.
  • the control channel included in the signal output from the demodulation unit 303 includes allocation information indicating communication resources allocated to the terminal device 300.
  • the allocation information is, for example, reception allocation information indicating communication resources allocated for data reception by the terminal device 300, or transmission allocation information indicating communication resources allocated for data transmission by the terminal device 300. is there.
  • the control channel decoding unit 1202 acquires the reception allocation information and transmission allocation information included in the control channel as information indicating a change in communication state.
  • the control channel decoding unit 1202 outputs the acquired reception allocation information to the data channel decoding unit 1201 and notifies the carrier number switching unit 307 that the reception allocation information has been acquired.
  • control channel decoding section 1202 notifies carrier number switching section 307 that the transmission allocation information has been acquired.
  • control channel decoding unit 1202 acquires the transmission allocation information
  • control channel decoding unit 1202 outputs an output instruction to output the amount of data corresponding to the communication resource indicated by the transmission allocation information to the binary data buffer unit 1203.
  • the binary data buffer unit 1203 stores data (binary data) to be transmitted to the base station apparatus 400.
  • the binary data buffer unit 1203 outputs the amount of data indicated by the output instruction among the stored data to the encoding unit 309.
  • the carrier number switching unit 307 switches the communication mode of the terminal device 300 based on the notification of reception allocation information or transmission allocation information acquisition by the control channel decoding unit 1202. Specifically, the carrier number switching unit 307 sets the communication mode to the multi-carrier mode when notified from the control channel decoding unit 1202 that the reception allocation information or the transmission allocation information has been acquired.
  • the carrier number switching unit 307 has a timer function for measuring a certain time (for example, several seconds) after the control channel decoding unit 1202 is notified that the reception allocation information or transmission allocation information has been acquired.
  • the carrier number switching unit 307 sets the communication mode to the single carrier mode when a certain period of time has passed since the control channel decoding unit 1202 is notified that the reception allocation information or the transmission allocation information has been acquired based on the time measured by the timer. To do.
  • the carrier number switching unit 307 may reset the timer when the control channel decoding unit 1202 notifies that the reception allocation information or the transmission allocation information has been acquired during the time measurement by the timer. In this case, the carrier number switching unit 307 sets the communication mode to the single carrier mode when a certain time elapses after the timer is reset.
  • the Ack / Nack generation unit 308 generates a delivery confirmation signal based on the error correction decoding result notified from the data channel decoding unit 1201.
  • the encoding unit 309 encodes the delivery confirmation signal output from the Ack / Nack generation unit 308 and outputs the encoded delivery confirmation signal to the modulation unit 310. Also, the encoding unit 309 encodes the data output from the binary data buffer unit 1203 and outputs the encoded data to the modulation unit 310.
  • the modulation unit 310 modulates the data output from the encoding unit 309 and outputs the modulated data to the RF processing unit 302.
  • the antenna 301 transmits the delivery confirmation signal and data output from the RF processing unit 302 to the base station apparatus 400.
  • the RF processing unit 302 converts the frequency of the delivery confirmation signal and data output from the modulation unit 310 from baseband to high frequency, and outputs the delivery confirmation signal and data obtained by converting the frequency to the antenna 301.
  • FIG. 13 is a block diagram of a configuration of the base station apparatus according to the fourth embodiment.
  • the base station apparatus 400 according to the fourth embodiment includes a control signal generator 1301 and an Ack / Nack demodulator in place of the transmission timing controller 402 and the demodulator 408 in the configuration illustrated in FIG. 4. 1302 and a data demodulator 1303 are provided.
  • the scheduler unit 401 notifies the control signal generation unit 1301 and the modulation unit 405 of the scheduling result.
  • the control signal generation unit 1301 generates a control signal based on the scheduling result notified from the scheduler unit 401. For example, the control signal generation unit 1301 generates reception allocation information indicating communication resources allocated for data reception by the terminal device 300. Further, the control signal generation unit 1301 generates transmission allocation information indicating communication resources allocated for data transmission by the terminal device 300.
  • the scheduler unit 401 outputs the generated control signal to the encoding unit 404 as a control channel.
  • Encoding section 404 encodes the control channel output from transmission timing control section 402, and outputs the encoded data to modulation section 405.
  • Modulation section 405 modulates the control channel output from coding section 404.
  • the RF processing unit 406 converts the frequency of the delivery confirmation signal output from the antenna 407 from a high frequency to a baseband, and outputs the delivery confirmation signal obtained by converting the frequency to the Ack / Nack demodulation unit 1302 and the data demodulation unit 1303.
  • the antenna 407 receives a signal transmitted from the terminal device 300 and outputs the signal to the RF processing unit 406.
  • the Ack / Nack demodulation unit 1302 demodulates the delivery confirmation signal included in the signal output from the RF processing unit 406, and outputs the demodulated delivery confirmation signal to the Ack / Nack determination unit 409.
  • Data demodulating section 1303 demodulates the data included in the signal output from RF processing section 406 and outputs the demodulated data to carrier number switching section 410.
  • Carrier number switching section 410 switches the communication mode of base station apparatus 400 based on the determination result notified from Ack / Nack determination section 409 and the data output from data demodulation section 1303.
  • the Ack / Nack determination unit 409 notifies the carrier number switching unit 410 that the Ack / Nack determination unit 409 has received a determination result indicating that the Ack for the reception allocation information transmitted from the base station device 400 to the terminal device 300 is received. Switch the mode to multi-carrier mode. Further, when the data transmitted by the terminal device 300 is output from the data demodulator 1303, the carrier number switching unit 410 switches the communication mode to the multi-carrier mode.
  • the carrier number switching unit 410 has a timer function for measuring a certain time after switching the communication mode to the multi-carrier mode. Based on the timer, the carrier number switching unit 410 switches the communication mode to the single carrier mode when a predetermined time has elapsed since the communication mode was switched to the multiple carrier mode.
  • FIG. 14 is a flowchart of an example of the operation of the terminal device according to the fourth embodiment.
  • the terminal device 300 (see FIG. 12) performs, for example, the following operation.
  • the carrier number switching unit 307 determines whether reception allocation information or transmission allocation information from the base station apparatus 400 has been received (step S1401).
  • step S1401 when reception allocation information or transmission allocation information is not received (step S1401: No), the process proceeds to step S1404.
  • reception allocation information or transmission allocation information is received from the base station apparatus 400 (step S1401: Yes)
  • the carrier number switching unit 307 starts an operation of a timer for measuring a certain time (step S1402).
  • the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the multi-carrier mode (step S1403).
  • the carrier number switching unit 307 determines whether or not the timer whose operation has been started in step S1402 has expired (step S1404). If the timer has not expired (step S1404: No), the process returns to step S1401 to continue the process. When the timer expires (step S1404: Yes), the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the single carrier mode (step S1405), returns to step S1401, and continues the processing. By performing the above operation, the terminal device 300 can switch the communication mode based on the allocation information indicating the allocation of communication resources to the terminal device 300.
  • FIG. 15 is a flowchart of an example of the operation of the base station apparatus according to the fourth embodiment.
  • Base station apparatus 400 (see FIG. 13) performs the following operation, for example.
  • the carrier number switching unit 410 determines whether or not the reception allocation information transmitted to the terminal device 300 or the Ack for the transmission allocation information or the data transmitted from the terminal device 300 has been received. (Step S1501).
  • step S1501 when Ack or data is not received (step S1501: No), the process proceeds to step S1504.
  • step S1501: Yes the carrier number switching unit 410 starts an operation of a timer for measuring a predetermined time (step S1502).
  • the carrier number switching unit 410 switches the communication mode in the scheduler unit 401 to the multi-carrier mode (step S1503).
  • the carrier number switching unit 410 determines whether or not the timer whose operation has been started in step S1502 has expired (step S1504).
  • step S1504 if the timer has not expired (step S1504: No), the process returns to step S1501 to continue the process.
  • step S1504: Yes the carrier number switching unit 410 switches the communication mode in the scheduler unit 401 to the single carrier mode (step S1505), returns to step S1501, and continues the processing.
  • the base station apparatus 400 can switch the communication mode based on the reception allocation information transmitted to the terminal apparatus 300 or the delivery confirmation signal for the transmission allocation information. Further, the base station apparatus 400 can switch the communication mode based on the data transmitted from the terminal apparatus 300 based on the transmission allocation information transmitted to the terminal apparatus 300.
  • FIG. 16 is a sequence diagram illustrating an example of the operation of the communication system according to the fourth embodiment.
  • the base station apparatus 400 transmits a control channel to the terminal apparatus 300 (step S1602).
  • the control channel transmitted in step S1602 includes reception allocation information.
  • the time limit t1 indicates a certain time after the reception allocation information transmitted in step S1602 is received by the terminal device 300.
  • base station apparatus 400 transmits a part of the transmission data generated in step S1601 to terminal apparatus 300 (step S1603).
  • the terminal device 300 transmits Ack for the data transmitted in step S1603 to the base station device 400 (step S1604).
  • the base station device 400 transmits a control channel to the terminal device 300 (step S1605).
  • the control channel transmitted in step S1605 includes reception allocation information.
  • the time limit t2 indicates a certain time after the reception allocation information transmitted in step S1605 is received by the terminal device 300.
  • the base station apparatus 400 transmits untransmitted data among the transmission data generated in step S1601 to the terminal apparatus 300 (step S1606).
  • the terminal apparatus 300 transmits Ack for the data transmitted in step S1606 to the base station apparatus 400 (step S1607). Assume that the terminal device 300 has received all the transmission data generated in step S1601 through the above steps. Next, the base station apparatus 400 ends the transmission process (step S1608) and ends a series of operations.
  • the communication mode is the multi-carrier mode in the period T in which at least one of the time limit t1 and the time limit t2 is being measured.
  • the communication mode is the single carrier mode in periods other than period T.
  • step S1603 and step S1606 are normally received by the terminal device 300, and Ack is transmitted from the terminal device 300 to the base station apparatus 400 was demonstrated.
  • the base station apparatus 400 transmits the transmitted data to the terminal apparatus 300 again. Send.
  • the base station device 400 may start counting the time limit t1 after receiving an Ack (not shown) from the terminal device 300 for the transmitted control channel. Also in this case, for example, when data is transmitted in step S1603 and step S1606, the communication mode can be switched to the multi-carrier mode.
  • the base station device 400 may start measuring the time limit t1 after receiving Ack from the terminal device 300 for the data transmitted in step S1603 (step S1604). Also in this case, for example, when data is transmitted in step S1606, the communication mode can be switched to the multi-carrier mode.
  • the base station apparatus 400 periodically transmits a control channel to the terminal apparatus 300 during the data transmission process. Thereby, during the data transmission processing, the terminal device 300 and the base station device 400 are switched to the multi-carrier mode, and communication with high throughput can be performed.
  • the base station apparatus 400 finishes the data transmission process, the base station apparatus 400 stops transmission of the control channel. Thereby, after the data transmission processing, the validity period of the control channel expires, and the terminal device 300 and the base station device 400 are switched to the single carrier mode. For this reason, the power consumption of the terminal device 300 and the base station apparatus 400 can be suppressed.
  • the terminal apparatus 300 acquires allocation information (reception allocation information or transmission allocation information) indicating allocation of communication resources to the terminal apparatus 300, and performs communication mode based on the acquired allocation information. Switch.
  • allocation information reception allocation information or transmission allocation information
  • the existing allocation information can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the base station apparatus 400.
  • the terminal apparatus 300 since it is highly possible that data is transmitted from the base station apparatus 400 after receiving the reception allocation information, the terminal apparatus 300 performs communication with high throughput by switching to the multi-carrier mode when receiving the reception allocation information. It can be performed. In addition, since there is a high possibility of transmitting data from the terminal device 300 after receiving the transmission allocation information, the terminal device 300 performs communication with high throughput by switching to the multi-carrier mode when receiving the transmission allocation information. be able to.
  • reception allocation information or transmission allocation information there is a high possibility of repeated communication for a certain period after receiving the reception allocation information or transmission allocation information. For example, when a web page is browsed by the terminal device 300, after accessing a specific page, there is a high possibility that another page is accessed from a link in the page.
  • the terminal device 300 can perform communication with high throughput by switching to the multiple carrier mode for a certain period after receiving the reception allocation information or the transmission allocation information.
  • the terminal device 300 can suppress power consumption by switching to the single carrier mode after a certain period of time has elapsed after receiving the reception allocation information or the transmission allocation information.
  • the base station apparatus 400 acquires a delivery confirmation signal from the terminal apparatus 300 for the allocation information (reception allocation information or transmission allocation information) transmitted to the terminal apparatus 300, and uses the acquired delivery confirmation signal as the acquired delivery confirmation signal. Switch the communication mode based on this. Thereby, since the existing delivery confirmation signal can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the terminal device 300.
  • the base station apparatus 400 switches to the multi-carrier mode when a delivery confirmation signal is acquired from the terminal apparatus 300 for the allocation information transmitted to the terminal apparatus 300.
  • the base station device 400 switches to the single carrier mode when a certain period of time has elapsed since the delivery confirmation signal from the terminal device 300 with respect to the allocation information transmitted to the terminal device 300 is acquired.
  • the base station apparatus 400 acquires data transmitted from the terminal apparatus 300 based on the transmission allocation information transmitted to the terminal apparatus 300, and switches the communication mode based on the acquired data. . Accordingly, since existing data can be used as information indicating a change in communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the terminal device 300.
  • the base station device 400 switches to the multi-carrier mode. Moreover, the base station apparatus 400 switches to the single carrier mode when a certain time has elapsed since the data transmitted from the terminal apparatus 300 is acquired based on the transmission allocation information transmitted to the terminal apparatus 300. Thereby, since it is possible to switch the communication mode after confirming that the allocation information has been normally received by the terminal device 300, the communication mode of the base station device 400 can be switched together with the switching of the communication mode by the terminal device 300. it can.
  • FIG. 17 is a block diagram of a configuration of a terminal device according to the fifth embodiment.
  • the terminal device 300 according to the fifth embodiment includes a DRX control unit 1701 in addition to the configuration of the terminal device 300 shown in FIG.
  • the control channel decoding unit 1202 outputs the decoded control channel to the DRX control unit 1701.
  • the DRX control unit 1701 has a function of a DRX pause timer (intermittent reception pause timer) that operates based on the control channel output from the control channel decoding unit 1202.
  • the DRX dormancy timer is a timer that measures the DRX dormancy period of the terminal device 300, and is, for example, a DRX Inactivity timer defined in LTE.
  • the DRX control unit 1701 controls the demodulation unit 303 so as to pause DRX and always receive the control channel while the DRX pause timer is operating. Also, when the operation of the DRX pause timer ends, the DRX control unit 1701 controls the demodulation unit 303 to perform DRX. Also, the DRX control unit 1701 acquires timer information indicating the operation state of the DRX dormancy timer as information indicating a change in communication state. The DRX control unit 1701 outputs the acquired timer information to the carrier number switching unit 307.
  • the carrier number switching unit 307 switches the communication mode of the terminal device 300 based on the timer information notified from the DRX control unit 1701. For example, based on the timer information, the carrier number switching unit 307 switches the communication mode to the multi-carrier mode when timing of the DRX suspension period by the DRX suspension timer of the DRX control unit 1701 is started. Also, the carrier number switching unit 307 switches the communication mode to the single carrier mode when the measurement of the DRX suspension period by the DRX suspension timer is completed based on the timer information.
  • the base station apparatus 400 can start counting the DRX pause timer of the terminal apparatus 300 by transmitting a DRX release signal to the terminal apparatus 300, for example.
  • FIG. 18 is a flowchart of an example of the operation of the terminal device according to the fifth embodiment.
  • the terminal device 300 (see FIG. 17) performs the following operation, for example.
  • the carrier number switching unit 307 determines whether or not the DRX pause timer has started counting by the DRX pause timer (step S1801).
  • step S1801: No the time measurement by the DRX pause timer has not been started.
  • step S1801 when the time measurement by the DRX pause timer is started (step S1801: Yes), the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the multiple carrier mode (step S1802). Next, the carrier number switching unit 307 determines whether or not the measurement of the DRX pause period by the DRX pause timer has ended (step S1803).
  • step S1803 when the time measurement by the DRX pause timer has not ended (step S1803: No), the process returns to step S1801 to continue the processing.
  • step S1803: Yes when the time measurement by the DRX pause timer is completed (step S1803: Yes), the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the single carrier mode (step S1804), and returns to step S1801 to continue the processing. To do.
  • the terminal device 300 can switch the communication mode based on the timer information.
  • FIG. 19 is a flowchart of an example of the operation of the base station apparatus according to the fifth embodiment.
  • the base station apparatus 400 (for example, refer FIG. 9) concerning Embodiment 5 performs the following operation
  • the carrier number switching unit 410 determines whether or not the timing of the DRX suspension period by the DRX suspension timer in the terminal device 300 has been started (step S1901). If the time measurement by the DRX pause timer has not been started (step S1901: NO), the process proceeds to step S1903.
  • step S1901 when the time measurement by the DRX pause timer is started (step S1901: Yes), the carrier number switching unit 410 switches the communication mode of the base station device 400 to the multi-carrier mode (step S1902). Next, the carrier number switching unit 410 determines whether or not the measurement of the DRX suspension period by the DRX suspension timer in the terminal device 300 has ended (step S1903).
  • step S1903 when the time measurement by the DRX pause timer has not ended (step S1903: No), the process returns to step S1901 to continue the process.
  • step S1903: Yes when the time measurement by the DRX pause timer is completed (step S1903: Yes), the carrier number switching unit 410 switches the communication mode of the base station device 400 to the single carrier mode (step S1904), and returns to step S1901 to perform the processing. continue.
  • step S1901 the base station apparatus 400 determines whether or not the time measurement by the DRX pause timer has started, for example, depending on whether or not an Ack for the DRX setting signal transmitted to the terminal apparatus 300 has been received. Further, in step S1903, base station apparatus 400 determines whether or not the time measurement by the DRX pause timer has ended, for example, depending on whether or not a certain time has elapsed since receiving Ack for the DRX setting signal.
  • the terminal device 300 acquires timer information indicating the operation state of the DRX pause timer that measures the DRX pause period of the terminal device 300, and the communication mode based on the acquired timer information. Switch. Accordingly, since the existing timer information can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the base station apparatus 400.
  • the terminal apparatus 300 since there is a high possibility that data is transmitted from the base station apparatus 400 during the time measurement of the DRX pause timer, the terminal apparatus 300 switches to the multi-carrier mode when the time measurement by the DRX pause timer is started, thereby increasing the throughput. Communication can be performed. In addition, since there is a low possibility that data is transmitted from the base station device 400 except when the DRX pause timer is being measured, the terminal device 300 consumes by switching to the single carrier mode when the time measurement by the DRX pause timer ends. Power can be reduced.
  • FIG. 20 is a block diagram of a configuration of a terminal device according to the sixth embodiment. 20, the same components as those illustrated in FIG. 8 are denoted by the same reference numerals and description thereof is omitted.
  • the RRC information analysis unit 801 detects switching information between the connect mode and the idle mode from the RRC message output from the logical channel analysis unit 305.
  • Connect mode is, for example, connected mode defined in LTE.
  • the idle mode is, for example, idle mode defined in LTE.
  • the RRC information analysis unit 801 outputs the detected switching information to the demodulation unit 303 and the carrier number switching unit 307.
  • the demodulation unit 303 switches between the connect mode and the idle mode based on the switching information output from the RRC information analysis unit 801.
  • the carrier number switching unit 307 switches the communication mode based on the switching information output from the RRC information analysis unit 801. Specifically, the carrier number switching unit 307 switches the communication mode to the multiple carrier mode when the terminal device 300 is in the connect mode. Also, the carrier number switching unit 307 switches the communication mode to the multi-carrier mode when the terminal device 300 is in the idle mode.
  • FIG. 21 is a block diagram of a configuration of a base station apparatus according to the sixth embodiment.
  • the same components as those shown in FIG. 9 are denoted by the same reference numerals and description thereof is omitted.
  • the base station apparatus 400 according to the sixth embodiment includes an RRC message generation unit 2101 instead of the DRX cycle setting control unit 901 illustrated in FIG. 9.
  • the scheduler unit 401 determines switching between the connect mode and the idle mode of the terminal device 300 in scheduling.
  • the scheduler unit 401 notifies the RRC message generation unit 2101 and the modulation unit 405 of the scheduling result.
  • the RRC message generation unit 2101 generates switching information indicating switching between the connect mode and the idle mode based on the scheduling result notified from the scheduler unit 401.
  • the RRC message generation unit 2101 outputs the RRC message including the generated switching information to the encoding unit 404.
  • the encoding unit 404 stores the RRC message output from the RRC message generation unit 2101 in the data output from the binary data buffer unit 403.
  • Encoding section 404 encodes the data storing the RRC message, and outputs the encoded data to modulation section 405.
  • the RF processing unit 406 converts the frequency of the RRC completion signal output from the antenna 407 from a high frequency to a baseband, and outputs the RRC completion signal converted in frequency to the demodulation unit 408.
  • Demodulation section 408 demodulates the RRC completion signal output from RF processing section 406 and outputs the demodulated RRC completion signal to decoding section 902.
  • the decoding unit 902 decodes the RRC completion signal output from the demodulation unit 408. Decoding section 902 outputs the decoded RRC completion signal to RRC completion signal determination section 903.
  • the RRC completion signal determination unit 903 determines the RRC completion signal output from the decoding unit 902. For example, the RRC completion signal determination unit 903 is an RRC completion signal for the switching information for requesting switching to the idle mode or whether the RRC completion signal is an RRC completion signal for switching information for requesting switching to the connect mode. It is determined whether. The RRC completion signal determination unit 903 notifies the determination result to the carrier number switching unit 410.
  • the carrier number switching unit 410 switches the communication mode of the base station device 400 based on the determination result notified from the RRC completion signal determination unit 903. Specifically, when the RRC completion signal determining unit 903 is notified that the carrier number switching unit 410 has acquired the RRC completion signal for the switching information for requesting switching to the connected mode, the carrier mode switching unit 410 switches the communication mode to the multi-carrier mode. Switch. In addition, when the RRC completion signal determination unit 903 notifies that the number of carriers switching unit 410 has acquired the RRC completion signal for the switching information requesting switching to the idle mode, the carrier number switching unit 410 switches the communication mode to the single carrier mode.
  • FIG. 22 is a flowchart of an example of the operation of the terminal device according to the sixth embodiment.
  • the terminal device 300 (see FIG. 20) performs the following operation, for example.
  • the carrier number switching unit 307 determines whether or not the terminal device 300 is in the connect mode (step S2201). If the terminal device 300 is not in the connect mode (step S2201: No), the process proceeds to step S2203.
  • step S2201 when the terminal device 300 is in the connect mode (step S2201: Yes), the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the multi-carrier mode (step S2202). Next, the carrier number switching unit 307 determines whether or not the terminal device 300 is in the idle mode (step S2203).
  • step S2203 if the terminal device 300 is not in the idle mode (step S2203: No), the process returns to step S2201 to continue the process.
  • the carrier number switching unit 307 switches the communication mode of the terminal device 300 to the single carrier mode (step S2204), returns to step S2201, and continues the processing. To do.
  • the terminal device 300 can switch the communication mode based on the switching information.
  • FIG. 23 is a flowchart of an example of the operation of the base station apparatus according to the sixth embodiment.
  • Base station apparatus 400 (see FIG. 21) performs the following operation, for example.
  • the RRC completion signal determination unit 903 determines whether or not the RRC completion signal for the switching information for requesting switching to the connected mode transmitted to the terminal device 300 is received from the terminal device 300. (Step S2301).
  • step S2301 when the RRC completion signal for the switching information has not been received (step S2301: No), the process proceeds to step S2303.
  • step S2301: Yes when the RRC completion signal for the RRC completion signal for the switching information is received (step S2301: Yes), the scheduler unit 401 switches the communication mode of the base station apparatus 400 to the single carrier mode (step S2302).
  • the RRC completion signal determination unit 903 determines whether or not the RRC completion signal corresponding to the switching information for requesting switching to the idle mode transmitted to the terminal device 300 is received from the terminal device 300 (step S2303). When the RRC completion signal for the switching information has not been received (step S2303: No), the process returns to step S2301 to continue the processing.
  • step S2303 when the RRC completion signal for the switching information is received (step S2303: Yes), the carrier number switching unit 410 switches the communication mode to the multi-carrier mode (step S2304), and returns to step S2301 to continue the processing. To do.
  • base station apparatus 400 can switch the communication mode based on the RRC completion signal transmitted from terminal apparatus 300 based on the switching information.
  • the terminal device 300 acquires switching information indicating switching between the connect mode and the idle mode of the terminal device 300, and switches the communication mode based on the acquired switching information.
  • the existing switching information can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the base station apparatus 400.
  • the terminal apparatus 300 since there is a high possibility that data is transmitted from the base station apparatus 400 when the terminal apparatus 300 is in the connect mode, the terminal apparatus 300 performs communication with high throughput by switching to the multi-carrier mode when in the connect mode. be able to. Further, since the possibility that data is transmitted from the base station apparatus 400 is low when the terminal apparatus 300 is in the idle mode, the terminal apparatus 300 suppresses power consumption by switching to the single carrier mode when in the idle mode. Can do.
  • the base station apparatus 400 concerning Embodiment 6 acquires the RRC completion signal from the terminal device 300 with respect to the switching information transmitted to the terminal device 300, and switches communication modes based on the acquired RRC completion signal. Thereby, since the existing RRC completion signal can be used as information indicating a change in the communication state, communication resources can be efficiently used without transmitting / receiving new control information to / from the terminal device 300.
  • the base station apparatus 400 switches to the multi-carrier mode when the RRC completion signal is acquired from the terminal apparatus 300 for the switching information that is transmitted to the terminal apparatus 300 and requests switching to the connect mode. Moreover, the base station apparatus 400 switches to single carrier mode, when the RRC completion signal from the terminal apparatus 300 with respect to the switching information which transmitted to the terminal apparatus 300 and requests
  • the communication mode of the base station device 400 is switched together with the switching of the communication mode by the terminal device 300. Can do.
  • FIG. 24 is a block diagram of the configuration of the terminal device according to the seventh embodiment. 24, the same components as those illustrated in FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
  • the terminal device 300 according to the seventh embodiment includes a cell search unit 2401, a level measurement unit 2402, a cell reselection control unit 2403, and a component carrier determination unit 2404 in addition to the configuration shown in FIG. Yes.
  • the antenna 301 receives each SCH (Synchronization channel) transmitted from a plurality of base station apparatuses including the base station apparatus 400 and outputs the SCH to the RF processing unit 302.
  • the RF processing unit 302 converts the frequency of each SCH output from the antenna 301 from a high frequency to a baseband, and outputs each SCH having the converted frequency to the demodulation unit 303, the cell search unit 2401, and the level measurement unit 2402.
  • the cell search unit 2401 performs a cell search that detects base station devices around the terminal device 300 based on each SCH output from the RF processing unit 302.
  • the cell search unit 2401 notifies the level measurement unit 2402 of the base station device detected by the cell search.
  • Level measurement section 2402 measures the level of each SCH output from RF processing section 302 for each base station apparatus notified from cell search section 2401.
  • Level measurement section 2402 notifies celery selection control section 2403 of the measured SCH level for each base station apparatus.
  • the celery selection control unit 2403 performs celery selection based on the SCH level for each base station apparatus notified from the level measurement unit 2402.
  • the celery selection control unit 2403 performs celery selection specified in LTE, for example.
  • the celery selection control unit 2403 compares the SCH level of the base station device with which the terminal device 300 is waiting with the SCH level of other base station devices.
  • the cell reselection control unit 2403 performs cell reselection to other base station devices when the SCH level of the base station device on which the terminal device 300 is waiting is lower than the SCH level of other base station devices.
  • the celery selection control unit 2403 controls the demodulation unit 303 so as to demodulate signals of other base station apparatuses, and notifies the component carrier determination unit 2404 of the determination result of celery selection.
  • the component carrier determination unit 2404 determines a component carrier used for reception of the terminal device 300 based on the determination result of celery selection notified from the celery selection control unit 2403. Also, the component carrier determination unit 2404 determines a component carrier to be used for reception by the terminal device 300 according to the communication mode switched by the carrier number switching unit 307. The component carrier determination unit 2404 controls the demodulation unit 303 to demodulate the determined component carrier.
  • the component carrier determination unit 2404 determines a component carrier having the same frequency as that used before celery selection as a component carrier used after celery selection. Thereby, the component carrier used after celery selection can be determined by simple processing.
  • the component carrier determination unit 2404 determines a component carrier having the same frequency as the frequency used before celery selection as the component carrier to be used. Thereby, the component carrier used in the case of the single carrier mode can be determined by simple processing.
  • a cell search unit 2401, a level measurement unit 2402, a cell reselection control unit 2403, and a component carrier determination unit 2404 are provided for the configuration of the terminal device 300 according to the second embodiment (see FIG. 3). It was. On the other hand, a cell search unit 2401, a level measurement unit 2402, a cell reselection control unit 2403, and a component carrier determination unit 2404 are provided for the configuration of the terminal device 300 according to any of the third to sixth embodiments. Form 7 may be adopted.
  • FIG. 25 is a flowchart of an example of operation of the terminal device according to the seventh embodiment.
  • the terminal device 300 (see FIG. 24) performs, for example, the following operation.
  • the celery selection control unit 2403 determines whether or not a celery selection criterion serving as a criterion for performing celery selection is satisfied (step S2501), and waits until the celery selection criterion is satisfied (step S2501).
  • S2501 No loop).
  • step S2501 if the celery selection criterion is satisfied (step S2501: Yes), the celery selection control unit 2403 switches to another base station device (step S2502), and the series of operations is terminated.
  • step S2501 the celery selection control unit 2403 compares, for example, the SCH level of the base station apparatus with which the terminal apparatus 300 is waiting with the SCH levels of other base station apparatuses.
  • the cell reselection control unit 2403 determines that the cell reselection criterion is satisfied when the SCH level of the base station device on which the terminal device 300 is waiting is lower than the SCH level of other base station devices. Through the above steps, the terminal device 300 can perform celery selection when the celery selection criterion is satisfied.
  • FIG. 26 is a diagram of a specific example of the operation of the terminal device according to the seventh embodiment.
  • a communication resource 2610 indicates a communication resource in communication between the base station apparatus and the terminal apparatus 300 before cell reselection.
  • a communication resource 2620 indicates a communication resource in communication between the base station apparatus and the terminal apparatus 300 after celery selection.
  • the horizontal axis indicates the frequency.
  • the terminal apparatus 300 is communicating with the base station apparatus using the component carrier 2611 corresponding to the frequency f1 of the communication resource 2610 before performing the cell reselection.
  • the terminal device 300 uses the component carrier 2621 corresponding to the same frequency f1 as that used before performing cell reselection to the base station by the component carrier 2621. Communicate with the device.
  • the terminal device 300 uses the plurality of component carriers (component carriers 2621 to 2623) including the component carrier 2621 to Communicate with the device.
  • the terminal device 300 communicates with the base station device using the component carrier 2621 as indicated by reference numeral 2604.
  • the terminal device 300 illustrated in FIG. 24 determines the component carrier received in the single carrier mode after the celery selection as the component carrier having the same frequency as the frequency of the component carrier received before the celery selection. To do. Thereby, the process of the determination of the component carrier after celery selection and the determination of the component carrier in the single carrier mode can be simplified.
  • FIG. 27 is a block diagram of a first modification of the terminal device according to the seventh embodiment.
  • the terminal apparatus 300 according to the seventh embodiment may include a handover control unit 2701 instead of the celery selection control unit 2403 illustrated in FIG.
  • the level measurement unit 2402 notifies the handover control unit 2701 of the measured SCH level for each base station device.
  • the handover control unit 2701 performs handover based on the SCH level for each base station apparatus notified from the level measurement unit 2402.
  • the handover control unit 2701 performs a handover specified in LTE, for example.
  • the handover control unit 2701 compares the SCH level of the base station device with which the terminal device 300 is communicating with the SCH level of other base station devices.
  • the handover control unit 2701 performs handover to the other base station apparatus. Do. In this case, the handover control unit 2701 controls the demodulation unit 303 so as to demodulate signals from other base station apparatuses, and notifies the component carrier determination unit 2404 of the handover determination result.
  • the component carrier determination unit 2404 determines a component carrier used for reception of the terminal device 300 based on the handover determination result notified from the handover control unit 2701. Also, the component carrier determination unit 2404 determines a component carrier to be used for reception by the terminal device 300 according to the communication mode switched by the carrier number switching unit 307. The component carrier determination unit 2404 controls the demodulation unit 303 to demodulate the determined component carrier.
  • the component carrier determination unit 2404 determines a component carrier having the same frequency as that used before the handover, as the component carrier used after the handover. Thereby, the component carrier used after a hand-over can be determined by simple processing.
  • the component carrier determination unit 2404 determines a component carrier having the same frequency as the frequency used before the handover as the component carrier to be used. Thereby, the component carrier used in the case of the single carrier mode can be determined by simple processing.
  • the terminal device 300 shown in FIG. 27 determines the component carrier received in the single carrier mode after the handover as the component carrier having the same frequency as the frequency of the component carrier received before the handover. Thereby, the process of the determination of the component carrier after a handover and the determination of the component carrier in the single carrier mode can be simplified.
  • FIG. 28 is a block diagram of a second modification of the terminal device according to the seventh embodiment.
  • the terminal apparatus 300 according to the seventh embodiment includes a reconnection control unit 2801 instead of the celery selection control unit 2403 illustrated in FIG.
  • the level measuring unit 2402 notifies the reconnection control unit 2801 of the measured level for each base station device.
  • the reconnection control unit 2801 performs reconnection to the cell in communication based on the SCH level of the base station apparatus in communication output from the level measurement unit 2402.
  • the reconnection control unit 2801 performs reconnection specified in LTE, for example. For example, the reconnection control unit 2801 compares the SCH level of the base station device with which the terminal device 300 is communicating with a predetermined threshold.
  • the reconnection control unit 2801 performs reconnection to the base station device when the SCH level of the base station device with which the terminal device 300 is communicating becomes lower than a predetermined threshold. In this case, the reconnection control unit 2801 performs reconnection processing on the demodulation unit 303 and notifies the component carrier determination unit 2404 of the reconnection determination result.
  • the component carrier determination unit 2404 determines a component carrier used for reception of the terminal device 300 based on the reconnection determination result notified from the reconnection control unit 2801.
  • the component carrier determination unit 2404 determines a component carrier having the same frequency as that used before reconnection as a component carrier used after reconnection. Thereby, the component carrier used after reconnection can be determined by simple processing.
  • the component carrier determination unit 2404 determines a component carrier having the same frequency as the frequency used before reconnection as the component carrier to be used. Thereby, the component carrier used in the case of the single carrier mode can be determined by simple processing.
  • the terminal apparatus 300 illustrated in FIG. 28 determines the component carrier received in the single carrier mode after the reconnection as the component carrier having the same frequency as the frequency of the component carrier received before the reconnection. To do. Thereby, the process of the determination of the component carrier after reconnection and the determination of the component carrier in the single carrier mode can be simplified.
  • the communication device As described above, according to the communication device, the communication system, and the communication method, communication resources can be used efficiently.
  • the component carrier defined in LTE-Advanced is exemplified as the communication carrier.
  • the communication carrier is not limited to the component carrier, and any communication carrier in which physical resources are divided can be applied.
  • each communication apparatus has a plurality of carrier modes and a single carrier mode as communication modes.
  • the plurality of communication modes possessed by each communication device are not limited to the multiple carrier mode and the single carrier mode, and may be a plurality of communication modes in which the number of communication carriers used is different.
  • each communication apparatus described above has a first communication mode that uses a predetermined number of communication carriers instead of the multi-carrier mode, and uses a smaller number of communication carriers than the predetermined number instead of the single carrier mode. You may have 2nd communication mode.
  • the disclosed communication device, communication system, and communication method can be applied to, for example, an LTE-advanced communication method.
  • the disclosed communication device, communication system, and communication method are not limited to the LTE-advanced communication method, and can be applied to all communication methods capable of dividing and transmitting data into a plurality of physical resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第一通信装置(110)は、データを複数の通信キャリアに分割して送信可能である。また、第一通信装置(110)は、送信する通信キャリア数が異なる複数の通信モードを有し、通信状態に応じて通信モードを切り替える。第二通信装置(120)は、第一通信装置(110)によって複数の通信キャリアに分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有し、通信状態に応じて通信モードを切り替える。

Description

通信装置、通信システムおよび通信方法
 この発明は、通信を行う通信装置、通信システムおよび通信方法に関する。
 標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)-Advancedの仕様化が進められている。LTE-Advancedでは、LTEのシステムキャリア(たとえば最大20MHz)をコンポーネントキャリアと定義し、コンポーネントキャリアを複数束ねることでより高いスループットを得ることが検討されている。
 また、どのような回線状態にあっても最適な通信速度での通信を保証することができる無線データ通信方法および装置を提供するために、マルチリンク方法により複数の回線を用いて無線データ通信を行う無線データ通信装置であって、回線状態を監視して得られた監視情報によりデータパスを切り替えて回線選択を行う安定化部を有する無線データ通信方法が開示されている(たとえば、下記特許文献1参照。)。
 また、基地局装置と交換局とを接続する有線回線が、前記複数の端末がチャネルを共通に使用することができる共用チャネルと、1つの端末のみが使用できる専用チャネルとからなり、端末から転送されるデータの量が所定値以上である場合に、前記端末に専用チャネルを割り当て、該専用チャネルを用いたデータ転送に際して、前記端末から転送されるデータが、転送データ量過多により待たされ、該待ち合わせデータの量が予め定められた遅延データ量発生値以上である場合、前記端末に新たに別の専用チャネルを割り当て、待ち合わせデータの量が、予め定められた遅延データ量復旧値以下になるまで、前記専用チャネルと前記追加専用チャネルとを用いてデータを転送するパケット転送方法が開示されている(たとえば、下記特許文献2参照。)。
特開2000-174770号公報 特開2001-024706号公報
 しかしながら、上述した従来技術では、物理リソースを効率よく使用することができないという問題がある。たとえば、伝送するデータが無い場合、または伝送するデータが少ない場合にも複数のコンポーネントキャリアを送受信すると消費電力の無駄が生ずる。
 特に、受信側の通信装置においては、伝送するデータが無い場合、または伝送するデータが少ない場合にも、データが格納されているか否かを確認するために複数のコンポーネントキャリアを受信するため、消費電力の無駄が大きい。また、LTE-Advancedに規定されたコンポーネントキャリアに限らず、データを複数の通信キャリアに分割して伝送する通信方式全般においても同様の問題がある。
 本発明の一側面では、物理リソースを効率よく使用することを目的とする。
 第1の案では、複数の通信キャリアに分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有する受信部と、前記受信部の通信状態の変化を示す情報を取得する取得部と、前記取得部によって取得された情報に基づいて前記通信モードを切り替える切替部と、を備える通信装置を用いることとする。
 本発明によれば、物理リソースを効率よく使用することができるという効果を奏する。
実施の形態1にかかる通信システムの構成を示すブロック図である。 通信システムにおいて使用される通信キャリアを示す図である。 実施の形態2にかかる端末装置の構成を示すブロック図である。 実施の形態2にかかる基地局装置の構成を示すブロック図である。 実施の形態2にかかる端末装置の動作の一例を示すフローチャートである。 実施の形態2にかかる基地局装置の動作の一例を示すフローチャートである。 実施の形態2にかかる通信システムの動作の一例を示すシーケンス図である。 実施の形態3にかかる端末装置の構成を示すブロック図である。 実施の形態3にかかる基地局装置の構成を示すブロック図である。 実施の形態3にかかる端末装置の動作の一例を示すフローチャートである。 実施の形態3にかかる基地局装置の動作の一例を示すフローチャートである。 実施の形態4にかかる端末装置の構成を示すブロック図である。 実施の形態4にかかる基地局装置の構成を示すブロック図である。 実施の形態4にかかる端末装置の動作の一例を示すフローチャートである。 実施の形態4にかかる基地局装置の動作の一例を示すフローチャートである。 実施の形態4にかかる通信システムの動作の一例を示すシーケンス図である。 実施の形態5にかかる端末装置の構成を示すブロック図である。 実施の形態5にかかる端末装置の動作の一例を示すフローチャートである。 実施の形態5にかかる基地局装置の動作の一例を示すフローチャートである。 実施の形態6にかかる端末装置の構成を示すブロック図である。 実施の形態6にかかる基地局装置の構成を示すブロック図である。 実施の形態6にかかる端末装置の動作の一例を示すフローチャートである。 実施の形態6にかかる基地局装置の動作の一例を示すフローチャートである。 実施の形態7にかかる端末装置の構成を示すブロック図である。 実施の形態7にかかる端末装置の動作の一例を示すフローチャートである。 実施の形態7にかかる端末装置の動作の具体例を示す図である。 実施の形態7にかかる端末装置の変形例1を示すブロック図である。 実施の形態7にかかる端末装置の変形例2を示すブロック図である。
 以下に添付図面を参照して、この通信装置、通信システムおよび通信方法の好適な実施の形態を詳細に説明する。
(実施の形態1)
(実施の形態1にかかる通信システムの構成)
 図1は、実施の形態1にかかる通信システムの構成を示すブロック図である。図1に示すように、実施の形態1にかかる通信システム100は、第一通信装置110と、第二通信装置120と、を含んでいる。ここでは、第一通信装置110および第二通信装置120において、第一通信装置110から第二通信装置120へデータを送信するための構成について説明する。ただし、第一通信装置110および第二通信装置120は、第二通信装置120から第一通信装置110へデータを送信するための構成を備えていてもよい。
 第一通信装置110は、送信部111と、取得部112と、切替部113と、を備えている。送信部111は、データを複数の通信キャリアに分割して送信可能であり、送信する通信キャリア数が異なる複数の通信モードを有する。たとえば、送信部111は、複数キャリアモードおよび単一キャリアモードを通信モードとして有する。
 複数キャリアモードは、送信する通信キャリアが複数の通信モードである。送信部111は、複数キャリアモードのときは、データを複数の通信キャリアに分割して送信する。単一キャリアモードは、送信する通信キャリアが単一の通信モードである。送信部111は、単一キャリアモードのときは、データを単一のキャリアにより送信する。
 取得部112は、送信部111の通信状態の変化を示す情報を取得する。送信部111の通信状態の変化とは、たとえば、送信部111が送信するデータの量の変化である。または、送信部111の通信状態の変化は、送信部111が送信するデータの有無の変化であってもよい。取得部112は、取得した情報を切替部113へ出力する。
 切替部113は、取得部112によって取得された情報に基づいて送信部111の通信モードを切り替える。たとえば、切替部113は、送信部111が送信するデータの量が所定量より大きくなる旨の情報が取得部112から出力されると、送信部111の通信モードを複数キャリアモードに切り替える。また、切替部113は、送信部111が送信するデータの量が所定量以下になる旨の情報が取得部112から出力されると、送信部111の通信モードを単一キャリアモードに切り替える。
 または、切替部113は、送信部111が送信するデータが有る旨の情報が取得部112から出力されると、送信部111の通信モードを複数キャリアモードに切り替えるようにしてもよい。また、切替部113は、送信部111が送信するデータが無い旨の情報が取得部112から出力されると、送信部111の通信モードを単一キャリアモードに切り替えるようにしてもよい。
 第二通信装置120は、受信部121と、取得部122と、切替部123と、を備えている。受信部121は、複数の通信キャリアに分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有する。たとえば、受信部121は、複数キャリアモードおよび単一キャリアモードを通信モードとして有する。
 複数キャリアモードは、受信する通信キャリアが複数の通信モードである。受信部121は、複数キャリアモードのときは、複数の通信キャリアに分割して送信されたデータを受信する。単一キャリアモードは、受信する通信キャリアが単一の通信モードである。受信部121は、単一キャリアモードのときは、単一の通信キャリアにより送信されたデータを受信する。
 取得部122は、受信部121の通信状態の変化を示す情報を取得する。受信部121の通信状態の変化とは、たとえば、受信部121が受信するデータの量の変化である。または、受信部121の通信状態の変化は、受信部121が受信するデータの有無の変化であってもよい。取得部122は、取得した情報を切替部123へ出力する。
 切替部123は、取得部122によって取得された情報に基づいて受信部121の通信モードを切り替える。たとえば、切替部123は、受信部121が受信するデータの量が所定量より大きくなる旨の情報が取得部122から出力されると、受信部121の通信モードを複数キャリアモードに切り替える。また、切替部123は、受信部121が受信するデータの量が所定量以下になる旨の情報が取得部122から出力されると、受信部121の通信モードを単一キャリアモードに切り替える。
 または、切替部123は、受信部121が受信するデータが有る旨の情報が取得部122から出力されると、受信部121の通信モードを複数キャリアモードに切り替えるようにしてもよい。この場合は、切替部123は、受信部121が受信するデータが無い旨の情報が取得部122から出力されると、受信部121の通信モードを単一キャリアモードに切り替える。
(各通信装置のハードウェア構成)
 第一通信装置110の送信部111は、たとえば、アンテナや通信制御回路などの無線通信インターフェースにより実現される。第一通信装置110の取得部112は、たとえば、DSP(Digital Signal Processor)などの情報処理手段により実現される。取得部112は、取得した情報を第一通信装置110のメモリに記憶する。第一通信装置110の切替部113は、たとえば、DSPなどの情報処理手段により実現される。切替部113は、取得部112によりメモリに記憶された情報を読み出し、読み出した情報に基づいて通信モードを切り替える。
 第二通信装置120の受信部121は、たとえば、アンテナや通信制御回路などの無線通信インターフェースにより実現される。第二通信装置120の取得部122は、たとえば、DSPなどの情報処理手段により実現される。取得部122は、取得した情報を第二通信装置120のメモリに記憶する。第二通信装置120の切替部123は、たとえば、DSPなどの情報処理手段により実現される。切替部123は、取得部122によりメモリに記憶された情報を読み出し、読み出した情報に基づいて通信モードを切り替える。
(通信システムにおいて使用される通信キャリア)
 図2は、通信システムにおいて使用される通信キャリアを示す図である。図2において、横軸は周波数を示している。通信キャリア201~203のそれぞれは、周波数によって分割されたシステムキャリアを示している。第一通信装置110の送信部111は、複数キャリアモードのときは、たとえばデータを通信キャリア201~203のそれぞれに分割して送信する。また、第一通信装置110の送信部111は、単一キャリアモードのときは、たとえばデータを通信キャリア201によって送信する。
 第二通信装置120の受信部121は、複数キャリアモードのときは、たとえば通信キャリア201~203に分割して送信されたデータを受信する。また、第一通信装置110の送信部111は、単一キャリアモードのときは、たとえば通信キャリア201によって送信されたデータを受信する。
 このように、実施の形態1にかかる通信システム100は、通信状態に応じて、コンポーネントキャリア数が異なる複数の通信モードを切り替える。これにより、伝送するデータ量が多い場合は、コンポーネントキャリア数が多い通信モード(たとえば複数キャリアモード)に切り替えることで高いスループットによる通信を行うことができる。
 また、伝送するデータが無い場合、または少ない場合は、コンポーネントキャリア数が少ない通信モード(たとえば単一キャリアモード)に切り替えることで第一通信装置110および第二通信装置120の消費電力を抑えることができる。このように、通信システム100によれば、通信リソースを効率よく使用することができる。
(実施の形態2)
(実施の形態2にかかる端末装置の構成)
 図3は、実施の形態2にかかる端末装置の構成を示すブロック図である。図3に示すように、実施の形態2にかかる端末装置300は、アンテナ301と、RF処理部302と、復調部303と、復号部304と、論理チャネル解析部305と、送信タイミング制御部306と、キャリア数切替部307と、Ack/Nack生成部308と、符号化部309と、変調部310と、を備えている。
 端末装置300は、たとえば図1に示した第二通信装置120に対応する構成である。また、端末装置300は、たとえばLTE-Advancedに対応する端末装置である。端末装置300は、複数のコンポーネントキャリア(通信キャリア)に分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有する。たとえば、端末装置300は、受信する通信キャリアが複数の複数キャリアモードと、受信する通信キャリアが単一の単一キャリアモードと、を通信モードとして有する。
 アンテナ301、RF処理部302、復調部303および復号部304は、たとえば図1に示した受信部121に対応する構成である。論理チャネル解析部305は、たとえば図1に示した取得部122に対応する構成である。キャリア数切替部307は、たとえば図1に示した切替部123に対応する構成である。
 アンテナ301は、基地局装置(たとえば図4の基地局装置400)との間で無線通信を行うためのアンテナである。具体的には、アンテナ301は、基地局装置から送信された信号を受信してRF処理部302へ出力する。また、アンテナ301は、RF処理部302から出力された送達確認信号(AckまたはNack)を基地局装置へ送信する。
 RF処理部302は、アンテナ301から出力された信号の周波数を高周波(RF:Radio Frequency)からベースバンドに変換し、周波数を変換した信号を復調部303へ出力する。また、RF処理部302は、変調部310から出力された送達確認信号の周波数をベースバンドから高周波に変換し、周波数を変換した送達確認信号をアンテナ301へ出力する。
 復調部303は、RF処理部302から出力された信号を復調し、復調した信号を復号部304へ出力する。復号部304は、復調部303から出力された信号を復号し、復号により得られたデータを論理チャネル解析部305へ出力する。たとえば、復号部304は、信号の誤り訂正復号(FEC:Forward Error Correction)を行い、誤り訂正復号の結果をAck/Nack生成部308へ通知する。
 論理チャネル解析部305は、復号部304から出力されたデータの論理チャネル解析を行う。たとえば、論理チャネル解析部305は、データに含まれるバイナリデータを取得して、取得したバイナリデータを後段へ出力する。バイナリデータは、たとえば基地局装置から送信されたユーザデータである。また、論理チャネル解析部305は、データに含まれるタイミングコマンドを、通信状態の変化を示す情報として取得する。
 具体的には、論理チャネル解析部305は、データの論理チャネルIDが格納された領域からタイミングコマンドを示すIDを検出し、検出したIDに対応する領域からタイミングコマンドを取得する。タイミングコマンドは、端末装置300が基地局装置へデータを送信するタイミングを示すコマンドである。
 たとえば、タイミングコマンドは、前回の端末装置300の送信タイミングからの差分によって示される。また、タイミングコマンドには有効期限が設けられている。有効期限の長さは、たとえば、端末装置300が基地局装置へ最初に接続したときに基地局装置によって設定される。論理チャネル解析部305は、取得したタイミングコマンドを送信タイミング制御部306へ出力する。
 送信タイミング制御部306は、論理チャネル解析部305から出力されたタイミングコマンドに基づいて端末装置300によるデータ(ユーザデータ)の送信タイミングを制御する。ただし、図3においては、端末装置300からデータを送信する構成については図示を省略している。また、送信タイミング制御部306は、タイミングコマンドが取得された旨をキャリア数切替部307へ通知する。
 キャリア数切替部307は、タイミングコマンドの有効期限を計時する同期タイマの機能を備えている。キャリア数切替部307は、タイミングコマンドが取得された旨が送信タイミング制御部306から通知されると、同期タイマによる有効期限の計時を開始させる。そして、キャリア数切替部307は、同期タイマによって計時されるタイミングコマンドの有効期限に基づいて端末装置300の通信モードを切り替える。
 具体的には、キャリア数切替部307は、タイミングコマンドの有効期限内においては通信モードを複数キャリアモードに設定する。また、キャリア数切替部307は、タイミングコマンドの有効期限外においては通信モードを単一キャリアモードに設定する。
 たとえば、キャリア数切替部307は、複数のコンポートキャリアによる受信動作を行う設定をRF処理部302および復調部303に対して行うことで通信モードを複数キャリアモードに設定する。また、キャリア数切替部307は、単一のコンポートキャリアによる受信動作を行う設定をRF処理部302および復調部303に対して行うことで通信モードを単一キャリアモードに設定する。
 Ack/Nack生成部308は、復号部304から通知された誤り訂正復号の結果に基づいて送達確認信号を生成する。たとえば、Ack/Nack生成部308は、復号部304から誤りがなかった旨または誤り訂正に成功した旨が通知されるとAckを生成し、誤り訂正に失敗した旨が通知されるとNackを生成する。Ack/Nack生成部308は、生成した送達確認信号を符号化部309へ出力する。
 符号化部309は、Ack/Nack生成部308から出力された送達確認信号を符号化する。符号化部309は、符号化した送達確認信号を変調部310へ出力する。変調部310は、符号化部309から出力された送達確認信号を変調する。変調部310は、変調した送達確認信号をRF処理部302へ出力する。
(実施の形態2にかかる基地局装置の構成)
 図4は、実施の形態2にかかる基地局装置の構成を示すブロック図である。図4に示すように、実施の形態2にかかる基地局装置400は、スケジューラ部401と、送信タイミング制御部402と、バイナリデータバッファ部403と、符号化部404と、変調部405と、RF処理部406と、アンテナ407と、復調部408と、Ack/Nack判定部409と、キャリア数切替部410と、を備えている。
 基地局装置400は、たとえば図1に示した第一通信装置110に対応する構成である。また、基地局装置400は、たとえばLTE-Advancedに対応する基地局装置である。基地局装置400は、データを複数のコンポーネントキャリア(通信キャリア)に分割して送信可能であり、送信する通信キャリア数が異なる複数の通信モードを有する。たとえば、基地局装置400は、送信する通信キャリアが複数の複数キャリアモードと、送信する通信キャリアが単一の単一キャリアモードと、を通信モードとして有する。
 スケジューラ部401、送信タイミング制御部402、符号化部404、変調部405、RF処理部406およびアンテナ407は、たとえば図1に示した送信部111に対応する構成である。復調部408およびAck/Nack判定部409は、たとえば図1に示した取得部112に対応する構成である。キャリア数切替部410は、たとえば図1に示した切替部113に対応する構成である。
 スケジューラ部401は、端末装置300と基地局装置400との間における通信のスケジューリングを行う。たとえば、スケジューラ部401は、基地局装置400から各端末装置へ送信するデータのビット数などを決定する。また、スケジューラ部401は、キャリア数切替部410によって設定される基地局装置400の通信モードに基づいて、各通信において使用するコンポーネントキャリアを決定する。
 たとえば、スケジューラ部401は、キャリア数切替部410によって複数キャリアモードに設定されているときは、複数のコンポートキャリアを使用してデータを送信するようにスケジューリングを行う。また、スケジューラ部401は、キャリア数切替部410によって単一キャリアモードに設定されているときは、単一のコンポートキャリアを使用してデータを送信するようにスケジューリングを行う。
 スケジューラ部401は、スケジューリングの結果を送信タイミング制御部402および変調部405へ通知する。また、スケジューラ部401は、スケジューリングの結果に基づいてバイナリデータバッファ部403へデータの出力指示を出力する。バイナリデータバッファ部403には、端末装置300へ送信するためのデータ(バイナリデータ)が格納される。バイナリデータバッファ部403は、スケジューラ部401から出力指示が出力されると、格納されたデータを符号化部404へ出力する。
 送信タイミング制御部402は、スケジューラ部401から通知されたスケジューリングの結果に基づいて、基地局装置400から送信するデータに対する送達確認信号を端末装置300が送信するタイミングを示すタイミングコマンドを生成する。送信タイミング制御部402は、生成したタイミングコマンドを符号化部404へ出力する。
 符号化部404は、送信タイミング制御部402から出力されたタイミングコマンドを、バイナリデータバッファ部403から出力されたデータに格納する。そして、符号化部404は、タイミングコマンドを格納したデータを符号化し、符号化したデータを変調部405へ出力する。変調部405は、符号化部404から出力されたデータを変調し、変調により得られた信号をRF処理部406へ出力する。
 また、変調部405は、スケジューラ部401から通知されるスケジューリングの結果が示すコンポーネントキャリアに対応する通信リソース(物理リソース)によってデータを変調する。たとえば、変調部405は、複数のコンポーネントキャリアに分割してデータを送信する旨が通知された場合は、複数のコンポーネントキャリアに対応する各通信リソースによってデータの変調を行う。また、変調部405は、単一のコンポーネントキャリアによりデータを送信する旨が通知された場合は、単一のコンポーネントキャリアに対応する通信リソースによってデータの変調を行う。
 RF処理部406は、変調部405から出力された信号の周波数をベースバンドから高周波に変換し、周波数を変換した信号をアンテナ407へ出力する。また、RF処理部406は、アンテナ407から出力された送達確認信号の周波数を高周波からベースバンドに変換し、周波数を変換した送達確認信号を復調部408へ出力する。
 アンテナ407は、端末装置300との間で無線通信を行うためのアンテナである。具体的には、アンテナ407は、端末装置300から送信された送達確認信号を受信してRF処理部406へ出力する。また、アンテナ407は、RF処理部406から出力された信号を端末装置300へ送信する。
 復調部408は、RF処理部406から出力された送達確認信号を復調し、復調した送達確認信号をAck/Nack判定部409へ出力する。Ack/Nack判定部409は、復調部408から出力された送達確認信号を判定する。たとえば、Ack/Nack判定部409は、送達確認信号がいずれの信号に対するものであるかの判定や、送達確認信号がAckおよびNackのいずれであるかの判定を行う。Ack/Nack判定部409は、判定結果をキャリア数切替部410へ通知する。
 キャリア数切替部410は、Ack/Nack判定部409から通知される判定結果に基づいて基地局装置400の通信モードを切り替える。具体的には、キャリア数切替部410は、タイミングコマンドに対するAckを受信した旨の判定結果がAck/Nack判定部409から通知されると、通信モードを複数キャリアモードに切り替える。
 また、キャリア数切替部410は、基地局装置400から端末装置300へ送信されたタイミングコマンドの有効期限を計時する同期タイマの機能を備えている。キャリア数切替部410は、同期タイマに基づいて、タイミングコマンドの有効期限外になると、通信モードを単一キャリアモードに切り替える。
 具体的には、キャリア数切替部410は、複数のコンポートキャリアによるスケジューリングを行う設定をスケジューラ部401に対して行うことで、基地局装置400の通信モードを複数キャリアモードに設定する。また、キャリア数切替部410は、単一のコンポートキャリアによるスケジューリングを行う設定をスケジューラ部401に対して行うことで、基地局装置400の通信モードを単一キャリアモードに設定する。
(実施の形態2にかかる端末装置の動作)
 図5は、実施の形態2にかかる端末装置の動作の一例を示すフローチャートである。端末装置300(図3参照)は、たとえば以下のような動作を行う。図5に示すように、まず、キャリア数切替部307が、基地局装置400からのタイミングコマンドを受信したか否かを判断する(ステップS501)。タイミングコマンドを受信していない場合(ステップS501:No)は、ステップS504へ移行する。
 ステップS501においてタイミングコマンドを受信した場合(ステップS501:Yes)は、キャリア数切替部307が、タイミングコマンドの有効期限を計時する同期タイマの動作を開始させる(ステップS502)。つぎに、キャリア数切替部307が、端末装置300の通信モードを複数キャリアモードに切り替える(ステップS503)。つぎに、キャリア数切替部307が、ステップS502によって動作を開始された同期タイマの期限が切れたか否かを判断する(ステップS504)。
 ステップS504において、同期タイマの期限が切れていない場合(ステップS504:No)は、ステップS501へ戻って処理を続行する。同期タイマの期限が切れた場合(ステップS504:Yes)は、キャリア数切替部307が、端末装置300の通信モードを単一キャリアモードに切り替え(ステップS505)、ステップS501へ戻って処理を続行する。以上の動作を行うことで、端末装置300は、取得されたタイミングコマンドの有効期限に基づいて通信モードを切り替えることができる。
(実施の形態2にかかる基地局装置の動作)
 図6は、実施の形態2にかかる基地局装置の動作の一例を示すフローチャートである。基地局装置400(図4参照)は、たとえば以下のような動作を行う。図6に示すように、まず、Ack/Nack判定部409が、端末装置300へ送信したタイミングコマンドに対するAckを受信したか否かを判断する(ステップS601)。Ackを受信していない場合(ステップS601:No)は、ステップS604へ移行する。
 ステップS601において、タイミングコマンドに対するAckを受信した場合(ステップS601:Yes)は、キャリア数切替部410が、タイミングコマンドの有効期限を計時する同期タイマの動作を開始させる(ステップS602)。つぎに、キャリア数切替部410が、通信モードを複数キャリアモードに切り替える(ステップS603)。つぎに、キャリア数切替部410が、ステップS602によって動作を開始された同期タイマの期限が切れたか否かを判断する(ステップS604)。
 ステップS604において、同期タイマの期限が切れていない場合(ステップS604:No)は、ステップS601へ戻って処理を続行する。同期タイマの期限が切れた場合(ステップS604:Yes)は、キャリア数切替部410が、通信モードを単一キャリアモードに切り替え(ステップS605)、ステップS601へ戻って処理を続行する。以上の動作を行うことで、基地局装置400は、端末装置300へ送信されたタイミングコマンドに対する端末装置300からの送達確認信号を取得し、取得した送達確認信号に基づいて通信モードを切り替えることができる。
(実施の形態2にかかる通信システムの動作)
 図7は、実施の形態2にかかる通信システムの動作の一例を示すシーケンス図である。まず、基地局装置400において送信データが発生すると(ステップS701)、基地局装置400が、端末装置300へタイミングコマンドを送信する(ステップS702)。期限t1は、ステップS702によって送信されたタイミングコマンドの有効期限を示している。つぎに、基地局装置400が、ステップS701によって発生した送信データの一部のデータを端末装置300へ送信する(ステップS703)。
 つぎに、端末装置300が、ステップS703によって送信されたデータに対するAckを基地局装置400へ送信する(ステップS704)。つぎに、基地局装置400が、端末装置300へタイミングコマンドを送信する(ステップS705)。期限t2は、ステップS705によって送信されたタイミングコマンドの有効期限を示している。つぎに、基地局装置400が、ステップS701によって発生した送信データのうちの未送信のデータを端末装置300へ送信する(ステップS706)。
 つぎに、端末装置300が、ステップS706によって送信されたデータに対するAckを基地局装置400へ送信する(ステップS707)。以上のステップによって、ステップS701において発生した送信データが、すべて端末装置300によって受信されたとする。つぎに、基地局装置400が、送信処理を終了し(ステップS708)、一連の動作を終了する。
 以上のステップにおいて、端末装置300および基地局装置400は、期限t1および期限t2の少なくとも一方が計時中となっている期間Tにおいては通信モードが複数キャリアモードとなる。また、端末装置300および基地局装置400は、期間T以外の期間においては通信モードが単一キャリアモードとなる。
 なお、図7においては、ステップS703およびステップS706によって送信されたデータが端末装置300によって正常に受信され、端末装置300から基地局装置400へAckが送信される場合について説明した。これに対して、データが端末装置300によって正常に受信されず、端末装置300から基地局装置400へNackが送信された場合は、基地局装置400は、送信したデータを再度、端末装置300へ送信する。
 また、基地局装置400においては、送信したタイミングコマンドに対する端末装置300からのAck(不図示)を受信してから期限t1の計時を開始してもよい。この場合も、たとえばステップS703およびステップS706においてデータを送信するときに、基地局装置400の通信モードを複数キャリアモードに切り替えることができる。
 図7に示したように、基地局装置400は、データの送信処理中においてはタイミングコマンドを定期的に端末装置300へ送信する。これにより、データの送信処理中においては端末装置300および基地局装置400が複数キャリアモードに切り替わり、高いスループットによる通信を行うことができる。
 また、基地局装置400は、データの送信処理を終了すると、タイミングコマンドの送信を停止する。これにより、データの送信処理後においてはタイミングコマンドの有効期限が切れ、端末装置300および基地局装置400が単一キャリアモードに切り替わる。このため、端末装置300および基地局装置400の消費電力を抑えることができる。
 このように、実施の形態2にかかる端末装置300は、端末装置300が信号を送信するタイミングを示すタイミングコマンドを、通信状態の変化を示す情報として取得する。タイミングコマンドは、たとえば、端末装置300が受信するデータに対する送達確認信号を端末装置300が送信するタイミングを示すタイミングコマンドである。
 端末装置300は、取得されたタイミングコマンドの有効期限に基づいて通信モードを切り替える。これにより、既存のタイミングコマンドを通信状態の変化を示す情報として利用できるため、新たな制御情報を基地局装置400との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、タイミングコマンドの有効期限内は基地局装置400からデータが送信される可能性が高いため、端末装置300は、タイミングコマンドの有効期限内は複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。また、タイミングコマンドの有効期限外は基地局装置400からデータが送信される可能性が低いため、端末装置300は、タイミングコマンドの有効期限外は単一キャリアモードに切り替えることで消費電力を抑えることができる。
 また、新たな制御情報を送受信しなくてもよいため、大きな設計変更をしなくても通信リソースを効率よく使用することができる。また、新たな制御情報を送受信することによる通信リソースの圧迫を抑えることもできる。また、新たな制御情報を送受信することによって通信モードの切り替えが遅延することを回避することもできる。
 実施の形態2にかかる基地局装置400は、端末装置300へ送信されたタイミングコマンドに対する端末装置300からの送達確認信号を、通信状態の変化を示す情報として取得し、送達確認信号に基づいて通信モードを切り替える。これにより、既存のタイミングコマンドを通信状態の変化を示す情報として利用できるため、新たな制御情報を端末装置300との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、基地局装置400は、タイミングコマンドに対する端末装置300からの送達確認信号が取得された場合に、タイミングコマンドの有効期限内では複数キャリアモードに切り替え、タイミングコマンドの有効期限外では単一キャリアモードに切り替える。これにより、タイミングコマンドが正常に端末装置300に受信されたことを確認してから通信モードを切り替えられるため、端末装置300による通信モードの切替と合わせて基地局装置400の通信モードを切り替えることができる。
 また、送達確認信号を送受信しない通信では、基地局装置400は送達確認信号を送信するためのタイミングコマンドを端末装置300へ送信しないため、端末装置300および基地局装置400の通信モードは単一キャリアモードとなる。送達確認信号を送受信しない通信ではデータ量が少ない場合が多いため、この場合は、単一キャリアモードでも十分なスループットを得ることができるとともに、消費電力を抑えることができる。
 たとえば、LTEにおけるPCCH(Paging Control Channel)やBCCH(Broadcast Control Channel)は送達確認信号を送受信しないが、データレートは低い。実施の形態2においては、PCCHやBCCHにおいては通信モードが単一キャリアモードのままとなるため、十分なスループットを得ることができるとともに、消費電力を抑えることができる。
 また、タイミングコマンドは、端末装置300がデータ(ユーザデータ)を基地局装置400へ送信するタイミングを示すタイミングコマンドであってもよい。たとえば、端末装置300は、基地局装置400に対する送信データが発生した場合に、基地局装置400に対してランダムアクセスを行うことによって、データを送信するためのタイミングコマンドを基地局装置400から取得する。
 この場合も、基地局装置400は、取得したタイミングコマンドの有効期限に基づいて通信モードを切り替えることで通信リソースを効率よく使用することができる。なお、複数キャリアモードにおけるコンポーネントキャリア数は、基地局装置400から端末装置300へのダウンリンクと、端末装置300から基地局装置400へのアップリンクと、で異なっていてもよい。
(実施の形態3)
(実施の形態3にかかる端末装置の構成)
 図8は、実施の形態3にかかる端末装置の構成を示すブロック図である。図8において、図3に示した構成と同様の構成については同一の符号を付して説明を省略する。図8に示すように、実施の形態3にかかる端末装置300は、図3に示した構成において、送信タイミング制御部306およびAck/Nack生成部308に代えてRRC情報解析部801およびRRC完了信号生成部802を備えている。
 復号部304は、誤り訂正復号の結果をRRC完了信号生成部802へ出力する。論理チャネル解析部305は、復号部304から出力されたデータに含まれるRRC(Radio Resource Control)メッセージを取得する。論理チャネル解析部305は、取得したRRCメッセージをRRC情報解析部801へ出力する。
 RRC情報解析部801は、論理チャネル解析部305から出力されたRRCメッセージからDRX(間欠受信)情報を検出する。DRX情報には、端末装置300(自装置)に対してDRXサイクルの設定を要求するDRX設定信号と、端末装置300に対してDRXサイクルの設定解除を要求するDRX解除信号と、が含まれる。RRC情報解析部801は、検出したDRX情報を復調部303およびキャリア数切替部307へ出力する。
 復調部303は、RRC情報解析部801から出力されたDRX情報に基づいて間欠受信を行う。具体的には、復調部303は、RRC情報解析部801からDRX設定信号が出力されると、DRX設定信号に基づいてDRXサイクルを設定して間欠受信を行う。また、復調部303は、RRC情報解析部801からDRX解除信号が出力されると、DRXサイクルを解除して間欠受信を終了する。
 キャリア数切替部307は、RRC情報解析部801から出力されたDRX情報に基づいて通信モードを切り替える。具体的には、キャリア数切替部307は、RRC情報解析部801からDRX設定信号が出力されると、端末装置300の通信モードを複数キャリアモードに切り替える。また、復調部303は、RRC情報解析部801からDRX解除信号が出力されると、端末装置300の通信モードを単一キャリアモードに切り替える。
 RRC完了信号生成部802は、復号部304から通知された誤り訂正復号の結果に基づいてRRC完了信号を生成する。具体的には、RRC完了信号生成部802は、復号部304から誤り訂正に成功した旨が通知されるとRRC完了信号を生成する。RRC完了信号生成部802は、生成したRRC完了信号を符号化部309へ出力する。
 符号化部309は、RRC完了信号生成部802から出力されたRRC完了信号を符号化する。符号化部309は、符号化したRRC完了信号を変調部310へ出力する。変調部310は、符号化部309から出力されたRRC完了信号を変調する。変調部310は、変調したRRC完了信号をRF処理部302へ出力する。RF処理部302は、変調部310から出力されたRRC完了信号の周波数をベースバンドから高周波に変換し、周波数を変換したRRC完了信号をアンテナ301へ出力する。アンテナ301は、RF処理部302から出力されたRRC完了信号を基地局装置400へ送信する。
(実施の形態3にかかる基地局装置の構成)
 図9は、実施の形態3にかかる基地局装置の構成を示すブロック図である。図9において、図4に示した構成と同様の構成については同一の符号を付して説明を省略する。図9に示すように、実施の形態3にかかる基地局装置400は、図4に示した送信タイミング制御部402およびAck/Nack判定部409に代えてDRXサイクル設定制御部901、復号部902およびRRC完了信号判定部903を備えている。
 スケジューラ部401は、スケジューリングにおいて、端末装置300のDRXサイクルの設定および設定解除の決定を行う。たとえば、スケジューラ部401は、端末装置300へ送信するデータが無い場合や少ない場合は、端末装置300にDRXサイクルを設定することを決定する。また、スケジューラ部401は、端末装置300へ送信するデータが多い場合は端末装置300に設定したDRXサイクルを解除することを決定する。
 スケジューラ部401は、スケジューリングの結果をDRXサイクル設定制御部901および変調部405へ通知する。DRXサイクル設定制御部901は、スケジューラ部401から通知されたスケジューリングの結果に基づいてDRX情報を生成する。DRX情報は、たとえば、端末装置300に対してDRXサイクルの設定を要求する設定信号、または、端末装置300に対してDRXサイクルの設定解除を要求する解除信号である。
 DRXサイクル設定制御部901は、生成したDRX情報を含むRRCメッセージを符号化部404へ出力する。符号化部404は、DRXサイクル設定制御部901から出力されたRRCメッセージを、バイナリデータバッファ部403から出力されたデータに格納する。符号化部404は、RRCメッセージを格納したデータを符号化し、符号化したデータを変調部405へ出力する。
 アンテナ407は、端末装置300から送信されたRRC完了信号を受信してRF処理部406へ出力する。RF処理部406は、アンテナ407から出力されたRRC完了信号の周波数を高周波からベースバンドに変換し、周波数を変換したRRC完了信号を復調部408へ出力する。復調部408は、RF処理部406から出力されたRRC完了信号を復調し、復調したRRC完了信号を復号部902へ出力する。
 復号部902は、復調部408から出力されたRRC完了信号を復号する。復号部902は、復号したRRC完了信号をRRC完了信号判定部903へ出力する。RRC完了信号判定部903は、復号部902から出力されたRRC完了信号の判定を行う。たとえば、RRC完了信号判定部903は、RRC完了信号が、DRX設定信号に対するRRC完了信号であるのか、またはDRX解除信号に対するRRC完了信号であるのかを判定する。RRC完了信号判定部903は、判定結果をキャリア数切替部410へ通知する。
 キャリア数切替部410は、RRC完了信号判定部903から通知される判定結果に基づいて基地局装置400の通信モードを切り替える。具体的には、キャリア数切替部410は、DRX設定信号に対するRRC完了信号を取得した旨がRRC完了信号判定部903から通知されると、通信モードを単一キャリアモードに切り替える。また、キャリア数切替部410は、DRX解除信号に対するRRC完了信号を取得した旨がRRC完了信号判定部903から通知されると、通信モードを複数キャリアモードに切り替える。
(実施の形態3にかかる端末装置の動作)
 図10は、実施の形態3にかかる端末装置の動作の一例を示すフローチャートである。端末装置300(図8参照)は、たとえば以下のような動作を行う。図10に示すように、まず、キャリア数切替部307が、基地局装置400からのDRX設定信号を受信したか否かを判断する(ステップS1001)。DRX設定信号を受信していない場合(ステップS1001:No)は、ステップS1003へ移行する。
 ステップS1001において、基地局装置400からのDRX設定信号を受信した場合(ステップS1001:Yes)は、キャリア数切替部307が、端末装置300の通信モードを複数キャリアモードに切り替える(ステップS1002)。つぎに、キャリア数切替部307が、基地局装置400からのDRX解除信号を受信したか否かを判断する(ステップS1003)。
 ステップS1003において、DRX解除信号を受信していない場合(ステップS1003:No)は、ステップS1001へ戻って処理を続行する。DRX解除信号を受信した場合(ステップS1003:Yes)は、キャリア数切替部307が、端末装置300の通信モードを単一キャリアモードに切り替え(ステップS1004)、ステップS1001へ戻って処理を続行する。以上の動作を行うことで、端末装置300は、取得された設定信号および解除信号に基づいて通信モードを切り替えることができる。
(実施の形態3にかかる基地局装置の動作)
 図11は、実施の形態3にかかる基地局装置の動作の一例を示すフローチャートである。基地局装置400(図9参照)は、たとえば以下のような動作を行う。図11に示すように、まず、RRC完了信号判定部903が、端末装置300へ送信したDRX設定信号に対するRRC完了信号を受信したか否かを判断する(ステップS1101)。DRX設定信号に対するRRC完了信号を受信していない場合(ステップS1101:No)は、ステップS1103へ移行する。
 ステップS1101において、DRX設定信号に対するRRC完了信号を受信した場合(ステップS1101:Yes)は、キャリア数切替部410が、基地局装置400の通信モードを単一キャリアモードに切り替える(ステップS1102)。つぎに、RRC完了信号判定部903が、端末装置300へ送信したDRX解除信号に対するRRC完了信号を受信したか否かを判断する(ステップS1103)。
 ステップS1103において、DRX解除信号に対するRRC完了信号を受信していない場合(ステップS1103:No)は、ステップS1101へ戻って処理を続行する。DRX解除信号に対するRRC完了信号を受信した場合(ステップS1103:Yes)は、キャリア数切替部410が、基地局装置400の通信モードを複数キャリアモードに切り替え(ステップS1104)、ステップS1101へ戻って処理を続行する。以上の動作を行うことで、基地局装置400は、DRX設定信号およびDRX解除信号に対するRRC完了信号に基づいて通信モードを切り替えることができる。
 このように、実施の形態3にかかる端末装置300は、端末装置300に対してDRXサイクルの設定を要求するDRX設定信号と、端末装置300に対してDRXサイクルの設定解除を要求するDRX解除信号と、を取得する。そして、端末装置300は、取得されたDRX設定信号およびDRX解除信号に基づいて通信モードを切り替える。
 これにより、既存のDRX設定信号およびDRX解除信号を通信状態の変化を示す情報として利用できるため、新たな制御情報を基地局装置400との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、DRXサイクルの解除時は基地局装置400からデータが送信される可能性が高いため、端末装置300は、DRX解除信号を受信した場合は複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。また、DRXサイクルの設定時は基地局装置400からデータが送信される可能性が低いため、端末装置300は、DRX設定信号を受信した場合は単一キャリアモードに切り替えることで消費電力を抑えることができる。
 実施の形態3にかかる基地局装置400は、端末装置300へ送信されたDRX設定信号またはDRX解除信号に対する端末装置300からのRRC完了信号を取得し、取得されたRRC完了信号に基づいて通信モードを切り替える。これにより、既存のRRC完了信号を通信状態の変化を示す情報として利用できるため、新たな制御情報を端末装置300との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、基地局装置400は、端末装置300へ送信されたDRX解除信号に対する端末装置300からのRRC完了信号が取得された場合に複数キャリアモードに切り替える。また、基地局装置400は、端末装置300へ送信されたDRX設定信号に対する端末装置300からのRRC完了信号が取得された場合に単一キャリアモードに切り替える。これにより、DRX解除信号またはDRX設定信号が正常に端末装置300に受信されたことを確認してから通信モードを切り替えられるため、端末装置300による通信モードの切替と合わせて基地局装置400の通信モードを切り替えることができる。
(実施の形態4)
(実施の形態4にかかる端末装置の構成)
 図12は、実施の形態4にかかる端末装置の構成を示すブロック図である。図12において、図3に示した構成と同様の構成については同一の符号を付して説明を省略する。実施の形態4にかかる端末装置300は、図3に示した復号部304、論理チャネル解析部305および送信タイミング制御部306に代えてデータチャネル復号部1201、制御チャネル復号部1202およびバイナリデータバッファ部1203を備えている。
 復調部303は、復調した信号をデータチャネル復号部1201および制御チャネル復号部1202へ出力する。データチャネル復号部1201は、制御チャネル復号部1202から出力された受信割当情報に基づいて、復調部303から出力された信号に含まれるデータチャネルを復号する。たとえば、データチャネル復号部1201は、信号の誤り訂正復号を行い、誤り訂正復号の結果をAck/Nack生成部308へ通知する。また、データチャネル復号部1201は、復号したデータを後段へ出力する。
 制御チャネル復号部1202は、復調部303から出力された信号に含まれる制御チャネルを復号する。復調部303から出力された信号に含まれる制御チャネルには、端末装置300に対して割り当てられた通信リソースを示す割当情報が含まれている。割当情報は、たとえば、端末装置300によるデータの受信に対して割り当てられた通信リソースを示す受信割当情報、または、端末装置300によるデータの送信に対して割り当てられた通信リソースを示す送信割当情報である。
 制御チャネル復号部1202は、制御チャネルに含まれる受信割当情報および送信割当情報を、通信状態の変化を示す情報として取得する。制御チャネル復号部1202は、受信割当情報を取得すると、取得した受信割当情報をデータチャネル復号部1201へ出力するとともに、受信割当情報を取得した旨をキャリア数切替部307へ通知する。制御チャネル復号部1202は、送信割当情報を取得すると、送信割当情報を取得した旨をキャリア数切替部307へ通知する。
 また、制御チャネル復号部1202は、送信割当情報を取得すると、送信割当情報が示す通信リソースに応じた量のデータを出力させる出力指示をバイナリデータバッファ部1203へ出力する。バイナリデータバッファ部1203には、基地局装置400へ送信するためのデータ(バイナリデータ)が格納される。バイナリデータバッファ部1203は、制御チャネル復号部1202から出力指示が出力されると、格納されているデータのうちの出力指示が示す量のデータを符号化部309へ出力する。
 キャリア数切替部307は、制御チャネル復号部1202による受信割当情報または送信割当情報の取得の通知に基づいて、端末装置300の通信モードを切り替える。具体的には、キャリア数切替部307は、受信割当情報または送信割当情報を取得した旨が制御チャネル復号部1202から通知されると通信モードを複数キャリアモードに設定する。
 また、キャリア数切替部307は、受信割当情報または送信割当情報を取得した旨が制御チャネル復号部1202から通知されてから一定時間(たとえば数秒間)を計時するタイマの機能を備えている。キャリア数切替部307は、タイマによる計時に基づいて、受信割当情報または送信割当情報を取得した旨が制御チャネル復号部1202から通知されてから一定時間が経過すると通信モードを単一キャリアモードに設定する。
 また、キャリア数切替部307は、タイマによる計時中にさらに受信割当情報または送信割当情報を取得した旨が制御チャネル復号部1202から通知されると、タイマをリセットするようにしてもよい。この場合は、キャリア数切替部307は、タイマをリセットしてからさらに一定時間が経過すると通信モードを単一キャリアモードに設定する。
 Ack/Nack生成部308は、データチャネル復号部1201から通知された誤り訂正復号の結果に基づいて送達確認信号を生成する。符号化部309は、Ack/Nack生成部308から出力された送達確認信号を符号化し、符号化した送達確認信号を変調部310へ出力する。また、符号化部309は、バイナリデータバッファ部1203から出力されたデータを符号化し、符号化したデータを変調部310へ出力する。
 変調部310は、符号化部309から出力されたデータを変調し、変調したデータをRF処理部302へ出力する。アンテナ301は、RF処理部302から出力された送達確認信号およびデータを基地局装置400へ送信する。RF処理部302は、変調部310から出力された送達確認信号およびデータの周波数をベースバンドから高周波に変換し、周波数を変換した送達確認信号およびデータをアンテナ301へ出力する。
(実施の形態4にかかる基地局装置の構成)
 図13は、実施の形態4にかかる基地局装置の構成を示すブロック図である。図13において、図4に示した構成と同様の構成については同一の符号を付して説明を省略する。図13に示すように、実施の形態4にかかる基地局装置400は、図4に示した構成において、送信タイミング制御部402および復調部408に代えて制御信号生成部1301、Ack/Nack復調部1302およびデータ復調部1303を備えている。
 スケジューラ部401は、スケジューリングの結果を制御信号生成部1301および変調部405へ通知する。制御信号生成部1301は、スケジューラ部401から通知されたスケジューリングの結果に基づいて制御信号を生成する。たとえば、制御信号生成部1301は、端末装置300によるデータの受信に対して割り当てられた通信リソースを示す受信割当情報を生成する。また、制御信号生成部1301は、端末装置300によるデータの送信に対して割り当てられた通信リソースを示す送信割当情報を生成する。
 スケジューラ部401は、生成した制御信号を制御チャネルとして符号化部404へ出力する。符号化部404は、送信タイミング制御部402から出力された制御チャネルを符号化し、符号化したデータを変調部405へ出力する。変調部405は、符号化部404から出力された制御チャネルを変調する。
 RF処理部406は、アンテナ407から出力された送達確認信号の周波数を高周波からベースバンドに変換し、周波数を変換した送達確認信号をAck/Nack復調部1302およびデータ復調部1303へ出力する。アンテナ407は、端末装置300から送信された信号を受信してRF処理部406へ出力する。
 Ack/Nack復調部1302は、RF処理部406から出力された信号に含まれる送達確認信号を復調し、復調した送達確認信号をAck/Nack判定部409へ出力する。データ復調部1303は、RF処理部406から出力された信号に含まれるデータを復調し、復調したデータをキャリア数切替部410へ出力する。キャリア数切替部410は、Ack/Nack判定部409から通知される判定結果と、データ復調部1303から出力されるデータと、に基づいて基地局装置400の通信モードを切り替える。
 具体的には、キャリア数切替部410は、基地局装置400から端末装置300へ送信された受信割当情報に対するAckを受信した旨の判定結果がAck/Nack判定部409から通知されると、通信モードを複数キャリアモードに切り替える。また、キャリア数切替部410は、端末装置300によって送信されたデータがデータ復調部1303から出力されると、通信モードを複数キャリアモードに切り替える。
 また、キャリア数切替部410は、通信モードを複数キャリアモードに切り替えてから一定時間を計時するタイマの機能を備えている。キャリア数切替部410は、タイマに基づいて、通信モードを複数キャリアモードに切り替えてから一定時間が経過すると、通信モードを単一キャリアモードに切り替える。
(実施の形態4にかかる端末装置の動作)
 図14は、実施の形態4にかかる端末装置の動作の一例を示すフローチャートである。端末装置300(図12参照)は、たとえば以下のような動作を行う。図14に示すように、まず、キャリア数切替部307が、基地局装置400からの受信割当情報または送信割当情報を受信したか否かを判断する(ステップS1401)。
 ステップS1401において、受信割当情報または送信割当情報を受信していない場合(ステップS1401:No)は、ステップS1404へ移行する。基地局装置400からの受信割当情報または送信割当情報を受信した場合(ステップS1401:Yes)は、キャリア数切替部307が、一定時間を計時するタイマの動作を開始させる(ステップS1402)。つぎに、キャリア数切替部307が、端末装置300の通信モードを複数キャリアモードに切り替える(ステップS1403)。
 つぎに、キャリア数切替部307が、ステップS1402によって動作を開始されたタイマの期限が切れたか否かを判断する(ステップS1404)。タイマの期限が切れていない場合(ステップS1404:No)は、ステップS1401へ戻って処理を続行する。タイマの期限が切れた場合(ステップS1404:Yes)は、キャリア数切替部307が、端末装置300の通信モードを単一キャリアモードに切り替え(ステップS1405)、ステップS1401へ戻って処理を続行する。以上の動作を行うことで、端末装置300は、端末装置300に対する通信リソースの割り当てを示す割当情報に基づいて通信モードを切り替えることができる。
(実施の形態4にかかる基地局装置の動作)
 図15は、実施の形態4にかかる基地局装置の動作の一例を示すフローチャートである。基地局装置400(図13参照)は、たとえば以下のような動作を行う。図15に示すように、まず、キャリア数切替部410が、端末装置300へ送信した受信割当情報もしくは送信割当情報に対するAck、または、端末装置300から送信されたデータを受信したか否かを判断する(ステップS1501)。
 ステップS1501において、Ackまたはデータを受信していない場合(ステップS1501:No)は、ステップS1504へ移行する。Ackまたはデータを受信した場合(ステップS1501:Yes)は、キャリア数切替部410が、一定時間を計時するタイマの動作を開始させる(ステップS1502)。
 つぎに、キャリア数切替部410が、スケジューラ部401における通信モードを複数キャリアモードに切り替える(ステップS1503)。つぎに、キャリア数切替部410が、ステップS1502によって動作を開始されたタイマの期限が切れたか否かを判断する(ステップS1504)。
 ステップS1504において、タイマの期限が切れていない場合(ステップS1504:No)は、ステップS1501へ戻って処理を続行する。タイマの期限が切れた場合(ステップS1504:Yes)は、キャリア数切替部410が、スケジューラ部401における通信モードを単一キャリアモードに切り替え(ステップS1505)、ステップS1501へ戻って処理を続行する。
 以上の動作を行うことで、基地局装置400は、端末装置300へ送信した受信割当情報もしくは送信割当情報に対する送達確認信号に基づいて通信モードを切り替えることができる。また、基地局装置400は、端末装置300へ送信した送信割当情報に基づいて端末装置300から送信されたデータに基づいて通信モードを切り替えることができる。
(実施の形態4にかかる通信システムの動作)
 図16は、実施の形態4にかかる通信システムの動作の一例を示すシーケンス図である。まず、基地局装置400において送信データが発生すると(ステップS1601)、基地局装置400が、端末装置300へ制御チャネルを送信する(ステップS1602)。ステップS1602によって送信される制御チャネルには受信割当情報が含まれている。
 期限t1は、ステップS1602によって送信された受信割当情報が端末装置300によって受信されてからの一定時間を示している。つぎに、基地局装置400が、ステップS1601によって発生した送信データの一部のデータを端末装置300へ送信する(ステップS1603)。つぎに、端末装置300が、ステップS1603によって送信されたデータに対するAckを基地局装置400へ送信する(ステップS1604)。
 つぎに、基地局装置400が、端末装置300へ制御チャネルを送信する(ステップS1605)。ステップS1605によって送信される制御チャネルには受信割当情報が含まれている。期限t2は、ステップS1605によって送信された受信割当情報が端末装置300によって受信されてからの一定時間を示している。つぎに、基地局装置400が、ステップS1601によって発生した送信データのうちの未送信のデータを端末装置300へ送信する(ステップS1606)。
 つぎに、端末装置300が、ステップS1606によって送信されたデータに対するAckを基地局装置400へ送信する(ステップS1607)。以上のステップによって、ステップS1601において発生した送信データが、すべて端末装置300によって受信されたとする。つぎに、基地局装置400が、送信処理を終了し(ステップS1608)、一連の動作を終了する。
 以上のステップにおいて、端末装置300および基地局装置400は、期限t1および期限t2の少なくとも一方が計時中となっている期間Tにおいては通信モードが複数キャリアモードとなる。また、端末装置300および基地局装置400は、期間T以外の期間においては通信モードが単一キャリアモードとなる。
 なお、図16においては、ステップS1603とステップS1606によって送信されたデータが端末装置300によって正常に受信され、端末装置300から基地局装置400へAckが送信される場合について説明した。これに対して、データが端末装置300によって正常に受信されず、端末装置300から基地局装置400へNackが送信された場合は、基地局装置400は、送信したデータを再度、端末装置300へ送信する。
 また、基地局装置400においては、送信した制御チャネルに対する端末装置300からのAck(不図示)を受信してから期限t1の計時を開始してもよい。この場合も、たとえばステップS1603およびステップS1606においてデータを送信するときに、通信モードを複数キャリアモードに切り替えることができる。
 また、基地局装置400においては、ステップS1603によって送信したデータに対する、端末装置300からのAckを受信(ステップS1604)してから期限t1の計時を開始してもよい。この場合も、たとえばステップS1606においてデータを送信するときに、通信モードを複数キャリアモードに切り替えることができる。
 図16に示したように、基地局装置400は、データの送信処理中においては制御チャネルを定期的に端末装置300へ送信する。これにより、データの送信処理中においては端末装置300および基地局装置400が複数キャリアモードに切り替わり、高いスループットによる通信を行うことができる。
 また、基地局装置400は、データの送信処理を終了すると、制御チャネルの送信を停止する。これにより、データの送信処理後においては制御チャネルの有効期限が切れ、端末装置300および基地局装置400が単一キャリアモードに切り替わる。このため、端末装置300および基地局装置400の消費電力を抑えることができる。
 このように、実施の形態4にかかる端末装置300は、端末装置300に対する通信リソースの割り当てを示す割当情報(受信割当情報または送信割当情報)を取得し、取得された割当情報に基づいて通信モードを切り替える。これにより、既存の割当情報を通信状態の変化を示す情報として利用できるため、新たな制御情報を基地局装置400との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、受信割当情報を受信した後は基地局装置400からデータが送信される可能性が高いため、端末装置300は、受信割当情報を受信した場合は複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。また、送信割当情報を受信した後は端末装置300からデータを送信する可能性が高いため、端末装置300は、送信割当情報を受信した場合は複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。
 また、受信割当情報または送信割当情報を受信した後の一定期間は繰り返し通信が行われる可能性が高い。たとえば、端末装置300によってウェブページの閲覧などを行う場合は、特定のページにアクセスした後に、ページ内のリンクからさらに他のページへアクセスされる可能性が高い。
 このため、端末装置300は、受信割当情報または送信割当情報を受信してから一定期間は複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。また、端末装置300は、受信割当情報または送信割当情報を受信してから一定期間が経過したら単一キャリアモードに切り替えることで消費電力を抑えることができる。
 実施の形態4にかかる基地局装置400は、端末装置300へ送信された割当情報(受信割当情報または送信割当情報)に対する端末装置300からの送達確認信号を取得し、取得された送達確認信号に基づいて通信モードを切り替える。これにより、既存の送達確認信号を通信状態の変化を示す情報として利用できるため、新たな制御情報を端末装置300との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、基地局装置400は、端末装置300へ送信された割当情報に対する端末装置300からの送達確認信号が取得された場合に複数キャリアモードに切り替える。また、基地局装置400は、端末装置300へ送信された割当情報に対する端末装置300からの送達確認信号が取得されてから一定時間が経過すると単一キャリアモードに切り替える。これにより、割当情報が正常に端末装置300に受信されたことを確認してから通信モードを切り替えられるため、端末装置300による通信モードの切替と合わせて基地局装置400の通信モードを切り替えることができる。
 また、実施の形態4にかかる基地局装置400は、端末装置300へ送信された送信割当情報に基づいて端末装置300から送信されたデータを取得し、取得されたデータに基づいて通信モードを切り替える。これにより、既存のデータを通信状態の変化を示す情報として利用できるため、新たな制御情報を端末装置300との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、基地局装置400は、端末装置300へ送信された送信割当情報に基づいて端末装置300から送信されたデータが取得された場合に複数キャリアモードに切り替える。また、基地局装置400は、端末装置300へ送信された送信割当情報に基づいて端末装置300から送信されたデータが取得されてから一定時間が経過すると単一キャリアモードに切り替える。これにより、割当情報が正常に端末装置300に受信されたことを確認してから通信モードを切り替えられるため、端末装置300による通信モードの切替と合わせて基地局装置400の通信モードを切り替えることができる。
(実施の形態5)
(実施の形態5にかかる端末装置の構成)
 図17は、実施の形態5にかかる端末装置の構成を示すブロック図である。図17において、図12に示した構成と同様の構成については同一の符号を付して説明を省略する。図17に示すように、実施の形態5にかかる端末装置300は、図12に示した端末装置300の構成に加えてDRX制御部1701を備えている。
 制御チャネル復号部1202は、復号した制御チャネルをDRX制御部1701へ出力する。DRX制御部1701は、制御チャネル復号部1202から出力された制御チャネルに基づいて動作するDRX休止タイマ(間欠受信休止タイマ)の機能を備えている。DRX休止タイマは、端末装置300のDRXの休止期間を計時するタイマであり、たとえば、LTEに規定されたDRX Inactivity timerである。
 DRX制御部1701は、DRX休止タイマの動作中は、DRXを休止して常時制御チャネルを受信するように復調部303を制御する。また、DRX制御部1701は、DRX休止タイマの動作が終了すると、DRXを行うように復調部303を制御する。また、DRX制御部1701は、DRX休止タイマの動作状態を示すタイマ情報を、通信状態の変化を示す情報として取得する。DRX制御部1701は、取得したタイマ情報をキャリア数切替部307へ出力する。
 キャリア数切替部307は、DRX制御部1701から通知されるタイマ情報に基づいて端末装置300の通信モードを切り替える。たとえば、キャリア数切替部307は、タイマ情報に基づいて、DRX制御部1701のDRX休止タイマによるDRXの休止期間の計時が開始されると通信モードを複数キャリアモードに切り替える。また、キャリア数切替部307は、タイマ情報に基づいて、DRX休止タイマによるDRXの休止期間の計時が終了すると通信モードを単一キャリアモードに切り替える。
(実施の形態5にかかる基地局装置の構成)
 実施の形態5にかかる基地局装置400の構成には、たとえば、図9に示した基地局装置400の構成を用いることができる。この場合は、基地局装置400は、たとえば端末装置300へDRX解除信号を送信することで、端末装置300のDRX休止タイマの計時を開始させることができる。
(実施の形態5にかかる端末装置の動作)
 図18は、実施の形態5にかかる端末装置の動作の一例を示すフローチャートである。端末装置300(図17参照)は、たとえば以下のような動作を行う。図18に示すように、まず、キャリア数切替部307が、DRX休止タイマによるDRXの休止期間の計時が開始されたか否かを判断する(ステップS1801)。DRX休止タイマによる計時が開始されていない場合(ステップS1801:No)はステップS1803へ移行する。
 ステップS1801において、DRX休止タイマによる計時が開始された場合(ステップS1801:Yes)は、キャリア数切替部307が、端末装置300の通信モードを複数キャリアモードに切り替える(ステップS1802)。つぎに、キャリア数切替部307が、DRX休止タイマによるDRXの休止期間の計時が終了したか否かを判断する(ステップS1803)。
 ステップS1803において、DRX休止タイマによる計時が終了していない場合(ステップS1803:No)は、ステップS1801へ戻って処理を続行する。DRX休止タイマによる計時が終了した場合(ステップS1803:Yes)は、キャリア数切替部307が、端末装置300の通信モードを単一キャリアモードに切り替え(ステップS1804)、ステップS1801へ戻って処理を続行する。以上の動作を行うことで、端末装置300は、タイマ情報に基づいて通信モードを切り替えることができる。
(実施の形態5にかかる基地局装置の動作)
 図19は、実施の形態5にかかる基地局装置の動作の一例を示すフローチャートである。実施の形態5にかかる基地局装置400(たとえば図9参照)は、たとえば以下のような動作を行う。図19に示すように、まず、キャリア数切替部410が、端末装置300におけるDRX休止タイマによるDRXの休止期間の計時が開始されたか否かを判断する(ステップS1901)。DRX休止タイマによる計時が開始されていない場合(ステップS1901:No)はステップS1903へ移行する。
 ステップS1901において、DRX休止タイマによる計時が開始された場合(ステップS1901:Yes)は、キャリア数切替部410が、基地局装置400の通信モードを複数キャリアモードに切り替える(ステップS1902)。つぎに、キャリア数切替部410が、端末装置300におけるDRX休止タイマによるDRXの休止期間の計時が終了したか否かを判断する(ステップS1903)。
 ステップS1903において、DRX休止タイマによる計時が終了していない場合(ステップS1903:No)は、ステップS1901へ戻って処理を続行する。DRX休止タイマによる計時が終了した場合(ステップS1903:Yes)は、キャリア数切替部410が、基地局装置400の通信モードを単一キャリアモードに切り替え(ステップS1904)、ステップS1901へ戻って処理を続行する。
 ステップS1901において、基地局装置400は、たとえば、端末装置300へ送信したDRX設定信号に対するAckを受信したか否かによって、DRX休止タイマによる計時が開始されたか否かを判断する。また、ステップS1903において、基地局装置400は、たとえば、DRX設定信号に対するAckを受信してから一定時間が経過したか否かによって、DRX休止タイマによる計時が終了したか否かを判断する。
 このように、実施の形態5にかかる端末装置300は、端末装置300のDRXの休止期間を計時するDRX休止タイマの動作状態を示すタイマ情報を取得し、取得されたタイマ情報に基づいて通信モードを切り替える。これにより、既存のタイマ情報を通信状態の変化を示す情報として利用できるため、新たな制御情報を基地局装置400との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、DRX休止タイマの計時中は基地局装置400からデータが送信される可能性が高いため、端末装置300は、DRX休止タイマによる計時が開始された場合は複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。また、DRX休止タイマの計時中以外は基地局装置400からデータが送信される可能性が低いため、端末装置300は、DRX休止タイマによる計時が終了した場合は単一キャリアモードに切り替えることで消費電力を抑えることができる。
(実施の形態6)
(実施の形態6にかかる端末装置の構成)
 図20は、実施の形態6にかかる端末装置の構成を示すブロック図である。図20において、図8に示した構成と同様の構成については同一の符号を付して説明を省略する。RRC情報解析部801は、論理チャネル解析部305から出力されたRRCメッセージから、コネクトモードとアイドルモードとの切替情報を検出する。
 コネクトモードは、たとえばLTEに規定されたconnected modeである。アイドルモードは、たとえばLTEに規定されたidle modeである。RRC情報解析部801は、検出した切替情報を復調部303およびキャリア数切替部307へ出力する。復調部303は、RRC情報解析部801から出力された切替情報に基づいてコネクトモードとアイドルモードとを切り替える。
 キャリア数切替部307は、RRC情報解析部801から出力された切替情報に基づいて通信モードを切り替える。具体的には、キャリア数切替部307は、端末装置300がコネクトモードのときは通信モードを複数キャリアモードに切り替える。また、キャリア数切替部307は、端末装置300がアイドルモードのときは通信モードを複数キャリアモードに切り替える。
(実施の形態6にかかる基地局装置の構成)
 図21は、実施の形態6にかかる基地局装置の構成を示すブロック図である。図21において、図9に示した構成と同様の構成については同一の符号を付して説明を省略する。図21に示すように、実施の形態6にかかる基地局装置400は、図9に示したDRXサイクル設定制御部901に代えてRRCメッセージ生成部2101を備えている。
 スケジューラ部401は、スケジューリングにおいて、端末装置300のコネクトモードとアイドルモードとの切替の決定を行う。スケジューラ部401は、スケジューリングの結果をRRCメッセージ生成部2101および変調部405へ通知する。RRCメッセージ生成部2101は、スケジューラ部401から通知されたスケジューリングの結果に基づいて、コネクトモードとアイドルモードとの切替を示す切替情報を生成する。
 RRCメッセージ生成部2101は、生成した切替情報を含むRRCメッセージを符号化部404へ出力する。符号化部404は、RRCメッセージ生成部2101から出力されたRRCメッセージを、バイナリデータバッファ部403から出力されたデータに格納する。符号化部404は、RRCメッセージを格納したデータを符号化し、符号化したデータを変調部405へ出力する。
 RF処理部406は、アンテナ407から出力されたRRC完了信号の周波数を高周波からベースバンドに変換し、周波数を変換したRRC完了信号を復調部408へ出力する。復調部408は、RF処理部406から出力されたRRC完了信号を復調し、復調したRRC完了信号を復号部902へ出力する。
 復号部902は、復調部408から出力されたRRC完了信号を復号する。復号部902は、復号したRRC完了信号をRRC完了信号判定部903へ出力する。RRC完了信号判定部903は、復号部902から出力されたRRC完了信号の判定を行う。たとえば、RRC完了信号判定部903は、RRC完了信号が、コネクトモードへの切替を要求する切替情報に対するRRC完了信号であるのか、またはアイドルモードへの切替を要求する切替情報に対するRRC完了信号であるのかを判定する。RRC完了信号判定部903は、判定結果をキャリア数切替部410へ通知する。
 キャリア数切替部410は、RRC完了信号判定部903から通知される判定結果に基づいて基地局装置400の通信モードを切り替える。具体的には、キャリア数切替部410は、コネクトモードへの切替を要求する切替情報に対するRRC完了信号を取得した旨がRRC完了信号判定部903から通知されると、通信モードを複数キャリアモードに切り替える。また、キャリア数切替部410は、アイドルモードへの切替を要求する切替情報に対するRRC完了信号を取得した旨がRRC完了信号判定部903から通知されると、通信モードを単一キャリアモードに切り替える。
(実施の形態6にかかる端末装置の動作)
 図22は、実施の形態6にかかる端末装置の動作の一例を示すフローチャートである。端末装置300(図20参照)は、たとえば以下のような動作を行う。図22に示すように、まず、キャリア数切替部307が、端末装置300がコネクトモードか否かを判断する(ステップS2201)。端末装置300がコネクトモードでない場合(ステップS2201:No)は、ステップS2203へ移行する。
 ステップS2201において、端末装置300がコネクトモードである場合(ステップS2201:Yes)は、キャリア数切替部307が、端末装置300の通信モードを複数キャリアモードに切り替える(ステップS2202)。つぎに、キャリア数切替部307が、端末装置300がアイドルモードか否かを判断する(ステップS2203)。
 ステップS2203において、端末装置300がアイドルモードでない場合(ステップS2203:No)は、ステップS2201へ戻って処理を続行する。端末装置300がアイドルモードである場合(ステップS2203:Yes)は、キャリア数切替部307が、端末装置300の通信モードを単一キャリアモードに切り替え(ステップS2204)、ステップS2201へ戻って処理を続行する。以上の動作を行うことで、端末装置300は、切替情報に基づいて通信モードを切り替えることができる。
(実施の形態6にかかる基地局装置の動作)
 図23は、実施の形態6にかかる基地局装置の動作の一例を示すフローチャートである。基地局装置400(図21参照)は、たとえば以下のような動作を行う。図23に示すように、まず、RRC完了信号判定部903が、端末装置300へ送信したコネクトモードへの切替を要求する切替情報に対するRRC完了信号を端末装置300から受信したか否かを判断する(ステップS2301)。
 ステップS2301において、切替情報に対するRRC完了信号を受信していない場合(ステップS2301:No)は、ステップS2303へ移行する。切替情報に対するRRC完了信号に対するRRC完了信号を受信した場合(ステップS2301:Yes)は、スケジューラ部401が、基地局装置400の通信モードを単一キャリアモードに切り替える(ステップS2302)。
 つぎに、RRC完了信号判定部903が、端末装置300へ送信したアイドルモードへの切替を要求する切替情報に対するRRC完了信号を端末装置300から受信したか否かを判断する(ステップS2303)。切替情報に対するRRC完了信号を受信していない場合(ステップS2303:No)は、ステップS2301へ戻って処理を続行する。
 ステップS2303において、切替情報に対するRRC完了信号を受信した場合(ステップS2303:Yes)は、キャリア数切替部410が、通信モードを複数キャリアモードに切り替え(ステップS2304)、ステップS2301へ戻って処理を続行する。以上の動作を行うことで、基地局装置400は、切替情報に基づいて端末装置300から送信されたRRC完了信号に基づいて通信モードを切り替えることができる。
 このように、実施の形態6にかかる端末装置300は、端末装置300のコネクトモードとアイドルモードとの切替を示す切替情報を取得し、取得された切替情報に基づいて通信モードを切り替える。これにより、既存の切替情報を通信状態の変化を示す情報として利用できるため、新たな制御情報を基地局装置400との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、端末装置300がコネクトモードのときは基地局装置400からデータが送信される可能性が高いため、端末装置300は、コネクトモードのときは複数キャリアモードに切り替えることで高いスループットによる通信を行うことができる。また、端末装置300がアイドルモードのときは基地局装置400からデータが送信される可能性が低いため、端末装置300は、アイドルモードのときは単一キャリアモードに切り替えることで消費電力を抑えることができる。
 実施の形態6にかかる基地局装置400は、端末装置300へ送信された切替情報に対する端末装置300からのRRC完了信号を取得し、取得されたRRC完了信号に基づいて通信モードを切り替える。これにより、既存のRRC完了信号を通信状態の変化を示す情報として利用できるため、新たな制御情報を端末装置300との間で送受信しなくても通信リソースを効率よく使用することができる。
 たとえば、基地局装置400は、端末装置300へ送信された、コネクトモードへの切替を要求する切替情報に対する端末装置300からのRRC完了信号が取得された場合に複数キャリアモードに切り替える。また、基地局装置400は、端末装置300へ送信された、アイドルモードへの切替を要求する切替情報に対する端末装置300からのRRC完了信号が取得された場合に単一キャリアモードに切り替える。
 これにより、各切替情報が正常に端末装置300に受信されたことを確認してから通信モードを切り替えられるため、端末装置300による通信モードの切替と合わせて基地局装置400の通信モードを切り替えることができる。
(実施の形態7)
(実施の形態7にかかる端末装置の構成)
 図24は、実施の形態7にかかる端末装置の構成を示すブロック図である。図24において、図3に示した構成と同様の構成については同一の符号を付して説明を省略する。実施の形態7にかかる端末装置300は、図3に示した構成に加えて、セルサーチ部2401と、レベル測定部2402と、セルリセレクション制御部2403と、コンポーネントキャリア決定部2404と、を備えている。
 アンテナ301は、基地局装置400を含む複数の基地局装置から送信された各SCH(Synchronization channel)を受信してRF処理部302へ出力する。RF処理部302は、アンテナ301から出力された各SCHの周波数を高周波からベースバンドに変換し、周波数を変換した各SCHを復調部303、セルサーチ部2401およびレベル測定部2402へ出力する。
 セルサーチ部2401は、RF処理部302から出力された各SCHに基づいて端末装置300の周囲の基地局装置を検出するセルサーチを行う。セルサーチ部2401は、セルサーチによって検出された基地局装置をレベル測定部2402へ通知する。レベル測定部2402は、セルサーチ部2401から通知された各基地局装置について、RF処理部302から出力された各SCHのレベルを測定する。レベル測定部2402は、測定した基地局装置ごとのSCHのレベルをセルリセレクション制御部2403へ通知する。
 セルリセレクション制御部2403は、レベル測定部2402から通知される基地局装置ごとのSCHのレベルに基づいてセルリセレクションを行う。セルリセレクション制御部2403は、たとえばLTEに規定されたセルリセレクションを行う。たとえば、セルリセレクション制御部2403は、端末装置300が待ち受けしている基地局装置のSCHのレベルと、その他の基地局装置のSCHのレベルと、を比較する。
 そして、セルリセレクション制御部2403は、端末装置300が待ち受けしている基地局装置のSCHのレベルがその他の基地局装置のSCHのレベルより低くなると、その他の基地局装置へのセルリセレクションを行う。この場合は、セルリセレクション制御部2403は、その他の基地局装置の信号を復調するように復調部303を制御するとともにセルリセレクションの決定結果をコンポーネントキャリア決定部2404へ通知する。
 コンポーネントキャリア決定部2404は、セルリセレクション制御部2403から通知されたセルリセレクションの決定結果に基づいて、端末装置300の受信に用いるコンポーネントキャリアを決定する。また、コンポーネントキャリア決定部2404は、キャリア数切替部307によって切り替えられる通信モードに従って、端末装置300の受信に用いるコンポーネントキャリアを決定する。コンポーネントキャリア決定部2404は、決定したコンポーネントキャリアを復調するように復調部303を制御する。
 ここで、コンポーネントキャリア決定部2404は、セルリセレクション後に使用するコンポーネントキャリアとして、セルリセレクション前に使用していた周波数と同じ周波数のコンポーネントキャリアを決定する。これにより、セルリセレクション後に使用するコンポーネントキャリアを簡単な処理によって決定することができる。
 つぎに、セルリセレクション後において、端末装置300の通信モードを単一キャリアモードとする場合について説明する。この場合は、コンポーネントキャリア決定部2404は、使用するコンポーネントキャリアとして、セルリセレクション前に使用していた周波数と同じ周波数のコンポーネントキャリアを決定する。これにより、単一キャリアモードの場合に使用するコンポーネントキャリアを簡単な処理により決定することができる。
 ここでは、実施の形態2にかかる端末装置300の構成(図3参照)に対してセルサーチ部2401、レベル測定部2402、セルリセレクション制御部2403およびコンポーネントキャリア決定部2404を設けて実施の形態7とした。これに対して、実施の形態3~6のいずれかにかかる端末装置300の構成に対してセルサーチ部2401、レベル測定部2402、セルリセレクション制御部2403およびコンポーネントキャリア決定部2404を設けて実施の形態7としてもよい。
(実施の形態7にかかる端末装置の動作)
 図25は、実施の形態7にかかる端末装置の動作の一例を示すフローチャートである。端末装置300(図24参照)は、たとえば以下のような動作を行う。図25に示すように、まず、セルリセレクション制御部2403が、セルリセレクションを行うための基準となるセルリセレクション基準を満たすか否かを判断し(ステップS2501)、セルリセレクション基準を満たすまで待つ(ステップS2501:Noのループ)。
 ステップS2501において、セルリセレクション基準を満たしている場合(ステップS2501:Yes)は、セルリセレクション制御部2403が、他の基地局装置への切替を行い(ステップS2502)、一連の動作を終了する。ステップS2501においては、セルリセレクション制御部2403は、たとえば端末装置300が待ち受けしている基地局装置のSCHのレベルと、その他の基地局装置のSCHのレベルと、を比較する。
 そして、セルリセレクション制御部2403は、端末装置300が待ち受けしている基地局装置のSCHのレベルがその他の基地局装置のSCHのレベルより低くなると、セルリセレクション基準を満たしたと判断する。以上のステップにより、端末装置300は、セルリセレクション基準を満たした場合にセルリセレクションを行うことができる。
 図26は、実施の形態7にかかる端末装置の動作の具体例を示す図である。図26において、通信リソース2610は、セルリセレクション前の基地局装置と端末装置300との通信における通信リソースを示している。通信リソース2620は、セルリセレクション後の基地局装置と端末装置300との通信における通信リソースを示している。通信リソース2610および通信リソース2620において、横軸は周波数を示している。
 符号2601に示すように、セルリセレクションを行う前は、端末装置300は、通信リソース2610の周波数f1に対応するコンポーネントキャリア2611によって基地局装置と通信を行っていたとする。つぎに、端末装置300がセルリセレクションを行うと、符号2602に示すように、端末装置300は、セルリセレクションを行う前に使用していた周波数f1と同じ周波数f1に対応するコンポーネントキャリア2621によって基地局装置と通信を行う。
 つぎに、端末装置300の通信モードが複数キャリアモードに切り替わると、符号2603に示すように、端末装置300は、コンポーネントキャリア2621を含む複数のコンポーネントキャリア(コンポーネントキャリア2621~2623)を用いて基地局装置と通信を行う。つぎに、端末装置300の通信モードが複数キャリアモードから単一キャリアモードに切り替わると、符号2604に示すように、端末装置300は、コンポーネントキャリア2621を用いて基地局装置と通信を行う。
 このように、図24に示した端末装置300は、セルリセレクションの後に単一キャリアモードで受信するコンポーネントキャリアを、セルリセレクションの前に受信していたコンポーネントキャリアの周波数と同じ周波数のコンポーネントキャリアに決定する。これにより、セルリセレクションの後のコンポーネントキャリアの決定と、単一キャリアモードのときのコンポーネントキャリアの決定と、の処理を簡略化することができる。
(実施の形態7にかかる端末装置の変形例)
 図27は、実施の形態7にかかる端末装置の変形例1を示すブロック図である。図27において、図24に示した構成と同様の構成については同一の符号を付して説明を省略する。図27に示すように、実施の形態7にかかる端末装置300は、図24に示したセルリセレクション制御部2403に代えてハンドオーバ制御部2701を備えてもよい。
 レベル測定部2402は、測定した基地局装置ごとのSCHのレベルをハンドオーバ制御部2701へ通知する。ハンドオーバ制御部2701は、レベル測定部2402から通知される基地局装置ごとのSCHのレベルに基づいてハンドオーバを行う。ハンドオーバ制御部2701は、たとえばLTEに規定されたハンドオーバを行う。たとえば、ハンドオーバ制御部2701は、端末装置300が通信中の基地局装置のSCHのレベルと、その他の基地局装置のSCHのレベルと、を比較する。
 そして、ハンドオーバ制御部2701は、端末装置300が通信中(たとえばコネクトモード)の基地局装置のSCHのレベルがその他の基地局装置のSCHのレベルより低くなると、その他の基地局装置へのハンドオーバを行う。この場合は、ハンドオーバ制御部2701は、その他の基地局装置の信号を復調するように復調部303を制御するとともに、ハンドオーバの決定結果をコンポーネントキャリア決定部2404へ通知する。
 コンポーネントキャリア決定部2404は、ハンドオーバ制御部2701から通知されたハンドオーバの決定結果に基づいて、端末装置300の受信に用いるコンポーネントキャリアを決定する。また、コンポーネントキャリア決定部2404は、キャリア数切替部307によって切り替えられる通信モードに従って、端末装置300の受信に用いるコンポーネントキャリアを決定する。コンポーネントキャリア決定部2404は、決定したコンポーネントキャリアを復調するように復調部303を制御する。
 ここで、コンポーネントキャリア決定部2404は、ハンドオーバ後に使用するコンポーネントキャリアとして、ハンドオーバ前に使用していた周波数と同じ周波数のコンポーネントキャリアを決定する。これにより、ハンドオーバ後に使用するコンポーネントキャリアを簡単な処理によって決定することができる。
 つぎに、ハンドオーバ後において、端末装置300の通信モードを単一キャリアモードとする場合について説明する。この場合は、コンポーネントキャリア決定部2404は、使用するコンポーネントキャリアとして、ハンドオーバ前に使用していた周波数と同じ周波数のコンポーネントキャリアを決定する。これにより、単一キャリアモードの場合に使用するコンポーネントキャリアを簡単な処理により決定することができる。
 このように、図27に示した端末装置300は、ハンドオーバの後に単一キャリアモードで受信するコンポーネントキャリアを、ハンドオーバの前に受信していたコンポーネントキャリアの周波数と同じ周波数のコンポーネントキャリアに決定する。これにより、ハンドオーバの後のコンポーネントキャリアの決定と、単一キャリアモードのときのコンポーネントキャリアの決定と、の処理を簡略化することができる。
 図28は、実施の形態7にかかる端末装置の変形例2を示すブロック図である。図27において、図24に示した構成と同様の構成については同一の符号を付して説明を省略する。図27に示すように、実施の形態7にかかる端末装置300は、図24に示したセルリセレクション制御部2403に代えて再接続制御部2801を備えている。
 レベル測定部2402は、測定したレベルを基地局装置ごとに再接続制御部2801へ通知する。再接続制御部2801は、レベル測定部2402から出力される、通信中の基地局装置のSCHのレベルに基づいて通信中のセルへの再接続を行う。再接続制御部2801は、たとえばLTEに規定された再接続を行う。たとえば、再接続制御部2801は、端末装置300が通信中の基地局装置のSCHのレベルと所定の閾値とを比較する。
 そして、再接続制御部2801は、端末装置300が通信中の基地局装置のSCHのレベルが所定の閾値より低くなると、基地局装置への再接続を行う。この場合は、再接続制御部2801は、復調部303に対して再接続の処理を行うとともに、再接続の決定結果をコンポーネントキャリア決定部2404へ通知する。
 コンポーネントキャリア決定部2404は、再接続制御部2801から通知された再接続の決定結果に基づいて、端末装置300の受信に用いるコンポーネントキャリアを決定する。コンポーネントキャリア決定部2404は、再接続後に使用するコンポーネントキャリアとして、再接続前に使用していた周波数と同じ周波数のコンポーネントキャリアを決定する。これにより、再接続後に使用するコンポーネントキャリアを簡単な処理によって決定することができる。
 つぎに、再接続制御部2801において、端末装置300の通信モードを単一キャリアモードとする場合について説明する。この場合は、コンポーネントキャリア決定部2404は、使用するコンポーネントキャリアとして、再接続前に使用していた周波数と同じ周波数のコンポーネントキャリアを決定する。これにより、単一キャリアモードの場合に使用するコンポーネントキャリアを簡単な処理により決定することができる。
 このように、図28に示した端末装置300は、再接続の後に単一キャリアモードで受信するコンポーネントキャリアを、再接続の前に受信していたコンポーネントキャリアの周波数と同じ周波数のコンポーネントキャリアに決定する。これにより、再接続の後のコンポーネントキャリアの決定と、単一キャリアモードのときのコンポーネントキャリアの決定と、の処理を簡略化することができる。
 以上説明したように、通信装置、通信システムおよび通信方法によれば、通信リソースを効率よく使用することができる。なお、上述した実施の形態2~7においては、通信キャリアとしてLTE-Advancedに規定されたコンポーネントキャリアを例示して説明した。ただし、通信キャリアには、コンポーネントキャリアに限らず、物理リソースを分割した通信キャリア全般を適用することができる。
 また、上述した各実施の形態においては、各通信装置が通信モードとして複数キャリアモードおよび単一キャリアモードを有する構成について説明した。ただし、各通信装置が有する複数の通信モードは、複数キャリアモードおよび単一キャリアモードに限らず、使用する通信キャリア数が異なる複数の通信モードであればよい。たとえば、上述した各通信装置は、複数キャリアモードの代わりに所定数の通信キャリアを使用する第一通信モードを有し、単一キャリアモードの代わりに上記所定数より少ない数の通信キャリアを使用する第二通信モードを有していてもよい。
 また、開示の通信装置、通信システムおよび通信方法は、たとえばLTE-advancedの通信方式に適用することができる。ただし、開示の通信装置、通信システムおよび通信方法は、LTE-advancedの通信方式に限らず、データを複数の物理リソースに分割して伝送可能な通信方式全般に適用することができる。
 100 通信システム
 201~203 通信キャリア
 301,407 アンテナ
 2610,2620 通信リソース
 2611,2621~2623 コンポーネントキャリア
 t1,t2 期限
 f1~f4 周波数

Claims (29)

  1.  複数の通信キャリアに分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有する受信部と、
     前記受信部の通信状態の変化を示す情報を取得する取得部と、
     前記取得部によって取得された情報に基づいて前記通信モードを切り替える切替部と、
     を備えることを特徴とする通信装置。
  2.  前記受信部は、受信する通信キャリアが複数の複数キャリアモードと、受信する通信キャリアが単一の単一キャリアモードと、を前記通信モードとして有し、
     前記切替部は、前記複数キャリアモードと前記単一キャリアモードとを切り替えることを特徴とする請求項1に記載の通信装置。
  3.  前記取得部は、自装置が信号を送信するタイミングを示す有効期限つきのタイミングコマンドを取得し、
     前記切替部は、前記取得部によって取得されたタイミングコマンドの有効期限に基づいて前記通信モードを切り替えることを特徴とする請求項1に記載の通信装置。
  4.  前記取得部は、自装置が信号を送信するタイミングを示す有効期限つきのタイミングコマンドを取得し、
     前記切替部は、前記取得部によって取得されたタイミングコマンドの有効期限内では前記複数キャリアモードに切り替え、前記タイミングコマンドの有効期限外では前記単一キャリアモードに切り替えることを特徴とする請求項2に記載の通信装置。
  5.  前記取得部は、自装置に対して間欠受信サイクルの設定を要求する設定信号と、自装置に対して間欠受信サイクルの設定解除を要求する解除信号と、を取得し、
     前記切替部は、前記取得部によって取得された設定信号および解除信号に基づいて前記通信モードを切り替えることを特徴とする請求項1に記載の通信装置。
  6.  前記取得部は、自装置に対して間欠受信サイクルの設定を要求する設定信号と、自装置に対して間欠受信サイクルの設定解除を要求する解除信号と、を取得し、
     前記切替部は、前記取得部によって前記設定信号が取得されると前記複数キャリアモードに切り替え、前記取得部によって前記解除信号が取得されると前記単一キャリアモードに切り替えることを特徴とする請求項2に記載の通信装置。
  7.  前記取得部は、自装置に対する通信リソースの割り当てを示す割当情報を取得し、
     前記切替部は、前記取得部によって取得された割当情報に基づいて前記通信モードを切り替えることを特徴とする請求項1に記載の通信装置。
  8.  前記取得部は、自装置に対する通信リソースの割り当てを示す割当情報を取得し、
     前記切替部は、前記取得部によって前記割当情報が取得されると前記複数キャリアモードに切り替え、前記割当情報が取得されてから一定期間が経過すると前記単一キャリアモードに切り替えることを特徴とする請求項2に記載の通信装置。
  9.  前記取得部は、自装置の間欠受信の休止期間を計時する間欠受信休止タイマの動作状態を示すタイマ情報を取得し、
     前記切替部は、前記取得部によって取得されたタイマ情報に基づいて前記通信モードを切り替えることを特徴とする請求項1に記載の通信装置。
  10.  前記取得部は、自装置の間欠受信の休止期間を計時する間欠受信休止タイマの動作状態を示すタイマ情報を取得し、
     前記切替部は、前記取得部によって取得されたタイマ情報に基づいて、前記間欠受信休止タイマによる前記休止期間の計時が開始されると前記複数キャリアモードに切り替え、前記計時が終了すると前記単一キャリアモードに切り替えることを特徴とする請求項2に記載の通信装置。
  11.  前記取得部は、自装置のコネクトモードとアイドルモードとの切替を示す切替情報を取得し、
     前記切替部は、前記取得部によって取得された切替情報に基づいて前記通信モードを切り替えることを特徴とする請求項1に記載の通信装置。
  12.  前記取得部は、自装置のコネクトモードとアイドルモードとの切替を示す切替情報を取得し、
     前記切替部は、前記取得部によって取得された切替情報に基づいて、自装置がコネクトモードのときは前記複数キャリアモードに切り替え、自装置がアイドルモードのときは前記単一キャリアモードに切り替えることを特徴とする請求項2に記載の通信装置。
  13.  前記受信部が通信するセルを移行するセルリセレクションを行う制御部と、
     前記制御部によるセルリセレクションの後に前記単一キャリアモードで前記受信部が受信する通信キャリアを、前記制御部によるセルリセレクションの前に前記受信部が受信していた通信キャリアの周波数と同じ周波数の通信キャリアに決定する決定部と、
     を備えることを特徴とする請求項2に記載の通信装置。
  14.  前記受信部の通信中にセルを移行するハンドオーバを行う制御部と、
     前記制御部によるハンドオーバの後に前記単一キャリアモードで前記受信部が受信する通信キャリアを、前記制御部によるハンドオーバの前に前記受信部が受信していた通信キャリアの周波数と同じ周波数の通信キャリアに決定する決定部と、
     を備えることを特徴とする請求項2に記載の通信装置。
  15.  前記受信部が通信するセルへの再接続を行う制御部と、
     前記制御部による再接続の後に前記単一キャリアモードで前記受信部が受信する通信キャリアを、前記制御部による再接続の前に前記受信部が受信していた通信キャリアの周波数と同じ周波数の通信キャリアに決定する決定部と、
     を備えることを特徴とする請求項2に記載の通信装置。
  16.  データを複数の通信キャリアに分割して送信可能であり、送信する通信キャリア数が異なる複数の通信モードを有する送信部と、
     前記送信部の通信状態の変化を示す情報を取得する取得部と、
     前記取得部によって取得された情報に基づいて前記通信モードを切り替える切替部と、
     を備えることを特徴とする通信装置。
  17.  前記送信部は、送信する通信キャリアが複数の複数キャリアモードと、送信する通信キャリアが単一の単一キャリアモードと、を前記通信モードとして有し、
     前記切替部は、前記複数キャリアモードと前記単一キャリアモードとを切り替えることを特徴とする請求項16に記載の通信装置。
  18.  前記送信部は、通信先の通信装置がデータを送信するタイミングを示す有効期限つきのタイミングコマンドを前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信されたタイミングコマンドに対する前記通信先の通信装置からの送達確認信号を取得し、
     前記切替部は、前記取得部によって取得された送達確認信号に基づいて前記通信モードを切り替えることを特徴とする請求項16に記載の通信装置。
  19.  前記送信部は、通信先の通信装置がデータを送信するタイミングを示す有効期限つきのタイミングコマンドを前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信されたタイミングコマンドに対する前記通信先の通信装置からの送達確認信号を取得し、
     前記切替部は、前記取得部によって送達確認信号が取得された場合に、前記有効期限内では前記複数キャリアモードに切り替え、前記有効期限外では前記単一キャリアモードに切り替えることを特徴とする請求項17に記載の通信装置。
  20.  前記送信部は、通信先の通信装置に対して間欠受信サイクルの設定を要求する設定信号と、前記通信先の通信装置に対して間欠受信サイクルの設定解除を要求する解除信号と、を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された設定信号または解除信号に対する前記通信先の通信装置からの完了信号を取得し、
     前記切替部は、前記取得部によって取得された完了信号に基づいて前記通信モードを切り替えることを特徴とする請求項16に記載の通信装置。
  21.  前記送信部は、通信先の通信装置に対して間欠受信サイクルの設定を要求する設定信号と、前記通信先の通信装置に対して間欠受信サイクルの設定解除を要求する解除信号と、を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された設定信号または解除信号に対する前記通信先の通信装置からの完了信号を取得し、
     前記切替部は、前記取得部によって前記設定信号に対する完了信号が取得されると前記複数キャリアモードに切り替え、前記取得部によって前記解除信号に対する完了信号が取得されると前記単一キャリアモードに切り替えることを特徴とする請求項17に記載の通信装置。
  22.  前記送信部は、通信先の通信装置に対する通信リソースの割り当てを示す割当情報を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された割当情報に対する前記通信先の通信装置からの送達確認信号を取得し、
     前記切替部は、前記取得部によって取得された送達確認信号に基づいて前記通信モードを切り替えることを特徴とする請求項16に記載の通信装置。
  23.  前記送信部は、通信先の通信装置に対する通信リソースの割り当てを示す割当情報を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された割当情報に対する前記通信先の通信装置からの送達確認信号を取得し、
     前記切替部は、前記取得部によって送達確認信号が取得されると前記複数キャリアモードに切り替え、前記取得部によって送達確認信号が取得されてから一定時間が経過すると前記単一キャリアモードに切り替えることを特徴とする請求項17に記載の通信装置。
  24.  前記送信部は、通信先の通信装置によるデータの送信に対する通信リソースの割り当てを示す送信割当情報を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された送信割当情報に基づいて前記通信先の通信装置から送信されたデータを取得し、
     前記切替部は、前記取得部によって取得されたデータに基づいて前記通信モードを切り替えることを特徴とする請求項16に記載の通信装置。
  25.  前記送信部は、通信先の通信装置によるデータの送信に対する通信リソースの割り当てを示す送信割当情報を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された送信割当情報に基づいて前記通信先の通信装置から送信されたデータを取得し、
     前記切替部は、前記取得部によってデータが取得されると前記複数キャリアモードに切り替え、前記取得部によってデータが取得されてから一定時間が経過すると前記単一キャリアモードに切り替えることを特徴とする請求項17に記載の通信装置。
  26.  前記送信部は、通信先の通信装置のコネクトモードとアイドルモードとの切替を示す切替情報を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された切替情報に基づいて前記通信先の通信装置から送信された完了信号を取得し、
     前記切替部は、前記取得部によって取得された完了信号に基づいて前記通信モードを切り替えることを特徴とする請求項16に記載の通信装置。
  27.  前記送信部は、通信先の通信装置のコネクトモードとアイドルモードとの切替を示す切替情報を前記通信先の通信装置へ送信し、
     前記取得部は、前記送信部によって送信された切替情報に基づいて前記通信先の通信装置から送信された完了信号を取得し、
     前記切替部は、前記取得部によってコネクトモードへの切替を要求する切替情報が取得されると前記複数キャリアモードに切り替え、前記取得部によってアイドルモードへの切替を要求する切替情報が取得されると前記単一キャリアモードに切り替えることを特徴とする請求項17に記載の通信装置。
  28.  データを複数の通信キャリアに分割して送信可能であり、送信する通信キャリア数が異なる複数の通信モードを有し、通信状態に応じて前記通信モードを切り替える第一通信装置と、
     前記第一通信装置によって複数の通信キャリアに分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有し、通信状態に応じて前記通信モードを切り替える第二通信装置と、
     を含むことを特徴とする通信システム。
  29.  データを複数の通信キャリアに分割して送信可能であり、送信する通信キャリア数が異なる複数の通信モードを有し、通信状態に応じて前記通信モードを切り替える第一通信工程と、
     前記第一通信工程によって複数の通信キャリアに分割して送信されたデータを受信可能であり、受信する通信キャリア数が異なる複数の通信モードを有し、通信状態に応じて前記通信モードを切り替える第二通信工程と、
     を含むことを特徴とする通信方法。
PCT/JP2009/061034 2009-06-17 2009-06-17 通信装置、通信システムおよび通信方法 WO2010146673A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09846166.8A EP2445287A4 (en) 2009-06-17 2009-06-17 Communication device, communication system, and communication method
PCT/JP2009/061034 WO2010146673A1 (ja) 2009-06-17 2009-06-17 通信装置、通信システムおよび通信方法
CN200980159919.2A CN102804885B (zh) 2009-06-17 2009-06-17 通信装置、通信系统以及通信方法
KR1020117029976A KR101335868B1 (ko) 2009-06-17 2009-06-17 통신 장치, 통신 시스템, 통신 방법 및 단말 장치
JP2011519352A JPWO2010146673A1 (ja) 2009-06-17 2009-06-17 通信装置、通信システム、通信方法および端末装置
US13/323,374 US9774483B2 (en) 2009-06-17 2011-12-12 Communication apparatus, communication system, communication method, and terminal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061034 WO2010146673A1 (ja) 2009-06-17 2009-06-17 通信装置、通信システムおよび通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/323,374 Continuation US9774483B2 (en) 2009-06-17 2011-12-12 Communication apparatus, communication system, communication method, and terminal apparatus

Publications (1)

Publication Number Publication Date
WO2010146673A1 true WO2010146673A1 (ja) 2010-12-23

Family

ID=43356011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061034 WO2010146673A1 (ja) 2009-06-17 2009-06-17 通信装置、通信システムおよび通信方法

Country Status (6)

Country Link
US (1) US9774483B2 (ja)
EP (1) EP2445287A4 (ja)
JP (1) JPWO2010146673A1 (ja)
KR (1) KR101335868B1 (ja)
CN (1) CN102804885B (ja)
WO (1) WO2010146673A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111654A1 (ja) * 2011-02-18 2012-08-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
JP2014204345A (ja) * 2013-04-05 2014-10-27 京セラ株式会社 基地局、ユーザ端末、及び通信制御方法
US10090677B2 (en) 2013-05-29 2018-10-02 Kyocera Corporation Controlled device, control device, device control method, and device control system
JP2021121118A (ja) * 2013-02-22 2021-08-19 日本電気株式会社 無線局、無線端末、及びこれらの方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699860B1 (ko) * 2009-10-01 2017-01-25 삼성전자주식회사 셀룰러 무선 통신시스템에서 단말의 반송파 결합 활성화 여부를 지시하는 방법 및 장치
CN102111805B (zh) * 2010-06-18 2016-12-28 电信科学技术研究院 多载波系统的测量配置和上报方法及设备
WO2012154325A1 (en) 2011-04-01 2012-11-15 Interdigital Patent Holdings, Inc. Method and apparatus for controlling connectivity to a network
CN103379626A (zh) * 2012-04-16 2013-10-30 中兴通讯股份有限公司 多版本兼容的无线资源存储方法和装置
EP2839600B1 (en) * 2012-04-17 2017-08-02 Telefonaktiebolaget LM Ericsson (publ) Single carrier mode switching in component carrier receiver
US9348400B2 (en) * 2013-04-15 2016-05-24 Broadcom Corporation Method for saving power on multi-channel devices
GB2514174B (en) * 2013-05-17 2015-12-02 Cambium Networks Ltd Improvements to adaptive modulation
CN107852275B (zh) * 2015-07-31 2020-10-23 索尼公司 数据传输装置和数据传输方法、接收装置和接收方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530796A (ja) * 2000-04-07 2003-10-14 クゥアルコム・インコーポレイテッド 異なるスペクトル機能をもつデジタル基地局のためのハンドオフ方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174770A (ja) 1998-12-09 2000-06-23 Nec Corp 無線データ通信方法および装置
JP3546765B2 (ja) 1999-07-09 2004-07-28 日本電気株式会社 パケット転送方法及びシステム
AU2001257133A1 (en) * 2000-04-22 2001-11-07 Atheros Communications, Inc. Multi-carrier communication systems employing variable symbol rates and number of carriers
US7274679B2 (en) * 2000-06-22 2007-09-25 Mati Amit Scalable virtual channel
US7428224B2 (en) * 2000-12-27 2008-09-23 Sanyo Electric Co., Ltd. Radio base station system, and method and program for controlling transmission of synchronous burst
JP4272006B2 (ja) * 2002-12-10 2009-06-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末、サーバ、通信システム、通信制御方法及び通信制御プログラム
WO2005018161A1 (ja) * 2003-08-19 2005-02-24 Keio University 無線通信装置、アドホックシステムおよび通信システム
US20060116123A1 (en) * 2004-11-29 2006-06-01 Nokia Corporation Method and apparatus to optimize paging in a flexible multi-carrier system
JP4527067B2 (ja) * 2005-03-31 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び移動通信システム
US7957351B2 (en) * 2005-04-04 2011-06-07 Qualcomm Incorporated Method and apparatus for management of multi-carrier communications in a wireless communication system
US9077433B2 (en) * 2005-10-04 2015-07-07 Huawei Technologies Co., Ltd. Mobile station device and method, base station device and method, and mobile station device operating frequency band mapping method
CN101047951B (zh) 2006-03-27 2010-06-16 中兴通讯股份有限公司 一种无线通信系统中媒体接入控制状态迁移方法
JP2008244771A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 通信方法および無線通信装置
US7734859B2 (en) * 2007-04-20 2010-06-08 Nuon, Inc Virtualization of a host computer's native I/O system architecture via the internet and LANs
EP2169866A4 (en) * 2007-07-09 2014-07-09 Sharp Kk TERMINATION PLANNING AND CONTROL STATION DEVICE
JP5196931B2 (ja) * 2007-09-25 2013-05-15 キヤノン株式会社 ネットワークシステムおよび制御無線装置
JP2009088818A (ja) * 2007-09-28 2009-04-23 Rohm Co Ltd 情報通信端末、無線通信装置および無線通信ネットワーク
US8681711B2 (en) * 2007-10-05 2014-03-25 Qualcomm Incorporated Inactivity-based multi-carrier allocation in wireless networks
US8165026B2 (en) * 2008-03-25 2012-04-24 Qualcomm Incorporated Method and apparatus to report and manage cells in a multi carrier system
US8509161B2 (en) * 2008-08-11 2013-08-13 Sharp Kabushiki Kaisha Systems and methods for OFDMA and SC-FDMA switching
US9839001B2 (en) * 2009-03-23 2017-12-05 Apple Inc. Methods and apparatus for optimizing paging mechanisms and publication of dynamic paging mechanisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530796A (ja) * 2000-04-07 2003-10-14 クゥアルコム・インコーポレイテッド 異なるスペクトル機能をもつデジタル基地局のためのハンドオフ方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111654A1 (ja) * 2011-02-18 2012-08-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
US9113378B2 (en) 2011-02-18 2015-08-18 Ntt Docomo, Inc. Mobile communication method and radio base station
JP2021121118A (ja) * 2013-02-22 2021-08-19 日本電気株式会社 無線局、無線端末、及びこれらの方法
JP7184112B2 (ja) 2013-02-22 2022-12-06 日本電気株式会社 無線局、無線端末、及びこれらの方法
US11546847B2 (en) 2013-02-22 2023-01-03 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
JP2014204345A (ja) * 2013-04-05 2014-10-27 京セラ株式会社 基地局、ユーザ端末、及び通信制御方法
US10090677B2 (en) 2013-05-29 2018-10-02 Kyocera Corporation Controlled device, control device, device control method, and device control system

Also Published As

Publication number Publication date
CN102804885B (zh) 2015-12-16
KR20120023793A (ko) 2012-03-13
CN102804885A (zh) 2012-11-28
US20120082137A1 (en) 2012-04-05
EP2445287A1 (en) 2012-04-25
EP2445287A4 (en) 2017-04-12
JPWO2010146673A1 (ja) 2012-11-29
KR101335868B1 (ko) 2013-12-02
US9774483B2 (en) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2010146673A1 (ja) 通信装置、通信システムおよび通信方法
US20220078774A1 (en) Wireless communication method, wireless communication system, wireless terminal, and wireless base station
KR20210095056A (ko) 무선 통신 시스템에서 불연속 수신 동작을 고려하여 디바이스 대 디바이스 리소스 선택을 처리하는 방법 및 장치
US9693299B2 (en) Method and apparatus for power saving operations in wireless network elements
US10484160B2 (en) Mobile communication system, user terminal, processor, storage medium, and base station supporting proximity service communication
US20150319793A1 (en) Communication control method, user terminal, processor, storage medium, and base station
KR101669969B1 (ko) 무선 통신 시스템에서 파워 세이빙 방법
US20100278128A1 (en) Random access system for using multi-carrier structure in mobile communication system
US10021039B2 (en) Mobile communication system and user terminal
KR20080044791A (ko) 셀룰라 시스템에서 저전력 소모 동작 중인 단말기의핸드오버 방법
US20150319798A1 (en) Communication control method, user terminal, processor, and storage medium
US9713159B2 (en) Communication control method and base station
CN112583559B (zh) 反馈方法及装置
JP6382212B2 (ja) マシンツーマシンワイヤレスワイドエリアネットワークにおける順方向リンク上の送信の日和見的復号
US20190074926A1 (en) Method and device in wireless communication
WO2018138854A1 (ja) 基地局、無線通信システム、無線端末、及び無線通信方法
TWI798031B (zh) 監測數據通道的省電方法及用戶設備
CN114128344A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023153312A1 (ja) 通信装置及び通信方法
WO2022234835A1 (ja) ユーザ装置、基地局、及び通信制御方法
KR101670749B1 (ko) 광대역 무선 접속 시스템에서 수면 모드에서의 영역 이탈 동작 수행 방법
RU2799488C1 (ru) Способ, устройство для индикации состояния каналов в нелицензируемом спектре и носитель информации
CN112470507B (zh) 一种信道检测方法及相关设备
CN117998540A (zh) 信号处理方法及相关装置
CN113950130A (zh) 休眠指示方法、终端、网络侧设备和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159919.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519352

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117029976

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009846166

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE