WO2020064411A1 - Verfahren zur herstellung von superabsorbern - Google Patents

Verfahren zur herstellung von superabsorbern Download PDF

Info

Publication number
WO2020064411A1
WO2020064411A1 PCT/EP2019/074782 EP2019074782W WO2020064411A1 WO 2020064411 A1 WO2020064411 A1 WO 2020064411A1 EP 2019074782 W EP2019074782 W EP 2019074782W WO 2020064411 A1 WO2020064411 A1 WO 2020064411A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
water
underside
returning
polymer gel
Prior art date
Application number
PCT/EP2019/074782
Other languages
English (en)
French (fr)
Inventor
Rene CALLOT
Ruediger Funk
Marco Krueger
Thomas Pfeiffer
Karl Possemiers
Juergen Schroeder
Matthias Weismantel
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to CN201980062010.9A priority Critical patent/CN112804976A/zh
Priority to JP2021517231A priority patent/JP2022502543A/ja
Priority to EP19766267.9A priority patent/EP3856105A1/de
Priority to KR1020217008450A priority patent/KR20210073516A/ko
Priority to US17/272,364 priority patent/US20210338882A1/en
Publication of WO2020064411A1 publication Critical patent/WO2020064411A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • B08B1/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • B08B5/023Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0277Apparatus with continuous transport of the material to be cured
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/023Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the material being a slurry or paste, which adheres to a moving belt-like endless conveyor for drying thereon, from which it may be removed in dried state, e.g. by scrapers, brushes or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530583Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form
    • A61F2013/530591Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form in granules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • B08B1/165
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing superabsorbent particles by polymerizing a monomer solution or suspension, comprising drying the aqueous polymer gel obtained in a circulating air belt dryer, grinding, classification, and optionally thermal surface postcrosslinking, the aqueous polymer gel using an oscillating conveyor belt in the circulating air belt dryer is introduced, the underside of the returning conveyor belt is cleaned of adhering polymer gel by means of at least one scraper device and the underside of the returning conveyor belt is sprayed with water.
  • Superabsorbents are used for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • the superabsorbents are also referred to as water-absorbing polymers.
  • the properties of the superabsorbers can be set, for example, via the amount of crosslinking agent used. As the amount of crosslinker increases, the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g / cm 2 (AUL0.3psi) runs through a maximum.
  • CRC centrifuge retention capacity
  • superabsorbent particles are generally post-crosslinked. This increases the degree of crosslinking of the particle surface, whereby the absorption under a pressure of 49.2 g / cm 2 (AUL0.7psi) and the centrifuge retention capacity (CRC) can be at least partially decoupled.
  • This surface post-crosslinking can be carried out in the aqueous gel phase.
  • dried, ground and sieved polymer particles base polymer
  • Crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • WO 2008/087114 A1 describes the loading of the conveyor belts of circulating air belt dryers with aqueous polymer gel by means of oscillating conveyor belts.
  • the object of the present invention was to provide an improved method for producing superabsorbers, in particular a simplified cleaning of the one used oscillating conveyor belt and a lower mechanical load on the conveyor belt itself.
  • the object was achieved by a process for the production of superabsorbers by polymerizing a monomer solution or suspension, comprising a) at least one ethylenically unsaturated, acid-bearing monomer which is at least partially neutralized,
  • e) optionally one or more water-soluble polymers including drying of the aqueous polymer gel obtained in a circulating air belt dryer, grinding, classification, and optionally thermal surface postcrosslinking, characterized in that the aqueous polymer gel is introduced into the circulating air belt dryer by means of an oscillating conveyor belt Underside of the returning conveyor belt is cleaned of adhering polymer gel by means of at least one scraper device and the underside of the returning conveyor belt is sprayed with water.
  • the underside of the returning conveyor belt is the outside of the conveyor belt, onto which the polymer gel is dosed again after deflection.
  • the top of the returning conveyor belt is the inside of the conveyor belt, which should not come into contact with polymer gel.
  • the distance of the stripping device from the discharge end of the oscillating conveyor belt is preferably less than 20% of the length of the oscillating conveyor belt, particularly preferably less than 10% of the length of the oscillating conveyor belt, very particularly preferably less than 5% of the length of the oscillating conveyor belt, the Length of the oscillating conveyor belt is the distance of the swivel axis from the discharge end.
  • the scraper is not restricted. Brushes arranged transversely to the running direction are suitable, for example. It is also possible to use a scraper.
  • a scraper is a stripping device made of a non-flexible material that is arranged transversely to the conveying direction.
  • a suitable non-flexible material is, for example, polytetrafluoroethylene.
  • the scraper In order to avoid damage to the conveyor belt, the scraper should have as little or no direct contact with the conveyor belt.
  • the scraper should be inclined in relation to the running direction of the returning conveyor belt. This promotes the peeling of the adhering polymer gel and prevents a jam between the conveyor belt and the scraper.
  • the stripped polymer gel usually falls onto the conveyor belt of the circulating air belt dryer.
  • the scraper is preferably inclined from 5 to 45 °, particularly preferably from 10 to 35 °, very particularly from 15 to 25 °, with respect to the vertical against the running direction of the conveyor belt.
  • the distance between the scraper and the underside of the returning conveyor belt is preferably 0.1 to 5 mm, particularly preferably 0.2 to 2 mm, very particularly preferably 0.5 to 1.5 mm.
  • the distance of the spray nozzles from the discharge end of the oscillating conveyor belt is preferably 1 to 50% of the length of the oscillating conveyor belt, particularly preferably 2 to 30% of the length of the oscillating conveyor belt, very particularly preferably 3 to 10% of the length of the oscillating conveyor belt, the Length of the oscillating conveyor belt is the distance of the swivel axis from the discharge end.
  • the distance of the spray nozzles from the conveyor belt is preferably 5 to 50 cm, particularly preferably 10 to 30 cm, very particularly preferably 15 to 25 cm.
  • the liquid is preferably sprayed on by means of at least one two-substance nozzle, particularly preferably by means of at least two two-substance nozzles.
  • Two-substance nozzles enable atomization into fine droplets or a spray mist.
  • a circular or elliptical full or hollow cone is formed as the form of atomization.
  • Two fabric nozzles can be designed with external mixing or internal mixing. With the external mixing two-substance nozzles, liquid and atomizing gas leave the nozzle head via separate openings. They are only mixed in the spray jet after they have emerged from the spray nozzle. This enables the droplet size distribution and throughput to be controlled independently in a wide range.
  • the spray cone of the spray nozzle can be adjusted via the air cap position.
  • liquid and atomizing gas are mixed within the spray nozzle and the two-phase mixture leaves the nozzle head via the same hole (or via several holes connected in parallel).
  • the quantity and pressure ratios are more strongly coupled with the internal mixing two-component nozzle than with the external mixing spray nozzle. Small changes in throughput therefore lead to changes in the drop size distribution.
  • the adaptation to the desired throughput takes place via the selected cross section of the nozzle bore.
  • Compressed air of 0.5 bar and more can be used as an atomizing gas.
  • the droplet size can be set individually via the nozzle geometry, the nozzle type, the ratio of water mass flow to atomizer gas mass flow, as well as gas and water pressure.
  • the amount of water used for spraying is preferably from 2 to 20 kg / h, particularly preferably from 6 to 16 kg / h, very particularly preferably from 8 to 12 kg / h.
  • the weight ratio of atomizing gas to water is preferably from 2 to 20, particularly preferably from 6 to 16, very particularly preferably from 8 to 12. If too little water is used, the conveyor belt will only be insufficiently wetted. If too much water is used, excess water drips onto the perforated plates of the circulating air belt dryer and leads to blockages there.
  • the use of two-component nozzles additionally improves the distribution of the water by preventing larger drops.
  • the at least one spray nozzle is located behind the stripping device in the running direction of the conveyor belt. This prevents water from dripping from the scraper onto the conveyor belt of the circulating air belt dryer.
  • the at least one spray nozzle is located in front of the conveyor belt of the circulating air belt dryer. This also prevents water from dripping onto the conveyor belt of the circulating air belt dryer.
  • the conveyor belt has a length of preferably 2 to 10 m, particularly preferably from 2.5 to 8 m, very particularly preferably from 3 to 6 m, the length of the conveyor belt being the distance of the pivot axis from the discharge end.
  • the conveyor belt has a width of preferably 0.5 to 1.5 m, particularly preferably 0.6 to 1.2 m, very particularly preferably 0.7 to 0.9 m.
  • the conveyor belts customary for this purpose can be used.
  • the surface of the conveyor belts, i.e. the side coming into contact with the polymer gel should be water-repellent and have a contact angle at 23 ° C. with respect to water of preferably at least 60 °, particularly preferably of at least 80 °, very particularly preferably of at least 100 °.
  • the contact angle is a measure of the wetting behavior and is measured according to DIN 53900.
  • the water content of the polymer gel on the conveyor belt is preferably from 20 to 80% by weight, particularly preferably from 30 to 70% by weight, very particularly preferably from 40 to 60% by weight.
  • the temperature of the polymer gel on the conveyor belt is preferably from 60 to 105 ° C., particularly preferably from 70 to 100 ° C., very particularly preferably from 80 to 95 ° C.
  • the present invention is based on the finding that the warm polymer gel adhering to the oscillating conveyor belt dries very easily.
  • the dried polymer gel is difficult to remove from the conveyor belt.
  • Polymer gel that has already dried is often the cause of further caking.
  • the polymer gel can be kept moist by spraying with water and drying out can be avoided.
  • the manufacture of the superabsorbers is explained in more detail below:
  • the superabsorbers are produced by polymerizing a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, i.e. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, particularly preferably at least 25 g / 100 g of water, very particularly preferably at least 35 g / 100 g water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Acrylic acid is very particularly preferred.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrene sulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • styrene sulfonic acid such as styrene sulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • Impurities can have a significant impact on the polymerization. Therefore, the raw materials used should be as pure as possible. It is therefore often advantageous to specifically clean the monomers a). Suitable cleaning processes are described, for example, in WO 02/055469 A1, WO 03/078378 A1 and WO 2004/035514 A1.
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight acrylic acid, 0.0950% by weight acetic acid, 0.0332% by weight water, 0.0203% by weight % Propionic acid, 0.0001% by weight furfural, 0.0001% by weight maleic anhydride, 0.0003% by weight diacrylic acid and 0.0050% by weight hydroquinone monomethyl ether.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as storage stabilizers.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, particularly preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, particularly preferably at least 30 ppm by weight, in particular by 50% by weight .
  • ppm hydroquinone half ether, each based on the unneutralized monomer a).
  • an ethylenically unsaturated, acid-bearing monomer with a corresponding content of hydroquinone half ether can be used to prepare the monomer solution.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds with at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically polymerized into the polymer chain and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinkers b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be polymerized into the polymer network by free radicals.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraallyloxyethane, methylene bismethacrylamide, 15-fold ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the multiply ethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to give di- or triacrylates, as described, for example, in WO 03/104301 A1.
  • Di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol are particularly advantageous.
  • Di- or triacrylates of 1- to 5-fold ethoxylated and / or propoxylated glycerol are very particularly preferred.
  • the most preferred are the triacrylates of 3 to 5-fold ethoxylated and / or propoxylated glycerol, in particular the triacrylate of 3-fold ethoxylated glycerol.
  • the amount of crosslinker b) is preferably 0.05 to 1.5% by weight, particularly preferably 0.1 to 0.8% by weight, very particularly preferably 0.15 to 0.5% by weight, in each case calculated on the total amount of monomer a) used.
  • the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 passes through a maximum.
  • initiators c All compounds which generate free radicals under the polymerization conditions can be used as initiators c), for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
  • thermal initiators and redox Initiators used such as sodium peroxodisulfate / hydrogen peroxide / ascorbic acid.
  • the reducing component used is preferably the disodium salt of 2-hydroxy-2-sulfonatoacetic acid or a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn;
  • aqueous monomer solution is usually used.
  • the water content of the monomer solution is preferably from 40 to 75% by weight, particularly preferably from 45 to 70% by weight, very particularly preferably from 50 to 65% by weight. It is also possible to have monomer suspensions, i.e. To use monomer solutions with the solubility-exceeding monomer a), for example sodium acrylate. With increasing water content, the energy consumption during the subsequent drying increases and with decreasing water content, the heat of polymerization can only be dissipated insufficiently.
  • the monomer solution can be pre-polymerized by inertization, i.e. Flowing through with an inert gas, preferably nitrogen or carbon dioxide, freed from dissolved oxygen.
  • the oxygen content of the monomer solution is preferably reduced to less than 1 ppm by weight, particularly preferably to less than 0.5 ppm by weight, very particularly preferably to less than 0.1 ppm by weight, before the polymerization.
  • Suitable reactors for the polymerization are, for example, kneading reactors or belt reactors.
  • the polymer gel resulting from the polymerization of an aqueous monomer solution or suspension is continuously comminuted by, for example, counter-rotating stirring shafts, as described in WO 2001/038402 A1.
  • the polymerization on the belt is described for example in DE 38 25 366 A1 and US 6,241,928.
  • Polymerization in a belt reactor produces a polymer gel that has to be comminuted, for example in an extruder or kneader.
  • the comminuted polymer gel obtained by means of a kneader can also be extruded.
  • the acid groups of the polymer gels obtained are usually partially neutralized.
  • the neutralization is preferably carried out at the monomer stage. This is usually done by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the degree of neutralization is preferably from 25 to 85 mol%, particularly preferably from 30 to 80 mol%, very particularly preferably from 40 to 75 mol%, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides, alkali metal oxides, Alkali metal carbonates or alkali metal hydrogen carbonates and mixtures thereof.
  • alkali metal salts ammonium salts can also be used.
  • Sodium and potassium are particularly preferred as alkali metals, but sodium hydroxide, sodium carbonate or sodium hydrogen carbonate and mixtures thereof are very particularly preferred.
  • Solid carbonates and hydrogen carbonates can also be used in encapsulated form, preferably in the monomer solution directly before the polymerization, during or after the polymerization into the polymer gel and before it dries.
  • the encapsulation is carried out by coating the surface with an insoluble or only slowly soluble material (for example using film-forming polymers, inert inorganic materials or meltable organic materials), which delays the solution and reaction of the solid carbonate or hydrogen carbonate in such a way that Carbon dioxide is only released during drying and the resulting superabsorbent has a high internal porosity.
  • an insoluble or only slowly soluble material for example using film-forming polymers, inert inorganic materials or meltable organic materials
  • a surfactant can be added to the monomer solution before or during the polymerization and the monomer solution can then be foamed with an inert gas or water vapor or by vigorous stirring before or during the polymerization.
  • the surfactant can be anionic, cationic, zwitterionic or non-ionic.
  • a skin-friendly surfactant is preferably used.
  • the polymer gel is then usually dried using a forced air belt dryer until the residual moisture content is preferably 0.5 to 10% by weight, particularly preferably 1 to 6% by weight, very particularly preferably 1.5 to 4% by weight, , with the residual moisture content being determined according to Test Method No. WSP 230.2-05 "Mass Loess Upon Heating" recommended by EDANA. If the residual moisture is too high, the dried polymer gel has a glass transition temperature T g which is too low and is difficult to process further. If the residual moisture is too low, the dried polymer gel is too brittle and in the subsequent comminution steps undesirably large amounts of polymer particles with too small a particle size (“fine”) are obtained.
  • the solids content of the polymer gel before drying is preferably from 25 and 90% by weight, particularly preferably from 35 to 70% by weight, very particularly preferably from 40 to 60% by weight. The dried polymer gel is then broken up and optionally roughly crushed.
  • the dried polymer gel is then usually ground and classified, it being possible to use single- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills, for grinding.
  • the average particle size of the polymer particles separated off as product fraction is preferably from 150 to 850 ⁇ m, particularly preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the average particle size of the product fraction can be determined using test method No. WSP 220.2 (05) "Particle Size Distribution" recommended by EDANA, where the mass fractions of the sieve fractions are applied cumulatively and the average particle size is determined graphically.
  • the average particle size is the value of the mesh size, which results for a cumulative 50% by weight.
  • the proportion of polymer particles with a particle size of greater than 150 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles which are too small are therefore usually separated off and returned to the process, preferably before, during or immediately after the polymerization, i.e. before the polymer gel dries.
  • the too small polymer particles can be moistened with water and / or aqueous surfactant before or during the recycling.
  • the proportion of polymer particles with a particle size of at most 850 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • the proportion of polymer particles with a particle size of at most 600 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • Polymer particles with too large a particle size reduce the swelling rate. Therefore, the proportion of polymer particles that are too large should also be low. Polymer particles that are too large are therefore usually separated off and returned to the grinding.
  • the polymer particles can be post-crosslinked thermally to further improve the properties.
  • Suitable surface postcrosslinkers are compounds which contain groups which can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US 6,239,230.
  • Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyl-2-oxazolidinone, 2-oxazolidinone and 1,3-propanediol.
  • the amount of surface postcrosslinker is preferably 0.001 to 3% by weight, particularly preferably 0.02 to 1% by weight, very particularly preferably 0.05 to 0.2% by weight, in each case based on the polymer particles.
  • the surface postcrosslinking is usually carried out in such a way that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Following the spraying, the polymer particles coated with surface postcrosslinker are postcrosslinked and dried, and the surface postcrosslinking reaction can take place both before and during drying.
  • a solution of the surface postcrosslinker is preferably sprayed on in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • moving mixing tools such as screw mixers, disk mixers and paddle mixers.
  • Horizontal mixers such as paddle mixers are particularly preferred, and vertical mixers are very particularly preferred.
  • the distinction between horizontal mixers and vertical mixers is based on the mounting of the mixing shaft, ie horizontal mixers have a horizontally mounted mixing shaft and vertical mixers have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Ploughshare® Mixers (Gebr.
  • solvent mixtures are preferably used, for example isopropanol / water, 1,3-propanediol / water and propylene glycol / water, the mixing mass ratio preferably being from 20:80 to 40:60.
  • the surface postcrosslinking is preferably carried out in contact dryers, particularly preferably paddle dryers, very particularly preferably disc dryers.
  • Suitable dryers are for example Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® dryers (Metso Minerals Industries Inc .; Danville; USA ) and Nara Paddle Dryer (NARA Machinery Europe; Frechen; Germany). Fluidized bed dryers can also be used.
  • the surface post-crosslinking can take place in the mixer itself, by heating the jacket or by blowing in warm air.
  • a downstream dryer such as a tray dryer, a rotary kiln or a heated screw, is also suitable. It is particularly advantageous to mix in a fluidized bed dryer and postcrosslink the surface thermally.
  • Preferred reaction temperatures are in the range 100 to 250 ° C, preferably 1 10 to 220 ° C, particularly preferably 120 to 210 ° C, very particularly preferably 130 to 200 ° C.
  • the preferred residence time at this temperature is preferably at least 10 minutes, particularly preferably at least 20 minutes, very particularly preferably at least 30 minutes, and usually at most 60 minutes.
  • the polymer particles are cooled after the surface postcrosslinking.
  • the cooling is preferably carried out in contact coolers, particularly preferably blade coolers, very particularly preferably disc coolers.
  • Suitable coolers include Hosokawa Bepex® Horizontal Paddle Cooler (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® Disc Cooler (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® coolers (Metso Minerals Industries Inc. ; Danville; USA) and Nara Paddle Cooler (NARA Machinery Europe; Frechen; Germany). Fluidized bed coolers can also be used.
  • the polymer particles are cooled in the cooler to preferably 40 to 90 ° C., particularly preferably 45 to 80 ° C., very particularly preferably 50 to 70 ° C.
  • the surface post-crosslinked polymer particles can then be classified again, with polymer particles that are too small and / or too large being separated off and returned to the process.
  • the surface post-crosslinked polymer particles can be coated or re-moistened to further improve the properties.
  • the rewetting is preferably carried out at 40 to 120 ° C., particularly preferably at 50 to 110 ° C., very particularly preferably at 60 to 100 ° C. If the temperatures are too low, the polymer particles tend to clump together and at higher temperatures, water already clearly evaporates.
  • the amount of water used for rewetting is preferably from 1 to 10% by weight, particularly preferably from 2 to 8% by weight, very particularly preferably from 3 to 5% by weight.
  • the rewetting increases the mechanical stability of the polymer particles and reduces their tendency towards static charging.
  • the rewetting in the cooler is advantageously carried out after the thermal surface postcrosslinking.
  • Suitable coatings for improving the swelling rate and the gel bed permeability are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and divalent or polyvalent metal cations.
  • Suitable coatings for binding dust are, for example, polyols.
  • Suitable coatings against the undesirable tendency of the polymer particles to cake are, for example, pyrogenic silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • Suitable coatings for dust binding, to reduce the tendency to cake, and to increase mechanical stability are polymer dispersions, as in EP 0 703 265 B1 and waxes as described in US Pat. No. 5,840,321.
  • coated and / or rewetted polymer particles can then be classified again, with polymer particles that are too small and / or too large being separated off and returned to the process.
  • the present invention further relates to hygiene articles which contain superabsorbents produced by the process according to the invention.
  • WSP Standard Test Methods for the Nonwovens Industry
  • EDANA Herrmann-Debrouxlaan 46, 1 160 Oudergem , Belgium, www.edana.org
  • INDA 1 100 Crescent Green, Suite 1 15, Cary, North Carolina 27518, USA, www.inda.org. This publication is available from both EDANA and INDA.
  • the measurements should be carried out at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%.
  • the water-absorbing polymer particles are mixed well before the measurement.
  • the centrifuge retention capacity (CRC) is determined according to test method no. WSP 241.2 (05) "Fluid Retention Capacity in Saline, After Centrifugation" recommended by EDANA.
  • the content of extractable constituents of the water-absorbing polymer particles is determined in accordance with Test Method No. WSP 270.2 (05) "Extractable” recommended by EDANA.
  • An acrylic acid / sodium acrylate solution was prepared by continuously mixing deionized water, 50% strength by weight sodium hydroxide solution and acrylic acid, so that the degree of neutralization corresponded to 71.3 mol%.
  • the solids content of the monomer solution was 38.8% by weight.
  • Polyethylene glycol 400 diacrylate (diacylate starting from a polyethylene glycol with an average molecular weight of 400 g / mol) was used as the polyethylenically unsaturated crosslinker. The amount used was 2 kg of crosslinking agent per ton of monomer solution.
  • the throughput of the monomer solution was 20 t / h.
  • the reaction solution had a temperature of 23.5 ° C. at the inlet.
  • the aqueous polymer gel obtained was applied to the conveyor belt of a circulating air belt dryer by means of an oscillating conveyor belt.
  • the circulating air belt dryer had a length of 48 m.
  • the conveyor belt of the circulating air belt dryer had an effective width of 4.4 m.
  • the oscillating conveyor belt was 5 m long.
  • the conveyor belt had a width of 0.8 m and an effective width of 0.5 m.
  • the angle of repose of the aqueous polymer gel on the conveyor belt was approximately 15 °.
  • the cross section of the polymer gel bed on the conveyor belt was approximately 0.04 m 2 .
  • the conveyor belt speed was 0.5 m / s.
  • the oscillating conveyor belt was accelerated from 13 ° to an angular speed of 33 ° / s via a first swivel angle ⁇ i, decelerated from 20 ° to an angular speed of 17 ° / s via a second swivel angle ⁇ 2 and NEN third pivot angle ß 3 braked to the other end position.
  • the total swivel angle was 50 °.
  • a double stroke (from the first end position to the other end position and back again) took approx. 7 s.
  • the rotating conveyor belt had a surface made of polytetrafluoroethylene (PTFE).
  • the temperature of the aqueous polymer gel on the oscillating conveyor belt was 90 ° C.
  • the stripping device was an elongated scraper attached transversely to the running direction of the returning conveyor belt.
  • the scraper was inclined at 20 ° to the running direction of the returning conveyor belt.
  • the distance of the stripping device from the discharge end was approx. 5 cm, i.e. the stripping device was located in the area of the deflection roller.
  • the distance between the scraper device and the returning conveyor belt was 1 mm.
  • the two-substance nozzles were arranged transversely to the running direction of the conveyor belt.
  • the distance between the two fabric nozzles was approx. 20 cm each.
  • the distance between the two-substance nozzles and the discharge end was approx. 20 cm.
  • the distance between the two-substance nozzles and the returning conveyor belt was approx. 20 cm.
  • a total of 10 kg / h of water and 100 kg / h of air were sprayed.
  • the returning conveyor belt was easy to clean using the scraper. There were no major caking on the conveyor belt over a period of 6 months.
  • the dried polymer gel was ground and sieved to a particle size fraction of 150 to 850 gm.
  • the water-absorbing polymer particles obtained had a centrifuge retention capacity (CRC) of 34.9 g / g and an extractable content of 8.5% by weight.
  • Example 2 (Comparative Example) The procedure was as in Example 1, but the spray nozzles on the oscillating conveyor belt were switched off.
  • the returning conveyor belt was difficult to clean using the scraper. There were major caking on the conveyor belt, especially where polymer gel had already dried. After a few weeks of continuous production, the production had to be interrupted and the conveyor belt cleaned or the conveyor belt replaced due to damage.

Abstract

Verfahren zur Herstellung von Superabsorberpartikeln durch Polymerisation einer Monomerlösung oder -Suspension, umfassend Trocknung des erhaltenen wässrigen Polymergels in einem Umluftbandtrockner, Mahlung, Klassierung, und optional thermische Oberflächennachvernetzung, wobei das wässrige Polymergel mittels eines oszillierenden Förderbandes in den Umluftbandtrockner eingebracht wird, die Unterseite des rücklaufenden Förderbandes mittels mindestens einer Abstreifvorrichtung von anhaftendem Polymergel gereinigt wird und die Unterseite des rücklaufenden Förderbandes mit Wasser besprüht wird.

Description

Verfahren zur Herstellung von Superabsorbern
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Superabsorberpartikeln durch Polymerisation einer Monomerlösung oder -Suspension, umfassend Trocknung des erhal- tenen wässrigen Polymergels in einem Umluftbandtrockner, Mahlung, Klassierung, und optional thermische Oberflächennachvernetzung, wobei das wässrige Polymergel mittels eines oszillie- renden Förderbandes in den Umluftbandtrockner eingebracht wird, die Unterseite des rücklau- fenden Förderbandes mittels mindestens einer Abstreifvorrichtung von anhaftendem Polymer- gel gereinigt wird und die Unterseite des rücklaufenden Förderbandes mit Wasser besprüht wird.
Superabsorber werden zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hy- gieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau ver- wendet. Die Superabsorber werden auch als wasserabsorbierende Polymere bezeichnet.
Die Herstellung von Superabsorbern wird in der Monographie "Modern Superabsorbent Poly- mer Technology”, F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, be- schrieben.
Die Eigenschaften der Superabsorber können beispielsweise über die verwendete Vernetzer- menge eingestellt werden. Mit steigender Vernetzermenge sinkt die Zentrifugenretentionskapa- zität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL0.3psi) durchläuft ein Maximum.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Gelbettpermeabilität (GBP) und Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi), werden Superabsorber- partikel im allgemeinen oberflächennachvernetzt. Dadurch steigt der Vernetzungsgrad der Parti- keloberfläche, wodurch die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Oberflächennachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Oberflächennachvernetzer beschichtet und thermisch oberflächennach- vernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mit mindestens zwei Carboxylat- gruppen der Polymerpartikel kovalente Bindungen bilden können.
WO 2008/087114 A1 , WO 2010/139680 A2 und EP 2 700 667 A1 beschreiben die Beladung der Transportbänder von Umluftbandtrocknern mit wässrigem Polymergel mittels oszillierender Förderbänder.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung von Superabsorbern, insbesondere eine vereinfachte Reinigung des verwendeten oszillierenden Förderbandes und eine geringere mechanische Belastung des Förderbandes sel- ber.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung von Superabsorbern durch Poly- merisation einer Monomerlösung oder -Suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumin- dest teilweise neutralisiert ist,
b) mindestens einen Vernetzer,
c) mindestens einen Initiator,
d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymerisierbare ethylenisch ungesättigte Monomere und
e) optional ein oder mehrere wasserlösliche Polymere, umfassend Trocknung des erhaltenen wässrigen Polymergels in einem Umluftbandtrockner, Mahlung, Klassierung, und optional thermische Oberflächennachvernetzung, dadurch gekenn- zeichnet, dass das wässrige Polymergel mittels eines oszillierenden Förderbandes in den Um- luftbandtrockners eingebracht wird, die Unterseite des rücklaufenden Förderbandes mittels min- destens einer Abstreifvorrichtung von anhaftendem Polymergel gereinigt wird und die Unter- seite des rücklaufenden Förderbandes mit Wasser besprüht wird.
Die Unterseite des rücklaufenden Förderbandes ist die Außenseite des Förderbandes, auf die nach Umlenkung erneut mit Polymergel dosiert wird. Die Oberseite des rücklaufenden Förder- bandes ist die Innenseite des Förderbandes, die nicht mit Polymergel in Kontakt kommen soll.
Der Abstand der Abstreifvorrichtung vom Abwurfende des oszillierenden Förderbandes beträgt vorzugsweise weniger als 20% der Länge des oszillierenden Förderbandes, besonders bevor- zugt weniger als 10% der Länge des oszillierenden Förderbandes, ganz besonders bevorzugt weniger als 5% der Länge des oszillierenden Förderbandes, wobei die Länge des oszillierenden Förderbandes der Abstand der Schwenkachse vom Abwurfende ist.
Die Abstreifvorrichtung unterliegt keinen Beschränkungen. Geeignet sind beispielsweise quer zur Laufrichtung angeordnete Bürsten. Es ist auch möglich einen Schaber zu verwenden. Ein Schaber ist eine quer zur Förderrichtung angeordnete Abstreifvorrichtung aus einem nicht-fle xiblen Material. Ein geeignetes nicht-flexibles Material ist beispielsweise Polytetrafluorethylen. Um Beschädigungen des Förderbandes zu vermeiden sollte der Schaber möglichst wenig bzw. keinen direkten Kontakt mit dem Förderband haben. Der Schaber sollte gegenüber der Lauf- richtung des rücklaufenden Förderbandes geneigt sein. Dies begünstigt das Abschälen des an- haftenden Polymergels und verhindert einen Stau zwischen Förderband und Schaber. Das ab- gestreifte Polymergel fällt üblicherweise auf das Förderband des Umluftbandtrockners. Der Schaber ist vorzugsweise von 5 bis 45°, besonders bevorzugt von 10 bis 35°, ganz beson- ders von 15 bis 25°, gegenüber der Senkrechten gegen die Laufrichtung des Förderbandes ge- neigt. Der Abstand des Schabers zur Unterseite des rücklaufenden Förderbandes beträgt vor- zugsweise 0,1 bis 5 mm, besonders bevorzugt 0,2 bis 2 mm, ganz besonders bevorzugt 0,5 bis 1 ,5 mm.
Der Abstand der Sprühdüsen vom Abwurfende des oszillierenden Förderbandes beträgt vor- zugsweise 1 bis 50% der Länge des oszillierenden Förderbandes, besonders bevorzugt 2 bis 30% der Länge des oszillierenden Förderbandes, ganz besonders bevorzugt 3 bis 10% der Länge des oszillierenden Förderbandes, wobei die Länge des oszillierenden Förderbandes der Abstand der Schwenkachse vom Abwurfende ist.
Der Abstand der Sprühdüsen vom Förderband beträgt vorzugsweise 5 bis 50 cm, besonders bevorzugt 10 bis 30 cm, ganz besonders bevorzugt 15 bis 25 cm.
Die Flüssigkeit wird vorzugsweise mittels mindestens einer Zweistoffdüse, besonders bevorzugt mittels mindestens zweier Zweistoffdüsen, aufgesprüht.
Zweistoffdüsen ermöglichen eine Zerstäubung in feine Tröpfchen bzw. einen Sprühnebel. Als Zerstäubungsform wird ein kreisförmiger oder auch elliptischer Voll- oder Hohlkegel ausgebil- det. Zwei stoffdüsen können außenmischend oder innenmischend gestaltet werden. Bei den au- ßenmischenden Zwei stoffdüsen verlassen Flüssigkeit und Zerstäubergas den Düsenkopf über separate Öffnungen. Sie werden erst nach dem Austritt aus der Sprühdüse im Sprühstrahl ge- mischt. Dies ermöglicht eine im weiten Bereich unabhängige Regelung von Tropfengrößenver- teilung und Durchsatz. Der Sprühkegel der Sprühdüse kann über die Luftkappenstellung einge- stellt werden. Bei der innenmischenden Zweistoffdüse werden Flüssigkeit und Zerstäubergas innerhalb der Sprühdüse vermischt und das Zweiphasengemisch verlässt den Düsenkopf über dieselbe Bohrung (bzw. über mehrere parallel geschaltete Bohrungen). Bei der innenmischen- den Zweistoffdüse sind die Mengen- und Druckverhältnisse stärker gekoppelt als bei der au- ßenmischenden Sprühdüse. Geringe Veränderungen im Durchsatz führen deshalb zur Ände- rung der Tropfengrößenverteilung. Die Anpassung an den gewünschten Durchsatz erfolgt über den gewählten Querschnitt der Düsenbohrung.
Als Zerstäubergas kommt beispielsweise Pressluft von 0,5 bar und mehr in Frage. Die Tröpf- chengröße kann individuell über die Düsengeometrie, den Düsentyp, das Verhältnis von Was- sermassenstrom zu Zerstäubergasmassenstrom, sowie Gas- und Wasserdruck eingestellt wer- den.
Die Menge des zum Besprühen verwendeten Wassers beträgt vorzugsweise von 2 bis 20 kg/h, besonders bevorzugt von 6 bis 16 kg/h, ganz besonders bevorzugt von 8 bis 12 kg/h.
Die Gewichtsverhältnis von Zerstäubergas zu Wasser beträgt vorzugsweise von 2 bis 20, be- sonders bevorzugt von 6 bis 16, ganz besonders bevorzugt von 8 bis 12. Bei Verwendung von zu wenig Wasser wird das Förderband nur unzureichend benetzt. Bei Ver- wendung von zu viel Wasser tropft überschüssiges Wasser auf die Lochplatten des Umluft- bandtrockners und führt dort zu Verstopfungen. Die Verwendung von Zweistoffdüsen verbessert zusätzlich die Verteilung des Wassers durch Verhinderung größerer Tropfen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung befindet sich die mindestens eine Sprühdüse in Laufrichtung des Förderbandes hinter der Abstreifvorrichtung. Dadurch wird verhindert, dass Wasser von der Abstreifvorrichtung auf das Förderband des Umluftbandtrock- ners tropft.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung befindet sich die mindestens eine Sprühdüse vor dem Förderband des Umluftbandtrockners. Auch dadurch wird verhindert, dass Wasser auf das Förderband des Umluftbandtrockners tropft.
Das Förderband weist eine Länge von vorzugsweise 2 bis 10 m, besonders bevorzugt von 2,5 bis 8 m, ganz besonders bevorzugt von 3 bis 6 m, auf, wobei die Länge des Förderbandes der Abstand der Schwenkachse vom Abwurfende ist.
Das Förderband weist eine Breite von vorzugsweise 0,5 bis 1 ,5 m, besonders bevorzugt von 0,6 bis 1 ,2 m, ganz besonders bevorzugt von 0,7 bis 0,9 m, auf.
Es können die für diesen Zweck üblichen Förderbänder eingesetzt werden. Die Oberfläche der Förderbänder, d.h. die mit dem Polymergel in Berührung kommende Seite, sollte wasserabwei- send sein und bei 23°C einen Randwinkel gegenüber von Wasser von vorzugsweise mindes- tens 60°, besonders bevorzugt von mindestens 80°, ganz besonders bevorzugt von mindestens 100°, aufweisen. Der Randwinkel ist ein Maß für das Benetzungsverhalten und wird gemäß DIN 53900 gemessen.
Der Wassergehalt des Polymergels auf dem Förderband beträgt vorzugsweise von 20 bis 80 Gew.-%, besonders bevorzugt von 30 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%.
Die Temperatur des Polymergels auf dem Förderband beträgt vorzugsweise von 60 bis 105°C, besonders bevorzugt von 70 bis 100°C, ganz besonders bevorzugt von 80 bis 95°C.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass das am oszillierenden Förder- band anhaftende warme Polymergel sehr leicht antrocknet. Das angetrocknete Polymergel lässt sich nur schwer vom Förderband lösen. Bereits angetrocknetes Polymergel ist oft auch Ursache für weitere Anbackungen. Durch Besprühen mit Wasser kann das Polymergel feucht gehalten und ein Antrocknen vermieden werden. Im Folgenden wird die Herstellung der Superabsorber näher erläutert:
Die Superabsorber werden durch Polymerisation einer Monomerlösung oder -Suspension her- gestellt und sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C be- trägt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Was- ser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindes- tens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acryl- säure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfonsäuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher soll ten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteil- haft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispiels- weise in der WO 02/055469 A1 , der WO 03/078378 A1 und der WO 2004/035514 A1 beschrie- ben. Ein geeignetes Monomer a) ist beispielsweise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Was- ser, 0,0203 Gew.-% Propionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäurean- hydrid, 0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) be- trägt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz be- sonders bevorzugt mindestens 95 mol-%.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochi- nonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindestens 10 Gew.- ppm, besonders bevorzugt mindestens 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydro- chinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesättigtes, säuregruppentragendes Mo- nomer mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha- Tocopherol (Vitamin E). Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomers a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Polyethylenglykoldi- acrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 beschrieben, Di- und Triacrylate, wie in
EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 03/104299 A1 , WO 03/104300 A1 , WO 03/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in
DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie bei- spielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 02/032962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraallyloxyethan, Methylenbismethac- rylamid, 15-fach ethoxyliertes Trimethylolpropantriacrylat, Polyethylenglykoldiacrylat, Trimethyl- olpropantriacrylat und Triallylamin.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 03/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevor- zugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, ins- besondere das Triacrylat des 3-fach ethoxylierten Glyzerins.
Die Menge an Vernetzer b) beträgt vorzugsweise 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 0,8 Gew.-%, ganz besonders bevorzugt 0,15 bis 0,5 Gew.-%, jeweils berechnet auf die Gesamtmenge an eingesetztem Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifu- genretentionskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen Radikale erzeu- gende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiato- ren, Photoinitiatoren. Geeignete Redox-Initiatoren sind Natriumperoxodisulfat/Ascorbinsäure, Wasserstoffperoxid/Ascorbinsäure, Natriumperoxodisulfat/Natriumbisulfit und Wasserstoffper- oxid/Natriumbisulfit. Vorzugsweise werden Mischungen aus thermischen Initiatoren und Redox- Initiatoren eingesetzt, wie Natriumperoxodisulfat/Wasserstoffperoxid/Ascorbinsäure. Als redu- zierende Komponente wird vorzugsweise das Dinatriumsalz der 2-Hydroxy-2-sulfonatoessig- säure oder ein Gemisch aus dem Natriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinat- riumsalz der 2-Hydroxy-2-sulfonatoessigsäure und Natriumbisulfit eingesetzt. Derartige Gemi- sche sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn;
Deutschland) erhältlich.
Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymerisierbare ethylenisch ungesättigte Monomere d) sind beispielsweise Acrylamid, Methacrylamid, Hydro- xyethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethacrylat, Dimethylaminoethyl- acrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Als wasserlösliche Polymere e) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkede- rivate, modifizierte Cellulose, wie Methylcellulose oder Hydroxyethylcellulose, Gelatine, Polygly- kole oder Polyacrylsäuren, vorzugsweise Stärke, Stärkederivate und modifizierte Cellulose, ein- gesetzt werden.
Üblicherweise wird eine wässrige Monomerlösung verwendet. Der Wassergehalt der Monomer- lösung beträgt vorzugsweise von 40 bis 75 Gew.-%, besonders bevorzugt von 45 bis 70 Gew.- %, ganz besonders bevorzugt von 50 bis 65 Gew.-%. Es ist auch möglich Monomersuspensio- nen, d.h. Monomerlösungen mit der Löslichkeit überschreitendem Monomer a), beispielsweise Natriumacrylat, einzusetzen. Mit steigendem Wassergehalt steigt der Energieaufwand bei der anschließenden Trocknung und mit sinkendem Wassergehalt kann die Polymerisationswärme nur noch ungenügend abgeführt werden.
Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sau- erstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisierung, d.h. Durch- strömen mit einem inerten Gas, vorzugsweise Stickstoff oder Kohlendioxid, von gelöstem Sau- erstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Po- lymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, ganz besonders bevorzugt auf weniger als 0,1 Gew.-ppm, gesenkt.
Geeignete Reaktoren für die Polymerisation sind beispielsweise Knetreaktoren oder Bandreak- toren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung oder -sus- pension entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/038402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das zerkleinert werden muss, beispielsweise in ei- nem Extruder oder Kneter.
Zur Verbesserung der Trocknungseigenschaften kann das mittels eines Kneters erhaltene zer- kleinerte Polymergel zusätzlich extrudiert werden. Die Säuregruppen der erhaltenen Polymergele sind üblicherweise teilweise neutralisiert. Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung oder bevor- zugt auch als Feststoff. Der Neutralisationsgrad beträgt vorzugsweise von 25 bis 85 mol-%, be- sonders bevorzugt von 30 bis 80 mol-%, ganz besonders bevorzugt von 40 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydro- xide, Alkalimetalloxide, Alkalimetallkarbonate oder Alkalimetallhydrogenkarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumkarbonat oder Natriumhydrogenkarbonat sowie deren Mischungen. Feste Carbonate und Hydrogencarbonate können hierbei auch in verkapselter Form eingesetzt werden, vorzugsweise in die Monomerlösung direkt vor der Polymerisation, während oder nach der Polymerisation ins Polymergel und vor dessen Trocknung. Die Verkapselung erfolgt durch Beschichtung der Oberfläche mit einem unlöslichen oder nur langsam löslichen Material (bei- spielsweise mittels filmbildender Polymere, inerter anorganischer Materialien oder schmelzba- ren organischer Materialien), welches die Lösung und Reaktion des festen Carbonats oder Hyd- rogencarbonats so verzögert, dass erst während der Trocknung Kohlendioxid freigesetzt wird und der entstehende Superabsorber eine hohe innere Porosität aufweist.
Optional kann zur Monomerlösung vor oder während der Polymerisation ein Tensid zugegeben werden und die Monomerlösung dann vor oder während der Polymerisation mit einem Inertgas oder Wasserdampf oder durch starkes Rühren geschäumt werden. Das Tensid kann anionisch, kationisch, zwitterionisch oder auch nicht-ionisch sein. Bevorzugt wird ein hautfreundliches Ten- sid eingesetzt.
Das Polymergel wird dann üblicherweise mit einem Umluftbandtrockner getrocknet bis der Rest- feuchtegehalt vorzugsweise 0,5 bis 10 Gew.-%, besonders bevorzugt 1 bis 6 Gew.-%, ganz be- sonders bevorzugt 1 ,5 bis 4 Gew.-%, beträgt, wobei der Restfeuchtegehalt gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-05 "Mass Löss Upon Heating" bestimmt wird. Bei einer zu hohen Restfeuchte weist das getrocknete Polymergel eine zu niedrige Glas- übergangstemperatur Tg auf und ist nur schwierig weiter zu verarbeiten. Bei einer zu niedrigen Restfeuchte ist das getrocknete Polymergel zu spröde und in den anschließenden Zerkleine- rungsschritten fallen unerwünscht große Mengen an Polymerpartikeln mit zu niedriger Partikel größe („fines“) an. Der Feststoffgehalt des Polymergels beträgt vor der Trocknung vorzugsweise von 25 und 90 Gew.-%, besonders bevorzugt von 35 bis 70 Gew.-%, ganz besonders bevorzugt von 40 bis 60 Gew.-%. Anschließend wird das getrocknete Polymergel gebrochen und optional grob zerkleinert.
Das getrocknete Polymergel wird hiernach üblicherweise gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen, eingesetzt werden können. Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugs- weise von 150 bis 850 pm, besonders bevorzugt von 250 bis 600 gm, ganz besonders von 300 bis 500 pm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA empfohlenen Testmethode Nr. WSP 220.2 (05) "Partikel Size Distribution" ermittelt werden, wo bei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Parti- kelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschen- weite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Polymerpartikeln mit einer Partikelgröße von größer 150 pm beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, ganz besonders bevor- zugt mindestens 98 Gew.-%.
Polymerpartikel mit zu niedriger Partikelgröße senken die Gelbettpermeabilität (GBP). Daher sollte der Anteil zu kleiner Polymerpartikel („fines“) niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückge- führt, vorzugsweise vor, während oder unmittelbar nach der Polymerisation, d.h. vor der Trock- nung des Polymergels. Die zu kleinen Polymerpartikel können vor oder während der Rückfüh- rung mit Wasser und/oder wässrigem Tensid angefeuchtet werden.
Es ist auch möglich in späteren Verfahrensschritten zu kleine Polymerpartikel abzutrennen, bei- spielsweise nach der Oberflächennachvernetzung oder einem anderen Beschichtungsschritt. In diesem Fall sind die rückgeführten zu kleinen Polymerpartikel oberflächennachvernetzt bzw. an- derweitig beschichtet, beispielsweise mit pyrogener Kieselsäure.
Der Anteil an Polymerpartikeln mit einer Partikelgröße von höchstens 850 pm, beträgt vorzugs- weise mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Der Anteil an Polymerpartikeln mit einer Partikelgröße von höchstens 600 pm, beträgt vorzugs- weise mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Polymerpartikel mit zu großer Partikelgröße senken die Quellgeschwindigkeit. Daher sollte der Anteil zu großer Polymerpartikel ebenfalls niedrig sein. Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung rückgeführt.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften thermisch oberflä- chennachvernetzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen, die Grup- pen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bin- dungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyal- kylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des Weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazoli- dinon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidinon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidinone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidoacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 03/031482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächen- nachvernetzer beschrieben.
Bevorzugte Oberflächennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidylether, Um- setzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol.
Ganz besonders bevorzugte Oberflächennachvernetzer sind 2-Hydroxyethyl-2-oxazolidinon, 2-Oxazolidinon und 1 ,3-Propandiol.
Weiterhin können auch Oberflächennachvernetzer eingesetzt werden, die zusätzliche polymeri- sierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 3 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.-%, jeweils bezogen auf die Polymerpartikel.
Die Oberflächennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflächennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im An- schluss an das Aufsprühen werden die mit Oberflächennachvernetzer beschichteten Polymer- partikel oberflächennachvernetzt und getrocknet, wobei die Oberflächennachvernetzungsreak- tion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmi- scher, durchgeführt. Besonders bevorzugt sind Horizontalmischer, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Verti- kalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine hori- zontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Ge- eignete Mischer sind beispielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschi- nenbau GmbH; Paderborn; Deutschland), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; Niederlande), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; USA) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; Niederlande). Es ist aber auch möglich die Oberflächennachvernetzerlösung in einem Wirbelbett aufzusprühen. Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Ein- dringtiefe des Oberflächennachvernetzers in die Polymerpartikel eingestellt werden.
Wird ausschließlich Wasser als Lösungsmittel verwendet, so wird vorteilhaft ein Tensid zuge- setzt. Dadurch wird das Benetzungsverhalten verbessert und die Verklumpungsneigung vermin- dert. Vorzugsweise werden aber Lösungsmittelgemische eingesetzt, beispielsweise Isopropa- nol/Wasser, 1 ,3-Propandiol/Wasser und Propylenglykol/Wasser, wobei das Mischungsmassen- verhältnis vorzugsweise von 20:80 bis 40:60 beträgt.
Die Oberflächennachvernetzung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH; Leingarten; Deutschland), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; USA) und Nara Paddle Dryer (NARA Machinery Europe; Frechen; Deutschland). Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Oberflächennachvernetzung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispiels- weise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteil- haft wird in einem Wirbelschichttrockner gemischt und thermisch oberflächennachvernetzt.
Bevorzugte Reaktionstemperaturen liegen im Bereich 100 bis 250°C, bevorzugt 1 10 bis 220°C, besonders bevorzugt 120 bis 210°C, ganz besonders bevorzugt 130 bis 200°C. Die bevorzugte Verweilzeit bei dieser Temperatur beträgt vorzugsweise mindestens 10 Minuten, besonders be- vorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und übli- cherweise höchstens 60 Minuten.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die Polymerpartikel nach der Oberflächennachvernetzung gekühlt. Die Kühlung wird vorzugsweise in Kontaktküh- lern, besonders bevorzugt Schaufelkühlern, ganz besonders bevorzugt Scheibenkühlern, durch- geführt. Geeignete Kühler sind beispielsweise Hosokawa Bepex® Horizontal Paddle Cooler (Hosokawa Micron GmbH; Leingarten; Deutschland), Hosokawa Bepex® Disc Cooler (Ho- sokawa Micron GmbH; Leingarten; Deutschland), Holo-Flite® coolers (Metso Minerals Indust- ries Inc.; Danville; USA) und Nara Paddle Cooler (NARA Machinery Europe; Frechen; Deutsch- land). Überdies können auch Wirbelschichtkühler eingesetzt werden.
Im Kühler werden die Polymerpartikel auf vorzugsweise 40 bis 90°C, besonders bevorzugt 45 bis 80°C, ganz besonders bevorzugt 50 bis 70°C, abgekühlt. Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden.
Die oberflächennachvernetzten Polymerpartikel können zur weiteren Verbesserung der Eigen- schaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 40 bis 120°C, besonders bevorzugt bei 50 bis 1 10°C, ganz besonders bevorzugt bei 60 bis 100°C, durchgeführt. Bei zu niedrigen Temperatu- ren neigen die Polymerpartikel zum Verklumpen und bei höheren Temperaturen verdampft be- reits merklich Wasser. Die zur Nachbefeuchtung eingesetzte Wassermenge beträgt vorzugs- weise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevor- zugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität der Poly- merpartikel erhöht und deren Neigung zur statischen Aufladung vermindert. Vorteilhaft wird die Nachbefeuchtung im Kühler nach der thermischen Oberflächennachvernetzung durchgeführt.
Geeignete Beschichtungen zur Verbesserung der Quellgeschwindigkeit sowie der Gelbettper- meabilität (GBP) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metall- kationen. Geeignete Beschichtungen zur Staubbindung sind beispielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verbackungsneigung der Polymerpartikel sind bei- spielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie Span® 20. Geeignete Beschichtungen zur Staubbindung, zur Verringerung der Verbackungsneigung sowie zur Erhö- hung der mechanischen Stabilität sind Polymerdispersionen, wie in EP 0 703 265 B1 beschrie- ben, und Wachse, wie in US 5 840 321 beschrieben.
Anschließend können die beschichteten und/oder nachbefeuchteten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Ver- fahren rückgeführt werden.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Hygieneartikel, die gemäß dem erfin- dungsgemäßen Verfahren hergestellte Superabsorber enthalten.
Methoden:
Die nachfolgend beschriebenen, mit„WSP“ bezeichneten Standard-Testmethoden werden be- schrieben in:„Standard Test Methods for the Nonwovens Industry“, Ausgabe 2005, gemeinsam herausgegeben von den„Worldwide Strategie Partners“ EDANA (Herrmann-Debrouxlaan 46, 1 160 Oudergem, Belgien, www.edana.org) und INDA (1 100 Crescent Green, Suite 1 15, Cary, North Carolina 27518, USA, www.inda.org). Diese Veröffentlichung ist sowohl von EDANA als auch von INDA erhältlich. Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbie- renden Polymerpartikel werden vor der Messung gut durchmischt.
Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Test- methode Nr. WSP 241.2 (05) "Fluid Retention Capacity in Saline, After Centrifugation" be- stimmt.
Extrahierbare
Der Gehalt an extrahierbaren Bestandteilen der wasserabsorbierenden Polymerpartikel wird ge- mäß der von der EDANA empfohlenen Testmethode Nr. WSP 270.2 (05) "Extractable" be- stimmt.
Beispiele
Beispiel 1
Durch kontinuierliches Mischen von entionisiertem Wasser, 50 gew.-%iger Natronlauge und Ac- rylsäure wurde eine Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisations- grad 71 ,3 mol-% entsprach. Der Feststoffgehalt der Monomerlösung betrug 38,8 Gew.-%.
Als mehrfach ethylenisch ungesättigter Vernetzer wurde Polyethylenglykol-400-diacrylat (Diac- rylat ausgehend von einem Polyethylenglykol mit einem mittleren Molgewicht von 400 g/mol) verwendet. Die Einsatzmenge betrug 2 kg Vernetzer pro t Monomerlösung.
Zur Initiierung der radikalischen Polymerisation wurden pro t Monomerlösung 1 ,03 kg einer 0,25gew.-%igen wässriger Wasserstoffperoxidlösung, 3,10 kg einer 15gew.-%igen wässrigen Natriumperoxodisulfatlösung und 1 ,05 kg einer 1 gew.-%igen wässrigen Ascorbinsäurelösung eingesetzt.
Der Durchsatz der Monomerlösung betrug 20 t/h. Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5°C.
Die einzelnen Komponenten wurden in folgenden Mengen kontinuierlich in einen Reaktor vom Typ List Contikneter mit einem Volumen 6,3m3 (LIST AG, Arisdorf, Schweiz) dosiert:
20 t/h Monomerlösung
40 kg/h Polyethylenglykol-400-diacrylat
82,6 kg/h Wasserstoffperoxidlösung/Natriumperoxodisulfatlösung
21 kg/h Ascorbinsäurelösung Zwischen dem Zugabepunkt für den Vernetzer und den Zugabestellen für die Initiatoren wurde die Monomerlösung mit Stickstoff inertisiert.
Es fand nach ca. 50% der Verweilzeit zusätzlich eine Zudosierung von aus dem Herstellungs- prozeß durch Mahlung und Siebung anfallendem Feinkorn (1000 kg/h) in den Reaktor statt. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten.
Das erhaltene wässrige Polymergel wurde mittels eines oszillierenden Förderbandes auf das Förderband eines Umluftbandtrockners aufgegeben.
Der Umluftbandtrockner hatte eine Länge von 48 m. Das Förderband des Umluftbandtrockners hatte eine effektive Breite von 4,4 m.
Das oszillierende Förderband hatte eine Länge von 5 m. Das Förderband hatte eine Breite von 0,8 m und eine effektive Breite von 0,5 m. Der Böschungswinkel des wässrigen Polymergels auf dem Förderband betrug ca. 15°. Der Querschnitt der Polymergelschüttung auf dem Förderband betrug ca. 0,04 m2. Die Geschwindigkeit des Förderbandes betrug 0,5 m/s.
Das oszillierende Förderband wurde ausgehend von einer Endlage über einen ersten Schwenk- winkel ßi von 13° auf eine Winkelgeschwindigkeit von 33°/s beschleunigt, über einen zweiten Schwenkwinkel ß2 von 20° auf eine Winkelgeschwindigkeit von 17°/s abgebremst und über ei- nen dritten Schwenkwinkel ß3 zur anderen Endlage abgebremst. Der Gesamtschwenkwinkel betrug 50°. Ein Doppelhub (von der ersten Endlage zur anderen Endlage und wieder zurück) dauerte ca. 7 s. Das umlaufende Förderband hatte eine Oberfläche aus Polytetrafluorethylen (PTFE).
Die Temperatur des wässrigen Polymergels auf dem oszillierenden Förderband betrug 90°C.
Auf der Unterseite des oszillierenden Förderbandes befand sich eine Abstreifvorrichtung. Die Abstreifvorrichtung war ein quer zur Laufrichtung des rücklaufenden Förderbandes angebrach- ter länglicher Schaber. Der Schaber war um 20° gegen die Laufrichtung des rücklaufenden För- derbandes geneigt. Der Abstand der Abstreifvorrichtung vom Abwurfende betrug ca. 5 cm, d.h. die Abstreifeinrichtung befand sich im Bereich der Umlenkrolle. Der Abstand der Abstreifvorrich- tung zum rücklaufenden Förderband betrug 1 mm. Mit der Abstreifvorrichtung wird an der Au- ßenseite des rücklaufenden Förderbandes anhaftendes wässriges Polymergel abgestreift.
Auf der Unterseite des oszillierenden Förderbandes befanden sich zusätzlich 3 Zweistoffdüsen. Die Zweistoffdüsen waren quer zur Laufrichtung des Förderbandes angeordnet. Der Abstand der Zwei stoffdüsen voneinander betrug jeweils ca. 20 cm. Der Abstand der Zweistoffdüsen vom Abwurfende betrug ca. 20 cm. Der Abstand der Zweistoffdüsen vom rücklaufenden Förderband betrug ca. 20 cm. Insgesamt wurde 10 kg/h Wasser und 100 kg/h Luft versprüht. Das rücklaufende Förderband ließ sich mittels der Abstreifvorrichtung gut reinigen. Es kam über einen Zeitraum von 6 Monaten zu keinerlei größeren Anbackungen am Förderband.
Auf dem Umluftbandtrockner wurde das wässrige Polymergel kontinuierlich mit einem Luft/Gas- gemisch umströmt und getrocknet. Die Verweilzeit im Umluftbandtrockner betrug 37 Minuten.
Das getrocknete Polymergel wurde gemahlen und auf eine Partikelgrößenfraktion von 150 bis 850 gm abgesiebt. Die erhaltenen wasserabsorbierenden Polymerpartikel wiesen eine Zentrifugenretentionskapa- zität (CRC) von 34,9 g/g und einen Gehalt an Extrahierbaren von 8,5 Gew.-% auf.
Beispiel 2 (Vergleichsbeispiel) Es wurde verfahren wie in Beispiel 1 , allerdings wurden die Sprühdüsen am oszillierenden För- derband ausgeschaltet.
Das rücklaufende Förderband ließ sich mittels der Abstreifvorrichtung nur schwer reinigen. Es kam zu größeren Anbackungen am Förderband, insbesondere dort wo bereits Polymergel an- getrocknet war. Nach einigen Wochen kontinuierlicher Produktion musste die Produktion unter- brochen und das Förderband gereinigt werden bzw. das Förderband aufgrund von Beschädi- gungen ausgetauscht werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Superabsorberpartikeln durch Polymerisation einer Mono- merlösung oder -Suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zumindest teilweise neutralisiert ist,
b) mindestens einen Vernetzer,
c) mindestens einen Initiator,
d) optional ein oder mehrere mit den unter a) genannten Monomeren copolymerisier- bare ethylenisch ungesättigte Monomere und
e) optional ein oder mehrere wasserlösliche Polymere, umfassend Trocknung des erhaltenen wässrigen Polymergels in einem Umluftbandtrock- ner, Mahlung, Klassierung, und optional thermische Oberflächennachvernetzung, dadurch gekennzeichnet, dass das wässrige Polymergel mittels eines oszillierenden För- derbandes in den Umluftbandtrockners eingebracht wird, die Unterseite des rücklaufen- den Förderbandes mittels mindestens einer Abstreifvorrichtung von anhaftendem Poly- mergel gereinigt wird und die Unterseite des rücklaufenden Förderbandes mittels min- destens einer Sprühdüse mit Wasser besprüht wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Abstand der Abstreifvor- richtung vom Abwurfende des Förderbandes weniger als 20% der Länge des Förderban- des beträgt, wobei die Länge des Förderbandes der Abstand der Schwenkachse vom Ab- wurfende ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die auf der Unterseite des rücklaufenden Förderbandes angebrachte Abstreifeinrichtung ein Schaber ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Schaber von 5 bis 45° ge- genüber der Senkrechten gegen die Laufrichtung des Förderbandes geneigt ist.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Abstand des Scha- bers zur Unterseite des rücklaufenden Förderbandes von 0,1 bis 5 mm beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Abstand der mindestens einen Sprühdüse vom Abwurfende des Förderbandes 1 bis 50% der Länge des Förderbandes beträgt, wobei die Länge des Förderbandes der Abstand der Schwenkachse vom Abwurfende ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Abstand der Sprühdüsen vom Förderband von 5 bis 50 cm beträgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass von 2 bis 20 kg/h Wasser auf die Unterseite des rücklaufenden Förderbandes gesprüht werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Wasser mittels mindestens einer Zweistoffdüse auf die Unterseite des rücklaufenden Förderban- des gesprüht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Wasser mittels mindestens einer Zweistoffdüse auf die Unterseite des rücklaufenden Förderban- des gesprüht wird und dass das Gewichtsverhältnis von Zerstäubergas zu Wasser von 2 bis 20 beträgt.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Was- ser mittels mindestens zweier Zweistoffdüsen auf die Unterseite des rücklaufenden För- derbandes gesprüht wird.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass sich die mindestens eine Sprühdüse in Laufrichtung des Förderbandes hinter der Abstreifvorrich- tung befindet.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das För- derband eine Länge von 2 bis 10 m aufweist, wobei die Länge des Förderbandes der Ab- stand der Schwenkachse vom Abwurfende ist.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das die Oberfläche des Förderbandes bei 23°C gegenüber Wasser einen Randwinkel von min- destes 60° aufweist.
15. Hygieneartikel, enthaltend gemäß einem Verfahren der Ansprüche 1 bis 14 hergestellte Superabsorber.
PCT/EP2019/074782 2018-09-28 2019-09-17 Verfahren zur herstellung von superabsorbern WO2020064411A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980062010.9A CN112804976A (zh) 2018-09-28 2019-09-17 制备超吸收剂的方法
JP2021517231A JP2022502543A (ja) 2018-09-28 2019-09-17 超吸収体の製造の方法
EP19766267.9A EP3856105A1 (de) 2018-09-28 2019-09-17 Verfahren zur herstellung von superabsorbern
KR1020217008450A KR20210073516A (ko) 2018-09-28 2019-09-17 초흡수제의 제조 방법
US17/272,364 US20210338882A1 (en) 2018-09-28 2019-09-17 Method for the production of superabsorbents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18197563.2 2018-09-28
EP18197563 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020064411A1 true WO2020064411A1 (de) 2020-04-02

Family

ID=63861972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/074782 WO2020064411A1 (de) 2018-09-28 2019-09-17 Verfahren zur herstellung von superabsorbern

Country Status (6)

Country Link
US (1) US20210338882A1 (de)
EP (1) EP3856105A1 (de)
JP (1) JP2022502543A (de)
KR (1) KR20210073516A (de)
CN (1) CN112804976A (de)
WO (1) WO2020064411A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020151971A1 (de) * 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151975A1 (de) * 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151969A1 (de) * 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018000B (zh) * 2021-10-13 2022-10-28 宁波大学 一种用于龙须菜干燥的装置

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
DE3825366A1 (de) 1987-07-28 1989-02-09 Dai Ichi Kogyo Seiyaku Co Ltd Verfahren zur kontinuierlichen herstellung eines acrylpolymergels
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
EP0530438A1 (de) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
EP0547847A1 (de) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines wasserabsorbierenden Harzes
EP0559476A1 (de) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0632068A1 (de) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
EP0703265A1 (de) 1994-07-22 1996-03-27 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
US5840321A (en) 1995-07-07 1998-11-24 Clariant Gmbh Hydrophilic, highly swellable hydrogels
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
EP1199327A2 (de) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
WO2002055469A1 (de) 2001-01-12 2002-07-18 Degussa Ag Kontinuierliches verfahren zur herstellung und aufreinigung von (meth) acrylsäure
WO2003031482A1 (de) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
WO2003078378A1 (de) 2002-03-15 2003-09-25 Stockhausen Gmbh (meth)acrylsäurekristall und verfahren zur herstellung und aufreinigung von wässriger (meth)acrylsäure
WO2003104299A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Verfahren zur herstellung von estern von polyalkoholen
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
WO2003104300A1 (de) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2004035514A1 (de) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2008087114A1 (en) 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers
WO2010139680A2 (de) 2009-06-03 2010-12-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2014005860A1 (de) * 2012-07-03 2014-01-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil
EP2700667A1 (de) 2011-04-20 2014-02-26 Nippon Shokubai Co., Ltd. Verfahren und vorrichtung zur herstellung eines wasserabsorbierbarem harzes mit einer polyacrylsäure oder einem salz davon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10250821A (ja) * 1997-03-12 1998-09-22 Nippon Steel Corp ミスト式ベルトクリーナ設備
JP4679683B2 (ja) * 1999-11-02 2011-04-27 株式会社日本触媒 吸水性重合体の製造方法、及び該重合体の製造装置
JP4312317B2 (ja) * 1999-11-02 2009-08-12 株式会社日本触媒 含水ゲルの搬送方法
EP2539382B1 (de) * 2010-02-24 2014-10-22 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2015163517A1 (en) * 2014-04-25 2015-10-29 Songwon Industrial Co., Ltd. Release of polymer gel from polymerization belt in production of water-absorbent polymer particles

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083022A2 (de) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Wasserabsorbierendes Harz mit verbesserter Wasserabsorbierbarkeit und Wasserdispergierbarkeit und Verfahren zur Herstellung
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
DE3825366A1 (de) 1987-07-28 1989-02-09 Dai Ichi Kogyo Seiyaku Co Ltd Verfahren zur kontinuierlichen herstellung eines acrylpolymergels
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
EP0450922A2 (de) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von flüssigkeitsstabilem Aggregat
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0530438A1 (de) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
EP0543303A1 (de) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
EP0547847A1 (de) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines wasserabsorbierenden Harzes
EP0559476A1 (de) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Verfahren zu Herstellung eines absorbierenden Harzes
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0632068A1 (de) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung eines absorbierenden Harzes
EP0703265A1 (de) 1994-07-22 1996-03-27 Hoechst Aktiengesellschaft Hydrophile, hochquellfähige Hydrogele
US5840321A (en) 1995-07-07 1998-11-24 Clariant Gmbh Hydrophilic, highly swellable hydrogels
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
EP0937736A2 (de) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Vernetzen eines wasserspeichernden Produktes
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
EP1199327A2 (de) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
WO2002055469A1 (de) 2001-01-12 2002-07-18 Degussa Ag Kontinuierliches verfahren zur herstellung und aufreinigung von (meth) acrylsäure
WO2003031482A1 (de) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
WO2003078378A1 (de) 2002-03-15 2003-09-25 Stockhausen Gmbh (meth)acrylsäurekristall und verfahren zur herstellung und aufreinigung von wässriger (meth)acrylsäure
WO2003104300A1 (de) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2003104299A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Verfahren zur herstellung von estern von polyalkoholen
WO2003104301A1 (de) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem glycerin
WO2004035514A1 (de) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
WO2008087114A1 (en) 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers
WO2010139680A2 (de) 2009-06-03 2010-12-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2700667A1 (de) 2011-04-20 2014-02-26 Nippon Shokubai Co., Ltd. Verfahren und vorrichtung zur herstellung eines wasserabsorbierbarem harzes mit einer polyacrylsäure oder einem salz davon
WO2014005860A1 (de) * 2012-07-03 2014-01-09 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.L. BUCHHOLZA.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020151971A1 (de) * 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151975A1 (de) * 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln
WO2020151969A1 (de) * 2019-01-23 2020-07-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Also Published As

Publication number Publication date
US20210338882A1 (en) 2021-11-04
EP3856105A1 (de) 2021-08-04
CN112804976A (zh) 2021-05-14
KR20210073516A (ko) 2021-06-18
JP2022502543A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2020064411A1 (de) Verfahren zur herstellung von superabsorbern
WO2011042429A1 (de) Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2011131526A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2438096A2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2015169912A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2018029045A1 (de) Verfahren zur herstellung von superabsorbern
EP2432836B1 (de) Beschichtungsverfahren für wasserabsorbierende polymerpartikel
WO2014005860A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbessertem eigenschaftsprofil
WO2011042468A2 (de) Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2011113777A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2831153A1 (de) Verfahren zur thermischen oberflächennachvernetzung in einem trommelwärmetauscher mit inverser schneckenwendel
EP2550316A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2683760B1 (de) Verfahren zur herstellung von wasserabsorbierenden polymerpartikeln mit verbesserter permeabilität
WO2010124954A1 (de) Verfahren zur abtrennung metallischer verunreinigungen
EP2714104B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3140326A1 (de) Wasserabsorbierende polymerpartikel
EP3840872B1 (de) Verfahren zur herstellung von superabsorbern
WO2013189770A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3697457B1 (de) Verfahren zur herstellung von superabsorbern
WO2020020675A1 (de) Verfahren zur herstellung von superabsorbern
WO2020151972A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2020151975A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP3755730A1 (de) Verfahren zur herstellung von superabsorberpartikeln
WO2020151971A1 (de) Verfahren zur herstellung von superabsorberpartikeln
EP2714103B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019766267

Country of ref document: EP

Effective date: 20210428