WO2010145688A1 - Commande de convertisseur - Google Patents

Commande de convertisseur Download PDF

Info

Publication number
WO2010145688A1
WO2010145688A1 PCT/EP2009/057381 EP2009057381W WO2010145688A1 WO 2010145688 A1 WO2010145688 A1 WO 2010145688A1 EP 2009057381 W EP2009057381 W EP 2009057381W WO 2010145688 A1 WO2010145688 A1 WO 2010145688A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
voltage source
source converter
switch
multilevel voltage
Prior art date
Application number
PCT/EP2009/057381
Other languages
English (en)
Inventor
Adrian Keitley
Ruchira Withanage
Robert Whitehouse
David Trainer
Original Assignee
Areva T&D Uk Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva T&D Uk Limited filed Critical Areva T&D Uk Limited
Priority to EP09779756A priority Critical patent/EP2443733A1/fr
Priority to PCT/EP2009/057381 priority patent/WO2010145688A1/fr
Publication of WO2010145688A1 publication Critical patent/WO2010145688A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters

Definitions

  • the invention relates to converter control for a multilevel voltage source converter for high voltage DC power transmission and reactive power compensation .
  • each module In multilevel voltage source converters, the current and voltage rating of each module is finite and largely determined by the capabilities of the semiconductor switching devices employed. It is common practice to achieve high power equipment by connecting a large number of modules in series, which effectively increases the total operating voltage of the converter and hence the MVA rating.
  • the series arrangement of the individual modules in the multilevel voltage source converter means that the failure of one of the modules leads to the failure of the entire multilevel voltage source converter because there is no flow path for a converter current .
  • a possible solution is the inclusion of additional, suitably packaged, high current power electronic devices such as a pair of reverse connected parallel thyristors.
  • the power electronic devices attached across the module reverts to a robust and safe bidirectional short circuit which maintains the flow of the converter current in the multilevel voltage source converter .
  • this solution maintains the operation and availability of the multilevel voltage source converter, it is however unsuitable for use in low cost power conversion equipment.
  • the inclusion of additional devices to each module can, depending on the number of modules, substantially increase the overall cost of the multilevel voltage source converter.
  • a mechanical bypass switch is provided for each module in the multilevel voltage source converter to maintain the operation and availability of the high power multilevel voltage source converter, and at a lower cost.
  • the mechanical bypass switch is connected in parallel to each module and, in the event of module failure, the mechanical bypass switch is activated to cause a short circuit so that the converter current flows through the mechanical bypass switch in both directions
  • the operation of the mechanical bypass switch is however normally irreversible due to reasons such as contact welding and loss of local power supplies. As a result, the mechanical bypass switch may need to be replaced after the mechanical bypass switch is activated to remove the short circuit.
  • a multilevel voltage source converter for high voltage DC power transmission and reactive power compensation comprising at least one power electronic module including at least one switch and an electronic bypass system, wherein the electronic bypass system is controllable to activate the or each switch in the module to cause a short circuit through the activated switch and thereby maintain a converter current through the module and the multilevel voltage source converter.
  • Utilization of the existing switches in the module is advantageous because it removes the need for additional devices, which could otherwise increase equipment costs.
  • the electronic bypass can be reversed simply by controlling the electronic bypass system to deactivate the or each switch and open the or each short circuit.
  • a mechanical bypass may be permanently latched due to contact welding and may thereby require maintenance in order to reverse the bypass .
  • the electronic bypass system may be controllable locally or remotely, and the short circuit is preferably sustained.
  • the electronic bypass system is controllable to activate the or each switch in the module to cause a short circuit during abnormal operating conditions of the module.
  • the purpose of the electronic bypass system is to implement the electronic bypass as soon as abnormal operating conditions such as control failure and equipment failure are detected.
  • the electronic bypass system may be controllable in other embodiments to activate the or each switch in the module to control the voltage of the module .
  • the module may include a local control system to receive control signals from and send alarm and status data back signals to a global control system of the multilevel voltage source converter.
  • the local control system receives control signals from the global control system, which contains instructions to operate the module, and sends alarm and status data back signals to the global control system, which include information on the status of the individual module.
  • the global control system may monitor the status of the electronic bypass system of the module via information provided in the alarm and status data back signals.
  • the alarm and status data back signals enable the global control system to be updated with the status of the electronic bypass system such as whether the electronic bypass system is currently activated or removed, which is advantageous when it comes to maintenance of the module.
  • the electronic bypass system may activate the or each switch to cause the short circuit in the event of loss of communication of control signals or data back signals between the local and global control systems
  • Losing the control signal means that the module cannot be switched in and out in the correct sequence in relation to the other modules in the converter.
  • the loss of data back signals means that there is a possibility of the module operating outside its normal operating conditions, which could lead to equipment failure such as damage from over-voltage or loss of local power supplies if the voltage falls too low.
  • the electronic bypass system therefore activates at least one switch in the module to cause the short circuit to bypass the module to maintain the converter current and thus prevents excessive charging of the module DC capacitor.
  • the or each switch may be a semiconductor switch.
  • the or each semiconductor switch may be an insulated-gate bipolar transistor.
  • a semiconductor switch is advantageous because a semiconductor switch is operable faster than a mechanical switch in performing a switching action.
  • the module may include an external or local power supply to supply power to operate the or each switch when it is activated by the electronic bypass system in order to maintain the short circuit.
  • an external power supply in the module allows the switches to be activated indefinitely and thereby allows the operation and availability of the multilevel voltage source converter to be maintained at all times.
  • the local power supply may be derived from the multilevel converter module capacitor .
  • the capacitor supplies power by discharging its stored energy when the electronic bypass is in operation.
  • the use of a capacitor means that the electronic bypass can only be maintained temporarily until the stored energy has been used.
  • the module includes a resistor connected in parallel with the capacitor.
  • the electronic bypass system may be controllable to temporarily switch off the or each activated switch so that the converter current is directed through the capacitor in order to recharge the capacitor and therefore the local power supply, which enables the electronic bypass to continue.
  • the capacitor discharges over time and will eventually run out of stored energy.
  • the activated switches are briefly switched off to recharge the capacitor and switched back on to resume the short circuit.
  • the temporary transition of the electronic bypass system from short circuit mode to recharge mode allows the multilevel voltage source converter to be run indefinitely in the event of module failure as opposed to arrangements in which the capacitor is left to discharge over time without recharging.
  • the temporary transition of the electronic bypass system from short circuit mode to recharge mode means that an extra voltage step is introduced into the output waveform during the period of capacitor recharge. This has minimal effect on the AC side power quality and harmonic distortion because in practice there are a very large number of voltage steps produced by the multilevel converter. The addition of one more step has a negligible effect and the transition to recharge mode will occur infrequently.
  • the local power supply may include a local current transformer that derives energy from the flow of the converter current.
  • a local current transformer as a power supply means that the electronic bypass will not be interrupted because the transformer continually extracts energy from the converter current, even during the electronic bypass.
  • the transformer can therefore supply power to the activated switches so as to maintain the short circuit indefinitely.
  • the local power supply may include a combination of one or more capacitors and/or one or more local current transformers .
  • the electronic bypass may be removed when normal operating conditions of the module are restored.
  • the reversibility of the electronic bypass system is advantageous because it means that the electronic bypass system is reusable and does not require any additional maintenance such as repair or replacement .
  • the multilevel voltage source converter may include a mechanical bypass switch connected in parallel with the module such that activation of the mechanical bypass switch causes current flow to pass through the mechanical bypass switch instead of the module.
  • the inclusion of the mechanical bypass switch provides a backup bypass system in the event of failure of the electronic bypass system.
  • the module may include a pair of switching devices and a capacitor connected in parallel in a half-bridge arrangement to define a 2-quadrant unipolar module, and each switching device may include a diode connected in anti-parallel with a switch.
  • the 2-quadrant unipolar module is unidirectional, i.e. it produces voltage steps in one polarity only, and can develop zero or positive voltage .
  • the module may includes two pairs of switching devices and a capacitor connected in parallel in a full-bridge arrangement to define a 4-quadrant bipolar module, and each switching device may include a diode connected in anti-parallel with a switch.
  • the 4-quadrant bipolar module is bidirectional, i.e. it produces voltage steps in both positive and negative polarities, and can develop a zero, positive or negative voltage.
  • the multilevel voltage source converter may include a plurality of modules arranged in series.
  • the series arrangement of the individual modules forms a single phase multilevel converter.
  • the single phase multilevel voltage source converter can have unidirectional or bidirectional characteristics depending on the type of switching arrangement in the modules.
  • Figure 1 shows a module which forms one element of a multilevel converter
  • Figure 2a shows a module operating in electronic bypass mode
  • Figure 2b shows a module operating in capacitor recharge mode
  • Figure 3a shows a multilevel voltage source converter according to a first embodiment of the invention.
  • Figure 3b shows a multilevel voltage source converter according to a second embodiment of the invention .
  • a multilevel voltage source converter 11 according to a first embodiment of the invention is shown in Figure 1.
  • the multilevel voltage source converter 11 includes a module 40 including at least one switch 12 and an electronic bypass system, wherein the electronic bypass system is controllable to activate the or each lower switch 12 in the module 40 to cause a short circuit through the activated lower switch 12 and thereby maintain a converter current through the module 40 and the multilevel voltage source converter 13.
  • the electronic bypass system is controllable to activate the or each lower switch 12 in the module 40 to cause a short circuit during abnormal operating conditions of the module 40.
  • Abnormal operating conditions may include failure of certain components in the module or control failure.
  • the module 40 includes a local control system 14 which receives control signals 16 from and sends alarm and status data back signals 18 to a global control system 20 of the multilevel voltage source converter 13, which include information on the status of the individual module.
  • the global control system 20 monitors the status of the electronic bypass system of the module 40 via the information provided in the alarm and status data back signals 18.
  • the alarm and status data back signals 18 enable the global control system 20 to be updated with the status of the electronic bypass system, such as whether the electronic bypass system is currently activated or removed.
  • the electronic bypass system activates the or each switch 12 to cause the short circuit in the event that the communication of control signals 16 or data back signals 18 between the local control system 14 and global control systems 20 is lost.
  • control signals 16 or data back signals 18 signifies control failure, and therefore the electronic bypass system activates the or each switch 12 to short circuit the module.
  • the switch 12 is provided in the form of an insulated-gate bipolar transistor .
  • the module 40 includes a local power supply 22 which supplies power to the or each switch 12 that is activated by the electronic bypass system in order to maintain the short circuit.
  • the local power supply draws energy from a module DC capacitor 24.
  • electronic bypass as shown in
  • the capacitor 24 is recharged by temporarily switching off the or each activated switch 12 so that the converter current 36 is directed through the capacitor 24, as shown in Figure 2b.
  • the electronic bypass system When the module capacitor has sufficiently recharged, the electronic bypass system reactivates the switches 12 to resume the short circuit.
  • the temporary transition of the electronic bypass system from short circuit mode to recharge mode allows the capacitor 24 to recharge itself and to continue to feed the local power supply for the activated switches 12.
  • the module 40 includes a resistor 26 connected in parallel with the capacitor 24.
  • the local power supply 22 may include a local current transformer which is continuously charged by the converter current, even during the short circuiting of the module 40.
  • the local power supply may include a combination of any one of the local power supply 22, the capacitor 24 or the local current transformer to utilise their respective advantages.
  • the local power supply may be replaced by an external power supply.
  • the electronic bypass is removed when normal operating conditions of the module 40 are restored.
  • the module 40 includes a mechanical bypass switch 28 connected in parallel with the module, and the activation of the mechanical bypass switch 28 causes the current flow to pass through the mechanical bypass switch 28 instead of the module 40.
  • the mechanical bypass switch 28 serves as a backup to the electronic bypass system in the event that the electronic bypass system fails.
  • the module 40 may be provided in the form of a 2-quadrant unipolar module 42, such as that shown in Figure 3a.
  • Figure 3a includes a pair of switching devices 10 and a capacitor 24 connected in parallel in a half-bridge arrangement.
  • Each switching device includes a diode 30 connected in anti-parallel with a switch 12.
  • the module 42 can develop zero or positive voltage and allows the voltage source converter 11 to produce voltage steps in one polarity only.
  • the module 40 may be provided in the form of a 4-quadrant bipolar module 44, such as that shown in Figure 3b.
  • the 4-quadrant bipolar module 44 shown in Figure 3b includes two pairs of switching devices 10 and a capacitor 24 connected in parallel in a full- bridge arrangement.
  • the or each switching device includes a diode 30 connected in anti-parallel with a switch 10.
  • the module 44 can develop positive or negative voltage and allows the voltage source converter 11 to produce voltage steps in both positive and negative polarities.
  • the multilevel voltage source converter 13 may include a plurality of modules 40 arranged in series.
  • the series arrangement of the individual modules 40 forms a single phase multilevel voltage source converter 13.
  • the single phase multilevel converter can have unidirectional or bidirectional characteristics depending on whether the modules 40 are 2-quadrant unipolar modules 42 or 4- quadrant bipolar modules 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne un convertisseur de source de tension à plusieurs niveaux (11) pour transmission d'électricité en courant continu haute tension et compensation d'énergie réactive, qui comprend au moins un module (40) comportant au moins un commutateur (12)et un système de dérivation électronique. Ledit système peut être régulé de façon à activer lesdits commutateurs (12) dans le module (40) pour provoquer un court circuit par le biais du commutateur (12) activé et, ainsi, maintenir un courant de convertisseur (36) à travers le module (40) et le convertisseur de source de tension à plusieurs niveaux (11).
PCT/EP2009/057381 2009-06-15 2009-06-15 Commande de convertisseur WO2010145688A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09779756A EP2443733A1 (fr) 2009-06-15 2009-06-15 Commande de convertisseur
PCT/EP2009/057381 WO2010145688A1 (fr) 2009-06-15 2009-06-15 Commande de convertisseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/057381 WO2010145688A1 (fr) 2009-06-15 2009-06-15 Commande de convertisseur

Publications (1)

Publication Number Publication Date
WO2010145688A1 true WO2010145688A1 (fr) 2010-12-23

Family

ID=41796482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057381 WO2010145688A1 (fr) 2009-06-15 2009-06-15 Commande de convertisseur

Country Status (2)

Country Link
EP (1) EP2443733A1 (fr)
WO (1) WO2010145688A1 (fr)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684468A (zh) * 2012-05-18 2012-09-19 卧龙电气集团股份有限公司 一种高压变频装置的旁路交叉控制电路及控制方法
WO2013000513A1 (fr) * 2011-06-29 2013-01-03 Abb Technology Ag Procédé et organe de commande permettant de protéger un convertisseur de source de tension
CN103124071A (zh) * 2011-11-18 2013-05-29 北京赤那思电气技术有限公司 可在线监测的智能高压无功补偿装置
US8599591B2 (en) 2009-06-22 2013-12-03 Alstom Technology Ltd Converter
RU2510769C1 (ru) * 2012-11-14 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Многоуровневый преобразователь частоты с дифференцированными напряжениями уровней и байпасными полупроводниковыми ключами
WO2014036251A3 (fr) * 2012-08-30 2014-05-08 Siemens Industry, Inc. Appareil et procédés pour rétablir la fonctionnalité de cellule d'alimentation dans des alimentations électriques à multiples cellules
US20140254049A1 (en) * 2011-12-05 2014-09-11 Abb Technology Ag Method for eliminating an arc driven by means of at least one phase voltage source of a converter circuit
US8861234B2 (en) 2009-06-15 2014-10-14 Alstom Technology Ltd Voltage source converter having chain link converter for use in high voltage DC transmission
US8861231B2 (en) 2010-02-09 2014-10-14 Alstom Technology Ltd Converter
US8867242B2 (en) 2010-04-15 2014-10-21 Alstom Technology Ltd Hybrid 2-level and multilevel HVDC converter
US8867244B2 (en) 2010-07-30 2014-10-21 Alstom Technology Ltd. HVDC converter including fullbridge cells for handling a DC side short circuit
WO2014169958A1 (fr) * 2013-04-18 2014-10-23 Abb Technology Ltd Dispositif mécanique commutateur de dérivation, branche de convertisseur et convertisseur d'électricité
US8934268B2 (en) 2010-04-08 2015-01-13 Alstom Technology Ltd Power electronic converter for use in high voltage direct current power transmission
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
EP2601562A4 (fr) * 2010-08-04 2016-01-27 Benshaw Inc Système m2lc couplé à une alimentation électrique source de courant
US20160036314A1 (en) * 2013-03-18 2016-02-04 Mitsubishi Electric Corporation Power conversion apparatus
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
US9350269B2 (en) 2009-07-31 2016-05-24 Alstom Technology Ltd. Configurable hybrid converter circuit
US9362848B2 (en) 2011-11-17 2016-06-07 Alstom Technology Ltd. Hybrid AC/DC converter for HVDC applications
US9479061B2 (en) 2011-08-01 2016-10-25 Alstom Technology Ltd. DC to DC converter assembly
US20170012521A1 (en) * 2014-03-05 2017-01-12 Mitsubishi Electric Corporation Power conversion device
US9564829B2 (en) 2012-10-01 2017-02-07 Abb Technology Ltd Converter arm and associated converter device
EP3163729A4 (fr) * 2014-06-30 2017-11-08 Mitsubishi Electric Corporation Dispositif de conversion de puissance
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
EP3309949B1 (fr) * 2015-06-15 2020-01-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Dispositif de conversion de puissance
WO2020043273A1 (fr) * 2018-08-28 2020-03-05 Siemens Aktiengesellschaft Agencement présentant un module d'un convertisseur de puissance multiniveau
US10734916B2 (en) * 2017-04-21 2020-08-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
EP3934089A1 (fr) * 2020-06-29 2022-01-05 Maschinenfabrik Reinhausen GmbH Ensemble de cellule et convertisseur comprenant une pluralité de bras, chacun comprenant un tel ensemble de cellule
WO2023072398A1 (fr) * 2021-10-28 2023-05-04 Hitachi Energy Switzerland Ag Convertisseur de courant continu haute tension, hvdc, convertisseur et procédé de traitement d'un défaut dans un tel convertisseur
WO2023204425A1 (fr) * 2022-04-20 2023-10-26 엘에스일렉트릭 주식회사 Dispositif de sous-module et convertisseur multiniveau modulaire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041087A1 (de) * 2005-08-30 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
US20080081244A1 (en) * 2006-09-28 2008-04-03 Siemens Energy And Automation, Inc. Method for bypassing a power cell of a power supply

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198869A (ja) * 1983-04-26 1984-11-10 Fuji Electric Co Ltd サイリスタスイツチ点弧装置
JPH0658960A (ja) 1992-08-04 1994-03-04 Central Res Inst Of Electric Power Ind 電力線測定装置
JP2003050637A (ja) 2001-08-07 2003-02-21 Mitsubishi Electric Corp 電源装置
DE102005040543A1 (de) * 2005-08-26 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041087A1 (de) * 2005-08-30 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
US20080198630A1 (en) * 2005-08-30 2008-08-21 Siemens Aktiengesellschaft Converter Circuit Comprising Distributed Energy Stores
US20080081244A1 (en) * 2006-09-28 2008-04-03 Siemens Energy And Automation, Inc. Method for bypassing a power cell of a power supply

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AINSWORTH J D ET AL: "Static VAr compensator (STATCOM) based on single-phase chain circuit converters", IEE PROCEEDINGS: GENERATION, TRANSMISSION AND DISTRIBUTION, INSTITUTION OF ELECTRICAL ENGINEERS, GB, vol. 145, no. 4, 15 July 1998 (1998-07-15), pages 381 - 386, XP006011181, ISSN: 1350-2360 *
ANDERSEN B ED - INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS: "A H bridge PEBB for STATCOMs and other VSC applications", 2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING. CONFERENCE PROCEEDINGS. TORONTO, ONTARIO, CANADA, JULY, 13 - 17, 2003; [IEEE POWER ENGINEERING SOCIETY], NEW YORK, NY : IEEE, US, vol. 3, 13 July 2003 (2003-07-13), pages 1356 - 1359, XP010683862, ISBN: 978-0-7803-7989-3 *
B.GEMMELL, J.DORN, D.RETZMANN, D.SOERANGR: "Prospects of Multilevel VSC Technologies for Power Transmission", TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION, T&D IEEE/PES, 21 April 2008 (2008-04-21) - 24 April 2008 (2008-04-24), Transmission and Distribution Conference and Exposition, T&D IEEE/PES, XP002573427 *
See also references of EP2443733A1 *
WEI LIU ET AL: "A modular digital controller architecture for multi-node high power converter applications", INDUSTRIAL ELECTRONICS SOCIETY, 2005. IECON 2005. 31ST ANNUAL CONFERENCE OF IEEE, IEEE, PISCATAWAY, NJ, USA, 6 November 2005 (2005-11-06), pages 715 - 720, XP010875961, ISBN: 978-0-7803-9252-6 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861234B2 (en) 2009-06-15 2014-10-14 Alstom Technology Ltd Voltage source converter having chain link converter for use in high voltage DC transmission
US8599591B2 (en) 2009-06-22 2013-12-03 Alstom Technology Ltd Converter
US9350269B2 (en) 2009-07-31 2016-05-24 Alstom Technology Ltd. Configurable hybrid converter circuit
US8861231B2 (en) 2010-02-09 2014-10-14 Alstom Technology Ltd Converter
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
US8934268B2 (en) 2010-04-08 2015-01-13 Alstom Technology Ltd Power electronic converter for use in high voltage direct current power transmission
US8867242B2 (en) 2010-04-15 2014-10-21 Alstom Technology Ltd Hybrid 2-level and multilevel HVDC converter
US9490693B2 (en) 2010-06-18 2016-11-08 Alstom Technology Ltd. Converter for HVDC transmission and reactive power compensation
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
US8867244B2 (en) 2010-07-30 2014-10-21 Alstom Technology Ltd. HVDC converter including fullbridge cells for handling a DC side short circuit
EP2601562A4 (fr) * 2010-08-04 2016-01-27 Benshaw Inc Système m2lc couplé à une alimentation électrique source de courant
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
WO2013000513A1 (fr) * 2011-06-29 2013-01-03 Abb Technology Ag Procédé et organe de commande permettant de protéger un convertisseur de source de tension
US9337645B2 (en) 2011-06-29 2016-05-10 Abb Technology Ag Method and controller for protecting a voltage source converter
US9509218B2 (en) 2011-08-01 2016-11-29 Alstom Technology Ltd. DC to DC converter assembly
US9479061B2 (en) 2011-08-01 2016-10-25 Alstom Technology Ltd. DC to DC converter assembly
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
US9362848B2 (en) 2011-11-17 2016-06-07 Alstom Technology Ltd. Hybrid AC/DC converter for HVDC applications
CN103124071A (zh) * 2011-11-18 2013-05-29 北京赤那思电气技术有限公司 可在线监测的智能高压无功补偿装置
US20140254049A1 (en) * 2011-12-05 2014-09-11 Abb Technology Ag Method for eliminating an arc driven by means of at least one phase voltage source of a converter circuit
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
CN102684468B (zh) * 2012-05-18 2014-10-15 卧龙电气集团股份有限公司 一种高压变频装置的旁路交叉控制电路及控制方法
CN102684468A (zh) * 2012-05-18 2012-09-19 卧龙电气集团股份有限公司 一种高压变频装置的旁路交叉控制电路及控制方法
CN104737405B (zh) * 2012-08-30 2018-08-10 西门子公司 用于恢复多单元电源中的功率单元功能的装置和方法
WO2014036251A3 (fr) * 2012-08-30 2014-05-08 Siemens Industry, Inc. Appareil et procédés pour rétablir la fonctionnalité de cellule d'alimentation dans des alimentations électriques à multiples cellules
CN104737405A (zh) * 2012-08-30 2015-06-24 西门子公司 用于恢复多单元电源中的功率单元功能的装置和方法
US9876347B2 (en) 2012-08-30 2018-01-23 Siemens Aktiengesellschaft Apparatus and methods for restoring power cell functionality in multi-cell power supplies
US9564829B2 (en) 2012-10-01 2017-02-07 Abb Technology Ltd Converter arm and associated converter device
RU2510769C1 (ru) * 2012-11-14 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Многоуровневый преобразователь частоты с дифференцированными напряжениями уровней и байпасными полупроводниковыми ключами
US20160036314A1 (en) * 2013-03-18 2016-02-04 Mitsubishi Electric Corporation Power conversion apparatus
US9473014B2 (en) 2013-04-18 2016-10-18 Abb Schweiz Ag Mechanical bypass switch device, converter arm and power converter
WO2014169958A1 (fr) * 2013-04-18 2014-10-23 Abb Technology Ltd Dispositif mécanique commutateur de dérivation, branche de convertisseur et convertisseur d'électricité
US10186952B2 (en) * 2014-03-05 2019-01-22 Mitsubishi Electric Corporation Power conversion device
US20170012521A1 (en) * 2014-03-05 2017-01-12 Mitsubishi Electric Corporation Power conversion device
EP3163729B1 (fr) 2014-06-30 2022-04-20 Mitsubishi Electric Corporation Dispositif de conversion de puissance
US9866120B2 (en) 2014-06-30 2018-01-09 Mitsubishi Electric Corporation Power conversion device
EP3163729A4 (fr) * 2014-06-30 2017-11-08 Mitsubishi Electric Corporation Dispositif de conversion de puissance
EP3309949B1 (fr) * 2015-06-15 2020-01-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Dispositif de conversion de puissance
US10734916B2 (en) * 2017-04-21 2020-08-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
WO2020043273A1 (fr) * 2018-08-28 2020-03-05 Siemens Aktiengesellschaft Agencement présentant un module d'un convertisseur de puissance multiniveau
EP3934089A1 (fr) * 2020-06-29 2022-01-05 Maschinenfabrik Reinhausen GmbH Ensemble de cellule et convertisseur comprenant une pluralité de bras, chacun comprenant un tel ensemble de cellule
WO2022002492A1 (fr) * 2020-06-29 2022-01-06 Maschinenfabrik Reinhausen Gmbh Ensemble de cellules et convertisseur comprenant une pluralité de bras dotés chacun d'un tel ensemble de cellules
WO2023072398A1 (fr) * 2021-10-28 2023-05-04 Hitachi Energy Switzerland Ag Convertisseur de courant continu haute tension, hvdc, convertisseur et procédé de traitement d'un défaut dans un tel convertisseur
WO2023204425A1 (fr) * 2022-04-20 2023-10-26 엘에스일렉트릭 주식회사 Dispositif de sous-module et convertisseur multiniveau modulaire

Also Published As

Publication number Publication date
EP2443733A1 (fr) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2010145688A1 (fr) Commande de convertisseur
KR102005104B1 (ko) 제어회로
JP6417043B2 (ja) 電力変換装置
EP2987229B1 (fr) Bypass mecanique, bras d' onduleur et pont onduleur
CN101611535B (zh) 在直流电压中间电路短路时限制具有功率半导体的变流器损坏的方法
JP5300988B2 (ja) バッテリシステムにおいてエネルギを伝達するためのオンオフコントローラの直列回路
CA2782502C (fr) Systeme de stockage d'energie pour batterie dote d'une protection contre les courts-circuits, et procede
US11742669B2 (en) Wind turbine with integrated battery storage
KR102234290B1 (ko) 에너지 저장 시스템 및 그의 구동방법
US8847664B2 (en) Gate control circuit, power module and associated method
KR20130056833A (ko) 변환기의 동작 방법 및 스위칭 셀 및 변환기
US9479011B2 (en) Method and system for a dual conversion uninterruptible power supply
US9787173B2 (en) Multilevel converter
KR102467712B1 (ko) 전력 공급 시스템 및 방법
KR101809913B1 (ko) 에너지 저장 장치용 모듈러 컨버터 제어 시스템 및 그 제어 방법
US20200099249A1 (en) Optimized structure of a dc voltage system and method in the event of failure of the supplying network
US20220311354A1 (en) Intelligent discharge control for modular multilevel converter
US20210044215A1 (en) Power conversion apparatus
US8369050B2 (en) Circuit for protecting a DC network with DC loads against overvoltage
JP4759535B2 (ja) 無停電電源装置
RU2766312C1 (ru) Самодиагностируемая система обеспечения бесперебойного питания бортовой аппаратуры
JP2011109842A (ja) 超高信頼性パワーエレクトロニクスシステム用の回路及びトポロジー
JP2004064996A (ja) 電源装置
CN112868179A (zh) 电子阀装置
CN112514226A (zh) 具有中间电路保护的逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09779756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009779756

Country of ref document: EP