WO2010139680A2 - Verfahren zur herstellung wasserabsorbierender polymerpartikel - Google Patents

Verfahren zur herstellung wasserabsorbierender polymerpartikel Download PDF

Info

Publication number
WO2010139680A2
WO2010139680A2 PCT/EP2010/057611 EP2010057611W WO2010139680A2 WO 2010139680 A2 WO2010139680 A2 WO 2010139680A2 EP 2010057611 W EP2010057611 W EP 2010057611W WO 2010139680 A2 WO2010139680 A2 WO 2010139680A2
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
belt
circulating air
dryer
polymer gel
Prior art date
Application number
PCT/EP2010/057611
Other languages
English (en)
French (fr)
Other versions
WO2010139680A3 (de
Inventor
Uwe Stueven
Rüdiger Funk
Matthias Weismantel
Dominicus Van Esbroeck
Ronny De Kaey
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43298232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010139680(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Se filed Critical Basf Se
Priority to EP10722361.2A priority Critical patent/EP2438096B1/de
Priority to JP2012513592A priority patent/JP2012528909A/ja
Priority to US13/319,549 priority patent/US8789774B2/en
Priority to CN201080024715.0A priority patent/CN102459368B/zh
Publication of WO2010139680A2 publication Critical patent/WO2010139680A2/de
Publication of WO2010139680A3 publication Critical patent/WO2010139680A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/001Handling, e.g. loading or unloading arrangements
    • F26B25/002Handling, e.g. loading or unloading arrangements for bulk goods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing water-absorbing polymer particles, wherein an aqueous polymer gel is applied by means of a swivel tape on the conveyor belt of a circulating air belt dryer.
  • Water-absorbing polymer particles are used in the manufacture of diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the water-absorbing polymer particles are also referred to as superabsorbers.
  • Water-absorbing polymer particles are usually obtained by polymerization of suitable aqueous monomer solutions or suspensions.
  • the properties of the water-absorbing polymer particles can be adjusted, for example, via the amount of crosslinker used. As the amount of crosslinker increases, the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g / cm 2 (AULO.3psi) goes through a maximum.
  • CRC centrifuge retention capacity
  • the aqueous polymer gels obtained by polymerization are typically dried by means of a circulating air belt dryer. Especially with circulating air belt dryers with wide conveyor belts, it is difficult to ensure the necessary uniform coverage of the conveyor belt with the aqueous polymer gel.
  • Research Disclosure RD 37327 proposes a special task system and Research Disclosure RD 37441 proposes the use of rakes.
  • water-absorbing polymer particles are generally surface postcrosslinked.
  • the degree of crosslinking of the particle surface increases, whereby the absorption under a pressure of 49.2 g / cm 2 (AULO.7 psi) and the centrifuge retention capacity (CRC) can be at least partially decoupled.
  • This surface postcrosslinking can be carried out in aqueous gel phase.
  • crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the water-absorbing polymer particles.
  • the object of the present invention was to provide an improved process for drying aqueous polymer gels on a recirculating-air belt dryer, in particular processes which lead to a more uniform drying and to a lower product damage.
  • the object was achieved by a process for producing water-absorbing polymer particles by polymerization of a monomer solution or suspension containing
  • aqueous polymer gel applied by means of a swivel tape on the conveyor belt of Um Kunststoffbandtrockners, the swivel tape starting from an end position over a first pivot angle ßi, wherein ßi from 8 to 24 °, accelerated to an angular velocity vi, over a second pivot angle ß2, wherein ß2 from 10 to 40 °, braked to an angular velocity V2 and braked to the other end position via a third pivot angle ß3, wherein the quotient of angular velocity V2 and angular velocity vi is from 0.3 to 0.9, and the quotient of the length of the swivel band and width of the conveyor belt of the circulating air dryer from 0.7 to 1.9, wherein the length of the swivel belt is the distance of the pivot axis from the discharge end.
  • the first pivot angle ßi is preferably from 9 to 21 °, more preferably from 10 to 18 °, most preferably from 1 1 to 15 °.
  • the angular velocity vi is preferably from 25 to 407s, more preferably from 28 to 377s, most preferably from 30 to 357s.
  • the second pivot angle ß2 is preferably from 13 to 32 °, more preferably from 16 to 26 °, especially from 18 to 22 °.
  • the angular velocity V2 preferably carries 10 to 257s, more preferably from 13 to 227s, most preferably from 15 to 207s.
  • the total swing angle i. the sum of the first, second and third pivot angle is preferably from 30 to 70 °, more preferably from 40 to 60 °, most preferably from 45 to 55 °.
  • the quotient of angular velocity V2 and angular velocity vi is preferably from 0.4 to 0.8, particularly preferably from 0.45 to 0.7, very particularly preferably from 0.5 to 0.6.
  • the quotient of the length of the swivel belt and the width of the conveyor belt of the circulating air belt dryer is preferably from 0.8 to 1.6, more preferably from 0.85 to 1.4, most preferably from 0.95 to 1.2.
  • the quotient of the effective width of the circulating-air belt dryer and the effective width of the swivel belt is preferably from 4 to 12, particularly preferably from 6 to 10, very particularly preferably from 7 to 9.
  • a too low effective width of the swivel belt makes uniform distribution of the aqueous polymer gel difficult.
  • the effective width of the circulating air belt dryer or of the swivel belt is the width of the respective conveyor belt which is loaded with aqueous polymer gel.
  • the conveyor belt speed of the circulating air belt dryer is preferably from 0.005 to 0.05 m / s, particularly preferably from 0.01 to 0.35 m / s, very particularly preferably from 0.015 to 0.025 m / s.
  • the pivoting movement of the swivel belt and the conveyor belt speed of the circulating air belt dryer are coordinated so that the conveyor belt of the circulating air belt dryer moves within a double stroke of the swivel belt by 0.1 to 0.2 m, with a double stroke the movement of the swivel belt from the first end position to the other end position and back again means.
  • the pivot axis of the pivoting belt is typically on the line that divides the conveyor belt of the circulating air dryer longitudinally into two equal halves.
  • the process according to the invention makes it possible in a simple manner to uniformly dry the aqueous polymer gel and avoids product damage. In particular, a reduction in the degree of crosslinking and the associated increase in centrifuge retention capacity (CRC) and extractables is avoided.
  • CRC centrifuge retention capacity
  • the water content of the polymer gel before drying on the circulating air belt dryer is preferably from 25 to 90% by weight, particularly preferably from 35 to 70% by weight, very particularly preferably from 40 to 60% by weight.
  • the water content of the polymer gel after drying on the circulating air belt dryer is preferably from 0.5 to 15 wt .-%, particularly preferably from 1 to 10 wt .-%, most preferably from 2 to 8 wt .-%.
  • the height of the polymer gel bed on the conveyor belt of the circulating air belt dryer in the feed zone is preferably from 2 to 20 cm, particularly preferably from 5 to 15 cm, very particularly preferably from 8 to 12 cm.
  • the vertical spacing of the swing band and conveyor belt of the circulating air belt dryer i. the height from which the aqueous polymer gel falls on the conveyor belt is preferably from 0.1 to 2 m, more preferably from 0.3 to 1.5 m, most preferably from 0.5 to 1 m. If the height of the fall is too great, the aqueous polymer gel is over-compacted and is less easily flowed through.
  • the conveyor belt speed of the swivel belt is preferably from 0.2 to 2 m / s, more preferably from 0.4 to 1.5 m / s, very particularly preferably from 0.5 to 1 m / s.
  • the aqueous polymer gel shrinks during drying. This causes the aqueous polymer gel to retract from the outermost edge areas of the conveyor during drying. The consequence of this is that part of the drying gas flows past the polymer gel bed instead of flowing through it.
  • the width bi of the central region is preferably from 75 to 95%, more preferably from 80 to 90%, most preferably from 83 to 87% of the total width of the conveyor belt of the circulating air belt dryer.
  • the elevation hi 2 is preferably from 10 to 40%, more preferably from 15 to 35, most preferably from 20 to 30%, of the height hi.
  • the water content of the polymer gel bed in the feed zone is preferably from 25 to 90 wt .-%, particularly preferably from 35 to 70 wt .-%, most preferably from 40 to 60 wt .-%.
  • the average particle size of the aqueous polymer gel is preferably from 0.1 to 10 mm, more preferably from 0.5 to 5 mm, most preferably from 1 to 2 mm.
  • the gas stream used for drying may contain water vapor.
  • the water vapor content should, however, not exceed a value which corresponds to a dew point of preferably at most 50 ° C., particularly preferably at most 40 ° C., very particularly preferably at most 30 ° C.
  • the gas inlet temperatures of the circulating air belt dryer are preferably from 150 to 200 ° C., particularly preferably from 160 to 190 ° C., very particularly preferably from 170 to 18O 0 C.
  • the residence time on the circulating air belt dryer is preferably from 10 to 120 minutes, particularly preferably from 20 to 90 minutes, very particularly preferably from 30 to 60 minutes.
  • the effective width of the circulating air belt dryer is preferably from 1 to 10 m, more preferably from 2 to 7.5 m, most preferably from 3 to 5 m.
  • the effective length of the circulating air belt dryer is preferably from 10 to 80 m, more preferably from 30 to 60 m, most preferably from 40 to 50 m.
  • the water-absorbing polymer particles are prepared by polymerization of a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, ie the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • sulfonic acids such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight.
  • % Propionic acid 0.0001% by weight of furfurals, 0.0001% by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as a storage stabilizer.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular
  • hydroquinone half-ether in each case based on the unneutralized monomer a).
  • an ethylenically unsaturated, acid group-carrying monomer having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
  • hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically copolymerized into the polymer chain, and functional groups which are covalent bonds with the acid groups of the monomer a) can train. Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinking agents b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as in EP 0 547 847 A1, EP 0 559 476 A1,
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraalloxyethane, methylenebis-methacrylamide, 15-times ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol, in particular the triacrylate of 3-times ethoxylated glycerol.
  • the amount of crosslinker b) is preferably from 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-%, most preferably 0.3 to 0.6 wt .-%, each based on Monomer a).
  • CRC centrifuge retention capacity
  • initiators c) it is possible to use all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
  • mixtures of thermal initiators and redox initiators are used, such as sodium peroxodisulfate.
  • the reducing component used is preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE).
  • Examples of ethylenically unsaturated monomers d) which can be copolymerized with the ethylenically unsaturated monomers having acid groups are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.
  • water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose.
  • an aqueous monomer solution is used.
  • the water content of the monomer solution is preferably from 40 to 75 wt .-%, particularly preferably from 45 to 70 wt .-%, most preferably from 50 to 65 wt .-%.
  • monomer suspensions i. Monomer solutions with excess monomer a), for example sodium acrylate, use. With increasing water content, the energy expenditure increases during the subsequent drying and with decreasing water content, the heat of polymerization can only be dissipated insufficiently.
  • the monomer solution may be polymerized prior to polymerization by inerting, i. Flow through with an inert gas, preferably nitrogen or carbon dioxide, are freed of dissolved oxygen.
  • the oxygen content of the monomer solution before the polymerization is preferably reduced to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight.
  • Suitable reactors are, for example, kneading reactors or belt reactors.
  • the aqueous polymer gel formed in the polymerization of an aqueous monomer solution or suspension is continuously comminuted by, for example, counter-rotating stirring shafts, as described in WO 2001/038402 A1.
  • the polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
  • an aqueous polymer gel is formed, which must be comminuted in a further process step, for example in an extruder or kneader.
  • the comminuted aqueous polymer gel obtained by means of a kneader may additionally be extruded.
  • the acid groups of the resulting aqueous polymer gels are usually partially neutralized.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
  • the degree of neutralization is preferably from 25 to 95 mol%, particularly preferably from 30 to 80 mol%, very particularly preferably from 40 to 75 mol%, the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or Alkalimetallhydrogenkarbonate and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the aqueous polymer gel is at least partially neutralized after the polymerization, the aqueous polymer gel is preferably comminuted mechanically, for example by means of an extruder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in.
  • the gel mass obtained can be extruded several times for homogenization.
  • the aqueous polymer gel is then dried with a circulating air belt dryer until the residual moisture content is preferably 0.5 to 15% by weight, particularly preferably 1 to 10% by weight, very particularly preferably 2 to 8% by weight, the residual moisture content being determined by EDANA (European Disposables and Nonwovens Association) Test Method No. WSP 230.2-05 "Moisture Content". If the residual moisture content is too high, the dried polymer gel has too low a glass transition temperature T 9 and is difficult to process further.
  • EDANA European Disposables and Nonwovens Association
  • the solids content of the gel before drying is preferably from 25 to 90% by weight. -%, particularly preferably from 35 to 70 wt .-%, most preferably from 40 to 60 wt .-%.
  • the dried polymer gel is then ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills, can be used.
  • the mean particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the test method No. WSP 220.2-05 "Particle Size Distribution" recommended by the EDANA (European Disposables and Nonwovens Association), in which the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically becomes.
  • the mean particle size here is the value of the mesh size, which results for accumulated 50 wt .-%.
  • the proportion of particles having a particle size of at least 150 .mu.m is preferably at least 90 wt .-%, more preferably at least 95 wt .-%, most preferably at least 98 wt .-%.
  • Too small polymer particles are therefore usually separated and recycled to the process. This is preferably done before, during or immediately after the polymerization, i. before drying the aqueous polymer gel.
  • the excessively small polymer particles can be moistened with water and / or aqueous surfactant before or during recycling.
  • the polymer particles which are too small are preferably added during the last third of the polymerization.
  • the polymer particles which are too small are added very early, for example already to the monomer solution, this lowers the centrifuge retention capacity (CRC) of the resulting water-absorbing polymer particles. However, this can be compensated for example by adjusting the amount of crosslinker b). If the polymer particles which are too small are added very late, for example only in an apparatus downstream of the polymerization reactor, for example an extruder, then the excessively small polymer particles are difficult to incorporate into the resulting aqueous polymer gel. Insufficiently incorporated polymer particles, however, dissolve again during grinding from the dried polymer gel, are therefore separated again during classification and increase the amount of polymer particles which are too small to be recycled.
  • CRC centrifuge retention capacity
  • the proportion of particles having a particle size of at most 850 microns is preferably at least 90 wt .-%, more preferably at least 95 wt .-%, most preferably at least 98 wt .-%.
  • the proportion of particles having a particle size of at most 600 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles with too large particle size reduce the swelling rate. Therefore, the proportion of polymer particles too large should also be low.
  • Too large polymer particles are therefore usually separated and recycled to the grinding of the dried polymer gel.
  • the polymer particles can be surface postcrosslinked to further improve the properties.
  • Suitable surface postcrosslinkers are compounds containing groups that can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyloxazolidin-2-one, oxazolidin-2-one and 1,3-propanediol.
  • the amount of surface postcrosslinker is preferably 0.001 to 2 wt .-%, more preferably 0.02 to 1 wt .-%, most preferably 0.05 to 0.2 wt .-%, each based on the polymer particles.
  • polyvalent cations are applied to the particle surface before, during or after the surface postcrosslinking in addition to the surface postcrosslinkers.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of Titanium and zirconium.
  • divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium
  • trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese
  • tetravalent cations such as the cations of Titanium and zirconium.
  • chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate are possible.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. in each case based on the polymer particles.
  • the surface postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Following spraying, the surface postcrosslinker coated polymer particles are thermally dried, with the surface postcrosslinking reaction taking place both during and after drying.
  • the spraying of a solution of the surface postcrosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, disc mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, disc mixers and paddle mixers.
  • horizontal shear such as paddle mixers
  • vertical mixers very particularly preferred are vertical mixers.
  • horizontal mixer and vertical mixer via the storage of the mixing shaft ie horizontal mixer have a horizontally mounted mixing shaft and vertical mixer have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Pflugschar® mixers (Gebr.
  • the surface postcrosslinkers are typically used as an aqueous solution.
  • the penetration depth of the surface postcrosslinker into the polymer particles can be adjusted by the content of nonaqueous solvent or total solvent amount.
  • solvent for example isopropanol / water, 1,3-propanediol / water and propylene glycol / water, the mixing mass ratio preferably being from 20:80 to 40:60.
  • the temperature of the water absorbing polymer particles in the dryer is preferably from 100 to 250 0 C, particularly preferably of 130 to 220 0 C, most preferably of 150 to 200 0 C.
  • the residence time in the dryer is preferably from 10 to 120 minutes, particularly preferably from 10 to 90 minutes, most preferably from 30 to 60 minutes.
  • the degree of filling of the dryer is preferably from 30 to 80%, more preferably from 40 to 75%, most preferably from 50 to 70%.
  • the filling level of the dryer can be adjusted via the height of the drain weir.
  • the surface-postcrosslinked polymer particles can be classified again, wherein too small and / or too large polymer particles are separated and recycled to the process.
  • the surface-postcrosslinked polymer particles can be coated or post-moistened for further improvement of the properties.
  • the subsequent moistening is carried out preferably at 30 to 8O 0 C, particularly preferably at 35 to 70 0 C, most preferably at 40 to 6O 0 C. If the temperatures are too low, the water-absorbing polymer particles tend to clump together and at higher temperatures water is already noticeably evaporating.
  • the post-moisturizing The amount of water used is preferably from 1 to 10 wt .-%, particularly preferably from 2 to 8 wt .-%, most preferably from 3 to 5 wt .-%. By rewetting the mechanical stability of the polymer particles is increased and their tendency to static charge reduced.
  • Suitable coatings for improving the swelling rate and the permeability are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings against the undesirable tendency for the polymer particles to cake are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • the water-absorbing polymer particles produced by the process according to the invention have a moisture content of preferably 0 to 15 wt .-%, particularly preferably 0.2 to 10 wt .-%, most preferably 0.5 to 8 wt .-%, wherein the Moisture content according to the test method No. WSP 230.2-05 "Moisture Content" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the water-absorbing polymer particles prepared according to the method of the invention have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, more preferably at least 24 g / g, most preferably at least 26 g / g, up.
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is usually less than 60 g / g.
  • the centrifuge retention capacity (CRC) is determined according to the test method No. WSP 241.2-05 "Centrifuge Retention Capacity" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the water-absorbing polymer particles are tested by the test methods described below.
  • the measurements should be taken at an ambient temperature of 23 ⁇ 2 0 C and a relative humidity of 50 ⁇ 10% unless otherwise specified.
  • the water-absorbing polymer particles are thoroughly mixed before the measurement. Centrifuge Retention Capacity
  • CRC Centrifuge Retention Capacity
  • the extractables are determined according to the EDANA recommended test method No. WSP 270.2-05 "Extractable”.
  • the EDANA test methods are available, for example, from EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
  • Polyethylene glycol 400 diacrylate (diacrylate starting from a polyethylene glycol having an average molecular weight of 400 g / mol) was used as the polyethylenically unsaturated crosslinker. The amount used was 2 kg of crosslinker per t of monomer solution.
  • the throughput of the monomer solution was 20 t / h.
  • the reaction solution had a temperature of 23.5 ° C. at the inlet.
  • the resulting aqueous polymer gel was applied by means of a swivel tape on a recirculating air belt dryer.
  • the recirculating air dryer had an effective length of 48 m.
  • the conveyor belt of the circulating air dryer had an effective width of 4.4 m.
  • the speed of the conveyor belt of the circulating air belt dryer was 0.022 m / s.
  • the swivel tape had a length of 5 m.
  • the conveyor belt of the swivel belt had a width of 0.8 m and an effective width of 0.5 m.
  • the conveyor belt of the swivel belt was curved at the edges by about 20 ° upwards.
  • the angle of repose of the aqueous polymer gel on the conveyor belt of the swivel belt was about 15 °.
  • the cross section of the polymer gel filling on the conveyor belt of the pivoting belt was about 0.04 m 2 .
  • the speed of the conveyor belt of the swivel belt was 0.5 m / s.
  • the swivel band was accelerated starting from an end position over a first swivel angle ßi of 13 ° to an angular speed of 337s, braked over a second swivel angle ß2 of 20 ° to an angular velocity of 177s and braked via a third swivel angle ß3 to the other end position.
  • the total swing angle was 50 °.
  • a double stroke (from the first end position to the other end position and back) lasted approx. 7 s.
  • the amount of polymer gel on the conveyor belt of the recirculating air belt dryer was determined using an Absolute® Digimatic built-in vernier caliper (Mitutoyo Messtechnik GmbH, Neuss, DE).
  • the polymer gel filling on the conveyor belt of the circulating-belt dryer had a profile according to FIG. 1, the height hi being about 10 cm, the height hi2 about 2.5 cm, the width bi about 376 cm and the width b2 about 32 cm.
  • the aqueous polymer gel was continuously circulated around an air / gas mixture and dried.
  • the residence time in the circulating air belt dryer was 37 minutes.
  • the dried polymer gel was ground and sieved to a particle size fraction of 150 to 850 microns.
  • the obtained water-absorbent polymer particles had a centrifugal retention capacity (CRC) of 34.9 g / g and an extractable content of 8.5% by weight.
  • Example 1 The procedure was as in Example 1.
  • the swivel belt was accelerated from an end position over a first swivel angle ßi of 13 ° to an angular velocity of 247s, maintained over a second swivel angle ß2 of 20 ° constant at an angular velocity of 247s and a third swivel angle ß3 braked to the other end position.
  • the total swing angle was 50 °.
  • the obtained water-absorbent polymer particles had a centrifugal retention capacity (CRC) of 44.9 g / g and an extractable content of 17.4% by weight.
  • Example 2 The procedure was as in Example 1.
  • the swing band was accelerated from an end position over a first pivot angle ßi of 13 ° to an angular velocity of 247s, braked via a second pivot angle ß2 of 20 ° to an angular velocity of 227s and a third pivot angle ß3 slowed down to the other end position.
  • the total swing angle was 50 °.
  • the obtained water-absorbent polymer particles had a centrifugal retention capacity (CRC) of 40.7 g / g and an extractable content of 8.7% by weight.
  • CRC centrifugal retention capacity
  • Example 2 The procedure was as in Example 1.
  • the swivel belt was accelerated from an end position over a first swivel angle ßi of 13 ° to an angular velocity of 407s, braked over a second swivel angle ß2 of 20 ° to an angular velocity of 157s and a third swivel angle ß3 slowed down from the other end position.
  • the total swing angle was 50 °.
  • the aqueous polymer gel shrank so that the edges of the conveyor belt were no longer covered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, wobei ein wässriges Polymergel mittels eines Schwenkbandes auf das Förderband eines Umluftbandtrockners aufgebracht wird und das Schwenkband ausgehend von einer Endlage über einen ersten Schwenkwinkel auf eine Winkelgeschwindigkeit v1 beschleunigt, über einen zweiten Schwenkwinkel auf eine Winkelgeschwindigkeit v2 abgebremst und über einen dritten Schwenkwinkel zur anderen Endlage abgebremst wird.

Description

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, wobei ein wässriges Polymergel mittels eines Schwenkbandes auf das Förderband eines Umluftbandtrockners aufgebracht wird.
Wasserabsorbierende Polymerpartikel werden zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet. Die wasserabsorbierenden Polymerpartikel werden auch als Superabsorber bezeichnet.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Mo- dem Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley- VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Polymerpartikel werden üblicherweise durch Polymerisation geeigneter wässriger Monomerlösungen oder -Suspensionen erhalten.
Die Eigenschaften der wasserabsorbierenden Polymerpartikel können beispielsweise über die verwendete Vernetzermenge eingestellt werden. Mit steigender Vernetzermenge sinkt die Zentrifugenretentionskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AULO.3psi) durchläuft ein Maximum.
Die durch Polymerisation erhaltenen wässrigen Polymergele werden typischerweise mittels eines Umluftbandtrockners getrocknet. Insbesondere bei Umluftbandtrocknern mit breiten Förderbändern ist es schwierig die notwendige gleichmäßige Belegung des Förderbandes mit dem wässrigen Polymergel zu gewährleisten. Zur Lösung dieses Problems werden beispielsweise in Research Disclosure RD 37327 ein spezielles Aufgabesystem und in Research Disclosure RD 37441 die Verwendung von Rechen vorgeschlagen.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Permeabilität des gequollenen Gelbetts (SFC) in der Windel und Absorption unter einem Druck von 49.2 g/cm2 (AULO.7psi), werden wasserabsorbierende Polymerpartikel im allgemeinen oberflächennachvernetzt. Dadurch steigt der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter einem Druck von 49,2 g/cm2 (AULO.7psi) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Oberflächennachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Oberflächennachvernetzer beschichtet und thermisch oberflächennachvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mit mindestens zwei Carboxylatgruppen der wasserabsorbierenden Polymerpartikel kovalente Bindungen bilden können.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Trocknung wässriger Polymergele auf einem Umluftbandtrockner, insbesondere Verfahren, die zu einer gleichmäßigeren Trocknung und zu einer geringeren Produktschädigung führen.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer Monomerlösung oder -Suspension, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymeri- sierbare ethylenisch ungesättigte Monomere und e) optional ein oder mehrere wasserlösliche Polymere,
umfassend Trocknung des erhaltenen wässrigen Polymergels auf einem Umluftbandtrockner, Mahlung, Klassierung, und optional thermische Oberflächennachvernetzung, dadurch gekennzeichnet, dass das wässrige Polymergel mittels eines Schwenkbandes auf das Förderband des Umluftbandtrockners aufgebracht, das Schwenkband ausgehend von einer Endlage über einen ersten Schwenkwinkel ßi, wobei ßi von 8 bis 24° beträgt, auf eine Winkelgeschwindigkeit vi beschleunigt, über einen zweiten Schwenkwinkel ß2, wobei ß2 von 10 bis 40° beträgt, auf eine Winkelgeschwindigkeit V2 abgebremst und über einen dritten Schwenkwinkel ß3 zur anderen Endlage abgebremst wird, wobei der Quotient aus Winkelgeschwindigkeit V2 und Winkelgeschwindigkeit vi von 0,3 bis 0,9 beträgt, und der Quotient aus Länge des Schwenkbandes und Breite des Förderbands des Umluftbandtrockners von 0,7 bis 1 ,9 beträgt, wobei die Länge des Schwenkbandes der Abstand der Schwenkachse vom Abwurfende ist.
Der erste Schwenkwinkel ßi beträgt vorzugsweise von 9 bis 21 °, besonders bevorzugt von 10 bis 18°, ganz besonders von 1 1 bis 15°. Die Winkelgeschwindigkeit vi beträgt vorzugweise 25 bis 407s, besonders bevorzugt von 28 bis 377s, ganz besonders bevorzugt von 30 bis 357s.
Der zweite Schwenkwinkel ß2 beträgt vorzugsweise von 13 bis 32°, besonders bevorzugt von 16 bis 26°, ganz besonders von 18 bis 22°. Die Winkelgeschwindigkeit V2 be- trägt vorzugweise 10 bis 257s, besonders bevorzugt von 13 bis 227s, ganz besonders bevorzugt von 15 bis 207s.
Der Gesamtschwenkwinkel, d.h. die Summe aus dem ersten, zweiten und dritten Schwenkwinkel beträgt vorzugsweise von 30 bis 70°, besonders bevorzugt von 40 bis 60°, ganz besonders bevorzugt von 45 bis 55°.
Der Quotient aus Winkelgeschwindigkeit V2 und Winkelgeschwindigkeit vi beträgt vorzugsweise von 0,4 bis 0,8, besonders bevorzugt von 0,45 bis 0,7, ganz besonders be- vorzugt von 0,5 bis 0,6.
Der Quotient aus Länge des Schwenkbandes und Breite des Förderbandes des Umluftbandtrockners beträgt vorzugsweise von 0,8 bis 1 ,6, besonders bevorzugt von 0,85 bis 1 ,4, ganz besonders bevorzugt von 0,95 bis 1 ,2.
Wird das Schwenkband im Bereich des zweiten Schwenkwinkels ß2 nicht abgebremst, d.h. vi ist gleich V2, so ist die Polymergelschüttung auf dem Förderband des Umluftbandtrockners an den Rändern zu hoch und in der Mitte zu niedrig. Wird das Schwenkband im Bereich des zweiten Schwenkwinkels ß2 zu stark abgebremst, d.h. vi ist sehr viel größer als V2, so ist die Polymergelschüttung auf dem Förderband des Umluftbandtrockners an den Rändern zu niedrig und in der Mitte zu hoch.
Der Quotient aus effektiver Breite des Umluftbandtrockners und effektiver Breite des Schwenkbandes beträgt vorzugsweise von 4 bis 12, besonders bevorzugt von 6 bis 10, ganz besonders bevorzugt von 7 bis 9. Eine zu niedrige effektive Breite des Schwenkbandes erschwert eine gleichmäßige Verteilung des wässrigen Polymergels. Die effektive Breite des Umluftbandtrockners bzw. des Schwenkbandes ist die Breite des jeweiligen Förderbandes, die mit wässrigem Polymergel beladen ist.
Die Förderbandgeschwindigkeit des Umluftbandtrockners beträgt vorzugsweise von 0,005 bis 0,05 m/s, besonders bevorzugt von 0,01 bis 0,35 m/s, ganz besonders bevorzugt von 0,015 bis 0,025 m/s.
Vorteilhaft werden die Schwenkbewegung des Schwenkbandes und die Förderband- geschwindigkeit des Umluftbandtrockners so aufeinander abgestimmt, dass sich das Förderband des Umluftbandtrockners innerhalb eines Doppelhubes des Schwenkbandes um 0,1 bis 0,2 m weiterbewegt, wobei ein Doppelhub die Bewegung des Schwenkbandes von der ersten Endlage zur anderen Endlage und wieder zurück bedeutet.
Die Schwenkachse des Schwenkbandes liegt typischerweise auf der Linie, die das Förderband des Umluftbandtrockners längs in zwei gleiche Hälften teilt. Das erfindungsgemäße Verfahren ermöglicht auf einfache Weise eine gleichmäßige Trocknung des wässrigen Polymergels und vermeidet eine Produktschädigung. Insbesondere wird eine Verminderung des Vernetzungsgrades und der damit verbundene Anstieg von Zentrifugenretentionskapazität (CRC) und Extrahierbaren vermieden.
Der Wassergehalt des Polymergels vor der Trocknung auf dem Umluftbandtrockner beträgt vorzugsweise von 25 bis 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%.
Der Wassergehalt des Polymergels nach der Trocknung auf dem Umluftbandtrockner beträgt vorzugsweise von 0,5 bis 15 Gew.-%, besonders bevorzugt von 1 bis 10 Gew.-%, ganz besonders bevorzugt von 2 bis 8 Gew.-%.
Die Höhe der Polymergelschüttung auf dem Förderband des Umluftbandtrockners be- trägt in der Aufgabezone vorzugsweise von 2 bis 20 cm, besonders bevorzug von 5 bis 15 cm, ganz besonders bevorzugt von 8 bis 12 cm.
Der vertikale Abstand von Schwenkband und Förderband des Umluftbandtrockners, d.h. die Höhe von der das wässrige Polymergel auf das Förderband fällt, beträgt vor- zugsweise von 0,1 bis 2 m, besonders bevorzugt von 0,3 bis 1 ,5 m, ganz besonders bevorzugt von 0,5 bis 1 m. Bei einer zu großen Fallhöhe wird das wässrige Polymergel zu stark verdichtet und lässt sich schlechter durchströmen.
Die Förderbandgeschwindigkeit des Schwenkbandes beträgt vorzugsweise von 0,2 bis 2 m/s, besonders bevorzugt von 0,4 bis 1 ,5 m/s, ganz besonders bevorzugt von 0, 5 bis 1 m/s.
Das wässrige Polymergel schrumpft während der Trocknung. Dies führt dazu, dass sich das wässrige Polymergel während der Trocknung von den äußersten Randberei- chen des Förderbandes zurückzieht. Die Folge davon ist, dass ein Teil des Trocknungsgases an der Polymergelschüttung vorbeiströmt statt diese zu durchströmen.
Dieser Schrumpfungseffekt kann durch eine geringfügig höhere Beladung der äußersten Randbereiche des Förderbandes kompensiert werden. Der optimale Querschnitt einer Polymergelschüttung zeigt Figur 1 , wobei
bi die Breite des mittleren Bereichs, b2 die Breite des äußersten Randbereichs, hi die Höhe im mittleren Bereich und hi2 die Überhöhung am äußersten Rand bedeutet. Die Breite bi des mittleren Bereichs beträgt vorzugsweise von 75 bis 95%, besonders bevorzugt von 80 bis 90%, ganz besonders bevorzugt von 83 bis 87%, der Gesamtbreite des Förderbandes des Umluftbandtrockners. Die Überhöhung hi2 beträgt vorzugsweise 10 bis 40%, besonders bevorzugt von 15 bis 35, ganz besonders bevor- zugt von 20 bis 30%, der Höhe hi.
Der Wassergehalt der Polymergelschüttung in der Aufgabezone beträgt vorzugsweise von 25 bis 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Die mittlere Partikelgröße des wässrigen Polymer- gels beträgt vorzugsweise von 0,1 bis 10 mm, besonders bevorzugt von 0,5 bis 5 mm, ganz besonders bevorzugt von 1 bis 2 mm.
Der zur Trocknung verwendete Gasstrom kann Wasserdampf enthalten. Der Wasserdampfanteil sollte aber einen Wert, der einem Taupunkt von vorzugsweise höchstens 500C, besonders bevorzugt höchstens 400C, ganz besonders bevorzugt höchstens 300C, entspricht, nicht übersteigen.
Die Gaseingangstemperaturen des Umluftbandtrockners betragen vorzugsweise von 150 bis 200°C, besonders bevorzugt von 160 bis 190°C, ganz besonders bevorzugt von 170 bis 18O0C.
Die Verweilzeit auf dem Umluftbandtrockner beträgt vorzugsweise von 10 bis 120 Minuten, besonders bevorzugt von 20 bis 90 Minuten, ganz besonders bevorzugt von 30 bis 60 Minuten.
Die effektive Breite des Umluftbandtrockners beträgt vorzugsweise von 1 bis 10 m, besonders bevorzugt von 2 bis 7,5 m, ganz besonders bevorzugt von 3 bis 5 m.
Die effektive Länge des Umluftbandtrockners beträgt vorzugsweise von 10 bis 80 m, besonders bevorzugt von 30 bis 60 m, ganz besonders bevorzugt von 40 bis 50 m.
Ein besonders vorteilhaftes Trocknungsverfahren wird in WO 2001/100300 A1 beschrieben.
Im Folgenden wird die Herstellung der wasserabsorbierenden Polymerpartikel näher erläutert:
Die wasserabsorbierenden Polymerpartikel werden durch Polymerisation einer Monomerlösung oder -Suspension hergestellt und sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfon- säuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher sollten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteilhaft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispielsweise in der WO 2002/055469 A1 , der WO 2003/078378 A1 und der WO 2004/035514 A1 beschrieben. Ein geeignetes Monomer a) ist beispielsweise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Wasser, 0,0203 Gew.-% Propionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäureanhydrid, 0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindestens 10 Gew.-ppm, besonders bevorzugt mindestens 30 Gew.-ppm, insbesondere um
50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesättigtes, säuregruppentragendes Monomer mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha-Tocopherol (Vitamin E).
Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeig- neten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomeren a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Trially- lamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 be- schrieben, Di- und Triacrylate, wie in EP 0 547 847 A1 , EP 0 559 476 A1 ,
EP 0 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/032962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraalloxyethan, Methylenbis- methacrylamid, 15-fach ethoxiliertes Trimethylolpropantriacrylat, Polyethylenglykoldiac- rylat, Trimethylolpropantriacrylat und Triallylamin.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, insbesondere das Triacrylat des 3-fach ethoxylierten Glyzerins.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-%, ganz besonders bevorzugt 0,3 bis 0,6 Gew.-%, jeweils bezogen auf Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifugenretenti- onskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AULO.3psi) durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren. Geeignete Redox-Initiatoren sind Natriumperoxodi- sulfat/Ascorbinsäure, Wasserstoffperoxid/Ascorbinsäure, Natriumperoxodisulfat/Na- triumbisulfit und Wasserstoffperoxid/Natriumbisulfit. Vorzugsweise werden Mischungen aus thermischen Initiatoren und Redox-Initiatoren eingesetzt, wie Natriumperoxodisul- fat/Wasserstoffperoxid/Ascorbinsäure. Als reduzierende Komponente wird aber vorzugsweise ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Natriumbisulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE) erhältlich.
Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymeri- sierbare ethylenisch ungesättigte Monomere d) sind beispielsweise Acrylamid, Meth- acrylamid, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethac- rylat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacry- lat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Als wasserlösliche Polymere e) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, modifizierte Cellulose, wie Methylcellulose oder Hydroxyethylcellulose, Gelatine, Polyglykole oder Polyacrylsäuren, vorzugsweise Stärke, Stärkederivate und modifizierte Cellulose, eingesetzt werden.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomerlösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.-%, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensionen, d.h. Monomerlösungen mit überschüssigem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch ungenügend abgeführt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisie- rung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffge- halt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt.
Geeignete Reaktoren sind beispielsweise Knetreaktoren oder Bandreaktoren. Im Kne- ter wird das bei der Polymerisation einer wässrigen Monomerlösung oder -Suspension entstehende wässrige Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/038402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein wässriges Polymergel, das in einem weiteren Verfahrensschritt zerkleinert werden muss, beispielsweise in einem Extruder oder Kneter. Zur Verbesserung der Trocknungseigenschaften kann das mittels eines Kneters erhaltene zerkleinerte wässrige Polymergel zusätzlich extrudiert werden.
Die Säuregruppen der erhaltenen wässrigen Polymergele sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevorzugt auch als Feststoff. Der Neutralisationsgrad beträgt vorzugsweise von 25 bis 95 mol-%, besonders bevorzugt von 30 bis 80 mol-%, ganz besonders bevorzugt von 40 bis 75 mol-%, wobei die üblichen Neutralisationsmit- tel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen.
Es ist aber auch möglich die Neutralisation nach der Polymerisation auf der Stufe des bei der Polymerisation entstehenden wässrigen Polymergels durchzuführen. Weiterhin ist es möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des wässrigen Polymergels eingestellt wird. Wird das wässrige Polymergel zumindest teilweise nach der Polymerisation neutralisiert, so wird das wässrige Polymergel vorzugsweise mechanisch zerkleinert, beispielsweise mittels eines Extruders, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung extrudiert werden.
Das wässrige Polymergel wird dann mit einem Umluftbandtrockner getrocknet bis der Restfeuchtegehalt vorzugsweise 0,5 bis 15 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%, ganz besonders bevorzugt 2 bis 8 Gew.-%, beträgt, wobei der Restfeuchtegehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture Content" bestimmt wird. Bei einer zu hohen Restfeuchte weist das getrocknete Polymergel eine zu niedrige Glasübergangstemperatur T9 auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Restfeuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleinerungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikelgröße („fines") an. Der Feststoffgehalt des Gels be- trägt vor der Trocknung vorzugsweise von 25 und 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Das getrocknete Polymergel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen, eingesetzt werden können.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 μm, besonders bevorzugt von 250 bis 600 μm, ganz besonders von 300 bis 500 μm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA (European Disposables and Nonwovens Association) emp- fohlenen Testmethode Nr. WSP 220.2-05 "Partikel Size Distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Partikeln mit einer Partikelgröße von mindestens 150 μm beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu niedriger Partikelgröße senken die Permeabilität (SFC). Daher sollte der Anteil zu kleiner Polymerpartikel („fines") niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückgeführt. Die geschieht vorzugsweise vor, während oder unmittelbar nach der Polymerisation, d.h. vor der Trocknung des wässrigen Polymergels. Die zu kleinen PoIy- merpartikel können vor oder während der Rückführung mit Wasser und/oder wässri- gem Tensid angefeuchtet werden.
Es ist auch möglich in späteren Verfahrensschritten zu kleine Polymerpartikel abzutrennen, beispielsweise nach der Oberflächennachvernetzung oder einem anderen Beschichtungsschritt. In diesem Fall sind die rückgeführten zu kleinen Polymerpartikel oberflächennachvernetzt bzw. anderweitig beschichtet, beispielsweise mit pyrogener Kieselsäure.
Wird zur Polymerisation ein Knetreaktor verwendet, so werden die zu kleinen Polymer- partikel vorzugsweise während des letzten Drittels der Polymerisation zugesetzt.
Werden die zu kleinen Polymerpartikel sehr früh zugesetzt, beispielsweise bereits zur Monomerlösung, so wird dadurch die Zentrifugenretentionskapazität (CRC) der erhaltenen wasserabsorbierenden Polymerpartikel gesenkt. Dies kann aber beispielsweise durch Anpassung der Einsatzmenge an Vernetzer b) kompensiert werden. Werden die zu kleinen Polymerpartikel sehr spät zugesetzt, beispielsweise erst in einem dem Polymerisationsreaktor nachgeschalteten Apparat, beispielsweise einem Extruder, so lassen sich die zu kleinen Polymerpartikel nur noch schwer in das erhaltene wässrige Polymergel einarbeiten. Unzureichend eingearbeitete zu kleine Polymerparti- kel lösen sich aber während der Mahlung wieder von dem getrockneten Polymergel, werden beim Klassieren daher erneut abgetrennt und erhöhen die Menge rückzuführender zu kleiner Polymerpartikel.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 850 μm, beträgt vor- zugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 600 μm, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu großer Partikelgröße senken die Anquellgeschwindigkeit. Daher sollte der Anteil zu großer Polymerpartikel ebenfalls niedrig sein.
Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung des getrockneten Polymergels rückgeführt.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften oberflä- chennachvernetzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen, die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/031482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer be- schrieben. Bevorzugte Oberflächennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidyl- ether, Umsetzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol.
Ganz besonders bevorzugte Oberflächennachvernetzer sind 2-Hydroxyethyloxazolidin- 2-on, Oxazolidin-2-on und 1 ,3-Propandiol.
Weiterhin können auch Oberflächennachvernetzer eingesetzt werden, die zusätzliche polymerisierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf die Polymerpartikel.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden vor, während oder nach der Oberflächennachvernetzung zusätzlich zu den Oberflächennach- vernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium, Eisen und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat und Aluminiumlaktat sind bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen eingesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.- %, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf die Polymerpartikel.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit Oberflächennachvernetzer beschichteten Polymerpartikel thermisch getrocknet, wobei die Oberflächennachvernetzungsre- aktion sowohl während als auch nach der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Horizontalmi- scher, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Vertikalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind bei- spielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschinenbau GmbH; Paderborn; DE), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; NL), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; US) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; NL). Es ist aber auch möglich die O- berflächennachvernetzerlösung in einem Wirbelbett aufzusprühen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden.
Wird ausschließlich Wasser als Lösungsmittel verwendet, so wird vorteilhaft ein Tensid zugesetzt. Dadurch wird das Benetzungsverhalten verbessert und die Verklumpungs- neigung vermindert. Vorzugsweise werden aber Lösungsmittelgemische eingesetzt, beispielsweise Isopropanol/Wasser, 1 ,3-Propandiol/Wasser und Propylengly- kol/Wasser, wobei das Mischungsmassenverhältnis vorzugsweise von 20:80 bis 40:60 beträgt.
Die Temperatur der wasserabsorbierenden Polymerpartikel im Trockner beträgt vorzugsweise von 100 bis 2500C, besonders bevorzugt von 130 bis 2200C, ganz beson- ders bevorzugt von 150 bis 2000C. Die Verweilzeit im Trockner beträgt vorzugsweise von 10 bis 120 Minuten, besonders bevorzugt von 10 bis 90 Minuten, ganz besonders bevorzugt von 30 bis 60 Minuten. Der Füllgrad des Trockners beträgt vorzugsweise von 30 bis 80%, besonders bevorzugt von 40 bis 75%, ganz besonders bevorzugt von 50 bis 70%. Der Füllgrad des Trockners kann über die Höhe des Ablaufwehrs einge- stellt werden.
Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 30 bis 8O0C, besonders bevorzugt bei 35 bis 700C, ganz besonders bevorzugt bei 40 bis 6O0C, durchgeführt. Bei zu niedrigen Temperaturen neigen die wasserabsorbierenden Polymerpartikel zum Verklumpen und bei höheren Temperaturen verdampft bereits merklich Wasser. Die zur Nachbefeuch- tung eingesetzte Wassermenge beträgt vorzugsweise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevorzugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität der Polymerpartikel erhöht und deren Neigung zur statischen Aufladung vermindert.
Geeignete Beschichtungen zur Verbesserung der Anquellgeschwindigkeit sowie der Permeabilität (SFC) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen. Geeignete Beschichtungen zur Staubbindung sind bei- spielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verba- ckungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie Span® 20.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen einen Feuchtegehalt von vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0,2 bis 10 Gew.-%, ganz besonders bevorzugt 0,5 bis 8 Gew.-%, auf, wobei der Feuchtegehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture Content" bestimmt wird.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 22 g/g, besonders bevorzugt mindestens 24 g/g, ganz besonders bevorzugt mindestens 26 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 60 g/g. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. WSP 241.2-05 "Centrifuge Retention Ca- pacity" bestimmt.
Die wasserabsorbierenden Polymerpartikel werden mittels der nachfolgend beschriebenen Testmethoden geprüft.
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 0C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymerpartikel werden vor der Messung gut durchmischt. Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 241.2-05 "Centrifuge Retention Capacity" bestimmt.
Extrahierbare (Extractable)
Die Extrahierbaren werden gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 270.2-05 "Extractable" bestimmt.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der EDANA, Avenue Eugene Plasky 157, B-1030 Brüssel, Belgien.
Beispiele
Beispiel 1
Durch kontinuierliches Mischen von entionisiertem Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wurde eine Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 71 ,3 mol-% entsprach. Der Feststoffgehalt der Monomerlösung betrug 38,8 Gew.-%.
Als mehrfach ethylenisch ungesättigter Vernetzer wurde Polyethylenglykol-400-diacry- lat (Diacrylat ausgehend von einem Polyethylenglykol mit einem mittleren Molgewicht von 400 g/mol) verwendet. Die Einsatzmenge betrug 2 kg Vernetzer pro t Monomerlösung.
Zur Initiierung der radikalischen Polymerisation wurden pro t Monomerlösung 1 ,03 kg einer 0,25gew.-%igen wässriger Wasserstoffperoxidlösung, 3,10 kg einer 15 gew.-%igen wässrigen Natriumperoxodisulfatlösung und 1 ,05 kg einer 1gew.-%igen wässrigen Ascorbinsäurelösung eingesetzt.
Der Durchsatz der Monomerlösung betrug 20 t/h. Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5°C.
Die einzelnen Komponenten wurden in folgenden Mengen kontinuierlich in einen Reaktor vom Typ List Contikneter mit einem Volumen 6,3m3 (LIST AG, Arisdorf, CH) dosiert:
20 t/h Monomerlösung 40 kg/h Polyethylenglykol-400-diacrylat
82,6 kg/h Wasserstoffperoxidlösung/Natriumperoxodisulfatlösung
21 kg/h Ascorbinsäurelösung Zwischen dem Zugabepunkt für den Vernetzer und den Zugabestellen für die Initiatoren wurde die Monomerlösung mit Stickstoff inertisiert.
Es fand nach ca. 50% der Verweilzeit zusätzlich eine Zudosierung von aus dem Her- Stellungsprozeß durch Mahlung und Siebung anfallendem Feinkorn (1000 kg/h) in den Reaktor statt. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten.
Das erhaltene wässrige Polymergel wurde mittels eines Schwenkbandes auf einen Umluftbandtrockner aufgegeben.
Der Umluftbandtrockner hatte eine effektive Länge von 48 m. Das Förderband des Umluftbandtrockners hatte eine effektive Breite von 4,4 m. Die Geschwindigkeit des Förderbandes des Umluftbandtrockners betrug 0,022 m/s.
Das Schwenkband hatte eine Länge von 5 m. Das Förderband des Schwenkbandes hatte eine Breite von 0,8 m und eine effektive Breite von 0,5 m. Das Förderband des Schwenkbandes war an den Rändern um ca. 20° nach oben gewölbt. Der Böschungswinkel des wässrigen Polymergels auf dem Förderband des Schwenkbandes betrug ca. 15°. Der Querschnitt der Polymergelschüttung auf dem Förderband des Schwenk- bandes betrug ca. 0,04 m2. Die Geschwindigkeit des Förderbandes des Schwenkbandes betrug 0,5 m/s.
Das Schwenkband wurde ausgehend von einer Endlage über einen ersten Schwenkwinkel ßi von 13° auf eine Winkelgeschwindigkeit von 337s beschleunigt, über einen zweiten Schwenkwinkel ß2 von 20° auf eine Winkelgeschwindigkeit von 177s abgebremst und über einen dritten Schwenkwinkel ß3 zur anderen Endlage abgebremst. Der Gesamtschwenkwinkel betrug 50°. Ein Doppelhub (von der ersten Endlage zur anderen Endlage und wieder zurück) dauerte ca. 7 s.
Die Höhe der Polymergelschüttung auf dem Förderband des Umluftbandtrockners wurde mit einem Absolute® Digimatic Einbaumessschieber (Mitutoyo Messgeräte GmbH, Neuss, DE) bestimmt. Die Polymergelschüttung auf dem Förderband des Um- luftbandtrockneres wies ein Profil gemäß Abbildung 1 auf, wobei die Höhe hi ca. 10 cm, die Höhe hi2 ca. 2,5 cm, die Breite bi ca. 376 cm und die Breite b2 ca. 32 cm be- trug.
Auf dem Umluftbandtrockner wurde das wässrige Polymergel kontinuierlich mit einem Luft/Gasgemisch umströmt und getrocknet. Die Verweilzeit im Umluftbandtrockner betrug 37 Minuten.
Das getrocknete Polymergel wurde gemahlen und auf eine Partikelgrößenfraktion von 150 bis 850 μm abgesiebt. Die erhaltenen wasserabsorbierenden Polymerpartikel wiesen eine Zentrifugenretenti- onskapazität (CRC) von 34,9 g/g und einen Gehalt an Extrahierbaren von 8,5 Gew.-% auf.
Beispiel 2 (Vergleichsbeispiel)
Es wurde verfahren wie unter Beispiel 1. Das Schwenkband wurde ausgehend von einer Endlage über einen ersten Schwenkwinkel ßi von 13° auf eine Winkelgeschwindigkeit von 247s beschleunigt, über einen zweiten Schwenkwinkel ß2 von 20° konstant auf einer Winkelgeschwindigkeit von 247s gehalten und über einen dritten Schwenkwinkel ß3 zur anderen Endlage abgebremst. Der Gesamtschwenkwinkel betrug 50°.
Die erhaltenen wasserabsorbierenden Polymerpartikel wiesen eine Zentrifugenretenti- onskapazität (CRC) von 44,9 g/g und einen Gehalt an Extrahierbaren von 17,4 Gew.-% auf.
Beispiel 3 (Vergleichsbeispiel)
Es wurde verfahren wie unter Beispiel 1. Das Schwenkband wurde ausgehend von einer Endlage über einen ersten Schwenkwinkel ßi von 13° auf eine Winkelgeschwindigkeit von 247s beschleunigt, über einen zweiten Schwenkwinkel ß2 von 20° auf eine Winkelgeschwindigkeit von 227s abgebremst und über einen dritten Schwenkwinkel ß3 zur anderen Endlage abgebremst. Der Gesamtschwenkwinkel betrug 50°.
Die erhaltenen wasserabsorbierenden Polymerpartikel wiesen eine Zentrifugenretenti- onskapazität (CRC) von 40,7 g/g und einen Gehalt an Extrahierbaren von 8,7 Gew.-% auf.
Beispiel 4 (Vergleichsbeispiel)
Es wurde verfahren wie unter Beispiel 1. Das Schwenkband wurde ausgehend von einer Endlage über einen ersten Schwenkwinkel ßi von 13° auf eine Winkelgeschwindigkeit von 407s beschleunigt, über einen zweiten Schwenkwinkel ß2 von 20° auf eine Winkelgeschwindigkeit von 157s abgebremst und über einen dritten Schwenkwinkel ß3 von zur anderen Endlage abgebremst. Der Gesamtschwenkwinkel betrug 50°.
Während der Trocknung auf dem Förderband des Umluftbandtrockners schrumpfte das wässrige Polymergel, so dass die Ränder des Förderbandes nicht mehr bedeckt waren.

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer wässrigen Monomerlösung oder -Suspension, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert sein kann, b) mindestens einen Vernetzer, c) mindestens einen Initiator, d) optional ein oder mehrere mit den unter a) genannten Monomeren copoly- merisierbare ethylenisch ungesättigte Monomere und e) optional ein oder mehrere wasserlösliche Polymere,
umfassend Trocknung des erhaltenen wässrigen Polymergels auf einem Umluft- bandtrockner, Mahlung, Klassierung, und optional thermische Oberflächennach- vernetzung, dadurch gekennzeichnet, dass das wässrige Polymergel mittels eines Schwenkbandes auf das Förderband des Umluftbandtrockners aufgebracht, das Schwenkband ausgehend von einer Endlage über einen ersten Schwenkwinkel ßi, wobei ßi von 8 bis 24° beträgt, auf eine Winkelgeschwindigkeit vi be- schleunigt, über einen zweiten Schwenkwinkel ß2, wobei ß2 von 10 bis 40° beträgt, auf eine Winkelgeschwindigkeit V2 abgebremst und über einen dritten Schwenkwinkel ß3 zur anderen Endlage abgebremst wird, wobei der Quotient aus Winkelgeschwindigkeit V2 und Winkelgeschwindigkeit vi von 0,3 bis 0,9 beträgt, und der Quotient aus Länge des Schwenkbandes und Breite des Förder- bandes des Umluftbandtrockners von 0,7 bis 1 ,9 beträgt, wobei die Länge des
Schwenkbandes der Abstand der Schwenkachse vom Abwurfende ist.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Gesamtschwenkwinkel von 30 bis 70° beträgt.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Winkelgeschwindigkeit vi von 25 bis 407s beträgt.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Quotient aus effektiver Breite des Umluftbandtrockners und effektiver Breite des Schwenkbandes von 4 bis 12 beträgt.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Förderbandgeschwindigkeit des Umluftbandtrockners von 0,005 bis 0,05 m/s beträgt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Wassergehalt des Polymergels vor der Trocknung auf dem Umluftbandtrockner von 30 bis 70 Gew.-% beträgt.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wassergehalt des Polymergels nach der Trocknung auf dem Umluftbandtrockner von 0,5 bis 15 Gew.-% beträgt.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Höhe der Polymergelschüttung auf dem Förderband des Umluftbandtrockners von 2 bis 20 cm beträgt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das zu trocknende wässrige Polymergel aus eine Höhe von 0,1 bis 2 m auf das Förderband des Umluftbandtrockners fällt.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel eine Zentrifugenretentionskapazität von mindestens 15 g/g aufweisen.
1 1. Wässrige Polymergelschüttung auf dem Förderband eines Umluftbandtrockners, wobei die Polymergelschüttung auf dem Förderband des Umluftbandtrockners im mittleren Bereich eine konstante Höhe aufweist, der mittlere Bereich des Förderbandes von 75 bis 95% der Förderbandbreite beträgt und die Höhe der Polymer- gelschüttung zu den Rändern des Förderbandes um 10 bis 40% ansteigt.
12. Polymergelschüttung gemäß Anspruch 11 , wobei der der Wassergehalt des Polymergels von 25 bis 90 Gew.-% beträgt.
PCT/EP2010/057611 2009-06-03 2010-06-01 Verfahren zur herstellung wasserabsorbierender polymerpartikel WO2010139680A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10722361.2A EP2438096B1 (de) 2009-06-03 2010-06-01 Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP2012513592A JP2012528909A (ja) 2009-06-03 2010-06-01 吸水性ポリマー粒子の製造方法
US13/319,549 US8789774B2 (en) 2009-06-03 2010-06-01 Method for producing water-absorbing polymer particles
CN201080024715.0A CN102459368B (zh) 2009-06-03 2010-06-01 制备吸水聚合物颗粒的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09161781 2009-06-03
EP09161781.1 2009-06-03

Publications (2)

Publication Number Publication Date
WO2010139680A2 true WO2010139680A2 (de) 2010-12-09
WO2010139680A3 WO2010139680A3 (de) 2011-04-14

Family

ID=43298232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/057611 WO2010139680A2 (de) 2009-06-03 2010-06-01 Verfahren zur herstellung wasserabsorbierender polymerpartikel

Country Status (5)

Country Link
US (1) US8789774B2 (de)
EP (1) EP2438096B1 (de)
JP (2) JP2012528909A (de)
CN (1) CN102459368B (de)
WO (1) WO2010139680A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074966A1 (en) * 2013-11-22 2015-05-28 Basf Se Process for producing water-absorbing polymer particles
WO2020064411A1 (de) 2018-09-28 2020-04-02 Basf Se Verfahren zur herstellung von superabsorbern
WO2020151975A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151971A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151969A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151972A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616347B2 (ja) * 2009-08-28 2014-10-29 株式会社日本触媒 吸水性樹脂の製造方法
WO2011149313A2 (ko) * 2010-05-28 2011-12-01 주식회사 엘지화학 고흡수성 수지용 분쇄장치 및 이를 이용한 고흡수성 수지의 제조 방법
EP2700667B1 (de) 2011-04-20 2017-08-09 Nippon Shokubai Co., Ltd. Verfahren und vorrichtung zur herstellung eines wasserabsorbierbaren harzes mit einer polyacrylsäure oder einem salz davon
WO2017108888A1 (de) * 2015-12-23 2017-06-29 Basf Se Wärmeübertrager zur erwärmung von gas und verwendung des wärmeübertragers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
WO2008087114A1 (en) * 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1333439C (en) * 1988-05-23 1994-12-06 Akito Yano Method for production of hydrophilic polymer
JP3145461B2 (ja) * 1991-02-01 2001-03-12 株式会社日本触媒 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
TW241279B (de) 1991-02-01 1995-02-21 Catalyst co ltd
JP3297192B2 (ja) 1994-03-31 2002-07-02 三洋化成工業株式会社 含水ゲル状重合体の搬送方法及び乾燥方法並びにコンベア式乾燥装置
US6817557B2 (en) * 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
WO2003104302A1 (de) * 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
BRPI0401479A (pt) 2003-04-25 2004-11-30 Nippon Catalytic Chem Ind Método para a desintegração de polìmero de hidrato e método para a produção de resina absorvente de água
JP4351111B2 (ja) * 2003-04-25 2009-10-28 株式会社日本触媒 含水重合体の解砕方法および吸水性樹脂の製造方法
JP5586228B2 (ja) * 2006-09-25 2014-09-10 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の連続的な製造方法
WO2009132958A1 (de) * 2008-04-30 2009-11-05 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
WO2008087114A1 (en) * 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074966A1 (en) * 2013-11-22 2015-05-28 Basf Se Process for producing water-absorbing polymer particles
US10005064B2 (en) 2013-11-22 2018-06-26 Basf Se Process for producing water-absorbing polymer particles
US10137432B2 (en) 2013-11-22 2018-11-27 Basf Se Process for producing water-absorbing polymer particles
WO2020064411A1 (de) 2018-09-28 2020-04-02 Basf Se Verfahren zur herstellung von superabsorbern
WO2020151975A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151971A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151969A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151972A1 (de) 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Also Published As

Publication number Publication date
JP2012528909A (ja) 2012-11-15
EP2438096A2 (de) 2012-04-11
US20120048973A1 (en) 2012-03-01
WO2010139680A3 (de) 2011-04-14
CN102459368A (zh) 2012-05-16
EP2438096B1 (de) 2016-01-27
JP2014141686A (ja) 2014-08-07
CN102459368B (zh) 2014-08-27
US8789774B2 (en) 2014-07-29

Similar Documents

Publication Publication Date Title
EP2438096B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2411422B1 (de) Verfahren zur herstellung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2445942B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit geringer verbackungsneigung und hoher absorption unter druck
EP2539382B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2291416A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2274087B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2010066680A2 (de) Verfahren zur abtrennung metallischer verunreinigungen
WO2010133460A1 (de) Beschichtungsverfahren für wasserabsorbierende polymerpartikel
WO2014005860A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil
EP2300061B1 (de) Verfahren zur oberflächennachvernetzung wasserabsorbierender polymerpartikel
EP2288645B1 (de) Verfahren zur kontinuierlichen thermischen oberflächennachvernetzung wasserabsorbierender polymerpartikel
EP2705075B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2010124954A1 (de) Verfahren zur abtrennung metallischer verunreinigungen
EP2861633B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2539381A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2714104B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2485773B1 (de) Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
EP2714755A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2861631B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
EP2485774B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2714103B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024715.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10722361

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13319549

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010722361

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012513592

Country of ref document: JP