WO2010146661A1 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
WO2010146661A1
WO2010146661A1 PCT/JP2009/060942 JP2009060942W WO2010146661A1 WO 2010146661 A1 WO2010146661 A1 WO 2010146661A1 JP 2009060942 W JP2009060942 W JP 2009060942W WO 2010146661 A1 WO2010146661 A1 WO 2010146661A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station
handover
radio base
relay
Prior art date
Application number
PCT/JP2009/060942
Other languages
English (en)
French (fr)
Inventor
田島 喜晴
田中 良紀
義博 河▲崎▼
好明 太田
政世 清水
勝正 杉山
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2009/060942 priority Critical patent/WO2010146661A1/ja
Priority to EP09846154.4A priority patent/EP2445258A4/en
Priority to JP2011519340A priority patent/JP5126419B2/ja
Publication of WO2010146661A1 publication Critical patent/WO2010146661A1/ja
Priority to US13/305,273 priority patent/US8724589B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/023Buffering or recovering information during reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a wireless communication system.
  • Examples of the wireless communication system include a mobile communication system.
  • a mobile communication system such as a cellular phone combines a plurality of areas (cells) that can be transmitted and received by a base station, covers a wide area, and continues communication while switching base stations as the mobile station moves.
  • the method has become mainstream.
  • LTE Long Term Evolution
  • LTE-advanced Long Term Evolution-advanced
  • the introduction of relay stations (relays) is planned as a method for improving the throughput and improving the characteristics in dead zones.
  • the relay station As a configuration of the relay station, a configuration in which the presence of the relay station cannot be recognized is possible, but in 3GPP, a configuration that operates in the same manner as a normal radio base station is mainly studied. In this case, the base station located above the relay station acts as a simple connection point like a router when viewed from the relay station.
  • Patent Document 1 a technique for reducing the amount of signaling and reducing the number of transmissions of a mobile station in a wireless communication system in which a relay station is arranged has been proposed.
  • JP 2009-81513 A (paragraph numbers [0035] to [0047], FIGS. 1 and 2)
  • base stations may communicate with each other for handover and interference control.
  • the communication interface between base stations is defined as an X2 interface.
  • FIG. 9 is a diagram showing an interface between base stations.
  • the radio network 5a includes base stations eNB0 to eNB4. With the LTE X2 interface, the base stations are connected by wire.
  • the base station eNB0 is connected to the base stations eNB1 to eNB4 via the wired transmission paths X2-1 to X2-4, respectively.
  • the base station eNB0 When the base station eNB0 communicates with another base station, it communicates using a wired line via the X2 interface. For example, if the base station eNB0 communicates with the base station eNB1, the wired transmission path X2-1 is used. If the base station eNB0 communicates with the base station eNB2, the wired transmission path X2-2 is used.
  • communication between base stations using the X2 interface is normally performed by wire, but when there is a relay station that operates in the same manner as the base station as described above, the relay station and the upper base station Since there is a wireless connection, wireless is included in some sections of the X2 interface.
  • FIG. 10 is a diagram showing an interface between base stations where a relay station exists.
  • the radio network 5b includes base stations eNB0 to eNB4, a relay station RN, and a mobile station UE.
  • the relay station RN performs the same operation as a normal base station.
  • the relay station RN includes an upper base station (here, the base station is eNB0. Note that the upper base station is also referred to as Donor), and the relay station RN and the upper base station eNB0 are connected to the radio channel X2- Connect with 5.
  • a mobile station UE exists under the relay station RN.
  • the relay station RN When the relay station RN communicates with the base stations eNB1 to eNB4 as other base stations, the relay station RN goes through the upper base station eNB0, and thus includes not only wired communication but also wireless communication. For example, when the relay station RN communicates with the base station eNB1, the radio propagation path X2-5 and the wired transmission path X2-1 are used.
  • the X2 interface is used not only for transmission of control information but also for forwarding user data at the time of handover.
  • Transfer of user data (hereinafter simply referred to as data) is to transfer data that has not been transmitted to the mobile station at the handover source base station to the handover destination base station.
  • the source base station is a relay station
  • the data is transmitted to the relay station via the upper base station, but this data is sent back to the upper base station again during data transfer accompanying the handover. From there, the route is transferred to the handover destination base station.
  • FIG. 11 is a diagram showing a state of handover on the wireless network.
  • the radio network 5c includes an upper base station eNB0, a base station eNB1, a gateway device GW, a relay station RN, and a mobile station UE.
  • the upper base station eNB0, the base station eNB1, and the gateway device GW are connected to each other via a wired transmission path. Further, the upper base station eNB0 and the relay station RN are connected by a radio propagation path, and the mobile station UE exists under the relay station RN.
  • FIG. 12 is a diagram showing a handover sequence. The sequence when the mobile station UE hands over from the relay station RN to the base station eNB1 on the radio network 5c is shown.
  • a thick arrow line represents data
  • a thin arrow line represents control information.
  • the gateway device GW transmits data to the mobile station UE.
  • the data is transmitted toward the upper base station eNB0, and the upper base station eNB0 performs reception processing and transmission processing, and is transmitted to the relay station RN. Thereafter, reception processing and transmission processing are performed in the relay station RN and transmitted to the mobile station UE.
  • the mobile station UE measures the reception level of the radio wave transmitted from the neighboring base station, and transmits the reception level measurement information to the relay station RN including the measurement level report information.
  • the relay station RN When the relay station RN receives the Measurement-Report, the relay station RN recognizes that the mobile station UE is about to execute the handover, and the base station eNB1 determines that the handover destination candidate with a good reception level is based on the reception level measurement information. Recognize that there is.
  • the relay station RN transmits an HO request (handover request signaling) to the base station eNB1.
  • the HO Request is transmitted to the base station eNB1 via the upper base station eNB0.
  • the base station eNB1 upon receiving the HO Request, determines whether or not handover is possible.
  • HO OK (handover permission signaling) is returned as the handover is possible.
  • HO OK is transmitted to the relay station RN via the upper base station eNB0.
  • the relay station RN determines the base station eNB1 as a handover destination from the contents of HO OK, and notifies the result to the mobile station UE by HO Command (handover command).
  • the relay station RN instructs the mobile station UE to perform handover by HO Command, and then transmits the data transmitted from the gateway apparatus GW, which has not yet been transmitted to the mobile station UE, to the handover destination base station eNB1. Forward. The data is subjected to reception processing and transmission processing in the upper base station eNB0 and transmitted to the base station eNB1.
  • the mobile station UE recognizes that the base station eNB1 can be handed over from the contents of the HO Command, executes the handover toward the base station eNB1, and transmits HO Complete (handover completion signaling) to the base station eNB1. To do.
  • the base station eNB1 Upon receiving HO Complete, the base station eNB1 transmits a Path SW that is data transmission destination switching signaling to the gateway device GW. [S109] Upon receiving the Path SW, the gateway device GW switches the data transmission destination from the upper base station eNB0 to the base station eNB1, and transmits data to the base station eNB1. The data after transmission destination switching is transmitted to the mobile station UE via the base station eNB1.
  • radio data is transmitted between the relay station RN and the upper base station eNB0 as in step S106. Then, the amount of radio communication on the radio propagation path between the relay station RN and the upper base station eNB0 increases, the level of interference from other stations and the level of interference given to other stations rises, and there is a problem that communication quality is deteriorated. there were.
  • the delay required for processing such as establishment of a wireless line is large, so there is a problem that processing delay increases when frequent wireless communication is performed.
  • an object of the present invention is to provide a wireless communication system that improves the communication quality by reducing the amount of wireless communication between a relay station and a base station. To do.
  • a wireless communication system includes a first wireless base station, a second wireless base station, and a relay station that wirelessly connects to the first wireless base station and performs relay communication via the first wireless base station.
  • the first radio base station when the mobile station under the relay station executes handover to the second radio base station, the first radio base station returns the data that has not been transmitted to the mobile station by itself and performs handover.
  • the data transfer path is switched by transferring to the second radio base station.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • the radio communication system 1 includes a relay station 10, an upper base station (first radio base station) 20, a base station (second radio base station) 30, a gateway device 40, and a mobile station 2.
  • the gateway device 40 exists in the backbone network and is connected to the upper base station 20 and the base station 30 by wire.
  • the upper base station 20 and the base station 30 are connected by wire.
  • the relay station 10 is wirelessly connected to the upper base station 20 and performs relay communication via the upper base station 20.
  • the higher-order base station 20 When the mobile station 2 under the relay station 10 executes a handover to the base station 30, the higher-order base station 20 returns the data that has not been transmitted to the mobile station 2 at its own station, and the handover destination base station 30 To switch the data transfer path.
  • the upper base station 20 loops back and transmits data to the base station 30. Thereby, in the wireless communication system 1, it is possible to reduce the amount of wireless communication between the relay station 10 and the higher base station 20.
  • FIG. 2 is a diagram illustrating a configuration example of the relay station 10.
  • the relay station 10 includes a communication control unit 11.
  • the communication control unit 11 includes a data processing unit 11a and a control information processing unit 11b.
  • the control information processing unit 11b includes a handover processing unit 11b-1.
  • the communication control unit 11 performs communication control with the mobile station 2 or the upper base station 20.
  • the data processing unit 11a performs data transmission / reception processing
  • the control information processing unit 11b performs control information transmission / reception processing.
  • the handover processing unit 11b-1 generates signaling for performing handover when the subordinate mobile station 2 performs handover. Also, a signaling transmission / reception process related to a virtual handover described later is performed.
  • FIG. 3 is a diagram illustrating a configuration example of the upper base station 20.
  • the upper base station 20 includes a communication control unit 21.
  • the communication control unit 21 includes a data processing unit 21a, a control information processing unit 21b, and a router 21c (corresponding to a path switching unit).
  • the control information processing unit 21b includes a handover processing unit 21b-1.
  • the communication control unit 21 performs communication control with the mobile station 2 or communication control with another base station or the gateway device 40.
  • the data processing unit 21a performs data transmission / reception processing
  • the control information processing unit 21b performs control information transmission / reception processing.
  • the control information processing unit 21b determines whether the data transmitted from the gateway device 40 is addressed to the own station or the mobile station, and switches the route of the router 21c. If it is addressed to its own station, it is switched to the direction of output to the data processing unit 21a, and if it is addressed to the mobile station, it is switched to the direction of output to the relay station 10.
  • the router 21c switches the data output direction based on the switching instruction of the control information processing unit 21b.
  • the data processing unit 21a transfers data to a predetermined base station based on an instruction from the control information processing unit 21b.
  • the transfer destination is the base station 30, but when there are a plurality of base stations at the transfer destination, the data is transferred from a port connected to the desired base station by connecting to the plurality of base stations.
  • the handover processing unit 21b-1 performs signaling transmission / reception processing related to virtual handover described later.
  • FIG. 4 is a diagram showing a communication sequence. The sequence in the case where the upper base station 20 performs data transfer for transferring data that has not been transmitted to the mobile station 2 at the handover source relay station 10 to the handover destination base station 30 is shown. In the sequence diagrams shown below, a thick arrow line represents data, and a thin arrow line represents control information.
  • the gateway device 40 transmits data to the mobile station 2.
  • the data is transmitted to the upper base station 20, and the upper base station 20 performs reception processing and transmission processing, and then transmits the data to the relay station 10. Thereafter, reception processing and transmission processing are performed in the relay station 10 and transmitted to the mobile station 2.
  • the mobile station 2 measures the reception level of the radio wave transmitted from the neighboring base station, and transmits the reception level measurement information to the relay station 10 by including the reception level measurement information in the Measurement Report.
  • the relay station 10 When the relay station 10 receives the Measurement-Report, the relay station 10 recognizes that the mobile station 2 is about to execute the handover, and the base station 30 sets the handover destination candidate having a good reception level based on the reception level measurement information. Recognize that there is. The relay station 10 transmits an HO request to the base station 30. The HO Request is transmitted to the base station 30 via the upper base station 20.
  • the base station 30 Upon receiving the HO request, the base station 30 determines whether or not handover is possible, and returns HO OK as it can be handed over. HO OK is transmitted to the relay station 10 via the upper base station 20.
  • the relay station 10 determines the base station 30 as a handover destination from the contents of HO OK, and notifies the mobile station 2 of the result by HO Command.
  • the upper base station 20 transfers the data transmitted from the gateway device 40 and not yet transmitted to the mobile station 2 to the base station 30 that is the handover destination.
  • the mobile station 2 recognizes that the base station 30 can be handed over from the contents of the HO Command, executes the handover toward the base station 30, and transmits HO Complete to the base station 30.
  • the base station 30 Upon receiving HO Complete, the base station 30 transmits a Path SW, which is data destination switching signaling, to the gateway device 40.
  • a Path SW which is data destination switching signaling
  • the gateway device 40 switches the data transmission destination from the upper base station 20 to the base station 30, and transmits data for the mobile station 2 to the base station 30. The data is subjected to reception processing and transmission processing at the base station 30 and transmitted to the mobile station 2.
  • the relay station 10 when the relay station 10 recognizes that the mobile station 2 executes handover to the base station 30, the relay station 10 instructs the base station 30 to perform handover.
  • the upper base station 20 switches the data transfer path so that the data from the gateway device 40 toward the mobile station 2 is returned to the base station 30 and transferred to the base station 30 as in step S6.
  • the configuration In this way, it is possible to reduce the amount of wireless data communication between the relay station 10 and the upper base station 20.
  • FIG. 5 is a diagram showing a communication sequence.
  • the gateway device 40 transmits data to the mobile station 2.
  • the data is transmitted to the upper base station 20, and the upper base station 20 performs reception processing and transmission processing, and then transmits the data to the relay station 10. Thereafter, reception processing and transmission processing are performed in the relay station 10 and transmitted to the mobile station 2.
  • the mobile station 2 measures the reception level of the radio wave transmitted from the neighboring base station, and transmits the reception level measurement information to the relay station 10 with the measurement level report included in the Measurement Report.
  • the relay station 10 When the relay station 10 receives the Measurement-Report, the relay station 10 recognizes that the mobile station 2 is about to execute the handover, and the base station 30 sets the handover destination candidate having a good reception level based on the reception level measurement information. Recognize that there is. The relay station 10 transmits an HO request to the base station 30. The HO Request is transmitted to the base station 30 via the upper base station 20.
  • the base station 30 Upon receiving the HO request, the base station 30 determines whether or not handover is possible, and returns HO OK as it can be handed over. HO OK is transmitted to the relay station 10 via the upper base station 20.
  • the relay station 10 determines the base station 30 as a handover destination from the contents of HO OK, and notifies the mobile station 2 of the result by HO Command.
  • the relay station 10 After instructing the mobile station 2 to perform handover by HO Command, the relay station 10 requests the upper base station 20 to perform virtual handover and switches the Virtual HO Request to Transmit to the base station 20.
  • the upper base station 20 that has received the Virtual HO Request returns a Virtual HO Response to the relay station 10 as a virtual handover response signaling (in the figure, a Virtual HO OK that is a permission signaling is returned as a Virtual HO Response. )
  • handover signaling communication is performed between the relay station 10 and the upper base station 20 for exchanging a Virtual HO Request and a Virtual HO Response and performing a handover from the relay station 10 to the upper base station 20. .
  • the relay station 10 When the relay station 10 recognizes the handover of the mobile station 2, it requests the handover destination base station 30 to perform the handover of the mobile station 2. In this case, by performing the above-described handover signaling communication between the relay station 10 and the upper base station 20, the handover from the relay station 10 to the upper base station 20 and the upper base station 20 to the base station 30 are performed. As a result, the handover from the relay station 10 to the base station 30 is realized.
  • the virtual handover is not known to the mobile station 2 and is executed only within the network.
  • the upper base station 20 transfers the data transmitted from the gateway device 40 and not yet transmitted to the mobile station 2 to the handover destination base station 30.
  • the mobile station 2 recognizes that the base station 30 can be handed over from the contents of the HO Command, executes the handover toward the base station 30, and transmits HO Complete to the base station 30.
  • the base station 30 Upon receiving HO Complete, the base station 30 transmits Path SW, which is data destination switching signaling, to the gateway device 40.
  • Path SW which is data destination switching signaling
  • the gateway device 40 switches the data transmission destination from the upper base station 20 to the base station 30, and transmits data for the mobile station 2 to the base station 30. The data undergoes reception processing and transmission processing at the base station 30 and is transmitted to the mobile station 2.
  • the upper base station 20 switches the data transfer path to transfer data from the upper base station 20 to the base station 30. It was configured to transfer.
  • FIG. 6 is a diagram showing a communication sequence.
  • the gateway device 40 transmits data to the mobile station 2.
  • the data is transmitted to the upper base station 20, and the upper base station 20 performs reception processing and transmission processing, and then transmits the data to the relay station 10. Thereafter, reception processing and transmission processing are performed in the relay station 10 and transmitted to the mobile station 2.
  • the mobile station 2 measures the reception level of the radio wave transmitted from the neighboring base station, and transmits the reception level measurement information to the relay station 10 in the Measurement Report.
  • the relay station 10 When the relay station 10 receives the Measurement-Report, the relay station 10 recognizes that the mobile station 2 is about to execute the handover, and the base station 30 sets the handover destination candidate having a good reception level based on the reception level measurement information. Recognize that there is. The relay station 10 transmits an HO request to the base station 30. The HO Request is transmitted to the base station 30 via the upper base station 20.
  • the base station 30 Upon receiving the HO request, the base station 30 determines whether or not handover is possible, and returns HO OK as it can be handed over. HO OK is transmitted to the relay station 10 via the upper base station 20.
  • the relay station 10 determines the base station 30 as a handover destination from the contents of HO OK, and notifies the mobile station 2 of the result by HO Command.
  • the upper base station 20 requests a virtual handover to the relay station 10 and transmits a Virtual HO Request to the relay station 10 in order to switch the data transfer path.
  • the relay station 10 that has received the Virtual HO Request transmits Virtual HO OK to the upper base station 20 as virtual handover permission signaling.
  • the upper base station 20 transfers the data transmitted from the gateway device 40 and not yet transmitted to the mobile station 2, to the handover destination base station 30.
  • the mobile station 2 recognizes that the base station 30 can be handed over from the contents of the HO Command, executes handover toward the base station 30, and transmits HO Complete to the base station 30.
  • the base station 30 Upon receiving HO Complete, the base station 30 transmits Path SW, which is data transmission destination switching signaling, to the gateway device 40.
  • Path SW which is data transmission destination switching signaling
  • the gateway device 40 switches the data transmission destination from the upper base station 20 to the base station 30, and transmits data for the mobile station 2 to the base station 30. The data is subjected to reception processing and transmission processing at the base station 30 and transmitted to the mobile station 2.
  • virtual handover for path switching is performed from the upper base station 20. That is, when the upper base station 20 knows the execution of the handover at the relay station 10, it requests the relay station 10 to perform a virtual handover for path switching.
  • the upper base station 20 As a method for the upper base station 20 to know the execution of the handover at the relay station 10, for example, handover request signaling from the relay station 10 to the base station 30 in step S22, or from the base station 30 to the relay station 10 in step S23. (The signaling between the relay station 10 and the base station 30 passes through the upper base station 20 and can be detected by the upper base station 20).
  • FIG. 7 is a diagram showing a communication sequence. As a signaling related to the handover, a sequence is shown in which handover request signaling transmitted from the relay station 10 is detected and path switching is performed in response to the detection of the signaling.
  • the gateway device 40 transmits data to the mobile station 2.
  • the data is transmitted to the upper base station 20, and the upper base station 20 performs reception processing and transmission processing, and then transmits the data to the relay station 10. Thereafter, reception processing and transmission processing are performed in the relay station 10 and transmitted to the mobile station 2.
  • the mobile station 2 measures the reception level of the radio wave transmitted from the neighboring base station, and transmits the reception level measurement information to the relay station 10 in the Measurement Report.
  • the relay station 10 When the relay station 10 receives the Measurement Report, the relay station 10 recognizes that the mobile station 2 is about to execute the handover, and the base station 30 sets the handover destination candidate having a good reception level based on the reception level measurement information. Recognize that there is. The relay station 10 transmits an HO request to the base station 30. The HO Request is transmitted to the base station 30 via the upper base station 20.
  • the base station 30 Upon receiving the HO request, the base station 30 determines whether or not handover is possible, and returns HO OK as it can be handed over. HO OK is transmitted to the relay station 10 via the upper base station 20.
  • the upper base station 20 detects the handover request signaling transmitted from the relay station 10 in step S32 and recognizes the execution of the handover in the relay station 10. [S35] The upper base station 20 transfers the data transmitted from the gateway device 40 and not yet transmitted to the mobile station 2 to the handover destination base station 30.
  • the relay station 10 determines the base station 30 as a handover destination from the contents of HO OK, and notifies the mobile station 2 of the result by HO Command.
  • the mobile station 2 recognizes that the base station 30 can be handed over from the contents of the HO Command, executes handover toward the base station 30, and transmits HO Complete to the base station 30.
  • the base station 30 Upon receiving HO Complete, the base station 30 transmits a Path SW that is data destination switching signaling to the gateway device 40.
  • the gateway device 40 Upon receiving the Path SW, the gateway device 40 switches the data transmission destination from the upper base station 20 to the base station 30, and transmits data for the mobile station 2 to the base station 30. The data is subjected to reception processing and transmission processing at the base station 30 and transmitted to the mobile station 2.
  • the upper base station 20 detects the handover request signaling transmitted from the relay station 10 (the handover request signaling passes through the upper base station 20 and can be detected by the upper base station 20), and data transfer
  • the configuration is such that route switching control is performed.
  • Such control enables efficient switching of data transfer paths, reduces the amount of wireless data wireless communication between the relay station 10 and the upper base station 20, and suppresses increases in interference and processing delay. It becomes possible.
  • detecting the handover request signaling and performing the data transfer path switching control is more effective in the amount of signaling between the relay station 10 and the upper base station 20 than in the case where the path switching is performed by performing a virtual handover. Can be further reduced.
  • explicit signaling such as virtual handover is not involved, the processing delay is further reduced, which is also effective in terms of processing delay.
  • the handover request signaling transmitted from the relay station 10 to the base station 30 is detected and the data transfer path switching control is performed.
  • the handover permission signaling transmitted from the base station 30 to the relay station 10 is performed. By detecting this, switching control of the data transfer path may be performed.
  • FIG. 8 is a diagram showing a communication sequence.
  • the gateway device 40 transmits data to the mobile station 2.
  • the data is transmitted toward the upper base station 20, and the upper base station 20 performs reception processing and transmission processing, and then transmits the data to the relay station 10. Thereafter, reception processing and transmission processing are performed in the relay station 10 and transmitted to the mobile station 2.
  • the mobile station 2 measures the reception level of the radio wave transmitted from the neighboring base station, and transmits the reception level measurement information to the relay station 10 including the measurement level report information.
  • the relay station 10 When the relay station 10 receives the Measurement Report, the relay station 10 recognizes that the mobile station 2 is about to execute the handover, and the base station 30 sets the handover destination candidate having a good reception level based on the reception level measurement information. Recognize that there is. The relay station 10 transmits an HO request to the base station 30. The HO Request is transmitted to the base station 30 via the upper base station 20.
  • the base station 30 Upon receiving the HO request, the base station 30 determines whether or not handover is possible, and returns HO OK as it can be handed over. HO OK is transmitted to the relay station 10 via the upper base station 20.
  • the relay station 10 determines the base station 30 as a handover destination from the contents of HO OK, and notifies the mobile station 2 of the result by HO Command.
  • the upper base station 20 transfers the data transmitted from the gateway device 40 and not yet transmitted to the mobile station 2, to the handover destination base station 30.
  • the mobile station 2 fails in the handover and transmits HO Failure to the relay station 10.
  • the relay station 10 receives the HO Failure and knows that the data transfer path has already been switched, the relay station 10 requests the upper base station 20 to return the data transfer path. In this case, HO Revert Request is transmitted as return request signaling.
  • the upper base station 20 returns the data transfer path to the path before the handover, and transmits HO Revert OK as return response signaling to the relay station 10.
  • the upper base station 20 transmits the data for the mobile station 2 transmitted from the gateway device 40 to the relay station 10 again. The data undergoes reception processing and transmission processing at the relay station 10 and is transmitted to the mobile station 2.
  • the mobile station 2 when the mobile station 2 fails in the handover, the mobile station 2 normally returns to the original base station. However, if the data transfer route has been switched, data cannot be transmitted to the mobile station 2. . Therefore, as described above, when the mobile station 2 fails in the handover after switching the data transfer path, the communication is maintained by returning the switched data transfer path to the original path before the handover.
  • the upper base station 20 transmits data that has not been transmitted to the mobile station 2. Is transferred back to the base station 30 that is the handover destination, and the data transfer path is switched.
  • the data transfer when the mobile station 2 under the relay station 10 is handed over can be executed without using the radio, so the amount of radio communication between the relay station 10 and the upper base station 20 is reduced. can do. Therefore, interference from other stations and interference given to other stations can be reduced and processing delay can be reduced, so that communication quality can be improved.

Abstract

 無線通信量を削減して、通信品質の向上を図る。 無線通信システム(1)は、中継局(10)、第1の無線基地局(20)、第2の無線基地局(30)、ゲートウェイ装置(40)及び移動局(2)を備える。ゲートウェイ装置(40)は第1の無線基地局(20)と第2の無線基地局(30)と有線で接続し、第1の無線基地局(20)と第2の無線基地局(30)とは有線で接続する。中継局(10)は、第1の無線基地局(20)と無線で接続し、第1の無線基地局(20)を経由して、中継通信を行う。中継局(10)の配下の移動局(2)が、第2の無線基地局(30)へハンドオーバを実行する場合、第1の無線基地局(20)は、移動局(2)に送信が未完了のデータを、自局で折り返してハンドオーバ先の第2の無線基地局(30)へ転送して、データ転送経路の切り替えを行う。

Description

無線通信システム
 本発明は、無線通信システムに関する。無線通信システムとして、例えば、移動通信システムが含まれる。
 携帯電話などの移動通信システムは、基地局が送受信可能な範囲からなるエリア(セル)を複数組み合わせて広いエリアをカバーし、移動局の移動に伴って基地局を切り替えながら通信を継続する、セルラー方式が主流となっている。
 現在はCDMA(Code Division Multiple Access)方式による第3世代移動通信方式がサービスを開始しており、より高速な通信を可能とする、次世代移動通信方式の検討が盛んに検討されている。
 一方、3GPP(3rd Generation Partnership Project)においては、LTE(Long Term Evolution)が、さらにその発展版であるLTE-advancedと呼ばれる高速無線サービスが検討されている。LTE-advancedでは、高スループット化や不感地帯での特性改善手法として、中継局(リレー)の導入が予定されている。
 中継局の構成としては、移動局からその存在が認識できないようにする構成も可能であるが、3GPPにおいては、通常の無線基地局と同等に動作する構成が主に検討されている。この場合、中継局の上位に位置する基地局は、中継局から見るとルータのように、単なる接続点として振る舞うことになる。
 従来技術としては、中継局が配置された無線通信システムにおいて、シグナリング量を削減し、移動局の送信回数を軽減する技術が提案されている(特許文献1)。
特開2009-81513号公報(段落番号〔0035〕~〔0047〕、第1図、第2図)
 LTE及びLTE-advanced共に、各基地局は、ハンドオーバや干渉制御のために、互いに通信を行う場合がある。基地局間の通信インタフェースは、X2インタフェースとして規定されている。
 図9は基地局間インタフェースを示す図である。無線ネットワーク5aは、基地局eNB0~eNB4を含む。LTEのX2インタフェースでは、基地局間は有線で接続されることになる。図の場合、基地局eNB0は、有線伝送路X2-1~X2-4を介して、基地局eNB1~eNB4とそれぞれ接続している。
 なお、簡単のため、基地局eNB0から基地局eNB1~eNB4へのインタフェースのみを示しているが、実際には各基地局が他の基地局へそれぞれ接続されるので、メッシュ状の結線となる。
 基地局eNB0が他の基地局と通信を行う場合、X2インタフェースにより有線を用いて通信を行う。例えば、基地局eNB0が基地局eNB1と通信を行うのであれば有線伝送路X2-1を用い、基地局eNB2と通信を行うのであれば有線伝送路X2-2を用いることになる。
 このように、X2インタフェースによる基地局間の通信は、通常は有線で行われるが、上述のような、基地局と同等に動作する中継局が存在する場合には、中継局と上位基地局との間は無線で接続するため、X2インタフェースの一部の区間に無線が含まれることになる。
 図10は中継局が存在する基地局間インタフェースを示す図である。無線ネットワーク5bは、基地局eNB0~eNB4、中継局RN及び移動局UEを含む。
 中継局RNは、通常の基地局と同等の動作を行う。また、中継局RNには、上位基地局が存在し(ここでは基地局eNB0とする。なお、上位基地局はDonorとも呼ばれる)、中継局RNと上位基地局eNB0とは、無線伝搬路X2-5で接続する。中継局RNの配下には、移動局UEが存在している。
 中継局RNが、他基地局として基地局eNB1~eNB4と通信を行うときは、上位基地局eNB0を経由することになるので、有線通信だけでなく無線通信も含まれる。例えば、中継局RNが基地局eNB1と通信を行う際には、無線伝搬路X2-5及び有線伝送路X2-1が使用される。
 一方、X2インタフェースは、制御情報の伝送の他に、ハンドオーバ時のユーザデータの転送(Forwarding)にも用いられる。ユーザデータ(以下、単にデータと表記)の転送とは、ハンドオーバ元の基地局で移動局に送信が完了していないデータを、ハンドオーバ先の基地局に転送することである。
 このような転送制御をすることで、ハンドオーバ完了時に移動先基地局から転送されたデータを移動局に送信することが可能となり、ハンドオーバに伴うデータの損失を防ぐことができる。
 ここで、移動元基地局が中継局であるとすると、データは上位基地局を介して中継局に伝送されるが、ハンドオーバに伴うデータ転送の際には、このデータは再び上位基地局に送り返され、そこからハンドオーバ先の基地局に転送される経路を経ることになる。
 したがって、上述のような中継局がある場合のハンドオーバでは、上位基地局から中継局へ向かう無線通信と、中継局から上位基地局へ向かう無線通信とを行ってデータ転送を実行することになるので、無線伝搬路の効率的な使用という観点から望ましくない。
 図11は無線ネットワーク上のハンドオーバの様子を示す図である。無線ネットワーク5cは、上位基地局eNB0、基地局eNB1、ゲートウェイ装置GW、中継局RN及び移動局UEを含む。上位基地局eNB0と基地局eNB1とゲートウェイ装置GWは、互いに有線伝送路で接続する。また、上位基地局eNB0と中継局RNは、無線伝搬路で接続し、中継局RNの配下に移動局UEが存在している。
 なお、図中の太矢印線は、移動局UEが中継局RNから基地局eNB1へハンドオーバする際に、ゲートウェイ装置GWから出力されたデータの転送経路を示している。
 図12はハンドオーバのシーケンスを示す図である。無線ネットワーク5c上で移動局UEが中継局RNから基地局eNB1へハンドオーバする場合のシーケンスを示している。なお、太矢印線はデータ、細矢印線は制御情報を表す。
 〔S101〕ゲートウェイ装置GWは、移動局UEへ向けてデータを送信する。データは、上位基地局eNB0へ向けて送信され、上位基地局eNB0で受信処理及び送信処理が行われて中継局RNへ送信される。その後、中継局RNで受信処理及び送信処理が行われて移動局UEへ送信される。
 〔S102〕移動局UEは、ハンドオーバ実行時、周辺基地局から送信される電波の受信レベルを測定し、受信レベル測定情報をMeasurement Reportに含ませて中継局RNへ送信する。
 〔S103〕中継局RNは、Measurement Reportを受信すると、移動局UEがハンドオーバを実行しようとしていることを認識し、受信レベル測定情報にもとづいて、受信レベルの良好なハンドオーバ先候補に基地局eNB1があることを認識する。
 中継局RNは、HO Request(ハンドオーバ要求シグナリング)を、基地局eNB1に対して送信する。HO Requestは、上位基地局eNB0を経由して、基地局eNB1へ送信される。
 〔S104〕基地局eNB1は、HO Requestを受信すると、ハンドオーバ可否を判断する。ここではハンドオーバ可能であるとしてHO OK(ハンドオーバ許可シグナリング)を返信する。HO OKは、上位基地局eNB0を経由して、中継局RNへ送信される。
 〔S105〕中継局RNは、HO OKの内容からハンドオーバ先として基地局eNB1を決定し、その結果をHO Command(ハンドオーバ命令)により、移動局UEへ通知する。
 〔S106〕中継局RNは、移動局UEにHO Commandによりハンドオーバを指示した後、ゲートウェイ装置GWから伝送された、移動局UEにまだ送信が完了していないデータを、ハンドオーバ先の基地局eNB1へ転送する。データは、上位基地局eNB0で受信処理及び送信処理が行われて、基地局eNB1へ送信される。
 〔S107〕移動局UEでは、HO Commandの内容から基地局eNB1がハンドオーバ可能であると認識して、基地局eNB1へ向けてハンドオーバを実行し、HO Complete(ハンドオーバ完了シグナリング)を基地局eNB1へ送信する。
 〔S108〕基地局eNB1は、HO Completeを受信すると、ゲートウェイ装置GWに対して、データの送信先切替シグナリングであるPath SWを送信する。
 〔S109〕ゲートウェイ装置GWは、Path SWを受信すると、データの送信先を上位基地局eNB0から基地局eNB1に切り替えて、基地局eNB1に向けてデータを送信する。送信先切り替え後のデータは、基地局eNB1を経由して移動局UEへ送信される。
 ここで、上記で示したようなハンドオーバ・シーケンスでは、ステップS106のように、中継局RNと上位基地局eNB0間で無線データが伝送されることになる。すると、中継局RNと上位基地局eNB0間の無線伝搬路の無線通信量が増加して、他局からの干渉や他局へ与える干渉のレベルが上昇し、通信品質の劣化を招くといった問題があった。また、無線通信の場合は、無線回線の確立などの処理に要する遅延が大きいので、頻繁に無線通信を行うと処理遅延が増大するといった問題もある。
 なお、上記では、ハンドオーバを例にして説明したが、その他の通信制御であっても同様の問題が生じえる。
 本発明はこのような点に鑑みてなされたものであり、中継局と基地局との間の無線通信量を削減して、通信品質の向上を図った無線通信システムを提供することを目的とする。
 上記課題を解決するために、無線通信システムが提供される。無線通信システムは、第1の無線基地局と、第2の無線基地局と、前記1の無線基地局と無線で接続し、前記第1の無線基地局を経由して中継通信を行う中継局とを備える。
 ここで、中継局の配下の移動局が、第2の無線基地局へハンドオーバを実行する場合、第1の無線基地局は、移動局に送信が未完了のデータを、自局で折り返してハンドオーバ先の第2の無線基地局へ転送して、データ転送経路の切り替えを行う。
 中継局と基地局との間の無線通信量を削減して、通信品質の向上を図ることが可能になる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
無線通信システムの構成例を示す図である。 中継局の構成例を示す図である。 上位基地局の構成例を示す図である。 通信シーケンスを示す図である。 通信シーケンスを示す図である。 通信シーケンスを示す図である。 通信シーケンスを示す図である。 通信シーケンスを示す図である。 基地局間インタフェースを示す図である。 中継局が存在する基地局間インタフェースを示す図である。 無線ネットワーク上のハンドオーバの様子を示す図である。 ハンドオーバのシーケンスを示す図である。
 以下、本発明の実施の形態を図面を参照して説明する。図1は無線通信システムの構成例を示す図である。無線通信システム1は、中継局10、上位基地局(第1の無線基地局)20、基地局(第2の無線基地局)30、ゲートウェイ装置40及び移動局2を備える。ゲートウェイ装置40は、基幹ネットワーク内に存在しており、上位基地局20と基地局30と有線で接続する。また、上位基地局20と基地局30は、有線で接続する。さらに、中継局10は、上位基地局20と無線で接続し、上位基地局20を経由して、中継通信を行う。
 中継局10の配下の移動局2が、基地局30へハンドオーバを実行する場合、上位基地局20は、移動局2に送信が未完了のデータを、自局で折り返してハンドオーバ先の基地局30へ転送して、データ転送経路の切り替えを行う。
 ここで、図11と比較すると、図11では、移動局UEが、基地局eNB1へハンドオーバを実行する場合、移動局UEに送信が完了していないデータは、中継局RNで折り返されてから上位基地局eNB0を経由して基地局eNB1へ送信されている。
 これに対し、無線通信システム1では、上位基地局20で折り返して基地局30へデータを送信する。これにより、無線通信システム1では、中継局10と上位基地局20との間の無線通信量を削減することが可能になる。
 次に無線通信システム1における中継局10及び上位基地局20の構成及び動作について詳しく説明する。図2は中継局10の構成例を示す図である。中継局10は、通信制御部11を備える。通信制御部11は、データ処理部11aと制御情報処理部11bを含む。また、制御情報処理部11bは、ハンドオーバ処理部11b-1を含む。
 通信制御部11は、移動局2または上位基地局20との通信制御を行う。データ処理部11aは、データの送受信処理を行い、制御情報処理部11bは、制御情報の送受信処理を行う。
 ハンドオーバ処理部11b-1は、配下の移動局2がハンドオーバを行う場合にハンドオーバを行うためのシグナリングを生成する。また、後述の仮想的なハンドオーバに関するシグナリングの送受信処理も行う。
 図3は上位基地局20の構成例を示す図である。上位基地局20は、通信制御部21を備える。通信制御部21は、データ処理部21a、制御情報処理部21b及びルータ21c(経路切替部に該当)を含む。また、制御情報処理部21bは、ハンドオーバ処理部21b-1を含む。
 通信制御部21は、移動局2との通信制御または他基地局やゲートウェイ装置40との通信制御を行う。データ処理部21aは、データの送受信処理を行い、制御情報処理部21bは、制御情報の送受信処理を行う。
 制御情報処理部21bは、ゲートウェイ装置40から送信されたデータが、自局宛か移動局宛かを判定し、ルータ21cの経路を切り替える。自局宛ならばデータ処理部21aへ出力する方向に切り替え、移動局宛ならば中継局10へ出力する方向に切り替える。ルータ21cは、制御情報処理部21bの切り替え指示にもとづき、データの出力方向を切り替える。
 データ処理部21aは、制御情報処理部21bの指示にもとづき、所定の基地局に対して、データを転送する。なお、図では転送先が基地局30としているが、転送先に複数の基地局がある場合には、複数の基地局と接続し、所望の基地局につながるポートからデータを転送する。ハンドオーバ処理部21b-1は、後述の仮想的なハンドオーバに関するシグナリングの送受信処理を行う。
 図4は通信シーケンスを示す図である。ハンドオーバ元の中継局10で移動局2に送信が完了していないデータを、ハンドオーバ先の基地局30に転送するデータ転送を上位基地局20で行う場合のシーケンスを示している。なお、以降に示すシーケンス図では、太矢印線はデータ、細矢印線は制御情報を表すものとする。
 〔S1〕ゲートウェイ装置40は、移動局2へ向けてデータを送信する。データは、上位基地局20へ向けて送信され、上位基地局20で受信処理及び送信処理が行われて中継局10へ送信される。その後、中継局10で受信処理及び送信処理が行われて移動局2へ送信される。
 〔S2〕移動局2は、ハンドオーバ実行時、周辺基地局から送信される電波の受信レベルを測定し、受信レベル測定情報をMeasurement Reportに含ませて中継局10へ送信する。
 〔S3〕中継局10は、Measurement Reportを受信すると、移動局2がハンドオーバを実行しようとしていることを認識し、受信レベル測定情報にもとづいて、受信レベルの良好なハンドオーバ先候補に基地局30があることを認識する。中継局10は、HO Requestを、基地局30に対して送信する。HO Requestは、上位基地局20を経由して、基地局30へ送信される。
 〔S4〕基地局30は、HO Requestを受信すると、ハンドオーバ可否を判断し、ハンドオーバ可能であるとしてHO OKを返信する。HO OKは、上位基地局20を経由して、中継局10へ送信される。
 〔S5〕中継局10は、HO OKの内容からハンドオーバ先として基地局30を決定し、その結果をHO Commandにより、移動局2へ通知する。
 〔S6〕上位基地局20は、ゲートウェイ装置40から伝送された、まだ移動局2に送信が完了していないデータを、ハンドオーバ先の基地局30へ転送する。
 〔S7〕移動局2では、HO Commandの内容から基地局30がハンドオーバ可能であると認識して、基地局30へ向けてハンドオーバを実行し、HO Completeを基地局30へ送信する。
 〔S8〕基地局30は、HO Completeを受信すると、ゲートウェイ装置40に対して、データの送信先切替シグナリングであるPath SWを送信する。
 〔S9〕ゲートウェイ装置40は、Path SWを受信すると、データの送信先を上位基地局20から基地局30に切り替えて、移動局2向けのデータを基地局30へ送信する。データは、基地局30で受信処理及び送信処理が行われて、移動局2へ送信される。
 上記で説明したように、中継局10は、移動局2が基地局30へハンドオーバを実行する旨を認識すると、基地局30へハンドオーバを指示する。このとき、上位基地局20は、ステップS6のように、ゲートウェイ装置40から移動局2に向けてのデータを、自局で折り返して基地局30へ転送するように、データ転送経路の切り替えを行う構成とした。このようにすることで、中継局10と上位基地局20間の無線データの無線通信量を削減することが可能になる。
 次にデータ転送の経路切り替えを行う場合に、中継局10と上位基地局20との間で、仮想的なハンドオーバに関するハンドオーバシグナリング通信を行って、経路切り替えを行う場合について説明する。
 図5は通信シーケンスを示す図である。
 〔S10〕ゲートウェイ装置40は、移動局2へ向けてデータを送信する。データは、上位基地局20へ向けて送信され、上位基地局20で受信処理及び送信処理が行われて中継局10へ送信される。その後、中継局10で受信処理及び送信処理が行われて移動局2へ送信される。
 〔S11〕移動局2は、ハンドオーバ実行時、周辺基地局から送信される電波の受信レベルを測定し、受信レベル測定情報をMeasurement Reportに含ませて中継局10へ送信する。
 〔S12〕中継局10は、Measurement Reportを受信すると、移動局2がハンドオーバを実行しようとしていることを認識し、受信レベル測定情報にもとづいて、受信レベルの良好なハンドオーバ先候補に基地局30があることを認識する。中継局10は、HO Requestを、基地局30に対して送信する。HO Requestは、上位基地局20を経由して、基地局30へ送信される。
 〔S13〕基地局30は、HO Requestを受信すると、ハンドオーバ可否を判断し、ハンドオーバ可能であるとしてHO OKを返信する。HO OKは、上位基地局20を経由して、中継局10へ送信される。
 〔S14〕中継局10は、HO OKの内容からハンドオーバ先として基地局30を決定し、その結果をHO Commandにより、移動局2へ通知する。
 〔S15〕中継局10は、移動局2にHO Commandによりハンドオーバを指示した後、データ転送の経路を切り替えるために、上位基地局20に対して仮想的なハンドオーバを要求し、Virtual HO Requestを上位基地局20に送信する。Virtual HO Requestを受信した上位基地局20は、仮想的なハンドオーバの応答シグナリングとしてVirtual HO Responseを中継局10に返信する(図では、Virtual HO Responseとして、許可シグナリングであるVirtual HO OKを返信している)。
 ここで、中継局10と上位基地局20との間で、Virtual HO RequestとVirtual HO Responseとをやりとりして、中継局10から上位基地局20へハンドオーバするためのハンドオーバシグナリング通信が行われている。
 中継局10は、移動局2のハンドオーバを認識すると、ハンドオーバ先の基地局30に対して移動局2のハンドオーバを要求する。この場合、中継局10と上位基地局20との間で、上記のようなハンドオーバシグナリング通信を実施することで、中継局10から上位基地局20へのハンドオーバと、上位基地局20から基地局30へのハンドオーバとの2度のハンドオーバが実行されることになり、これにより、中継局10から基地局30へのハンドオーバを実現させている。
 このように、ネットワーク側で複数の段階を踏んでハンドオーバを行うことを、ここでは仮想的なハンドオーバと呼んでいる。仮想的なハンドオーバは移動局2には知らされず、ネットワーク内でのみ実行される。
 したがって、ネットワーク側では、中継局10から上位基地局20へ、さらに上位基地局20から基地局30へと2度のハンドオーバを実行することになるが、移動局2に対しては、中継局10から基地局30への1度のハンドオーバのみを実行するだけである。
 〔S16〕上位基地局20は、ゲートウェイ装置40から伝送された、移動局2にまだ送信が完了していないデータを、ハンドオーバ先の基地局30へ転送する。
 〔S17〕移動局2は、HO Commandの内容から基地局30がハンドオーバ可能であると認識して、基地局30へ向けてハンドオーバを実行し、HO Completeを基地局30へ送信する。
 〔S18〕基地局30は、HO Completeを受信すると、ゲートウェイ装置40に対して、データの送信先切替シグナリングであるPath SWを送信する。
 〔S19〕ゲートウェイ装置40は、Path SWを受信すると、データの送信先を上位基地局20から基地局30に切り替えて、移動局2向けのデータを基地局30へ送信する。データは、基地局30で受信処理及び送信処理が行われて、移動局2へ送信される。
 このように、中継局10から移動局2に対して、基地局30へのハンドオーバを指示した後に、データ転送の切り替えのために、中継局10から上位基地局20に対して、仮想的なハンドオーバを要求する。
 そして、中継局10と上位基地局20間で仮想的なハンドオーバを実施することを契機に、上位基地局20は、データ転送経路の切り替えを行って、上位基地局20から基地局30へデータを転送する構成とした。
 このような制御を行うことで、データの転送経路の切り替えを効率よく行うことができ、中継局10と上位基地局20間の無線データの無線通信量を削減し、干渉や処理遅延の増加を抑えることが可能になる。
 なお、3GPP仕様においては、ネットワークから移動局までの通信路の切り替えは、通常はハンドオーバによって行われるので、上記のように仮想的なハンドオーバを行うことを契機にして、データ転送経路の切り替えを行う制御は、3GPPシステムとの親和性が高い。また、ネットワーク側の経路を切り替えるだけなので、移動局2は、通常通りハンドオーバを行うため、移動局2には特別な手順の追加や変更は不要である。
 次に中継局10と上位基地局20との間で仮想的なハンドオーバを実行する際に、上記では中継局10から仮想的なハンドオーバを要求したが、上位基地局20から仮想的なハンドオーバを要求することで、データ転送の経路切り替えを行う場合について説明する。
 図6は通信シーケンスを示す図である。
 〔S20〕ゲートウェイ装置40は、移動局2へ向けてデータを送信する。データは、上位基地局20へ向けて送信され、上位基地局20で受信処理及び送信処理が行われて中継局10へ送信される。その後、中継局10で受信処理及び送信処理が行われて移動局2へ送信される。
 〔S21〕移動局2は、ハンドオーバ実行時、周辺基地局から送信される電波の受信レベルを測定し、受信レベル測定情報をMeasurement Reportに含ませて中継局10へ送信する。
 〔S22〕中継局10は、Measurement Reportを受信すると、移動局2がハンドオーバを実行しようとしていることを認識し、受信レベル測定情報にもとづいて、受信レベルの良好なハンドオーバ先候補に基地局30があることを認識する。中継局10は、HO Requestを、基地局30に対して送信する。HO Requestは、上位基地局20を経由して、基地局30へ送信される。
 〔S23〕基地局30は、HO Requestを受信すると、ハンドオーバ可否を判断し、ハンドオーバ可能であるとしてHO OKを返信する。HO OKは、上位基地局20を経由して、中継局10へ送信される。
 〔S24〕中継局10は、HO OKの内容からハンドオーバ先として基地局30を決定し、その結果をHO Commandにより、移動局2へ通知する。
 〔S25〕上位基地局20は、データ転送の経路を切り替えるために、中継局10に対して仮想的なハンドオーバを要求し、Virtual HO Requestを中継局10に送信する。Virtual HO Requestを受信した中継局10は、仮想的なハンドオーバの許可シグナリングとしてVirtual HO OKを上位基地局20に送信する。
 〔S26〕上位基地局20は、ゲートウェイ装置40から伝送された、まだ移動局2に送信が完了していないデータを、ハンドオーバ先の基地局30へ転送する。
 〔S27〕移動局2は、HO Commandの内容から基地局30がハンドオーバ可能であると認識して、基地局30へ向けてハンドオーバを実行し、HO Completeを基地局30へ送信する。
 〔S28〕基地局30は、HO Completeを受信すると、ゲートウェイ装置40に対して、データの送信先切替シグナリングであるPath SWを送信する。
 〔S29〕ゲートウェイ装置40は、Path SWを受信すると、データの送信先を上位基地局20から基地局30に切り替えて、移動局2向けのデータを基地局30へ送信する。データは、基地局30で受信処理及び送信処理が行われて、移動局2へ送信される。
 このように、上記のシーケンスでは、経路切り替えのための仮想的なハンドオーバを、上位基地局20から行うものである。すなわち、上位基地局20は中継局10でのハンドオーバの実行を知ると、経路切り替えのための仮想的なハンドオーバを中継局10に要求する。
 上位基地局20が中継局10でのハンドオーバの実行を知る方法としては、例えばステップS22における、中継局10から基地局30へのハンドオーバ要求シグナリングや、ステップS23における、基地局30から中継局10へのハンドオーバ許可シグナリング等を検出する方法がある(中継局10と基地局30間のシグナリングは、上位基地局20を経由するので、上位基地局20で検出可能である)。
 次にデータ転送の経路切り替えを行う場合において、中継局10におけるハンドオーバの実行を認識し、中継局10と基地局30の間で通信される、ハンドオーバに関するシグナリングを検出することを契機にして、経路切り替えを行う場合について説明する。
 図7は通信シーケンスを示す図である。ハンドオーバに関するシグナリングとして、中継局10から送信されるハンドオーバ要求シグナリングを検出し、そのシグナリング検出を契機にして、経路切り替えを行うシーケンスを示している。
 〔S30〕ゲートウェイ装置40は、移動局2へ向けてデータを送信する。データは、上位基地局20へ向けて送信され、上位基地局20で受信処理及び送信処理が行われて中継局10へ送信される。その後、中継局10で受信処理及び送信処理が行われて移動局2へ送信される。
 〔S31〕移動局2は、ハンドオーバ実行時、周辺基地局から送信される電波の受信レベルを測定し、受信レベル測定情報をMeasurement Reportに含ませて中継局10へ送信する。
 〔S32〕中継局10は、Measurement Reportを受信すると、移動局2がハンドオーバを実行しようとしていることを認識し、受信レベル測定情報にもとづいて、受信レベルの良好なハンドオーバ先候補に基地局30があることを認識する。中継局10は、HO Requestを、基地局30に対して送信する。HO Requestは、上位基地局20を経由して、基地局30へ送信される。
 〔S33〕基地局30は、HO Requestを受信すると、ハンドオーバ可否を判断し、ハンドオーバ可能であるとしてHO OKを返信する。HO OKは、上位基地局20を経由して、中継局10へ送信される。
 〔S34〕上位基地局20は、ステップS32における中継局10から送信されたハンドオーバ要求シグナリングを検出し、中継局10でのハンドオーバの実行を認識する。
 〔S35〕上位基地局20は、ゲートウェイ装置40から伝送された、移動局2にまだ送信が完了していないデータを、ハンドオーバ先の基地局30へ転送する。
 〔S36〕中継局10は、HO OKの内容からハンドオーバ先として基地局30を決定し、その結果をHO Commandにより、移動局2へ通知する。
 〔S37〕移動局2では、HO Commandの内容から基地局30がハンドオーバ可能であると認識して、基地局30へ向けてハンドオーバを実行し、HO Completeを基地局30へ送信する。
 〔S38〕基地局30は、HO Completeを受信すると、ゲートウェイ装置40に対して、データの送信先切替シグナリングであるPath SWを送信する。
 〔S39〕ゲートウェイ装置40は、Path SWを受信すると、データの送信先を上位基地局20から基地局30に切り替えて、移動局2向けのデータを基地局30へ送信する。データは、基地局30で受信処理及び送信処理が行われて、移動局2へ送信される。
 このように、上位基地局20は、中継局10から送信されるハンドオーバ要求シグナリングを検出して(ハンドオーバ要求シグナリングは、上位基地局20を経由するので、上位基地局20で検出可能)、データ転送経路の切り替え制御を行う構成とした。
 このような制御により、データの転送経路の切り替えを効率よく行うことができ、中継局10と上位基地局20間の無線データの無線通信量を削減し、干渉や処理遅延の増加を抑えることが可能になる。
 なお、ハンドオーバ要求シグナリングを検出して、データ転送経路の切り替え制御を行うことは、仮想的なハンドオーバを行って経路切り替えを行う場合と比べて、中継局10と上位基地局20間とのシグナリング量をより削減することができる。また、仮想的なハンドオーバのような明示的なシグナリングを伴わないので、処理遅延がより削減されることになり、処理遅延の点でも有効である。
 なお、上記では、中継局10から基地局30へ送信されるハンドオーバ要求シグナリングを検出して、データ転送経路の切り替え制御を行うとしたが、基地局30から中継局10へ送信されるハンドオーバ許可シグナリングを検出することで、データ転送経路の切り替え制御を行ってもよい。
 次に移動局2がハンドオーバに失敗した場合に、切り替えられたデータ転送経路を元の経路に復帰する場合について説明する。
 図8は通信シーケンスを示す図である。
 〔S40〕ゲートウェイ装置40は、移動局2へ向けてデータを送信する。データは、上位基地局20へ向けて送信され、上位基地局20で受信処理及び送信処理が行われて中継局10へ送信される。その後、中継局10で受信処理及び送信処理が行われて移動局2へ送信される。
 〔S41〕移動局2は、ハンドオーバ実行時、周辺基地局から送信される電波の受信レベルを測定し、受信レベル測定情報をMeasurement Reportに含ませて中継局10へ送信する。
 〔S42〕中継局10は、Measurement Reportを受信すると、移動局2がハンドオーバを実行しようとしていることを認識し、受信レベル測定情報にもとづいて、受信レベルの良好なハンドオーバ先候補に基地局30があることを認識する。中継局10は、HO Requestを、基地局30に対して送信する。HO Requestは、上位基地局20を経由して、基地局30へ送信される。
 〔S43〕基地局30は、HO Requestを受信すると、ハンドオーバ可否を判断し、ハンドオーバ可能であるとしてHO OKを返信する。HO OKは、上位基地局20を経由して、中継局10へ送信される。
 〔S44〕中継局10は、HO OKの内容からハンドオーバ先として基地局30を決定し、その結果をHO Commandにより、移動局2へ通知する。
 〔S45〕上位基地局20は、ゲートウェイ装置40から伝送された、移動局2にまだ送信が完了していないデータを、ハンドオーバ先の基地局30へ転送する。
 〔S46〕移動局2は、ハンドオーバに失敗し、HO Failureを中継局10へ送信する。
 〔S47〕中継局10は、HO Failureを受信したとき、すでにデータ転送経路が切り替えられていることを知ると、上位基地局20に対して、データ転送経路の復帰を要求する。この場合、復帰要求シグナリングとして、HO Revert Requestを送信する。
 〔S48〕上位基地局20は、データ転送経路をハンドオーバ前の経路に復帰し、中継局10に対して、復帰応答シグナリングとしてHO Revert OKを送信する。
 〔S49〕上位基地局20は、ゲートウェイ装置40から送信される移動局2向けのデータを、再び中継局10へ送信する。データは、中継局10で受信処理及び送信処理が行われて、移動局2へ送信される。
 ここで、移動局2がハンドオーバに失敗した場合は、通常は元の基地局へ復帰するが、データ転送の経路が切り替えられてしまっていると、移動局2へデータを送信することができなくなる。そこで、上記のように、データ転送経路の切り替え後に、移動局2がハンドオーバに失敗したときには、切り替えられたデータ転送経路をハンドオーバ前の元の経路に復帰させることにより、通信を維持させる。
 このような制御を行うことで、移動局2がハンドオーバに失敗し、データ転送の経路が切り替えられている場合であっても、移動局2に対して、何ら支障を与えることなく通信を維持することが可能になる。
 以上説明したように、無線通信システム1において、中継局10の配下の移動局2が、基地局30へハンドオーバを実行する場合、上位基地局20は、移動局2に送信が完了していないデータを、自局で折り返してハンドオーバ先の基地局30へ転送して、データ転送経路の切り替えを行う構成とした。
 これにより、中継局10の配下の移動局2がハンドオーバする際のデータ転送を、無線を介さずに実行することができるので、中継局10と上位基地局20との間の無線通信量を削減することができる。したがって、他局からの干渉や、他局へ与える干渉を削減し、処理遅延も削減することができるので、通信品質の向上を図ることが可能になる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 無線通信システム
 2 移動局
 10 中継局
 20 上位基地局(第1の無線基地局)
 30 基地局(第2の無線基地局)
 40 ゲートウェイ装置

Claims (11)

  1.  第1の無線基地局と、
     第2の無線基地局と、
     前記1の無線基地局と無線で接続し、前記第1の無線基地局を経由して中継通信を行う中継局とを備え、
     前記中継局の配下の移動局が、前記第2の無線基地局へハンドオーバを実行する場合、
     前記第1の無線基地局は、前記移動局に送信が未完了のデータを、自局で折り返してハンドオーバ先の前記第2の無線基地局へ転送して、データ転送経路の切り替えを行う、
     ことを特徴とする無線通信システム。
  2.  前記中継局が前記移動局に対して、前記第2の無線基地局への前記ハンドオーバの指示をした後に、
     前記中継局と前記第1の無線基地局との間で、前記中継局から前記第1の無線基地局へのハンドオーバを実行するためのシグナリング通信であるハンドオーバシグナリング通信を行い、
     前記第1の無線基地局は、前記ハンドオーバシグナリング通信の後に、前記データ転送経路の切り替えを行うことを特徴とする請求の範囲第1項記載の無線通信システム。
  3.  前記第1の無線基地局は、前記中継局で前記ハンドオーバが行われる際に、前記中継局と前記第2の無線基地局との間で通信される、前記ハンドオーバに関するシグナリングを検出することで、前記データ転送経路の切り替えを行うことを特徴とする請求の範囲第1項記載の無線通信システム。
  4.  前記データ転送経路が、前記第1の無線基地局から前記第2の無線基地局へ切り替えられた後に、前記移動局の前記ハンドオーバが失敗した場合、
     前記中継局は、前記第1の無線基地局に対して、前記データ転送経路の復帰を要求する復帰要求シグナリングを送信し、
     前記第1の無線基地局は、前記復帰要求シグナリングを受信すると、前記データ転送経路をハンドオーバ前の元の前記データ転送経路に復帰することを特徴とする請求の範囲第1項記載の無線通信システム。
  5.  無線基地局と無線で接続し、前記無線基地局を経由して中継通信を行う中継局において、
     制御情報の処理を行う制御情報処理部と、
     配下の移動局がハンドオーバを実行する際のハンドオーバ処理を行うハンドオーバ処理部とを備え、
     前記ハンドオーバ処理部は、前記移動局に対してハンドオーバ先基地局への前記ハンドオーバを指示した後に、前記無線基地局に対して、自局から前記無線基地局へのハンドオーバを実行するためのシグナリング通信であるハンドオーバシグナリング通信を行う、
     ことを特徴とする中継局。
  6.  前記移動局が前記ハンドオーバ先基地局へ前記ハンドオーバを実行する場合であって、前記無線基地局が、前記移動局に送信が未完了のデータを折り返して前記ハンドオーバ先基地局へ転送して、データ転送経路の切り替えを行った際に、前記移動局の前記ハンドオーバが失敗した場合、
     前記制御情報処理部は、前記無線基地局に対して、前記データ転送経路の復帰を要求する復帰要求シグナリングを送信することを特徴とする請求の範囲第5項記載の中継局。
  7.  中継局と無線で接続し、自局を経由して、前記中継局と周辺無線基地局との間で通信が行われる無線基地局において、
     制御情報の処理を行う制御情報処理部と、
     前記中継局の配下の移動局に向けたデータの転送経路を切り替える経路切替部とを備え、
     前記移動局がハンドオーバ先基地局へハンドオーバを実行する場合、
     前記経路切替部は、前記移動局に送信が未完了のデータを、前記自局で折り返して前記ハンドオーバ先基地局へ転送して、データ転送経路の切り替えを行う、
     ことを特徴とする無線基地局。
  8.  前記制御情報処理部は、前記中継局から前記移動局に対して、前記ハンドオーバが指示された後に、前記中継局に対して、前記中継局から前記自局へのハンドオーバを実行するためのシグナリング通信であるハンドオーバシグナリング通信を行い、
     前記経路切替部は、前記ハンドオーバシグナリング通信の後に、前記データ転送経路の切り替えを行うことを特徴とする請求の範囲第7項記載の無線基地局。
  9.  前記制御情報処理部は、前記中継局で前記ハンドオーバが行われる際に、前記中継局と前記ハンドオーバ先基地局との間で通信される、前記ハンドオーバに関するシグナリングを検出し、
     前記経路切替部は、前記シグナリングの検出にもとづき、前記データ転送経路の切り替えを行うことを特徴とする請求の範囲第7項記載の無線基地局。
  10.  前記データ転送経路が、前記自局から前記ハンドオーバ先基地局へ切り替えられた後に、前記移動局の前記ハンドオーバが失敗した場合、
     前記制御情報処理部は、前記中継局から送信された、前記データ転送経路の復帰を要求する復帰要求シグナリングを受信し、
     前記経路切替部は、前記データ転送経路をハンドオーバ前の元の前記データ転送経路に復帰することを特徴とする請求の範囲第7項記載の無線基地局。
  11.  無線通信方法において、
     第1の無線基地局と、第2の無線基地局と、前記1の無線基地局と無線で接続し、前記第1の無線基地局を経由して中継通信を行う中継局とを有し、
     前記中継局の配下の移動局が、前記第2の無線基地局へハンドオーバする場合、
     前記第1の無線基地局は、前記移動局に送信が未完了のデータを、自局で折り返してハンドオーバ先の前記第2の無線基地局へ転送して、データ転送経路の切り替えを行う、
     ことを特徴とする無線通信方法。
PCT/JP2009/060942 2009-06-16 2009-06-16 無線通信システム WO2010146661A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/060942 WO2010146661A1 (ja) 2009-06-16 2009-06-16 無線通信システム
EP09846154.4A EP2445258A4 (en) 2009-06-16 2009-06-16 WIRELESS COMMUNICATION SYSTEM
JP2011519340A JP5126419B2 (ja) 2009-06-16 2009-06-16 無線通信システム
US13/305,273 US8724589B2 (en) 2009-06-16 2011-11-28 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060942 WO2010146661A1 (ja) 2009-06-16 2009-06-16 無線通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/305,273 Continuation US8724589B2 (en) 2009-06-16 2011-11-28 Wireless communication system

Publications (1)

Publication Number Publication Date
WO2010146661A1 true WO2010146661A1 (ja) 2010-12-23

Family

ID=43355999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060942 WO2010146661A1 (ja) 2009-06-16 2009-06-16 無線通信システム

Country Status (4)

Country Link
US (1) US8724589B2 (ja)
EP (1) EP2445258A4 (ja)
JP (1) JP5126419B2 (ja)
WO (1) WO2010146661A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143981A1 (ja) * 2011-04-22 2012-10-26 富士通株式会社 無線通信システム
WO2013046447A1 (ja) * 2011-09-30 2013-04-04 富士通株式会社 リレーノード、無線通信システム、および無線通信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136919A1 (en) 2008-05-07 2009-11-12 Utc Power Corporation Passive oil level limiter
JP5365738B2 (ja) * 2010-03-12 2013-12-11 富士通株式会社 通信区間設定方法、中継局、移動通信システム
CA2870116A1 (en) * 2012-04-27 2013-10-31 Nec Corporation Communication system and method for path control
JP2015091043A (ja) * 2013-11-06 2015-05-11 ホシデン株式会社 無線中継モジュールおよびハンズフリーシステム
CN110995773B (zh) * 2016-05-24 2021-01-05 华为技术有限公司 QoS控制方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503172A (ja) * 2004-06-10 2008-01-31 エルジー エレクトロニクス インコーポレイティド 無線接続システムでハンドオーバー遂行及び通信再開方法
JP2009081513A (ja) 2007-09-25 2009-04-16 Panasonic Corp 無線通信装置および無線通信方法
EP2051454A1 (en) * 2007-10-17 2009-04-22 Nokia Siemens Networks Oy Method and device for data communication and communication system comprising such device
WO2009057684A1 (ja) * 2007-10-30 2009-05-07 Ntt Docomo, Inc. 移動通信方法及び無線基地局

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496694B1 (en) * 2000-01-13 2002-12-17 Intel Corporation Wireless local loop with intelligent base station
US8233450B2 (en) * 2004-09-10 2012-07-31 Interdigital Technology Corporation Wireless communication methods and components for facilitating multiple network type compatibility
JP4298751B2 (ja) * 2004-09-10 2009-07-22 三菱電機株式会社 無線アクセスネットワークにおけるハンドオーバ方法
US20070091907A1 (en) * 2005-10-03 2007-04-26 Varad Seshadri Secured media communication across enterprise gateway
JP2007129593A (ja) * 2005-11-04 2007-05-24 Ntt Docomo Inc データ転送方法及び基地局
KR100961743B1 (ko) * 2005-12-09 2010-06-07 삼성전자주식회사 다중 홉 중계방식의 광대역 무선 접속통신시스템에서 중계서비스를 지원하기 위한 장치 및 방법
US20070153740A1 (en) * 2006-01-04 2007-07-05 Arcadyan Technology Corporation Method and apparatus for media handover in the network
US8140077B2 (en) * 2006-04-19 2012-03-20 Nokia Corporation Handover or location update for optimization for relay stations in a wireless network
CN101064911B (zh) * 2006-04-28 2012-08-22 上海贝尔阿尔卡特股份有限公司 无线接入系统的切换控制方法、中继站和基站
CN101072424A (zh) * 2006-05-09 2007-11-14 华为技术有限公司 一种在中转系统中配置业务通路和移动站可靠切换的方法
US8300570B2 (en) * 2006-06-02 2012-10-30 Research In Motion Limited Ranging regions for wireless communication relay stations
KR100982688B1 (ko) * 2006-09-13 2010-09-16 삼성전자주식회사 홉 단위 재전송을 적용하는 다중 홉 릴레이 시스템에서 패킷 버퍼링 장치 및 방법
TWI315143B (en) * 2006-11-24 2009-09-21 Ind Tech Res Inst Method for transmitting packet and system for mobile communication thereof and mobile station
KR100856920B1 (ko) * 2006-12-05 2008-09-05 한국전자통신연구원 중계 전송 방식을 이용한 무선 멀티캐스팅 서비스 방법
CN101237685B (zh) * 2007-01-30 2011-12-14 诺基亚西门子通信系统技术(北京)有限公司 一种无线通信中的路由改变方法
GB2447885B (en) * 2007-03-05 2011-03-30 Toshiba Res Europ Ltd Fast relay station handover
CN101286781B (zh) * 2007-04-13 2013-02-27 中兴通讯股份有限公司 一种无线中继站连接关系终止的方法
CN101287178B (zh) * 2007-04-13 2012-04-18 中兴通讯股份有限公司 包含基站和无线中继站的无线传输网络的自适应管理方法
KR101373021B1 (ko) * 2007-05-10 2014-03-13 삼성전자주식회사 중계 장치를 이용한 이동 단말의 통신 방법 및 그 장치
EP2272273B1 (en) * 2008-04-21 2017-07-26 Apple Inc. System and method for wireless relay frame structure, protocol and operation
US8472402B2 (en) * 2008-07-08 2013-06-25 Samsung Electronics Co., Ltd. Apparatus and method for assigning mobile station identifier in wireless communication system
JP5035191B2 (ja) * 2008-09-18 2012-09-26 富士通株式会社 基地局装置、通信制御システム、通信制御方法、局間制御方法および局間制御プログラム
CN102007795B (zh) * 2009-03-17 2016-05-25 华为技术有限公司 数据包的发送方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503172A (ja) * 2004-06-10 2008-01-31 エルジー エレクトロニクス インコーポレイティド 無線接続システムでハンドオーバー遂行及び通信再開方法
JP2009081513A (ja) 2007-09-25 2009-04-16 Panasonic Corp 無線通信装置および無線通信方法
EP2051454A1 (en) * 2007-10-17 2009-04-22 Nokia Siemens Networks Oy Method and device for data communication and communication system comprising such device
WO2009057684A1 (ja) * 2007-10-30 2009-05-07 Ntt Docomo, Inc. 移動通信方法及び無線基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KI-DONG LEE ET AL.: "BS Coordinated Mesh Networking", IEEE S802.16M-08/1355, October 2008 (2008-10-01), XP017797056 *
See also references of EP2445258A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143981A1 (ja) * 2011-04-22 2012-10-26 富士通株式会社 無線通信システム
US9072024B2 (en) 2011-04-22 2015-06-30 Fujitsu Limited Wireless communication system
JP5780295B2 (ja) * 2011-04-22 2015-09-16 富士通株式会社 無線通信方法
WO2013046447A1 (ja) * 2011-09-30 2013-04-04 富士通株式会社 リレーノード、無線通信システム、および無線通信方法
US9467920B2 (en) 2011-09-30 2016-10-11 Fujitsu Limited Relay node, radio communication system, and method

Also Published As

Publication number Publication date
EP2445258A1 (en) 2012-04-25
JPWO2010146661A1 (ja) 2012-11-29
JP5126419B2 (ja) 2013-01-23
US8724589B2 (en) 2014-05-13
US20120069735A1 (en) 2012-03-22
EP2445258A4 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN111066292B (zh) 新空口网络的二层移动
JP6451783B2 (ja) 第1の基地局及びその方法
TWI667940B (zh) 宏輔助多連接方法以及使用者設備
EP3035735B1 (en) Handover method, master base station and slave base station
JP5126419B2 (ja) 無線通信システム
US8780861B2 (en) Mobile communication system
WO2016161759A1 (zh) 数据的传输方法及装置
JP2017526305A (ja) ユーザー装置の基地局ハンドオーバ方法及び基地局、ユーザー装置
CN102215537A (zh) 一种切换方法、基站和家庭网关
JP4985875B2 (ja) 無線通信システム
CA2873687A1 (en) Radio communication system
KR20080026187A (ko) 핸드오버 제어장치, 이동통신시스템 및 핸드오버 방법
EP1968337B1 (en) Handover control method
CN104685929A (zh) 用于异构网络的用户平面切换
KR20100070688A (ko) 무선링크 품질을 고려한 핸드오버 제어방법 및 시스템
JP2006115119A (ja) Cdma移動通信システムにおけるハンドオーバ方法
KR20160043048A (ko) 연결 관리 방법 및 접속 네트워크 요소
JP6027342B2 (ja) 無線通信システム、無線基地局及び通信方法
CN102932855B (zh) 一种中继节点的切换方法及系统
EP2699038A1 (en) Mobile communication system
US20230328609A1 (en) Methods and apparatus of ta maintenance and acquisition for mobility with inter-cell beam management
CN102083051A (zh) 一种业务通路切换方法及其装置
EP2434805B1 (en) Method for controlling communication and wireless base station
KR100678125B1 (ko) 중첩 영역을 가지는 차세대 이동통신 시스템에서의핸드오버 방법
CA2760047A1 (en) Mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519340

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009846154

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE