WO2010143652A1 - 露光方法及び装置、並びにデバイス製造方法 - Google Patents

露光方法及び装置、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2010143652A1
WO2010143652A1 PCT/JP2010/059755 JP2010059755W WO2010143652A1 WO 2010143652 A1 WO2010143652 A1 WO 2010143652A1 JP 2010059755 W JP2010059755 W JP 2010059755W WO 2010143652 A1 WO2010143652 A1 WO 2010143652A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
wafer
projection system
frame member
reference surface
Prior art date
Application number
PCT/JP2010/059755
Other languages
English (en)
French (fr)
Inventor
徹 木内
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011518554A priority Critical patent/JPWO2010143652A1/ja
Publication of WO2010143652A1 publication Critical patent/WO2010143652A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • the present invention relates to an exposure technique for exposing a pattern on an object via a projection system, and a device manufacturing technique for manufacturing a device using this exposure technique.
  • the depth of focus of the projection optical system is narrow and the exposure target Since there is a step (unevenness) on the surface of the substrate, the height (surface position) of the substrate surface is measured by an autofocus sensor (hereinafter referred to as an AF system), and the substrate surface of the projection optical system is measured based on the measurement result.
  • the stage holding the substrate is controlled so as to be adjusted (focused) on the image plane.
  • the detection light reflected on the surface to be measured For example, an oblique incidence AF system that receives reference light reflected by a reference surface formed on one surface of a predetermined prism and detects the surface position of the test surface with reference to the reference surface is used. (For example, refer to Patent Document 1).
  • the position of the stage that moves the substrate is conventionally measured by a laser interferometer.
  • a laser interferometer short-term fluctuations in measured values due to temperature fluctuations in the atmosphere on the optical path of the measurement beam are observed. It can no longer be ignored. Therefore, as a measurement device that is superior in short-term stability of measurement values compared to laser interferometers and has a resolution close to that of laser interferometers, the diffraction grating scale is irradiated with detection light from the detection head, and the scale
  • An encoder-type measuring device that detects the position of the scale in the periodic direction by detecting diffracted light from the light source is proposed (for example, Patent Document 2 and US Pat. No. 5,610,715 corresponding thereto) Refer to the book).
  • a measuring device that uses the scale to detect the position of the scale in the normal direction (see, for example, Patent Document 3).
  • the influence of the temperature fluctuation of the atmosphere can be reduced by using an AF system and an encoder type measuring device using a reference surface formed on a prism.
  • the AF system for example, if the height of the prism, and hence the reference surface, varies slightly due to disturbance or the like, the measurement result of the surface position of the surface to be measured changes accordingly, and the focusing accuracy may be reduced. There is.
  • One of the methods for reducing the influence of such slight variations in the height of the reference plane is to increase the frequency of calibration of measurement values of the AF system by, for example, test prints. In this case, exposure is performed. The process throughput is reduced.
  • the aspect of the present invention reduces the influence of the temperature fluctuation of the atmosphere when exposing an object, and measures the position of the moving body that moves the object and the surface position of the object with high accuracy. The purpose is to do.
  • An exposure apparatus is an exposure apparatus that exposes a pattern onto an object via a projection system, a stage that holds the object and moves relative to the projection system, and the projection system
  • a frame member that is supported in a stationary state and has a diffraction grating-like scale formed so as to face the stage, and is arranged on the stage, and each stage is irradiated with detection light, and the stage and the frame member
  • a plurality of detection heads for detecting relative position information, a reference surface formed on the frame member, a first light flux on the reference surface, a second light flux on the surface of the object,
  • a surface position detecting device that measures position information of the surface of the object in the direction along the optical axis of the projection system with reference to the reference surface.
  • An exposure apparatus in an exposure apparatus that exposes a pattern on an object via a projection system, holds the object and moves relative to the projection system.
  • An exposure method is an exposure method in which a pattern is exposed on an object via a projection system, the object is held on a stage that moves relative to the projection system, and the projection system
  • the frame member supported in a stationary state is irradiated with detection light from the stage on the diffraction grating scale formed so as to face the stage, and the relative position between the stage and the frame member Information is detected, a first light beam is irradiated on a reference surface formed on the frame member, a second light beam is irradiated on the surface of the object, and the projection system of the surface of the object is used with reference to the reference surface.
  • the position information in the direction along the optical axis is measured.
  • An exposure method is an exposure method in which a pattern is exposed on an object via a projection system.
  • the exposure method moves to the projection system and has a stage on which a diffraction grating scale is formed.
  • the object is held, and the scale member is irradiated with detection light from a frame member supported in a stationary state with respect to the projection system to detect relative position information between the stage and the frame member.
  • the formed reference surface is irradiated with the first light beam, the surface of the object is irradiated with the second light beam, and the position of the surface of the object in the direction along the optical axis of the projection system with reference to the reference surface Information is measured.
  • a device manufacturing method uses the exposure apparatus according to the first or second aspect of the present invention, or the exposure method according to the third or fourth aspect of the present invention. Exposing a pattern to a substrate and processing the substrate on which the pattern has been exposed.
  • the surface position of the object surface (position in the optical axis direction of the projection system) is measured with reference to the reference surface formed on the frame member provided with the scale or the detection head. Further, the position information of the stage holding the object is measured by the encoder method through the frame member. Since the measurement is performed based on the frame member in common as described above, the surface position of the object with respect to the stage is highly accurate even if the position of the frame member fluctuates by using the difference between the measured values of the two, for example. Can be measured. Therefore, when the object is exposed, the influence of the temperature fluctuation of the atmosphere can be reduced, and the position of the stage and the surface position of the object can be measured with high accuracy.
  • FIG. 1 is a partially cutaway view showing a schematic configuration of an exposure apparatus according to a first embodiment. It is a bottom view which shows the flame
  • (A) is a bottom view showing the frame 24 below the wafer alignment system ALG in FIG. 1
  • (B) is a cross-sectional view taken along line BB in FIG. 4 (A), and (C) is wafer stage WSB in FIG.
  • (A) is sectional drawing which shows the principal part of the AF type
  • (B) is sectional drawing which shows the state which moved the wafer stage WSA in the Y direction from the state of FIG. 7 (A). . It is the figure which notched some showing the schematic structure of the exposure apparatus which concerns on 2nd Embodiment. It is a flowchart which shows an example of the manufacturing process of an electronic device.
  • FIG. 1 shows a schematic configuration of an exposure apparatus 10 according to the present embodiment.
  • the exposure apparatus 10 is a scanning exposure apparatus composed of a scanning stepper (scanner), and is a twin wafer stage type including two wafer stages WSA and WSB.
  • the exposure apparatus 10 is installed in a box-shaped chamber (not shown) in which a temperature-controlled and highly dust-proof gas (for example, dry air) is supplied by a downflow method.
  • a projection system (projection optical system) PL is provided.
  • the Z-axis is taken in parallel with the optical axis AX of the projection system PL
  • the X-axis is taken in the direction in which the reticle and the wafer are relatively scanned in a plane perpendicular to the optical axis AX (direction parallel to the paper surface of FIG. 1).
  • the Y axis is taken in the direction perpendicular to the Z axis and the X axis (the direction perpendicular to the paper surface of FIG. 1), and the rotation (tilt) directions around the X axis, Y axis, and Z axis are respectively ⁇ x, ⁇ y, and ⁇ z.
  • the direction is described.
  • the XY plane is substantially parallel to the horizontal plane.
  • an exposure apparatus 10 includes an illumination system ILS similar to that disclosed in, for example, US Patent Application Publication No. 2003/0025890, and an ArF excimer laser (wavelength 193 nm) from the illumination system ILS.
  • first wafer stage WSA that moves while holding wafer W1, second wafer stage WSB that moves while holding wafer W2, and position measurement of wafer stages WSA and WSB System, wafer stage WSA, WSB drive mechanism (not shown), wafer stage WSA
  • a first control system 6A (see FIG. 3) for controlling the operation
  • a second control system 6B for controlling the operation of the wafer stage WSB
  • a main control system 4 (see FIG. 3) for comprehensively controlling the operation of the entire apparatus, etc. It has.
  • the exposure apparatus 10 includes, for example, a wafer alignment system ALG made up of, for example, an image processing type FIA (Field Image ⁇ Alignment) system arranged at a predetermined distance from the projection system PL in the X direction, and the projection system PL and the wafer alignment system ALG. And an AF system that measures a focus position or a Z position that is a position (plane position) in a direction parallel to the optical axis AX of the projection system PL on the surfaces of the wafers W1 and W2 on the wafer stages WSA and WSB. An AF system (autofocus sensor) including the unit 36 is provided.
  • FIA Field Image ⁇ Alignment
  • reticle R having a circuit pattern or the like formed on its pattern surface (lower surface) is fixed, for example, by vacuum suction.
  • the reticle stage RST can be driven minutely in the XY plane by a drive system (not shown) including a linear motor, for example, and can be driven at a scanning speed specified in the scanning direction (X direction).
  • Position information including the X- and Y-direction positions in the moving plane of the reticle stage RST and the rotation angle in the ⁇ z direction is always detected by a laser interferometer (not shown) with a resolution of about 0.5 to 0.1 nm, for example.
  • the A reticle stage control system (not shown) connected to a main control system (not shown) controls the operation of reticle stage RST via the drive system based on the position information.
  • the projection magnification ⁇ of the projection system PL of the present embodiment is a reduction magnification of, for example, 1/4, 1/5, and the measurement error of the position information of the reticle stage RST is the projection magnification ⁇ on the image plane side of the projection system PL. Therefore, the influence is reduced.
  • the position information of reticle stage RST may also be measured by an encoder-type measuring device described later.
  • a thick plate-like optical system frame 18 is disposed below the reticle stage RST in parallel to the XY plane.
  • the optical system frame 18 covers the chain 21 on the upper body column 11 with a dust-proof bellows 22, respectively.
  • a first opening and a second opening are formed in the optical system frame 18 at a predetermined interval in the X direction, and a projection system PL and a wafer alignment system ALG are installed in the first opening and the second opening, respectively.
  • the flange portion of the wafer alignment system ALG is fixed to the upper surface of the optical system frame 18.
  • a scale plate fixing frame 24 having a flat plate-like opening through which the projection system PL and the wafer alignment system ALG are passed is stably supported on the bottom surface of the optical system frame 18 via a plurality of link mechanisms 32. . Accordingly, the frame 24 is supported in a stationary state relative to the projection system PL and the wafer alignment system ALG.
  • the optical system frame 18, the link mechanism 32, and the frame 24 are each formed of a material (for example, Invar) having a very small linear expansion coefficient.
  • the frame 24 can also be formed from low expansion glass, low expansion glass ceramic (for example, ZERODUR (trade name) of Shot Co.), low expansion ceramic, or Super Invar, which has a smaller linear expansion coefficient. It is.
  • 24a is formed.
  • a region between the optical axis AX and the concave portion 24a on the bottom surface of the frame 24, a region between the concave portion 24a and the optical axis of the wafer alignment system ALG, and a region on the ⁇ X direction side from the optical axis of the wafer alignment system ALG, Scale plates 26B, 26C, and 26D on which X scale and Y scale similar to the scale plate 26A are formed are fixed.
  • the scale plates 26A to 26D are, for example, thin flat glass plates, and the pitch (cycle) of the X scale and Y scale formed on the surface thereof is, for example, in the range of 138 nm to 4 ⁇ m, for example, about 1 ⁇ m.
  • An encoder-type measuring device (hereinafter referred to as an encoder system, which will be described later in detail) that measures positional information of the wafer stages WSA and WSB from the scale plates 26A to 26D and the detection heads 28A and 28B on the wafer stages WSA and WSB. Is configured.
  • FIG. 2 which is a bottom view of a part of the frame 24 in FIG. 1, the scale plates 26B and 26C in FIG. It is divided into two scale plates 26C1 and 26C2. Similarly, the other scale plates 26A and 26D in FIG. 1 are also divided into two scale plates having a symmetrical shape in the Y direction. The number of divisions of each of the scale plates 26A to 26D is arbitrary, and each of the scale plates 26A to 26D may be formed from one scale plate.
  • the detection area ALW of the wafer alignment system ALG is shown, but the mechanism around the wafer alignment system ALG is shown in a simplified manner.
  • a double-sided telecentric refractive optical system including a plurality of lens elements arranged along the optical axis AX is used.
  • the illumination area of the reticle R is illuminated by the illumination light IL from the illumination system ILS
  • the image of the circuit pattern in the illumination area is passed through the projection system PL by the illumination light IL that has passed through the reticle R.
  • it is formed in an exposure region ILW (region conjugate to the illumination region) (see FIG. 2) elongated in the Y direction on W2.
  • Wafers W1 and W2 are obtained by applying a photoresist (photosensitive agent) to the surface of a disk-shaped substrate having a diameter of, for example, 200 mm to 450 mm, such as silicon or SOI (silicon ion insulator).
  • a photoresist photosensitive agent
  • SOI silicon ion insulator
  • a catadioptric system can also be used as the projection system PL.
  • a liquid that transmits the illumination light IL between the projection system PL and the wafers W1 and W2 by a local liquid immersion mechanism (not shown).
  • Water As the local immersion mechanism, an immersion mechanism disclosed in, for example, US Patent Application Publication No. 2007/242247 or European Patent Application Publication No. 1420298 can be used.
  • the exposure apparatus 10 is a dry type, it is not necessary to provide the local liquid immersion mechanism.
  • Wafer stages WSA and WSB are supported in a non-contact manner on an upper surface parallel to the XY plane of base member 12 through a clearance of about several ⁇ m, for example, via an air pad that constitutes a vacuum preload type aerostatic bearing.
  • Wafer tables 14A and 14B for holding wafers W1 and W2 by vacuum suction or the like via a wafer holder (not shown) are stacked on XY stages 16A and 16B.
  • the shape of wafer tables 14A and 14B viewed from above is substantially square.
  • the XY stages 16A and 16B are driven on the base member 12 in the X direction, the Y direction, and the ⁇ z direction by a planar motor 44A or the like (see FIG. 3).
  • the wafer tables 14A and 14B include a focus leveling mechanism 46A and the like (see FIG. 3) for controlling the Z position of the wafers W1 and W2 and the inclination angles in the ⁇ x direction and the ⁇ y direction, respectively. Further, the wafer tables 14A and 14B are provided with an aerial image measurement system (not shown) that detects an image such as an alignment mark of the reticle R or an evaluation line and space pattern through a predetermined slit pattern.
  • reference mark plates 48B1, 48B2, and 48B3 on which reference marks (not shown) are formed, for example, at three positions on the wafer table 14B of the wafer stage WSB are fixed.
  • three reference mark plates (not shown) are also fixed on the wafer table 14A of the wafer stage WSA.
  • the reference marks are detected by the wafer alignment system ALG, and the relationship between the reference marks and the corresponding slit pattern of the aerial image measurement system is stored in the storage device of the main control system 4.
  • detection heads 28A, 29A, 30A and 31A for detecting the scales and scale forming surfaces of the scale plates 26A to 26D are fixed to four corners on the wafer table 14A.
  • detection heads 28B, 29B, 30B, and 31B (see FIG. 4C) for detecting scales and scale forming surfaces of the scale plates 26A to 26D are fixed to four corners on the wafer table 14B.
  • the detection heads 28A and 28B respectively detect the X-direction position of the X scale in the scale plates 26A to 26D, and detect the Y-direction position of the Y scale in the scale plates 26A to 26D.
  • the heads 28AY and 28BY and Z heads 28AZ and 28BZ for detecting the position (Z position) in the Z direction of the scale forming surfaces of the scale plates 26A to 26D are configured.
  • the other three detection heads 29A to 31A and 29B to 31B on the wafer tables 14A and 14B are respectively provided with an X head, a Y head, and a Z head.
  • FIG. 1 only the Z heads 30AZ, 28BZ, and 30BZ in the detection heads 30A, 28B, and 30B are shown.
  • the X head 28AX and the Y head 28AY respectively irradiate the X scale and Y scale in the scale plates 26A to 26D with detection light made of laser light, and detect interference light due to diffracted light generated at the corresponding scale.
  • the position in the X direction and the Y direction of the wafer table 14A (wafer stage WSA), which is the relative displacement (relative position) in the X direction and the Y direction of the scale, is detected with a resolution of about 0.5 to 0.1 nm, for example. .
  • Detailed configurations of the X head 28AX and the Y head 28AY are disclosed in, for example, US Pat. No. 5,610,715 (and corresponding JP-A-7-270122).
  • the detection heads 28A to 31A (or 28B to 31B) on the wafer stage WSA (or WSB) on the wafer stage WSA (or WSB) at least two X heads and two Y heads irradiate one of the scale plates 26A to 26D with detection light.
  • the positions of the wafer stage WSA (WSB) in the X direction and the Y direction are measured. Therefore, the rotation angle in the ⁇ z direction of wafer stage WSA (WSB) can be obtained from the two positions in the X direction or Y direction.
  • the Z head 28AZ irradiates the scale forming surfaces of the scale plates 26A to 26D with the detection light and detects the reflected light as in the case of the optical pickup, thereby detecting the relative Z position of the scale forming surface.
  • the Z position of the wafer table 14A is detected with a resolution of about 0.1 ⁇ m.
  • a detailed configuration of the Z head 28AZ is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-54734.
  • the encoder system including the scale plates 26A to 26D and the detection heads 28A to 31A, the positions of the first wafer stage WSA (wafer table 14A) in the X, Y, and Z directions, and the ⁇ x, ⁇ y, and ⁇ z directions. It is possible to measure position information of 6 degrees of freedom consisting of the rotation angle of the direction. Similarly, position information of six degrees of freedom of the second wafer stage WSB (wafer table 14B) can be measured by an encoder system including the scale plates 26A to 26D and the detection heads 28B to 31B.
  • detection signals of the detection heads 28A to 31A on the wafer stage WSA (an X measurement signal SX that is a detection signal of the X head, a Y measurement signal SY that is a detection signal of the Y head, and a Z measurement signal that is a detection signal of the Z head) SZ) is supplied to the stage control system 40A of FIG. 3.
  • the stage control system 40A obtains position information of the six degrees of freedom of the wafer stage WSA, and based on these position information and control information from the control system 6A.
  • the operations of the planar motor 44A and the focus leveling mechanism 46A are controlled.
  • Detection signals from the detection heads 28B to 31B of the wafer stage WSB are also processed by a similar stage control system (not shown).
  • an AF-based reference surface 34 made of, for example, a highly reflective metal film is formed on the surface of the recess 24a of the frame 24. As shown in FIG. 2, the reference surface 34 is formed at the center in the Y direction of the recess 24 a of the frame 24. Further, an AF light transmission system 36A that irradiates the reference surface 34 with the reference beam DLR and irradiates the measurement beam DL to the test surface facing the reference surface 34, and the reference beam DLR and measurement from the reference surface 34 and the test surface.
  • An AF system unit 36 is composed of an AF light receiving system 36B that receives the beam DL.
  • FIG. 3 is a cross-sectional view taken along the reference plane 34 of the frame 24 of FIG. 2, and the Z position of the surface W1a (test surface) of the wafer W1 on the wafer stage WSA (wafer table 14A) is measured by the AF system.
  • the AF light transmission system 36A includes, for example, a beam generation unit (not shown) that generates a reference beam DLR and a measurement beam DL in a wavelength range that does not expose the photoresist on the wafer W1, and the reference beam DLR and the measurement beam.
  • a light transmission lens 36Aa that condenses the DL and a first rhomboid prism 36Ab that shifts the optical paths of the reference beam DLR and the measurement beam DL in the ⁇ Z direction.
  • the measurement beam DL projected obliquely downward from the AF light transmission system 36A forms, for example, slit images at a plurality of measurement points arranged at predetermined intervals in the Y direction on the surface W1a of the wafer W1, and is reflected by the surface W1a.
  • the measured beam DL is directed to the AF light receiving system 36B.
  • the reference beam DLR projected obliquely upward from the AF light transmission system 36A forms, for example, a slit image on the reference surface 34, and the reference beam DLR reflected by the reference surface 34 travels to the AF light receiving system 36B.
  • the AF light transmission system 36A is provided with a vibrating mirror (not shown) that vibrates these slit images within a predetermined range in the Y direction and a herbing (not shown) that adjusts the positions of the slit images. .
  • the AF light receiving system 36B condenses the second rhomboid prism 36Bb that shifts the optical paths of the reference beam DLR and the measurement beam DL reflected by the surface W1a in the + Z direction, and the reference beam DLR and the measurement beam DL, respectively, and forms a slit image.
  • a light-receiving lens 36Ba that re-forms and a photoelectric sensor 36Bc that detects the slit image thereof.
  • the light receiving surface of the photoelectric sensor 36Bc, the reference surface 34, and the surface W1a are substantially conjugate.
  • As the photoelectric sensor 36Bc an array of a plurality of light receiving elements that detect the light amount of those slit images through a predetermined opening can be used.
  • a plurality of detection signals of the photoelectric sensor 36Bc are supplied to the signal processing unit 36C.
  • the signal processing unit 36C synchronously rectifies the plurality of detection signals using a driving signal of a vibrating mirror (not shown) in the AF light transmission system 36A, thereby corresponding to the Z positions of the slit images. Generate a measurement signal. Furthermore, the signal processing unit 36C subtracts the measurement signal corresponding to the Z position of the slit image on the reference surface 34 from the measurement signal corresponding to the Z position of the plurality of slit images projected to the plurality of measurement points on the surface W1a.
  • the actually measured Z position Z1j is, for example, a value obtained by subtracting a predetermined offset from the Z-direction interval between the reference surface 34 and the test surface.
  • the AF system includes the oblique incidence AF system unit 36 and the signal processing unit 36C.
  • a more detailed configuration of the AF system unit 36 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-042183.
  • the wafer stage WSA is driven in the X direction and the Y direction, and the surface W1a of the wafer W1 is scanned over the measurement region on which a plurality of slit images are projected by the measurement beam DL.
  • the detection head 31A of the wafer stage WSA (wafer table 14A) irradiates the scale plate 26C2 with detection light, and the X head and the Y head in the detection head 31A move the wafer table 14A to the scale plate 26C2.
  • An X measurement signal SX and a Y measurement signal SY indicating positions in the X direction and the Y direction are supplied to the stage control system 40A.
  • a Z measurement signal SZ indicating the Z position of the wafer table 14A relative to the scale plate 26C2 is supplied from the Z head 31AZ in the detection head 31A to the arithmetic unit 38A and the stage control system 40A.
  • the X measurement signal and the Y measurement signal are supplied to the stage control system 40A from the other detection heads 28A to 30A on the wafer stage WSA, respectively, and the Z measurement signal is supplied to the arithmetic unit 38A and the stage control system 40A. Yes.
  • the calculation unit 38A performs an operation including the following difference calculation as an example,
  • the Z position ⁇ ZSWi at the i-th evaluation point on the surface W1a with respect to the stage surface of the wafer table 14A is calculated.
  • the calculation result of the Z position ⁇ ZSWi at all the evaluation points on the surface W1a is stored in the storage unit 42A.
  • the offset ZAof may use an actual measurement value, for example.
  • ⁇ ZSWi Z1i ⁇ (Z2i + ZAof) (1)
  • the AF system measures the Z position of the surface W1a with reference to the reference surface 34 of the frame 24, and the detection heads 28A to 31A (Z heads) are also provided on the scale plates 26A to 26A. Since the Z position of the wafer table 14A with respect to 26D is measured, even if the Z position of the frame 24 slightly fluctuates due to disturbance or the like, the measured value of the Z position of the surface W1a with respect to the stage surface of the wafer table 14A does not change. . Therefore, the relative Z position ( ⁇ ZSWi) of the surface W1a with respect to the wafer table 14A can always be measured with high accuracy.
  • the Z head Z of the detection heads 28A to 31A, etc. is used as a reference for the scale plates 26A to 26D, and the Z position Z3i of the wafer table 14A (the position corresponding to the i th evaluation point on the wafer W1).
  • the Z position is measured, and the measurement result is supplied to the stage control system 40A.
  • the stage control system 40A is also supplied with the Z position ⁇ ZSWi of equation (1) measured for all evaluation points on the wafer W1 from the storage unit 42A. Further, information on the Z position ZPL of the image plane of the projection system PL with reference to the scale plates 26A to 26D is supplied in advance from the control system 6A to the stage control system 40A.
  • the stage control system 40A subtracts the Z position ZPL of the image plane from the sum of the Z position Z3i measured by the encoder system and the Z position ⁇ ZSWi of the evaluation point on the wafer W1 as follows, thereby evaluating the wafer W1. A defocus amount ⁇ Fi from the image plane at the Z position of the point is obtained.
  • ⁇ Fi (Z3i + ⁇ ZSWi) ⁇ ZPL (2)
  • the Z position ZPL of the image plane of the projection system PL in Expression (2) is actually the contrast of the image of a predetermined evaluation pattern measured by, for example, an aerial image measurement system (not shown) in the wafer stage WSA. It can be obtained from the Z position (Z position measured by the detection heads 28A to 31A) Z30 of the stage surface of the wafer table 14A at the maximum.
  • the stage control system 40A drives the focus leveling mechanism 46A in the wafer table 14A so that the defocus amount ⁇ Fi of each evaluation point on the wafer W1 in the exposure area of the projection system PL is minimized as a whole.
  • the surface of the wafer W1 during scanning exposure is accurately focused on the image plane of the projection system PL, and the pattern image of the reticle R is exposed to each shot area of the wafer W1 with high accuracy.
  • FIG. 4A is a bottom view showing the wafer alignment system ALG in FIG. 1
  • FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A
  • FIG. 4C is the wafer stage in FIG. It is a top view which shows WSB.
  • a pair of elongated recesses 24b and 24c are formed on the bottom surface of the frame 24 so as to sandwich the wafer alignment system ALG in a direction intersecting the X axis at 45 °, and the centers of the recesses 24b and 24c are formed.
  • Reference surfaces 34A1 and 34A2 made of a highly reflective metal film are formed in the portion.
  • the rhomboid prisms 50Ab, 50Ac and 50Bb, 50Bc for light transmission and reception are fixed to a pair of through holes of the frame 24 formed so as to sandwich the reference surfaces 34A1, 34A2 in the recesses 24b, 24c. Yes.
  • an optical system 50Aa including a light transmitting lens and the like, a rhombus prism 50Ab, a rhombus prism 50Ac, and an optical system 50Ad including a light receiving lens and the like are similar to the AF system unit 36 in FIG. 1 is an oblique incidence AF system unit 50A.
  • the reference beam DLRA and the measurement beam DLA projected from the rhomboid prism 50Ab of the AF system unit 50A form a slit image on the reference surface 34A1 of the frame 24 and the surface of the wafer W2 (region facing the reference surface 34A1), respectively.
  • Reflected light from the surfaces of the 34A1 and the wafer W2 is received through the rhombus prism 50Ac. Then, the detection signal output from the optical system 50Ad is processed by a signal processing unit (not shown) similar to the signal processing unit 36C of FIG. 3, thereby tilting the Z position of the surface of the wafer W2 with reference to the reference surface 34A1. Can be measured by the incident method.
  • a second oblique incidence AF system unit 50B similar to the AF system unit 50A is configured including the rhomboid prisms 50Bb and 50Bc.
  • the AF system unit 50B projects the reference beam and the measurement beam onto the reference surface 34A2 of the frame 24 and the surface of the wafer W2 corresponding to the reference surface 34A2, and the Z position on the surface of the wafer W2 is obliquely incident on the basis of the reference surface 34A2. measure.
  • Two AF systems for the wafer alignment system ALG are configured including the AF system units 50A and 50B and a signal processing unit (not shown).
  • the Z position ZAL1 on the center (optical axis) of the detection area ALW of the wafer alignment system ALG can be obtained by averaging the Z positions obtained at the two positions corresponding to the reference surfaces 34A1 and 34A2. .
  • the Z heads 28BZ and the like of the detection heads 28B to 31B in FIG. 4C irradiate the scale plates 26C and 26D on the bottom surface of the frame 24 around the wafer alignment system ALG with the detection light, thereby
  • the Z position of wafer stage WSB (wafer table 14B) is measured with reference to 26C and 26D.
  • An average surface passing through these Z positions is referred to as a stage surface of the wafer table 14B. Therefore, the measurement values of the detection heads 28B to 31B are calculated from the Z position ZAL1 obtained by the AF system units 50A and 50B by the calculation unit (not shown) similar to the calculation unit 38A of FIG.
  • the wafer table at the center of the detection area ALW is subtracted by subtracting the sum of the Z position ZAL2 at the center of the detection area ALW on the surface defined by (1) and the steps at the Z position from the scale plates 26C, 26D to the reference planes 34A1, 34A2.
  • the Z position ⁇ ZB of the surface of the wafer W2 with respect to the stage surface 14B can be obtained.
  • the Z position ⁇ ZB is also maintained at the same value even if the Z position of the frame 24 fluctuates, and therefore always represents the Z position of the surface of the wafer W2 with respect to the stage surface with high accuracy.
  • the defocus amount for the wafer alignment system ALG on the surface of the wafer W2 is obtained by subtracting the value ZAL2' from the sum of the Z position ⁇ ZB and the Z position ZLA2.
  • the alignment control system (not shown) in the main control system 4 is on the wafer W2 on the coordinate system determined by the reference marks of the reference mark plates 48B1 to 48B3 on the wafer table 14B by, for example, the EGA method.
  • the array coordinates of each shot area can be obtained.
  • Such alignment can be similarly performed on the wafer W1 on the wafer stage WSA.
  • step 102 in FIG. 5 the first wafer stage WSA is moved to the loading position in the ⁇ X direction in FIG. 1, and a wafer (referred to as W1) is loaded on the wafer stage WSA.
  • the X and Y heads of the detection heads 28A to 31A continuously measure the positions of the wafer stage WSA in the X and Y directions.
  • the second wafer stage WSB is retracted in the + Y direction, for example.
  • the wafer stage WSA is driven in the X direction and the Y direction, and the position of a predetermined reference mark on the reference mark plates (members corresponding to the reference mark plates 48B1 to 48B3 in FIG. 4C) on the wafer table 14A. Is measured by the wafer alignment system ALG, and based on the measurement result, the rotation angle of the wafer table 14A in the ⁇ z direction is reset, and the origin of the coordinate system above it is set.
  • the wafer stage WSA is driven in the X direction and the Y direction, and the first measurement target wafer mark on the wafer W1 is moved into the detection area of the wafer alignment system ALG, as shown in FIG.
  • the alignment AF system including the AF system units 50A and 50B measures the Z position (focus position) of the wafer W1 on the wafer stage WSA with reference to the AF system reference surfaces 34A1 and 34A2 provided on the frame 24.
  • the Z position of the detection heads 28A to 31A is also measured based on the scale plates 26C and 26D, and the Z position of the wafer W1 with respect to the stage surface of the wafer table 14A is obtained based on the difference between the Z positions. .
  • step 106 the wafer alignment system ALG is passed through the wafer table 14A so that the difference (defocus amount) between the Z position obtained in step 104 and the best focus position of the wafer alignment system ALG becomes zero.
  • the surface of the wafer W1 is focused by the autofocus method, and the wafer mark on the wafer W1 is detected by the wafer alignment system ALG.
  • steps 104 and 106 are executed for each wafer mark to be measured on the wafer W1. Based on the measured positions of all the wafer marks, the arrangement coordinates of all shot areas of the wafer W1 are calculated (alignment of the wafer W1).
  • the wafer stage WSA is moved in the + X direction, and the Z position (focus) of the surface of the wafer W1 with reference to the reference plane 34 of the AF system of the frame 24 by the AF system including the AF system unit 36 in the middle. Position) distribution.
  • the Z position of the wafer table 14A (wafer stage WSA) with respect to the scale plates 26B and 26C is measured by the Z heads of the detection heads 28A to 31A of the encoder system of the wafer stage WSA.
  • the Z position ⁇ ZSWi at all evaluation points on the surface of the wafer W1 with respect to the stage surface of 14A is calculated.
  • the calculation result is stored in the storage unit 42A.
  • the wafer stage WSA is moved below the projection system PL.
  • the wafer stage WSA is moved stepwise in the X and Y directions based on the alignment result of the wafer W1, and one shot area on the wafer W1 is moved to the scanning start position.
  • the stage control system 40A continues to measure the Z position with respect to the scale plates 26A and 26B by the Z heads of the detection heads 28A to 31A, and the stage control system 40A stores the measured value of the Z position and the wafer W1 stored in step 108.
  • the defocus amount ⁇ Fi from the image plane of the surface of the wafer W1 in the exposure area of the projection system PL is obtained from the equation (2) using the Z positions (focus positions) of a large number of evaluation points on the surface. Further, the stage control system 40A drives the focus leveling mechanism 46A according to the defocus amount ⁇ Fi to focus the surface of the shot area of the wafer W1 on the image plane.
  • step 112 with the shot area of the wafer W1 in focus, the reticle stage RST and the wafer stage WSA are exposed while exposing the shot area with an image of the projection system PL of a part of the pattern of the reticle R. Are scanned in the Y direction in synchronization with the projection system PL, so that the image of the pattern of the reticle R is scanned and exposed in the shot area. Thereafter, the operations of steps 112 and 114 are repeated by the step-and-scan method for each shot area to be exposed on the wafer W1. When the exposure of all the shot areas on the wafer W1 is completed, the operation moves to step 116, the wafer stage WSA moves to the + X direction unloading position, and the wafer W1 is unloaded.
  • next step 118 if the wafer to be exposed remains, the operation returns to step 102, and steps 102 to 116 are repeated in the wafer stage WSA to perform alignment and exposure for the next wafer. Further, almost in parallel with the operations of steps 110 to 116 of the first wafer stage WSA, on the second wafer stage WSB side, steps 102B (loading of wafer W2) and steps 104B similar to the operations of steps 102 to 108 are performed.
  • step 106B alignment of the wafer W2 while focusing the wafer W2 on the wafer alignment system ALG
  • step 108B AF system and detection
  • step 110B As the operation of steps 110 to 116 (projection system PL side of the wafer stage WSB).
  • Step 112B measurement of the Z position of the wafer W2 and focusing of the shot area
  • step 114B scan exposure of the shot area
  • step 116B unload of the wafer W2
  • An exposure apparatus 10 of the present embodiment is a wafer that holds the wafer W1 and moves relative to the projection system PL in an exposure apparatus that exposes an image of the pattern of the reticle R on the wafer W1 via the projection system PL.
  • a plurality of detection heads 28A to 31A that are disposed and irradiate the scale with detection light to detect relative position information between the wafer stage WSA and the frame 24, a reference surface 34 formed on the frame 24, and a reference surface 34 Is irradiated with the reference beam DLR (first light beam), the surface of the wafer W1 is irradiated with the measurement beam DL (second light beam), and the reference surface 34 is used as a reference.
  • AF system including AF system unit 36 for measuring the position along the optical axis of the projection system PL of the surface of the wafer W1 (surface position or Z position) and (surface position detecting device), and a.
  • the wafer W1 is held on the wafer stage WSA moving with respect to the projection system PL (step 102) and fixed to the frame 24 supported in a stationary state with respect to the projection system PL.
  • the diffraction grating scale formed on the scale plates 26A to 26D so as to face the wafer stage WSA is irradiated with detection light from the detection heads 28A to 31A of the wafer stage WSA, so that the relative relationship between the wafer stage WSA and the frame 24 is reached.
  • Position information is detected (step 102, part of step 108, and step 112), the reference beam DLR is irradiated onto the reference surface 34 formed on the frame 24 by the AF system, and the measurement beam DL is irradiated onto the surface of the wafer W1. Then, the surface position (Z position) of the surface of the wafer W1 is measured using the reference surface 34 as a reference. (Part of step 108).
  • the AF system measures the surface position (Z position) of the wafer W1 with reference to the reference surface 34 formed on the frame 24 provided with the scale.
  • the encoder system including the detection heads 28A to 31A determines the position of the wafer stage WSA (wafer table 14A) in the X direction, the Y direction, and the Z position with reference to the scale plates 26A to 26D (scale forming surface) of the frame 24. measure.
  • the AF system and the encoder system commonly perform position measurement based on the frame 24, even if the Z position of the frame 24 varies by using the difference between the two measurement values, for example, the wafer stage WSA.
  • the surface position of the wafer W1 can be measured with high accuracy.
  • the influence of the temperature fluctuation of the atmosphere of the exposure apparatus 10 can be reduced, and the position of the wafer stage WSA and the surface position of the wafer W1 can be measured with high accuracy. Therefore, based on the measured value, the surface of the wafer W1 can be focused on the image plane of the projection system PL with high accuracy.
  • the detection heads 28A to 31A have Z heads 28AZ and 30AZ, respectively.
  • the Z heads 28AZ and the like are wafers that are relative positions of the wafer table 14A and the scale forming surface of the frame 24 in the optical axis AX direction.
  • the Z position of the table 14A (wafer stage WSA) is measured. Accordingly, in step 108, when the Z position of the wafer W1 is measured by the AF system with reference to the reference surface 34 of the frame 24, the Z head of the wafer table 14A is referenced with the Z head 28AZ or the like and the scale surface of the frame 24 as a reference.
  • the Z position of the surface of the wafer W1 relative to the wafer table 14A can be measured with high accuracy even if the Z position of the reference surface 34 changes.
  • the number of detection heads 28A to 31A is such that at least one X head 28AX and the like and at least two Y heads 28AY or the like, or at least two X heads and at least one Y head are scale plates 26A to 26D, respectively. It is arbitrary as long as the corresponding scale can be detected.
  • the number of Z heads 28AZ and the like in the detection heads 28A to 31A is preferably at least three. Thereby, the Z position of the wafer table 14A and the inclination angles in the ⁇ x direction and the ⁇ y direction can be measured. Note that there may be at least one Z head.
  • the reference surface 34 is formed on the surface of the recess 24 a that is a recess with respect to the wafer stage WSA of the frame 24. Accordingly, the optical system of the AF system unit 36 that projects the reference beam DLR onto the reference surface 34 can be easily arranged. If there is a sufficient space between the bottom surface of the frame 24 and the wafer stage WSA, the reference surface is formed on the bottom surface of the frame 24 (the same surface as the scale plates 26A to 26D) or the convex portion provided on the bottom surface of the frame 24. 34 may be formed.
  • the exposure apparatus 10 moves independently while holding the wafer alignment system ALG (mark detection system) for detecting the position of the wafer mark on the wafers W1 and W2 and the wafers W1 and W2 to be exposed.
  • a first wafer stage WSA and a second wafer stage WSB are provided, and an AF system unit 36 (optical system) of the AF system is disposed between the projection system PL and the wafer alignment system ALG.
  • Wafer stage WSB also includes detection heads 28B-31B that measure the position of wafer stage WSB (wafer table 14B) using scale plates 26A-26D provided on frame 24.
  • the position of the wafer mark on the wafer W2 on the wafer stage WSB can be measured by the wafer alignment system ALG while exposing the wafer W1 on the wafer stage WSA via the projection system PL.
  • the throughput of the exposure process can be improved.
  • the surface position distribution of the wafer W2 on the wafer stage WSB can be measured by the AF system while the wafer stage WSB is being moved from below the wafer alignment system ALG to below the projection system PL, the throughput is not reduced.
  • the surface position distribution of the wafer W2 (same for the wafer W1) can be measured.
  • the exposure apparatus 10 irradiates the reference surface 34A1 for the wafer alignment system ALG formed on the frame 24 and the reference beam DLRA (third light beam) to the reference surface 34A1, and the measurement beam is applied to the surface of the wafer W2.
  • An alignment AF system unit 50A that irradiates DLA (fourth light beam) and measures the position (Z position) along the optical axis of the wafer alignment system ALG on the surface of the wafer W2 with reference to the reference surface 34A1.
  • Including an AF system a mark detection system surface position detection device. Accordingly, the wafer W2 can be focused on the wafer alignment system ALG with high accuracy using the AF system measurement result.
  • the reference beam DLR from the AF system unit 36 is directly projected on the reference surface 34 of the frame 24.
  • the reference surface 34 formed in the recess 24a of the frame 24 has a trapezoidal cross-sectional shape with a long reference surface, and the surface on the reference surface side. May be provided with a prism 52 fixed to the reference surface 34.
  • the rhomboid prism 36Ab (first deflecting member) in the AF light transmission system 36A and the rhombus prism 36Bb (second deflecting member) in the AF light receiving system 36B are respectively fixed in through holes provided in the frame 24. ing.
  • the reference beam DLR emitted from the rhomboid prism 36Ab is projected onto the reference surface 34 through the first inclined surface of the prism 52, and the reference beam DLR reflected by the reference surface 34 is converted into the prism 52. And enters the rhomboid prism 36Bb through the second inclined surface.
  • Other configurations and operations are the same as those in the embodiment of FIG.
  • the angle of the reference beam DLR emitted from the rhomboid prism 36Ab and incident on the rhombus prism 36Bb can be reduced, so that the configuration of the optical system of the AF system unit 36 is easy.
  • a reflecting surface 52R may be formed on the surface of the prism 52 that is fixed so as to cover the reference surface 34 and that faces the reference surface 34. .
  • the Z position of the surface of the wafer W1 with respect to the reference surface 34 is measured using the AF system unit 36, for example, the Z of the detection head 28A provided on the wafer table 14A of the wafer stage WSA.
  • the head 28AZ irradiates the scale plate 26B1 with the detection light DA and measures the Z position of the wafer table 14A with respect to the scale plate 26B1.
  • the wafer stage WSA is moved in the + Y direction, and the detection light DA of the Z head 28AZ is applied to the reflecting surface 52R of the prism 52, and the Z head 28AZ is used for the Z position.
  • the Z position of the upper surface of the Z head 28AZ may be measured by the AF system.
  • the Z-direction distance Z7B between the reflecting surface 52R and the reference surface 34 can be measured with high accuracy
  • the difference between the Z position measured by the Z head 28AZ and the Z position measured by the AF system is the distance Z7B.
  • the Z head 28AZ can be easily calibrated by adjusting the offset of the measured value of the Z head 28AZ.
  • the AF system signal processing unit 36C of the above embodiment performs synchronous rectification. Instead, without providing a vibrating mirror in the AF light transmission system 36A, for example, a line sensor is used as the photoelectric sensor 36Bc, and the Z position of each measurement point is obtained from the position of the slit image formed on the line sensor. You may do it.
  • a magnetic linear including a periodic magnetic scale in which a magnetic body whose polarity is reversed is formed at a minute pitch, and a magnetic head that reads the magnetic scale is used. It is also possible to use an encoder or the like.
  • a laser interferometer for measuring the positions of the wafer stages WSA and WSB may be provided in parallel with the encoder system including the detection heads 28A to 31A.
  • the present invention is applied to a twin wafer stage type exposure apparatus.
  • the present invention can be similarly applied to an exposure apparatus having only one wafer stage.
  • the AF system for the wafer may be disposed in the vicinity of the projection system PL, for example.
  • the reference plane 34 for the AF system may be formed on the bottom surface of the frame 24 near the projection system PL.
  • a detection head is provided on the frame side, and a scale is provided on the wafer stage WSA, WSB side.
  • a scale is provided on the wafer stage WSA, WSB side.
  • FIG. 8 shows an exposure apparatus 10A of the present embodiment.
  • a flat frame 54 is stably supported via a plurality of link mechanisms 32 on the bottom surface of the optical system frame 18 that supports the projection system PL.
  • the optical system frame 18 is supported on the base member 12 through an anti-vibration mechanism (not shown) as an example.
  • a plurality of detection heads 28C and 30C similar to the detection head 28A of FIG. 1 are fixed to the frame 54 so as to sandwich the projection system PL in the X direction, and the same as the detection head 28C so as to sandwich the projection system PL in the Y direction.
  • a plurality of detection heads (not shown) are fixed.
  • a plurality of detection heads 28D and 30D similar to the detection head 28C are fixed to the frame 54 so as to sandwich the wafer alignment system ALG in the X direction, and the same as the detection head 28C so as to sandwich the wafer alignment system ALG in the Y direction.
  • a plurality of detection heads (not shown) are fixed.
  • a reference surface 34 is formed in a recess on the bottom surface of the frame 54 between the projection system PL and the wafer alignment system ALG, and an AF system unit 36 is disposed so as to sandwich the reference surface in the Y direction. Includes an AF system.
  • scale plates 26E1, 26E2 and the like having X scales and Y scales formed on the surfaces thereof, like the scale plates 26A, 26B of FIG. 1, so as to surround the wafer W1 on the wafer table 14A of the first wafer stage WSA.
  • Other configurations are the same as those of the first embodiment.
  • the exposure method according to this embodiment is an exposure method in which a pattern is exposed on the wafer W1 via the projection system PL.
  • the wafer W1 moves on the wafer stage WSA that moves relative to the projection system PL and has a diffraction grating scale formed thereon.
  • the first light beam is irradiated to the reference surface 34 formed on the frame 24 by the AF system
  • the second light beam is irradiated to the surface of the wafer W1
  • the reference surface 34 is used as a reference.
  • the position (surface position) in the direction along the optical axis of the projection system PL on the surface of the wafer W1 is measured.
  • the formation of the scale on the wafer stage WSA includes, for example, that the scale plates 26E1 and 26E2 on which the scale is formed are fixed to the wafer stage WSA.
  • the surface position (Z position) of the wafer W1 is measured with reference to the reference surface 34 formed on the frame 54 provided with the detection head 28C and the like. Further, the position information of the wafer stage WSA holding the wafer W1 is measured by the encoder method with the detection head 28C and the like provided on the frame 54. Since the measurement is performed based on the frame 54 in common as described above, the wafer with respect to the wafer stage WSA (wafer table 14A) can be used even if the Z position of the frame 54 fluctuates by using the difference between the measurement values of the two. The surface position of W1 can be measured with high accuracy.
  • the influence of the temperature fluctuation of the atmosphere can be reduced, and the position of the wafer stage WSA and the surface position of the wafer W1 can be measured with high accuracy. Therefore, based on the measurement result, the surface of the wafer W1 can be focused on the image plane of the projection system PL with high accuracy.
  • step 221 for performing function / performance design of the electronic device as shown in FIG.
  • a step 222 of manufacturing a mask (reticle) based on this design step a step 223 of manufacturing a substrate which is a base material of the device, a step of exposing the pattern of the reticle onto the substrate by the exposure apparatuses 10 and 10A of the above-described embodiment, Development process of exposed substrate, substrate processing step 224 including heating (curing) and etching process of the developed substrate, device assembly step (including processing processes such as dicing process, bonding process, and packaging process) 225, and inspection It is manufactured through step 226 and the like.
  • the device manufacturing method includes exposing a pattern to the substrate using the exposure apparatus (or exposure method) of the above-described embodiment, and processing the substrate on which the pattern is exposed. Yes.
  • processing the substrate includes developing, heating, etching, dicing, bonding, and the like on the substrate on which the pattern is exposed.
  • the present invention can be applied to a step-and-repeat type projection exposure apparatus (stepper or the like) in addition to the above-described step-and-scan type exposure apparatus (scanner).
  • the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device, but is used for manufacturing a display including a liquid crystal display element and a plasma display. Applicable to exposure equipment that transfers device patterns used in ceramics onto ceramic wafers, as well as exposure equipment used to manufacture image sensors (CCDs, etc.), organic EL, micromachines, MEMS (Microelectromechanical Systems), and DNA chips. can do. Further, the present invention is applied not only to a micro device such as a semiconductor element but also to an exposure apparatus that transfers a circuit pattern to a glass substrate or a silicon wafer in order to manufacture a mask used in an optical exposure apparatus and an EUV exposure apparatus. Applicable.
  • the illumination optical system and projection optical system of the above embodiment are incorporated in the exposure apparatus main body, optical adjustment is performed, and a reticle stage or wafer stage comprising a large number of mechanical parts is attached to the exposure apparatus main body to connect wiring and piping.
  • the exposure apparatus (projection exposure apparatus) of the above-described embodiment can be manufactured by further comprehensive adjustment (electrical adjustment, operation check, etc.).
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • R reticle, PL ... projection system, W1, W2 ... wafer, WSA, WSB ... wafer stage, ALG ... wafer alignment system, 10, 10A ... exposure apparatus, 18 ... optical system frame, 24 ... scale plate fixing frame, 26A to 26D ... scale plate, 28A, 28B, 30A, 30B ... detection head, 28AZ, 28BZ, 30AZ, 30BZ ... Z head, 34 ... reference plane of AF system, 36 ... AF system unit

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 物体の露光に際して、雰囲気の温度揺らぎの影響等を低減して、その物体を移動する移動体の位置及びその物体の面位置を高精度に計測することを課題とする。投影系(PL)を介してウエハステージ(WSA)上のウエハ(W1)上にパターンを露光する露光装置は、投影系(PL)に対して静止状態で支持され、スケール板(26B,26C)が固定されたフレーム(24)と、ウエハステージ(WSA)に配置されスケール板(26B,26C)のスケールの位置を検出する検出ヘッド(28A,30A)と、フレーム(24)に形成された基準面(34)を基準としてウエハ(W1)の面位置を計測する斜入射方式のAF系ユニット(36)とを備える。

Description

露光方法及び装置、並びにデバイス製造方法
 本発明は、投影系を介して物体上にパターンを露光する露光技術、及びこの露光技術を用いてデバイスを製造するデバイス製造技術に関する。
 半導体素子又は液晶表示素子等のマイクロデバイス(電子デバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、投影光学系の焦点深度が狭いとともに、露光対象の基板の表面に段差(凹凸)があるため、オートフォーカスセンサ(以下、AF系という)によって基板表面の高さ(面位置)を計測し、この計測結果に基づいて基板表面が投影光学系の像面に合わせ込まれる(合焦される)ように、基板を保持するステージの制御を行っている。従来のAF系としては、例えば外乱による光学部材の僅かな位置変動又は検出光の光路上の雰囲気の温度揺らぎによる光路の変動等の影響を抑制するために、被検面で反射された検出光と例えば所定のプリズムの一面に形成された基準面で反射された基準光とを受光し、その基準面を基準としてその被検面の面位置を検出する斜入射方式のAF系が使用されている(例えば、特許文献1参照)。
 また、基板を移動するステージの位置計測は従来はレーザ干渉計によって行われていたが、レーザ干渉計では、計測用ビームの光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動が無視できなくなりつつある。そこで、レーザ干渉計に比べて計測値の短期的安定性に優れるとともに、レーザ干渉計に近い分解能を持ちつつある計測装置として、回折格子状のスケールに検出ヘッドから検出光を照射し、そのスケールからの回折光を検出して、そのスケールの周期方向の位置を検出するエンコーダ方式の計測装置が提案されている(例えば、特許文献2及びこれに対応する米国特許第5,610,715号明細書参照)。また、そのスケールを用いてそのスケールの法線方向の位置を検出する計測装置も提案されている(例えば、特許文献3参照)。
特開2008-042183号公報 特開平7-270122号公報 特開2009-054734号公報
 上述の如く、例えばプリズムに形成された基準面を用いるAF系及びエンコーダ方式の計測装置を用いることによって、雰囲気の温度揺らぎの影響等を低減できる。しかしながら、そのAF系において、例えば外乱等によってそのプリズム、ひいては基準面の高さが僅かに変動すると、それに応じて被検面の面位置の計測結果が変化するため、合焦精度が低下する恐れがある。
 そのような基準面の高さの僅かな変動の影響を低減する方法の一つは、例えばテストプリント等によるAF系の計測値のキャリブレーションの頻度を高めることであるが、この場合には露光工程のスループットが低下する。
 本発明の態様は、このような事情に鑑み、物体の露光に際して、雰囲気の温度揺らぎの影響等を低減して、その物体を移動する移動体の位置及びその物体の面位置を高精度に計測することを目的とする。
 本発明の第1の態様による露光装置は、投影系を介して物体上にパターンを露光する露光装置において、その物体を保持してその投影系に対して移動するステージと、その投影系に対して静止状態で支持され、そのステージに対向するように回折格子状のスケールが形成されたフレーム部材と、そのステージに配置され、それぞれそのスケールに検出光を照射して、そのステージとそのフレーム部材との相対位置情報を検出する複数の検出ヘッドと、そのフレーム部材に形成された基準面と、その基準面に第1光束を照射し、その物体の表面に第2光束を照射して、その基準面を基準として、その物体の表面のその投影系の光軸に沿った方向の位置情報を計測する面位置検出装置と、を備えるものである。
 また、本発明の第2の態様による露光装置は、投影系を介して物体上にパターンを露光する露光装置において、その物体を保持してその投影系に対して移動するとともに、その投影系に対向する側に回折格子状のスケールが形成されたステージと、その投影系に対して静止状態で支持されたフレーム部材と、そのフレーム部材にそのステージに対向するように配置され、それぞれそのスケールに検出光を照射して、そのステージとそのフレーム部材との相対位置情報を検出する複数の検出ヘッドと、そのフレーム部材に形成された基準面と、その基準面に第1光束を照射し、その物体の表面に第2光束を照射して、その基準面を基準として、その物体の表面のその投影系の光軸に沿った方向の位置情報を計測する面位置検出装置と、を備えるものである。
 また、本発明の第3の態様による露光方法は、投影系を介して物体上にパターンを露光する露光方法において、その投影系に対して移動するステージにその物体を保持し、その投影系に対して静止状態で支持されたフレーム部材に、そのステージと対向するように形成された回折格子状のスケールに対し、そのステージから検出光を照射して、そのステージとそのフレーム部材との相対位置情報を検出し、そのフレーム部材に形成された基準面に第1光束を照射し、その物体の表面に第2光束を照射して、その基準面を基準として、その物体の表面のその投影系の光軸に沿った方向の位置情報を計測するものである。
 また、本発明の第4の態様による露光方法は、投影系を介して物体上にパターンを露光する露光方法において、その投影系に対して移動するとともに回折格子状のスケールが形成されたステージにその物体を保持し、その投影系に対して静止状態で支持されたフレーム部材からそのスケールに検出光を照射して、そのステージとそのフレーム部材との相対位置情報を検出し、そのフレーム部材に形成された基準面に第1光束を照射し、その物体の表面に第2光束を照射して、その基準面を基準として、その物体の表面のその投影系の光軸に沿った方向の位置情報を計測するものである。
 また、本発明の第5の態様によるデバイス製造方法は、本発明の第1の態様若しくは第2の態様の露光装置、又は本発明の第3の態様若しくは第4の態様の露光方法を用いて基板にパターンを露光することと、そのパターンが露光された前記基板を処理することと、を含むものである。
 本発明の態様によれば、スケール又は検出ヘッドが設けられたフレーム部材に形成された基準面を基準として物体表面の面位置(投影系の光軸方向の位置)が計測される。また、物体を保持するステージの位置情報が、フレーム部材を介してエンコーダ方式で計測される。このように共通にフレーム部材を基準として計測を行っているため、例えば両者の計測値の差分を用いることによって、そのフレーム部材の位置が変動しても、そのステージに対する物体の面位置を高精度に計測できる。従って、物体の露光に際して、雰囲気の温度揺らぎの影響等を低減して、そのステージの位置及びその物体の面位置を高精度に計測することができる。
第1の実施形態に係る露光装置の概略構成を示す一部を切り欠いた図である。 図1中のスケール板固定用のフレーム24を示す底面図である。 図2の計測ビーム及び基準ビームの光路に沿った断面図である。 (A)は図1中のウエハアライメント系ALGの下方のフレーム24を示す底面図、(B)は図4(A)のBB線に沿う断面図、(C)は図1中のウエハステージWSBを示す平面図である。 実施形態の露光動作の一例を示すフローチャートである。 第1変形例のAF系ユニットの要部を示す断面図である。 (A)は、第2変形例に係るAF系ユニットの要部を示す断面図、(B)は図7(A)の状態からウエハステージWSAをY方向に移動した状態を示す断面図である。 第2の実施形態に係る露光装置の概略構成を示す一部を切り欠いた図である。 電子デバイスの製造工程の一例を示すフローチャートである。
 [第1の実施形態]
 以下、本発明の第1の実施形態につき図1~図5を参照して説明する。
 図1は、本実施形態に係る露光装置10の概略構成を示す。露光装置10は、スキャニングステッパー(スキャナー)よりなる走査型露光装置であり、かつ2台のウエハステージWSA,WSBを備えたツイン・ウエハステージ型である。露光装置10は、温度制御されるとともに高度に防塵された気体(例えばドライエアー)がダウンフロー方式で供給されている箱状のチャンバー(不図示)内に設置されている。本実施形態では、投影系(投影光学系)PLが設けられている。以下、投影系PLの光軸AXと平行にZ軸を取り、これに直交する面内でレチクルとウエハとが相対走査される方向(図1の紙面に平行な方向)にX軸を取り、Z軸及びX軸に直交する方向(図1の紙面に垂直な方向)にY軸を取り、X軸、Y軸、及びZ軸の回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。本実施形態では、XY面はほぼ水平面に平行である。
 図1において、露光装置10は、例えば米国特許出願公開第2003/0025890号明細書などに開示されているものと同様の照明系ILS、この照明系ILSからの例えばArFエキシマレーザ(波長193nm)、KrFエキシマレーザ(波長248nm)、又は放電ランプの輝線等の露光用の照明光(露光光)ILにより照明されるレチクルRを保持するレチクルステージRST、レチクルRから射出された照明光ILをウエハW1(又はW2)上に投射する投影系PL、ウエハW1を保持して移動する第1のウエハステージWSA、ウエハW2を保持して移動する第2のウエハステージWSB、ウエハステージWSA,WSBの位置計測システム、ウエハステージWSA,WSBの駆動機構(不図示)、ウエハステージWSAの動作を制御する第1制御系6A(図3参照)、ウエハステージWSBの動作を制御する第2制御系6B、及び装置全体の動作を統括的に制御する主制御系4(図3参照)等を備えている。さらに、露光装置10は、投影系PLからX方向に所定間隔だけ離れて配置された例えば画像処理型のFIA(Field Image Alignment)系よりなるウエハアライメント系ALG、及び投影系PLとウエハアライメント系ALGとの間に配置され、ウエハステージWSA,WSB上のウエハW1,W2の表面の投影系PLの光軸AXに平行な方向の位置(面位置)であるフォーカス位置又はZ位置を計測するAF系ユニット36を含むAF系(オートフォーカスセンサ)を備えている。
 図1のレチクルステージRST上には、回路パターンなどがそのパターン面(下面)に形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含む駆動系(不図示)によって、XY面内で微少駆動可能であるとともに、走査方向(X方向)に指定された走査速度で駆動可能となっている。レチクルステージRSTの移動面内のX方向、Y方向の位置及びθz方向の回転角を含む位置情報は、レーザ干渉計(不図示)によって例えば0.5~0.1nm程度の分解能で常時検出される。主制御系(不図示)に接続されたレチクルステージ制御系(不図示)がその位置情報に基づいてその駆動系を介してレチクルステージRSTの動作を制御する。
 なお、本実施形態の投影系PLの投影倍率βは例えば1/4,1/5等の縮小倍率であり、レチクルステージRSTの位置情報の計測誤差は投影系PLの像面側では投影倍率βで縮小されるため、その影響は低減される。ただし、レチクルステージRSTの位置情報も後述のエンコーダ方式の計測装置で計測してもよい。
 図1において、レチクルステージRSTの下方にXY面に平行に厚い平板状の光学系フレーム18が配置され、光学系フレーム18はその上方の本体コラム11に、それぞれチェーン21を防塵ベローズ22で覆って形成されている複数の吊り下げ機構20A,20B,20C等を介して吊り下げて支持されている。この構成によって、光学系フレーム18は外乱の影響を殆ど受けることなく安定に支持される。光学系フレーム18にはX方向に所定間隔で第1開口及び第2開口が形成され、これらの第1開口及び第2開口内にそれぞれ投影系PL及びウエハアライメント系ALGが設置され、投影系PL及びウエハアライメント系ALGのフランジ部が光学系フレーム18の上面に固定されている。
 また、光学系フレーム18の底面に複数のリンク機構32を介して、平板状で投影系PL及びウエハアライメント系ALGを通す開口が形成されたスケール板固定用のフレーム24が安定に支持されている。従って、フレーム24は、投影系PL及びウエハアライメント系ALGに対して相対的に静止状態で支持されている。光学系フレーム18、リンク機構32、及びフレーム24はそれぞれ線膨張係数の極めて小さい材料(例えばインバー)から形成されている。なお、フレーム24については、さらに線膨張率が小さい低膨張ガラス、低膨張ガラスセラミックス(例えばショット社のゼロデュア(ZERODUR)(商品名))、低膨張セラミックス、又はスーパーインバーなどから形成することも可能である。
 フレーム24の底面の光軸AXから+X方向側の領域に、X方向に所定ピッチを持つ反射型の回折格子状のXスケールとY方向に所定ピッチを持つ反射型の回折格子状のYスケールとが所定配列で形成されたスケール板26Aが固定され、フレーム24の底面の投影系PLとウエハアライメント系ALGとの間のほぼ中間位置にY軸に沿ってX方向に所定幅でスリット状の凹部24aが形成されている。フレーム24の底面の光軸AXと凹部24aとの間の領域、凹部24aとウエハアライメント系ALGの光軸との間の領域、及びウエハアライメント系ALGの光軸から-X方向側の領域に、それぞれスケール板26Aと同様のXスケール及びYスケールが形成されたスケール板26B,26C,26Dが固定されている。
 スケール板26A~26Dは例えば薄い平板状のガラス板であり、その表面に形成されているXスケール及びYスケールのピッチ(周期)は、例えば138nm~4μmの範囲で、例えば1μm程度である。これらのスケール板26A~26DとウエハステージWSA,WSB上の検出ヘッド28A,28B等とから、ウエハステージWSA,WSBの位置情報を計測するエンコーダ方式の計測装置(以下、エンコーダシステムという。詳細後述)が構成される。
 また、図1中のスケール板26B及び26Cは、図1のフレーム24の一部の底面図である図2に示すように、それぞれY方向に対称な形状の2つのスケール板26B1,26B2、及び2つのスケール板26C1,26C2に分かれている。同様に、図1の他のスケール板26A及び26DもY方向に対称な形状の2つのスケール板に分かれている。なお、各スケール板26A~26Dの分割数は任意であり、スケール板26A~26Dをそれぞれ1枚のスケール板から形成してもよい。また、図2では、ウエハアライメント系ALGの検出領域ALWが示されているが、ウエハアライメント系ALGの周辺の機構は簡略化して示されている。
 図1の投影系PLとしては、例えば光軸AXに沿って配列される複数のレンズエレメントを含む両側テレセントリックの屈折光学系が用いられている。照明系ILSからの照明光ILによってレチクルRの照明領域が照明されると、レチクルRを通過した照明光ILにより、投影系PLを介してその照明領域内の回路パターンの像が、ウエハW1(又はW2)上のY方向に細長い露光領域ILW(照明領域に共役な領域)(図2参照)に形成される。ウエハW1,W2は、シリコン又はSOI(silicon on insulator)等の直径が例えば200mm~450mmの円板状の基材の表面にフォトレジスト(感光剤)を塗布したものである。なお、投影系PLとしては反射屈折系も使用できる。
 なお、露光装置10が液浸法を適用して露光を行う場合には、局所液浸機構(不図示)によって投影系PLとウエハW1,W2との間に照明光ILを透過する液体(純水等)が供給される。その局所液浸機構としては、例えば米国特許出願公開第2007/242247号明細書、又は欧州特許出願公開第1420298号明細書等に開示されている液浸機構を使用できる。なお、露光装置10がドライ型である場合には、その局所液浸機構を設ける必要はない。
 また、ウエハステージWSA及びWSBは、それぞれベース部材12のXY面に平行な上面に例えば真空予圧型空気静圧軸受を構成するエアパッドを介して数μm程度のクリアランスを介して非接触で支持されているXYステージ16A及び16B上に、ウエハW1及びW2をウエハホルダ(不図示)を介して真空吸着等で保持するウエハテーブル14A及び14Bを積み重ねて構成されている。ウエハテーブル14A,14Bを上方から見た形状はほぼ正方形である。XYステージ16A,16Bは、一例として平面モータ44A等(図3参照)によってベース部材12上をX方向、Y方向、及びθz方向に駆動される。また、ウエハテーブル14A,14Bは、それぞれウエハW1,W2のZ位置とθx方向及びθy方向の傾斜角とを制御するフォーカスレベリング機構46A等(図3参照)を備えている。さらに、ウエハテーブル14A,14BにはレチクルRのアライメントマーク又は評価用のラインアンドスペースパターン等の像を所定のスリットパターンを介して検出する空間像計測系(不図示)が備えられている。
 また、図4(C)に示すように、ウエハステージWSBのウエハテーブル14B上の例えば3箇所に基準マーク(不図示)が形成された基準マーク板48B1,48B2,48B3が固定されている。同様にウエハステージWSAのウエハテーブル14A上にも3つの基準マーク板(不図示)が固定されている。それらの基準マークはウエハアライメント系ALGで検出されるとともに、それらの基準マークと対応する空間像計測系のスリットパターンとの関係は主制御系4の記憶装置に記憶されている。
 また、図1において、ウエハテーブル14A上の4箇所の角部にスケール板26A~26Dのスケール及びスケール形成面を検出する検出ヘッド28A,29A,30A,31Aが固定されている。同様に、ウエハテーブル14B上の4箇所の角部にスケール板26A~26Dのスケール及びスケール形成面を検出する検出ヘッド28B,29B,30B,31B(図4(C)参照)が固定されている。検出ヘッド28A及び28Bは、それぞれスケール板26A~26D中のXスケールのX方向の位置を検出するXヘッド28AX及び28BXと、スケール板26A~26D中のYスケールのY方向の位置を検出するYヘッド28AY及び28BYと、スケール板26A~26Dのスケール形成面のZ方向の位置(Z位置)を検出するZヘッド28AZ及び28BZとから構成されている。同様にウエハテーブル14A及び14B上の他の3つの検出ヘッド29A~31A及び29B~31BもそれぞれXヘッド、Yヘッド、及びZヘッドを備えている。なお、図1では、検出ヘッド30A,28B,30B中のZヘッド30AZ,28BZ,30BZのみが示されている。
 この場合、Xヘッド28AX及びYヘッド28AYは、それぞれスケール板26A~26D中のXスケール及びYスケールにレーザ光よりなる検出光を照射し、対応するスケールで発生する回折光による干渉光を検出して、当該スケールのX方向及びY方向の相対変位(相対位置)であるウエハテーブル14A(ウエハステージWSA)のX方向及びY方向の位置を例えば0.5~0.1nm程度の分解能で検出する。Xヘッド28AX及びYヘッド28AYの詳細な構成は、例えば米国特許第5,610,715号明細書(及びこれに対応する特開平7-270122号公報)に開示されている。
 さらに、ウエハステージWSA(又はWSB)上の検出ヘッド28A~31A(又は28B~31B)のうち、少なくとも2つのXヘッド及び2つのYヘッドはスケール板26A~26Dのいずれかに検出光を照射して、ウエハステージWSA(WSB)のX方向及びY方向の位置を計測している。従って、その2箇所のX方向又はY方向の位置からウエハステージWSA(WSB)のθz方向の回転角を求めることができる。
 また、Zヘッド28AZは、一例として光学式ピックアップと同様に、スケール板26A~26Dのスケール形成面に検出光を照射し、反射光を検出することによって、そのスケール形成面の相対的なZ位置(ひいてはウエハテーブル14AのZ位置)を例えば0.1μm程度の分解能で検出する。Zヘッド28AZの詳細な構成は、例えば特開2009-54734号公報に開示されている。
 さらに、ウエハステージWSA(又はWSB)上の検出ヘッド28A~31A(又は28B~31B)の全部のZヘッドが、常時スケール板26A~26Dのいずれかに検出光を照射して、ウエハステージWSA(WSB)のZ位置を計測している。従って、その4箇所のZ位置からウエハテーブル14A(14B)のθx方向及びθy方向の回転角をも求めることができる。
 従って、スケール板26A~26D及び検出ヘッド28A~31Aを含むエンコーダシステムによって、第1のウエハステージWSA(ウエハテーブル14A)のX方向、Y方向、Z方向の位置、及びθx方向、θy方向、θz方向の回転角よりなる6自由度の位置情報を計測することができる。同様に、スケール板26A~26D及び検出ヘッド28B~31Bを含むエンコーダシステムによって、第2のウエハステージWSB(ウエハテーブル14B)の6自由度の位置情報を計測することができる。
 また、ウエハステージWSA上の検出ヘッド28A~31Aの検出信号(Xヘッドの検出信号であるX計測信号SX、Yヘッドの検出信号であるY計測信号SY、Zヘッドの検出信号であるZ計測信号SZ)は図3のステージ制御系40Aに供給され、ステージ制御系40Aは、上記のウエハステージWSAの6自由度の位置情報を求め、これらの位置情報及び制御系6Aからの制御情報に基づいて平面モータ44A及びフォーカスレベリング機構46Aの動作を制御する。ウエハステージWSBの検出ヘッド28B~31Bの検出信号も同様のステージ制御系(不図示)によって処理されている。
 次に、AF系ユニット36を含むAF系につき説明する。先ず、図1において、フレーム24の凹部24aの表面に、例えば高反射率の金属膜よりなるAF系の基準面34が形成されている。図2に示すように、基準面34はフレーム24の凹部24aのY方向の中央部に形成されている。また、基準面34に基準ビームDLRを照射し、基準面34に対向する被検面に計測ビームDLを照射するAF送光系36Aと、基準面34及び被検面からの基準ビームDLR及び計測ビームDLを受光するAF受光系36BとからAF系ユニット36が構成されている。
 図3は、図2のフレーム24の基準面34に沿った断面図であり、かつAF系によってウエハステージWSA(ウエハテーブル14A)上のウエハW1の表面W1a(被検面)のZ位置を計測している状態を示す。図3において、AF送光系36Aは、例えばウエハW1上のフォトレジストを感光させない波長域の基準ビームDLR及び計測ビームDLを発生するビーム発生部(不図示)と、その基準ビームDLR及び計測ビームDLを集光する送光レンズ36Aaと、基準ビームDLR及び計測ビームDLの光路を-Z方向にシフトする第1の菱形プリズム(rhomboid prism)36Abとを有する。AF送光系36Aから斜め下方に投射される計測ビームDLは、ウエハW1の表面W1aにY方向に所定間隔で配列される複数の計測点にそれぞれ例えばスリット像を形成し、表面W1aで反射された計測ビームDLはAF受光系36Bに向かう。また、AF送光系36Aから斜め上方に投射される基準ビームDLRは、基準面34上に例えばスリット像を形成し、基準面34で反射された基準ビームDLRはAF受光系36Bに向かう。AF送光系36Aには、それらのスリット像をY方向に所定範囲内で振動させる振動ミラー(不図示)と、それらのスリット像の位置を調整するハービング(不図示)とが設けられている。
 AF受光系36Bは、表面W1aで反射された基準ビームDLR及び計測ビームDLの光路を+Z方向にシフトする第2の菱形プリズム36Bbと、基準ビームDLR及び計測ビームDLを集光してそれぞれスリット像を再形成する受光レンズ36Baと、それらのスリット像を検出する光電センサ36Bcとを有する。光電センサ36Bcの受光面と基準面34及び表面W1aとはほぼ共役である。光電センサ36Bcとしては、それらのスリット像の光量を所定の開口を介して検出する複数の受光素子のアレイが使用できる。光電センサ36Bcの複数の検出信号は信号処理部36Cに供給される。
 信号処理部36Cは、一例としてAF送光系36A内の振動ミラー(不図示)の駆動信号を用いてそれらの複数の検出信号を同期整流することにより、それらのスリット像のZ位置に対応する計測信号を生成する。さらに、信号処理部36Cは、表面W1aの複数の計測点に投射される複数のスリット像のZ位置に対応する計測信号から基準面34のスリット像のZ位置に対応する計測信号を差し引いて、基準面34のZ位置を基準として表面W1aの複数の計測点のZ位置Z1j(j=1~J:Jは2以上の整数)を示す被検面のZ位置計測信号AFWを生成する。なお、実際に計測されるZ位置Z1jは、例えば基準面34と被検面とのZ方向の間隔から所定のオフセットを差し引いた値である。このように基準面34を基準としているため、外乱又は雰囲気の温度揺らぎ等で計測ビームDL及び基準ビームDLRの光路が同じように変化した場合には、計測値のドリフトはなく、被検面のZ位置を高精度に計測できる。Z位置計測信号AFWは演算部38A及び記憶部42Aに供給される。
 斜入射方式のAF系ユニット36及び信号処理部36Cを含んでAF系が構成されている。AF系ユニット36のより詳細な構成は、例えば特開2008-042183号公報に開示されている。
 また、ウエハステージWSAをX方向、Y方向に駆動して、計測ビームDLにより複数のスリット像が投射される計測領域に対して、ウエハW1の表面W1aを走査することで、表面W1a上にX方向、Y方向に所定間隔で格子状に配置される多数の評価点において、それぞれAF系によってZ位置Z1i(i=1~I:Iは2×J以上の整数)が計測される。
 さらに、図3において、ウエハステージWSA(ウエハテーブル14A)の検出ヘッド31Aがスケール板26C2に検出光を照射しており、検出ヘッド31A中のXヘッド及びYヘッドからスケール板26C2に対するウエハテーブル14AのX方向及びY方向の位置を示すX計測信号SX及びY計測信号SYがステージ制御系40Aに供給されている。また、検出ヘッド31A中のZヘッド31AZからスケール板26C2に対するウエハテーブル14AのZ位置を示すZ計測信号SZが演算部38A及びステージ制御系40Aに供給されている。同様に、ウエハステージWSA上の他の検出ヘッド28A~30AからもそれぞれX計測信号及びY計測信号がステージ制御系40Aに供給され、Z計測信号が演算部38A及びステージ制御系40Aに供給されている。
 この場合、検出ヘッド28A~31AのZセンサで計測されるZ位置を通る平均的な面(以下、ウエハテーブル14Aのステージ面という。)上で、表面W1a上のi番目の評価点に対応する点のZ位置をZ2i、フレーム24のスケール板26A~26Dの表面と基準面34とのZ位置の既知のオフセットをZAofとすると、演算部38Aは、一例として次の差分演算を含む演算によって、ウエハテーブル14Aのステージ面に対する表面W1a上のi番目の評価点におけるZ位置ΔZSWiを計算する。表面W1a上の全部の評価点におけるZ位置ΔZSWiの計算結果は記憶部42Aに記憶される。なお、オフセットZAofは、例えば実測値を使用してもよい。
 ΔZSWi=Z1i-(Z2i+ZAof) …(1)
 この式(1)から分かるように、AF系はフレーム24の基準面34を基準として表面W1aのZ位置を計測し、検出ヘッド28A~31A(Zヘッド)もフレーム24に設けたスケール板26A~26Dに対するウエハテーブル14AのZ位置を計測しているため、仮に外乱等でフレーム24のZ位置が僅かに変動しても、ウエハテーブル14Aのステージ面に対する表面W1aのZ位置の計測値は変化しない。従って、常にウエハテーブル14Aに対する表面W1aの相対的なZ位置(ΔZSWi)を高精度に計測できる。
 その後の露光時には、図1において、検出ヘッド28A~31AのZヘッド28AZ等によってスケール板26A~26Dを基準としてウエハテーブル14AのZ位置Z3i(ウエハW1上のi番目の評価点に対応する位置でのZ位置)が計測され、計測結果はステージ制御系40Aに供給される。ステージ制御系40Aには、記憶部42AからウエハW1上の全部の評価点について計測された式(1)のZ位置ΔZSWiも供給される。さらに、ステージ制御系40Aには、スケール板26A~26Dを基準とした投影系PLの像面のZ位置ZPLの情報が制御系6Aから予め供給されている。ステージ制御系40Aは、次のようにエンコーダシステムで計測されたZ位置Z3iとウエハW1上の評価点のZ位置ΔZSWiとの和から像面のZ位置ZPLを差し引くことで、ウエハW1上の評価点のZ位置の像面からのデフォーカス量ΔFiを求める。
 ΔFi=(Z3i+ΔZSWi)-ZPL …(2)
 なお、式(2)における投影系PLの像面のZ位置ZPLは、実際には例えばウエハステージWSA内の空間像計測系(不図示)で計測される所定の評価用パターンの像のコントラストが最大になるときのウエハテーブル14Aのステージ面のZ位置(検出ヘッド28A~31Aで計測されるZ位置)Z30から求めることができる。
 そして、ステージ制御系40Aは、投影系PLの露光領域内のウエハW1上の各評価点のデフォーカス量ΔFiが全体として最小になるようにウエハテーブル14A内のフォーカスレベリング機構46Aを駆動する。これによって、走査露光中のウエハW1の表面が投影系PLの像面に正確に合焦され、レチクルRのパターンの像が高精度にウエハW1の各ショット領域に露光される。
 なお、以上のAF系によるウエハW1の表面のZ位置の計測、及び露光時に検出ヘッド28A~31Aの計測結果に基づいてウエハW1の表面を投影系PLの像面に合焦させる動作は、第2のウエハステージWSB上のウエハW2にも同様に適用できる。
 また、図4(A)は図1のウエハアライメント系ALGを示す底面図、図4(B)は図4(A)のBB線に沿う断面図、図4(C)は図1のウエハステージWSBを示す平面図である。
 図4(A)において、ウエハアライメント系ALGをX軸に45°で交差する方向に挟むように、フレーム24の底面に1対の細長い凹部24b及び凹部24cが形成され、凹部24b,24cの中央部に高反射率の金属膜よりなる基準面34A1,34A2が形成されている。また、凹部24b,24c内の基準面34A1,34A2を挟むように形成されたフレーム24のそれぞれ1対の貫通穴に送光用及び受光用の菱形プリズム50Ab,50Ac及び50Bb,50Bcが固定されている。
 図4(B)に示すように、送光レンズ等を含む光学系50Aa、菱形プリズム50Ab、菱形プリズム50Ac、及び受光レンズ等を含む光学系50Adから、図3のAF系ユニット36と同様の第1の斜入射方式のAF系ユニット50Aが構成されている。AF系ユニット50Aの菱形プリズム50Abから投射される基準ビームDLRA及び計測ビームDLAはそれぞれフレーム24の基準面34A1及びウエハW2の表面(基準面34A1に対向する領域)にスリット像を形成し、基準面34A1及びウエハW2の表面からの反射光が菱形プリズム50Acを介して受光される。そして、光学系50Adから出力される検出信号を図3の信号処理部36Cと同様の信号処理部(不図示)で処理することによって、基準面34A1を基準としてウエハW2の表面のZ位置を斜入射方式で計測できる。
 同様に、菱形プリズム50Bb及び50Bcを含んで、AF系ユニット50Aと同様の第2の斜入射方式のAF系ユニット50Bが構成されている。AF系ユニット50Bは、フレーム24の基準面34A2及びこれに対応するウエハW2の表面に基準ビーム及び計測ビームを投射して、基準面34A2を基準としてウエハW2の表面のZ位置を斜入射方式で計測する。AF系ユニット50A,50B及び信号処理部(不図示)を含んでウエハアライメント系ALG用の2つのAF系が構成されている。基準面34A1,34A2に対応する2箇所の位置で求められるZ位置を例えば平均化することで、ウエハアライメント系ALGの検出領域ALWの中心(光軸)上でのZ位置ZAL1を求めることができる。
 この場合にも、図4(C)の検出ヘッド28B~31BのZヘッド28BZ等は、ウエハアライメント系ALGの周囲のフレーム24の底面のスケール板26C,26Dに検出光を照射して、スケール板26C,26Dを基準としてウエハステージWSB(ウエハテーブル14B)のZ位置を計測している。これらのZ位置を通る平均的な面をウエハテーブル14Bのステージ面と呼ぶ。従って、図3の演算部38Aと同様の演算部(不図示)によって、式(1)と同様に、そのAF系ユニット50A,50Bによって求められるZ位置ZAL1から、検出ヘッド28B~31Bの計測値で定められる面上の検出領域ALWの中心でのZ位置ZAL2とスケール板26C,26Dから基準面34A1,34A2までのZ位置の段差との和を差し引くことで、検出領域ALWの中心におけるウエハテーブル14Bのステージ面に対するウエハW2の表面のZ位置ΔZBを求めることができる。そのZ位置ΔZBも、仮にフレーム24のZ位置が変動しても同じ値に維持されるため、常に高精度にそのステージ面に対するウエハW2の表面のZ位置を表している。
 従って、予めウエハテーブル14Bのステージ面がウエハアライメント系ALGのベストフォーカス位置(例えばウエハアライメント系ALGで撮像されるマークの像のコントラストが最大になる位置)に合致するときのZ位置ZAL2の値ZAL2’を求めておき、そのZ位置ΔZBとそのZ位置ZLA2との和からその値ZAL2’を差し引くことによって、ウエハW2の表面のウエハアライメント系ALGに対するデフォーカス量が求められる。このデフォーカス量が0になるようにウエハテーブル14Bのフォーカスレベリング機構を駆動することで、常にベストフォーカス状態でウエハアライメント系ALGによってウエハW2上の計測対象のアライメントマーク(以下、ウエハマークという)の位置を計測できる。従って、この計測結果から主制御系4内のアライメント制御系(不図示)は、例えばEGA方式で、ウエハテーブル14B上の基準マーク板48B1~48B3の基準マークで定まる座標系上でのウエハW2上の各ショット領域の配列座標を求めることができる。このようなアライメントは、ウエハステージWSA上のウエハW1に対しても同様に行うことができる。
 次に本実施形態の露光装置10の露光動作の一例につき図5のフローチャートを参照して説明する。この露光動作は主制御系4によって制御される。先ず、図5のステップ102において、第1のウエハステージWSAを図1の-X方向のローディング位置に移動し、ウエハステージWSA上にウエハ(W1とする)をロードし、ウエハステージWSAのエンコーダシステムの検出ヘッド28A~31AのXヘッド、Yヘッドで継続してウエハステージWSAのX方向、Y方向の位置を計測する。この際に、第2のウエハステージWSBは例えば+Y方向に待避している。さらに、ウエハステージWSAをX方向及びY方向に駆動して、ウエハテーブル14A上の基準マーク板(図4(C)の基準マーク板48B1~48B3に対応する部材)上の所定の基準マークの位置をウエハアライメント系ALGで計測し、この計測結果に基づいて、ウエハテーブル14Aのθz方向の回転角をリセットし、その上の座標系の原点を設定する。
 次のステップ104において、ウエハステージWSAをX方向及びY方向に駆動し、ウエハW1上の1番目の計測対象のウエハマークをウエハアライメント系ALGの検出領域内に移動し、図4(A)のAF系ユニット50A,50Bを含むアライメント用AF系によって、ウエハステージWSA上のウエハW1のZ位置(フォーカス位置)をフレーム24に設けたAF系の基準面34A1,34A2を基準として計測する。この際に、検出ヘッド28A~31AのZヘッドでもスケール板26C,26Dを基準としてZ位置を計測し、それらのZ位置の差分に基づいてウエハテーブル14Aのステージ面に対するウエハW1のZ位置を求める。
 次のステップ106において、ステップ104で求めたZ位置とウエハアライメント系ALGのベストフォーカス位置との差分(デフォーカス量)が0になるように、ウエハテーブル14Aを介してウエハアライメント系ALGに対してウエハW1の表面をオートフォーカス方式で合焦し、ウエハW1のウエハマークをウエハアライメント系ALGで検出する。実際には、ウエハW1上の計測対象のウエハマーク毎にステップ104及び106が実行される。そして、計測された全部のウエハマークの位置に基づいてウエハW1の全部のショット領域の配列座標の算出(ウエハW1のアライメント)が行われる。
 次のステップ108において、ウエハステージWSAを+X方向に移動し、その途中でAF系ユニット36を含むAF系によって、フレーム24のAF系の基準面34を基準としてウエハW1の表面のZ位置(フォーカス位置)の分布を計測する。この動作と並行してウエハステージWSAのエンコーダシステムの検出ヘッド28A~31AのZヘッドでスケール板26B,26Cに対するウエハテーブル14A(ウエハステージWSA)のZ位置を計測し、式(1)からウエハテーブル14Aのステージ面に対するウエハW1の表面上の全部の評価点におけるZ位置ΔZSWiを計算する。計算結果は記憶部42Aに記憶される。
 次のステップ110において、ウエハステージWSAを投影系PLの下方に移動する。次のステップ112において、ウエハW1のアライメント結果に基づいてウエハステージWSAをX方向、Y方向にステップ移動し、ウエハW1上の一つのショット領域を走査開始位置に移動する。この後は、検出ヘッド28A~31AのZヘッドによるスケール板26A,26Bに対するZ位置の計測を継続して行いつつ、ステージ制御系40Aは、そのZ位置の計測値及びステップ108で記憶したウエハW1の表面の多数の評価点のZ位置(フォーカス位置)を用いて式(2)から投影系PLの露光領域内でのウエハW1の表面の像面からのデフォーカス量ΔFiを求める。さらに、ステージ制御系40Aは、そのデフォーカス量ΔFiに応じてフォーカスレベリング機構46Aを駆動して、ウエハW1のショット領域の表面を像面に合焦させる。
 そして、ステップ112において、そのようにウエハW1のショット領域を合焦した状態で、レチクルRのパターンの一部の投影系PLによる像で当該ショット領域を露光しつつ、レチクルステージRSTとウエハステージWSAとを投影系PLに対して同期してY方向に走査することで、当該ショット領域にレチクルRのパターンの像が走査露光される。その後、ウエハW1上の露光対象のショット領域毎に、ステップ112及び114の動作がステップ・アンド・スキャン方式で繰り返される。ウエハW1上の全部のショット領域の露光が終わったときに、動作はステップ116に移行し、ウエハステージWSAは+X方向のアンローディング位置に移動して、ウエハW1のアンロードが行われる。
 次のステップ118において、露光対象のウエハが残っている場合には、動作はステップ102に戻り、ウエハステージWSAにおいてステップ102~116が繰り返されて、次のウエハに対するアライメント及び露光が行われる。また、第1のウエハステージWSAのステップ110~116までの動作とほぼ並列に、第2のウエハステージWSB側では、ステップ102~108の動作と同様のステップ102B(ウエハW2のロード)、ステップ104B(アライメント用のAF系によるウエハW2のZ位置の計測等)、ステップ106B(ウエハW2をウエハアライメント系ALGに合焦させながら、ウエハW2のアライメントを行うこと)、及びステップ108B(AF系及び検出ヘッド28B~31BのZヘッドによるウエハW2上の多数の評価点のZ位置の計測及び記憶)の動作が実行される。
 さらに、第1のウエハステージWSA側のステップ102~108の動作とほぼ並列に、第2のウエハステージWSB側では、ステップ110~116の動作と同様のステップ110B(ウエハステージWSBの投影系PL側への移動)、ステップ112B(ウエハW2のZ位置の計測及びショット領域の合焦)、ステップ114B(当該ショット領域の走査露光)、及びステップ116B(ウエハW2のアンロード)の動作が実行される。次のステップ118Bで露光対象のウエハが残っている場合には、ウエハステージWSB側ではステップ102B~116Bまでの動作が繰り返される。このようにツイン・ウエハステージ方式でウエハアライメント系ALGによるアライメント(ステップ106又は106B)と投影系PLによる露光(ステップ114B又は114)とをほぼ並列に実行することで、例えば1ロットのウエハを高いスループットで露光できる。
 本実施形態の作用効果等は以下の通りである。
 (1)本実施形態の露光装置10は、投影系PLを介してウエハW1上にレチクルRのパターンの像を露光する露光装置において、ウエハW1を保持して投影系PLに対して移動するウエハステージWSAと、投影系PLに対して静止状態で支持され、ウエハステージWSAに対向するように回折格子状のスケールが形成されたスケール板26A~26Dが固定されたフレーム24と、ウエハステージWSAに配置され、そのスケールに検出光を照射して、ウエハステージWSAとフレーム24との相対位置情報を検出する複数の検出ヘッド28A~31Aと、フレーム24に形成された基準面34と、基準面34に基準ビームDLR(第1光束)を照射し、ウエハW1の表面に計測ビームDL(第2光束)を照射し、基準面34を基準としてウエハW1の表面の投影系PLの光軸に沿った方向の位置(面位置又はZ位置)を計測するAF系ユニット36を含むAF系(面位置検出装置)と、を備えている。
 また、露光装置10による露光方法は、投影系PLに対して移動するウエハステージWSAにウエハW1を保持し(ステップ102)、投影系PLに対して静止状態で支持されたフレーム24に固定されたスケール板26A~26DにウエハステージWSAに対向するように形成された回折格子状のスケールに、ウエハステージWSAの検出ヘッド28A~31Aから検出光を照射して、ウエハステージWSAとフレーム24との相対位置情報を検出し(ステップ102、ステップ108の一部、及びステップ112)、AF系によってフレーム24に形成された基準面34に基準ビームDLRを照射し、ウエハW1の表面に計測ビームDLを照射して、基準面34を基準として、ウエハW1の表面の面位置(Z位置)を計測するものである(ステップ108の一部)。
 本実施形態によれば、AF系は、スケールが設けられたフレーム24に形成された基準面34を基準としてウエハW1の面位置(Z位置)を計測する。また、検出ヘッド28A~31Aを含むエンコーダシステムが、フレーム24のスケール板26A~26D(スケール形成面)を基準としてウエハステージWSA(ウエハテーブル14A)のX方向、Y方向の位置、及びZ位置を計測する。このようにAF系及びエンコーダシステムが共通にフレーム24を基準として位置計測を行っているため、例えば両者の計測値の差分を用いることによって、フレーム24のZ位置が変動しても、ウエハステージWSAに対するウエハW1の面位置を高精度に計測できる。従って、ウエハW1の露光に際して、露光装置10の雰囲気の温度揺らぎの影響等を低減して、ウエハステージWSAの位置及びウエハW1の面位置を高精度に計測することができる。従って、その計測値に基づいて、ウエハW1の表面を投影系PLの像面に高精度に合焦させることが可能となる。
 (2)また、検出ヘッド28A~31AはそれぞれZヘッド28AZ,30AZ等を有し、Zヘッド28AZ等は、ウエハテーブル14Aとフレーム24のスケール形成面との光軸AX方向の相対位置であるウエハテーブル14A(ウエハステージWSA)のZ位置を計測する。従って、ステップ108において、AF系によってフレーム24の基準面34を基準としてウエハW1のZ位置を計測するときに、並行してZヘッド28AZ等でフレーム24のスケール面を基準としてウエハテーブル14AのZ位置を計測し、その2つのZ位置の差分を求めることによって、基準面34のZ位置が変化しても、ウエハテーブル14Aに対するウエハW1の表面のZ位置を高精度に計測できる。
 なお、検出ヘッド28A~31Aの個数は、それらのうちの少なくとも一つのXヘッド28AX等及び少なくとも2つのYヘッド28AY等、又は少なくとも2つのXヘッド及び少なくとも一つのYヘッドがそれぞれスケール板26A~26Dの対応するスケールを検出できる範囲で任意である。
 また、検出ヘッド28A~31A中のZヘッド28AZ等の個数は少なくとも3つであることが好ましい。これによって、ウエハテーブル14AのZ位置、及びθx方向、θy方向の傾斜角を計測できる。なお、そのZヘッドは少なくとも一つでもよい。
 (3)また、基準面34は、フレーム24のウエハステージWSAに対して凹部となる凹部24aの表面に形成されている。従って、基準面34に基準ビームDLRを投射するAF系ユニット36の光学系を容易に配置できる。
 なお、フレーム24の底面とウエハステージWSAとの間のスペースに余裕がある場合には、フレーム24の底面(スケール板26A~26Dと同じ面)又はフレーム24の底面に設けた凸部に基準面34を形成してもよい。
 (4)また、露光装置10は、ウエハW1,W2上のウエハマークの位置を検出するウエハアライメント系ALG(マーク検出系)と、それぞれ露光対象のウエハW1,W2を保持して独立に移動する第1のウエハステージWSA及び第2のウエハステージWSBとを備え、そのAF系のAF系ユニット36(光学系)は、投影系PLとウエハアライメント系ALGとの間に配置されている。また、ウエハステージWSBもフレーム24に設けられたスケール板26A~26Dを用いてウエハステージWSB(ウエハテーブル14B)の位置を計測する検出ヘッド28B~31Bを備えている。
 従って、投影系PLを介してウエハステージWSA上のウエハW1を露光中に、ウエハアライメント系ALGでウエハステージWSB上のウエハW2のウエハマークの位置を計測することができる。これによって露光工程のスループットを向上できる。さらに、ウエハステージWSBをウエハアライメント系ALGの下方から投影系PLの下方に移動する途中で、AF系によってウエハステージWSB上のウエハW2の面位置分布を計測できるため、スループットを低下させることなく、ウエハW2(ウエハW1も同様)の面位置分布を計測できる。
 (5)また、露光装置10は、フレーム24に形成されたウエハアライメント系ALG用の基準面34A1と、基準面34A1に基準ビームDLRA(第3光束)を照射し、ウエハW2の表面に計測ビームDLA(第4光束)を照射して、基準面34A1を基準として、ウエハW2の表面のウエハアライメント系ALGの光軸に沿った方向の位置(Z位置)を計測するアライメント用AF系ユニット50Aを含むAF系(マーク検出系用面位置検出装置)と、を備えている。従って、そのそのAF系の計測結果を用いてウエハアライメント系ALGに対するウエハW2の合焦を高精度に行うことができる。
 なお、上記の実施形態では以下のような変形が可能である。
 (1)上記の実施形態では、AF系ユニット36からの基準ビームDLRはフレーム24の基準面34に直接投射されている。これに対して第1変形例として、図6に示すように、フレーム24の凹部24aに形成された基準面34に、この基準面側が長い台形型の断面形状を持ち、その基準面側の面が基準面34に固定されたプリズム52を設けてもよい。図6において、さらにAF送光系36A内の菱形プリズム36Ab(第1偏向部材)及びAF受光系36B内の菱形プリズム36Bb(第2偏向部材)はそれぞれフレーム24に設けられた貫通穴内に固定されている。
 この第1変形例において、菱形プリズム36Abから射出される基準ビームDLRは、プリズム52の第1の斜面を介して基準面34に投射され、基準面34で反射された基準ビームDLRは、プリズム52の第2の斜面を介して菱形プリズム36Bbに入射する。この他の構成及び動作は図3の実施形態と同様である。
 この第1変形例によれば、菱形プリズム36Abから射出され、菱形プリズム36Bbに入射する基準ビームDLRのY軸に対する角度を小さくできるため、AF系ユニット36の光学系の構成が容易である。
 (2)また、菱形プリズム36Ab,36Bbがフレーム24に支持されているため、AF系ユニット36の光学系の配置が容易である。なお、菱形プリズム36Ab,36Bbの一方をフレーム24に支持してもよい。また、菱形プリズム36Ab,36Bbを用いることなくAF系ユニット36を構成してもよい。
 (3)また、図7(A)の第2変形例で示すように、基準面34を覆うように固定されたプリズム52の基準面34に対向する表面に反射面52Rを形成してもよい。図7(A)において、AF系ユニット36を用いて基準面34に対するウエハW1の表面のZ位置を計測しているときに、例えばウエハステージWSAのウエハテーブル14Aに設けられた検出ヘッド28AのZヘッド28AZは、スケール板26B1に検出光DAを照射して、スケール板26B1に対するウエハテーブル14AのZ位置を計測している。これに続いて、図7(B)に示すように、ウエハステージWSAを+Y方向に移動して、Zヘッド28AZの検出光DAをプリズム52の反射面52Rに照射し、Zヘッド28AZでZ位置を計測するとともに、AF系でZヘッド28AZの上面のZ位置を計測してもよい。この場合、反射面52Rと基準面34とのZ方向の間隔Z7Bは高精度に計測できるため、Zヘッド28AZで計測されるZ位置とAF系で計測されるZ位置との差がその間隔Z7Bとなるように、例えばZヘッド28AZの計測値のオフセットを調整することで、Zヘッド28AZのキャリブレーションを容易に行うことができる。
 (4)また、上記の実施形態のAF系の信号処理部36Cは同期整流を行っている。その代わりに、AF送光系36A内に振動ミラーを設けることなく、光電センサ36Bcとして例えばラインセンサを用いて、このラインセンサ上に形成されるスリット像の位置から各計測点のZ位置を求めるようにしてもよい。
 (5)なお、スケール板26A~26Dを用いるエンコーダシステムとしては、極性が反転する発磁体を微小ピッチで形成した周期的な磁気スケールと、この磁気スケールを読み取る磁気ヘッドとを含む磁気式のリニアエンコーダ等を使用することも可能である。
 (6)また、検出ヘッド28A~31Aを含むエンコーダシステムと並列にウエハステージWSA,WSBの位置を計測するレーザ干渉計を設けてもよい。
 (7)上記の実施形態は、ツイン・ウエハステージ方式の露光装置に本発明を適用したものであるが、本発明は、1つのウエハステージのみを備える露光装置にも同様に適用可能である。この場合には、ウエハ用のAF系は、例えば投影系PLの近傍に配置してもよい。この際に、AF系用の基準面34は、投影系PLの近傍のフレーム24の底面に形成してもよい。
 [第2の実施形態]
 以下、本発明の第2の実施形態につき図8を参照して説明する。本実施形態は、フレーム側に検出ヘッドを設け、ウエハステージWSA,WSB側にスケールを設けたものであし、図8において、図1に対応する部分には同一又は類似の符号を付してその詳細な説明を省略又は簡略化する。
 図8は、本実施形態の露光装置10Aを示す。図8において、投影系PLを支持する光学系フレーム18の底面に複数のリンク機構32を介して、平板状のフレーム54が安定に支持されている。光学系フレーム18は、一例として防振機構(不図示)を介してベース部材12上に支持されている。また、フレーム54に投影系PLをX方向に挟むように図1の検出ヘッド28Aと同様の複数の検出ヘッド28C及び30Cが固定され、投影系PLをY方向に挟むように検出ヘッド28Cと同様の複数の検出ヘッド(不図示)が固定されている。さらに、フレーム54にウエハアライメント系ALGをX方向に挟むように検出ヘッド28Cと同様の複数の検出ヘッド28D及び30Dが固定され、ウエハアライメント系ALGをY方向に挟むように検出ヘッド28Cと同様の複数の検出ヘッド(不図示)が固定されている。さらに、投影系PLとウエハアライメント系ALGとの間のフレーム54の底面の凹部に基準面34が形成され、この基準面をY方向に挟むようにAF系ユニット36が配置され、AF系ユニット36を含んでAF系が構成されている。
 また、第1のウエハステージWSAのウエハテーブル14A上にウエハW1を囲むように、図1のスケール板26A,26Bと同様に表面にXスケール及びYスケールが形成されたスケール板26E1,26E2等が固定され、第2のウエハステージWSBのウエハテーブル14B上にウエハW2を囲むように、図1のスケール板26C,26Dと同様に表面にXスケール及びYスケールが形成されたスケール板26G1,26G2等が固定されている。この他の構成は第1の実施形態と同様である。
 この実施形態による露光方法は、投影系PLを介してウエハW1上にパターンを露光する露光方法において、投影系PLに対して移動するとともに回折格子状のスケールが形成されたウエハステージWSAにウエハW1を保持し、投影系PLに対して静止状態で支持されたフレーム54の検出ヘッド28C~30DからウエハステージWSAのスケールに検出光を照射して、ウエハステージWSAとフレーム24とのX方向、Y方向、Z方向の相対位置情報を検出し、AF系によってフレーム24に形成された基準面34に第1光束を照射し、ウエハW1の表面に第2光束を照射して、基準面34を基準としてウエハW1の表面の投影系PLの光軸に沿った方向の位置(面位置)を計測する。ここで、ウエハステージWSAにスケールが形成されるとは、一例として、そのスケールが形成されたスケール板26E1,26E2がウエハステージWSAに固定されることを含んでいる。
 この実施態様によれば、検出ヘッド28C等が設けられたフレーム54に形成された基準面34を基準としてウエハW1の面位置(Z位置)が計測される。また、ウエハW1を保持するウエハステージWSAの位置情報が、検出ヘッド28C等がフレーム54に設けられた状態でエンコーダ方式で計測される。このように共通にフレーム54を基準として計測を行っているため、例えば両者の計測値の差分を用いることによって、フレーム54のZ位置が変動しても、ウエハステージWSA(ウエハテーブル14A)に対するウエハW1の面位置を高精度に計測できる。従って、ウエハW1の露光に際して、雰囲気の温度揺らぎの影響等を低減して、ウエハステージWSAの位置及びウエハW1の面位置を高精度に計測することができる。従って、その計測結果に基づいて、ウエハW1の表面を投影系PLの像面に高精度に合焦させることが可能となる。
 なお、上記の実施形態の露光装置を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、電子デバイスは、図9に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板を製造するステップ223、前述した実施形態の露光装置10,10Aによりレチクルのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
 言い換えると、このデバイスの製造方法は、上記の実施形態の露光装置(又は露光方法)を用いて基板にパターンを露光することと、そのパターンが露光された基板を処理することと、を含んでいる。この際に、その露光装置又は露光方法では、基板の投影系PLに対する合焦精度を向上できるため、デバイスを高精度に製造できる。ここで、基板を処理することには、パターンが露光された基板を現像すること、加熱すること、エッチングすること、ダイシングすること、ボンディングすること等が含まれる。
 なお、本発明は、上述のステップ・アンド・スキャン方式の走査露光型の露光装置(スキャナ)の他に、ステップ・アンド・リピート方式の投影露光装置(ステッパー等)にも適用できる。
 また、本発明は、半導体デバイス製造用の露光装置に限らず、液晶表示素子やプラズマディスプレイなどを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイスパターンをセラミックスウエハ上に転写する露光装置、並びに撮像素子(CCDなど)、有機EL、マイクロマシーン、MEMS(Microelectromechanical Systems)、及びDNAチップなどの製造に用いられる露光装置などにも適用することができる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置及びEUV露光装置などで使用されるマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
 また、上記の実施形態の照明光学系及び投影光学系を露光装置本体に組み込み光学調整をすると共に、多数の機械部品からなるレチクルステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、更に総合調整(電気調整、動作確認等)をすることにより上記の実施形態の露光装置(投影露光装置)を製造することができる。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
 なお、本願に記載した上記公報、各国際公開パンフレット、米国特許及び米国特許出願公開明細書における開示を援用して本明細書の記載の一部とする。また、明細書、特許請求の範囲、要約書、及び図面を含む2009年6月10日付け提出の日本国特許出願第2009-139687の全ての開示内容はそっくりそのまま引用して本願に組み込まれている。
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
 R…レチクル、PL…投影系、W1,W2…ウエハ、WSA,WSB…ウエハステージ、ALG…ウエハアライメント系、10,10A…露光装置、18…光学系フレーム、24…スケール板固定用のフレーム、26A~26D…スケール板、28A,28B,30A,30B…検出ヘッド、28AZ,28BZ,30AZ,30BZ…Zヘッド、34…AF系の基準面、36…AF系ユニット

Claims (15)

  1.  投影系を介して物体上にパターンを露光する露光装置において、
     前記物体を保持して前記投影系に対して移動するステージと、
     前記投影系に対して静止状態で支持され、前記ステージに対向するように回折格子状のスケールが形成されたフレーム部材と、
     前記ステージに配置され、それぞれ前記スケールに検出光を照射して、前記ステージと前記フレーム部材との相対位置情報を検出する複数の検出ヘッドと、
     前記フレーム部材に形成された基準面と、
     前記基準面に第1光束を照射し、前記物体の表面に第2光束を照射して、前記基準面を基準として、前記物体の表面の前記投影系の光軸に沿った方向の位置情報を計測する面位置検出装置と、
    を備えることを特徴とする露光装置。
  2.  投影系を介して物体上にパターンを露光する露光装置において、
     前記物体を保持して前記投影系に対して移動するとともに、前記投影系に対向する側に回折格子状のスケールが形成されたステージと、
     前記投影系に対して静止状態で支持されたフレーム部材と、
     前記フレーム部材に前記ステージに対向するように配置され、それぞれ前記スケールに検出光を照射して、前記ステージと前記フレーム部材との相対位置情報を検出する複数の検出ヘッドと、
     前記フレーム部材に形成された基準面と、
     前記基準面に第1光束を照射し、前記物体の表面に第2光束を照射して、前記基準面を基準として、前記物体の表面の前記投影系の光軸に沿った方向の位置情報を計測する面位置検出装置と、
    を備えることを特徴とする露光装置。
  3.  前記複数の検出ヘッドのうち少なくとも一つは、前記ステージと前記フレーム部材との前記光軸方向の相対位置情報を検出することを特徴とする請求項1又は2に記載の露光装置。
  4.  前記基準面側が長い台形型の断面形状を持ち、前記基準面側の面が前記基準面に固定されたプリズム部材を備え、
     前記プリズム部材の前記基準面に対向する表面に、前記検出ヘッドが前記ステージと前記フレーム部材との前記光軸方向の相対位置情報を検出するときの位置基準となる反射面が形成されたことを特徴とする請求項3に記載の露光装置。
  5.  前記面位置検出装置は、前記第1光束を前記基準面に向けて偏向する第1偏向部材と、前記基準面で反射された前記第1光束を偏向する第2偏向部材とを有し、
     前記第1及び第2偏向部材の少なくとも一方が前記フレーム部材に支持されることを特徴とする請求項1から4のいずれか一項に記載の露光装置。
  6.  前記基準面は、前記フレーム部材の前記ステージに対して凹部に形成されたことを特徴とする請求項1から5のいずれか一項に記載の露光装置。
  7.  前記物体の位置合わせ用マークを検出するマーク検出系を備え、
     前記ステージは、それぞれ露光対象の物体を保持して独立に移動する第1ステージ及び第2ステージを有し、
     前記面位置検出装置の光学系は、前記投影系と前記マーク検出系との間に配置されることを特徴とする請求項1から6のいずれか一項に記載の露光装置。
  8.  前記フレーム部材に形成されたマーク検出系用基準面と、
     前記マーク検出系用基準面に第3光束を照射し、前記物体の表面に第4光束を照射して、前記基準面を基準として、前記物体の表面の前記マーク検出系の光軸に沿った方向の位置情報を計測するマーク検出系用面位置検出装置と、
    を備えることを特徴とする請求項7に記載の露光装置。
  9.  請求項1から8のいずれか一項に記載の露光装置を用いて基板にパターンを露光することと、
     前記パターンが露光された前記基板を処理することと、を含むデバイス製造方法。
  10.  投影系を介して物体上にパターンを露光する露光方法において、
     前記投影系に対して移動するステージに前記物体を保持し、
     前記投影系に対して静止状態で支持されたフレーム部材に前記ステージと対向するように形成された回折格子状のスケールに対し、前記ステージから検出光を照射して、前記ステージと前記フレーム部材との相対位置情報を検出し、
     前記フレーム部材に形成された基準面に第1光束を照射し、前記物体の表面に第2光束を照射して、前記基準面を基準として、前記物体の表面の前記投影系の光軸に沿った方向の位置情報を計測する、
    ことを特徴とする露光方法。
  11.  投影系を介して物体上にパターンを露光する露光方法において、
     前記投影系に対して移動するとともに回折格子状のスケールが形成されたステージに前記物体を保持し、
     前記投影系に対して静止状態で支持されたフレーム部材から前記スケールに検出光を照射して、前記ステージと前記フレーム部材との相対位置情報を検出し、
     前記フレーム部材に形成された基準面に第1光束を照射し、前記物体の表面に第2光束を照射して、前記基準面を基準として、前記物体の表面の前記投影系の光軸に沿った方向の位置情報を計測する、
    ことを特徴とする露光方法。
  12.  前記相対位置情報は、前記ステージと前記フレーム部材との前記光軸方向の相対位置情報を含むことを特徴とする請求項10又は11に記載の露光方法。
  13.  前記基準面側が長い台形型の断面形状を持ち、その裏面が前記基準面に固定されたプリズム部材を使用し、
     前記プリズム部材の前記基準面に対向する表面に形成された反射面を前記光軸方向の相対位置情報の位置基準とすることを特徴とする請求項12に記載の露光方法。
  14.  前記ステージは、それぞれ前記物体の位置合わせ用マークが設けられて独立に移動する第1ステージ及び第2ステージを有し、
     前記第1及び前記第2ステージの一方のステージ上の前記位置合わせ用マークを検出した後、
     前記基準面を基準として、前記一方のステージが保持する前記物体の表面の前記光軸に沿った方向の位置情報を計測し、
     該計測結果に基づいて、前記一方のステージ上の前記物体に前記パターンを露光する際に、前記物体の前記光軸方向の位置を制御する
    ことを特徴とする請求項10から13のいずれか一項に記載の露光方法。
  15.  請求項10から14のいずれか一項に記載の露光方法を用いて基板にパターンを露光することと、
     前記パターンが露光された前記基板を処理することと、を含むデバイス製造方法。
PCT/JP2010/059755 2009-06-10 2010-06-09 露光方法及び装置、並びにデバイス製造方法 WO2010143652A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518554A JPWO2010143652A1 (ja) 2009-06-10 2010-06-09 露光方法及び装置、並びにデバイス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-139687 2009-06-10
JP2009139687 2009-06-10

Publications (1)

Publication Number Publication Date
WO2010143652A1 true WO2010143652A1 (ja) 2010-12-16

Family

ID=43308907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059755 WO2010143652A1 (ja) 2009-06-10 2010-06-09 露光方法及び装置、並びにデバイス製造方法

Country Status (2)

Country Link
JP (1) JPWO2010143652A1 (ja)
WO (1) WO2010143652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316928B2 (en) 2010-08-25 2016-04-19 Asml Netherlands B.V. Stage apparatus, lithographic apparatus and method of positioning an object table

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097915A (ja) * 1995-06-15 1997-01-10 Nikon Corp 面傾斜検出装置
JP2007318119A (ja) * 2006-05-09 2007-12-06 Asml Netherlands Bv 変位測定システム、リソグラフィ装置、変位測定方法およびデバイス製造方法
JP2008294443A (ja) * 2007-05-24 2008-12-04 Asml Netherlands Bv エンコーダ型位置センサシステムを有するリソグラフィ装置
JP2009054735A (ja) * 2007-08-24 2009-03-12 Nikon Corp 露光装置及びデバイス製造方法
JP2009117842A (ja) * 2007-11-08 2009-05-28 Nikon Corp 移動体装置、パターン形成装置及び露光装置、並びにデバイス製造方法
JP2009231835A (ja) * 2008-03-24 2009-10-08 Asml Netherlands Bv エンコーダタイプの測定システム、リソグラフィ装置、およびエンコーダタイプの測定システムのグリッドもしくは回折格子上またはグリッドもしくは回折格子内のエラーを検出するための方法
JP2010153840A (ja) * 2008-12-03 2010-07-08 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097915A (ja) * 1995-06-15 1997-01-10 Nikon Corp 面傾斜検出装置
JP2007318119A (ja) * 2006-05-09 2007-12-06 Asml Netherlands Bv 変位測定システム、リソグラフィ装置、変位測定方法およびデバイス製造方法
JP2008294443A (ja) * 2007-05-24 2008-12-04 Asml Netherlands Bv エンコーダ型位置センサシステムを有するリソグラフィ装置
JP2009054735A (ja) * 2007-08-24 2009-03-12 Nikon Corp 露光装置及びデバイス製造方法
JP2009117842A (ja) * 2007-11-08 2009-05-28 Nikon Corp 移動体装置、パターン形成装置及び露光装置、並びにデバイス製造方法
JP2009231835A (ja) * 2008-03-24 2009-10-08 Asml Netherlands Bv エンコーダタイプの測定システム、リソグラフィ装置、およびエンコーダタイプの測定システムのグリッドもしくは回折格子上またはグリッドもしくは回折格子内のエラーを検出するための方法
JP2010153840A (ja) * 2008-12-03 2010-07-08 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316928B2 (en) 2010-08-25 2016-04-19 Asml Netherlands B.V. Stage apparatus, lithographic apparatus and method of positioning an object table
US9915880B2 (en) 2010-08-25 2018-03-13 Asml Netherlands B.V. Stage apparatus, lithographic apparatus and method of positioning an object table

Also Published As

Publication number Publication date
JPWO2010143652A1 (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
JP6035695B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP5275210B2 (ja) リソグラフィ装置
JP5146507B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
TWI454852B (zh) A moving body system and a moving body driving method, a pattern forming apparatus and a pattern forming method, an exposure apparatus and an exposure method, and an element manufacturing method
KR101670624B1 (ko) 스테이지 장치, 패턴 형성 장치, 노광 장치, 스테이지 구동 방법, 노광 방법, 그리고 디바이스 제조 방법
JP5516740B2 (ja) 移動体駆動方法、移動体装置、露光方法及び露光装置、並びにデバイス製造方法
KR20150119494A (ko) 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
KR101476865B1 (ko) 노광 장치와 노광 방법, 및 디바이스 제조 방법
KR20110018352A (ko) 노광 장치, 노광 방법, 및 디바이스 제조 방법
KR20100057533A (ko) 이동체 구동 시스템
JP2010205867A (ja) 位置検出装置及び露光装置
JP5861858B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP6748907B2 (ja) 計測装置、露光装置、デバイス製造方法、及びパターン形成方法
WO2012073483A1 (ja) マーク検出方法、露光方法及び露光装置、並びにデバイス製造方法
WO2010143652A1 (ja) 露光方法及び装置、並びにデバイス製造方法
JP2013045815A (ja) 露光方法及びデバイス製造方法
JP5757397B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2006032807A (ja) 露光装置及びデバイス製造方法
JP5565613B2 (ja) 計測方法、露光方法及び露光装置、並びにデバイス製造方法
JP2010185807A (ja) 表面形状計測装置、表面形状計測方法、露光装置及びデバイス製造方法
JP2009252850A (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法
JP2011138995A (ja) 面位置検出装置、露光方法及び装置、並びにデバイス製造方法
JP2010067874A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2009252847A (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786183

Country of ref document: EP

Kind code of ref document: A1