WO2010140212A1 - Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device - Google Patents

Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device Download PDF

Info

Publication number
WO2010140212A1
WO2010140212A1 PCT/JP2009/060029 JP2009060029W WO2010140212A1 WO 2010140212 A1 WO2010140212 A1 WO 2010140212A1 JP 2009060029 W JP2009060029 W JP 2009060029W WO 2010140212 A1 WO2010140212 A1 WO 2010140212A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
voltage
duty
switching
output
Prior art date
Application number
PCT/JP2009/060029
Other languages
French (fr)
Japanese (ja)
Inventor
高松 直義
賢樹 岡村
靖弘 小池
Original Assignee
トヨタ自動車株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社豊田自動織機 filed Critical トヨタ自動車株式会社
Priority to EP09845497.8A priority Critical patent/EP2439837A4/en
Priority to JP2011518096A priority patent/JP5303030B2/en
Priority to US13/375,738 priority patent/US8653772B2/en
Priority to PCT/JP2009/060029 priority patent/WO2010140212A1/en
Publication of WO2010140212A1 publication Critical patent/WO2010140212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for a voltage conversion device, a vehicle on which the voltage conversion device is mounted, and a control method for the voltage conversion device, and more particularly to suppression of output voltage limitation of the voltage conversion device caused by dead time.
  • an electric vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels using a driving force generated from the electric power stored in the power storage device has attracted attention.
  • a power storage device for example, a secondary battery or a capacitor
  • Examples of the electric vehicle include an electric vehicle, a hybrid vehicle, and a fuel cell vehicle.
  • a motor generator for generating driving force for traveling by receiving electric power from the power storage device when starting or accelerating, and generating electric power by regenerative braking during braking to store electric energy in the power storage device May be provided.
  • an inverter is mounted in an electric vehicle.
  • a voltage converter may be provided between the power storage device and the inverter in order to stably supply electric power required by the inverter that varies depending on the vehicle state.
  • This converter also makes it possible to increase the input voltage of the inverter higher than the output voltage of the power storage device to increase the output of the motor and reduce the motor current at the same output, thereby reducing the size and the size of the inverter and the motor. Cost can be reduced.
  • Patent Document 1 describes a voltage conversion device for a motor drive device in which the switching element of the voltage conversion device has a dead time in a region where the voltage command value of the voltage conversion device is close to the power supply voltage.
  • a technique for reducing the carrier frequency used for switching control of the switching element when affected is disclosed.
  • the on-duty of the upper arm of the voltage converter is very close to 1.0
  • the on-duty originally targeted by the dead time The oscillation of the output voltage occurs due to the inability to ensure. According to this technique, the oscillation of the output voltage of the voltage converter can be suppressed.
  • the switching cycle of the switching element is shortened. Then, if the operating speed of the switching elements is the same, the dead time in switching per time does not change, and therefore the ratio of dead time in the switching period increases compared to the case where the frequency is not increased. As a result, the desired on-duty may not be ensured even if the on-duty is not very close to 1.0, so that the voltage range that can be output by the voltage converter is limited. There is.
  • the present invention has been made to solve such a problem, and an object of the present invention is to suppress the output voltage limitation of the voltage converter caused by dead time in the voltage converter in the motor drive control device. It is to be.
  • a control device for a voltage conversion device is a control device for a voltage conversion device capable of voltage conversion between a power storage device and a load device.
  • the voltage conversion device includes a first switching element and a second switching element that are connected in series between the power line and the ground line of the load device and perform voltage conversion by a switching operation. Further, the switching operation includes a dead time that is a period during which both the first switching element and the second switching element are in the OFF state.
  • the control device is configured to control the switching of the first switching element and the second switching element based on the frequency setting unit that sets the carrier frequency of the switching operation, and the voltage command value and the carrier frequency of the voltage conversion.
  • a drive control unit is configured to control the switching of the first switching element and the second switching element based on the frequency setting unit that sets the carrier frequency of the switching operation, and the voltage command value and the carrier frequency of the voltage conversion.
  • the drive control unit based on the information related to the power input / output to / from the voltage conversion device, expands the output voltage range of the voltage conversion device limited by the dead time, and the first switching element and the first switching device. Switching control of the switching element 2 is performed.
  • the information related to the power input / output to / from the voltage converter is the target duty of the first switching element and the second switching element.
  • the drive control unit calculates a target value calculation unit configured to calculate a target duty based on the voltage command value, and a duty range that determines an output possible voltage range based on the carrier frequency and dead time. And a reference value calculation unit configured as described above. Then, when the target duty exceeds the duty range, the drive control unit performs switching control so as to expand the output possible voltage range.
  • the drive control unit further includes a frequency changing unit configured to lower the carrier frequency when the target duty exceeds the duty range.
  • the drive control unit selects one of the first switching element and the second switching element, while when the target duty is within the duty range. It further includes a selection unit configured to select both the first switching element and the second switching element, and a drive command generation unit that generates a drive command for the switching element selected by the selection unit.
  • the selection unit selects the second switching element when the target duty is larger than the upper limit value of the duty range.
  • the selection unit selects the first switching element when the target duty is smaller than a lower limit value of the duty range.
  • the frequency setting unit variably sets the carrier frequency based on information related to power input / output to / from the voltage converter.
  • the information related to the power input / output to / from the voltage conversion device includes at least one of output power, output voltage, and output current of the power storage device.
  • the voltage conversion device further includes a reactor provided in a path connecting the connection node of the first switching element and the second switching element and the positive electrode terminal of the power storage device.
  • the information relevant to the electric power input / output to / from the voltage converter includes the reactor current flowing through the reactor.
  • the information related to the power input / output to / from the voltage converter includes power supplied to the load device.
  • a vehicle includes a power storage device, a rotating electrical machine, an inverter, a voltage conversion device, and a control device.
  • the rotating electrical machine generates a driving force for propelling the vehicle.
  • the inverter drives the rotating electrical machine.
  • the voltage conversion device is configured to be capable of voltage conversion between the power storage device and the inverter.
  • the control device controls the voltage conversion device.
  • the voltage conversion device includes a first switching element and a second switching element that are connected in series between the power line and the ground line of the load device and perform voltage conversion by a switching operation.
  • the switching operation includes a dead time during which both the first switching element and the second switching element are in the off state.
  • control device is configured to control the switching of the first switching element and the second switching element based on the frequency setting unit that sets the carrier frequency of the switching operation and the voltage command value and the carrier frequency of the voltage conversion.
  • Drive control unit based on the information related to the power input / output to / from the voltage converter, expands the output possible voltage range of the voltage converter limited by the dead time, and the first switching element and the first Switching control of the switching element 2 is performed.
  • the information related to the power input / output to / from the voltage converter is the target duty of the first switching element and the second switching element.
  • the drive control unit calculates a target value calculation unit configured to calculate a target duty based on the voltage command value, and a duty range that determines an output possible voltage range based on the carrier frequency and dead time. And a reference value calculation unit configured as described above. When the target duty exceeds the duty range, the drive control unit performs switching control so as to expand the output possible voltage range.
  • the drive control unit further includes a frequency changing unit configured to lower the carrier frequency when the target duty exceeds the duty range.
  • the drive control unit selects one of the first switching element and the second switching element while the target duty is within the duty range. Further includes a selection unit configured to select both the first switching element and the second switching element, and a drive command generation unit configured to generate a drive command for the switching element selected by the selection unit.
  • the voltage conversion device control method is a voltage conversion device control method capable of voltage conversion between a power storage device and a load device.
  • the voltage conversion device includes a first switching element and a second switching element that are connected in series between the power line and the ground line of the load device and perform voltage conversion by a switching operation.
  • the switching operation includes a dead time that is a period during which both the first switching element and the second switching element are in the OFF state.
  • control method of a voltage converter is the step which sets the carrier frequency of switching operation, and the step which carries out switching control of the 1st switching element and the 2nd switching element based on the voltage command value and carrier frequency of voltage conversion And the first switching element and the second switching element so as to expand the output possible voltage range of the voltage conversion device limited by the dead time based on information related to the power input / output to / from the voltage conversion device. Performing switching control.
  • the present invention in the voltage conversion device in the motor drive control device, it is possible to suppress the output voltage limitation of the voltage conversion device caused by dead time.
  • FIG. 1 is an overall configuration diagram of a hybrid vehicle equipped with a motor drive control system to which an AC motor control device according to Embodiment 1 is applied. It is a time chart for demonstrating the influence of the dead time in switching control. It is a time chart for demonstrating an actual duty when a load apparatus is a power running state, and a reactor current becomes always positive. It is a figure for demonstrating the electric current which flows through a converter in the case of FIG. It is a time chart for demonstrating an actual duty in the case of the time of the low load when the reactor current in a power running state is near zero. It is a figure for demonstrating the electric current which flows through the converter in the case of FIG.
  • FIG. 3 is a time chart for explaining an actual duty when the converter drive control of the first embodiment is applied in the power running state of FIG.
  • FIG. 3 is a functional block diagram for illustrating converter drive control executed by an ECU in the first embodiment.
  • FIG. 4 is a flowchart for illustrating details of converter drive control processing executed by the ECU in the first embodiment.
  • 3 is a time chart for explaining an actual duty when the converter drive control of the second embodiment is applied in the power running state of FIG.
  • FIG. 6 is a functional block diagram for illustrating converter drive control executed by an ECU in the second embodiment. 6 is a flowchart for illustrating details of converter drive control processing executed by an ECU in the second embodiment.
  • FIG. 10 is a functional block diagram for illustrating converter drive control executed by an ECU in the third embodiment. It is a figure which shows the 1st example of the map for setting a carrier frequency. It is a figure which shows the 2nd example of the map for setting a carrier frequency.
  • FIG. 12 is a flowchart for illustrating details of converter drive control processing executed by an ECU in the third embodiment. It is a functional block diagram for demonstrating converter drive control performed by ECU at the time of combining Embodiment 1 and Embodiment 3. FIG. It is a flowchart for demonstrating the detail of the converter drive control process performed by ECU at the time of combining Embodiment 1 and Embodiment 3.
  • FIG. 12 is a flowchart for demonstrating the detail of the converter drive control process performed by ECU at the time of combining Embodiment 1 and Embodiment 3.
  • FIG. 1 is an overall configuration diagram of a hybrid vehicle 100 equipped with a motor drive control system to which an AC motor control device according to Embodiment 1 is applied.
  • a hybrid vehicle equipped with an engine and a motor generator will be described as an example of vehicle 100.
  • the configuration of vehicle 100 is not limited to this, and the vehicle can travel with electric power from a power storage device. If so, it is applicable.
  • the vehicle 100 includes, for example, an electric vehicle and a fuel cell vehicle in addition to the hybrid vehicle.
  • the present motor drive control system can be applied to any device that is driven by an AC motor other than the vehicle.
  • vehicle 100 includes a DC voltage generation unit 20, a load device 45, a smoothing capacitor C ⁇ b> 2, and a control device (hereinafter also referred to as ECU “Electronic Control Unit”) 30.
  • ECU Electronic Control Unit
  • DC voltage generation unit 20 includes a power storage device 28, system relays SR1 and SR2, a smoothing capacitor C1, and a converter 12.
  • the power storage device 28 is typically configured to include a power storage device such as a secondary battery such as nickel hydride or lithium ion or an electric double layer capacitor. Further, DC voltage VB output from power storage device 28 and DC current IB input / output are detected by voltage sensor 10 and current sensor 11, respectively. Voltage sensor 10 and current sensor 11 output detected values of detected DC voltage VB and DC current IB to ECU 30.
  • a power storage device such as a secondary battery such as nickel hydride or lithium ion or an electric double layer capacitor.
  • System relay SR1 is connected between the positive terminal of power storage device 28 and power line PL1, and system relay SR2 is connected between the negative terminal of power storage device 28 and ground line NL.
  • System relays SR ⁇ b> 1 and SR ⁇ b> 2 are controlled by a signal SE from ECU 30, and switch between supply and interruption of power from power storage device 28 to converter 12.
  • Converter 12 includes a reactor L1, an upper arm including switching element Q1 and diode D1, and a lower arm including switching element Q2 and diode D2.
  • Switching elements Q1 and Q2 are connected in series between power line PL2 and ground line NL. Switching elements Q1 and Q2 are controlled by a switching control signal PWC from ECU 30.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power MOS Metal Oxide Semiconductor
  • a power bipolar transistor or the like can be used as the switching element.
  • Anti-parallel diodes D1 and D2 are arranged for switching elements Q1 and Q2.
  • Reactor L1 is connected between connection node V0 of switching elements Q1 and Q2 and power line PL1.
  • Smoothing capacitor C2 is connected between power line PL2 and ground line NL.
  • the current sensor 18 detects the reactor current flowing through the reactor L1, and outputs the detected value IL to the ECU 30.
  • reactor current IL is positive in the direction from power storage device 28 to load device 45 and negative in the direction from load device 45 to power storage device 28.
  • the load device 45 includes an inverter 23, motor generators MG1 and MG2, an engine 40, a power split mechanism 41, and drive wheels 42.
  • Inverter 23 includes an inverter 14 for driving motor generator MG1 and an inverter 22 for driving motor generator MG2. As shown in FIG. 1, it is not essential to provide two sets of inverters and motor generators. For example, only one set of inverter 14 and motor generator MG1 or inverter 22 and motor generator MG2 may be provided.
  • Motor generators MG1 and MG2 receive AC power supplied from inverter 23 and generate a rotational driving force for vehicle propulsion. Motor generators MG1 and MG2 receive rotational force from the outside, generate AC power according to a regenerative torque command from ECU 30, and generate regenerative braking force in vehicle 100.
  • Motor generators MG1 and MG2 are also coupled to engine 40 via power split mechanism 41. Then, the driving force generated by engine 40 and the driving force generated by motor generators MG1, MG2 are controlled to have an optimal ratio. Alternatively, either one of motor generators MG1 and MG2 may function exclusively as an electric motor, and the other motor generator may function exclusively as a generator. In the first embodiment, it is assumed that motor generator MG1 functions as a generator driven by engine 40, and motor generator MG2 functions as an electric motor that drives drive wheels 42.
  • the power split mechanism 41 uses a planetary gear mechanism (planetary gear) in order to distribute the power of the engine 40 to both the drive wheels 42 and the motor generator MG1.
  • planetary gear planetary gear
  • Inverter 14 receives the boosted voltage from converter 12, and drives motor generator MG1 to start engine 40, for example. Inverter 14 also outputs regenerative power generated by motor generator MG ⁇ b> 1 by mechanical power transmitted from engine 40 to converter 12. At this time, converter 12 is controlled by ECU 30 to operate as a step-down circuit.
  • the inverter 14 is provided in parallel between the power line PL2 and the ground line NL, and includes a U-phase upper and lower arm 15, a V-phase upper and lower arm 16, and a W-phase upper and lower arm 17.
  • Each phase upper and lower arm is formed of a switching element connected in series between power line PL2 and ground line NL.
  • the U-phase upper / lower arm 15 includes switching elements Q3, Q4
  • the V-phase upper / lower arm 16 includes switching elements Q5, Q6,
  • the W-phase upper / lower arm 17 includes switching elements Q7, Q8. Composed.
  • Antiparallel diodes D3 to D8 are connected to switching elements Q3 to Q8, respectively. Switching elements Q3-Q8 are controlled by switching control signal PWI from ECU 30.
  • motor generator MG1 is a three-phase permanent magnet synchronous motor, and one end of three U, V, and W phase coils is commonly connected to a neutral point. Further, the other end of each phase coil is connected to a connection node of switching elements of each phase upper and lower arms 15 to 17.
  • Inverter 22 is connected to converter 12 in parallel with inverter 14. Inverter 22 converts the DC voltage output from converter 12 into three-phase AC and outputs the same to motor generator MG2 that drives drive wheels. Inverter 22 also outputs regenerative power generated by motor generator MG2 to converter 12 along with regenerative braking. At this time, converter 12 is controlled by ECU 30 to operate as a step-down circuit. Although the internal configuration of inverter 22 is not shown, it is similar to inverter 14, and detailed description will not be repeated.
  • the converter 12 is basically controlled so that the switching elements Q1 and Q2 are turned on and off in a complementary manner within each switching period.
  • Converter 12 boosts DC voltage VB supplied from power storage device 28 to DC voltage VH (hereinafter, this DC voltage corresponding to the input voltage to inverter 14 is also referred to as “system voltage”) during the boosting operation.
  • This boosting operation is performed by supplying the electromagnetic energy accumulated in reactor L1 during the ON period of switching element Q2 to power line PL2 via switching element Q1 and antiparallel diode D1.
  • converter 12 steps down DC voltage VH to DC voltage VB during the step-down operation.
  • This step-down operation is performed by supplying the electromagnetic energy stored in reactor L1 during the ON period of switching element Q1 to ground line NL via switching element Q2 and antiparallel diode D2.
  • Smoothing capacitor C ⁇ b> 2 smoothes the DC voltage from converter 12 and supplies the smoothed DC voltage to inverter 23.
  • the voltage sensor 13 detects the voltage across the smoothing capacitor C2, that is, the system voltage VH, and outputs the detected value to the ECU 30.
  • torque command value TR1 of motor generator MG1 is set negative (TR1 ⁇ 0).
  • inverter 14 converts the AC voltage generated by motor generator MG1 into a DC voltage by a switching operation in response to switching control signal PWI1, and converts the converted DC voltage (system voltage) through smoothing capacitor C2.
  • the regenerative braking here refers to braking with regenerative power generation when the driver operating the electric vehicle performs a footbrake operation, or regenerative braking by turning off the accelerator pedal while driving, although the footbrake is not operated. This includes decelerating (or stopping acceleration) the vehicle while generating electricity.
  • inverter 22 receives switching control signal PWI2 from ECU 30 corresponding to the torque command value of motor generator MG2 and converts the DC voltage into an AC voltage by a switching operation in response to switching control signal PWI2 to obtain a predetermined torque.
  • Motor generator MG2 is driven so that
  • Current sensors 24 and 25 detect motor currents MCRT1 and MCRT2 flowing through motor generators MG1 and MG2, and output the detected motor currents to ECU 30. Since the sum of the instantaneous values of the currents of the U-phase, V-phase, and W-phase is zero, the current sensors 24 and 25 are arranged to detect the motor current for two phases as shown in FIG. All you need is enough.
  • Rotation angle sensors (resolvers) 26 and 27 detect rotation angles ⁇ 1 and ⁇ 2 of motor generators MG1 and MG2, and send the detected rotation angles ⁇ 1 and ⁇ 2 to ECU 30.
  • ECU 30 can calculate rotational speeds MRN1, MRN2 and angular speeds ⁇ 1, ⁇ 2 (rad / s) of motor generators MG1, MG2 based on rotational angles ⁇ 1, ⁇ 2.
  • the rotation angle sensors 26 and 27 may not be arranged by directly calculating the rotation angles ⁇ 1 and ⁇ 2 from the motor voltage and current in the ECU 30.
  • the ECU 30 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown), and controls each device of the vehicle 100. Note that these controls are not limited to software processing, and can be constructed and processed by dedicated hardware (electronic circuit).
  • the ECU 30 includes the input torque command values TR1 and TR2, the DC voltage VB detected by the voltage sensor 10, the DC current IB detected by the current sensor 11, and the system voltage detected by the voltage sensor 13. Based on VH, motor currents MCRT1, MCRT2 from current sensors 24, 25, rotation angles ⁇ 1, ⁇ 2 from rotation angle sensors 26, 27, etc., motor generators MG1, MG2 generate torques according to torque command values TR1, TR2.
  • the operations of the converter 12 and the inverter 23 are controlled so as to output. That is, switching control signals PWC, PWI1, and PWI2 for controlling converter 12 and inverter 23 as described above are generated and output to converter 12 and inverter 23, respectively.
  • ECU 30 feedback-controls system voltage VH and generates switching control signal PWC so that system voltage VH matches the voltage command value.
  • the ECU 30 when the vehicle 100 enters the regenerative braking mode, the ECU 30 generates the switching control signals PWI1 and PWI2 so as to convert the AC voltage generated by the motor generators MG1 and MG2 into a DC voltage, and outputs the switching control signals PWI1 and PWI2.
  • inverter 23 converts the AC voltage generated by motor generators MG1 and MG2 into a DC voltage and supplies it to converter 12.
  • the ECU 30 when the vehicle 100 enters the regenerative braking mode, the ECU 30 generates a switching control signal PWC so as to step down the DC voltage supplied from the inverter 23 and outputs it to the converter 12.
  • the AC voltage generated by motor generators MG1 and MG2 is converted into a DC voltage, and is further stepped down and supplied to power storage device 28.
  • a state where the reactor average current obtained by averaging the reactor current flowing through reactor L1 in the time axis direction is positive is a power running state in which motor generators MG1 and MG2 are driven by electric power from power storage device 28, and a state where reactor average current is negative
  • the electric power generated by motor generators MG1 and MG2 is in a regenerative state in which power storage device 28 is charged.
  • motor generators MG1 and MG2 may have different states (powering and regeneration). For example, the motor generator MG1 is driven in the regenerative state while the motor generator MG2 is driven in the power running state.
  • the case where power is supplied from the power storage device 28 to the load device 45 is collectively referred to as a power running state, and the power generated by the load device 45 is charged to the power storage device 28.
  • a power running state the case where power is supplied from the power storage device 28 to the load device 45 is collectively referred to as a power running state
  • the power generated by the load device 45 is charged to the power storage device 28.
  • the regenerative state are collectively called the regenerative state.
  • FIG. 2 is a time chart for explaining the influence of dead time in switching control.
  • the horizontal axis represents time
  • the vertical axis represents the carrier wave (carrier wave) in the switching control, the operating state of the switching elements Q1 and Q2, and the voltage of the connection node V0.
  • FIG. 2 shows an example in the case where the load device 45 is in a power running state and the reactor current IL is always positive at a high load.
  • the drive command for switching elements Q1, Q2 is basically generated by comparing the carrier wave with the command duty.
  • the command duty is W2
  • in the switching cycle T from time t1 to t4 between the intersection A1 and the intersection A2 between the carrier wave W1 and the command duty W2 (that is, from time t1 to t2).
  • Switching element Q1 is controlled to be on (switching element Q2 is off), and switching element Q1 is controlled to be off (switching element Q2 is on) between intersection A2 and intersection A3 (ie, from time t2 to t4). Is done.
  • the switching elements Q1 and Q2 are simultaneously turned on to prevent the power line PL2 and the ground line NL from being short-circuited. After the switching element is turned off, a period (dead time) in which the other switching element is not turned on is provided for a certain time.
  • the switching element itself requires an operation time when operating from off to on or from on to off, a minimum on time (or minimum off time) of the switching element is required. Therefore, the actual duty (hereinafter also referred to as “actual duty”) may be limited by the dead time and the minimum on-time (or minimum off-time) of the switching element.
  • the OFF period of the switching element Q2 should be between the intersection A1 and the intersection A2 (time t1 to t2). However, depending on the dead time and the minimum ON time of the switching element Q1, From time t1 to t3, the switching element Q2 is turned off.
  • the voltage of the connection node V0 becomes the system voltage VH from time t1 to time t3 (time T1). Therefore, the actual duty limited by the dead time and the minimum on-time of the switching element is expressed by the ratio that the voltage of the connection node V0 of the switching elements Q1 and Q2 becomes the system voltage during the switching period T, that is, T1 / T. Can do.
  • FIG. 3 is a time chart for explaining the actual duty when the load device 45 is in the power running state and the reactor current IL is always positive, as in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the reactor current IL, the carrier wave, the operating state of the switching elements Q1, Q2, and the voltage of the connection node V0.
  • the drive command for the switching elements Q1 and Q2 is generated by comparing the carrier wave with the command duty.
  • the actual operation is restricted by the dead time and the minimum on-time of the switching element.
  • FIG. 4 is a diagram for explaining the current flowing through the converter 12 in the case of FIG.
  • FIGS. 3 and 4 in the case of FIG. 3, when switching element Q2 is on, current flows from power line PL1 through reactor L1 and switching element Q2, as indicated by solid line arrow AR1 in FIG. And flows in a direction toward the ground line NL. At this time, positive energy is accumulated in reactor L1. When the switching element Q2 is turned off, the switching element Q1 is then turned on. However, in the case of FIG. 3, during the period in which switching element Q2 is off (ie, the dead time period and the period in which switching element Q1 is on), the current passes through diode D1 due to the positive energy accumulated in reactor L1. And flows in the direction from the reactor L1 toward the power line PL2 (solid arrow AR2 in FIG. 4).
  • the voltage of the connection node V0 is always the system voltage VH while the switching element Q2 is off. Therefore, the actual duty is a ratio of time in the switching period T, which is the sum of the dead time and the ON time of the switching element Q1.
  • FIG. 5 is a time chart for explaining the actual duty when the reactor current is in a power running state but the reactor current is at a low load close to zero.
  • FIG. 5 shows the same command duty as FIG. 3, but the reactor current IL is switched from positive to negative or from negative to positive during the switching period.
  • FIG. 6 is a diagram for explaining the current flowing through the converter 12 in the case of FIG. 5 and FIG. 6, immediately after switching element Q2 is switched from on to off, reactor current IL is positive, so that the current passes through diode D1 as in FIG. It flows in the direction of solid line arrow AR2 in FIG. Thereafter, switching element Q1 is turned on. However, when the current decreases to zero, current flows in the direction from power line PL2 to power line PL1 via switching element Q1 (broken arrow AR4 in FIG. 6). start. As a result, negative energy is accumulated in reactor L1.
  • the actual duty is a ratio of time during which the switching element Q1 is turned on and the dead time from switching element Q2 off to switching element Q1 on is added in the switching period T.
  • FIG. 7 is a time chart for explaining the actual duty when the load device 45 is in the regenerative state and the reactor current IL is always negative.
  • FIG. 8 is a diagram for explaining the current flowing through converter 12 in the case of FIG. Further, the command duty in FIG. 7 is the same as in FIGS. 3 and 5.
  • reactor current IL is negative when switching element Q1 is on, the current flows from power line PL2 to reactor L1 via switching element Q1 (in FIG. 8). It flows in the broken line arrow AR4).
  • the period during which the voltage at the connection node V0 is the system voltage VH is only the period during which the switching element Q1 is on. Therefore, the actual duty is a ratio of the on-time of the switching element Q1 in the switching period T.
  • FIG. 9 is a diagram showing the relationship between the output current IB of the power storage device 28, the output power POUT, and the output voltage VB in the power running state.
  • the horizontal axis indicates the output current IB
  • the vertical axis indicates the output voltage VB (upper stage) and the output power POUT (lower stage).
  • the case of the power running state will be described as an example, but the same applies to the case of the regenerative state.
  • output voltage VB of power storage device 28 can be expressed as equation (1), where VB0 is the open circuit voltage of power storage device 28 and RB is the internal resistance.
  • VB VB0 ⁇ IB ⁇ RB (1) This is illustrated as a straight line W10 in the upper part of FIG.
  • Output power POUT of power storage device 28 can be represented by the product of output voltage VB and output current IB.
  • the output voltage is VB0 / 2.
  • the duty (VB / VH) for driving the converter 12 is set to VB0 / 2VH, the maximum power can be taken out from the power storage device 28.
  • the on-duty may be eroded by the dead time, and the command duty may not be achieved.
  • the electric power from the power storage device 28 cannot be drawn sufficiently, so that the desired system voltage VH cannot be achieved, and the power performance may be insufficient.
  • FIG. 10 is a time chart comparing the duty in the power running state with and without the influence of the dead time.
  • the upper part of FIG. 10 shows the carrier wave, and the middle part shows the operating state of the switching elements Q1 and Q2 and the voltage of the connection node V0 in an ideal case without the influence of the dead time. Further, the lower part of FIG. 10 shows the operation state of the switching elements Q1 and Q2 in the actual case in consideration of the dead time and the voltage of the connection node V0.
  • T1 ⁇ T1A as shown in the upper part of FIG. 10, the actual duty becomes larger than the command duty, and the period (T2A) during which the switching element Q2 is on becomes shorter than T2.
  • the output voltage VB of the power storage device 28 decreases.
  • the step-up ratio required for the target system voltage VH increases, and if the target duty cannot be achieved, the power required for driving the motor cannot be obtained and the power performance may be degraded. .
  • the influence of the dead time can be reduced by lowering the carrier frequency, so that the target output voltage can be obtained.
  • the carrier frequency can be increased.
  • FIG. 11 is a time chart for explaining the actual duty when the converter drive control according to the first embodiment is applied in the power running state shown in FIG.
  • the target output voltage of converter 12 can be actually set within the voltage range due to the influence of the dead time of switching elements Q1 and Q2. Is exceeded, the carrier frequency is set low as shown in FIG. As a result, the switching period is changed from T to T # (T ⁇ T #).
  • the ratio of the dead time in the switching cycle T # is smaller than that in the case where the first embodiment is not applied. As a result, the range that the actual duty (T1 # / T #) can be increased.
  • FIG. 12 is a functional block diagram for explaining converter drive control executed by the ECU 30 in the first embodiment.
  • Each functional block described in the functional block diagram illustrated in FIG. 12 and the subsequent FIGS. 15, 17, and 22 is realized by hardware or software processing by the ECU 30.
  • ECU 30 includes a frequency setting unit 300, a voltage command setting unit 310, and a drive control unit 320. Further, the drive control unit 320 includes a target value calculation unit 330, a reference value calculation unit 340, a selection unit 350, a frequency change unit 360, an oscillation unit 370, and a drive command generation unit 380.
  • the frequency setting unit 300 sets a preset carrier frequency FC. In the first embodiment, this carrier frequency FC is a fixed value. Then, the frequency setting unit 300 outputs the set carrier frequency FC to the reference value calculation unit 340 and the frequency change unit 360.
  • the reference value calculation unit 340 Based on the carrier frequency FC from the frequency setting unit 300 and the preset dead time and minimum on-time of the switching elements Q1 and Q2, the reference value calculation unit 340 has a settable actual duty that takes into account the dead time. The upper limit value UL and the lower limit value LL of the range are calculated. Then, the reference value calculation unit 340 outputs the calculation result to the selection unit 350.
  • Voltage command setting unit 310 receives input of torque command values TR1, TR2 of motor generators MG1, MG2 and rotational speeds MRN1, MRN2 of motor generators MG1, MG2. Based on these pieces of information, voltage command setting unit 310 calculates voltage command value VHREF of input voltage (system voltage) VH of inverter 23, and outputs it to target value calculation unit 330.
  • the target value calculation unit 330 receives an input of the voltage command value VHREF from the voltage command setting unit 310.
  • Target value calculation unit 330 receives input of output voltage VB and system voltage VH of power storage device 28 detected by voltage sensors 10 and 13, respectively.
  • the target value calculation unit 330 calculates a command duty DUTY based on these pieces of information. Then, the target value calculation unit 330 outputs the calculation result to the selection unit 350 and the drive command generation unit 380.
  • the selection unit 350 receives the upper limit value UL and the lower limit value LL of the settable duty range from the reference value calculation unit 340 and the command duty DUTY from the target value calculation unit 330. Then, selection unit 350 determines whether or not command duty DUTY is within a settable duty range. Then, the selection unit 350 sets the change flag FLG to OFF when the command duty DUTY is within the settable duty range, and sets the change flag FLG when the command duty DUTY exceeds the settable duty range. Set to on. Then, selection unit 350 outputs change flag FLG to frequency change unit 360.
  • the frequency change unit 360 receives the carrier frequency FC from the frequency setting unit 300 and the change flag FLG from the selection unit 350. Then, when the change flag FLG is off, the frequency changing unit 360 sets the carrier frequency FC received from the frequency setting unit 300 to the carrier frequency FC * for use in the oscillating unit 370. On the other hand, when the change flag is on, the frequency changing unit 360 sets the carrier frequency FC * for use in the oscillating unit 370 to a frequency lower than the carrier frequency FC. Then, the frequency changing unit 360 outputs the set carrier frequency FC * to the oscillating unit 370.
  • the frequency change in the frequency changing unit 360 may be changed to a preset fixed frequency, or variably according to the difference between the command duty and the above-described upper limit value UL or lower limit value LL. It may be changed.
  • the oscillation unit 370 generates a carrier wave CAR according to the carrier frequency FC * received from the frequency changing unit 360, and outputs the carrier wave CAR to the drive command generating unit 380.
  • the drive command generator 380 receives the input of the carrier wave CAR from the oscillator 370 and the command duty DUTY from the target value calculator 330.
  • Drive command generation unit 380 generates switching control command PWC for driving switching elements Q1 and Q2 based on the comparison between carrier wave CAR and command duty DUTY and outputs the switching control command PWC to converter 12.
  • FIG. 13 is a flowchart for illustrating details of the converter drive control process executed by ECU 30 in the first embodiment.
  • Each step in the flowcharts of FIG. 13 and the subsequent FIG. 16, FIG. 21, FIG. 23 is realized by executing a program stored in the ECU 30 in a predetermined cycle.
  • dedicated hardware electronic circuit
  • ECU 30 sets carrier frequency FC to a predetermined initial value (FC0) in frequency setting unit 300 in step (hereinafter, step is abbreviated as S) 400.
  • ECU 30 based on voltage command value VHREF of the output voltage of converter 12 calculated based on torque command values TR1, TR2 and the like of motor generators MG1, MG2 and the output voltage VB of power storage device 28,
  • the target value calculation unit 330 calculates the command duty DUTY of the switching elements Q1 and Q2.
  • the ECU 30 sets the upper limit value UL and the lower limit value LL of the duty range that can be actually set in consideration of the dead time based on the carrier frequency FC and the set values of the dead times of the switching elements Q1 and Q2.
  • the reference value calculation unit 340 performs calculation.
  • the ECU 30 determines whether the command duty DUTY is within the settable range, that is, whether LL ⁇ DUTY ⁇ UL.
  • command duty DUTY is within the settable range (YES in S430)
  • ECU 30 proceeds to S470 to generate carrier wave CAR as initial value (FC0) set to carrier frequency FC in S400.
  • carrier wave CAR and command duty DUTY control command PWC for switching elements Q 1 and Q 2 is generated and output to converter 12.
  • command duty DUTY exceeds the settable range, that is, when DUTY ⁇ LL or DUTY ⁇ UL (NO in S430), the process proceeds to S440, and ECU 30 decreases carrier frequency FC. Change to
  • the ECU 30 determines whether or not the carrier frequency lowered in S450 is greater than a preset reference value (lower limit value) of the carrier frequency.
  • the reference value (lower limit value) of the carrier frequency is set in consideration of the control cycle of ECU 30 and the stability of control.
  • the process proceeds to S470, and ECU 30 determines the changed carrier frequency.
  • a carrier wave CAR according to FC * is generated, and a control command PWC for switching elements Q1 and Q2 is generated and output to converter 12.
  • ECU 30 changes carrier frequency FC * after change in S460. Is set to the lower limit of the carrier frequency. ECU 30 then generates control command PWC and outputs it to converter 12 in S470.
  • the carrier frequency can be maintained at a high frequency within the settable voltage range of the target output voltage VHREF, so that noise generated by downsizing and switching of the converter 12 can be suppressed. You can enjoy the benefits of higher frequency.
  • the target output voltage can be obtained by suppressing the output voltage restriction by setting the carrier frequency low.
  • the target output voltage VHREF exceeds the settable voltage range, a large current flows through the converter 12, so that the heat generation of the switching elements Q1, Q2 can be suppressed by reducing the carrier frequency.
  • the heat resistance specifications of the switching elements Q1 and Q2 can be relaxed, and the specifications of the cooling facility (not shown) can be relaxed, so that the cost can be further reduced.
  • FIG. 14 is a time chart for explaining the actual duty when the converter drive control according to the second embodiment is applied in the power running state of FIG.
  • the switching elements Q1 and Q2 are simultaneously turned on, and the power line PL2 and the ground line NL are not short-circuited. Therefore, basically, it is not necessary to consider the dead time. Further, it is not necessary to consider the minimum on-time of the switching element Q1.
  • the command duty can be set until the time T1 in FIG. 14 becomes equal to the minimum OFF time of the switching element Q2, so that the settable voltage range can be expanded.
  • the state of the load there may be a sudden change from power running to regeneration (or regeneration to power running), or a change from single-arm drive to double-arm drive.
  • a dead time may be provided before the switching element to be driven is turned on as shown in FIG.
  • FIG. 15 is a functional block diagram for explaining converter drive control executed by the ECU 30 in the second embodiment.
  • FIG. 15 is a block diagram in which the drive control unit 320 is replaced with the drive control unit 320A in the functional block diagram described in FIG. 12 of the first embodiment. In FIG. 15, the description of the functional blocks overlapping those in FIG. 12 will not be repeated.
  • drive control unit 320A includes target value calculation unit 330, reference value calculation unit 340, selection unit 350A, oscillation unit 370, and drive command generation unit 380A.
  • the target value calculation unit 330 receives an input of the voltage command value VHREF from the voltage command setting unit 310.
  • Target value calculation unit 330 receives input of output voltage VB and system voltage VH of power storage device 28 detected by voltage sensors 10 and 13, respectively.
  • the target value calculation unit 330 calculates a command duty DUTY based on these pieces of information. Then, target value calculation unit 330 outputs the calculation result to selection unit 350A and drive command generation unit 380A.
  • the reference value calculation unit 340 is based on the carrier frequency FC from the frequency setting unit 300 and the dead time and the minimum on-time of the switching elements Q1 and Q2. The value UL and the lower limit value LL are calculated. Then, the calculation result is output to the selection unit 350A.
  • the selection unit 350A receives the upper limit value UL and the lower limit value LL of the settable duty range from the reference value calculation unit 340 and the command duty DUTY from the target value calculation unit 330. Then, selection unit 350A selects either of the two-arm drive mode and the one-arm drive mode for driving only one of the switching elements Q1 and Q2 depending on whether or not the command duty DUTY is within the settable duty range. Select the mode. Specifically, selection unit 350A selects the both-arm drive mode when command duty DUTY is within the settable duty range. Further, when the command duty is equal to or greater than the upper limit value UL, the selection unit 350A selects the one-arm drive mode that drives only the lower arm (switching element Q2). Furthermore, when the command duty is equal to or lower than the lower limit value LL, the selection unit 350A selects the one-arm drive mode that drives only the upper arm (switching element Q1).
  • the selection unit 350A outputs the selected drive mode selection signal SEL to the drive command generation unit 380A.
  • the oscillation unit 370 generates a carrier wave CAR according to the carrier frequency FC set by the frequency setting unit 300, and outputs the carrier wave CAR to the drive command generation unit 380A.
  • the drive command generation unit 380A receives the command duty DUTY from the target value calculation unit 330, the selection signal SEL from the selection unit 350A, and the carrier wave CAR from the oscillation unit 370.
  • drive command generator 380A compares command duty DUTY with carrier wave CAR so as to drive the drive arm selected by selection signal SEL with command duty DUTY, and generates switching control command PWC to convert converter 12 Output to.
  • FIG. 16 is a flowchart for explaining details of converter drive control processing executed by ECU 30 in the second embodiment.
  • FIG. 16 is obtained by adding S435, S436, S445, S446, S447, and S470A in place of the steps from S430 to S470 in the flowchart described in FIG. 13 of the first embodiment. In FIG. 16, the description of the same steps as those in FIG. 13 will not be repeated.
  • ECU 30 calculates the upper limit value UL and the lower limit value LL of the command duty DUTY based on the carrier frequency and the set values of the dead times of the switching elements Q1 and Q2 in S420. Then, the process proceeds to S435 to determine whether or not the command duty DUTY is equal to or less than the lower limit value LL.
  • the ECU 30 selects a one-arm drive mode for driving only the lower arm (switching element Q2) in S445.
  • command duty DUTY is greater than lower limit value LL (NO in S435)
  • the process proceeds to S436, and ECU 30 determines whether command duty DUTY is greater than or equal to upper limit value UL.
  • command duty DUTY is equal to or greater than upper limit value UL (YES in S436)
  • the process proceeds to S446, and ECU 30 selects a one-arm drive mode in which only the upper arm (switching element Q1) is driven in S446. .
  • the ECU 30 selects the both-arm drive mode in S447.
  • the ECU 30 In S470A, the ECU 30 generates the carrier wave CAR as the initial value (FC0) set to the carrier frequency FC in S400, compares the carrier wave CAR with the command duty DUTY, and in S445, S446, or S447.
  • a control command PWC is generated and output to converter 12 so as to control switching elements Q1 and Q2 in the selected drive mode.
  • the settable range of the command duty DUTY is set based on the initial value (fixed value) of the carrier frequency FC set by the frequency setting unit 300 and the set time of the dead time, The configuration for changing the carrier frequency or selecting the drive arm when the command duty DUTY exceeds the settable range has been described.
  • the calculation function of the settable range of the command duty DUTY and the determination function based on the comparison between the settable range and the command duty are not required as in the first or second embodiment.
  • the control process can be simplified.
  • FIG. 17 is a functional block diagram for explaining converter drive control executed by the ECU 30 in the third embodiment.
  • ECU 30 includes a frequency setting unit 300A, a voltage command setting unit 310, and a drive control unit 320B.
  • the drive control unit 320B includes a target value calculation unit 330, an oscillation unit 370, and a drive command generation unit 380.
  • Frequency setting unit 300A includes output voltage VB of power storage device 28 detected by voltage sensor 10, output current IB of power storage device 28 detected by current sensor 11, current IL flowing through reactor L1 detected by current sensor 18, and The load power PR of the load device 45 is input. Then, the frequency setting unit 300A sets the carrier frequency FC by referring to a preset map based on these pieces of information.
  • FIG. 18 to 20 are examples of maps for setting the carrier frequency FC.
  • FIG. 19 is a second example of a map for setting the carrier frequency FC, and the carrier frequency FC is set based on the reactor current IL flowing through the reactor L1.
  • FIG. 20 is a third example of a map for setting the carrier frequency FC, and the carrier frequency FC is set based on the load power PR of the load device 45.
  • voltage command setting unit 310 receives input of torque command values TR1, TR2 of motor generators MG1, MG2 and rotational speeds MRN1, MRN2 of motor generators MG1, MG2. Based on these pieces of information, voltage command setting unit 310 calculates voltage command value VHREF of input voltage (system voltage) VH of inverter 23, and outputs it to target value calculation unit 330.
  • the target value calculation unit 330 receives an input of the voltage command value VHREF from the voltage command setting unit 310.
  • Target value calculation unit 330 receives input of output voltage VB and system voltage VH of power storage device 28 detected by voltage sensors 10 and 13, respectively.
  • the target value calculation unit 330 calculates a command duty DUTY based on these pieces of information. Then, the target value calculation unit 330 outputs the calculation result to the drive command generation unit 380.
  • the oscillation unit 370 generates a carrier wave CAR according to the carrier frequency FC received from the frequency setting unit 300A, and outputs the carrier wave CAR to the drive command generation unit 380.
  • the drive command generator 380 receives the input of the carrier wave CAR from the oscillator 370 and the command duty DUTY from the target value calculator 330.
  • Drive command generation unit 380 generates switching control command PWC for driving switching elements Q1 and Q2 based on the comparison between carrier wave CAR and command duty DUTY and outputs the switching control command PWC to converter 12.
  • FIG. 21 is a flowchart for explaining details of converter drive control processing executed by ECU 30 in the third embodiment.
  • ECU 30 shows carrier frequency FC in FIGS. 18 to 20 based on information such as output voltage VB, output current IB, reactor current IL of power storage device 28 in S405. Set by referring to such a map.
  • ECU 30 based on voltage command value VHREF of the output voltage of converter 12 calculated based on torque command values TR1, TR2 and the like of motor generators MG1, MG2 and the output voltage VB of power storage device 28,
  • the target value calculation unit 330 calculates the command duty DUTY of the switching elements Q1 and Q2.
  • the ECU 30 In S470, the ECU 30 generates a carrier wave CAR according to the carrier frequency FC set in S405, and compares the carrier wave CAR with the command duty DUTY to thereby control the switching elements Q1 and Q2.
  • a PWC is generated and output to the converter 12.
  • the carrier frequency in the range affected by the dead time can be set to be lowered in advance.
  • switching control can be performed at a high carrier frequency in a range where there is no influence of dead time, it is possible to enjoy the merit of high frequency, such as downsizing the converter 12 and suppressing noise generated by switching.
  • the target output voltage can be obtained by suppressing the output voltage limitation by setting the carrier frequency low.
  • the carrier frequency FC is set in advance in consideration of the effect of dead time. However, depending on the actually calculated command duty DUTY, it may exceed the settable range of the command duty. There is sex.
  • FIG. 22 is a functional block diagram for explaining converter drive control executed by the ECU 30 when the first embodiment and the third embodiment are combined.
  • the frequency setting unit 300 in the functional block diagram described in FIG. 12 in the first embodiment is replaced with the frequency setting unit 300A in the third embodiment. Since each functional block is the same as that described with reference to FIGS. 12 and 17, detailed description thereof will not be repeated.
  • FIG. 23 is a flowchart for explaining details of converter drive control processing executed by ECU 30 when the first embodiment and the third embodiment are combined.
  • step S400 in the flowchart in FIG. 18 described in the first embodiment is replaced with step 405 in FIG. 21 described in the third embodiment. Therefore, detailed description of each step will not be repeated.
  • the frequency setting unit 300 in the functional block diagram of FIG. 15 is replaced with the frequency setting unit 300A of the functional block diagram of FIG. 17, and step S400 in the flowchart of FIG. 16 is replaced with step S405 of the flowchart of FIG. This can be realized by replacing it with.
  • the description of each functional block and each step will not be repeated.
  • the output voltage limitation caused by the dead time can be suppressed in the converter 12.
  • the converter 12 in the present embodiment is an example of the “voltage conversion device” in the present invention.

Abstract

In a voltage conversion device (12) for a motor drive control device, switching for an upper arm (Q1) and a lower arm (Q2) that perform electrical power conversion by means of a switching operation is controlled so that the range of output voltage that can be output by the voltage conversion device (12), which is restricted by the dead time of the switching operation, is expanded. Thus, restriction of the output voltage of the voltage conversion device (12) that is caused by the dead time can be suppressed.

Description

電圧変換装置の制御装置、それを搭載した車両および電圧変換装置の制御方法Control device for voltage converter, vehicle equipped with the same, and control method for voltage converter
 本発明は、電圧変換装置の制御装置、それを搭載した車両および電圧変換装置の制御方法に関し、より特定的には、デッドタイムによって発生する電圧変換装置の出力電圧制限の抑制に関する。 The present invention relates to a control device for a voltage conversion device, a vehicle on which the voltage conversion device is mounted, and a control method for the voltage conversion device, and more particularly to suppression of output voltage limitation of the voltage conversion device caused by dead time.
 近年、環境に配慮した車両として、蓄電装置(たとえば二次電池やキャパシタなど)を搭載し、蓄電装置に蓄えられた電力から生じる駆動力を用いて走行する電動車両が注目されている。この電動車両には、たとえば電気自動車、ハイブリッド自動車、燃料電池車などが含まれる。 2. Description of the Related Art In recent years, as an environmentally friendly vehicle, an electric vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels using a driving force generated from the electric power stored in the power storage device has attracted attention. Examples of the electric vehicle include an electric vehicle, a hybrid vehicle, and a fuel cell vehicle.
 これらの電動車両においては、発進時や加速時に蓄電装置から電力を受けて走行のための駆動力を発生するとともに、制動時に回生制動によって発電を行なって蓄電装置に電気エネルギを蓄えるためのモータジェネレータを備える場合がある。このように、走行状態に応じてモータジェネレータを制御するために、電動車両にはインバータが搭載される。 In these electric vehicles, a motor generator for generating driving force for traveling by receiving electric power from the power storage device when starting or accelerating, and generating electric power by regenerative braking during braking to store electric energy in the power storage device May be provided. Thus, in order to control a motor generator according to a driving | running | working state, an inverter is mounted in an electric vehicle.
 このような車両においては、車両状態によって変動するインバータが必要とする電力を安定的に供給するために、蓄電装置とインバータとの間に電圧変換器(コンバータ)が備えられる場合がある。また、このコンバータにより、インバータの入力電圧を蓄電装置の出力電圧より高くして、モータの高出力化ができるとともに、同一出力時のモータ電流を低減することで、インバータおよびモータの小型化,低コスト化を図ることができる。 In such a vehicle, a voltage converter (converter) may be provided between the power storage device and the inverter in order to stably supply electric power required by the inverter that varies depending on the vehicle state. This converter also makes it possible to increase the input voltage of the inverter higher than the output voltage of the power storage device to increase the output of the motor and reduce the motor current at the same output, thereby reducing the size and the size of the inverter and the motor. Cost can be reduced.
 特開2006-187186号公報(特許文献1)には、モータ駆動装置の電圧変換装置について、電圧変換装置の電圧指令値が電源電圧に近い領域において、電圧変換装置のスイッチング素子が、デッドタイムの影響を受ける場合に、スイッチング素子のスイッチング制御に用いるキャリア周波数を低下させる技術が開示される。 Japanese Patent Laid-Open No. 2006-187186 (Patent Document 1) describes a voltage conversion device for a motor drive device in which the switching element of the voltage conversion device has a dead time in a region where the voltage command value of the voltage conversion device is close to the power supply voltage. A technique for reducing the carrier frequency used for switching control of the switching element when affected is disclosed.
 この技術によれば、電圧変換装置の電圧指令値が電源電圧に近い領域、すなわち電圧変換装置の上アームのオンデューティが1.0に非常に近い領域において、デッドタイムによって本来目標とするオンデューティが確保できないことによって出力電圧の振動が発生する。この技術によれば、電圧変換装置の出力電圧の振動を抑制することができる。 According to this technique, in the region where the voltage command value of the voltage converter is close to the power supply voltage, that is, in the region where the on-duty of the upper arm of the voltage converter is very close to 1.0, the on-duty originally targeted by the dead time The oscillation of the output voltage occurs due to the inability to ensure. According to this technique, the oscillation of the output voltage of the voltage converter can be suppressed.
特開2006-187186号公報JP 2006-187186 A 特開2008-302763号公報JP 2008-302763 A 特開2004-112904号公報JP 2004-112904 A
 インバータやコンバータなどの電力変換装置においては、装置自体の小型化やスイッチングによって発生する騒音を抑制するために、スイッチング制御におけるキャリア周波数の高周波化が進められている。 In power converters such as inverters and converters, in order to reduce the size of the device itself and the noise generated by switching, the carrier frequency in switching control is being increased.
 スイッチング制御のキャリア周波数が高周波化されると、スイッチング素子のスイッチング周期が短くなる。そうすると、スイッチング素子の動作速度が同じであると、1回あたりのスイッチングにおけるデッドタイムは変わらないために、高周波化しない場合と比較してスイッチング周期におけるデッドタイムの割合が増加することになる。その結果、オンデューティが1.0に非常に近い領域でなくとも、所望のオンデューティを確保できなくなってしまう場合が起こりうるので、電圧変換装置の出力可能な電圧範囲が制限されてしまうという問題がある。 When the carrier frequency for switching control is increased, the switching cycle of the switching element is shortened. Then, if the operating speed of the switching elements is the same, the dead time in switching per time does not change, and therefore the ratio of dead time in the switching period increases compared to the case where the frequency is not increased. As a result, the desired on-duty may not be ensured even if the on-duty is not very close to 1.0, so that the voltage range that can be output by the voltage converter is limited. There is.
 本発明は、このような問題を解決するためになされたものであって、この発明の目的は、モータ駆動制御装置における電圧変換装置において、デッドタイムによって発生する電圧変換装置の出力電圧制限を抑制することである。 The present invention has been made to solve such a problem, and an object of the present invention is to suppress the output voltage limitation of the voltage converter caused by dead time in the voltage converter in the motor drive control device. It is to be.
 本発明による電圧変換装置の制御装置は、蓄電装置と負荷装置との間で電圧変換が可能な電圧変換装置の制御装置である。電圧変換装置は、負荷装置の電力線と接地線との間に直列に接続され、スイッチング動作により電圧変換を行なう第1のスイッチング素子および第2のスイッチング素子を含む。また、スイッチング動作は、第1のスイッチング素子および前記第2のスイッチング素子がいずれもオフ状態となる期間であるデッドタイムを含む。制御装置は、スイッチング動作のキャリア周波数を設定する周波数設定部と、電圧変換の電圧指令値およびキャリア周波数に基づいて、第1のスイッチング素子および第2のスイッチング素子をスイッチング制御するように構成された駆動制御部とを備える。そして、駆動制御部は、電圧変換装置に入出力される電力に関連する情報に基づいて、デッドタイムにより制限される電圧変換装置の出力可能電圧範囲を拡大するように第1のスイッチング素子および第2のスイッチング素子のスイッチング制御を行なう。 A control device for a voltage conversion device according to the present invention is a control device for a voltage conversion device capable of voltage conversion between a power storage device and a load device. The voltage conversion device includes a first switching element and a second switching element that are connected in series between the power line and the ground line of the load device and perform voltage conversion by a switching operation. Further, the switching operation includes a dead time that is a period during which both the first switching element and the second switching element are in the OFF state. The control device is configured to control the switching of the first switching element and the second switching element based on the frequency setting unit that sets the carrier frequency of the switching operation, and the voltage command value and the carrier frequency of the voltage conversion. A drive control unit. Then, the drive control unit, based on the information related to the power input / output to / from the voltage conversion device, expands the output voltage range of the voltage conversion device limited by the dead time, and the first switching element and the first switching device. Switching control of the switching element 2 is performed.
 好ましくは、電圧変換装置に入出力される電力に関連する情報は、第1のスイッチング素子および第2のスイッチング素子の目標デューティである。また、駆動制御部は、電圧指令値に基づいて、目標デューティを演算するように構成された目標値演算部と、キャリア周波数およびデッドタイムに基づいて、出力可能電圧範囲を定めるデューティ範囲を演算するように構成された基準値演算部とを含む。そして、駆動制御部は、目標デューティがデューティ範囲を超える場合は、出力可能電圧範囲を拡大するようにスイッチング制御を行なう。 Preferably, the information related to the power input / output to / from the voltage converter is the target duty of the first switching element and the second switching element. The drive control unit calculates a target value calculation unit configured to calculate a target duty based on the voltage command value, and a duty range that determines an output possible voltage range based on the carrier frequency and dead time. And a reference value calculation unit configured as described above. Then, when the target duty exceeds the duty range, the drive control unit performs switching control so as to expand the output possible voltage range.
 また好ましくは、駆動制御部は、目標デューティがデューティ範囲を超える場合は、キャリア周波数を低下させるように構成された周波数変更部をさらに含む。 Also preferably, the drive control unit further includes a frequency changing unit configured to lower the carrier frequency when the target duty exceeds the duty range.
 あるいは好ましくは、駆動制御部は、目標デューティがデューティ範囲を超える場合は、第1のスイッチング素子および第2のスイッチング素子のいずれか一方を選択する一方で、目標デューティがデューティ範囲内の場合には第1のスイッチング素子および第2のスイッチング素子の両方を選択するように構成された選択部と、選択部によって選択されたスイッチング素子の駆動指令を生成する駆動指令生成部とをさらに含む。 Alternatively, preferably, when the target duty exceeds the duty range, the drive control unit selects one of the first switching element and the second switching element, while when the target duty is within the duty range. It further includes a selection unit configured to select both the first switching element and the second switching element, and a drive command generation unit that generates a drive command for the switching element selected by the selection unit.
 また好ましくは、選択部は、目標デューティがデューティ範囲の上限値より大きいときには、第2のスイッチング素子を選択する。 Also preferably, the selection unit selects the second switching element when the target duty is larger than the upper limit value of the duty range.
 あるいは好ましくは、選択部は、目標デューティがデューティ範囲の下限値より小さいときには、第1のスイッチング素子を選択する。 Alternatively, preferably, the selection unit selects the first switching element when the target duty is smaller than a lower limit value of the duty range.
 好ましくは、周波数設定部は、電圧変換装置に入出力される電力に関連する情報に基づいて、キャリア周波数を可変に設定する。 Preferably, the frequency setting unit variably sets the carrier frequency based on information related to power input / output to / from the voltage converter.
 また好ましくは、電圧変換装置に入出力される電力に関連する情報は、蓄電装置の出力電力、出力電圧および出力電流の少なくとも1つを含む。 Also preferably, the information related to the power input / output to / from the voltage conversion device includes at least one of output power, output voltage, and output current of the power storage device.
 あるいは好ましくは、電圧変換装置は、第1のスイッチング素子および第2のスイッチング素子の接続ノードと、蓄電装置の正極端子とを結ぶ経路に設けられたリアクトルをさらに含む。そして、電圧変換装置に入出力される電力に関連する情報は、リアクトルに流れるリアクトル電流を含む。 Alternatively, or preferably, the voltage conversion device further includes a reactor provided in a path connecting the connection node of the first switching element and the second switching element and the positive electrode terminal of the power storage device. And the information relevant to the electric power input / output to / from the voltage converter includes the reactor current flowing through the reactor.
 あるいは好ましくは、電圧変換装置に入出力される電力に関連する情報は、負荷装置への供給電力を含む。 Alternatively, or preferably, the information related to the power input / output to / from the voltage converter includes power supplied to the load device.
[規則91に基づく訂正 17.06.2010] 
 本発明による車両は、蓄電装置と、回転電機と、インバータと、電圧変換装置と、制御装置とを備える。回転電機は、車両の推進のための駆動力を発生させる。インバータは、回転電機を駆動する。電圧変換装置は、蓄電装置とインバータとの間で電圧変換が可能に構成される。制御装置は、電圧変換装置を制御する。また、電圧変換装置は、負荷装置の電力線と接地線との間に直列に接続され、スイッチング動作により電圧変換を行なう第1のスイッチング素子および第2のスイッチング素子を含む。スイッチング動作は、第1のスイッチング素子および第2のスイッチング素子がいずれもオフ状態となる期間であるデッドタイムを含む。さらに、制御装置は、スイッチング動作のキャリア周波数を設定する周波数設定部と、電圧変換の電圧指令値およびキャリア周波数に基づいて、第1のスイッチング素子および第2のスイッチング素子をスイッチング制御するように構成された駆動制御部とを含む。そして、駆動制御部は、電圧変換装置に入出力される電力に関連する情報に基づいて、デッドタイムにより制限される電圧変換装置の出力可能電圧範囲を拡大するように第1のスイッチング素子および第2のスイッチング素子のスイッチング制御を行なう。
[Correction based on Rule 91 17.06.2010]
A vehicle according to the present invention includes a power storage device, a rotating electrical machine, an inverter, a voltage conversion device, and a control device. The rotating electrical machine generates a driving force for propelling the vehicle. The inverter drives the rotating electrical machine. The voltage conversion device is configured to be capable of voltage conversion between the power storage device and the inverter. The control device controls the voltage conversion device. The voltage conversion device includes a first switching element and a second switching element that are connected in series between the power line and the ground line of the load device and perform voltage conversion by a switching operation. The switching operation includes a dead time during which both the first switching element and the second switching element are in the off state. Further, the control device is configured to control the switching of the first switching element and the second switching element based on the frequency setting unit that sets the carrier frequency of the switching operation and the voltage command value and the carrier frequency of the voltage conversion. Drive control unit. Then, the drive control unit, based on the information related to the power input / output to / from the voltage converter, expands the output possible voltage range of the voltage converter limited by the dead time, and the first switching element and the first Switching control of the switching element 2 is performed.
 好ましくは、電圧変換装置に入出力される電力に関連する情報は、第1のスイッチング素子および第2のスイッチング素子の目標デューティである。また、駆動制御部は、電圧指令値に基づいて、目標デューティを演算するように構成された目標値演算部と、キャリア周波数およびデッドタイムに基づいて、出力可能電圧範囲を定めるデューティ範囲を演算するように構成された基準値演算部とを含む。そして、駆動制御部は、前記目標デューティがデューティ範囲を超える場合は、出力可能電圧範囲を拡大するようにスイッチング制御を行なう。 Preferably, the information related to the power input / output to / from the voltage converter is the target duty of the first switching element and the second switching element. The drive control unit calculates a target value calculation unit configured to calculate a target duty based on the voltage command value, and a duty range that determines an output possible voltage range based on the carrier frequency and dead time. And a reference value calculation unit configured as described above. When the target duty exceeds the duty range, the drive control unit performs switching control so as to expand the output possible voltage range.
 また好ましくは、駆動制御部は、目標デューティがデューティ範囲を超える場合は、キャリア周波数を低下させるように構成された周波数変更部をさらに含む。 Also preferably, the drive control unit further includes a frequency changing unit configured to lower the carrier frequency when the target duty exceeds the duty range.
 あるいは好ましくは、駆動制御部は、目標デューティがデューティ範囲を超える場合には、第1のスイッチング素子および第2のスイッチング素子のいずれか一方を選択する一方で、目標デューティがデューティ範囲内の場合には第1のスイッチング素子および第2のスイッチング素子の両方を選択するように構成された選択部と、選択部によって選択されたスイッチング素子の駆動指令を生成する駆動指令生成部とをさらに含む。 Alternatively, preferably, when the target duty exceeds the duty range, the drive control unit selects one of the first switching element and the second switching element while the target duty is within the duty range. Further includes a selection unit configured to select both the first switching element and the second switching element, and a drive command generation unit configured to generate a drive command for the switching element selected by the selection unit.
 本発明による電圧変換装置の制御方法は、蓄電装置と負荷装置との間で電圧変換が可能な電圧変換装置の制御方法である。電圧変換装置は、負荷装置の電力線と接地線との間に直列に接続され、スイッチング動作により電圧変換を行なう第1のスイッチング素子および第2のスイッチング素子を含む。また、スイッチング動作は、第1のスイッチング素子および第2のスイッチング素子がいずれもオフ状態となる期間であるデッドタイムを含む。そして、電圧変換装置の制御方法は、スイッチング動作のキャリア周波数を設定するステップと、電圧変換の電圧指令値およびキャリア周波数に基づいて、第1のスイッチング素子および第2のスイッチング素子をスイッチング制御するステップと、電圧変換装置に入出力される電力に関連する情報に基づいて、デッドタイムにより制限される電圧変換装置の出力可能電圧範囲を拡大するように第1のスイッチング素子および第2のスイッチング素子のスイッチング制御を行なうステップとを備える。 The voltage conversion device control method according to the present invention is a voltage conversion device control method capable of voltage conversion between a power storage device and a load device. The voltage conversion device includes a first switching element and a second switching element that are connected in series between the power line and the ground line of the load device and perform voltage conversion by a switching operation. In addition, the switching operation includes a dead time that is a period during which both the first switching element and the second switching element are in the OFF state. And the control method of a voltage converter is the step which sets the carrier frequency of switching operation, and the step which carries out switching control of the 1st switching element and the 2nd switching element based on the voltage command value and carrier frequency of voltage conversion And the first switching element and the second switching element so as to expand the output possible voltage range of the voltage conversion device limited by the dead time based on information related to the power input / output to / from the voltage conversion device. Performing switching control.
 本発明によれば、モータ駆動制御装置における電圧変換装置において、デッドタイムによって発生する電圧変換装置の出力電圧制限を抑制することができる。 According to the present invention, in the voltage conversion device in the motor drive control device, it is possible to suppress the output voltage limitation of the voltage conversion device caused by dead time.
実施の形態1に従う交流電動機の制御装置が適用されるモータ駆動制御システムを搭載したハイブリッド車両の全体構成図である。1 is an overall configuration diagram of a hybrid vehicle equipped with a motor drive control system to which an AC motor control device according to Embodiment 1 is applied. スイッチング制御におけるデッドタイムの影響を説明するためのタイムチャートである。It is a time chart for demonstrating the influence of the dead time in switching control. 負荷装置が力行状態でかつリアクトル電流が常に正となる場合の、実デューティを説明するためのタイムチャートである。It is a time chart for demonstrating an actual duty when a load apparatus is a power running state, and a reactor current becomes always positive. 図3の場合にコンバータを流れる電流を説明するための図である。It is a figure for demonstrating the electric current which flows through a converter in the case of FIG. 力行状態におけるリアクトル電流がゼロに近い低負荷時の場合の、実デューティを説明するためのタイムチャートである。It is a time chart for demonstrating an actual duty in the case of the time of the low load when the reactor current in a power running state is near zero. 図5の場合のコンバータを流れる電流を説明するための図である。It is a figure for demonstrating the electric current which flows through the converter in the case of FIG. 負荷装置が回生状態でかつリアクトル電流が常に負となる場合の、実デューティを説明するためのタイムチャートである。It is a time chart for demonstrating an actual duty when a load apparatus is a regenerative state and a reactor current is always negative. 図7の場合のコンバータを流れる電流を説明するための図である。It is a figure for demonstrating the electric current which flows through the converter in the case of FIG. 力行状態における、蓄電装置の出力電流と、出力電力および出力電圧との関係を示す図である。It is a figure which shows the relationship between the output current of an electrical storage apparatus, output electric power, and an output voltage in a power running state. デッドタイムの影響がある場合とない場合においての、力行状態でのデューティを比較したタイムチャートである。It is the time chart which compared the duty in a power running state in the case where there is no influence of dead time and it is. 図2の力行状態において、実施の形態1のコンバータ駆動制御を適用した場合の実デューティを説明するためのタイムチャートである。3 is a time chart for explaining an actual duty when the converter drive control of the first embodiment is applied in the power running state of FIG. 実施の形態1における、ECUで実行されるコンバータ駆動制御を説明するための機能ブロック図である。FIG. 3 is a functional block diagram for illustrating converter drive control executed by an ECU in the first embodiment. 実施の形態1における、ECUで実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。4 is a flowchart for illustrating details of converter drive control processing executed by the ECU in the first embodiment. 図2の力行状態において、実施の形態2のコンバータ駆動制御を適用した場合の実デューティを説明するためのタイムチャートである。3 is a time chart for explaining an actual duty when the converter drive control of the second embodiment is applied in the power running state of FIG. 実施の形態2における、ECUで実行されるコンバータ駆動制御を説明するための機能ブロック図である。FIG. 6 is a functional block diagram for illustrating converter drive control executed by an ECU in the second embodiment. 実施の形態2における、ECUで実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。6 is a flowchart for illustrating details of converter drive control processing executed by an ECU in the second embodiment. 実施の形態3における、ECUで実行されるコンバータ駆動制御を説明するための機能ブロック図である。FIG. 10 is a functional block diagram for illustrating converter drive control executed by an ECU in the third embodiment. キャリア周波数を設定するためのマップの第1の例を示す図である。It is a figure which shows the 1st example of the map for setting a carrier frequency. キャリア周波数を設定するためのマップの第2の例を示す図である。It is a figure which shows the 2nd example of the map for setting a carrier frequency. キャリア周波数を設定するためのマップの第3の例を示す図である。It is a figure which shows the 3rd example of the map for setting a carrier frequency. 実施の形態3における、ECUで実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。12 is a flowchart for illustrating details of converter drive control processing executed by an ECU in the third embodiment. 実施の形態1と実施の形態3を組み合わせた場合の、ECUで実行されるコンバータ駆動制御を説明するための機能ブロック図である。It is a functional block diagram for demonstrating converter drive control performed by ECU at the time of combining Embodiment 1 and Embodiment 3. FIG. 実施の形態1と実施の形態3を組み合わせた場合の、ECUで実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。It is a flowchart for demonstrating the detail of the converter drive control process performed by ECU at the time of combining Embodiment 1 and Embodiment 3. FIG.
 以下において、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, about the same or equivalent part in a figure, the same code | symbol is attached | subjected and the description is not repeated.
 [実施の形態1]
 図1は、実施の形態1に従う交流電動機の制御装置が適用されるモータ駆動制御システムを搭載したハイブリッド車両100の全体構成図である。実施の形態1においては、車両100としてエンジンおよびモータジェネレータを搭載したハイブリッド車両を例として説明するが、車両100の構成はこれに限定されるものではなく、蓄電装置からの電力によって走行可能な車両であれば適用可能である。車両100としては、ハイブリッド車両以外にたとえば電気自動車や燃料電池自動車などが含まれる。
[Embodiment 1]
FIG. 1 is an overall configuration diagram of a hybrid vehicle 100 equipped with a motor drive control system to which an AC motor control device according to Embodiment 1 is applied. In the first embodiment, a hybrid vehicle equipped with an engine and a motor generator will be described as an example of vehicle 100. However, the configuration of vehicle 100 is not limited to this, and the vehicle can travel with electric power from a power storage device. If so, it is applicable. The vehicle 100 includes, for example, an electric vehicle and a fuel cell vehicle in addition to the hybrid vehicle.
 また、本実施の形態においては車両についてモータ駆動制御システムを適用した構成について説明するが、車両以外でも交流電動機により駆動される機器であれば、本モータ駆動制御システムの適用が可能である。 In the present embodiment, a configuration in which the motor drive control system is applied to the vehicle will be described. However, the present motor drive control system can be applied to any device that is driven by an AC motor other than the vehicle.
 図1を参照して、車両100は、直流電圧発生部20と、負荷装置45と、平滑コンデンサC2と、制御装置(以下、ECU「Electronic Control Unit」とも称する。)30とを備える。 Referring to FIG. 1, vehicle 100 includes a DC voltage generation unit 20, a load device 45, a smoothing capacitor C <b> 2, and a control device (hereinafter also referred to as ECU “Electronic Control Unit”) 30.
 直流電圧発生部20は、蓄電装置28と、システムリレーSR1,SR2と、平滑コンデンサC1と、コンバータ12とを含む。 DC voltage generation unit 20 includes a power storage device 28, system relays SR1 and SR2, a smoothing capacitor C1, and a converter 12.
 蓄電装置28は、代表的には、ニッケル水素またはリチウムイオン等の二次電池や電気二重層キャパシタ等の蓄電装置を含んで構成される。また、蓄電装置28が出力する直流電圧VBおよび入出力される直流電流IBは、電圧センサ10および電流センサ11によってそれぞれ検出される。そして、電圧センサ10および電流センサ11は、検出した直流電圧VBおよび直流電流IBの検出値をECU30に出力する。 The power storage device 28 is typically configured to include a power storage device such as a secondary battery such as nickel hydride or lithium ion or an electric double layer capacitor. Further, DC voltage VB output from power storage device 28 and DC current IB input / output are detected by voltage sensor 10 and current sensor 11, respectively. Voltage sensor 10 and current sensor 11 output detected values of detected DC voltage VB and DC current IB to ECU 30.
 システムリレーSR1は、蓄電装置28の正極端子および電力線PL1の間に接続され、システムリレーSR2は、蓄電装置28の負極端子および接地線NLの間に接続される。システムリレーSR1,SR2は、ECU30からの信号SEにより制御され、蓄電装置28からコンバータ12への電力の供給と遮断とを切替える。 System relay SR1 is connected between the positive terminal of power storage device 28 and power line PL1, and system relay SR2 is connected between the negative terminal of power storage device 28 and ground line NL. System relays SR <b> 1 and SR <b> 2 are controlled by a signal SE from ECU 30, and switch between supply and interruption of power from power storage device 28 to converter 12.
 コンバータ12は、リアクトルL1と、スイッチング素子Q1およびダイオードD1を含む上アームと、スイッチング素子Q2およびダイオードD2を含む下アームとを含む。スイッチング素子Q1およびQ2は、電力線PL2および接地線NLの間に直列に接続される。スイッチング素子Q1およびQ2は、ECU30からのスイッチング制御信号PWCによって制御される。 Converter 12 includes a reactor L1, an upper arm including switching element Q1 and diode D1, and a lower arm including switching element Q2 and diode D2. Switching elements Q1 and Q2 are connected in series between power line PL2 and ground line NL. Switching elements Q1 and Q2 are controlled by a switching control signal PWC from ECU 30.
 本実施の形態において、スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置される。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードV0と電力線PL1の間に接続される。また、平滑コンデンサC2は、電力線PL2および接地線NLの間に接続される。 In the present embodiment, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be used as the switching element. Anti-parallel diodes D1 and D2 are arranged for switching elements Q1 and Q2. Reactor L1 is connected between connection node V0 of switching elements Q1 and Q2 and power line PL1. Smoothing capacitor C2 is connected between power line PL2 and ground line NL.
 電流センサ18は、リアクトルL1を流れるリアクトル電流を検出し、その検出値ILをECU30に出力する。なお、本実施の形態においては、リアクトル電流ILは、蓄電装置28から負荷装置45へ向かう方向を正とし、負荷装置45から蓄電装置28へ向かう方向を負とする。 The current sensor 18 detects the reactor current flowing through the reactor L1, and outputs the detected value IL to the ECU 30. In the present embodiment, reactor current IL is positive in the direction from power storage device 28 to load device 45 and negative in the direction from load device 45 to power storage device 28.
 負荷装置45は、インバータ23と、モータジェネレータMG1,MG2と、エンジン40と、動力分割機構41と、駆動輪42とを含む。また、インバータ23は、モータジェネレータMG1を駆動するためのインバータ14と、モータジェネレータMG2を駆動するためのインバータ22とを含む。なお、図1のようにインバータおよびモータジェネレータを2組備えることは必須ではなく、たとえばインバータ14とモータジェネレータMG1、あるいはインバータ22とモータジェネレータMG2のいずれか1組のみを備える構成としてもよい。 The load device 45 includes an inverter 23, motor generators MG1 and MG2, an engine 40, a power split mechanism 41, and drive wheels 42. Inverter 23 includes an inverter 14 for driving motor generator MG1 and an inverter 22 for driving motor generator MG2. As shown in FIG. 1, it is not essential to provide two sets of inverters and motor generators. For example, only one set of inverter 14 and motor generator MG1 or inverter 22 and motor generator MG2 may be provided.
 モータジェネレータMG1,MG2は、インバータ23から供給される交流電力を受けて車両推進のための回転駆動力を発生する。また、モータジェネレータMG1,MG2は、外部から回転力を受け、ECU30からの回生トルク指令によって交流電力を発電するとともに回生制動力を車両100に発生する。 Motor generators MG1 and MG2 receive AC power supplied from inverter 23 and generate a rotational driving force for vehicle propulsion. Motor generators MG1 and MG2 receive rotational force from the outside, generate AC power according to a regenerative torque command from ECU 30, and generate regenerative braking force in vehicle 100.
 また、モータジェネレータMG1,MG2は、動力分割機構41を介してエンジン40にも連結される。そして、エンジン40の発生する駆動力とモータジェネレータMG1,MG2の発生する駆動力とが最適な比率となるように制御される。また、モータジェネレータMG1,MG2のいずれか一方を専ら電動機として機能させ、他方のモータジェネレータを専ら発電機として機能させてもよい。なお、実施の形態1においては、モータジェネレータMG1をエンジン40により駆動される発電機として機能させ、モータジェネレータMG2を駆動輪42を駆動する電動機として機能させるものとする。 Motor generators MG1 and MG2 are also coupled to engine 40 via power split mechanism 41. Then, the driving force generated by engine 40 and the driving force generated by motor generators MG1, MG2 are controlled to have an optimal ratio. Alternatively, either one of motor generators MG1 and MG2 may function exclusively as an electric motor, and the other motor generator may function exclusively as a generator. In the first embodiment, it is assumed that motor generator MG1 functions as a generator driven by engine 40, and motor generator MG2 functions as an electric motor that drives drive wheels 42.
 動力分割機構41には、エンジン40の動力を、駆動輪42とモータジェネレータMG1との両方に振り分けるために、遊星歯車機構(プラネタリーギヤ)が使用される。 The power split mechanism 41 uses a planetary gear mechanism (planetary gear) in order to distribute the power of the engine 40 to both the drive wheels 42 and the motor generator MG1.
 インバータ14は、コンバータ12から昇圧された電圧を受けて、たとえばエンジン40を始動させるためにモータジェネレータMG1を駆動する。また、インバータ14は、エンジン40から伝達される機械的動力によってモータジェネレータMG1で発電された回生電力をコンバータ12に出力する。このときコンバータ12は、降圧回路として動作するようにECU30によって制御される。 Inverter 14 receives the boosted voltage from converter 12, and drives motor generator MG1 to start engine 40, for example. Inverter 14 also outputs regenerative power generated by motor generator MG <b> 1 by mechanical power transmitted from engine 40 to converter 12. At this time, converter 12 is controlled by ECU 30 to operate as a step-down circuit.
 インバータ14は、電力線PL2および接地線NLの間に並列に設けられ、U相上下アーム15と、V相上下アーム16と、W相上下アーム17を含んで構成される。各相上下アームは、電力線PL2および接地線NLの間に直列接続されたスイッチング素子から構成される。たとえば、U相上下アーム15はスイッチング素子Q3,Q4を含んで構成され、V相上下アーム16はスイッチング素子Q5,Q6を含んで構成され、W相上下アーム17はスイッチング素子Q7,Q8を含んで構成される。また、スイッチング素子Q3~Q8に対して、逆並列ダイオードD3~D8がそれぞれ接続される。スイッチング素子Q3~Q8は、ECU30からのスイッチング制御信号PWIによって制御される。 The inverter 14 is provided in parallel between the power line PL2 and the ground line NL, and includes a U-phase upper and lower arm 15, a V-phase upper and lower arm 16, and a W-phase upper and lower arm 17. Each phase upper and lower arm is formed of a switching element connected in series between power line PL2 and ground line NL. For example, the U-phase upper / lower arm 15 includes switching elements Q3, Q4, the V-phase upper / lower arm 16 includes switching elements Q5, Q6, and the W-phase upper / lower arm 17 includes switching elements Q7, Q8. Composed. Antiparallel diodes D3 to D8 are connected to switching elements Q3 to Q8, respectively. Switching elements Q3-Q8 are controlled by switching control signal PWI from ECU 30.
 代表的には、モータジェネレータMG1は、3相の永久磁石型同期電動機であり、U,V,W相の3つのコイルの一端が中性点に共通接続される。さらに、各相コイルの他端は、各相上下アーム15~17のスイッチング素子の接続ノードと接続される。 Typically, motor generator MG1 is a three-phase permanent magnet synchronous motor, and one end of three U, V, and W phase coils is commonly connected to a neutral point. Further, the other end of each phase coil is connected to a connection node of switching elements of each phase upper and lower arms 15 to 17.
 インバータ22は、コンバータ12に対してインバータ14と並列的に接続される。
 インバータ22は駆動輪42を駆動するモータジェネレータMG2に対してコンバータ12の出力する直流電圧を三相交流に変換して出力する。またインバータ22は、回生制動に伴い、モータジェネレータMG2において発電された回生電力をコンバータ12に出力する。このときコンバータ12は降圧回路として動作するようにECU30によって制御される。インバータ22の内部の構成は、図示しないがインバータ14と同様であり、詳細な説明は繰り返さない。
Inverter 22 is connected to converter 12 in parallel with inverter 14.
Inverter 22 converts the DC voltage output from converter 12 into three-phase AC and outputs the same to motor generator MG2 that drives drive wheels. Inverter 22 also outputs regenerative power generated by motor generator MG2 to converter 12 along with regenerative braking. At this time, converter 12 is controlled by ECU 30 to operate as a step-down circuit. Although the internal configuration of inverter 22 is not shown, it is similar to inverter 14, and detailed description will not be repeated.
 コンバータ12は、基本的には、各スイッチング周期内でスイッチング素子Q1およびQ2が相補的かつ交互にオン・オフするように制御される。コンバータ12は、昇圧動作時には、蓄電装置28から供給された直流電圧VBを直流電圧VH(インバータ14への入力電圧に相当するこの直流電圧を、以下「システム電圧」とも称する)に昇圧する。この昇圧動作は、スイッチング素子Q2のオン期間にリアクトルL1に蓄積された電磁エネルギを、スイッチング素子Q1および逆並列ダイオードD1を介して、電力線PL2へ供給することにより行なわれる。 The converter 12 is basically controlled so that the switching elements Q1 and Q2 are turned on and off in a complementary manner within each switching period. Converter 12 boosts DC voltage VB supplied from power storage device 28 to DC voltage VH (hereinafter, this DC voltage corresponding to the input voltage to inverter 14 is also referred to as “system voltage”) during the boosting operation. This boosting operation is performed by supplying the electromagnetic energy accumulated in reactor L1 during the ON period of switching element Q2 to power line PL2 via switching element Q1 and antiparallel diode D1.
 また、コンバータ12は、降圧動作時には、直流電圧VHを直流電圧VBに降圧する。この降圧動作は、スイッチング素子Q1のオン期間にリアクトルL1に蓄積された電磁エネルギを、スイッチング素子Q2および逆並列ダイオードD2を介して、接地線NLへ供給することにより行なわれる。 Further, converter 12 steps down DC voltage VH to DC voltage VB during the step-down operation. This step-down operation is performed by supplying the electromagnetic energy stored in reactor L1 during the ON period of switching element Q1 to ground line NL via switching element Q2 and antiparallel diode D2.
 これらの昇圧動作および降圧動作における電圧変換比(VHおよびVBの比)は、上記スイッチング周期におけるスイッチング素子Q1,Q2のオン期間比(デューティ比)により制御される。なお、スイッチング素子Q1およびQ2をオンおよびオフにそれぞれ固定すれば、VH=VB(電圧変換比=1.0)とすることもできる。 The voltage conversion ratio (ratio of VH and VB) in these step-up and step-down operations is controlled by the on-period ratio (duty ratio) of the switching elements Q1 and Q2 in the switching period. If switching elements Q1 and Q2 are fixed on and off, respectively, VH = VB (voltage conversion ratio = 1.0) can be obtained.
 平滑コンデンサC2は、コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ23へ供給する。電圧センサ13は、平滑コンデンサC2の両端の電圧、すなわち、システム電圧VHを検出し、その検出値をECU30へ出力する。 Smoothing capacitor C <b> 2 smoothes the DC voltage from converter 12 and supplies the smoothed DC voltage to inverter 23. The voltage sensor 13 detects the voltage across the smoothing capacitor C2, that is, the system voltage VH, and outputs the detected value to the ECU 30.
 インバータ14は、モータジェネレータMG1のトルク指令値が正(TR1>0)の場合には、平滑コンデンサC2から直流電圧が供給されるとECU30からのスイッチング制御信号PWI1に応答したスイッチング素子Q3~Q8のスイッチング動作により、直流電圧を交流電圧に変換して正のトルクを出力するようにモータジェネレータMG1を駆動する。また、インバータ14は、モータジェネレータMG1のトルク指令値が零の場合(TR1=0)には、スイッチング制御信号PWI1に応答したスイッチング動作により、直流電圧を交流電圧に変換してトルクが零になるようにモータジェネレータMG1を駆動する。これにより、モータジェネレータMG1は、トルク指令値TR1によって指定された零または正のトルクを発生するように駆動される。 When the torque command value of motor generator MG1 is positive (TR1> 0), inverter 14 has switching elements Q3 to Q8 responding to switching control signal PWI1 from ECU 30 when a DC voltage is supplied from smoothing capacitor C2. By the switching operation, motor generator MG1 is driven so as to convert a DC voltage into an AC voltage and output a positive torque. Further, when the torque command value of motor generator MG1 is zero (TR1 = 0), inverter 14 converts the DC voltage into the AC voltage and the torque becomes zero by the switching operation in response to switching control signal PWI1. In this manner, motor generator MG1 is driven. Thus, motor generator MG1 is driven to generate zero or positive torque designated by torque command value TR1.
 さらに、車両100の回生制動時には、モータジェネレータMG1のトルク指令値TR1は負に設定される(TR1<0)。この場合には、インバータ14は、スイッチング制御信号PWI1に応答したスイッチング動作により、モータジェネレータMG1が発電した交流電圧を直流電圧に変換し、その変換した直流電圧(システム電圧)を平滑コンデンサC2を介してコンバータ12へ供給する。なお、ここで言う回生制動とは、電動車両を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。 Furthermore, during regenerative braking of vehicle 100, torque command value TR1 of motor generator MG1 is set negative (TR1 <0). In this case, inverter 14 converts the AC voltage generated by motor generator MG1 into a DC voltage by a switching operation in response to switching control signal PWI1, and converts the converted DC voltage (system voltage) through smoothing capacitor C2. To the converter 12. The regenerative braking here refers to braking with regenerative power generation when the driver operating the electric vehicle performs a footbrake operation, or regenerative braking by turning off the accelerator pedal while driving, although the footbrake is not operated. This includes decelerating (or stopping acceleration) the vehicle while generating electricity.
 インバータ22についても同様に、モータジェネレータMG2のトルク指令値に対応したECU30からのスイッチング制御信号PWI2を受け、スイッチング制御信号PWI2に応答したスイッチング動作によって、直流電圧を交流電圧に変換して所定のトルクになるようにモータジェネレータMG2を駆動する。 Similarly, inverter 22 receives switching control signal PWI2 from ECU 30 corresponding to the torque command value of motor generator MG2 and converts the DC voltage into an AC voltage by a switching operation in response to switching control signal PWI2 to obtain a predetermined torque. Motor generator MG2 is driven so that
 電流センサ24,25は、モータジェネレータMG1,MG2に流れるモータ電流MCRT1,MCRT2を検出し、その検出したモータ電流をECU30へ出力する。なお、U相,V相,W相の各相の電流の瞬時値の和は零であるので、図1に示すように電流センサ24,25は2相分のモータ電流を検出するように配置すれば足りる。 Current sensors 24 and 25 detect motor currents MCRT1 and MCRT2 flowing through motor generators MG1 and MG2, and output the detected motor currents to ECU 30. Since the sum of the instantaneous values of the currents of the U-phase, V-phase, and W-phase is zero, the current sensors 24 and 25 are arranged to detect the motor current for two phases as shown in FIG. All you need is enough.
 回転角センサ(レゾルバ)26,27は、モータジェネレータMG1,MG2の回転角θ1,θ2を検出し、その検出した回転角θ1,θ2をECU30へ送出する。ECU30では、回転角θ1,θ2に基づきモータジェネレータMG1,MG2の回転速度MRN1,MRN2および角速度ω1,ω2(rad/s)を算出できる。なお、回転角θ1,θ2をECU30にてモータ電圧や電流から直接演算することによって、回転角センサ26,27については配置しないようにしてもよい。 Rotation angle sensors (resolvers) 26 and 27 detect rotation angles θ1 and θ2 of motor generators MG1 and MG2, and send the detected rotation angles θ1 and θ2 to ECU 30. ECU 30 can calculate rotational speeds MRN1, MRN2 and angular speeds ω1, ω2 (rad / s) of motor generators MG1, MG2 based on rotational angles θ1, θ2. The rotation angle sensors 26 and 27 may not be arranged by directly calculating the rotation angles θ1 and θ2 from the motor voltage and current in the ECU 30.
 ECU30は、いずれも図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、車両100の各機器を制御する。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で構築して処理することも可能である。 The ECU 30 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown), and controls each device of the vehicle 100. Note that these controls are not limited to software processing, and can be constructed and processed by dedicated hardware (electronic circuit).
 代表的な機能として、ECU30は、入力されたトルク指令値TR1,TR2、電圧センサ10によって検出された直流電圧VB、電流センサ11によって検出された直流電流IB、電圧センサ13によって検出されたシステム電圧VHおよび電流センサ24,25からのモータ電流MCRT1,MCRT2、回転角センサ26,27からの回転角θ1,θ2等に基づいて、モータジェネレータMG1,MG2がトルク指令値TR1,TR2に従ったトルクを出力するように、コンバータ12およびインバータ23の動作を制御する。すなわち、コンバータ12およびインバータ23を上記のように制御するためのスイッチング制御信号PWC,PWI1,PWI2を生成して、コンバータ12およびインバータ23へそれぞれ出力する。 As representative functions, the ECU 30 includes the input torque command values TR1 and TR2, the DC voltage VB detected by the voltage sensor 10, the DC current IB detected by the current sensor 11, and the system voltage detected by the voltage sensor 13. Based on VH, motor currents MCRT1, MCRT2 from current sensors 24, 25, rotation angles θ1, θ2 from rotation angle sensors 26, 27, etc., motor generators MG1, MG2 generate torques according to torque command values TR1, TR2. The operations of the converter 12 and the inverter 23 are controlled so as to output. That is, switching control signals PWC, PWI1, and PWI2 for controlling converter 12 and inverter 23 as described above are generated and output to converter 12 and inverter 23, respectively.
 コンバータ12の昇圧動作時には、ECU30は、システム電圧VHをフィードバック制御し、システム電圧VHが電圧指令値に一致するようにスイッチング制御信号PWCを生成する。 During the step-up operation of converter 12, ECU 30 feedback-controls system voltage VH and generates switching control signal PWC so that system voltage VH matches the voltage command value.
 また、ECU30は、車両100が回生制動モードに入ると、モータジェネレータMG1,MG2で発電された交流電圧を直流電圧に変換するようにスイッチング制御信号PWI1、PWI2を生成してインバータ23へ出力する。これにより、インバータ23は、モータジェネレータMG1,MG2で発電された交流電圧を直流電圧に変換してコンバータ12へ供給する。 Further, when the vehicle 100 enters the regenerative braking mode, the ECU 30 generates the switching control signals PWI1 and PWI2 so as to convert the AC voltage generated by the motor generators MG1 and MG2 into a DC voltage, and outputs the switching control signals PWI1 and PWI2. Thus, inverter 23 converts the AC voltage generated by motor generators MG1 and MG2 into a DC voltage and supplies it to converter 12.
 さらに、ECU30は、車両100が回生制動モードに入ると、インバータ23から供給された直流電圧を降圧するようにスイッチング制御信号PWCを生成し、コンバータ12へ出力する。これにより、モータジェネレータMG1,MG2が発電した交流電圧は、直流電圧に変換され、さらに降圧されて蓄電装置28に供給される。 Furthermore, when the vehicle 100 enters the regenerative braking mode, the ECU 30 generates a switching control signal PWC so as to step down the DC voltage supplied from the inverter 23 and outputs it to the converter 12. Thus, the AC voltage generated by motor generators MG1 and MG2 is converted into a DC voltage, and is further stepped down and supplied to power storage device 28.
 リアクトルL1を流れるリアクトル電流を時間軸方向に平均したリアクトル平均電流が正の状態は、蓄電装置28からの電力によってモータジェネレータMG1,MG2を駆動する力行状態であり、リアクトル平均電流が負の状態は、モータジェネレータMG1,MG2によって発電された電力を蓄電装置28に充電する回生状態である。なお、車両100の走行状態によっては、モータジェネレータMG1,MG2のそれぞれの状態(力行,回生)が異なる場合がある。たとえば、モータジェネレータMG1を回生状態で発電しながら、モータジェネレータMG2を力行状態として駆動輪42を駆動するような場合である。そのため、以降の説明においては、負荷装置45に対して蓄電装置28から電力が供給される場合を総称して力行状態と呼び、負荷装置45で発電された電力が蓄電装置28に充電される場合を総称して回生状態と呼ぶこととする。 A state where the reactor average current obtained by averaging the reactor current flowing through reactor L1 in the time axis direction is positive is a power running state in which motor generators MG1 and MG2 are driven by electric power from power storage device 28, and a state where reactor average current is negative The electric power generated by motor generators MG1 and MG2 is in a regenerative state in which power storage device 28 is charged. Depending on the traveling state of vehicle 100, motor generators MG1 and MG2 may have different states (powering and regeneration). For example, the motor generator MG1 is driven in the regenerative state while the motor generator MG2 is driven in the power running state. Therefore, in the following description, the case where power is supplied from the power storage device 28 to the load device 45 is collectively referred to as a power running state, and the power generated by the load device 45 is charged to the power storage device 28. Are collectively called the regenerative state.
 図2は、スイッチング制御におけるデッドタイムの影響を説明するためのタイムチャートである。図2において、横軸には時間が示されており、縦軸にはスイッチング制御における搬送波(キャリア波)と、スイッチング素子Q1,Q2の動作状態と、接続ノードV0の電圧とが示される。なお、図2は負荷装置45が力行状態であり、かつリアクトル電流ILが常に正となる高負荷の場合の例を示す。 FIG. 2 is a time chart for explaining the influence of dead time in switching control. In FIG. 2, the horizontal axis represents time, and the vertical axis represents the carrier wave (carrier wave) in the switching control, the operating state of the switching elements Q1 and Q2, and the voltage of the connection node V0. FIG. 2 shows an example in the case where the load device 45 is in a power running state and the reactor current IL is always positive at a high load.
 図2を参照して、スイッチング素子Q1,Q2の駆動指令は、基本的には、キャリア波と指令デューティとの比較によって生成される。たとえば、図2において、指令デューティがW2であった場合は、時刻t1からt4までのスイッチング周期Tでは、キャリア波W1と指令デューティW2との交点A1から交点A2の間(すなわち、時刻t1からt2)において、スイッチング素子Q1がオン(スイッチング素子Q2はオフ)に制御され、交点A2から交点A3の間(すなわち、時刻t2からt4)において、スイッチング素子Q1がオフ(スイッチング素子Q2はオン)に制御される。 Referring to FIG. 2, the drive command for switching elements Q1, Q2 is basically generated by comparing the carrier wave with the command duty. For example, in FIG. 2, when the command duty is W2, in the switching cycle T from time t1 to t4, between the intersection A1 and the intersection A2 between the carrier wave W1 and the command duty W2 (that is, from time t1 to t2). ), Switching element Q1 is controlled to be on (switching element Q2 is off), and switching element Q1 is controlled to be off (switching element Q2 is on) between intersection A2 and intersection A3 (ie, from time t2 to t4). Is done.
 したがって、指令デューティが1.0になると、上アームであるスイッチング素子Q1が常にオンの状態に制御され、スイッチング素子Q2が常にオフの状態に制御される。反対に、指令デューティが0.0になると、上アームであるスイッチング素子Q1が常にオフに制御され、スイッチング素子Q2が常にオンの状態に制御される。 Therefore, when the command duty becomes 1.0, the switching element Q1, which is the upper arm, is always controlled to be on, and the switching element Q2 is always controlled to be off. On the contrary, when the command duty becomes 0.0, the switching element Q1, which is the upper arm, is always controlled to be off, and the switching element Q2 is always controlled to be on.
 しかしながら、実際の制御においては、スイッチング素子の動作速度を考慮して、スイッチング素子Q1,Q2が同時にオン状態となって電力線PL2と接地線NLとが短絡状態となることを防止するために、一方のスイッチング素子のオフ後、一定時間は他方のスイッチング素子をオンさせない期間(デッドタイム)が設けられる。 However, in actual control, in consideration of the operation speed of the switching elements, the switching elements Q1 and Q2 are simultaneously turned on to prevent the power line PL2 and the ground line NL from being short-circuited. After the switching element is turned off, a period (dead time) in which the other switching element is not turned on is provided for a certain time.
 また、スイッチング素子自体も、オフからオン、またはオンからオフへ動作する場合に動作時間が必要となるので、スイッチング素子の最小オン時間(または最小オフ時間)が必要である。そのため、このデッドタイムとスイッチング素子の最小オン時間(または最小オフ時間)によって、実際のデューティ(以下、「実デューティ」とも称する。)が制限される場合がある。 Also, since the switching element itself requires an operation time when operating from off to on or from on to off, a minimum on time (or minimum off time) of the switching element is required. Therefore, the actual duty (hereinafter also referred to as “actual duty”) may be limited by the dead time and the minimum on-time (or minimum off-time) of the switching element.
 図2においては、本来であれば、スイッチング素子Q2のオフ期間は、交点A1から交点A2の間(時刻t1からt2)となるはずであるが、デッドタイムおよびスイッチング素子Q1の最小オン時間によって、時刻t1からt3までの間、スイッチング素子Q2がオフの状態となる。 In FIG. 2, the OFF period of the switching element Q2 should be between the intersection A1 and the intersection A2 (time t1 to t2). However, depending on the dead time and the minimum ON time of the switching element Q1, From time t1 to t3, the switching element Q2 is turned off.
 このとき、デッドタイムの期間中は、図3から図8で詳細に後述するように、負荷の動作状態によって、回路を流れる電流の向きが異なる。 At this time, during the dead time, the direction of the current flowing through the circuit varies depending on the operating state of the load, as will be described in detail later with reference to FIGS.
 図2においては、上述のようにリアクトル電流ILが常に正の状態であるので、デッドタイム期間中も上アーム側に電流が流れる。 In FIG. 2, since the reactor current IL is always positive as described above, the current flows to the upper arm side even during the dead time period.
 そのため、接続ノードV0の電圧は、時刻t1からt3の間(時間T1)はシステム電圧VHとなる。したがって、デッドタイムとスイッチング素子の最小オン時間によって制限された実デューティは、スイッチング周期Tの間にスイッチング素子Q1,Q2の接続ノードV0の電圧がシステム電圧となる割合、すなわちT1/Tで表わすことができる。 Therefore, the voltage of the connection node V0 becomes the system voltage VH from time t1 to time t3 (time T1). Therefore, the actual duty limited by the dead time and the minimum on-time of the switching element is expressed by the ratio that the voltage of the connection node V0 of the switching elements Q1 and Q2 becomes the system voltage during the switching period T, that is, T1 / T. Can do.
 次に、図3から図8を用いて、負荷の動作状態が異なる場合の実デューティの違いについて説明する。 Next, the difference in the actual duty when the load operating state is different will be described with reference to FIGS.
 図3は、図2と同様に、負荷装置45が力行状態でかつリアクトル電流ILが常に正となる場合の、実デューティを説明するためのタイムチャートである。図3の横軸には時間が示され、縦軸には、リアクトル電流IL、キャリア波、スイッチング素子Q1,Q2の動作状態および接続ノードV0の電圧が示される。 FIG. 3 is a time chart for explaining the actual duty when the load device 45 is in the power running state and the reactor current IL is always positive, as in FIG. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the reactor current IL, the carrier wave, the operating state of the switching elements Q1, Q2, and the voltage of the connection node V0.
 スイッチング素子Q1,Q2の駆動指令は、キャリア波と指令デューティとの比較によって生成されるが、上述のように、デッドタイムおよびスイッチング素子の最小オン時間によって実際の動作は制約を受ける。 The drive command for the switching elements Q1 and Q2 is generated by comparing the carrier wave with the command duty. However, as described above, the actual operation is restricted by the dead time and the minimum on-time of the switching element.
 図4は、図3の場合のコンバータ12を流れる電流を説明するための図である。図3および図4を参照して、図3の場合では、スイッチング素子Q2がオンの状態においては、図4中の実線矢印AR1のように、電流は電力線PL1からリアクトルL1およびスイッチング素子Q2を経由して接地線NLに向かう方向に流れる。このときにリアクトルL1に正のエネルギが蓄積される。そして、スイッチング素子Q2がオフになると、次にスイッチング素子Q1がオンされる。しかし、図3の場合では、スイッチング素子Q2がオフとなる期間(すなわちデッドタイム期間およびスイッチング素子Q1がオンの期間)は、リアクトルL1に蓄積された正のエネルギによって、電流はダイオードD1を経由してリアクトルL1から電力線PL2に向かう方向(図4中の実線矢印AR2)に流れる。 FIG. 4 is a diagram for explaining the current flowing through the converter 12 in the case of FIG. Referring to FIGS. 3 and 4, in the case of FIG. 3, when switching element Q2 is on, current flows from power line PL1 through reactor L1 and switching element Q2, as indicated by solid line arrow AR1 in FIG. And flows in a direction toward the ground line NL. At this time, positive energy is accumulated in reactor L1. When the switching element Q2 is turned off, the switching element Q1 is then turned on. However, in the case of FIG. 3, during the period in which switching element Q2 is off (ie, the dead time period and the period in which switching element Q1 is on), the current passes through diode D1 due to the positive energy accumulated in reactor L1. And flows in the direction from the reactor L1 toward the power line PL2 (solid arrow AR2 in FIG. 4).
 これによって、接続ノードV0の電圧は、スイッチング素子Q2がオフしている間は常にシステム電圧VHとなる。そのため、実デューティは、スイッチング周期Tにおける、デッドタイムとスイッチング素子Q1のオン時間とを加えた時間の割合となる。 Thus, the voltage of the connection node V0 is always the system voltage VH while the switching element Q2 is off. Therefore, the actual duty is a ratio of time in the switching period T, which is the sum of the dead time and the ON time of the switching element Q1.
 図5は、力行状態ではあるがリアクトル電流がゼロに近い低負荷時の場合の、実デューティを説明するためのタイムチャートである。図5は、図3と同じ指令デューティであるが、スイッチング周期中に、リアクトル電流ILが正から負、または負から正へ切替わる。 FIG. 5 is a time chart for explaining the actual duty when the reactor current is in a power running state but the reactor current is at a low load close to zero. FIG. 5 shows the same command duty as FIG. 3, but the reactor current IL is switched from positive to negative or from negative to positive during the switching period.
 図6は、図5の場合のコンバータ12を流れる電流を説明するための図である。図5および図6を参照して、スイッチング素子Q2がオンからオフに切替わった直後においては、リアクトル電流ILは正であるので、図3の場合と同様に、電流はダイオードD1を経由して図6中の実線矢印AR2の方向に流れる。その後、スイッチング素子Q1がオンされるが、電流が減少してゼロとなると、今度は電力線PL2からスイッチング素子Q1を経由して電力線PL1に向かう方向(図6中の破線矢印AR4)に電流が流れ始める。これにより、リアクトルL1に負のエネルギが蓄積される。 FIG. 6 is a diagram for explaining the current flowing through the converter 12 in the case of FIG. 5 and FIG. 6, immediately after switching element Q2 is switched from on to off, reactor current IL is positive, so that the current passes through diode D1 as in FIG. It flows in the direction of solid line arrow AR2 in FIG. Thereafter, switching element Q1 is turned on. However, when the current decreases to zero, current flows in the direction from power line PL2 to power line PL1 via switching element Q1 (broken arrow AR4 in FIG. 6). start. As a result, negative energy is accumulated in reactor L1.
 そして、スイッチング素子Q1がオフとなりスイッチング素子Q2がオンするまでのデッドタイム期間、およびスイッチング素子Q2がオン後においては、リアクトルL1に蓄積された負のエネルギの放出が完了するまでは、接地線NLからダイオードD2を経由してリアクトルL1に向かう方向(図6中の破線矢印AR3)に電流が流れる。 A dead time period until switching element Q1 is turned off and switching element Q2 is turned on, and after switching element Q2 is turned on, until the release of negative energy accumulated in reactor L1 is completed, ground line NL Through the diode D2, the current flows in the direction toward the reactor L1 (broken line arrow AR3 in FIG. 6).
 その後、リアクトルL1に蓄積されたエネルギの放出が完了すると、今度は、蓄電装置28からの出力電力によって、電力線PL1からリアクトルL1およびスイッチング素子Q2を経由して接地線NLに向かう方向(図6中の実線矢印AR1)に電流が流れる。これによって、リアクトルL1に正のエネルギが蓄積される。 Thereafter, when the release of the energy accumulated in reactor L1 is completed, this time, the direction toward the ground line NL from power line PL1 via reactor L1 and switching element Q2 by the output power from power storage device 28 (in FIG. 6). Current flows through the solid arrow AR1). As a result, positive energy is accumulated in reactor L1.
 このように、リアクトル電流ILが正から負、または負から正へ切替わる場合には、リアクトル電流ILが負の状態におけるデッドタイム期間は、接続ノードV0の電圧はゼロとなる。そのため、実デューティは、スイッチング周期Tにおける、スイッチング素子Q1のオン時間とスイッチング素子Q2オフからスイッチング素子Q1オンまでのデッドタイムとを加えた時間の割合となる。 Thus, when the reactor current IL is switched from positive to negative, or from negative to positive, the voltage at the connection node V0 is zero during the dead time period when the reactor current IL is negative. Therefore, the actual duty is a ratio of time during which the switching element Q1 is turned on and the dead time from switching element Q2 off to switching element Q1 on is added in the switching period T.
 図7は、負荷装置45が回生状態でかつリアクトル電流ILが常に負となる場合の、実デューティを説明するためのタイムチャートである。また、図8は、図7の場合のコンバータ12を流れる電流を説明するための図である。また、図7における指令デューティは、図3および図5の場合と同様である。 FIG. 7 is a time chart for explaining the actual duty when the load device 45 is in the regenerative state and the reactor current IL is always negative. FIG. 8 is a diagram for explaining the current flowing through converter 12 in the case of FIG. Further, the command duty in FIG. 7 is the same as in FIGS. 3 and 5.
 図7および図8を参照して、スイッチング素子Q1がオンの状態では、リアクトル電流ILが負であるので、電流は電力線PL2からスイッチング素子Q1を経由してリアクトルL1に向かう方向(図8中の破線矢印AR4)に流れる。 Referring to FIGS. 7 and 8, since reactor current IL is negative when switching element Q1 is on, the current flows from power line PL2 to reactor L1 via switching element Q1 (in FIG. 8). It flows in the broken line arrow AR4).
 そして、スイッチング素子Q1がオフするが、その後スイッチング素子Q2がオンするまでのデッドタイム期間、スイッチング素子Q2がオンしている期間、およびスイッチング素子Q2がオフしてからスイッチング素子Q1がオンするまでのデッドタイム期間のいずれの期間においても、リアクトル電流ILが負の状態であるので、接地線NLからダイオードD2を経由してリアクトルL1に向かう方向(図8中の破線矢印AR3)に電流が流れる。 Then, although the switching element Q1 is turned off, a dead time period until the switching element Q2 is subsequently turned on, a period during which the switching element Q2 is turned on, and a period from when the switching element Q2 is turned off until the switching element Q1 is turned on Since the reactor current IL is in a negative state in any period of the dead time period, a current flows in the direction from the ground line NL to the reactor L1 via the diode D2 (broken line arrow AR3 in FIG. 8).
 このように、図7の場合では、接続ノードV0の電圧がシステム電圧VHとなる期間は、スイッチング素子Q1がオンしている期間のみとなる。そのため、実デューティは、スイッチング周期Tにおける、スイッチング素子Q1のオン時間の割合となる。 Thus, in the case of FIG. 7, the period during which the voltage at the connection node V0 is the system voltage VH is only the period during which the switching element Q1 is on. Therefore, the actual duty is a ratio of the on-time of the switching element Q1 in the switching period T.
 このように、負荷の状態によって、デッドタイム期間中に流れる電流の方向が異なってくるため、指令デューティが0または1に近くなるような状態においてデッドタイムによりオンデューティが侵食される場合には、指令デューティが達成できなくなる。 Thus, since the direction of the current flowing during the dead time period varies depending on the load state, when the on-duty is eroded by the dead time in a state where the command duty is close to 0 or 1, The command duty cannot be achieved.
 図9は、力行状態における、蓄電装置28の出力電流IBと、出力電力POUTおよび出力電圧VBとの関係を示す図である。図9において、横軸には出力電流IBが示され、縦軸には出力電圧VB(上段)と出力電力POUT(下段)が示される。なお、以降の説明においては、力行状態の場合を例として説明するが、回生状態の場合についても同様である。 FIG. 9 is a diagram showing the relationship between the output current IB of the power storage device 28, the output power POUT, and the output voltage VB in the power running state. In FIG. 9, the horizontal axis indicates the output current IB, and the vertical axis indicates the output voltage VB (upper stage) and the output power POUT (lower stage). In the following description, the case of the power running state will be described as an example, but the same applies to the case of the regenerative state.
 図9を参照して、蓄電装置28の出力電圧VBは、蓄電装置28の開放電圧をVB0、内部抵抗をRBとすると、式(1)のように表わすことができる。 Referring to FIG. 9, output voltage VB of power storage device 28 can be expressed as equation (1), where VB0 is the open circuit voltage of power storage device 28 and RB is the internal resistance.
 VB=VB0-IB・RB …(1)
 これを図示すると、図9の上段の直線W10のようになる。
VB = VB0−IB · RB (1)
This is illustrated as a straight line W10 in the upper part of FIG.
[規則91に基づく訂正 17.06.2010] 
 また、蓄電装置28の出力電力POUTは、出力電圧VBと出力電流のIBとの積で表わすことができる。
[Correction based on Rule 91 17.06.2010]
Output power POUT of power storage device 28 can be represented by the product of output voltage VB and output current IB.
 POUT=VB・IB …(2)
 この式(2)に式(1)を代入すると、式(3)のようになる。
POUT = VB · IB (2)
Substituting equation (1) into equation (2) yields equation (3).
 POUT=(VB0-IB・RB)・IB …(3)
 これを変形することにより、式(4)が得られる。
POUT = (VB0−IB · RB) · IB (3)
By transforming this, equation (4) is obtained.
 POUT=-RB・{IB-(VB0/2RB)}2+(VB02/4RB2) …(4)
 これを図示すると、図9の曲線W20のような放物線になる。
POUT = −RB · {IB− (VB0 / 2RB)} 2 + (VB0 2 / 4RB 2 ) (4)
When this is illustrated, a parabola such as a curve W20 in FIG. 9 is obtained.
 なお、出力電流IBがIB0より大きい場合は、蓄電装置28の内部抵抗で消費される電力が大きくなるため(出力過大範囲)、通常は出力電流が0からIB0の範囲(通常範囲)で使用される。 Note that when the output current IB is larger than IB0, the power consumed by the internal resistance of the power storage device 28 is large (output excessive range), and therefore, normally the output current is used in the range of 0 to IB0 (normal range). The
 図9および式(4)より、蓄電装置28から取出すことのできる最大電力Pmaxは、図9中の出力電流IBがIB0(=VB0/2RB)となる場合であり、このときの蓄電装置28の出力電圧はVB0/2となる。 9 and formula (4), the maximum power Pmax that can be taken out from the power storage device 28 is the case where the output current IB in FIG. 9 is IB0 (= VB0 / 2RB). The output voltage is VB0 / 2.
 すなわち、コンバータ12を駆動させるためのデューティ(VB/VH)を、VB0/2VHとなるようにすれば蓄電装置28から最大電力を取出すことができることになる。 That is, if the duty (VB / VH) for driving the converter 12 is set to VB0 / 2VH, the maximum power can be taken out from the power storage device 28.
 しかしながら、図3から図8で説明したように、スイッチング素子Q1,Q2のデッドタイムの影響がある場合には、デッドタイムによってオンデューティが侵食されてしまい、指令デューティが達成できなくなる場合が起こりうる。そうなると、蓄電装置28からの電力が十分に引き出せなくなるので、所望のシステム電圧VHが達成できず、動力性能不足となる可能性がある。 However, as described with reference to FIGS. 3 to 8, when there is an influence of the dead time of the switching elements Q1 and Q2, the on-duty may be eroded by the dead time, and the command duty may not be achieved. . In this case, the electric power from the power storage device 28 cannot be drawn sufficiently, so that the desired system voltage VH cannot be achieved, and the power performance may be insufficient.
 図10は、デッドタイムの影響がある場合とない場合においての、力行状態でのデューティを比較したタイムチャートである。図10の上段はキャリア波を示し、中段はデッドタイムの影響がない理想的な場合のスイッチング素子Q1,Q2の動作状態と、接続ノードV0の電圧を示している。また、図10の下段は、デッドタイムを考慮した実際の場合のスイッチング素子Q1,Q2の動作状態と、接続ノードV0の電圧を示している。 FIG. 10 is a time chart comparing the duty in the power running state with and without the influence of the dead time. The upper part of FIG. 10 shows the carrier wave, and the middle part shows the operating state of the switching elements Q1 and Q2 and the voltage of the connection node V0 in an ideal case without the influence of the dead time. Further, the lower part of FIG. 10 shows the operation state of the switching elements Q1 and Q2 in the actual case in consideration of the dead time and the voltage of the connection node V0.
 図10を参照して、デッドタイムの影響がない場合のデューティは、指令デューティと一致するので、スイッチング周期Tにおけるスイッチング素子Q1のオン時間の割合(T1/T)となる。 Referring to FIG. 10, since the duty when there is no influence of the dead time coincides with the command duty, it becomes a ratio (T1 / T) of the ON time of the switching element Q1 in the switching period T.
 デッドタイムの影響がある場合については、図3で説明したように、デッドタイム期間中には、ダイオードD1を経由して電流が流れるので、実デューティとしては、T1A/Tとなる。 In the case where there is an influence of the dead time, as described with reference to FIG. 3, since the current flows through the diode D1 during the dead time period, the actual duty is T1A / T.
 ここで、T1<T1Aなので、図10の上段のように、実デューティは指令デューティよりも大きくなってしまい、スイッチング素子Q2がオンしている期間(T2A)がT2と比較して短くなる。 Here, since T1 <T1A, as shown in the upper part of FIG. 10, the actual duty becomes larger than the command duty, and the period (T2A) during which the switching element Q2 is on becomes shorter than T2.
 コンバータ12で昇圧を行なう場合、その昇圧比(VH/VB)を大きくするには、スイッチング素子Q2のオン時間を大きくしてリアクトルL1に蓄積するエネルギを大きくすることが必要となるが、上述のようにデッドタイムによって実デューティが制限されてしまうと、リアクトルL1に蓄積されるエネルギが小さくなるので、所望の昇圧比が達成できなくなる場合が発生する。 When boosting with the converter 12, in order to increase the boosting ratio (VH / VB), it is necessary to increase the on-time of the switching element Q2 and increase the energy stored in the reactor L1, but the above-mentioned As described above, if the actual duty is limited by the dead time, the energy stored in the reactor L1 becomes small, so that a desired boost ratio cannot be achieved.
 特に冬季や寒冷地などにおいて、蓄電装置28の温度が低下するような場合では、蓄電装置28の出力電圧VBが低下してしまう。そのため、目標とするシステム電圧VHに対して必要となる昇圧比が大きくなるので、目標デューティが達成できない場合にはモータ駆動に必要な電力が得られずに動力性能の低下を招く可能性がある。 Particularly in winter and cold regions, when the temperature of the power storage device 28 decreases, the output voltage VB of the power storage device 28 decreases. As a result, the step-up ratio required for the target system voltage VH increases, and if the target duty cannot be achieved, the power required for driving the motor cannot be obtained and the power performance may be degraded. .
 また、近年、コンバータやインバータなどの電力変換装置において、装置自体の小型化やスイッチングによって発生する騒音を抑制するために、スイッチング制御におけるキャリア周波数の高周波化が進められている。そうすると、スイッチング周期中にデッドタイムが占める割合が大きくなるので、所望の昇圧比を達成できなくなる場合が増加する。 In recent years, in power converters such as converters and inverters, in order to reduce the size of the device itself and to suppress noise generated by switching, the carrier frequency in switching control has been increased. As a result, the proportion of the dead time during the switching period increases, and the number of cases where the desired boost ratio cannot be achieved increases.
 そこで、実施の形態1においては、コンバータ12の目標出力電圧が、スイッチング素子Q1,Q2のデッドタイムの影響によって実際に設定可能な電圧範囲を超える場合、すなわち指令デューティがスイッチング素子Q1,Q2のデッドタイムの影響によって設定可能な実デューティの範囲を超える場合には、キャリア周波数を通常の場合よりも低く設定するコンバータ駆動制御を行なう。 Therefore, in the first embodiment, when the target output voltage of converter 12 exceeds the voltage range that can actually be set due to the influence of the dead time of switching elements Q1, Q2, that is, the command duty is the dead time of switching elements Q1, Q2. When the actual duty range that can be set is exceeded due to the influence of time, converter drive control is performed to set the carrier frequency lower than in the normal case.
 このようにすることで、低温時などで出力電圧が制限される場合においては、キャリア周波数を低下させることによってデッドタイムの影響が小さくできるので、目標とする出力電圧を得ることができるようになる。また、目標出力電圧が設定可能電圧範囲内においては、キャリア周波数の高周波化を維持することができる。 By doing so, when the output voltage is limited at a low temperature or the like, the influence of the dead time can be reduced by lowering the carrier frequency, so that the target output voltage can be obtained. . Further, when the target output voltage is within the settable voltage range, the carrier frequency can be increased.
 図11は、図2で示した力行状態において、実施の形態1のコンバータ駆動制御を適用した場合の実デューティを説明するためのタイムチャートである。 FIG. 11 is a time chart for explaining the actual duty when the converter drive control according to the first embodiment is applied in the power running state shown in FIG.
 図2および図11を参照して、実施の形態1でのコンバータ駆動制御を適用した場合、コンバータ12の目標出力電圧が、スイッチング素子Q1,Q2のデッドタイムの影響によって実際に設定可能な電圧範囲を超えるときには、図11のようにキャリア周波数が低く設定される。これによって、スイッチング周期はTからT#(T<T#)になる。 2 and 11, when the converter drive control in the first embodiment is applied, the target output voltage of converter 12 can be actually set within the voltage range due to the influence of the dead time of switching elements Q1 and Q2. Is exceeded, the carrier frequency is set low as shown in FIG. As a result, the switching period is changed from T to T # (T <T #).
 ここで、スイッチング素子Q1,Q2の動作速度は変わらないので、1回あたりのデッドタイムの設定は変えなくてよい。そのため、スイッチング周期T#におけるデッドタイムの割合は、実施の形態1を適用しない場合に比べて小さくなる。その結果、実デューティ(T1#/T#)のとりうる範囲が大きくなる。 Here, since the operating speed of the switching elements Q1 and Q2 does not change, the setting of the dead time per time does not need to be changed. Therefore, the ratio of the dead time in the switching cycle T # is smaller than that in the case where the first embodiment is not applied. As a result, the range that the actual duty (T1 # / T #) can be increased.
 図12は、実施の形態1における、ECU30で実行されるコンバータ駆動制御を説明するための機能ブロック図である。図12および以降の図15,図17,図22で説明される機能ブロック図に記載された各機能ブロックは、ECU30によるハードウェア的あるいはソフトウェア的な処理によって実現される。 FIG. 12 is a functional block diagram for explaining converter drive control executed by the ECU 30 in the first embodiment. Each functional block described in the functional block diagram illustrated in FIG. 12 and the subsequent FIGS. 15, 17, and 22 is realized by hardware or software processing by the ECU 30.
 図1および図12を参照して、ECU30は、周波数設定部300と、電圧指令設定部310と、駆動制御部320とを含む。また、駆動制御部320は、目標値演算部330と、基準値演算部340と、選択部350と、周波数変更部360と、発振部370と、駆動指令生成部380とを含む。 Referring to FIGS. 1 and 12, ECU 30 includes a frequency setting unit 300, a voltage command setting unit 310, and a drive control unit 320. Further, the drive control unit 320 includes a target value calculation unit 330, a reference value calculation unit 340, a selection unit 350, a frequency change unit 360, an oscillation unit 370, and a drive command generation unit 380.
 周波数設定部300は、予め設定されたキャリア周波数FCを設定する。実施の形態1においては、このキャリア周波数FCは固定値である。そして、周波数設定部300は、設定したキャリア周波数FCを、基準値演算部340と、周波数変更部360に出力する。 The frequency setting unit 300 sets a preset carrier frequency FC. In the first embodiment, this carrier frequency FC is a fixed value. Then, the frequency setting unit 300 outputs the set carrier frequency FC to the reference value calculation unit 340 and the frequency change unit 360.
 基準値演算部340は、周波数設定部300からのキャリア周波数FCと、予め設定されたスイッチング素子Q1,Q2のデッドタイムおよび最小オン時間とに基づいて、デッドタイムを考慮した設定可能な実デューティの範囲の上限値ULおよび下限値LLを演算する。そして、基準値演算部340は、その演算結果を選択部350に出力する。 Based on the carrier frequency FC from the frequency setting unit 300 and the preset dead time and minimum on-time of the switching elements Q1 and Q2, the reference value calculation unit 340 has a settable actual duty that takes into account the dead time. The upper limit value UL and the lower limit value LL of the range are calculated. Then, the reference value calculation unit 340 outputs the calculation result to the selection unit 350.
 電圧指令設定部310は、モータジェネレータMG1,MG2のトルク指令値TR1,TR2と、モータジェネレータMG1,MG2の回転速度MRN1,MRN2の入力を受ける。そして、電圧指令設定部310は、これらの情報に基づいて、インバータ23の入力電圧(システム電圧)VHの電圧指令値VHREFを演算して、目標値演算部330に出力する。 Voltage command setting unit 310 receives input of torque command values TR1, TR2 of motor generators MG1, MG2 and rotational speeds MRN1, MRN2 of motor generators MG1, MG2. Based on these pieces of information, voltage command setting unit 310 calculates voltage command value VHREF of input voltage (system voltage) VH of inverter 23, and outputs it to target value calculation unit 330.
 目標値演算部330は、電圧指令設定部310から電圧指令値VHREFの入力を受ける。また、目標値演算部330は、電圧センサ10,13によってそれぞれ検出された、蓄電装置28の出力電圧VBおよびシステム電圧VHの入力を受ける。 The target value calculation unit 330 receives an input of the voltage command value VHREF from the voltage command setting unit 310. Target value calculation unit 330 receives input of output voltage VB and system voltage VH of power storage device 28 detected by voltage sensors 10 and 13, respectively.
 目標値演算部330は、これらの情報に基づいて、指令デューティDUTYを演算する。そして、目標値演算部330は、演算結果を選択部350および駆動指令生成部380に出力する。 The target value calculation unit 330 calculates a command duty DUTY based on these pieces of information. Then, the target value calculation unit 330 outputs the calculation result to the selection unit 350 and the drive command generation unit 380.
 選択部350は、基準値演算部340からの設定可能デューティ範囲の上限値ULおよび下限値LLと、目標値演算部330からの指令デューティDUTYとの入力を受ける。そして、選択部350は、指令デューティDUTYが設定可能デューティ範囲内であるか否かの判定を行なう。そして、選択部350は、指令デューティDUTYが設定可能デューティ範囲内である場合は、変更フラグFLGをオフに設定し、指令デューティDUTYが、設定可能デューティ範囲を超えている場合は、変更フラグFLGをオンに設定する。そして、選択部350は、変更フラグFLGを周波数変更部360へ出力する。 The selection unit 350 receives the upper limit value UL and the lower limit value LL of the settable duty range from the reference value calculation unit 340 and the command duty DUTY from the target value calculation unit 330. Then, selection unit 350 determines whether or not command duty DUTY is within a settable duty range. Then, the selection unit 350 sets the change flag FLG to OFF when the command duty DUTY is within the settable duty range, and sets the change flag FLG when the command duty DUTY exceeds the settable duty range. Set to on. Then, selection unit 350 outputs change flag FLG to frequency change unit 360.
 周波数変更部360は、周波数設定部300からのキャリア周波数FCと、選択部350からの変更フラグFLGとの入力を受ける。そして、周波数変更部360は、変更フラグFLGがオフの場合は、周波数設定部300から受けたキャリア周波数FCを、発振部370で使用するためのキャリア周波数FC*に設定する。一方、変更フラグがオンの場合は、周波数変更部360は、発振部370で使用するためのキャリア周波数FC*として、キャリア周波数FCよりも低い周波数に設定する。そして、周波数変更部360は、設定したキャリア周波数FC*を、発振部370へ出力する。 The frequency change unit 360 receives the carrier frequency FC from the frequency setting unit 300 and the change flag FLG from the selection unit 350. Then, when the change flag FLG is off, the frequency changing unit 360 sets the carrier frequency FC received from the frequency setting unit 300 to the carrier frequency FC * for use in the oscillating unit 370. On the other hand, when the change flag is on, the frequency changing unit 360 sets the carrier frequency FC * for use in the oscillating unit 370 to a frequency lower than the carrier frequency FC. Then, the frequency changing unit 360 outputs the set carrier frequency FC * to the oscillating unit 370.
 なお、周波数変更部360における周波数の変更については、予め設定された固定周波数に変更するようにしてもよいし、指令デューティと上述の上限値ULもしくは下限値LLとの差に応じて、可変に変更するようにしてもよい。 Note that the frequency change in the frequency changing unit 360 may be changed to a preset fixed frequency, or variably according to the difference between the command duty and the above-described upper limit value UL or lower limit value LL. It may be changed.
 発振部370は、周波数変更部360から入力を受けたキャリア周波数FC*に従ったキャリア波CARを発生し、駆動指令生成部380に出力する。 The oscillation unit 370 generates a carrier wave CAR according to the carrier frequency FC * received from the frequency changing unit 360, and outputs the carrier wave CAR to the drive command generating unit 380.
 駆動指令生成部380は、発振部370からのキャリア波CAR、および目標値演算部330からの指令デューティDUTYの入力を受ける。そして、駆動指令生成部380は、キャリア波CARと指令デューティDUTYとの比較に基づいて、スイッチング素子Q1,Q2を駆動するためのスイッチング制御指令PWCを生成し、コンバータ12へ出力する。 The drive command generator 380 receives the input of the carrier wave CAR from the oscillator 370 and the command duty DUTY from the target value calculator 330. Drive command generation unit 380 generates switching control command PWC for driving switching elements Q1 and Q2 based on the comparison between carrier wave CAR and command duty DUTY and outputs the switching control command PWC to converter 12.
 図13は、実施の形態1における、ECU30で実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。図13および以降の図16,図21,図23のフローチャート中の各ステップについては、ECU30に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。 FIG. 13 is a flowchart for illustrating details of the converter drive control process executed by ECU 30 in the first embodiment. Each step in the flowcharts of FIG. 13 and the subsequent FIG. 16, FIG. 21, FIG. 23 is realized by executing a program stored in the ECU 30 in a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
 図12および図13を参照して、ECU30は、ステップ(以下、ステップをSと略す。)400にて、キャリア周波数FCを周波数設定部300で所定の初期値(FC0)に設定する。 Referring to FIGS. 12 and 13, ECU 30 sets carrier frequency FC to a predetermined initial value (FC0) in frequency setting unit 300 in step (hereinafter, step is abbreviated as S) 400.
 次にECU30は、S410にて、モータジェネレータMG1,MG2のトルク指令値TR1,TR2等に基づいて演算されたコンバータ12の出力電圧の電圧指令値VHREFおよび蓄電装置28の出力電圧VBに基づいて、スイッチング素子Q1,Q2の指令デューティDUTYを目標値演算部330で演算する。 Next, in S410, ECU 30 based on voltage command value VHREF of the output voltage of converter 12 calculated based on torque command values TR1, TR2 and the like of motor generators MG1, MG2 and the output voltage VB of power storage device 28, The target value calculation unit 330 calculates the command duty DUTY of the switching elements Q1 and Q2.
 また、ECU30は、S420にて、キャリア周波数FCおよびスイッチング素子Q1,Q2のデッドタイムの設定値に基づいて、デッドタイムを考慮した実際に設定可能なデューティの範囲の上限値ULおよび下限値LLを基準値演算部340で演算する。 In S420, the ECU 30 sets the upper limit value UL and the lower limit value LL of the duty range that can be actually set in consideration of the dead time based on the carrier frequency FC and the set values of the dead times of the switching elements Q1 and Q2. The reference value calculation unit 340 performs calculation.
 そして、ECU30は、S430にて、指令デューティDUTYが、設定可能範囲内か否か、すなわちLL<DUTY<ULであるか否かを選択部350で判定する。 In S430, the ECU 30 determines whether the command duty DUTY is within the settable range, that is, whether LL <DUTY <UL.
 指令デューティDUTYが設定可能範囲内の場合(S430にてYES)は、ECU30は、S470に処理を進め、キャリア周波数FCをS400で設定した初期値(FC0)としてキャリア波CARを発生するとともに、このキャリア波CARと指令デューティDUTYとを比較することによって、スイッチング素子Q1,Q2の制御指令PWCを生成してコンバータ12に出力する。 If command duty DUTY is within the settable range (YES in S430), ECU 30 proceeds to S470 to generate carrier wave CAR as initial value (FC0) set to carrier frequency FC in S400. By comparing carrier wave CAR and command duty DUTY, control command PWC for switching elements Q 1 and Q 2 is generated and output to converter 12.
 一方、指令デューティDUTYが設定可能範囲を超えている場合、すなわちDUTY≦LLもしくはDUTY≧ULの場合(S430にてNO)は、次にS440に処理が進められ、ECU30は、キャリア周波数FCを低下させるように変更する。 On the other hand, when command duty DUTY exceeds the settable range, that is, when DUTY ≦ LL or DUTY ≧ UL (NO in S430), the process proceeds to S440, and ECU 30 decreases carrier frequency FC. Change to
 そして、ECU30は、S450にて低下させたキャリア周波数が、予め設定されたキャリア周波数の基準値(下限値)よりも大きいか否かを判定する。このキャリア周波数の基準値(下限値)については、ECU30の制御周期や制御の安定性等を考慮して設定される。 Then, the ECU 30 determines whether or not the carrier frequency lowered in S450 is greater than a preset reference value (lower limit value) of the carrier frequency. The reference value (lower limit value) of the carrier frequency is set in consideration of the control cycle of ECU 30 and the stability of control.
 S450にて低下させたキャリア周波数が、予め設定されたキャリア周波数の基準値(下限値)よりも大きい場合(S450にてYES)は、S470に処理が進められ、ECU30は、変更後のキャリア周波数FC*に従ったキャリア波CARを発生するとともに、スイッチング素子Q1,Q2の制御指令PWCを生成してコンバータ12に出力する。 If the carrier frequency lowered in S450 is larger than a preset reference value (lower limit value) of the carrier frequency (YES in S450), the process proceeds to S470, and ECU 30 determines the changed carrier frequency. A carrier wave CAR according to FC * is generated, and a control command PWC for switching elements Q1 and Q2 is generated and output to converter 12.
 一方、S450にて低下させたキャリア周波数が、予め設定されたキャリア周波数の基準値(下限値)以下の場合(S450にてNO)は、ECU30は、S460にて、変更後のキャリア周波数FC*をキャリア周波数の下限値に設定する。そして、ECU30は、S470で制御指令PWCを生成してコンバータ12に出力する。 On the other hand, when the carrier frequency lowered in S450 is equal to or lower than a preset reference value (lower limit value) of the carrier frequency (NO in S450), ECU 30 changes carrier frequency FC * after change in S460. Is set to the lower limit of the carrier frequency. ECU 30 then generates control command PWC and outputs it to converter 12 in S470.
 以上のような処理に従って制御を行なうことによって、目標出力電圧VHREFが設定可能電圧範囲内においてはキャリア周波数を高周波のまま維持できるので、コンバータ12の小型化やスイッチングによって発生する騒音を抑制するという、高周波化のメリットを享受できる。それとともに、低温時などで出力電圧が制約される場合には、キャリア周波数を低く設定することによって出力電圧制限を抑制して、目標とする出力電圧を得ることができる。また、目標出力電圧VHREFが設定可能電圧範囲を超える場合は、コンバータ12には大電流が流れるため、キャリア周波数を低下させることによって、スイッチング素子Q1,Q2の発熱を抑制することができる。これによって、スイッチング素子Q1,Q2の耐熱仕様を緩和したり、冷却設備(図示しない)の仕様を緩和したりすることができるので、さらにコスト低減を図ることができる。 By performing the control according to the processing as described above, the carrier frequency can be maintained at a high frequency within the settable voltage range of the target output voltage VHREF, so that noise generated by downsizing and switching of the converter 12 can be suppressed. You can enjoy the benefits of higher frequency. At the same time, when the output voltage is restricted at a low temperature or the like, the target output voltage can be obtained by suppressing the output voltage restriction by setting the carrier frequency low. Further, when the target output voltage VHREF exceeds the settable voltage range, a large current flows through the converter 12, so that the heat generation of the switching elements Q1, Q2 can be suppressed by reducing the carrier frequency. As a result, the heat resistance specifications of the switching elements Q1 and Q2 can be relaxed, and the specifications of the cooling facility (not shown) can be relaxed, so that the cost can be further reduced.
 [実施の形態2]
 実施の形態1においては、目標出力電圧VHREFが設定可能電圧範囲を超える場合に、キャリア周波数を低下させることによって、設定可能電圧範囲を拡大する構成について説明した。
[Embodiment 2]
In the first embodiment, the configuration in which the settable voltage range is expanded by lowering the carrier frequency when the target output voltage VHREF exceeds the settable voltage range has been described.
 実施の形態2では、目標出力電圧VHREFが設定可能電圧範囲を超える場合に、スイッチング素子Q1,Q2のうちの一方のスイッチング素子のみを駆動(以下、「片アーム駆動」とも称する。)させるようにスイッチング制御を行なうことによって、デッドタイムの期間を減少させて設定可能電圧範囲を拡大する構成について説明する。 In the second embodiment, when the target output voltage VHREF exceeds the settable voltage range, only one of the switching elements Q1 and Q2 is driven (hereinafter also referred to as “one-arm drive”). A configuration for expanding the settable voltage range by reducing the dead time period by performing switching control will be described.
 図14は、図2の力行状態において実施の形態2のコンバータ駆動制御を適用した場合の、実デューティを説明するためのタイムチャートである。 FIG. 14 is a time chart for explaining the actual duty when the converter drive control according to the second embodiment is applied in the power running state of FIG.
 リアクトル電流ILが常に正となる場合においては、スイッチング素子Q2がオフの状態のときは、スイッチング素子Q1の動作状態にかかわらず、ダイオードD1を経由して電流が流れる。したがって、このような状態においては、スイッチング素子Q1の駆動を停止しても、スイッチング素子Q1,Q2の両アーム駆動の場合と同様の電流状態となる。 When the reactor current IL is always positive, when the switching element Q2 is in an off state, a current flows through the diode D1 regardless of the operating state of the switching element Q1. Therefore, in such a state, even if the driving of the switching element Q1 is stopped, the current state is the same as in the case of driving both arms of the switching elements Q1 and Q2.
 ここで、スイッチング素子Q1の駆動を停止したままの状態とするので、スイッチング素子Q1,Q2が同時にオン状態となって、電力線PL2と接地線NLが短絡してしまう状態は発生しない。したがって、基本的にはデッドタイムを考慮する必要がなくなる。また、スイッチング素子Q1の最小オン時間についても考慮する必要がなくなる。 Here, since the driving of the switching element Q1 is stopped, the switching elements Q1 and Q2 are simultaneously turned on, and the power line PL2 and the ground line NL are not short-circuited. Therefore, basically, it is not necessary to consider the dead time. Further, it is not necessary to consider the minimum on-time of the switching element Q1.
 その結果、図14中のT1の時間が、スイッチング素子Q2の最小オフ時間と等しくなる状態まで指令デューティを設定できるので、設定可能電圧範囲を拡大することができる。なお、負荷の状態によっては、力行から回生(または回生から力行)に急に変化したり、片アーム駆動から両アーム駆動に変化したりする場合がある。その場合には、駆動されるスイッチング素子が切替わるため、片アーム駆動の場合でも、図14のように駆動されるスイッチング素子がオンされる前にデッドタイムが設けられる場合がある。 As a result, the command duty can be set until the time T1 in FIG. 14 becomes equal to the minimum OFF time of the switching element Q2, so that the settable voltage range can be expanded. Depending on the state of the load, there may be a sudden change from power running to regeneration (or regeneration to power running), or a change from single-arm drive to double-arm drive. In that case, since the switching element to be driven is switched, even in the case of single arm driving, a dead time may be provided before the switching element to be driven is turned on as shown in FIG.
 図15は、実施の形態2における、ECU30で実行されるコンバータ駆動制御を説明するための機能ブロック図である。図15は、実施の形態1の図12で説明した機能ブロック図において、駆動制御部320が駆動制御部320Aに置き換わったものとなっている。図15において、図12と重複する機能ブロックの説明は繰り返さない。 FIG. 15 is a functional block diagram for explaining converter drive control executed by the ECU 30 in the second embodiment. FIG. 15 is a block diagram in which the drive control unit 320 is replaced with the drive control unit 320A in the functional block diagram described in FIG. 12 of the first embodiment. In FIG. 15, the description of the functional blocks overlapping those in FIG. 12 will not be repeated.
 図15を参照して、駆動制御部320Aは、目標値演算部330と、基準値演算部340と、選択部350Aと、発振部370と、駆動指令生成部380Aとを含む。 Referring to FIG. 15, drive control unit 320A includes target value calculation unit 330, reference value calculation unit 340, selection unit 350A, oscillation unit 370, and drive command generation unit 380A.
 目標値演算部330は、電圧指令設定部310から電圧指令値VHREFの入力を受ける。また、目標値演算部330は、電圧センサ10,13によってそれぞれ検出された、蓄電装置28の出力電圧VBおよびシステム電圧VHの入力を受ける。 The target value calculation unit 330 receives an input of the voltage command value VHREF from the voltage command setting unit 310. Target value calculation unit 330 receives input of output voltage VB and system voltage VH of power storage device 28 detected by voltage sensors 10 and 13, respectively.
 目標値演算部330は、これらの情報に基づいて、指令デューティDUTYを演算する。そして、目標値演算部330は、演算結果を選択部350Aおよび駆動指令生成部380Aに出力する。 The target value calculation unit 330 calculates a command duty DUTY based on these pieces of information. Then, target value calculation unit 330 outputs the calculation result to selection unit 350A and drive command generation unit 380A.
 基準値演算部340は、周波数設定部300からのキャリア周波数FCと、スイッチング素子Q1,Q2のデッドタイムおよび最小オン時間とに基づいて、デッドタイムを考慮した実際に設定可能なデューティの範囲の上限値ULおよび下限値LLを演算する。そしてその演算結果を、選択部350Aに出力する。 The reference value calculation unit 340 is based on the carrier frequency FC from the frequency setting unit 300 and the dead time and the minimum on-time of the switching elements Q1 and Q2. The value UL and the lower limit value LL are calculated. Then, the calculation result is output to the selection unit 350A.
 選択部350Aは、基準値演算部340からの設定可能デューティ範囲の上限値ULおよび下限値LLと、目標値演算部330からの指令デューティDUTYとの入力を受ける。そして、選択部350Aは、指令デューティDUTYが設定可能デューティ範囲内であるか否かによって、両アーム駆動モードおよびスイッチング素子Q1,Q2のいずれかのスイッチング素子のみを駆動する片アーム駆動モードのいずれかのモードを選択する。具体的には、選択部350Aは、指令デューティDUTYが設定可能デューティ範囲内の場合には、両アーム駆動モードを選択する。また、選択部350Aは、指令デューティが上限値UL以上の場合には、下アーム(スイッチング素子Q2)のみを駆動する片アーム駆動モードを選択する。さらに、選択部350Aは、指令デューティが下限値LL以下の場合には、上アーム(スイッチング素子Q1)のみを駆動する片アーム駆動モードを選択する。 The selection unit 350A receives the upper limit value UL and the lower limit value LL of the settable duty range from the reference value calculation unit 340 and the command duty DUTY from the target value calculation unit 330. Then, selection unit 350A selects either of the two-arm drive mode and the one-arm drive mode for driving only one of the switching elements Q1 and Q2 depending on whether or not the command duty DUTY is within the settable duty range. Select the mode. Specifically, selection unit 350A selects the both-arm drive mode when command duty DUTY is within the settable duty range. Further, when the command duty is equal to or greater than the upper limit value UL, the selection unit 350A selects the one-arm drive mode that drives only the lower arm (switching element Q2). Furthermore, when the command duty is equal to or lower than the lower limit value LL, the selection unit 350A selects the one-arm drive mode that drives only the upper arm (switching element Q1).
 そして、選択部350Aは、選択した駆動モードの選択信号SELを駆動指令生成部380Aに出力する。 Then, the selection unit 350A outputs the selected drive mode selection signal SEL to the drive command generation unit 380A.
 発振部370は、周波数設定部300で設定されたキャリア周波数FCに従ったキャリア波CARを発生させ、駆動指令生成部380Aに出力する。 The oscillation unit 370 generates a carrier wave CAR according to the carrier frequency FC set by the frequency setting unit 300, and outputs the carrier wave CAR to the drive command generation unit 380A.
 駆動指令生成部380Aは、目標値演算部330からの指令デューティDUTYと、選択部350Aからの選択信号SELと、発振部370からのキャリア波CARの入力を受ける。 The drive command generation unit 380A receives the command duty DUTY from the target value calculation unit 330, the selection signal SEL from the selection unit 350A, and the carrier wave CAR from the oscillation unit 370.
 そして、駆動指令生成部380Aは、選択信号SELで選択された駆動アームを指令デューティDUTYで駆動するように、指令デューティDUTYとキャリア波CARとを比較し、スイッチング制御指令PWCを生成してコンバータ12に出力する。 Then, drive command generator 380A compares command duty DUTY with carrier wave CAR so as to drive the drive arm selected by selection signal SEL with command duty DUTY, and generates switching control command PWC to convert converter 12 Output to.
 図16は、実施の形態2における、ECU30で実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。図16は、実施の形態1の図13で説明したフローチャートにおいて、S430からS470のステップに代えて、S435、S436、S445、S446、S447およびS470Aが追加されたものとなっている。図16において、図13と重複するステップの説明は繰り返さない。 FIG. 16 is a flowchart for explaining details of converter drive control processing executed by ECU 30 in the second embodiment. FIG. 16 is obtained by adding S435, S436, S445, S446, S447, and S470A in place of the steps from S430 to S470 in the flowchart described in FIG. 13 of the first embodiment. In FIG. 16, the description of the same steps as those in FIG. 13 will not be repeated.
 図15および図16を参照して、ECU30は、S420でキャリア周波数とスイッチング素子Q1,Q2のデッドタイムの設定値等に基づいて、指令デューティDUTYの上限値ULおよび下限値LLを演算すると、次に処理をS435に進めて、指令デューティDUTYが下限値LL以下であるか否かを判定する。 Referring to FIGS. 15 and 16, ECU 30 calculates the upper limit value UL and the lower limit value LL of the command duty DUTY based on the carrier frequency and the set values of the dead times of the switching elements Q1 and Q2 in S420. Then, the process proceeds to S435 to determine whether or not the command duty DUTY is equal to or less than the lower limit value LL.
 指令デューティDUTYが下限値LL以下の場合(S435にてYES)は、ECU30は、S445にて、下アーム(スイッチング素子Q2)のみを駆動する片アーム駆動モードを選択する。 When the command duty DUTY is equal to or lower than the lower limit value LL (YES in S435), the ECU 30 selects a one-arm drive mode for driving only the lower arm (switching element Q2) in S445.
 一方、指令デューティDUTYが下限値LLより大きい場合(S435にてNO)は、S436に処理が進められ、ECU30は、指令デューティDUTYが上限値UL以上か否かを判定する。 On the other hand, if command duty DUTY is greater than lower limit value LL (NO in S435), the process proceeds to S436, and ECU 30 determines whether command duty DUTY is greater than or equal to upper limit value UL.
 指令デューティDUTYが上限値UL以上の場合(S436にてYES)は、S446に処理が進められ、ECU30は、S446にて、上アーム(スイッチング素子Q1)のみを駆動する片アーム駆動モードを選択する。 If command duty DUTY is equal to or greater than upper limit value UL (YES in S436), the process proceeds to S446, and ECU 30 selects a one-arm drive mode in which only the upper arm (switching element Q1) is driven in S446. .
 一方、指令デューティDUTYが上限値ULより小さい場合、すなわち指令デューティが設定可能範囲内である場合(S436にてNO)は、ECU30は、S447にて、両アーム駆動モードを選択する。 On the other hand, when the command duty DUTY is smaller than the upper limit value UL, that is, when the command duty is within the settable range (NO in S436), the ECU 30 selects the both-arm drive mode in S447.
 そして、ECU30は、S470Aにて、キャリア周波数FCをS400で設定した初期値(FC0)としてキャリア波CARを発生するとともに、このキャリア波CARと指令デューティDUTYとを比較し、S445、S446もしくはS447で選択された駆動モードでスイッチング素子Q1,Q2を制御するように、制御指令PWCを生成してコンバータ12に出力する。 In S470A, the ECU 30 generates the carrier wave CAR as the initial value (FC0) set to the carrier frequency FC in S400, compares the carrier wave CAR with the command duty DUTY, and in S445, S446, or S447. A control command PWC is generated and output to converter 12 so as to control switching elements Q1 and Q2 in the selected drive mode.
 このような処理に従って制御することによって、常に高キャリア周波数で駆動できるので、コンバータ12の小型化やスイッチングによって発生する騒音を抑制するという、高周波化のメリットを享受できる。 By controlling according to such a process, it is possible to always drive at a high carrier frequency, and therefore, it is possible to enjoy the merit of high frequency, such as downsizing the converter 12 and suppressing noise generated by switching.
 [実施の形態3]
 実施の形態1および実施の形態2においては、周波数設定部300で設定されたキャリア周波数FCの初期値(固定値)とデッドタイムの設定時間に基づいて指令デューティDUTYの設定可能範囲を設定し、指令デューティDUTYがその設定可能範囲を超える場合に、キャリア周波数の変更もしくは駆動アーム選択の変更を行なう構成について説明した。
[Embodiment 3]
In the first and second embodiments, the settable range of the command duty DUTY is set based on the initial value (fixed value) of the carrier frequency FC set by the frequency setting unit 300 and the set time of the dead time, The configuration for changing the carrier frequency or selecting the drive arm when the command duty DUTY exceeds the settable range has been described.
 実施の形態3においては、キャリア周波数FCを設定する際に、デッドタイムの影響がある場合には、予めキャリア周波数を低下させるように設定する構成について説明する。 In the third embodiment, a description will be given of a configuration in which the carrier frequency is set in advance when the carrier frequency FC is set and there is an influence of dead time.
 このような構成とすることで、実施の形態1または実施の形態2のように、指令デューティDUTYの設定可能範囲の演算機能や、設定可能範囲と指令デューティとの比較による判定機能などが不要となり、制御処理をシンプルにすることができる。 By adopting such a configuration, the calculation function of the settable range of the command duty DUTY and the determination function based on the comparison between the settable range and the command duty are not required as in the first or second embodiment. The control process can be simplified.
 図17は、実施の形態3における、ECU30で実行されるコンバータ駆動制御を説明するための機能ブロック図である。 FIG. 17 is a functional block diagram for explaining converter drive control executed by the ECU 30 in the third embodiment.
 図1および図17を参照して、ECU30は、周波数設定部300Aと、電圧指令設定部310と、駆動制御部320Bとを含む。また、駆動制御部320Bは、目標値演算部330と、発振部370と、駆動指令生成部380とを含む。 Referring to FIGS. 1 and 17, ECU 30 includes a frequency setting unit 300A, a voltage command setting unit 310, and a drive control unit 320B. The drive control unit 320B includes a target value calculation unit 330, an oscillation unit 370, and a drive command generation unit 380.
 周波数設定部300Aは、電圧センサ10によって検出される蓄電装置28の出力電圧VB、電流センサ11によって検出される蓄電装置28の出力電流IB、電流センサ18によって検出されるリアクトルL1を流れる電流ILおよび負荷装置45の負荷電力PRの入力を受ける。そして、周波数設定部300Aは、これらの情報に基づいて、予め設定されたマップを参照することによって、キャリア周波数FCを設定する。 Frequency setting unit 300A includes output voltage VB of power storage device 28 detected by voltage sensor 10, output current IB of power storage device 28 detected by current sensor 11, current IL flowing through reactor L1 detected by current sensor 18, and The load power PR of the load device 45 is input. Then, the frequency setting unit 300A sets the carrier frequency FC by referring to a preset map based on these pieces of information.
 図18から図20は、キャリア周波数FCを設定するためのマップの一例である。図18は、キャリア周波数FCを設定するためのマップの第1の例であり、蓄電装置28の出力電力POUT(=VB×IB)に基づいてキャリア周波数FCが設定される。なお、蓄電装置28の出力電圧VBもしくは出力電流IBに基づいてキャリア周波数FCが設定されるようにしてもよい。 18 to 20 are examples of maps for setting the carrier frequency FC. FIG. 18 is a first example of a map for setting the carrier frequency FC, and the carrier frequency FC is set based on the output power POUT (= VB × IB) of the power storage device 28. Note that carrier frequency FC may be set based on output voltage VB or output current IB of power storage device 28.
 図19は、キャリア周波数FCを設定するためのマップの第2の例であり、リアクトルL1を流れるリアクトル電流ILに基づいてキャリア周波数FCが設定される。また、図20は、キャリア周波数FCを設定するためのマップの第3の例であり、負荷装置45の負荷電力PRに基づいてキャリア周波数FCが設定される。 FIG. 19 is a second example of a map for setting the carrier frequency FC, and the carrier frequency FC is set based on the reactor current IL flowing through the reactor L1. FIG. 20 is a third example of a map for setting the carrier frequency FC, and the carrier frequency FC is set based on the load power PR of the load device 45.
 再び図1および図17を参照して、電圧指令設定部310は、モータジェネレータMG1,MG2のトルク指令値TR1,TR2と、モータジェネレータMG1,MG2の回転速度MRN1,MRN2の入力を受ける。そして、電圧指令設定部310は、これらの情報に基づいて、インバータ23の入力電圧(システム電圧)VHの電圧指令値VHREFを演算して、目標値演算部330に出力する。 Referring to FIGS. 1 and 17 again, voltage command setting unit 310 receives input of torque command values TR1, TR2 of motor generators MG1, MG2 and rotational speeds MRN1, MRN2 of motor generators MG1, MG2. Based on these pieces of information, voltage command setting unit 310 calculates voltage command value VHREF of input voltage (system voltage) VH of inverter 23, and outputs it to target value calculation unit 330.
 目標値演算部330は、電圧指令設定部310から電圧指令値VHREFの入力を受ける。また、目標値演算部330は、電圧センサ10,13によってそれぞれ検出された、蓄電装置28の出力電圧VBおよびシステム電圧VHの入力を受ける。 The target value calculation unit 330 receives an input of the voltage command value VHREF from the voltage command setting unit 310. Target value calculation unit 330 receives input of output voltage VB and system voltage VH of power storage device 28 detected by voltage sensors 10 and 13, respectively.
 目標値演算部330は、これらの情報に基づいて、指令デューティDUTYを演算する。そして、目標値演算部330は、演算結果を駆動指令生成部380に出力する。 The target value calculation unit 330 calculates a command duty DUTY based on these pieces of information. Then, the target value calculation unit 330 outputs the calculation result to the drive command generation unit 380.
 発振部370は、周波数設定部300Aから入力を受けたキャリア周波数FCに従ったキャリア波CARを発生し、駆動指令生成部380に出力する。 The oscillation unit 370 generates a carrier wave CAR according to the carrier frequency FC received from the frequency setting unit 300A, and outputs the carrier wave CAR to the drive command generation unit 380.
 駆動指令生成部380は、発振部370からのキャリア波CAR、および目標値演算部330からの指令デューティDUTYの入力を受ける。そして、駆動指令生成部380は、キャリア波CARと指令デューティDUTYとの比較に基づいて、スイッチング素子Q1,Q2を駆動するためのスイッチング制御指令PWCを生成し、コンバータ12へ出力する。 The drive command generator 380 receives the input of the carrier wave CAR from the oscillator 370 and the command duty DUTY from the target value calculator 330. Drive command generation unit 380 generates switching control command PWC for driving switching elements Q1 and Q2 based on the comparison between carrier wave CAR and command duty DUTY and outputs the switching control command PWC to converter 12.
 図21は、実施の形態3における、ECU30で実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。 FIG. 21 is a flowchart for explaining details of converter drive control processing executed by ECU 30 in the third embodiment.
 図17および図21を参照して、ECU30は、S405にて、蓄電装置28の出力電圧VBおよび出力電流IB、リアクトル電流ILなどの情報に基づいて、キャリア周波数FCを図18から図20に示すようなマップを参照することによって設定する。 Referring to FIGS. 17 and 21, ECU 30 shows carrier frequency FC in FIGS. 18 to 20 based on information such as output voltage VB, output current IB, reactor current IL of power storage device 28 in S405. Set by referring to such a map.
 次にECU30は、S410にて、モータジェネレータMG1,MG2のトルク指令値TR1,TR2等に基づいて演算されたコンバータ12の出力電圧の電圧指令値VHREFおよび蓄電装置28の出力電圧VBに基づいて、スイッチング素子Q1,Q2の指令デューティDUTYを目標値演算部330で演算する。 Next, in S410, ECU 30 based on voltage command value VHREF of the output voltage of converter 12 calculated based on torque command values TR1, TR2 and the like of motor generators MG1, MG2 and the output voltage VB of power storage device 28, The target value calculation unit 330 calculates the command duty DUTY of the switching elements Q1 and Q2.
 そして、ECU30は、S470にて、S405で設定したキャリア周波数FCに従ったキャリア波CARを発生するとともに、このキャリア波CARと指令デューティDUTYとを比較することによって、スイッチング素子Q1,Q2の制御指令PWCを生成してコンバータ12に出力する。 In S470, the ECU 30 generates a carrier wave CAR according to the carrier frequency FC set in S405, and compares the carrier wave CAR with the command duty DUTY to thereby control the switching elements Q1 and Q2. A PWC is generated and output to the converter 12.
 以上のような処理に従って制御を行なうことによって、デッドタイムの影響を受ける範囲でのキャリア周波数を予め低下するように設定できる。これによって、デッドタイムの影響のない範囲においては、高キャリア周波数でスイッチング制御できるので、コンバータ12の小型化やスイッチングによって発生する騒音を抑制するという、高周波化のメリットを享受できる。それとともに、低温時などで出力電圧が制限される場合には、キャリア周波数を低く設定することによって出力電圧制限を抑制して、目標とする出力電圧を得ることができる。 By performing control according to the above processing, the carrier frequency in the range affected by the dead time can be set to be lowered in advance. As a result, since switching control can be performed at a high carrier frequency in a range where there is no influence of dead time, it is possible to enjoy the merit of high frequency, such as downsizing the converter 12 and suppressing noise generated by switching. At the same time, when the output voltage is limited at a low temperature or the like, the target output voltage can be obtained by suppressing the output voltage limitation by setting the carrier frequency low.
 [実施の形態3の変形例]
 上述した実施の形態3においては、デッドタイムの影響を考慮したキャリア周波数FCを予め設定する構成としたが、実際に演算された指令デューティDUTYによっては、指令デューティの設定可能範囲を超えてしまう可能性がある。
[Modification of Embodiment 3]
In the third embodiment described above, the carrier frequency FC is set in advance in consideration of the effect of dead time. However, depending on the actually calculated command duty DUTY, it may exceed the settable range of the command duty. There is sex.
 そのため、変形例では、実施の形態3と実施の形態1もしくは実施の形態2とを組み合わせた構成について説明する。 Therefore, in the modification, a configuration in which the third embodiment is combined with the first embodiment or the second embodiment will be described.
 図22は、実施の形態1と実施の形態3を組み合わせた場合の、ECU30で実行されるコンバータ駆動制御を説明するための機能ブロック図である。図22は、実施の形態1において図12で説明した機能ブロック図の周波数設定部300が、実施の形態3の周波数設定部300Aに置き換わったものとなっている。各機能ブロックについては、図12および図17で説明したものと同様であるので、詳細な説明は繰り返さない。 FIG. 22 is a functional block diagram for explaining converter drive control executed by the ECU 30 when the first embodiment and the third embodiment are combined. In FIG. 22, the frequency setting unit 300 in the functional block diagram described in FIG. 12 in the first embodiment is replaced with the frequency setting unit 300A in the third embodiment. Since each functional block is the same as that described with reference to FIGS. 12 and 17, detailed description thereof will not be repeated.
 図23は、実施の形態1と実施の形態3を組み合わせた場合の、ECU30で実行されるコンバータ駆動制御処理の詳細を説明するためのフローチャートである。図23は、実施の形態1で説明した図18のフローチャートのステップS400が、実施の形態3で説明した図21のステップ405に置き換わったものとなっている。そのため、各ステップの詳細な説明は繰り返さない。 FIG. 23 is a flowchart for explaining details of converter drive control processing executed by ECU 30 when the first embodiment and the third embodiment are combined. In FIG. 23, step S400 in the flowchart in FIG. 18 described in the first embodiment is replaced with step 405 in FIG. 21 described in the third embodiment. Therefore, detailed description of each step will not be repeated.
 また、図示しないが、実施の形態2と実施の形態3とを組み合わせた構成とすることも可能である。この場合は、図15の機能ブロック図における周波数設定部300を、図17の機能ブロック図の周波数設定部300Aに置き換えたものとし、図16のフローチャートにおけるステップS400を、図21のフローチャートのステップS405に置き換えたものとすることで実現できる。各機能ブロックおよび各ステップの説明については繰り返さない。 Although not shown, a configuration in which the second embodiment and the third embodiment are combined may be possible. In this case, the frequency setting unit 300 in the functional block diagram of FIG. 15 is replaced with the frequency setting unit 300A of the functional block diagram of FIG. 17, and step S400 in the flowchart of FIG. 16 is replaced with step S405 of the flowchart of FIG. This can be realized by replacing it with. The description of each functional block and each step will not be repeated.
 このように、実施の形態1または実施の形態2に対して、さらに実施の形態3を適用することによって、コンバータ12において、デッドタイムによって発生する出力電圧制限を抑制することができる。 Thus, by further applying the third embodiment to the first or second embodiment, the output voltage limitation caused by the dead time can be suppressed in the converter 12.
 なお、本実施の形態におけるコンバータ12は、本発明の「電圧変換装置」の一例である。 The converter 12 in the present embodiment is an example of the “voltage conversion device” in the present invention.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,13 電圧センサ、11,18,24,25 電流センサ、12 コンバータ、14,22,23 インバータ、15 U相上下アーム、16 V相上下アーム、17 W相上下アーム、20 直流電圧発生部、26,27 回転角センサ、28 蓄電装置、30 ECU、40 エンジン、41 動力分割機構、42 駆動輪、45 負荷装置、100 ハイブリッド車両、300,300A 周波数設定部、310 電圧指令設定部、320,320A,320B 駆動制御部、330 目標値演算部、340 基準値演算部、350,350A 選択部、360 周波数変更部、370 発振部、380,380A 駆動指令生成部、C1,C2 平滑コンデンサ、D1~D8 ダイオード、L1 リアクトル、MG1,MG2 モータジェネレータ、NL 接地線、PL1,PL2 電力線、Q1~Q8 スイッチング素子、SR1,SR2 システムリレー、V0 接続ノード。 10, 13 voltage sensor, 11, 18, 24, 25 current sensor, 12 converter, 14, 22, 23 inverter, 15 U phase upper and lower arm, 16 V phase upper and lower arm, 17 W phase upper and lower arm, 20 DC voltage generator, 26, 27 rotation angle sensor, 28 power storage device, 30 ECU, 40 engine, 41 power split mechanism, 42 drive wheels, 45 load device, 100 hybrid vehicle, 300, 300A frequency setting unit, 310 voltage command setting unit, 320, 320A , 320B drive control unit, 330 target value calculation unit, 340 reference value calculation unit, 350, 350A selection unit, 360 frequency change unit, 370 oscillation unit, 380, 380A drive command generation unit, C1, C2 smoothing capacitors, D1 to D8 Diode, L1 reactor, MG1, MG Motor generator, NL ground line, PL1, PL2 power lines, Q1 ~ Q8 switching element, SR1, SR2 system relay, V0 connection node.

Claims (15)

  1.  蓄電装置(28)と負荷装置(45)との間で電圧変換が可能な電圧変換装置(12)の制御装置(30)であって、
     前記電圧変換装置(12)は、
     前記負荷装置(45)の電力線(PL2)と接地線(NL)との間に直列に接続され、スイッチング動作により前記電圧変換を行なう第1のスイッチング素子(Q1)および第2のスイッチング素子(Q2)を含み、
     前記スイッチング動作は、
     前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)がいずれもオフ状態となる期間であるデッドタイムを含み、
     前記制御装置(30)は、
     前記スイッチング動作のキャリア周波数を設定する周波数設定部(300,300A)と、
     前記電圧変換の電圧指令値および前記キャリア周波数に基づいて、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)をスイッチング制御するように構成された駆動制御部(320,320A,320B)とを備え、
     前記駆動制御部(320,320A,320B)は、前記電圧変換装置(12)に入出力される電力に関連する情報に基づいて、前記デッドタイムにより制限される前記電圧変換装置(12)の出力可能電圧範囲を拡大するように前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)のスイッチング制御を行なう、電圧変換装置の制御装置。
    A control device (30) of the voltage conversion device (12) capable of voltage conversion between the power storage device (28) and the load device (45),
    The voltage converter (12)
    A first switching element (Q1) and a second switching element (Q2) connected in series between a power line (PL2) and a ground line (NL) of the load device (45) and performing the voltage conversion by a switching operation. )
    The switching operation is
    A dead time which is a period in which both the first switching element (Q1) and the second switching element (Q2) are in an off state;
    The control device (30)
    A frequency setting unit (300, 300A) for setting a carrier frequency of the switching operation;
    A drive control unit (320, 320A) configured to control the switching of the first switching element (Q1) and the second switching element (Q2) based on the voltage command value of the voltage conversion and the carrier frequency. 320B),
    The drive control unit (320, 320A, 320B) outputs the voltage converter (12) limited by the dead time based on information related to power input / output to / from the voltage converter (12). A control device for a voltage converter that performs switching control of the first switching element (Q1) and the second switching element (Q2) so as to expand a possible voltage range.
  2.  前記電圧変換装置(12)に入出力される電力に関連する情報は、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)の目標デューティであり、
     前記駆動制御部(320,320A)は、
     前記電圧指令値に基づいて、前記目標デューティを演算するように構成された目標値演算部(330)と、
     前記キャリア周波数および前記デッドタイムに基づいて、前記出力可能電圧範囲を定めるデューティ範囲を演算するように構成された基準値演算部(340)とを含み、
     前記駆動制御部(320,320A)は、前記目標デューティが前記デューティ範囲を超える場合は、前記出力可能電圧範囲を拡大するように前記スイッチング制御を行なう、請求の範囲第1項に記載の電圧変換装置の制御装置。
    The information related to the power input / output to / from the voltage converter (12) is the target duty of the first switching element (Q1) and the second switching element (Q2),
    The drive control unit (320, 320A)
    A target value calculation unit (330) configured to calculate the target duty based on the voltage command value;
    A reference value calculation unit (340) configured to calculate a duty range that determines the output possible voltage range based on the carrier frequency and the dead time;
    2. The voltage conversion according to claim 1, wherein, when the target duty exceeds the duty range, the drive control unit (320, 320 </ b> A) performs the switching control so as to expand the output possible voltage range. Control device for the device.
  3.  前記駆動制御部(320)は、
     前記目標デューティが前記デューティ範囲を超える場合は、前記キャリア周波数を低下させるように構成された周波数変更部(360)をさらに含む、請求の範囲第2項に記載の電圧変換装置の制御装置。
    The drive control unit (320)
    The control device for a voltage converter according to claim 2, further comprising a frequency changing unit (360) configured to decrease the carrier frequency when the target duty exceeds the duty range.
  4.  前記駆動制御部(320A)は、
     前記目標デューティが前記デューティ範囲を超える場合は、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)のいずれか一方を選択する一方で、前記目標デューティが前記デューティ範囲内の場合には前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)の両方を選択するように構成された選択部(350A)と、
     前記選択部(350A)によって選択されたスイッチング素子の駆動指令を生成する駆動指令生成部(380A)とをさらに含む、請求の範囲第2項に記載の電圧変換装置の制御装置。
    The drive control unit (320A)
    When the target duty exceeds the duty range, one of the first switching element (Q1) and the second switching element (Q2) is selected while the target duty is within the duty range. A selector (350A) configured to select both the first switching element (Q1) and the second switching element (Q2),
    The control device for a voltage converter according to claim 2, further comprising a drive command generation unit (380A) that generates a drive command for the switching element selected by the selection unit (350A).
  5.  前記選択部(350A)は、前記目標デューティが前記デューティ範囲の上限値より大きいときには、前記第2のスイッチング素子(Q2)を選択する、請求の範囲第4項に記載の電圧変換装置の制御装置。 The control device for a voltage converter according to claim 4, wherein the selection unit (350A) selects the second switching element (Q2) when the target duty is larger than an upper limit value of the duty range. .
  6.  前記選択部(350A)は、前記目標デューティが前記デューティ範囲の下限値より小さいときには、前記第1のスイッチング素子(Q1)を選択する、請求の範囲第4項に記載の電圧変換装置の制御装置。 The control device for a voltage conversion device according to claim 4, wherein the selection unit (350A) selects the first switching element (Q1) when the target duty is smaller than a lower limit value of the duty range. .
  7.  前記周波数設定部(300A)は、前記電圧変換装置(12)に入出力される電力に関連する情報に基づいて、前記キャリア周波数を可変に設定する、請求の範囲第1項に記載の電圧変換装置の制御装置。 2. The voltage conversion according to claim 1, wherein the frequency setting unit (300 </ b> A) variably sets the carrier frequency based on information related to power input / output to / from the voltage conversion device (12). Control device for the device.
  8.  前記電圧変換装置(12)に入出力される電力に関連する情報は、前記蓄電装置(28)の出力電力、出力電圧および出力電流の少なくとも1つを含む、請求の範囲第7項に記載の電圧変換装置の制御装置。 8. The information according to claim 7, wherein the information related to the power input / output to / from the voltage conversion device (12) includes at least one of output power, output voltage, and output current of the power storage device (28). Control device for voltage converter.
  9.  前記電圧変換装置(12)は、
     前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)の接続ノードと、前記蓄電装置(28)の正極端子とを結ぶ経路に設けられたリアクトル(L1)をさらに含み、
     前記電圧変換装置(12)に入出力される電力に関連する情報は、前記リアクトル(L1)に流れるリアクトル電流を含む、請求の範囲第7項に記載の電圧変換装置の制御装置。
    The voltage converter (12)
    A reactor (L1) provided in a path connecting a connection node between the first switching element (Q1) and the second switching element (Q2) and a positive electrode terminal of the power storage device (28);
    The control device for a voltage conversion device according to claim 7, wherein the information related to the electric power input / output to / from the voltage conversion device (12) includes a reactor current flowing through the reactor (L1).
  10.  前記電圧変換装置(12)に入出力される電力に関連する情報は、前記負荷装置(45)への供給電力を含む、請求の範囲第7項に記載の電圧変換装置の制御装置。 The control device for a voltage converter according to claim 7, wherein the information related to the power input / output to / from the voltage converter (12) includes power supplied to the load device (45).
  11. [規則91に基づく訂正 17.06.2010] 
     車両(100)であって、
     蓄電装置(28)と、
     前記車両(100)の推進のための駆動力を発生させるための回転電機(MG1,MG2)と、
     前記回転電機(MG1,MG2)を駆動するためのインバータ(23)と、
     前記蓄電装置(28)と前記インバータ(23)との間で電圧変換が可能に構成された電圧変換装置(12)と、
     前記電圧変換装置(12)を制御するための制御装置(30)とを備え、
     前記電圧変換装置(12)は、
     前記インバータ(23)の電力線(PL2)と接地線(NL)との間に直列に接続され、スイッチング動作により前記電圧変換を行なう第1のスイッチング素子(Q1)および第2のスイッチング素子(Q2)を含み、
     前記スイッチング動作は、
     前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)がいずれもオフ状態となる期間であるデッドタイムを含み、
     前記制御装置(30)は、
     前記スイッチング動作のキャリア周波数を設定する周波数設定部(300,300A)と、
     前記電圧変換の電圧指令値および前記キャリア周波数に基づいて、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)をスイッチング制御するように構成された駆動制御部(320,320A,320B)とを含み、
     前記駆動制御部(320,320A,320B)は、前記電圧変換装置(12)に入出力される電力に関連する情報に基づいて、前記デッドタイムにより制限される前記電圧変換装置(12)の出力可能電圧範囲を拡大するように前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)のスイッチング制御を行なう、車両。
    [Correction based on Rule 91 17.06.2010]
    A vehicle (100),
    A power storage device (28);
    Rotating electric machines (MG1, MG2) for generating a driving force for propulsion of the vehicle (100);
    An inverter (23) for driving the rotating electrical machine (MG1, MG2);
    A voltage conversion device (12) configured to be capable of voltage conversion between the power storage device (28) and the inverter (23);
    A control device (30) for controlling the voltage converter (12),
    The voltage converter (12)
    A first switching element (Q1) and a second switching element (Q2) connected in series between a power line (PL2) and a ground line (NL) of the inverter (23) and performing the voltage conversion by a switching operation. Including
    The switching operation is
    A dead time which is a period in which both the first switching element (Q1) and the second switching element (Q2) are in an off state;
    The control device (30)
    A frequency setting unit (300, 300A) for setting a carrier frequency of the switching operation;
    A drive control unit (320, 320A) configured to control the switching of the first switching element (Q1) and the second switching element (Q2) based on the voltage command value of the voltage conversion and the carrier frequency. 320B),
    The drive control unit (320, 320A, 320B) outputs the voltage converter (12) limited by the dead time based on information related to power input / output to / from the voltage converter (12). A vehicle that performs switching control of the first switching element (Q1) and the second switching element (Q2) so as to expand a possible voltage range.
  12.  前記電圧変換装置(12)に入出力される電力に関連する情報は、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)の目標デューティであり、
     前記駆動制御部(320,320A)は、
     前記電圧指令値に基づいて、前記目標デューティを演算するように構成された目標値演算部(330)と、
     前記キャリア周波数および前記デッドタイムに基づいて、前記出力可能電圧範囲を定めるデューティ範囲を演算するように構成された基準値演算部(340)とを含み、
     前記駆動制御部(320,320A)は、前記目標デューティが前記デューティ範囲を超える場合は、前記出力可能電圧範囲を拡大するように前記スイッチング制御を行なう、請求の範囲第11項に記載の車両。
    The information related to the power input / output to / from the voltage converter (12) is the target duty of the first switching element (Q1) and the second switching element (Q2),
    The drive control unit (320, 320A)
    A target value calculation unit (330) configured to calculate the target duty based on the voltage command value;
    A reference value calculation unit (340) configured to calculate a duty range that determines the output possible voltage range based on the carrier frequency and the dead time;
    The vehicle according to claim 11, wherein the drive control unit (320, 320A) performs the switching control so as to expand the output possible voltage range when the target duty exceeds the duty range.
  13.  前記駆動制御部(320)は、
     前記目標デューティが前記デューティ範囲を超える場合は、前記キャリア周波数を低下させるように構成された周波数変更部(360)をさらに含む、請求の範囲第12項に記載の車両。
    The drive control unit (320)
    The vehicle according to claim 12, further comprising a frequency changing unit (360) configured to decrease the carrier frequency when the target duty exceeds the duty range.
  14.  前記駆動制御部(320A)は、
     前記目標デューティが前記デューティ範囲を超える場合には、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)のいずれか一方を選択する一方で、前記目標デューティが前記デューティ範囲内の場合には前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)の両方を選択するように構成された選択部(350A)と、
     前記選択部(350A)によって選択されたスイッチング素子の駆動指令を生成する駆動指令生成部(380A)とをさらに含む、請求の範囲第12項に記載の車両。
    The drive control unit (320A)
    When the target duty exceeds the duty range, one of the first switching element (Q1) and the second switching element (Q2) is selected while the target duty is within the duty range. In the case of the selection unit (350A) configured to select both the first switching element (Q1) and the second switching element (Q2),
    The vehicle according to claim 12, further comprising: a drive command generation unit (380A) that generates a drive command for the switching element selected by the selection unit (350A).
  15.  蓄電装置(28)と負荷装置(45)との間で電圧変換が可能な電圧変換装置(12)の制御方法であって、
     前記電圧変換装置(12)は、
     前記負荷装置(45)の電力線(PL2)と接地線(NL)との間に直列に接続され、スイッチング動作により前記電圧変換を行なう第1のスイッチング素子(Q1)および第2のスイッチング素子(Q2)を含み、
     前記スイッチング動作は、
     前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)がいずれもオフ状態となる期間であるデッドタイムを含み、
     前記制御方法は、
     前記スイッチング動作のキャリア周波数を設定するステップと、
     前記電圧変換の電圧指令値および前記キャリア周波数に基づいて、前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)をスイッチング制御するステップと、
     前記電圧変換装置(12)に入出力される電力に関連する情報に基づいて、前記デッドタイムにより制限される前記電圧変換装置(12)の出力可能電圧範囲を拡大するように前記第1のスイッチング素子(Q1)および前記第2のスイッチング素子(Q2)のスイッチング制御を行なうステップとを備える、電圧変換装置の制御方法。
    A method for controlling a voltage converter (12) capable of voltage conversion between a power storage device (28) and a load device (45),
    The voltage converter (12)
    A first switching element (Q1) and a second switching element (Q2) connected in series between a power line (PL2) and a ground line (NL) of the load device (45) and performing the voltage conversion by a switching operation. )
    The switching operation is
    A dead time which is a period in which both the first switching element (Q1) and the second switching element (Q2) are in an off state;
    The control method is:
    Setting a carrier frequency of the switching operation;
    Switching control of the first switching element (Q1) and the second switching element (Q2) based on the voltage command value of the voltage conversion and the carrier frequency;
    Based on the information related to the electric power input / output to / from the voltage converter (12), the first switching is performed so as to expand the output possible voltage range of the voltage converter (12) limited by the dead time. And a step of controlling switching of the element (Q1) and the second switching element (Q2).
PCT/JP2009/060029 2009-06-02 2009-06-02 Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device WO2010140212A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09845497.8A EP2439837A4 (en) 2009-06-02 2009-06-02 Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device
JP2011518096A JP5303030B2 (en) 2009-06-02 2009-06-02 Control device for voltage converter, vehicle equipped with the same, and control method for voltage converter
US13/375,738 US8653772B2 (en) 2009-06-02 2009-06-02 Control device for voltage conversion device, vehicle incorporating the same, and control method for voltage conversion device
PCT/JP2009/060029 WO2010140212A1 (en) 2009-06-02 2009-06-02 Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060029 WO2010140212A1 (en) 2009-06-02 2009-06-02 Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device

Publications (1)

Publication Number Publication Date
WO2010140212A1 true WO2010140212A1 (en) 2010-12-09

Family

ID=43297358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060029 WO2010140212A1 (en) 2009-06-02 2009-06-02 Control device for voltage conversion device, vehicle in which the same is installed, and control method for voltage conversion device

Country Status (4)

Country Link
US (1) US8653772B2 (en)
EP (1) EP2439837A4 (en)
JP (1) JP5303030B2 (en)
WO (1) WO2010140212A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051152A1 (en) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 Voltage conversion device control device and method
WO2014125741A1 (en) * 2013-02-18 2014-08-21 トヨタ自動車株式会社 Power conversion device
JP5618012B2 (en) * 2011-10-07 2014-11-05 トヨタ自動車株式会社 Control device and control method for voltage converter
JP2018058143A (en) * 2016-10-04 2018-04-12 株式会社マキタ Electric working machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256384B2 (en) * 2015-03-02 2018-01-10 トヨタ自動車株式会社 Power supply
JP2017045901A (en) * 2015-08-27 2017-03-02 トヨタ自動車株式会社 Reflux diode and on-vehicle power supply device
AT517686B1 (en) * 2015-10-01 2017-04-15 Avl List Gmbh Method for driving a multiphase synchronous converter
US10011178B1 (en) * 2017-06-08 2018-07-03 Ford Global Technologies, Llc DC inverter having reduced switching loss and reduced voltage spikes
JP7123165B2 (en) * 2018-11-29 2022-08-22 三菱電機株式会社 Rotating electric machine drive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154967A (en) * 1994-10-03 1995-06-16 Hitachi Ltd Dc-dc converter and computer using it
JP2002142451A (en) * 2000-10-30 2002-05-17 Toyota Industries Corp Dc-dc converter
JP2006033923A (en) * 2004-07-13 2006-02-02 Sharp Corp Dc-dc converter device
JP2006187186A (en) * 2004-11-30 2006-07-13 Toyota Motor Corp Voltage converter and computer-readable recording medium for recording program for making computer execute control for converting voltage in voltage converter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300981A1 (en) * 1993-01-15 1994-07-21 Siemens Ag Control device
US5671130A (en) * 1996-08-23 1997-09-23 Allen-Bradley Company, Inc. Method and apparatus for controlling voltage reflections using a motor controller
JP2004112904A (en) 2002-09-18 2004-04-08 Toyota Motor Corp Voltage converter, voltage conversion method, and computer-readable recording medium with program for making computer control voltage conversion recorded thereon
JP2006050779A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Motor driving device
JP2006312352A (en) * 2005-05-06 2006-11-16 Toyota Motor Corp Control device for driving system
JP2007043852A (en) 2005-08-04 2007-02-15 Toyota Industries Corp Method, program, and circuit for controlling dc-dc converter
JP4736781B2 (en) 2005-12-16 2011-07-27 トヨタ自動車株式会社 Power system controller
JP4844753B2 (en) * 2007-05-09 2011-12-28 株式会社デンソー Electric vehicle control device
JP2008302763A (en) 2007-06-06 2008-12-18 Toyota Motor Corp Drive unit of hybrid vehicle
JP2008312320A (en) 2007-06-13 2008-12-25 Toyota Motor Corp Signal controller
JP5299439B2 (en) * 2009-01-29 2013-09-25 トヨタ自動車株式会社 AC motor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154967A (en) * 1994-10-03 1995-06-16 Hitachi Ltd Dc-dc converter and computer using it
JP2002142451A (en) * 2000-10-30 2002-05-17 Toyota Industries Corp Dc-dc converter
JP2006033923A (en) * 2004-07-13 2006-02-02 Sharp Corp Dc-dc converter device
JP2006187186A (en) * 2004-11-30 2006-07-13 Toyota Motor Corp Voltage converter and computer-readable recording medium for recording program for making computer execute control for converting voltage in voltage converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2439837A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051152A1 (en) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 Voltage conversion device control device and method
JP5618012B2 (en) * 2011-10-07 2014-11-05 トヨタ自動車株式会社 Control device and control method for voltage converter
EP2765693A4 (en) * 2011-10-07 2016-02-24 Toyota Motor Co Ltd Voltage conversion device control device and method
US9374022B2 (en) 2011-10-07 2016-06-21 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for voltage conversion apparatus
WO2014125741A1 (en) * 2013-02-18 2014-08-21 トヨタ自動車株式会社 Power conversion device
JP2018058143A (en) * 2016-10-04 2018-04-12 株式会社マキタ Electric working machine

Also Published As

Publication number Publication date
JPWO2010140212A1 (en) 2012-11-15
EP2439837A1 (en) 2012-04-11
US20120081045A1 (en) 2012-04-05
EP2439837A4 (en) 2014-04-09
US8653772B2 (en) 2014-02-18
JP5303030B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5303030B2 (en) Control device for voltage converter, vehicle equipped with the same, and control method for voltage converter
JP4396644B2 (en) Start control device for internal combustion engine
JP5109290B2 (en) Electric motor drive control system and control method thereof
JP4682766B2 (en) Vehicle power supply
JP5375956B2 (en) Voltage conversion device control device, vehicle equipped with the same, and voltage conversion device control method
JP4232789B2 (en) Stop control device and stop control method for internal combustion engine
JP4830462B2 (en) Control device for electric vehicle
KR101283892B1 (en) Dc-dc converter control system for green car and method thereof
JP4280573B2 (en) Load drive device
WO2011132269A1 (en) Control device for motor drive system and vehicle having same
JP2013207914A (en) Controller of voltage converter
WO2013051152A1 (en) Voltage conversion device control device and method
JP2007098981A (en) Power unit for vehicle
JP2005051895A (en) Voltage converter and computer readable recording medium recording program for performing controlling of voltage conversion in voltage converter in computer
JP2011109851A (en) Device for controlling power supply system, and vehicle mounting the same
JP2011166990A (en) Power supply system
JP5780197B2 (en) Voltage converter
JP2013240162A (en) Voltage conversion device
JP2011109850A (en) Device for controlling power supply system, and vehicle mounting the same
JP5644786B2 (en) Control device for voltage converter
JP2011109852A (en) Device for controlling power supply system, and vehicle mounting the same
JP2011109849A (en) Device for controlling power supply system, and vehicle mounting the same
JP2013207915A (en) Controller of voltage converter
JP5438328B2 (en) Vehicle motor control system
JP2010273512A (en) Motor drive system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518096

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13375738

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009845497

Country of ref document: EP