WO2010140397A1 - 光出射角調整シート、表示パネル、表示装置、および光出射角調整シートの製造方法 - Google Patents

光出射角調整シート、表示パネル、表示装置、および光出射角調整シートの製造方法 Download PDF

Info

Publication number
WO2010140397A1
WO2010140397A1 PCT/JP2010/052603 JP2010052603W WO2010140397A1 WO 2010140397 A1 WO2010140397 A1 WO 2010140397A1 JP 2010052603 W JP2010052603 W JP 2010052603W WO 2010140397 A1 WO2010140397 A1 WO 2010140397A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index material
light emission
emission angle
light
Prior art date
Application number
PCT/JP2010/052603
Other languages
English (en)
French (fr)
Inventor
伊織 青山
明弘 山本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/319,370 priority Critical patent/US20120051032A1/en
Publication of WO2010140397A1 publication Critical patent/WO2010140397A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Definitions

  • the present invention relates to a light emission angle adjusting sheet that diffuses and emits received light, a display panel to which the light emission angle adjusting sheet is attached, and a display device, and further relates to a method for manufacturing a light emission angle adjusting sheet.
  • liquid crystal display device display device
  • a display panel such as a liquid crystal display panel
  • an image may be viewed from various directions inclined with respect to the liquid crystal display panel.
  • the light emission angle adjusting sheet is an optical member that diffuses light from the backlight unit that is incident substantially perpendicular to the liquid crystal display panel in all directions after exiting the liquid crystal display panel.
  • the liquid crystal display panel is designed so that the light emitted obliquely from the panel surface is optically compensated as much as when the light emitted vertically from the panel surface is visually recognized.
  • a vertical alignment (VA) liquid crystal display panel has excellent contrast ratio characteristics when viewed from the front, but is viewed from the front when viewed from the front.
  • the change in contrast ratio is large compared to the case where the liquid crystal display panel is viewed from the front and when the liquid crystal display panel is viewed from the perspective.
  • the liquid crystal display device has a problem that the display appearance varies depending on the viewing direction, that is, the viewing angle characteristic is inferior. In order to solve this problem, it is only necessary to block the backlight light incident obliquely on the liquid crystal display panel, but in this case, the image cannot be viewed from the oblique direction.
  • a light emission angle adjustment sheet is included in the liquid crystal display panel.
  • the light emission angle adjustment sheet guides light in an oblique direction with respect to the liquid crystal display panel, thereby making it easy for a viewer to see an image (for example, Patent Document 1).
  • an image for example, Patent Document 1
  • the image viewed from the front of the liquid crystal display panel and the image viewed from the oblique side of the liquid crystal display panel are substantially the same, and there is no change in the image at the viewing angle, so-called viewing angle-free liquid crystal display device Is completed.
  • the cross-sectional shape of the low refractive index material 113 in the light emission angle adjustment sheet 111 is a wedge shape, as shown in the cross-sectional view of FIG.
  • the high refractive index material 12 requires a mold that reflects the shape of the low refractive index material 113.
  • Such a specially shaped mold is expensive and it is difficult to reflect the special shape on the mold itself.
  • the present invention has been made to solve the above problems. And the objective is to provide the light emission angle adjustment sheet
  • the light emission angle adjusting sheet includes a light receiving surface and an output surface that emits light that has passed through the light receiving surface.
  • the light emission angle adjustment sheet includes a low refractive index material and a high refractive index material having a difference in refractive index, and is a low exposed portion of the low refractive index material on the emission surface of the light emission angle adjustment sheet.
  • a plurality of refractive index material exposed portions and a plurality of high refractive index material exposed portions, which are exposed portions of the high refractive index material, are scattered.
  • the low refractive index material is a light receiving material. It is a shape that tapers monotonously toward the surface side.
  • the light emission angle adjusting sheet includes a region in which high-refractive-index material exposed portions having an area different from the above area are arranged. Then, such a light emission angle adjustment sheet is, for example, compared to a light emission angle adjustment sheet including only a region in which a low refractive index material exposed portion and a high refractive index material exposed portion having a first area are arranged, It is easy to adjust the light intensity balance for each light emission angle. Therefore, the light emitted from the light emission angle adjusting sheet is easily diffused in various directions (brightness diffusibility is improved).
  • the shape of the exposed portion of the low refractive index material is a monotonously tapering shape, a cutting tool for cutting the mold can be easily formed, and furthermore, an excessively high accuracy is not required for cutting into the mold. . Therefore, the above light emission angle adjustment sheet is easily manufactured compared with the light emission angle adjustment sheet containing the complicated low-refractive-index material.
  • this light emission angle adjustment sheet is inexpensive and easy to manufacture. Accordingly, the light emission angle adjusting sheet can be easily and inexpensively manufactured, and the viewing angle characteristics of the display device can be improved.
  • the shape of the low refractive index material that monotonously tapers is an isosceles triangle section. More specifically, the low-refractive index material has a triangular prism shape, with the triangle having a triangular shape on the light receiving surface and the remaining two corners facing the exit surface and intersecting the column direction. In the cross section, it is desirable to form an isosceles triangle in which one corner on the light receiving surface side is an apex angle and the remaining two corners are base angles.
  • the low refractive index material exposed portions and the high refractive index material exposed portions are alternately arranged, and there are two or more areas of the high refractive index material exposed portions. It is desirable if the refractive index material exposed portions are arranged alternately.
  • in-plane uniformity occurs in the distribution of the high refractive index material exposed portion in the light emission angle adjustment sheet, and therefore, in-plane uniformity also occurs in luminance diffusivity as the entire light emission angle adjustment sheet. . Therefore, the viewing angle characteristics of the liquid crystal display device including such a light emission angle adjusting sheet are surely improved.
  • the low refractive index material may be formed of a transparent resin or a transparent resin containing a light absorbing material. This is because the degree of freedom of material selection increases.
  • the light emission angle adjusting sheet may be a single layer structure or a multilayer structure.
  • the light emission angle adjusting sheet having a two-layer structure it is desirable that the extending direction of the first layer of the low refractive index material exposed portion and the extending direction of the second layer of the low refractive index material exposed portion intersect.
  • the light emitted from the light emission angle adjustment sheet is arranged in the arrangement direction of the low refractive index material in the first light emission angle adjustment sheet 1 and the low refraction in the second light emission angle adjustment sheet. It is diffused in two directions with the arrangement direction of the rate material. Therefore, the luminance distribution characteristics of the light emitted from the light emission angle adjustment sheet are improved in two directions that intersect.
  • a surface treatment film may be attached to the emission surface. This is because sunlight or the like is less likely to be reflected on the light emission angle adjustment sheet.
  • a display panel in which the light emission angle adjusting sheet as described above is attached to the display surface can also be said to be the present invention.
  • a display device including such a display panel and a lighting device that supplies light to the display panel can be said to be the present invention.
  • the reference position of the display panel is determined based on the horizontal direction.
  • the first reference direction that is the same as the horizontal direction and the second reference direction that intersects the first reference direction are determined within the plane of the display panel that is arranged at the reference position, low refraction is achieved.
  • the rate material exposed portion is linear, and the linear direction thereof coincides with the first reference direction or the second reference direction. This is because the required luminance diffusion direction differs depending on the position where the viewer visually recognizes the liquid crystal display device.
  • the viewing angle characteristics of the display device can be improved while being easily and inexpensively manufactured.
  • FIG. 3 is an exploded perspective view showing an enlarged liquid crystal display panel.
  • FIG. 4 is a cross-sectional view of the light emission angle adjusting sheet (note that the cross-sectional direction is the line A-A ′ of FIG. 1). These are sectional drawings which exploded and illustrated the light emission angle adjusting sheet. These are 2 views which show together the top view and sectional drawing of a light emission angle adjustment sheet
  • FIG. 3 is an exploded perspective view showing an enlarged liquid crystal display panel. These are explanatory drawings which show the positional relationship between a liquid crystal television on which a liquid crystal display device is mounted and a viewer. These are explanatory drawings which show the positional relationship between the display and viewer who are employ
  • FIG. 3 is an exploded perspective view of a liquid crystal display device. These are sectional drawings which show the conventional light emission angle adjustment sheet.
  • liquid crystal display device with MVA (Multidomain Vertical Alignment) orientation will be described as an example of a display device, but the present invention is not limited to this.
  • FIG. 20 is an exploded perspective view of the liquid crystal display device 59.
  • a liquid crystal display device 59 includes a liquid crystal display panel 39, a backlight unit (illumination device) 49 that supplies light to the liquid crystal display panel 39, and a housing HG (front housing HG1) that sandwiches them. -Back housing HG2).
  • the liquid crystal display panel 39 bonds an active matrix substrate 31 including a switching element such as a TFT (Thin Film Transistor) and a counter substrate 32 facing the active matrix substrate 31 with a sealant (not shown). Then, liquid crystal (not shown) is injected into the gap between the substrates 31 and 32.
  • a switching element such as a TFT (Thin Film Transistor)
  • a counter substrate 32 facing the active matrix substrate 31 with a sealant (not shown). Then, liquid crystal (not shown) is injected into the gap between the substrates 31 and 32.
  • the light emission angle adjusting sheet 11 is attached to the counter substrate 32.
  • the light emission angle adjustment sheet 11 is an optical member that receives light emitted from the counter substrate 32 and adjusts the emission angle of the received light. By mounting such a light emission angle adjusting sheet 11 on the liquid crystal display panel (and thus the liquid crystal display device 59), the viewing angle of the liquid crystal display panel 39 is adjusted (details will be described later).
  • the polarizing film 33 is attached to the light receiving surface side of the active matrix substrate 31 and the emitting surface side of the counter substrate 32, and the light emission angle adjusting sheet 11 is mounted on the polarizing film 33 on the counter substrate 32 side.
  • the above liquid crystal display panel 39 displays an image using the change of the transmittance
  • the backlight unit 49 includes a light source (not shown) and an optical sheet group (light collecting member) 41 that collects light from the light source.
  • the light source is, for example, a fluorescent tube or an LED (Light-Emitting-Diode), and is not particularly limited as long as it emits light.
  • the optical sheet group 41 is formed by stacking, for example, one diffusion sheet and two lens sheets to uniformize light from the light source and collect light (note that the light is already collected before entering the optical sheet group 41). In the case of a light source capable of realizing light, the optical sheet group 41 can be omitted).
  • the backlight unit 49 as described above is positioned directly below the active matrix substrate 31 of the liquid crystal display panel 39, and irradiates light to the non-light emitting liquid crystal display panel 39.
  • the liquid crystal display panel 39 improves the display function by receiving light from the backlight unit 49 (backlight light). If the light from the backlight unit 49 can uniformly irradiate the entire surface of the liquid crystal display panel 39, the display quality of the liquid crystal display panel 39 is improved.
  • FIG. 1 is an enlarged perspective view of the liquid crystal display panel 39 (however, for convenience, the polarizing film 33 is omitted).
  • 2 is a cross-sectional view of the light emission angle adjusting sheet 11 (the cross-sectional direction is along the line A-A ′ in FIG. 1).
  • FIG. 3 is an exploded sectional view of the light emission angle adjusting sheet 11.
  • the light emission angle adjusting sheet 11 includes a light receiving surface 11B that receives light traveling from the counter substrate 32 and an output surface 11U that emits light that has passed through the light receiving surface 11B. Furthermore, the light emission angle adjusting sheet 11 includes a plurality of materials having different refractive indexes. More specifically, the light emission angle adjusting sheet 11 is a relatively high refractive index material (high refractive index material) 12 such as polycarbonate or epoxy acrylate, and a relatively low refractive index material (low refractive index material) 13. Polymethyl methacrylate, urethane acrylate, or a fluorine polymer material.
  • high refractive index material such as polycarbonate or epoxy acrylate
  • low refractive index material relatively low refractive index material
  • the high refractive index material 12 becomes a base (base) of the light emission angle adjusting sheet 11, and the low refractive index material 13 is embedded in the high refractive index material 12.
  • the high refractive index material 12 is a planar member, one of which is a flat surface 12B that becomes the light receiving surface 11B, and the back surface of the flat surface 12B is an uneven surface 12U in which linear depressions are arranged. (This uneven surface 12U becomes a part of the emission surface 11U).
  • the uneven surface 12U includes a flat portion 12F having the same in-plane direction as the flat surface 12B, and a recessed portion 12D that is recessed with respect to the flat portion 12F.
  • the recessed portion 12D is linear within the surface of the concavo-convex surface 12U and tapers toward the flat surface 12B (note that the extending direction (extending direction) of the recessed portion 12D is the X direction).
  • the depression direction of the hollow portion 12D that intersects the X direction is the Y direction, and the direction that intersects the X and Y directions is the Z direction).
  • a hollow portion 12D having a triangular cross section (for example, an isosceles triangular cross section) formed by connecting the linear inner walls 12i in the hollow portion 12D so as to approach each other toward the plane 12B side is exemplified.
  • the recessed portions 12D are arranged in a plurality in the crossing direction (Z direction or the like) orthogonal to the extending direction of itself.
  • the interval D between the recessed portions 12D is not constant.
  • relatively short intervals Dn and relatively long intervals Dw are alternately arranged (Dn ⁇ Dw).
  • the low refractive index material 13 is filled (filled) in the hollow portion 12D. Therefore, the low refractive index material 13 reflects the shape of the hollow portion 12D, is linear, and faces the flat surface 12B of the high refractive index material 12 (that is, the light receiving surface 11B of the light emission angle adjusting sheet 11). A monotonously tapered shape.
  • the low refractive index material 13 has a triangular prism shape, and the bottom surface 13B is directed to the uneven surface 12U of the high refractive index material 12 (that is, the output surface 11U of the light output angle adjusting sheet 11). Meanwhile, the side surfaces 13S and 13S are directed to the flat surface 12B of the high refractive index material 12 (that is, the light receiving surface 11B of the light emission angle adjusting sheet 11).
  • the portion exposed to the uneven surface 12U contacts the bottom surface 13B and the inner wall 12i of the recessed portion 12D.
  • the portion to be interpreted is the side surfaces 13S and 13S, it can be interpreted that the low refractive index material 13 has a triangular cross section (for example, an isosceles triangle shape).
  • the low-refractive index material 13 has a triangular prism shape, with one triangular corner facing the light receiving surface 11B and the other two corners facing the emitting surface 11U, and with respect to the column direction.
  • an isosceles triangle having an apex angle on one light-receiving surface 11B side and a base angle on the other two corners is formed.
  • the light emission angle adjusting sheet 11 including the low refractive index material 13 and the high refractive index material 12 proceeds from the backlight unit 49 and diffuses the light passing through the liquid crystal display panel 39. Therefore, the luminance diffusion characteristics of the light emission angle adjustment sheet 11 will be described with reference to a comparative example. The description will be made with reference to FIGS. 4 to 16.
  • This aperture ratio HL is a low refractive index material 13 exposed on the exit surface 11U of the light exit angle adjusting sheet 11 as shown in FIG. 4 (a two-view diagram illustrating both a plan view and a sectional view). It is defined by the area of a part and the area of a part of the high refractive index material 12 exposed at the exit surface 11U.
  • the exposed portion of the low refractive index material 13 is the low refractive index material exposed portion 23 (that is, the bottom surface 13B of the low refractive index material 13), and the high A portion where the refractive index material 12 is exposed is referred to as a high refractive index material exposed portion 22.
  • the low refractive index material exposed portion 23 and the high refractive index material exposed portion 22 are both planar and have a certain area.
  • an aperture ratio HR (%) is defined as one set of the adjacent low refractive index material exposed portion 23 and high refractive index material exposed portion 22 and an area ratio on the emission surface 11U by the set. Specifically, it is as follows.
  • AR [H] Area of high refractive index material exposed portion 22
  • AR [L] Area of low refractive index material exposed portion 23
  • HR Adjacent low refractive index material exposed portion 23 and high refractive index material exposed portion 2 2 is a ratio of the area of the high refractive index material exposed portion 22 in the area obtained by combining the area of the high refractive index material exposed portion 22 and the area of the low refractive index material exposed portion 23 in one set.
  • AR [L] is “S ⁇ Db”.
  • S the length along the extending direction of the low refractive index material exposed portion 23
  • Db the width of the low refractive index material exposed portion 23
  • AR [H] is “S ⁇ Db”.
  • S the area AR [H] of the high refractive index material exposed portion 22 is obtained by “S” which is also one side length of the light emission angle adjusting sheet 11 and the interval Dn or the interval Dw between the recessed portions 12D. That is, the area AR [H] is “S ⁇ Dn” or “S ⁇ Dw”.
  • the aperture ratio HL becomes the following aperture ratio HLn and aperture ratio HLw.
  • HLn (S ⁇ Db) / ⁇ (S ⁇ Db) + (S ⁇ Dn) ⁇ ⁇ 100 ...
  • HLw (S ⁇ Db) / ⁇ (S ⁇ Db) + (S ⁇ Dw) ⁇ ⁇ 100 ...
  • the low refractive index material exposed portions 23 and the high refractive index material exposed portions 22 are alternately arranged on the exit surface 11U, and the high refractive index material exposed portions 22 existing in the column.
  • the high-refractive index material exposed portions 22 having different areas “S ⁇ Dn” or “S ⁇ Dw” are alternately arranged, the region RGn having the aperture ratio HLn and the region RGw having the aperture ratio HLw are formed.
  • the exit surface 11U in FIG. 4, the dotted line sections for explaining the region RG are illustrated so as not to overlap for convenience).
  • the light emission angle adjusting sheet 11 in which the region RGn in which the aperture ratio HLn is “40%” and the region RGw in which the aperture ratio HLw is “60%” are alternately arranged, and the aperture ratio HLn is “35%” 5 and 6 are graphs showing luminance diffusion characteristics by the light emission angle adjusting sheet 11 in which the regions RGn and RGw having the aperture ratio HLw “65%” are alternately arranged.
  • a graph line of an aperture ratio HLf “50%” described later is also shown).
  • the vertical axis represents the luminance (au; arbitrary unit)
  • the horizontal axis represents the outgoing angle (deg) of the outgoing light from the light outgoing angle adjustment sheet 11.
  • the difference between FIG. 5 and FIG. 6 is the difference in the luminance range on the vertical axis.
  • the light emission angle adjustment sheet 11 as a comparative example has only one type of aperture ratio HL on the emission surface 11U of the light emission angle adjustment sheet 11.
  • the aperture ratio HL becomes the following aperture ratio HLf.
  • HLf (S ⁇ Db) / ⁇ (S ⁇ Db) + (S ⁇ Df) ⁇ ⁇ 100 ...
  • FIG. 10 and FIG. 11 are graphs showing the luminance diffusion characteristics by the light emission angle adjusting sheet 11 in which the regions RGf in which “70%” is arranged are shown in FIG. 10 (FIG. 10 corresponds to FIG. 5 and FIG. Corresponding to).
  • the luminance near the viewing angle 0 (°) is the highest (luminance in the front viewing) so that it looks bright in the front view, and from there ⁇ viewing angle 0 (°) ⁇ to a wide angle. Therefore, it has a mountain-like characteristic in which the luminance is attenuated.
  • the brightness of the video signal is low, but the reflected light on the surface due to external light becomes strong, so there is a problem that it is difficult to see, and even with a wide range of viewing angles, there is a certain amount of brightness relative to the brightness in front view It is desirable that the brightness is maintained.
  • the graph line indicating such desirable luminance is preferably parallel to the horizontal axis in FIGS. 10 and 11 as much as possible. Now, referring to FIG. 10 and FIG.
  • the luminance near the viewing angle 0 (°) is the highest luminance
  • is the highest as the viewing angle increases.
  • the brightness gradually decreases from the brightness.
  • does not have an excessively large inclination angle with respect to the horizontal axis (that is, the graph line is relatively parallel to the horizontal axis). It can be said).
  • is relatively parallel to the horizontal axis but has a dent (see the white arrow).
  • a darker line (dark line) than the surroundings is visually recognized in the image of the liquid crystal display panel 39, causing image quality deterioration.
  • the light emission angle adjusting sheet 11 having an aperture ratio HLf of 60% / 70% is desirable. This is because, as shown in FIGS. 10 and 11, the maximum luminance near the viewing angle 0 (°) in the case of the aperture ratio HLf of 60% and 70% is 0 ° in the case of the aperture ratio HLf of 50%. °), which is larger than the maximum brightness in the vicinity, so the graph line at the viewing angle 0 (°) to
  • the maximum luminance near the viewing angle 0 (°) is larger than that in the case of the aperture ratio HLf of 50%, and therefore the aperture ratio of 60% and 70%.
  • the graph line at HLf is not parallel to the horizontal axis compared to the graph line at the aperture ratio HLf of 50%, and it can be said that the luminance diffusion is insufficient.
  • the vertical axis is the normalized luminance (brightness normalized so that the maximum luminance is 1.0), and the horizontal axis is the gradation (0 to 255), and the light emission angle adjustment with an aperture ratio HLf of 50%
  • a comparison between the liquid crystal display panel 39 to which the sheet 11 is attached, the liquid crystal display panel 39 to which the light emission angle adjusting sheet 11 having an aperture ratio HLf of 60% is attached, and the liquid crystal display panel having MVA liquid crystal are as follows. (See FIGS. 12 to 14).
  • the vertical axis represents normalized luminance
  • the horizontal axis represents gradation.
  • the graph lines corresponding to the respective viewing angles do not overlap with the graph lines in the front view.
  • the appearance of the case is clearly different. For example, when viewed from the front, the black display that has been sunk firmly appears whitish and appears gray when viewed obliquely.
  • the graph lines corresponding to the respective viewing angles overlap with the curves in the front view as shown in FIGS.
  • the change in viewing angle is relatively low.
  • FIG. 15 corresponding to the aperture ratio HLf 50% and the aperture ratio HLf60.
  • FIG. 16 corresponding to%, it can be seen that the aperture ratio HLf of 50% is closer to the frontal curve than the aperture ratio of HLf 60%, and the change in the viewing angle is smaller. .
  • the aperture ratio HLf is set to 50% or more for the above problem (difference between the appearance in the case of perspective and the appearance in the case of front view), the luminance diffusion is insufficient and the viewing angle. The characteristics (change in viewing angle) are not improved.
  • the light emission angle adjusting sheet 11 in which the regions RG (RGn and RGw) having different aperture ratios HL (HLn and HLw) are alternately arranged with respect to the comparative example as described above is as follows.
  • the light emission angle adjusting sheet 11 in which the regions RGf having only the aperture ratio HLf of 50% are arranged the light emission angle adjusting sheet 11 in which the regions RGn having the aperture ratio HLn of 40% and the regions RGw having the aperture ratio HLw of 60% are arranged alternately.
  • the region RGn having an aperture ratio HLn of 35% and the region RGw having an aperture ratio HLw of 65% are alternately arranged all the light is obtained at a viewing angle of 0 (°).
  • the brightness of the light emitted from the emission angle adjusting sheet 11 is approximately the same.
  • is similar to the luminance at the viewing angle 0 (°), when the aperture ratio HLn is 40% and the aperture ratio HLw is 60%, the aperture ratio HLn is 35%. When the aperture ratio HLw is 65%, the luminance is approximately the same as when the aperture ratio HLf is 50%. This is because the viewing angle is not so large, and the amount of light reflected by the side surface 13S of the low refractive index material 13 and emitted through the high refractive index material exposed portion 22 is not easily affected by the aperture ratio HL.
  • the light reflected by the side surface 13S of the low refractive index material 13 corresponds to a viewing angle of 0 (°) to
  • is not reflected by the side surface 13S of the adjacent low refractive index material 13 or after being incident at an angle close to parallel to the side surface 13S, and is reflected by the high refractive index material. The light is emitted through the exposed portion 22.
  • is affected by the aperture ratio HL (see the area surrounded by the broken line in FIGS. 5 and 6).
  • the luminance at an aperture ratio HLn of 40% and an aperture ratio HLw of 60%, and the luminance at an aperture ratio of HLn of 35% and an aperture ratio of HLw of 65% are lower than the luminance at an aperture ratio of HLf of 50%.
  • the front luminance is directly proportional to the width of the high refractive index material, and thus the average value of the aperture ratio HLn and the aperture ratio HLw, but the luminance characteristic in the case of a wide angle is the aperture ratio HLw. It is because it is easily affected.
  • the light reflected by the side surface 13S of the low refractive index material 13 is emitted through the high refractive index material exposed portion 22. This is caused by the light corresponding to the viewing angle
  • the light distribution at a wide angle due to the width length Dw is lower than the light distribution at a wide angle due to the width length Dn in the unit length of the side surface 13S of the low refractive index material 13.
  • the luminance is greatly reduced.
  • the light emission angle adjusting sheet 11 includes the region RGn having an aperture ratio HLn of 40% and the region RGw having an aperture ratio HLw of 60%, and the presence of the high refractive index material exposed portion 22 having a relatively short width and length Dn. Light corresponding to a large viewing angle can be suppressed.
  • the light emission angle adjusting sheet 11 in which the regions RG (RGn and RGw) having different aperture ratios HL (HLn and HLw) are alternately arranged has the region RGf having a single aperture ratio HLf. Compared with the light emission angle adjusting sheets 11 arranged alternately, the luminance diffusion characteristics can be improved (see FIGS. 5 and 6).
  • the small change in the viewing angle at this time corresponds to, for example, the light emission angle adjustment sheet 11 in which the regions RGn having an aperture ratio HLn of 40% and the regions RGw having an aperture ratio HLw of 60% are alternately arranged as shown in FIG. (That is, the graph line corresponding to each viewing angle overlaps with the graph line in the front view, and the change in the viewing angle is small).
  • FIG. 8 showing the gradation-luminance characteristics in the low gradation range (gradation values 0 to 64) corresponding to the light emission angle adjusting sheet 11 is compared with FIGS. 15 and 16 of the comparative example. Even if it sees, it will be understood that the change in the viewing angle is smaller in FIG. 8 than in FIGS. 15 and 16.
  • a plurality of low refractive index material exposed portions 23 and a plurality of high refractive index material exposed portions 22 are scattered on the exit surface 11U of the light exit angle adjusting sheet 11, and the low refractive index material exposed portion If the areas of the high refractive index material exposed portions 22 are different, a plurality of low refractive index material exposed portions 23 having the same area and a plurality of high refractive index materials having different areas are used. It is preferable that the exposed portions 22 are arranged side by side.
  • the light emission angle adjusting sheet 11 in which the regions RGn having an aperture ratio HLn of 40% and the regions RGw having an aperture ratio HLw of 60% are alternately arranged is completed. And if it is such a light emission angle adjustment sheet
  • the low refractive index material exposed portions 23 and the high refractive index material exposed portions 22 are alternately arranged, and the high refractive index material exposed portions 22 have two types of areas. In the 22 columns, the high refractive index material exposed portions 22 having different areas may be alternately arranged.
  • the present invention is not limited to this.
  • the arrangement pitch of the high refractive index material exposed portions 22 is smaller than the pixel pitch of the liquid crystal display panel 39 (for example, the arrangement pitch length of the high refractive index material exposed portions 22 is 1 than the length of the pixel pitch). It is not essential that the high refractive index material exposed portions 22 having different areas are alternately arranged in the row of the high refractive index material exposed portions 22.
  • the high refractive index material exposed portions 22 having different areas are not alternately arranged in this manner, if the arrangement pitch of the high refractive index material exposed portions 22 is small relative to the pixel pitch of the liquid crystal display panel 39, the high refractive index material exposed portions 22 are not highly refractive. This is because the difference in the width length of the rate material exposed portion 22 is not visually recognized as unevenness.
  • the light emission angle adjusting sheet 11 may include an area RG having an aperture ratio HL other than the aperture ratios HLn and HLw.
  • the area of the high refractive index material exposed portion 22 may be three or more.
  • the distribution of the high refractive index material exposed portions 22 having different areas in the light emission angle adjusting sheet 11 should be uniform (for example, because of the area relationship, the high refractive index material exposed portion 22a> the high refractive index material exposed portion).
  • the arrangement of the high refractive index material exposed portion 22 may be an arrangement in which the arrangement in the order of area is repeated. This is because the luminance diffusivity can be reliably improved in the entire light emission angle adjusting sheet 11.
  • the low refractive index material 13 tapers monotonously toward the light receiving surface 11B side in order to diffuse the light traveling from the light receiving surface 11B of the light emission angle adjusting sheet 11.
  • the low-refractive index material 13 has a triangular prism shape in which planar side surfaces 13S and 13S without steps or bends face each other, and intersects the column direction. In the cross section, an isosceles triangle having the bottom surface 13B as the base and the side surfaces 13S and 13S as the side is desirable.
  • the reason is the manufacturing method of the light emission angle adjusting sheet 11.
  • the recessed portion 12D included in the sheet-like high refractive index material 12 reflects the shape of the mold.
  • the low refractive index material 13 is a triangular prism having a cross section of an isosceles triangle, a mold shape corresponding to the shape can be realized by cutting the mold with a trapezoidal tool.
  • the side surface 13S of the low refractive index material 13 has a step or a bend, high precision is required for the cutting tool, and insufficient strength occurs in the die after cutting. Therefore, in terms of feasibility, the side surface 13S of the low refractive index material 13 is desirably a flat surface without steps or bends.
  • the light emission angle adjusting sheet 11 in which the low refractive index materials 13 are arranged in a line has a single layer structure, but the light emission angle adjusting sheet 11 has a multilayer structure (for example, a two-layer structure). It doesn't matter.
  • a multi-layer light emission angle adjustment sheet 11 including a first-layer light emission angle adjustment sheet 11 and a second-layer light emission angle adjustment sheet 11 may be used. There is no light emission angle adjustment sheet 11 that overlaps a plurality of sheets (also referred to as the light emission angle adjustment sheet 11).
  • the extending direction of the low refractive index material exposed portion 23 in the first light output angle adjusting sheet 11 and the extending direction of the low refractive index material exposed portion 23 in the second light emitting angle adjusting sheet 11 intersect (for example, , Orthogonal).
  • the direction diffused by the light emission angle adjusting sheet 11 depends on the linear direction of the low refractive index material 13 (in other words, the arrangement direction of the low refractive index material 13). Then, when the liquid crystal display panel 39 in the liquid crystal display device 59 is disposed at a reference position with respect to the horizontal direction, there is a desirable diffusion direction depending on the viewpoint of the viewer.
  • a liquid crystal television 71 which is a kind of liquid crystal display device 59 has a longitudinal direction LD (first reference direction; the same direction as the horizontal direction H) of the liquid crystal display panel 39 with respect to the horizontal direction H.
  • the position of the liquid crystal television 71 is set as a reference position). Then, the viewer's eyes E are often located almost in front of the liquid crystal display panel 39.
  • the low refractive index material exposed portion 23 of the light emission angle adjusting sheet 11 is linear, and the linear direction of the liquid crystal display panel 39 intersecting the longitudinal direction LD is the short direction SD (second reference direction). ) Is desirable.
  • the viewing angle 120 (°) in the horizontal direction which is the viewing position of the general liquid crystal television 71, that is, the range of ⁇ 60 (°) viewing angles in FIGS.
  • the light of the liquid crystal television 71 that has passed through the light emission angle adjusting sheet 11 is reliably diffused.
  • liquid crystal display device 59 is also employed in devices other than the liquid crystal television.
  • a liquid crystal display device 59 is adopted for an advertising display 73 of a building 72 (a system using such a display 73 is also referred to as digital signage).
  • Such a vertically long display 73 is attached to the wall surface of the building 72 so that it extends in the vertical direction intersecting the horizontal direction H (note that the position of such a display 73 is defined as a reference position). To do). Then, the viewer's eye E on the ground looks up at the display 73, and the viewer's eye E on the upper floor of another building facing the viewer looks down at the display 73.
  • the low refractive index material exposed portion 23 in the light emission angle adjusting sheet 11 is linear, and the linear direction of the liquid crystal display panel 39 intersects with the longitudinal direction HD (second reference direction) of the display 73. It is desirable to coincide with the width direction WD (first reference direction). If it is in this way, the light from the display 73 which passed through the light emission angle adjustment sheet
  • the low refractive index material 13 may include a material (light absorbing material) such as carbon black or titanium black that absorbs light such as visible light. If it is in this way, the freedom degree of selection of resin which constitutes low refractive index material 13 increases.
  • the light exit angle adjusting sheet 11 may be provided with a surface treatment film ⁇ AG (Anti Glare) film or AGLR (Anti Glare Low Reflection) film, etc.) ⁇ on the exit surface 11U. This is because reflection of sunlight or the like on the light emission angle adjustment sheet 11 (and thus the liquid crystal display panel 39) is reduced.
  • ⁇ AG Anti Glare
  • AGLR Anti Glare Low Reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

 光出射角調整シート(11)における出射面(11U)にて、面積を同一にした複数の低屈折率材料露出部(23)と、面積を異にした複数の高屈折率材料露出部(22)とが、混在しつつ並ぶ。特に、低屈折率材料(13)は、受光面(11B)側に向けて単調に先細りする形状である。

Description

光出射角調整シート、表示パネル、表示装置、および光出射角調整シートの製造方法
 本発明は、受光した光を拡散させて出射する光出射角調整シート、その光出射角調整シートを取り付けた表示パネル、および表示装置に関し、さらには、光出射角調整シートの製造方法に関する。
 一般的に、視認者が液晶表示パネルのような表示パネルを搭載する液晶表示装置(表示装置)を見る場合、液晶表示パネルに対して傾斜する種々方向から画像を視認することがある。
 光出射角調整シートは、液晶表示パネルに対してほぼ垂直に入射するバックライトユニットからの光を、その液晶表示パネルを出射した後に全方位に拡散させる光学部材である。
 そもそも、液晶表示パネルでは、パネル面から斜めに出射する光が、パネル面から垂直に出射する光が視認される場合と同様になるべく、光学的な補償がなされるように設計される。しかしながら、完全な補償は難しく、垂直配向(VA;Vertical Alignment)の液晶表示パネルでは、正面から視認される場合でのコントラスト比特性は優れているものの、斜めから視認される場合、正面から視認される場合に比べて、コントラスト比の変化が大きい{液晶表示パネルを正面視した場合と斜視した場合とで視認者の感じる印象(変化感)が大きい}。
 すなわち、液晶表示装置では、視認方向によって表示の見え方が異なるという問題、すなわち視野角特性が劣るという問題がある。この問題を解決するには液晶表示パネルに斜めに入射するバックライト光を遮光してしまえばよいが、そうすると斜め方向から映像を視認できない。
 このような問題解決のために、光出射角調整シートが液晶表示パネルに含まれる。光出射角調整シートは、液晶表示パネルに対して斜め方向に光を導くことで、視認者に、画像を見やすくさせる(例えば、特許文献1)。これにより、液晶表示パネルの正面から視認される画像と、液晶表示パネルの斜めから視認される画像とが、ほぼ同じになり、視野角における画像の変化がなくなり、いわゆる視野角フリーの液晶表示装置が完成する。
特開2007-148185号公報
 しかしながら、特許文献1に記載の光出射角調整シートは、図21の断面図に示すように、光出射角調整シート111における低屈折率材料113の断面形状がくさび形である。そして、このような低屈折率材料113を高屈折率材料112に埋め込む場合、高屈折率材料12には、低屈折率材料113の形状を反映した金型等を要する。このような特殊な形状の金型は、高価であり、かつ、特殊な形状を金型に反映させること自体も難しい。
 本発明は、上記の問題点を解決するためになされたものである。そして、その目的は、簡単かつ安価に製造できつつも、表示装置の視野角特性を向上させられる光出射角調整シート等を提供することにある。
 光出射角調整シートは、受光面と、その受光面を経た光を出射させる出射面とを含む。そして、その光出射角調整シートでは、屈折率差のある低屈折率材料および高屈折率材料が含まれ、光出射角調整シートの出射面にて、低屈折率材料の露出する部分である低屈折率材料露出部と、高屈折率材料の露出する部分である高屈折率材料露出部とが、複数、散在する。さらに、面積を同一にした複数の低屈折率材料露出部と、面積を異にした複数の高屈折率材料露出部とは、混在しつつ並んでおり、加えて、低屈折率材料は、受光面側に向けて単調に先細りする形状である。
 このようになっていると、例えば、低屈折率材料露出部と第1の面積を有する高屈折率材料露出部とを並べた領域と、低屈折率材料露出部と第2の面積(第1の面積とは異なる面積)を有する高屈折率材料露出部とを並べた領域とが、光出射角調整シートに含まれる。すると、このような光出射角調整シートは、例えば、低屈折率材料露出部と第1の面積を有する高屈折率材料露出部とを並べた領域ばかりを含む光出射角調整シートに比べて、光の出射角毎の光強度バランスを調整しやすい。そのため、光出射角調整シートから出射する光が種々方向に拡散しやすくなる(輝度拡散性が向上する)。
 その上、低屈折率材料露出部の形状は単調に先細りする形状であるので、金型を切削するバイトが容易に形成でき、さらに、金型への切削に、過度に高い精度が求められない。そのため、以上の光出射角調整シートは、複雑な形状をした低屈折率材料を含む光出射角調整シートに比べて容易に製造される。
 つまり、この光出射角調整シートは安価かつ簡単に製造される。したがって、この光出射角調整シートは簡単かつ安価に製造できつつも、表示装置の視野角特性を向上させられる。
 なお、単調に先細りする低屈折率材料の形状としては、例えば、断面二等辺三角形が一例として挙げられる。詳説すると、低屈折率材料は、三角柱形状をしており、受光面に三角形状のある1つの角を向けつつ、出射面に残りの2つの角を向けており、柱方向に対して交差する断面にて、受光面側の1つの角を頂角、残りの2つの角を底角とする二等辺三角形をしていると望ましい。
 また、低屈折率材料露出部と高屈折率材料露出部とが交互に並び、高屈折率材料露出部の面積は2種以上あり、高屈折率材料露出部の列にて、異なる面積の高屈折率材料露出部が交互に並ぶと望ましい。
 このようになっていると、光出射角調整シートにおける高屈折率材料露出部の分布に面内均一性が生じるので、光出射角調整シート全体として、輝度拡散性にも面内均一性が生じる。そのため、このような光出射角調整シートを含む液晶表示装置の視野角特性が確実に向上する。
 なお、低屈折率材料は、透明樹脂、または、光吸収材を含有する透明樹脂で形成されていてもよい。なぜなら、材料選択の自由度が増すためである。
 また、光出射角調整シートは単層構造でも複層構造であってもかまわない。例えば、2層構造の光出射角調整シートでは、一層目の低屈折率材料露出部の延伸方向と、二層目の低屈折率材料露出部の延伸方向とが交差すると望ましい。
 このようになっていると、光出射角調整シートから出射する光が、一層目の光出射角調整シート1における低屈折率材料の配列方向と、二層目の光出射角調整シートにおける低屈折率材料の配列方向との2方向に拡散させられる。そのため、光出射角調整シートから出射する光の輝度分布特性が交差する二方向で向上する。
 また、出射面に、表面処理フィルムを取り付けてもよい。このようになっていると、光出射角調整シートに、太陽光等が映り込みにくくなるためである。
 なお、以上のような光出射角調整シートを、表示面に取り付けた表示パネルも本発明といえる。さらに、そのような表示パネルと、表示パネルに光を供給する照明装置と、を含む表示装置も本発明といえる。
 ところで、そのような表示装置が配置される場合、水平方向を基準にして、表示パネルの基準位置が定められる。そして、基準位置に配置される表示パネルの面内にて、水平方向と同方向の第1基準方向と、第1基準方向に対して交差する第2基準方向とが定められる場合に、低屈折率材料露出部が線状で、その線状方向が、第1基準方向または第2基準方向と一致すると望ましい。なぜなら、視認者が液晶表示装置を視認する位置によって、必要とされる輝度拡散方向が異なるためである。
 本発明の光出射角調整シートによると、簡単かつ安価に製造できつつも、表示装置の視野角特性を向上させられる。
は、液晶表示パネルを拡大した分解斜視図である は、光出射角調整シートの断面図である(なお、断面方向は図1のA-A’線である)。 は、光出射角調整シートを分解図示した断面図である。 は、光出射角調整シートの平面図と断面図とを併せて図示する2面図である。 は、出射角調整シートによる輝度拡散特性(視野角特性)を示したグラフである。 は、出射角調整シートによる輝度拡散特性(視野角特性)を示したグラフである。 は、光出射角調整シートからの光を、階調と規格化輝度とで示したグラフである。 は、光出射角調整シートからの光を、階調と規格化輝度とで示したグラフである。 は、比較例となる光出射角調整シートの平面図と断面図とを併せて図示する2面図である。 は、比較例となる出射角調整シートによる輝度拡散特性(視野角特性)を示したグラフである。 は、比較例となる出射角調整シートによる輝度拡散特性(視野角特性)を示したグラフである。 は、比較例となる光出射角調整シート(開口率HLf50%)からの光を、階調と規格化輝度とで示したグラフである。 は、比較例となる光出射角調整シート(開口率HLf60%)からの光を、階調と規格化輝度とで示したグラフである。 は、比較例となる光出射角調整シート(MVA液晶に取り付けられた光出射角調整シート)からの光を、階調と規格化輝度とで示したグラフである。 は、比較例となる光出射角調整シート(開口率HLf50%)からの光を、階調と規格化輝度とで示したグラフである。 は、比較例となる光出射角調整シート(開口率HLf60%)からの光を、階調と規格化輝度とで示したグラフである。 は、液晶表示パネルを拡大した分解斜視図である は、液晶表示装置を搭載する液晶テレビと視認者との位置関係を示す説明図である。 は、デジタルサイネージに採用されるディスプレイと視認者との位置関係を示す説明図である。 は、液晶表示装置の分解斜視図である。 は、従来の光出射角調整シートを示す断面図である。
 [実施の形態1]
 実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。逆に、断面図以外の図面に、便宜上、ハッチングを用いる場合もある。また、矢印とともに併記される黒丸は、紙面に対する垂直方向を意味する。
 なお、以下では、表示装置の一例として、MVA(Multidomain Vertical Alignment)配向の液晶表示装置を例に挙げて説明するが、これに限定されるものではない。
 図20は液晶表示装置59の分解斜視図である。この図に示すように、液晶表示装置59は、液晶表示パネル39と、この液晶表示パネル39に対して光を供給するバックライトユニット(照明装置)49と、これらを挟み込むハウジングHG(表ハウジングHG1・裏ハウジングHG2)と、を含む。
 液晶表示パネル39は、TFT(Thin Film Transistor)等のスイッチング素子を含むアクティブマトリックス基板31と、このアクティブマトリックス基板31に対向する対向基板32とをシール材(不図示)で貼り合わせる。そして、両基板31・32の隙間に液晶(不図示)が注入される。
 そして、対向基板32には、光出射角調整シート11が取り付けられる。この光出射角調整シート11は、対向基板32から出射する光を受け、その受けた光の出射角を調整する光学部材である。このような光出射角調整シート11が液晶表示パネル(ひいては、液晶表示装置59)に搭載されることで、液晶表示パネル39の視野角が調整される(詳細については後述)。
 なお、アクティブマトリックス基板31の受光面側、対向基板32の出射面側には、偏光フィルム33が取り付けられ、光出射角調整シート11は、対向基板32側の偏光フィルム33上に取り付けられる。そして、以上のような液晶表示パネル39は、液晶分子の傾きに起因する透過率の変化を利用して、画像を表示する。
 次に、バックライトユニット49について説明する。バックライトユニット49は、不図示の光源と、光源からの光を集光させる光学シート群(集光部材)41とを含む。光源は、例えば蛍光管またはLED(Light Emitting Diode)であり、光を発するものであれば、特に限定されない。光学シート群41は、例えば、1枚の拡散シートおよび2枚のレンズシートを積み重ね、光源からの光を均一化するとともに、集光する(なお、光学シート群41に入射する前に、既に集光が実現可能な光源の場合、光学シート群41は省略可能である)。
 そして、以上のようなバックライトユニット49は、液晶表示パネル39のアクティブマトリックス基板31の直下に位置し、非発光型の液晶表示パネル39に対して光を照射する。その結果、液晶表示パネル39は、バックライトユニット49からの光(バックライト光)を受光することで表示機能を向上させる。なお、バックライトユニット49からの光が液晶表示パネル39の全面を均一に照射できれば、液晶表示パネル39の表示品位が向上する。
 ここで、液晶表示パネル39に含まれる光出射角調整シート11について、図1~図3を用いて詳説する。図1は液晶表示パネル39を拡大した分解斜視図である(ただし、便宜上、偏光フィルム33は省略する)。図2は、光出射角調整シート11の断面図である(なお、断面方向は図1のA-A’線に沿う)。図3は、光出射角調整シート11を分解図示した断面図である。
 図1に示すように、光出射角調整シート11は、対向基板32から進行する光を受ける受光面11Bと、その受光面11Bを経た光を出射させる出射面11Uとを含む。さらに、光出射角調整シート11は、屈折率に差のある複数の材料を含む。詳説すると、光出射角調整シート11は、比較的高屈折率な材料(高屈折率材料)12であるポリカーボネートまたはエポキシアクリレート等と、比較的低屈折率な材料(低屈折率材料)13であるポリメチルメタクリレート、ウレタンアクリレート、またはフッ素ポリマー材料等と、を含む。
 そして、図1および図2に示すように、高屈折率材料12は光出射角調整シート11の基材(土台)になり、低屈折率材料13は高屈折率材料12に埋め込まれる。詳説すると、図3に示すように、高屈折率材料12は、面状部材で、一方を受光面11Bとなる平面12Bとし、その平面12Bの裏面を線状の窪みを並べた凹凸面12Uとする(なお、この凹凸面12Uが出射面11Uの一部となる)。
 凹凸面12Uは、平面12Bと同じ面内方向を有する平部分12Fと、この平部分12Fに対してへこんだ窪み部分12Dとを含む。この窪み部分12Dは、図3に示すように、凹凸面12Uの面内にて線状で、かつ、平面12Bに向かって先細りする(なお、窪み部分12Dの延び方向(延伸方向)をX方向、X方向に交差する窪み部分12Dの陥没方向をY方向、X方向とY方向とに交差する方向をZ方向とする)。
 例えば、窪み部分12Dにおける線状の内壁12i同士が、平面12B側に進むほどに近づき合ってつながることで生じる断面三角形状(例えば、断面二等辺三角形状)の窪み部分12Dが、一例として挙げられる。
 また、窪み部分12Dは、自身の延び方向に対して例えば直交するような交差方向(Z方向等)に、複数で並ぶ。ただし、窪み部分12D同士の間隔Dは、一定ではない。例えば、図3に示すように、比較的短い間隔Dnと比較的長い間隔Dwとが交互に並ぶ(Dn<Dw)。
 そして、このような窪み部分12Dに、低屈折率材料13が埋められる(充填される)。したがって、低屈折率材料13は、窪み部分12Dの形が反映され、線状であり、かつ、高屈折率材料12の平面12B(すなわち、光出射角調整シート11の受光面11B)に向けて単調に先細りした形状となる。
 例えば、図1~3に示すように、低屈折率材料13は、三角柱状で、高屈折率材料12の凹凸面12U(すなわち、光出射角調整シート11の出射面11U)に底面13Bを向けつつ、高屈折率材料12の平面12B(すなわち、光出射角調整シート11の受光面11B)に側面13S・13Sを向ける。
 また、このような低屈折率材料13における三角柱状の柱方向(例えば、X方向)に対して交差する断面にて、凹凸面12Uに露出する部分を底面13B、窪み部分12Dの内壁12iに接触する部分を側面13S・13Sと解釈すると、低屈折率材料13は断面を三角形状(例えば二等辺三角形状)にしていると解釈できる。いいかえると、低屈折率材料13は三角柱形状をしており、受光面11Bに三角形状のある1つの角を向けつつ、出射面11Uに残りの2つの角を向けており、柱方向に対して交差する断面にて、受光面11B側の1つの角を頂角、残りの2つの角を底角とする二等辺三角形をしている。
 そして、このような低屈折率材料13と高屈折率材料12とを含む光出射角調整シート11は、バックライトユニット49から進行し、液晶表示パネル39を通過する光を拡散させる。そこで、光出射角調整シート11の輝度拡散特性について、比較例を参照しながら説明する。なお、説明では、新たに図4~図16を参照しつつ説明する。
 なお、図に示される“%”は開口率HLを意味する。この開口率HLは、図4(平面図と断面図とを併せて図示する2面図)に示されるような、光出射角調整シート11の出射面11Uにて露出する低屈折率材料13の一部分の面積と、出射面11Uにて露出する高屈折率材料12の一部分の面積とで定義される。
 詳説すると、まず、光出射角調整シート11の出射面11Uにて、低屈折率材料13の露出する部分を低屈折率材料露出部23(すなわち、低屈折率材料13の底面13B)と、高屈折率材料12の露出する部分を高屈折率材料露出部22とする。すると、この低屈折率材料露出部23および高屈折率材料露出部22は、ともに面状になって、一定の面積を有する。
 そこで、隣り合う低屈折率材料露出部23と高屈折率材料露出部22との1つの組とし、その組による出射面11Uでの面積比で開口率HR(%)を定義する。具体的には、以下の通りである。
  HR=AR[H]/(AR[H]+AR[L])×100  … 式(A1)
 ただし、
    AR[H]:高屈折率材料露出部22の面積
    AR[L]:低屈折率材料露出部23の面積
    HR  :隣り合う低屈折率材料露出部23と高屈折率材料露出部2
        2との1つの組にて、高屈折率材料露出部22の面積と低
        屈折率材料露出部23の面積とを合わせた面積における高
        屈折率材料露出部22の面積の比率である。
 なお、低屈折率材料露出部23の延び方向に沿う長さを“S”とし、低屈折率材料露出部23の幅の長さを“Db”とすると、AR[L]は“S×Db”で表される。また、高屈折率材料露出部22の面積AR[H]は、光出射角調整シート11の一辺長でもある“S”と、窪み部分12D同士の間隔Dnまたは間隔Dwとで求められる。すなわち、面積AR[H]は、“S×Dn”または“S×Dw”である。
 すると、高屈折率材料露出部22の面積AR[H]が多種類存在することで、光出射角調整シート11の出射面11Uにおける開口率HLも複数生じる。具体的には、開口率HLは、以下のような開口率HLnと開口率HLwとになる。
  HLn=(S×Db)/{(S×Db)+(S×Dn)}×100
                          … 式(A2)
  HLw=(S×Db)/{(S×Db)+(S×Dw)}×100
                          … 式(A3)
 さらに、図4に示すように、出射面11Uにて、低屈折率材料露出部23と高屈折率材料露出部22とが交互に並び、かつ、その列に内在する高屈折率材料露出部22の列にて、異なる面積“S×Dn”または“S×Dw”の高屈折率材料露出部22が交互に並ぶ場合、開口率HLnを有する領域RGnと、開口率HLwを有する領域RGwとが、出射面11Uにて交互に並ぶ(なお、図4にて、領域RGを説明する点線区画は、便宜上、重ならないように図示する)。
 そして、開口率HLnを“40%”とする領域RGnと、開口率HLw“60%”とする領域RGwとを交互に並べた光出射角調整シート11、および、開口率HLnを“35%”とする領域RGnと、開口率HLw“65%”とする領域RGwとを交互に並べた光出射角調整シート11による輝度拡散特性を示したグラフが、図5および図6になる(なお、理解を容易にすべく、後述の開口率HLf“50%”のグラフ線も図示する)。なお、このグラフでの縦軸は輝度(a.u;arbitrary unit)、横軸は光出射角調整シート11からの出射光の出射角度(deg)である。また、図5と図6との違いは、縦軸の輝度の範囲の違いである
 一方、比較例となる光出射角調整シート11は、図4に示す光出射角調整シート11とは異なり、光出射角調整シート11の出射面11Uにおける開口率HLが1種類しか存在しない。
 すなわち、図9に示すように、高屈折率材料露出部22の幅の長さ(Df)が、低屈折率材料露出部23の幅の長さ同様に、一定である。そのため、具体的には、開口率HLは、以下のような開口率HLfになる。
  HLf=(S×Db)/{(S×Db)+(S×Df)}×100
                          … 式(A4)
 そして、開口率HLfを“50%”とする領域RGfを並べた光出射角調整シート11、開口率HLfを“60%”とする領域RGfを並べた光出射角調整シート11、および開口率HLfを“70%”とする領域RGfを並べた光出射角調整シート11による輝度拡散特性を示したグラフが、図10および図11になる(図10が図5に対応し、図11は図6に対応する)。
 まず、比較例について説明する。一般的な輝度分布特性は、正面視で明るく見えるように、視野角0(°)付近の輝度(正面視の輝度)が最も高く、そこ{視野角0(°)}から広角度になるにしたがって輝度が減衰していく山なりの特性を有する。しかし、斜視の場合、映像信号の輝度は低くなるが、外光による表面の反射光は強くなるため、見づらくなるという問題があり、広範囲の視野角でも、正面視の輝度に対して、ある程度の輝度が保たれると望ましい。そのような望ましい輝度を示すグラフ線は、図10および図11にて、横軸に対して、極力、平行になるとよい。そこで、これら図10および図11を参照してみる。
 50%の開口率HLfの場合、視野角0(°)付近の輝度が最高輝度となり、視野角0(°)~|40(°)|での輝度は、視野角の増加にともなって、最高輝度から徐々に小さくなった輝度となる。ただし、視野角0(°)~|40(°)|におけるグラフ線は、横軸に対して過剰に大きな傾斜角を有しない(すなわち、比較的には、このグラフ線は、横軸に平行といえる)。
 しかしながら、視野角|50(°)|付近の輝度は、視野角|40(°)|付近の輝度に比べて大きくなる。そのため、視野角0(°)~|60(°)|におけるグラフ線は、横軸に比較的平行ではあるものの、凹みを有する(白色矢印参照)。このような凹みが発生する場合、液晶表示パネル39の画像に、周囲よりも暗い線(暗線)が視認されてしまい、画質劣化の原因となる。
 このような暗線を解消させるという点に関しては、60%・70%の開口率HLfを有する光出射角調整シート11が望ましい。なぜなら、図10および図11に示すように、60%・70%の開口率HLfの場合における視野角0(°)付近での最高輝度が、50%の開口率HLfの場合における視野角0(°)付近での最高輝度に比べて大きくなるので、視野角0(°)~|40(°)|におけるグラフ線が、横軸に対して比較的大きな傾斜角を有することになり、視野角|50(°)|付近の輝度と、視野角|40(°)|付近の輝度との差が小さくなるためである。
 しかしながら、60%・70%の開口率HLfの場合、視野角0(°)付近での最高輝度が、50%の開口率HLfの場合に比べて大きいために、60%・70%の開口率HLfでのグラフ線は、50%の開口率HLfでのグラフ線に比べて、横軸に対して平行にならず、輝度拡散が不十分といえる。
 なお、縦軸を規格化輝度(最大の輝度を1.0にするように規格化した輝度)、横軸を階調(0~255)とするグラフで、開口率HLf50%の光出射角調整シート11を取り付けた液晶表示パネル39と、開口率HLf60%の光出射角調整シート11を取り付けた液晶表示パネル39と、MVA液晶を有する液晶表示パネルと、を比較してみると、以下のことがわかる(図12~図14参照)。
 図12~図14に示されるグラフは、縦軸を規格化輝度、横軸を階調とする。そして、各視野角に対応するグラフ線では、正面視の特性がγ=2.2になるように調整されている。一般的には、斜視でのグラフ線が正面視でのグラフ線に重なりあっていれば、視野角の変化感が少ないといえる。すると、MVA液晶を有する液晶表示パネルでは、図14に示すように、各視野角に対応するグラフ線が、正面視のグラフ線と重なりあっていないので、斜視の場合での見た目と正面視の場合での見た目とが、明らかに違った見た目になる。例えば、正面視の場合には、しっかりと沈んだ黒表示が、斜視すると白っぽく浮いてグレー表示に見える。
 一方、開口率HLf50%・60%の光出射角調整シート11を取り付けた液晶表示パネルは、図12および図13に示すように、各視野角に対応するグラフ線が、正面視の曲線と重なりあうので、視野角の変化が比較的低い。ただし、開口率HLf50%と開口率HLf60%とで、低階調(階調値0~64)の範囲での特性を比較してみると、開口率HLf50%に対応する図15および開口率HLf60%に対応する図16に示すように、開口率HLf50%のほうが、開口率HLf60%に比べて、斜視での特性が正面視の曲線に近づいており、視野角の変化がより小さいことがわかる。
 つまり、上記問題(斜視の場合での見た目と正面視の場合での見た目との差)の対策のために、開口率HLfを50%以上にしたとしても、輝度拡散は不十分で、視野角特性(視野角の変化感)も改善までには至らない。
 以上のような比較例に対して、異なる開口率HL(HLn・HLw)の領域RG(RGn・RGw)を交互に並べた光出射角調整シート11は、以下の通りになる。
 図5および図6に示すように、まず、すなわち視野角0(°)での輝度が、同じ開口率HLfの領域RGfを並べた光出射角調整シート11の場合でも、異なる開口率HL(HLn・HLw)の領域RG(RGn・RGw)を交互に並べた光出射角調整シート11でも、同程度になる。
 詳説すると、開口率HLf50%のみの領域RGfを並べた光出射角調整シート11の場合と、開口率HLn40%の領域RGnおよび開口率HLw60%の領域RGwを交互に並べた光出射角調整シート11の場合と、開口率HLn35%の領域RGnおよび開口率HLw65%の領域RGwを交互に並べた光出射角調整シート11の場合と、で比較すると、視野角0(°)にて、全ての光出射角調整シート11から出射する光の輝度は、同程度になる。
 これは、開口率HLn40%と開口率HLw60%との平均値、および、開口率HLn35%と開口率HLw65%との平均値が50%になり、開口率HLf50%と同じになるためである。
 また、視野角0(°)~|40(°)|程度の範囲における輝度も、視野角0(°)での輝度同様に、開口率HLn40%および開口率HLw60%の場合、開口率HLn35%および開口率HLw65%の場合、開口率HLf50%の場合、とで、輝度は同程度になる。これは、視野角があまり大きくないので、低屈折率材料13の側面13Sで反射し、高屈折率材料露出部22を経て出射する光量が、開口率HLの影響を受けづらいためである。
 詳説すると、低屈折率材料13の側面13Sで反射する光で、視野角0(°)~|40(°)|程度に対応する光(要は、光出射角調整シート11に対し、出射角0(°)~|40(°)|を有する光)は、高屈折率材料露出部22の幅長Dnがある程度狭かったとしても、その高屈折率材料露出部22を挟み込む低屈折率材料13の側面13Sで反射することなく、高屈折率材料露出部22を経て出射する。また、高屈折率材料露出部22を挟み込む低屈折率材料13の一方側面13Sに対して、平行に近い角度で入射した光(なお、その入射した光が他方の側面13Sに入射するとするならば、平行から大きくずれる)が反射し、高屈折率材料露出部22を経て出射する。
 もちろん、幅長Dnよりも長い幅長Dwを有する高屈折率材料露出部22の場合、より高屈折率材料露出部に直接照射する光の割合が大きくなるため、視野角0(°)~|40(°)|程度に対応する光は、隣り合う低屈折率材料13の側面13Sで反射することなく、または、側面13Sに対して平行に近い角度で入射した後に反射し、高屈折率材料露出部22を経て出射する。
 しかしながら、視野角が|45(°)|~|65(°)|程度の範囲における輝度は、開口率HLの影響を受ける(図5および図6での破線で囲まれた領域を参照)。具体的には、開口率HLn40%および開口率HLw60%での輝度、および、開口率HLn35%および開口率HLw65%での輝度は、開口率HLf50%での輝度よりも低くなる。なぜなら、正面輝度は、高屈折率材料の幅長に正比例な関係になるため、開口率HLnと開口率HLwとの平均値になるが、広角度の場合での輝度特性は、開口率HLwの影響を受けやすいためである。
 例えば、視野角|45(°)|~|65(°)|程度の範囲における輝度分布は、低屈折率材料13の側面13Sで反射した光が、高屈折率材料露出部22を経て出射することで、その視野角|45(°)|~|65(°)|程度に対応する光になることで生じる。なぜなら、幅長Dnに起因する広角度での光分布に対して、幅長Dwに起因する広角度での光分布は、低屈折率材料13の側面13Sの単位長さにおける割合の低下のために、輝度を大きく低下させるためである。
 すると、光出射角調整シート11は、開口率HLn40%の領域RGnおよび開口率HLw60%の領域RGwを混在させ、比較的短い幅長Dnを有する高屈折率材料露出部22の存在で、比較的大きな視野角に対応する光を抑制できる。その結果、図4に示すように、異なる開口率HL(HLn・HLw)の領域RG(RGn・RGw)を交互に並べた光出射角調整シート11は、単一の開口率HLfの領域RGfを交互に並べた光出射角調整シート11に比べて、輝度拡散特性を向上させられる(図5および図6参照)。
 なお、このときの視野角変化の少なさは、例えば、図7に示すような、開口率HLn40%の領域RGnおよび開口率HLw60%の領域RGwを交互に並べた光出射角調整シート11に対応するグラフからも明らかである(すなわち、各視野角に対応するグラフ線が、正面視のグラフ線と重なりあい、視野角の変化が少ない)。
 また、このような光出射角調整シート11に対応する低階調(階調値0~64)の範囲での階調-輝度特性を示す図8と、比較例の図15および図16と比較してみても、図8のほうが、図15および図16に比べて、視野角の変化が少ないことがわかる。
 以上を踏まえると、光出射角調整シート11における出射面11Uにて、低屈折率材料露出部23と、高屈折率材料露出部22とが、複数、散在しており、低屈折率材料露出部23の面積は同一であり、高屈折率材料露出部22の面積が異なっていると、面積を同一にした複数の低屈折率材料露出部23と、面積を異にした複数の高屈折率材料露出部22とが、混在しつつ並んでいるとよい。
 このようになっていると、例えば、開口率HLn40%の領域RGnおよび開口率HLw60%の領域RGwを交互に並べた光出射角調整シート11が完成する。そして、このような光出射角調整シート11であれば、上述してきたように、輝度拡散性が向上する。
 なお、図4に示すように、低屈折率材料露出部23と高屈折率材料露出部22とが交互に並び、高屈折率材料露出部22の面積は2種類あり、高屈折率材料露出部22の列にて、異なる面積の高屈折率材料露出部22が交互に並ぶとよい。
 なぜなら、光出射角調整シート11における高屈折率材料露出部22の分布に均一性が生じるので、光出射角調整シート11全体として、輝度拡散性にも均一性が生じ、その結果、このような光出射角調整シート11を含む液晶表示装置59の視野角特性が確実に向上するからである。しかしながら、これに限定されるわけではない。
 例えば、液晶表示パネル39の画素ピッチに対して、高屈折率材料露出部22の配置ピッチが小さければ(例えば、画素ピッチの長さより、高屈折率材料露出部22の配置ピッチの長さが1/2以下程度であれば)、高屈折率材料露出部22の列にて、異なる面積の高屈折率材料露出部22が交互に並ぶことは必須ではない。
 このように異なる面積の高屈折率材料露出部22が交互に並んでいなくても、液晶表示パネル39の画素ピッチに対して、高屈折率材料露出部22の配置ピッチが小さければ、高屈折率材料露出部22の幅長の違いがムラとして視認されないためである。
 また、開口率HLnの領域RGnと、開口率HLwの領域RGwとの他に、開口率HLn・HLw以外の開口率HLの領域RGが、光出射角調整シート11に含まれていてもよい。要は、高屈折率材料露出部22の面積は3種類以上であってもかまわない。
 ただし、光出射角調整シート11における異なる面積の高屈折率材料露出部22の分布は、均一であったほうがよい(例えば、面積関係で、高屈折率材料露出部22a>高屈折率材料露出部22b>高屈折率材料露出部22cである場合、高屈折率材料露出部22の並びは、面積の順での並びを繰り返す配列が挙げられる)。このようになっていると、光出射角調整シート11全体で、確実に、輝度拡散性を向上させられるためである。
 ところで、低屈折率材料13は、光出射角調整シート11の受光面11Bから進行する光を拡散させるために、その受光面11B側に向けて単調に先細りする。このような単調な先細りした形状は、多々あるが、例えば、低屈折率材料13は、段差または屈曲のない平面状の側面13S・13Sを対面させた三角柱状で、柱方向に対して交差する断面にて、底面13Bを底辺、側面13S・13Sを側辺とする二等辺三角形が望ましい。
 その理由は、光出射角調整シート11の製造方法にある。例えば、光出射角調整シート11が金型を用いて製造される場合、シート状の高屈折率材料12に含まれる窪み部分12Dは、金型の形状を反映する。すると、低屈折率材料13が断面を二等辺三角形状にした三角柱状であれば、その形状に対応する金型形状は、台形形状をしたバイトで、金型を切削加工することで実現できる。また、低屈折率材料13の側面13Sが、段差または屈曲を有する場合、バイトに高い精度が必要になり、かつ、切削後の金型に強度不足が生じる。そのため、実現性の上で、低屈折率材料13の側面13Sは、段差や屈曲のない平面であると望ましい。
 [その他の実施の形態]
 なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
 例えば、以上では、低屈折率材料13を一列に並べた光出射角調整シート11は、一層構造であったが、光出射角調整シート11は、複層構造(例えば、二層構造)であってもかまわない。例えば、図17の分解斜視図に示すように、一層目の光出射角調整シート11と二層目の光出射角調整シート11とを含む複層の光出射角調整シート11であってもかまわない(なお、複数枚重なり合った光出射角調整シート11も、光出射角調整シート11と称せる)。
 特に、一層目の光出射角調整シート11における低屈折率材料露出部23の延び方向と、二層目の光出射角調整シート11における低屈折率材料露出部23の延び方向とが交差(例えば、直交)するとよい。
 このようになっていると、光出射角調整シート11から出射する光が、一層目の光出射角調整シート11における低屈折率材料13の配列方向と、二層目の光出射角調整シート11における低屈折率材料13の配列方向との2方向に拡散させられる。そのため、光出射角調整シート11(ひいては、液晶表示パネル39)から出射する光の輝度分布特性がパネル面にて交差する二方向で向上する。
 なお、光出射角調整シート11によって、拡散される方向は、低屈折率材料13の線状方向(いいかえると、低屈折率材料13の配列方向)に依存する。すると、液晶表示装置59における液晶表示パネル39が、水平方向を基準にする基準位置に配置された場合に、視認者の見方によって、望ましい拡散方向がある。
 例えば、図18に示すように、液晶表示装置59の一種である液晶テレビ71が、水平方向Hに対して、液晶表示パネル39の長手方向LD(第1基準方向;水平方向Hと同一方向)を沿わすように配置されたとする(なお、このような液晶テレビ71の位置を基準位置とする)。すると、視認者の目Eは、液晶表示パネル39のほぼ正面に位置することが多い。
 このような場合、光出射角調整シート11における低屈折率材料露出部23は線状で、その線状方向が、長手方向LDに交差する液晶表示パネル39の短手方向SD(第2基準方向)に一致すると望ましい。このようになっていると、一般的な液晶テレビ71の観視位置である水平方向での視野角120(°)、すなわち、図5および図6での±60(°)の視野角の範囲に、光出射角調整シート11を経た液晶テレビ71の光が、確実に拡散される。
 また、液晶表示装置59は、液晶テレビ以外の装置にも採用される。例えば、図19に示すように、ビル72の広告用のディスプレイ73に、液晶表示装置59は採用される(このようなディスプレイ73を用いたシステムをデジタルサイネージとも称する)。
 そして、このような縦長のディスプレイ73が、ビル72の壁面に取り付けられることで、水平方向Hに対して、交差する鉛直方向に延びるとする(なお、このようなディスプレイ73の位置を基準位置とする)。すると、地上の視認者の目Eは、ディスプレイ73を見上げ、対面する別のビルの上階にいる視認者の目Eは、ディスプレイ73を見下ろす。
 このような場合、光出射角調整シート11における低屈折率材料露出部23は線状で、その線状方向が、ディスプレイ73の縦長方向HD(第2基準方向)に交差する液晶表示パネル39の幅方向WD(第1基準方向)に一致すると望ましい。このようになっていると、地上の視認者とビル72の上階にいる視認者との両方に、光出射角調整シート11を経たディスプレイ73からの光が拡散される。
 ところで、以上では、低屈折率材料13として、透明な樹脂を一例として挙げていたが、これに限定されるものではない。例えば、低屈折率材料13は、可視光のような光を吸収するカーボンブラック、チタンブラックのような材料(光吸収材)を含んでいてもよい。このようになっていると、低屈折率材料13を構成する樹脂の選択の自由度が増す。
 また、光出射角調整シート11は、出射面11Uに、表面処理フィルム{AG(Anti Glare)フィルム、または、AGLR(Anti Glare Low Reflection)フィルム等}を取り付けてもよい。このようになっていると、光出射角調整シート11(ひいては液晶表示パネル39)に、太陽光等の映り込みが低減するためである。
   11    光出射角調整シート
   11U   光出射角調整シートの出射面
   11B   光出射角調整シートの受光面
   12    高屈折率材料
   12U   高屈折率材料の凹凸面
   12D   窪み部分
   12F   平部分
   12i   窪み部分の内壁
   12B   高屈率折材料の平面
   13    低屈折率材料
   13B   低屈折率材料の底面
   13S   低屈折率材料の側面
   22    高屈折率材料露出部
   23    低屈折率材料露出部
   AR[H]   高屈折率材料露出部の面積
   AR[L]   低屈折率材料露出部の面積
   RG    領域
   HR    開口率
   D     幅長
   31    アクティブマトリックス基板
   32    対向基板
   33    偏向フィルム
   39    液晶表示パネル(表示パネル)
   41    光学シート群
   49    バックライトユニット(照明装置)
   59    液晶表示装置(表示装置)
   71    液晶テレビ(表示装置)
   73    ディスプレイ(表示装置)
   HD    水平方向
   LD    液晶表示パネルの長手方向(第1基準方向)
   SD    液晶表示パネルの短手方向(第2基準方向)
   HD    ディスプレイの縦長方向(第2基準方向)
   WD    ディスプレイの幅方向(第1基準方向)

Claims (10)

  1.  受光面と、上記受光面を経た光を出射させる出射面とを含む光出射角調整シートにあって、
     屈折率差のある低屈折率材料および高屈率折材料が含まれており、
     上記出射面にて、上記低屈折率材料の露出する部分である低屈折率材料露出部と、上記高屈率折材料の露出する部分である高屈折率材料露出部とが、複数、散在しており、
     面積を同一にした複数の上記低屈折率材料露出部と、面積を異にした複数の上記高屈折率材料露出部とが、混在しつつ並び、
     上記低屈折率材料は、上記受光面側に向けて単調に先細りする形状である光出射角調整シート。
  2.  上記低屈率折材料は、三角柱形状で、上記受光面に三角形状のある1つの角を向けつつ、上記出射面に残りの2つの角を向けており、柱方向に対して交差する断面にて、上記受光面側の1つの角を頂角、残りの2つの角を底角とする二等辺三角形にした請求項1に記載の光出射角調整シート。
  3.  上記低屈折率材料露出部と上記高屈折率材料露出部とが交互に並び、
     上記高屈折率材料露出部の面積は2種以上あり、
     上記高屈折率材料露出部の列にて、異なる面積の上記高屈折率材料露出部が交互に並ぶ請求項1または2に記載の光出射角調整シート。
  4.  上記低屈折率材料は、透明樹脂、または、光吸収材を含有する透明樹脂で形成される請求項1~3のいずれか1項に記載の光出射角調整シート。
  5.  2層構造で、
     一層目の上記低屈折率材料露出部の延び方向と、二層目の上記低屈折率材料露出部の延び方向とが交差する請求項1~4のいずれか1項に記載の光出射角調整シート。
  6.  上記出射面に、表面処理フィルムを取り付けた請求項1~5のいずれか1項に記載の光出射角調整シート。
  7.  請求項1~6のいずれか1項に記載の光出射角調整シートを、表示面に取り付けた表示パネル。
  8.  請求項7に記載の表示パネルと、
     上記表示パネルに光を供給する照明装置と、
    を含む表示装置。
  9.  水平方向を基準にして、上記表示パネルの基準位置が定められ、
     基準位置に配置される上記表示パネルの面内にて、水平方向と同方向の第1基準方向と、上記第1基準方向に対して交差する第2基準方向とが定められる場合に、
     上記低屈折率材料露出部が線状で、その線状方向が、上記第1基準方向または上記第2基準方向と一致する請求項8に記載の表示装置。
  10.  請求項1~6のいずれか1項に記載の光出射角調整シートの製造方法にあって、
     陽極酸化に基づく酸化処理で、上記低屈折率材料の形に対応する形状加工を施した金型を用いる光出射角調整シートの製造方法。
PCT/JP2010/052603 2009-06-04 2010-02-22 光出射角調整シート、表示パネル、表示装置、および光出射角調整シートの製造方法 WO2010140397A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/319,370 US20120051032A1 (en) 2009-06-04 2010-02-22 Light emission angle adjusting sheet, display panel, display device, and method for manufacturing light emission angle adjusting sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-134651 2009-06-04
JP2009134651 2009-06-04

Publications (1)

Publication Number Publication Date
WO2010140397A1 true WO2010140397A1 (ja) 2010-12-09

Family

ID=43297539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052603 WO2010140397A1 (ja) 2009-06-04 2010-02-22 光出射角調整シート、表示パネル、表示装置、および光出射角調整シートの製造方法

Country Status (2)

Country Link
US (1) US20120051032A1 (ja)
WO (1) WO2010140397A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246323A (ja) * 2012-05-25 2013-12-09 Kyo Tekku Kk 光透過装置およびその製造方法
JP2014163048A (ja) * 2013-02-21 2014-09-08 Dainippon Printing Co Ltd 窓および採光具
JPWO2014098035A1 (ja) * 2012-12-17 2017-01-12 旭硝子株式会社 光学素子、光学系及び撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324728B1 (ja) * 2012-01-19 2013-10-23 リンテック株式会社 光拡散フィルムの製造方法および光拡散フィルム
JP6140081B2 (ja) * 2012-01-19 2017-05-31 リンテック株式会社 異方性光拡散フィルム
CN115176196B (zh) * 2020-11-18 2024-04-09 京东方科技集团股份有限公司 光源模组及其制备方法和显示模组
CN114185196A (zh) * 2021-12-13 2022-03-15 Tcl华星光电技术有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181691A (ja) * 2003-12-19 2005-07-07 Internatl Business Mach Corp <Ibm> 光学素子および該光学素子を用いるカラー表示装置
JP2006133722A (ja) * 2004-10-07 2006-05-25 Canon Inc 光学素子の製造方法
JP2006171219A (ja) * 2004-12-14 2006-06-29 Canon Inc 光学素子及びその製造法及びそれを用いた光学機器
WO2009066474A1 (ja) * 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha 液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269418A (ja) * 1996-03-29 1997-10-14 Enplas Corp 光制御部材及び面光源装置
US20060182409A1 (en) * 2005-02-11 2006-08-17 Eastman Kodak Company Optical films of differing refractive indices
KR20070024090A (ko) * 2005-08-26 2007-03-02 엘지전자 주식회사 프리즘 시트 및 액정 표시 소자에 사용되는 백라이트 장치
WO2008008994A2 (en) * 2006-07-14 2008-01-17 Light Prescriptions Innovators, Llc Brightness-enhancing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181691A (ja) * 2003-12-19 2005-07-07 Internatl Business Mach Corp <Ibm> 光学素子および該光学素子を用いるカラー表示装置
JP2006133722A (ja) * 2004-10-07 2006-05-25 Canon Inc 光学素子の製造方法
JP2006171219A (ja) * 2004-12-14 2006-06-29 Canon Inc 光学素子及びその製造法及びそれを用いた光学機器
WO2009066474A1 (ja) * 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha 液晶表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246323A (ja) * 2012-05-25 2013-12-09 Kyo Tekku Kk 光透過装置およびその製造方法
JPWO2014098035A1 (ja) * 2012-12-17 2017-01-12 旭硝子株式会社 光学素子、光学系及び撮像装置
JP2014163048A (ja) * 2013-02-21 2014-09-08 Dainippon Printing Co Ltd 窓および採光具

Also Published As

Publication number Publication date
US20120051032A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP4749011B2 (ja) スクリーン及びこれを用いた画像投影システム
WO2010140397A1 (ja) 光出射角調整シート、表示パネル、表示装置、および光出射角調整シートの製造方法
US20110058389A1 (en) Brightness enhancement film and backlight module
KR100903028B1 (ko) 쐐기형 배면프리즘을 포함하는 액정표시장치 백라이트 유닛용 도광판
JP2012164583A (ja) 導光板、面光源装置、透過型表示装置
JP2008145550A (ja) 光学シートおよび表示装置
KR102118909B1 (ko) 광학 구조체 및 표시 장치
US5929951A (en) Illumination device and display apparatus including same
US20110267560A1 (en) Liquid crystal display apparatus and backlight
WO2009141953A1 (ja) 液晶表示装置
JP7130921B2 (ja) 光学構造体、表示装置
TWI392930B (zh) 背光模組及液晶顯示裝置
WO2009128187A1 (ja) 液晶表示装置
US8425103B2 (en) Backlight module having a light guide plate with prismatic structures and manufacturing method thereof
WO2012118126A1 (ja) バックライト装置
JP2005300907A (ja) スクリーン及びこれを用いた画像投影システム
US10809434B2 (en) Display device
JP6447654B2 (ja) 光学構造体および表示装置
JP2009163245A (ja) 光学シート及びこれを有する表示装置
JP2019184790A (ja) 光学構造体および表示装置
KR100989046B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
KR101571344B1 (ko) 바텀 케이스 및 이를 포함하는 백라이트 어셈블리
JP2005300775A (ja) 液晶表示装置及び面光源
US20090290112A1 (en) Display device
KR101086255B1 (ko) 통합형 광학시트를 구비한 백라이트유닛용 도광판 및 이를 포함하는 백라이트유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13319370

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP