WO2010137739A1 - 画像診断装置および診断方法 - Google Patents

画像診断装置および診断方法 Download PDF

Info

Publication number
WO2010137739A1
WO2010137739A1 PCT/JP2010/059406 JP2010059406W WO2010137739A1 WO 2010137739 A1 WO2010137739 A1 WO 2010137739A1 JP 2010059406 W JP2010059406 W JP 2010059406W WO 2010137739 A1 WO2010137739 A1 WO 2010137739A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
cancer
autofluorescence
tissue
Prior art date
Application number
PCT/JP2010/059406
Other languages
English (en)
French (fr)
Inventor
岩本修
太田啓介
中村桂一郎
楠川仁悟
Original Assignee
学校法人久留米大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人久留米大学 filed Critical 学校法人久留米大学
Publication of WO2010137739A1 publication Critical patent/WO2010137739A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths

Definitions

  • the present invention relates to a method for optically detecting and diagnosing cancer tissue such as humans and animals, and in particular, determination of the presence or absence of a cancer tissue site and the existence range for tissue in vivo using an endoscope, A method for photomedical observation, examination, diagnosis, etc. of a cancer tissue site, or a photomedical observation of cancer tissue for a surgically resected stump that has been removed outside the body in a cancer removal operation,
  • the present invention relates to a method for examination, diagnosis and the like, and also relates to a diagnostic apparatus for carrying out the method of the present invention.
  • Patent Documents 1 to 3 disclose optical diagnostic apparatuses that utilize the fact that autofluorescence has different spectral intensities between normal tissue and cancer tissue when a living tissue is irradiated with excitation light. Such an optical diagnostic apparatus has a short time required for determination and has a possibility of being examined in an operating room.
  • Patent Documents 1 to 3 have problems that it is difficult to distinguish from some other normal tissues and that complicated operations are required. From such a background, since the accuracy, rapidity, and simplicity of diagnosis have a great influence on the prognosis of patients after surgery, further improvement in the accuracy and precision of determination is required. There is also a demand for a method that allows doctors and surgeons to evaluate quickly and easily on site.
  • patent document 4 in the endoscope system, in order to improve the accuracy and accuracy of the diagnosis of the diseased tissue, an autofluorescence image of the tissue is captured by irradiating ultraviolet rays as excitation light.
  • the light irradiated to obtain the reflected light image is white light.
  • white light includes a lot of light in the short wavelength region such as ultraviolet rays. Therefore, when capturing a reflected light image, the target tissue is excited by ultraviolet rays, and autofluorescence is emitted. Therefore, the brightness of the autofluorescence is contaminated (contamination occurs) with respect to the brightness of the reflected light, and accurate. The brightness due to the reflected light is not reflected. Since such problems are involved, the method and apparatus described in Patent Document 4 must perform complicated arithmetic processing.
  • ultraviolet rays may adversely affect the human body and the like, and are not preferable for use in medical settings. In particular, irradiation of the human body with an endoscope or the like should be avoided. JP 2000-325295 A JP 2004-243119 A JP 2008-12111 A JP 2004-215738 A
  • An object of the present invention is to provide a new diagnostic apparatus and diagnostic method for solving the above-described problems, thereby confirming the appropriateness of the excision part taken out of the living body, for example, during cancer tissue excision surgery ( When performing on-site confirmation), the practitioner who is a doctor can quickly and easily confirm the accuracy and accuracy at the bedside, and cancer tissue in the living body can be confirmed with an endoscope. When diagnosing the presence or absence and the size of the distribution, it is possible to make a diagnosis that is quick, simple and highly accurate and accurate.
  • Another object of the present invention is to avoid contamination due to autofluorescence when capturing a reflected light image of a living tissue, and to improve safety when capturing an autofluorescence image of a living tissue. .
  • the present inventors As a result of earnest examination on the detection method by the optical technique of cancer tissue in living tissue, the present inventors, (I) When the excitation light is irradiated to emit autofluorescence, the brightness of the autofluorescence image of the cancer tissue is lower than the brightness of the autofluorescence image of the normal tissue, and (Ii) When the cancer tissue is irradiated with light for obtaining a reflected light image, the reflectance in the cancer tissue is as high as the reflectance in the normal tissue, and the brightness of the reflected light image is high. I found.
  • the brightness of the autofluorescence image is higher than in cancer tissues, and the light to obtain the reflected light image is normal. It was also found that the reflectance when irradiated to the tissue was high as in the case of cancer tissue, and the brightness of the reflected light image was high. In addition, the present inventors have further found that, among muscle tissues, the brightness of the autofluorescence image and the brightness of the reflected light image are both low in the muscle tissue. From the above, it was found that diagnosis with a reflected light image alone or with an autofluorescence image alone, particularly diagnosis with visual recognition, is difficult.
  • the present inventors examined clarifying the contrast between the cancer tissue and the normal tissue based on the characteristics of the reflected light and autofluorescence from the cancer tissue and normal tissue.
  • light that irradiates to obtain a reflected light image does not use white light, does not substantially excite living tissue, and does not emit autofluorescence (hereinafter referred to as first light).
  • the living body tissue is irradiated with the first light, and an image obtained from the reflected light is obtained as a reflected light image.
  • the light irradiated to obtain an autofluorescence image Using light that is in a longer wavelength region than ultraviolet light and can excite living tissue to emit autofluorescence (hereinafter sometimes referred to as second light), the second light is irradiated to the living tissue and excited,
  • the image obtained from the emitted autofluorescence is acquired as an autofluorescence image, and the difference between the brightness of the reflected light image and the brightness of the autofluorescence image is drawn and imaged, so that the cancer tissue is drawn clearly and clearly. Images can be obtained, and cancer tissue and normal tissue can be clearly distinguished. And it has led to the completion of the present invention.
  • An image diagnostic apparatus for diagnosing the presence or distribution of cancer tissue contained in a living tissue, A first light source for irradiating a tissue site to be diagnosed with a first light that is light in a wavelength region in which only reflected light is obtained without emitting autofluorescence; A second light source for irradiating the tissue site with a second light that is light in a wavelength region that excites the tissue site to emit autofluorescence; An imaging device configured to capture a reflected light image that is an image of the tissue site obtained by the reflected light and an autofluorescence image that is an image of the tissue site obtained by the autofluorescence; , An image processing apparatus that obtains a difference between the brightness of the reflected light image and the brightness of the autofluorescence image and generates a difference image of the tissue site based on the difference; A display device for displaying the difference image; A diagnostic imaging apparatus.
  • the diagnostic imaging apparatus wherein the tissue site is in a state as it exists in a living body or is excised and removed from the living body.
  • an optical filter capable of transmitting the autofluorescence emitted from the tissue site and substantially blocking the second light is provided in front of the imaging device. Diagnostic imaging equipment.
  • the optical filter is not positioned on the optical path for imaging so as not to prevent the passage of the reflected light when capturing the reflected light image, and prevents the transmission of the second light when capturing the autofluorescent image.
  • the apparatus according to (3) wherein the apparatus is configured to be positioned on an optical path for imaging.
  • the optical filter is capable of transmitting reflected light.
  • the optical filter is configured to be positioned on an optical path for imaging both when capturing a reflected light image and when capturing an autofluorescent image.
  • the optical filter is a filter that transmits light having a wavelength of 460 nm or more.
  • the optical filter is a bandpass filter that transmits light having a wavelength of 460 nm or more and 600 nm or less.
  • the first light source is a light source that emits light belonging to a wavelength region of 460 nm or more and 600 nm or less.
  • the second light source is a light source that emits light belonging to a wavelength region of 400 nm or more and less than 460 nm.
  • the first light source is a light source that emits light belonging to a wavelength region of 460 nm or more and 600 nm or less
  • the second light source is a light source that emits light belonging to a wavelength region of 400 nm or more and less than 460 nm
  • an optical filter is provided
  • a memory in which the image processing apparatus stores a reflected light image and an autofluorescence image, a brightness adjustment circuit for matching the average brightness of the stored reflected light image and the autofluorescence image, and the brightness of the reflected light image The apparatus according to any one of (1) to (11), further including a subtracting circuit that obtains a difference image by calculating a difference from the brightness of the autofluorescence image.
  • the image processing apparatus further includes a contrast enhancement circuit that enhances the contrast of the reflected light image, the autofluorescence image, or the difference image.
  • an endoscope system is provided, and a reflected light image can be taken by irradiating the first light to the tissue part in the living body as it is, and the second light is irradiated.
  • the device described in 1. (15) The apparatus according to any one of (1) to (13), which is used for diagnosing the presence or absence of cancer tissue and the distribution of cancer tissue in a tissue site removed outside the body at the time of cancer extraction surgery .
  • Steps An image processing step of obtaining a difference between the brightness of the reflected light image and the brightness of the autofluorescence image and forming a difference image based on the brightness difference, At least a diagnostic imaging method.
  • imaging is performed through an optical filter that transmits autofluorescence emitted from the tissue site and can substantially block the second light, and reflected by the tissue site. The method according to (19) above, wherein contamination by the second light is prevented.
  • the present invention By calculating the difference between the brightness of the reflected light image and the brightness of the autofluorescence image and generating a difference image of the tissue part based on the difference, only the cancer tissue is emphasized with high brightness in the tissue part image. Displayed as an image.
  • the present invention when a tissue in a living body is targeted, the presence / absence of cancer tissue and the range of existence / distribution are extremely small by combining the method and apparatus of the present invention with an endoscope system. Even so, it can be clearly seen, examined, and diagnosed, and early detection of cancerous tissue becomes possible.
  • the excision range of the cancerous part excised and taken out of the body in the operation can be determined outside the body accurately and in a short time.
  • the surgeon can directly inspect in the vicinity of the patient (bedside) in the operating room, it can be immediately determined whether or not additional resection is necessary. Therefore, the operation time can be shortened overall. Especially in remote medical care where there is no pathologist, the time can be greatly reduced.
  • FIG. 1 is a schematic view showing an embodiment of an image diagnostic apparatus according to the present invention.
  • FIG. 2 is a flowchart showing an embodiment of the diagnostic method of the present invention.
  • FIG. 3A is a photomicrograph showing a reflected light image of a cancer affected part imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 3 (b) is a photomicrograph showing an autofluorescence image of a cancer affected area imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 3C is a photomicrograph showing a difference image between the reflected light image and the autofluorescence image of the cancerous part imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 3A is a photomicrograph showing a reflected light image of a cancer affected part imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 3 (b) is a photomicrograph showing an autofluorescence image of a cancer affected area imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 4A is a photomicrograph showing a reflected light image of a normal tongue imaged by the diagnostic imaging apparatus according to the present invention.
  • FIG. 4B is a photomicrograph showing an autofluorescence image of a normal tongue imaged by the diagnostic imaging apparatus according to the present invention.
  • FIG. 4C is a photomicrograph showing a difference image between a reflected light image and an autofluorescence image of a normal tongue imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 4D is a diagram showing the contour of a normal tongue imaged by the image diagnostic apparatus according to the present invention.
  • FIG. 5 is a schematic view showing another embodiment of the diagnostic imaging apparatus of the present invention.
  • FIG. 6 is a photograph of a colorectal cancer tissue obtained in Example 3 of the present invention.
  • FIG. 6 (a) is a reflected light image
  • FIG. 6 (b) is an autofluorescence image
  • FIG. 6 (c). Is a difference image
  • FIG. 6D is a processed image.
  • FIG. 7 is a photograph of a colorectal cancer tissue obtained in Example 4 of the present invention, in which FIG. 7 (a) is a reflected light image
  • FIG. 7 (b) is an autofluorescence image
  • FIG. 7D is a processed image
  • FIG. 8 is a photograph of a colorectal cancer tissue obtained in Example 4 of the present invention.
  • FIG. 8A is a reflected light image
  • FIG. 8B is an autofluorescence image
  • FIG. 8C Is a difference image
  • FIG. 8D is a processed image.
  • 1 and 5 indicate the following, respectively.
  • 100 observation table
  • 101 cancer affected tissue
  • 110 first light source
  • 115 first light source controller
  • 120 second light source
  • 125 second light source controller
  • 200 optical filter
  • 300 imaging lens
  • 400 Imaging device
  • 500 Image processing device
  • 510 Memory
  • 520 Brightness adjustment circuit
  • 530 Subtraction circuit
  • 540 Contrast enhancement circuit
  • 600 Display device
  • 700 Control device
  • an endoscope is connected to the apparatus according to the present invention, and a first light source is irradiated from the first light source provided in the apparatus of the present invention to the target tissue site through the endoscope, or A small light source is provided at the distal end of the endoscope to directly irradiate the target tissue site, and the resulting reflected light image is captured.
  • the first light is blocked, and similarly, the second light source is irradiated with the second light through the endoscope to the target tissue site, and the resulting autofluorescence image is captured.
  • the first light or the second light may be irradiated first.
  • a difference image related to luminance is created from the obtained reflected light image and autofluorescence image, and cancer tissue is diagnosed.
  • diagnosis includes not only literal diagnosis but also observation and recording of tissue, confirmation of presence or absence of cancer tissue, determination, and examination.
  • the imaging apparatus may be provided outside the living body, and the image may be taken out of the living body through the optical fiber in the endoscope. Alternatively, the imaging apparatus may be downsized and provided at the tip of the endoscope, and the image signal may be sent to the living body. The aspect taken out outside may be sufficient.
  • the first light is light that is irradiated to capture a reflected light image of the target tissue site, and does not substantially excite the living tissue, that is, light in a wavelength region that does not cause the tissue to emit autofluorescence. It is.
  • the first light source may be any device that can emit the first light.
  • the filter blocks the reflected light, What is necessary is just to image a reflected light image by removing from the optical path (the optical path related to irradiation and the optical path related to imaging).
  • the removal of the filter may be manual, but it is more preferable if it is a structure or mechanism that automatically switches using mechanical action. If the first light is transmitted through the filter in most of its wavelength region, it is not necessary to remove the filter.
  • the first light is preferably light in a wavelength region of 460 nm or more, more preferably 500 nm or more, and particularly preferably light in a wavelength region of about 550 nm.
  • the first light is preferably single-wavelength light or light having a specific wavelength region width (polychromatic light having a narrow wavelength region).
  • the first light may be any light that can be imaged, and the upper limit of the wavelength is not particularly limited, but is preferably 600 nm or less.
  • the first light is in a wavelength region that allows most of the amount of light to pass through the filter and is sufficiently transmitted through the filter. Visible light is preferred.
  • the amount of light passing through the filter is excessively small, the reflected light image cannot obtain a sufficient luminance, resulting in an insufficient image. Accordingly, it may be considered that the wavelength of the first light and the transmission characteristics of the filter are an appropriate combination.
  • the first light source is a semiconductor light emitting element such as a light emitting diode (LED) that emits light in a narrow wavelength region as the first light, a light emitting device that combines the semiconductor light emitting element and a phosphor, or the like.
  • a light source such as a xenon lamp or a halogen lamp may be combined with a filter to obtain light in a desired wavelength region, and this may be irradiated to a target tissue site through an optical fiber.
  • a conventional technique may be used so that light having a necessary wavelength can be obtained.
  • the second light may be light having a short wavelength that can excite the living tissue so that autofluorescence sufficient for imaging is emitted from the living tissue, and light that is not in the ultraviolet region is more preferable. If the second light contains a large amount of light belonging to the ultraviolet region, it adversely affects the living body (especially the human body), which is not preferable. Therefore, the second light is in a wavelength region of 400 nm or more that is not in the ultraviolet region, and is in a wavelength region of 500 nm or less that can excite living tissue to emit autofluorescence, and the first light has a wavelength.
  • the second light source is preferably a light emitting diode (LED) that emits light in a narrow wavelength region as the second light.
  • LED light emitting diode
  • the first light source and the second light source described above are merely examples, and any light source may be used as long as it satisfies the above-described necessary conditions and preferable conditions.
  • the first light source and the second light source may be prepared separately, or may be a single device configured to emit the first light and the second light.
  • two light-emitting light sources are built-in, a device configured to output the first light and the second light from one output, or a common one light source is built-in to the first light.
  • a device configured to output the first light and the second light by switching the filter for making the light and the filter for making the second light may be used.
  • the second light is sufficiently blocked to prevent the second light from being reflected on the target tissue site and the surroundings and entering the image pickup apparatus together with the autofluorescence image and affecting the autofluorescence image.
  • a filter having a light shielding characteristic to be obtained is installed in the optical path for imaging.
  • the filter may be manually installed, but preferably has a mechanism or structure for attaching and detaching the filter.
  • the filter does not transmit the second light and can transmit the autofluorescence emitted from the living tissue.
  • the second light is excluded, sufficient autofluorescence is captured, and a clear autofluorescence image is captured.
  • the device of the present invention can be used as a device for confirming and diagnosing cancer tissue removal and excision surgery.
  • the normal tissue is excised at the same time. From the viewpoint of reducing the risk of cancer recurrence, it is safer to excise the normal tissue adjacent to the cancer tissue.
  • the quality of life of the patient after surgery (Quality of Life, From the viewpoint of QOL), it is required to minimize as much as possible.
  • the diagnostic imaging apparatus of the present invention can be operated in the operating room to diagnose and confirm the excision part during excision surgery, so that the surgeon in operation can have the cancer affected part excised from the organ. It becomes possible to directly observe the distribution of cancer tissue in Therefore, the apparatus of the present invention is useful for an operator who is required to perform an appropriate operation while being aware of QOL.
  • This embodiment is configured as a device for diagnosing the excision state of a cancer tissue in an excision portion taken out of the body in the excision operation of the cancer tissue.
  • the difference from the above embodiment is whether or not an endoscope is interposed between the apparatus and the tissue, and the basic configuration is the same.
  • the light source to be used and the wavelength region of the light emitted from the light source may be selected according to the requirements described in the first embodiment.
  • the apparatus of the present invention is not necessarily limited to these numerical values. .
  • the apparatus of the present invention is not limited to the illustrated apparatus aspect, and any apparatus configuration may be used as long as the diagnosis method of the present invention can be implemented.
  • FIG. 1 is a diagram schematically showing a configuration example of this embodiment.
  • the diagnostic imaging apparatus is used for diagnosing the excision state of the cancer tissue in the excision part taken out of the body in the excision operation of the cancer tissue.
  • the diagnostic imaging apparatus includes an observation table 100 on which a tissue site 101 including a cancerous part removed and removed by surgery can be placed.
  • the first light source 110 and the second light source 120 are both installed obliquely above the observation table 100 so that the entire surface of the observation table can be illuminated uniformly.
  • One first light source 110 and one second light source 120 may be provided as long as the affected area is small and flat.
  • the outer peripheral shape of the excised cancerous part is large or more than necessary, it is preferable to irradiate from a plurality of directions with a plurality of light sources.
  • a plurality of first light sources and a plurality of second light sources are used, irradiation is performed at the same timing. That is, the plurality of first light sources are operated in synchronization with each other, and the plurality of second light sources are operated in synchronization with each other.
  • the first light source 110 is an illuminating device for irradiating the tissue site 101 to be diagnosed with the first light.
  • the stump of the tissue site 101 excised as a cancer affected part is irradiated with the first light, the reflected light from the stump is received, imaged and observed.
  • the first light source 110 is, for example, an LED, a light emitting device (for example, a white light source) that combines an LED and a phosphor, a light source such as a xenon lamp or a halogen lamp, a filter, etc. And the like that can irradiate light in a desired wavelength region.
  • an LED that emits light having a wavelength of 460 nm or more, particularly 500 nm or more and 600 nm or less is preferable.
  • an LED that emits light in a narrow wavelength region within the above wavelength range is preferable, and an LED that emits monochromatic light is more preferable.
  • the second light source 120 is an illuminating device for generating autofluorescence by irradiating the cut end of the cancerous affected part 101 with second light to excite living tissue.
  • a living tissue is irradiated with light in the wavelength range of less than 460 nm to ultraviolet light, particularly 450 nm or less, the living tissue is excited and self-fluorescence with a wavelength of 500 to 600 nm is emitted.
  • collagen fibers rich in tissues are known to emit autofluorescence having a wavelength of about 530 nm when irradiated with light having a wavelength of 450 nm.
  • the second light source 120 irradiates light having a wavelength in a wavelength region of about 450 nm where the spectrum intensity is maximum.
  • an LED that emits light in the wavelength range described above for the second light more preferably an LED that emits light in a narrow wavelength range within the wavelength range, and more preferably in the wavelength range. Examples include LEDs that emit monochromatic light, and light-emitting devices that combine LEDs and phosphors to emit such light.
  • the first light when the reflected light image is captured, the first light is irradiated to the tissue site. At that time, the second light is blocked so as not to irradiate the tissue site, or the operation of the second light source itself is stopped (turned off). Further, when the tissue region is irradiated with the second light and an autofluorescence image is taken, the first light is blocked from being irradiated to the tissue, or the operation of the first light source is stopped (turned off).
  • the control of irradiation and stop of each light source may be performed by a programmable electronic control device such as a computer.
  • each of the light passes through the optical filter 200, is imaged by the imaging lens 300, and is imaged by the imaging device 400.
  • the optical filter 200 is selected from a filter group that does not substantially transmit the second light and transmits the autofluorescence.
  • a band pass filter that transmits light having a wavelength of 500 nm or more, more preferably, light having a wavelength of 500 nm or more and 600 nm or less is preferably used.
  • a bandpass filter transmits light in a specific wavelength region having a certain width. Therefore, when the filter has a characteristic of blocking the reflected light of the first light, the filter may be removed from the optical path when the reflected light image is captured.
  • the filter when a bandpass filter capable of transmitting both reflected light and autofluorescence is used in the mutual relationship between the bandpass filter and the reflected light and autofluorescence, the filter is placed on the optical path when the reflected light image is captured. It may be left installed or removed from the optical path. Specifically, when a band-pass filter that transmits light with a wavelength of 460 nm or more and 600 nm or less is used, the band-pass filter does not have to be removed from the imaging optical path when the reflected light image and the autofluorescence image are captured. Good.
  • the imaging device only needs to be configured to capture a reflected light image obtained by irradiation with the first light and an autofluorescence image obtained by irradiation with the second light.
  • the imaging device is preferably one that can capture the reflected light image and the autofluorescence image with a single device, and a high sensitivity CCD (Charge-Coupled Device) is exemplified as a preferred imaging device.
  • the imaging device may combine a device having sensitivity to reflected light and a device having sensitivity to autofluorescence.
  • the irradiation light and the reflected light are not exactly the same due to light absorption or the like, but the wavelength of the light that can be imaged by the imaging device is reflected.
  • the light and the first light may be regarded as light having the same wavelength.
  • the imaging device may be a simple camera for taking a still image or a video camera capable of taking a moving image. As will be described later, the first light and the second light are irradiated for a short period of time and switched alternately to obtain a moving image that emphasizes only the cancer tissue.
  • the image processing apparatus 500 includes, for example, a memory 510 that stores a signal of a reflected light image and an autofluorescence image, a brightness adjustment circuit 520 that matches the average brightness of the reflected light image and the autofluorescence image, and a difference calculation circuit 530.
  • the difference calculation circuit is a device that calculates the difference between the brightness of the reflected light image and the brightness of the self-fluorescent image (for example, a subtraction circuit that subtracts the brightness of the auto-fluorescent image from the brightness of the reflected light image).
  • the apparatus may further include a reflected light image, an autofluorescence image, or a contrast (CR) enhancement circuit 540 for a difference image.
  • a reflected light image an autofluorescence image
  • a contrast (CR) enhancement circuit 540 for a difference image.
  • brightness adjustment, difference calculation processing (subtraction processing), and contrast enhancement performed by the image processing apparatus 500 can be performed as individual processes while being confirmed by the operator, but more quickly and accurately. In order to obtain a high difference image, a mode in which these processes are automatically performed using a computer or the like is preferable.
  • the acquired reflected light image and the autofluorescence image are adjusted in luminance, and then the difference calculation is performed. Thereafter, contrast enhancement is performed to obtain a final image. Below, each processing method is demonstrated.
  • the reflected light image and the autofluorescence image usually have different luminances. Therefore, when calculating the difference in luminance between the two images, it is preferable to adjust so that the integrated values from all the respective pixels have the same luminance distribution. Specifically, for example, when the acquired reflected light image and autofluorescence image are 8-bit data, both have a maximum luminance and a minimum luminance of 255 and 0, respectively, and the intermediate color tone is between 255 and 0. Place it linearly or by applying gamma correction.
  • the difference calculation process is performed by calculating a difference between a luminance value of a pixel (pixel) at each coordinate of the reflected light image and a luminance value of a pixel having the same coordinate corresponding to the pixel in the autofluorescence image.
  • a difference image is obtained by performing this calculation for all coordinates and expanding the calculation result to the same coordinates as a new image.
  • a signal of a difference image between the reflected light image and the autofluorescence image obtained by the image processing device 500 is output to the display device 600. Since the display device 600 displays an image in which the cancer tissue is emphasized at the stump of the excised cancer affected tissue 101, the operator can easily and reliably determine the appropriateness of the excision from the projected image. Can be recognized. Further, for example, a pseudo color image can be drawn from the obtained difference image data and autofluorescence image data.
  • the diagnostic imaging apparatus of the present invention can be applied to diagnosis of various cancer tissues, for example, diagnosis using an endoscope, confirmation of excised tissue in cancer resection surgery, etc. It is effective.
  • FIG. 5 is a diagram schematically illustrating another configuration example of the diagnostic imaging apparatus.
  • the configuration of the diagnostic imaging apparatus shown in FIG. 5 is an automated version of the apparatus described in FIG.
  • the first light source 110 and the second light source 120 are each provided as one unit. However, as in FIG. 1, two units of illumination may be used, or more light sources may be used.
  • the image diagnostic apparatus of FIG. 5 includes a control device 700, a first light source controller 115, and a second light source controller 125 in addition to the apparatus of FIG.
  • the control device 700 is configured to control the first light source controller 115 and the second light source controller 125 so that the first light source 110 and the second light source 120 are activated and stopped (irradiated and turned off).
  • the control device 700 causes the imaging device 400 to capture a reflected light image when the first light source 110 is activated (irradiated), while the imaging device 400 is homed when the second light source 120 is activated. A fluorescent image is taken.
  • the control device 700 further causes the image processing device 500 to render a difference image based on the reflected light image and the autofluorescence image that are continuously captured.
  • the difference image can be displayed in a very short time, so that the cancer tissue can be rendered on the display device at the video rate. If the image can be drawn at a video rate, the observation table 100 can be scanned to draw the distribution of the cancer tissue even when the excised organ including the cancerous part is large. Alternatively, a detailed cancer tissue distribution at the stump of the resected organ can be depicted using a high-magnification imaging lens.
  • Example 1 The cancer affected part excised by surgery was set on the observation table (S100 in FIG. 2).
  • the excised cancerous part was irradiated with 500 to 550 nm green light (first light) from two white LED light sources with green filters (S110 in FIG. 2).
  • the reflected light from the cancerous part is passed through a band-pass filter (U-MCFPHQ / XL manufactured by Olympus Co., Ltd.) that transmits light of 460 to 510 nm, and the reflected light that has passed through is imaged with a stereomicroscope.
  • the image was taken with a CCD camera, and the image signal was stored in the memory (S120).
  • the LED light source was installed in the position which faces a stereomicroscope, and the cancer affected part was illuminated uniformly.
  • the excised cancer affected area was irradiated with blue light by two white LED light sources with band-pass filters that transmit light of 425 to 450 nm (S130).
  • the reflected light and autofluorescence from the cancer affected part are passed through the band pass filter of 460 to 510 nm to eliminate the second light, and the reflected light and autofluorescence that have passed through are imaged with a stereomicroscope. Images were picked up by the sensitivity CCD element, and the image signal was stored in the memory (S140).
  • the reflected light image and the self-fluorescent image stored in the memory were displayed on the display device, and adjusted so that the average luminance of the two was matched on the display device (S150). At this time, contrast enhancement processing was performed simultaneously.
  • the autofluorescence image was subtracted from the reflected light image (difference calculation process) (S160). The signal obtained by the subtraction process is output to the liquid crystal display device, and a differential image in which the cancer tissue is emphasized with respect to the normal tissue is displayed (S170).
  • These processes were performed using “ImageJ” which is the latest version of the science image analysis software “NIH Image” developed by NIH (National Institutes of Health).
  • FIG. 3A is a photographic view showing the reflected light image obtained in step S120 of the present embodiment
  • FIG. 3B is a photographic view showing the autofluorescence image obtained in step S140
  • FIG. 3C is a photograph showing the difference image after the subtraction process obtained in step S170. Based on the displayed difference image, the surgeon can visually confirm the suitability of the cancer affected part resection range (S180).
  • the difference image of FIG. 3C has a clearer distribution of cancer tissue (denoted as “Cancer” in the figure). It is drawn in.
  • the difference image of FIG. 3C obtained by the method of the present invention makes it easy for the operator to determine whether or not resection is appropriate during the operation.
  • Example 2 In this example, a normal tongue was observed using the apparatus shown in FIG. 1 of the present invention.
  • the excised cancer affected part 101 was placed on the observation table 100 and observed, but in this example, the tongue before excision is used as a diagnostic object, It was shown that it can be applied to the diagnosis of internal organs.
  • FIG. 4A is a photograph showing a reflected light image of the tongue.
  • the morphological features of the tongue can be confirmed from the reflected light image.
  • FIG. 4B is a photograph showing an autofluorescence image of the tongue.
  • cancer tissues and muscle tissues have low luminance, and dermis and nerves show high luminance.
  • the entire tongue is imaged with high luminance.
  • FIG. 4C is a difference image obtained from the reflected light image and the autofluorescence image.
  • FIG. 4D schematically shows the contour of the tongue and the tongue (hatched area). In FIG. 4C, it can be seen that the inside of the contour of the tongue has uniform brightness as a whole. From FIG. 4C, it is diagnosed that there is no cancer tissue on the surface of the observed tongue.
  • the present Example 2 is a result of observing a normal tongue. After the cancer tissue is excised, by observing the excision surface on the side of the excised organ, whether or not the cancer tissue remains in the organ after excision is confirmed. Diagnosis can be made quickly and accurately.
  • the colorectal cancer which is an adenocarcinoma
  • the reflected light image and autofluorescence image of the tissue are captured using the apparatus of Embodiment 1, and the cancer tissue is clearly displayed by the difference image between them. I confirmed that I can do it.
  • not only a difference image is created, but further image processing is performed on the difference image, the cancer tissue is colored, and the person who viewed the image more An easy-to-identify image was created.
  • the monochromatic light can be irradiated.
  • Filter for forming first light Green filter G-533, manufactured by Hayashi Filter for forming the second light: Chroma, D455 / 70
  • a Chroma long pass filter, ET500 was used as a filter for preventing the second light from entering the imaging device.
  • FIG. 6A is a reflected light image
  • FIG. 6B is an autofluorescence image
  • FIG. 6C is a difference image
  • FIG. 6D is a pseudo image obtained by further processing the difference image. It is the processed image made into the color image.
  • FIG. 6 (d) is obtained by inputting the difference image of FIG. 6 (c) to the R and B channels of the RGB channels and inputting the autofluorescence image of FIG. 6 (b) to all the RGB channels.
  • magenta pink
  • the normal mucous membrane part has high brightness (brightness) in both the reflected light image and the autofluorescence image
  • the cancer tissue part has high brightness in the reflected light image
  • the brightness of the autofluorescence image is It was found to show the characteristic of low.
  • Example 4 In this example, a sample of a colorectal cancer tissue that was different from that of Example 3 was used, and imaging was performed by changing exposure conditions and image processing conditions.
  • the configuration of the apparatus and the wavelength of irradiation light are the same as those in the third embodiment.
  • the imaging results are shown in FIGS. As in FIG. 6, (a) is a reflected light image, (b) is an autofluorescence image, (c) is a difference image, and (d) is the difference, as in FIG. This is a processed image obtained by further processing the image.
  • the cancer tissue appears dim in the difference image of FIG. 7C, but is brighter and displayed in magenta color in the processed image of FIG. 7D.
  • the photographic diagram of FIG. 8 has the same imaging conditions as the photographic diagram of FIG. 7, but only the G signal is extracted from the G channel of the RGB output of the camera, and the reflected light image and the autofluorescence image are converted into a monochrome image. did.
  • the difference image in FIG. 8C and the processed image in FIG. 8D it was found that the same image as in FIG. 7 was obtained after the difference calculation.
  • FIG. 8B since the brightness of the autofluorescence image is generally small, the difference in brightness becomes large as a whole, and as shown in FIG. 8D, the whole is shown as positive. ing. From this, it was found that the exposure and brightness of the autofluorescence image should be adjusted as appropriate so that cancer cells are displayed prominently.
  • the present invention is not limited to this, and can also be used for observation of the remaining organ surface after the cancer affected part has been excised.
  • the present invention that can depict a cancer tissue by subtracting the autofluorescence image from the reflected light image to obtain a cancer tissue can also be applied to diagnosis by an endoscope by introducing illumination light into the optical fiber.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

診断対象とすべき組織部位に対し、自家蛍光を放出させず実質的に反射光だけを返す光を第1光源110から照射し、該反射光によって得られる該組織部位の反射光像を撮像し、また、該組織部位に、自家蛍光を放出させる光を第2光源120から照射し、該自家蛍光によって得られる該組織部位の自家蛍光像を撮像し、反射光像の輝度と自家蛍光像の輝度との差分を演算して、これら2つの画像の差分画像を形成する。組織部位に癌組織が存在する場合、差分画像には癌組織が鮮明に現れる。

Description

画像診断装置および診断方法
 本発明は、ヒトや動物等の癌組織を光学的に検出し診断する方法に関し、とりわけ、内視鏡を用いて生体内の組織を対象とした、癌組織部位の有無や存在範囲の判定、癌組織部位の光医学的な観察、検査、診断等のための方法、または、癌摘出手術において生体外に摘出された癌患部切除断端を対象とした、癌組織の光医学的な観察、検査、診断等のための方法に関し、かつ、本発明の方法を実施するための診断装置に関する。
 光学的手段を用いた、組織内における病巣の観察、とりわけ癌組織の有無や、その大きさ・分布等の観察や診断については、迅速かつ正確さが求められている。例えば、内視鏡を用いた体内組織の観察では、極めて小さな癌組織の確認は、癌の初期発見にもつながり、極めて重要である。また、体外での癌組織の観察・検出の例として、癌摘出手術では、癌組織が十分なマージンをとって確実に摘出できたか否かを判定するために、通常、術中迅速病理診断を行う。
 この術中迅速病理診断には、病理医のいる病院であっても、施術現場から、対象となる組織断片を、病理担当部署に持ち込み、組織染色等により、検査するために長時間、または数十分を要する。まして、病理・検査部署を有さない病院、遠隔地医療ではなおさらであり、手術の長時間化の原因となる。また、判定報告を受けるまで閉創できないため、感染の危険性が高くなる。
 そこで、判定に要する時間が短く、しかも手術室内の患者サイドで検査できる精度の高いかつ迅速な診断方法の開発要求が高まっている。
 従来から、光学的な手段を用いて正常組織と癌組織とを分別する試みが行われている。例えば、特許文献1~3には、生体組織に励起光を照射した際に、正常組織と癌組織とでは自家蛍光のスペクトル強度が異なることを利用した光学的診断装置が開示されている。このような光学的な診断装置は、判定に要する時間が短く、しかも手術室内で検査できる可能性を有している。
 しかしながら、特許文献1~3にみられる装置および手段では、他のいくつかの正常組織との判別が付きにくいことや、煩雑な操作を必要とするといった問題がある。このような背景から、診断の正確性、迅速性、簡便性などが、術後の患者予後に大きな影響を及ぼすため、判定の確度および精度のさらなる向上が求められている。また、医師である診察者や術者自身が現場で迅速かつ簡便に評価できる方法が望まれている。
 また、特許文献4では、内視鏡システムにおいて、その病変組織の診断の確度および精度を向上する目的で、紫外線を励起光として照射することで、組織の自家蛍光像を撮像し、また、白色光を照射することにより、組織の反射光像を撮像して、それぞれ得られた像の輝度に関して、所定の補正を行い、反射光像のそれぞれの画素点の輝度とそれに対応する自家蛍光像のそれぞれの画素点の輝度の差分を座標化し、得られた座標に応じての画像処理を行わせることで、病巣組織を際立たせる、方法および装置が開示されている。
 然しながら、特許文献4記載の手法・装置においては、その判定・検査の精度を向上させるために、煩雑な演算処理を必要としている。
 また、特許文献4記載の手法、装置では、前述したように、紫外線を励起光として照射し、自家蛍光像を撮像するため、必要以上のエネルギーを組織に与えることとなり、その結果、組織の自家発光の輝度についても必要以上の輝度となる恐れがある。
 更に、特許文献4記載の手法、装置では、反射光像を得るために照射される光が白色光である。公知のように、白色光には紫外線等の短波長領域の光も多く含まれる。従って、反射光像を撮像する時に、紫外線によって対象組織が励起され、自家蛍光が発せられるため、反射光の輝度に対して、自家蛍光の輝度がきょう雑し(コンタミネーションを生じ)、正確な反射光による輝度が反映されないこととなる。
 このような問題点をはらむことから、特許文献4に記載の手法、装置では煩雑な演算処理等を行わざるを得ない。
 加えて、紫外線は人体等への悪影響を及ぼすこともあり、医療現場等での使用は好ましくない。特に、内視鏡等での人体内への照射は避けるべきである。
特開2000−325295号公報 特開2004−243119号公報 特開2008−12211号公報 特開2004−215738号公報
 本発明の目的は、上記問題を解決する新たな診断装置および診断方法を提供することであり、それによって、例えば、癌組織摘出手術中において、生体外に取り出した切除部の適正性を確認(現場確認)する際に、医師である施術者自身がベッドサイドで、迅速、簡便でかつ確度・精度の高い確認等を可能とし、また、内視鏡等により、生体内の組織中の癌組織の有無や、その分布の大きさを診断する際に、迅速、簡便でかつ確度・精度の高い診断等を可能することにある。また、本発明のさらなる目的は、生体組織の反射光像を撮像する際に、自家蛍光によるコンタミネーションを回避し、かつ、生体組織の自家蛍光像を撮像する際の安全性を高めることにある。
 本発明者等は、生体組織における癌組織の光学的手法による検出方法について鋭意検討した結果、
(i)自家蛍光を放出させるべく励起光を照射した場合、癌組織の自家蛍光像の輝度が、正常組織の自家蛍光像の輝度よりも低いこと、かつ、
(ii)反射光像を得るための光を癌組織に照射した場合、癌組織における反射率は、正常組織における反射率と同様に高く、反射光像の輝度が高いこと、
を見出した。
 この事実に対応して、正常組織(粘膜固有層である結合組織や神経組織など)では、自家蛍光像の輝度が癌組織の場合よりも高く、かつ、反射光像を得るための光を正常組織に照射した場合の反射率は、癌組織の場合と同様に高く、反射光像の輝度が高いことも見出した。
 また、本発明者等は、更に、正常組織のなかでも、筋組織では、自家蛍光像の輝度および反射光像の輝度が、双方ともに低いことを見出した。
 以上のことから、反射光像単独でのまたは自家蛍光像単独での診断等、特に視認での診断等は、困難であることがわかった。
 そこで、本発明者等は、癌組織および正常組織からの反射光や自家蛍光の特性を基に、癌組織と正常組織との対比を明確にすることを検討した。その結果、反射光像を得るために照射する光として、白色光を用いず、実質的に生体組織を励起せず、自家蛍光を発光させない波長域にある光(以下、第一の光と呼ぶ場合もある)を用い、該第一の光を生体組織に照射して、その反射光から得られる画像を反射光像として取得し、一方で、自家蛍光像を得るために照射する光として、紫外線より長波長領域にあって生体組織を励起し自家蛍光を放出させ得る光(以下、第二の光と呼ぶ場合もある)を用い、該第二の光を生体組織に照射し励起し、放出された自家蛍光から得られる画像を自家蛍光像として取得し、反射光像の輝度と自家蛍光像の輝度との差分を描出し、画像化することで、癌組織が際立って鮮明に描出された画像が得られ、癌組織と正常組織とが明確に判別され得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
(1)生体組織に含まれる癌組織の存在や分布を診断するための画像診断装置であって、
 診断対象とすべき組織部位に、自家蛍光を放出させず実質的に反射光だけが得られる波長領域の光である第1の光を照射するための第1光源と、
 該組織部位に、該組織部位を励起して自家蛍光を放出させる波長領域の光である第2の光を照射するための第2光源と、
 前記反射光によって得られる該組織部位の画像である反射光像と、前記自家蛍光によって得られる該組織部位の画像である自家蛍光像とを、それぞれに撮像し得るように構成された撮像装置と、
 前記反射光像の輝度と、前記自家蛍光像の輝度との差分を求め、該差分に基づいた組織部位の差分画像を生成する画像処理装置と、
 前記差分画像を表示する表示装置と、
を有する画像診断装置。
(2)組織部位が、生体内に存在するそのままの状態のものであるか、または、切除され生体外に取り出された状態のものである、上記(1)記載の画像診断装置。
(3)撮像装置の前段に、さらに、組織部位から発せられた自家蛍光を透過させかつ第2の光を実質的に遮断できる光学フィルターが設けられている、上記(1)または(2)記載の画像診断装置。
(4)光学フィルターが、反射光像の撮像時には反射光の通過を妨げないように撮像の為の光路上には位置せず、自家蛍光像の撮像時には、第2の光の透過を妨げるように撮像の為の光路上に位置し得るように構成されている、上記(3)記載の装置。
(5)光学フィルターが、反射光を透過させ得るものである、上記(3)記載の装置。
(6)光学フィルターが、反射光像の撮像時および自家蛍光像の撮像時の双方において、撮像の為の光路上に位置するように構成されている、上記(5)記載の装置。
(7)光学フィルターが、波長460nm以上の光を透過させるフィルターである、上記(3)または(4)記載の装置。
(8)光学フィルターが、波長460nm以上、600nm以下の光を透過させるバンドパスフィルターである、上記(3)~(7)のいずれかに記載の装置。
(9)第1光源が、460nm以上、600nm以下の波長領域に属する光を発する光源である、上記(1)~(8)のいずれかに記載の装置。
(10)第2光源が、400nm以上、460nm未満の波長領域に属する光を発する光源である、上記(1)~(9)のいずれかに記載の装置。
(11)第1光源が460nm以上、600nm以下の波長領域に属する光を発する光源であり、第2光源が400nm以上、460nm未満の波長領域に属する光を発する光源であり、かつ、光学フィルターが、波長460nm以上、600nm以下の光を透過させるバンドパスフィルターである、上記(6)記載の装置。
(12)画像処理装置が、反射光像および自家蛍光像を記憶するメモリと、記憶された反射光像と自家蛍光像のそれぞれの平均輝度を整合させる輝度調整回路と、反射光像の輝度と自家蛍光像の輝度との差分を演算して差分画像を得る減算回路とを有する、上記(1)~(11)のいずれかに記載の装置。
(13)画像処理装置が、反射光像、自家蛍光像または差分画像のコントラストを強調する、コントラスト強調回路をさらに有する、上記(1)~(12)のいずれかに記載の装置。
(14)更に、内視鏡システムを備え、生体内に存在するそのままの状態の組織部位に対して、第1の光を照射して反射光像を撮像し得、第2の光を照射して自家蛍光像を撮像し得る構成となっており、それによって、癌組織の存在の有無や癌組織の分布を診断することが可能となっている、上記(1)~(13)のいずれかに記載の装置。
(15)癌摘出手術時において、生体外に摘出された組織部位における癌組織の存在の有無や癌組織の分布の診断に用いられる、上記(1)~(13)のいずれかに記載の装置。
(16)第1光源と第2光源のそれぞれの作動と停止を制御する制御装置をさらに有し、該制御装置は、第1光源を作動させる時には、第2光源を停止し、撮像装置に反射光像を撮像させ、第2光源を作動させる時には、第1光源を停止し、撮像装置に自家蛍光像を撮像させるように構成されている、上記(1)~(15)のいずれかに記載の装置。
(17)癌が、胃癌、大腸癌、食道癌、咽頭癌、肝臓癌、子宮癌、肺癌である、上記(14)記載の装置。
(18)癌が、胃癌、大腸癌、食道癌、咽頭癌、肝臓癌、子宮癌、肺癌、膵臓癌、前立腺癌、脳腫瘍、膀胱癌である、上記(15)記載の装置。
(19)生体組織に含まれる癌組織の存在や分布を診断するための画像診断方法であって、
 診断対象とすべき組織部位に、自家蛍光を放出させず実質的に反射光だけが得られる波長領域の光である第1の光を照射し、該反射光によって得られる該組織部位の画像である反射光像を撮像するステップと、
 該組織部位に、該組織部位を励起して自家蛍光を放出させる波長領域の光である第2の光を照射し、該自家蛍光によって得られる該組織部位の画像である自家蛍光像を撮像するステップと、
 前記反射光像の輝度と、前記自家蛍光像の輝度との差分を求め、該輝度の差分に基づいた差分画像を形成する画像処理ステップとを、
少なくとも有する、画像診断方法。
(20)少なくとも自家蛍光像を撮像するステップにおいて、組織部位から発せられた自家蛍光を透過させかつ第2の光を実質的に遮断できる光学フィルターを通して撮像を行ない、それによって、組織部位で反射した第2の光によるきょう雑を防ぐ、上記(19)記載の方法。
 反射光像の輝度と、自家蛍光像の輝度との差分を求め、該差分に基づいた組織部位の差分画像を生成することによって、組織部位の画像の中で、癌組織だけが輝度の高い強調された画像として表示される。
 本発明によって、生体内の組織を対象とする場合には、本発明の方法および装置と、内視鏡システムとを組み合わせることで、癌組織の有無、存在・分布の範囲を、たとえ極めて小さいものであっても鮮明に視認・検査・診断することができ、癌組織の早期発見が可能となる。
 また、生体内から切除し体外に取り出したものを対象とする場合には、例えば、癌組織摘出手術時において、予めその摘出範囲を手術現場にて、内視鏡システムで簡便に確認することができる。
 また、該手術において切除し体外に取り出した癌患部の切除範囲の適正性を、体外で正確、かつ短時間に判定することができる。しかも手術室内の患者の近傍(ベッドサイド)で術者自身が直接検査できるため、追加切除の必要性があるかどうかが即座に判断できる。したがって、手術時間を総体的に短縮できる。特に病理医が居ない遠隔地医療では、大幅な時間短縮が可能となる。
図1は本発明による画像診断用装置の一実施形態を示す概略図である。 図2は、本発明の診断方法の一実施形態を示すフローチャートである。 図3(a)は、本発明による画像診断用装置によって撮像された癌患部の反射光像を示す顕微鏡写真である。 図3(b)は、本発明による画像診断用装置によって撮像された癌患部の自家蛍光像を示す顕微鏡写真である。 図3(c)は、本発明による画像診断用装置によって撮像された癌患部の、反射光像と自家蛍光像との差分画像を示す顕微鏡写真である。 図4(a)は、本発明による画像診断用装置によって撮像された正常な舌の反射光像を表す顕微鏡写真である。 図4(b)は、本発明による画像診断用装置によって撮像された正常な舌の自家蛍光像を表す顕微鏡写真である。 図4(c)は、本発明による画像診断用装置によって撮像された正常な舌の、反射光像と自家蛍光像との差分画像を表す顕微鏡写真である。 図4(d)は、本発明による画像診断用装置によって撮像された正常な舌の輪郭を示す図である。 図5は、本発明の画像診断用装置の他の実施形態を示す概略図である。 図6は、本発明の実施例3で得られた大腸癌の組織の写真図であって、図6(a)は反射光像、図6(b)は自家蛍光像、図6(c)は差分画像、図6(d)は処理画像である。図6~図8の画像については、世界知的所有権機構(WIPO)に提出されるこれらの画像は、全てカラー写真である。 図7は、本発明の実施例4で得られた大腸癌の組織の写真図であって、図7(a)は反射光像、図7(b)は自家蛍光像、図7(c)は差分画像、図7(d)は処理画像である。 図8は、本発明の実施例4で得られた大腸癌の組織の写真図であって、図8(a)は反射光像、図8(b)は自家蛍光像、図8(c)は差分画像、図8(d)は処理画像である。
 図1および5における各符号は、それぞれ、次のものを示している。
100:観察テーブル、101:癌患部組織、110:第1光源、115:第1光源コントローラ、120:第2光源、125:第2光源コントローラ、200:光学フィルター、300:結像レンズ、400:撮像装置、500:画像処理装置、510:メモリ、520:輝度調整回路、530:減算回路、540:コントラスト強調回路、600:表示装置、700:制御装置
 以下、本発明による装置の実施態様の一例として、当該装置に内視鏡を組み合わせ、生体内にある組織をそのままの状態で診断する構成について説明する。また、装置の構成を説明しながら、同時に本発明による方法を説明する。
 本例では、本発明による装置に内視鏡を接続し、本発明の装置に備えられた第1の光源から、第1の光を内視鏡を通して対象の組織部位に照射し、または、内視鏡の先端部に小型の光源を設けて対象の組織部位に直接的に照射し、得られる反射光像を撮像する。次に第1の光を遮断し、同様に、第2の光源から、第2の光を内視鏡を通して対象の組織部位に照射し、得られる自家蛍光像を撮像する。尚、第1の光、第2の光の照射は、どちらが先であってもよい。得られた反射光像と自家蛍光像とから、輝度に関する差分画像を作成し、癌組織の診断を行う。
 本発明でいう、「診断」とは、文字通りの診断のみならず、組織の観察、記録、癌組織の有無の確認、判定、検査を含む。
 撮像装置を生体外に設け、内視鏡内の光ファイバを通じてを画像を生体外まで取り出す態様であってもよく、また、撮像装置を小型化して内視鏡の先端に設け、画像信号を生体外に取り出す態様であってもよい。
(反射光像の撮像)
 第1の光は、対象の組織部位の反射光像を撮像するために照射する光であって、実質的に生体組織を励起しない光、即ち、該組織に自家蛍光を発光させない波長領域の光である。第1光源は、第1の光を発することが可能な装置であればよい。
 当該装置に、後述する第2の光を遮断するための光学フィルター(以下、単にフィルターということがある)を設ける場合に、該フィルターが反射光を遮断するものであるならば、該フィルターをその光路(照射に係る光路および撮像に係る光路)から除去して反射光像を撮像すればよい。フィルターの除去に関しては手動であってもよいが、機械作用を利用して、自動的に切替えが行われる構造または機構であればより好ましい。第1の光がその大部分の波長領域においてフィルターを透過するような場合には、フィルターを取り除く必要はない。
 第1の光は、460nm以上、さらには500nm以上の波長領域にある光であることが好ましく、550nm程度の波長領域にある光が特に好ましい。また、第1の光は、単波長の光またはある特定の波長領域幅の光(波長領域の狭い多色光)であることが好ましい。第1の光は撮像可能な光であればよく、その波長の上限は、特に限定はされないが、600nm以下が好ましい。
 後述のフィルターを装着したままで反射光像を撮像する場合、第1の光は、その光量のうちの大部分が該フィルターを透過可能となるような波長領域にあり、該フィルターを十分に透過する可視光が好ましい。フィルターを透過する光量が過度に少ない場合には、反射光像が十分な輝度を得られず、不十分な像となる。従って、第1の光の波長とフィルターの透過特性とが適切な組み合わせとなるよう考慮すればよい。
 上記の点を考慮すると、第1光源は、第1の光として狭い波長領域の光を発する発光ダイオード(LED)などの半導体発光素子や、該半導体発光素子と蛍光体とを組み合わせた発光装置等が好ましいものとして挙げられる。また、キセノンランプ、ハロゲンランプなどの光源にフィルター等を組み合わせて、所望の波長領域の光を得、これを光ファイバーを通じて対象の組織部位に照射を行ってもよい。光源自体の構成については、必要な波長の光が得られるように、従来技術を利用してよい。
(自家蛍光像の撮像)
 第2の光は、撮像に十分な自家蛍光が生体組織から放出されるよう、該生体組織を励起し得る短波長の光であればよく、紫外領域にない光がより好ましい。第2の光が紫外領域に属する光を多量に含んでいると、生体(とりわけ人体)に悪影響を及ぼすので、好ましくない。
 従って、第2の光は、紫外領域にない400nm以上の波長領域にあり、かつ、生体組織を励起し自家蛍光を放出させ得る500nm以下の波長領域にあって、第1の光とは波長が異なる光が好ましく、400nm以上、460nm未満がより好ましく、特に400nm以上、450nm以下の波長の光が好ましい。
 上記の点を考慮すると、第2光源は、第2の光として狭い波長領域の光を発する発光ダイオード(LED)等が好ましいものとして挙げられる。
 上記した第1光源、第2光源は、単なる例示に過ぎず、上記した必要な条件、さらには好ましい条件を満たす光源であれば、どのような光源であってもよい。
 第1光源、第2光源は、それぞれ別個に用意してもよいし、第1の光と、第2の光を発するように構成された1つの装置であってもよい。例えば、2つの発光光源を内蔵し、1つの出力から、第1の光と、第2の光を出力し得るように構成された装置や、共通の1つの光源を内蔵し、第1の光を作るためのフィルターと、第2の光を作るためのフィルターを切り替えることにより、第1の光と、第2の光を出力し得るように構成された装置などであってもよい。
 第2の光が、対象の組織部位や周囲で反射して、自家蛍光像と共に撮像装置に入射し、自家蛍光像に影響を及ぼすのを抑制するために、第2の光を十分に遮断し得る遮光特性をもったフィルターを撮像に係る光路に設置するのが好ましい態様である。
 このフィルターの設置は、手動であってもよいが、フィルターの着脱を行う機構または構造を備えることが好ましい。
 フィルターは、上記のように、第2の光を透過させず、かつ、生体組織から発せられた自家蛍光を透過させ得るものが好ましい。その理由は、上記したように、自家蛍光像を撮像する際に、第2の光を排除し、かつ、十分な自家蛍光を取り込み、鮮明な自家蛍光像を撮像するためである。
 次に、本発明による装置の実施態様の他の例として、生体内にある組織を切り取り体外に取り出して診断する場合の構成について説明する。
 本発明による診断原理を用いることで、癌組織の摘出や切除手術における確認、診断のための装置として、本発明装置を使用することが出来る。癌患部の切除に当たっては、癌組織を取り囲んで正常組織を同時に切除する。癌組織に隣接する正常組織の切除は、癌の再発の危険性を少なくする観点からは、大きく切除するほうが安全ではあるが、その一方で、術後の患者の生活の質(Quality of Life、QOL)の観点からは、できる限り最小限にすることが求められる。
 本発明の画像診断装置は、手術室で作動させて、切除手術中に切除部分の診断、確認を行うことが可能であり、それによって、手術中の術者が、臓器から切除された癌患部における癌組織の分布を直接観察することが可能になる。よって、本発明の装置は、QOLを意識しながら適性に手術することが求められる術者にとって、有用な装置となる。
 本実施態様では、癌組織の切除手術において、体外に取り出した切除部分における癌組織の切除状態を診断するための装置として構成される。上記した実施態様との差異は、当該装置と組織との間に、内視鏡が介在するか否かの点であって、基本的な構成は同様である。使用する光源、光源から発せられる光の波長領域等については、第一の実施形態で説明した要件に沿って選択すればよいが、必ずしも、この数値等に本発明装置が限定されるものではない。また、本発明の装置は、例示した装置の態様のみに限定されず、本発明の診断方法を実施し得るものであれば、どのような装置構成であってもよい。
 図1は、本実施態様の構成例を、模式的に示した図である。同図の例では、当該画像診断装置を、癌組織の切除手術において、体外に取り出した切除部分における癌組織の切除状態の診断に用いている。
 図1に示すように、当該画像診断装置は、手術により切除され取り出された癌患部を含む組織部位101を載置することができる観察テーブル100を備える。第1光源110および第2光源120は、該観察テーブル上を全面的かつ均一に照射することができるように、いずれも観察テーブル100の斜め上方に設置されている。
 第1光源110および第2光源120は、切除患部が小さく平坦な形状であれば、それぞれに1基ずつでよい。切除された癌患部の外周形状が大きかったり、必要以上に厚さがあったりする場合には、複数の光源で複数の方向から照射することが好ましい。
 第1光源および第2光源をそれぞれ複数用いる場合には、それぞれ同一のタイミングで照射を行う。即ち、複数の第1光源同士を互いに同期して作動させ、複数の第2光源同士を互いに同期して作動させる。
 第1光源110は、上記したように、診断対象とすべき組織部位101に、第1の光を照射するための照明装置である。同図の例では、癌患部として切除された組織部位101の断端に第1の光を照射し、その断端からの反射光を受光し撮像し観察する構成となっている。
 第1光源110は、上記した内視鏡を用いる態様と同様に、例えば、LED、LEDと蛍光体とを組み合わせた発光装置(例えば、白色光源)、キセノンランプやハロゲンランプなどの光源にフィルター等を組み合わせて所望の波長領域の光を照射し得るようにした装置などが挙げられる。なかでも、460nm以上の波長、特に、500nm以上、600nm以下の波長範囲の光を発するLEDが好ましい。とりわけ、前記の波長範囲の中で、狭い波長域の光を発するLEDが好ましく、その中でも単色光を発するLEDがより好ましい。
 第2光源120は、切除された癌患部101の断端に第2の光を照射し、生体組織を励起させて、自家蛍光を発生させるための照明装置である。
 生体組織に460nm未満から紫外線の波長域、とりわけ、450nm以下から紫外線の波長域にある光を照射すると、生体組織が励起され、波長500~600nmの自家蛍光が放出される。なかでも組織に豊富な膠原線維は、波長450nmの光を照射すると波長530nm程度の自家蛍光が出ることが知られている。従って、第2光源120は、スペクトル強度が極大となっている部分の波長が、450nm程度の波長域にある光を照射するものが好ましい。
 ただし、紫外線の波長域にある光を用いれば、当該装置を操作する者等に悪影響を及ぼす恐れがあることから、紫外線の波長域にある光の照射は控えるべきである。従って好ましい第2光源としては、第2の光について上記した波長範囲の光を発するLED、より好ましくは該波長範囲内にある狭い波長域の光を発するLED、さらに好ましくはその波長範囲内にある単色光を発するLEDや、そのような光を発するようにLEDと蛍光体とを組み合わせた発光装置が挙げられる。
 本発明では、反射光像を撮像する時には、第1の光が組織部位に照射される。その際には、第2の光は、該組織部位に照射されないように遮断されるか、または、第2光源の作動自体が停止(消灯)される。
 また、第2の光を組織部位に照射し自家蛍光像を撮像する時には、第1の光が該組織に照射されないよう遮断されるか、または、第1光源の稼動自体が停止(消灯)される。
 また、各光源の照射と停止の制御は、コンピュータ等による、プログラム可能な電子制御装置によって行ってもよい。
 第1光源110からの第1の光を照射することで得られる癌患部101からの反射光および、第2光源120からの第2の光を照射することで得られる癌患部101からの自家蛍光は、それぞれ、好ましい態様として、光学フィルター200を透過したのち、結像レンズ300で結像され、撮像装置400で撮像される。
 光学フィルター200としては、第2の光を実質的に透過せず、かつ、自家蛍光を透過するフィルター群から選択される。具体的には、500nm以上の波長の光、より好ましくは、500nm以上、600nm以下の波長の光を透過するバンドパスフィルターが好ましいものとして用いられる。
 このようなバンドパスフィルターを用いることにより、第2光源から照射される第2の光が、反射などによって結像レンズ300に入射することを防ぐことができる。
 通常、このようなバンドパスフィルターは、ある幅を持った特定の波長領域の光を透過させる。従って、該フィルターが、第1の光の反射光を遮断する特性をもっている場合には、反射光像の撮像時に、該フィルターを光路上から取り除けはよい。
 一方、バンドパスフィルターと反射光、自家蛍光との互いの関係において、反射光と自家蛍光とを共に透過可能なバンドパスフィルターを用いた場合には、反射光像の撮像時にフィルターを上記光路上に設置したままでもよいし、光路上から除いてもよい。
 具体的には460nm以上、600nm以下の波長の光を透過させるバンドパスフィルターを用いた場合には、反射光像、自家蛍光像の撮像時において、当該バンドパスフィルターは撮像光路から除去しなくともよい。
 撮像装置は、第1の光の照射によって得られる反射光像と、第2の光の照射によって得られる自家蛍光像とを撮像し得るように構成されたものであればよい。
 撮像装置は、1台の装置で反射光像と自家蛍光像とを撮像し得るものが好ましく、高感度CCD(Charge−Coupled Device)が好ましい撮像装置として例示される。また、撮像装置は、反射光に感度を持つものと、自家蛍光に感度を持つものを組み合わせてもよい。対象とする組織に第1の光を照射する場合、光の吸収等に起因して照射光と反射光とは厳密には同一ではないが、撮像装置が撮像可能な光の波長に関しては、反射光と第1の光とは同じ波長の光とみなしてよい。
 撮像装置は、静止画像を撮影するための単純なカメラであってもよいし、動画を撮影し得るビデオカメラであってもよい。後述のように、第1の光と、第2の光とを、それぞれ短い期間だけ照射し、交互に切り替えることで、癌組織だけを強調して表した動画を得ることが可能である。
 撮像装置400で撮像された反射光像および自家蛍光像の信号は、画像処理装置500に送信される。
 画像処理装置500は、例えば、反射光像および自家蛍光像の信号を記憶するメモリ510、反射光像と自家蛍光像の平均輝度を整合させる輝度調整回路520、および、差分演算回路530を有する。差分演算回路は、反射光像の輝度と自家蛍光像の輝度との差分を計算する装置(例えば、反射光像の輝度から、自家蛍光像の輝度を減算する減算回路)である。
 当該装置は、さらに、反射光像、自家蛍光像、または、差分画像のコントラスト(CR)強調回路540を有していても良い。
 なお、画像処理装置500で行う輝度調整、差分演算処理(減算処理)、および、コントラスト強調については、それぞれ個別の処理として、術者が確認しながら行うこともできるが、より迅速、かつ精度の高い差分画像を得るために、コンピュータなどを用いて、これらの処理を自動的に行う態様が好ましい。
 取得した反射光像と自家蛍光像は、それぞれに輝度の調整を行い、その後、差分演算を行うのが好ましい。その後、コントラスト強調を行い最終的な画像を得る。以下に、各処理方法について説明する。
 (輝度調整方法)
 反射光像および自家蛍光像は、通常、それぞれ輝度が異なる。よって、両画像の輝度の差分を演算する際には、それぞれの全画素からの積算値が両者ともに同程度の輝度分布となるように調整するのが好ましい。具体的には、例えば、取得した反射光像および自家蛍光像が8ビットデータである場合、両者とも、最高輝度と最低輝度をそれぞれ255と0の値とし、中間色調は255と0の間に直線的もしくは、ガンマ補正をかけることにより配置する。
 (差分演算処理(減算処理)方法)
 差分演算処理は、反射光像の各座標にあるピクセル(画素)の輝度値と、自家蛍光像において前記のピクセルに対応する同じ座標のピクセルの輝度値との差異を計算することにより行う。この計算を全座標について行い、計算結果を新たな画像として、同じ座標に展開することで、差分画像が得られる。
 (コントラスト強調方法)
 差分演算処理により作られた画像は、そのままでもある程度のコントラストがある。しかし視野中に癌組織がない場合、データがほとんどないため、視認性が低い。そこで、視認性を高めるため、自家蛍光像・差分画像の双方に疑似カラーをつけて合成し、全体像における癌領域を強調し表示してもよい。
 画像処理装置500で得られた、反射光像と自家蛍光像との差分画像の信号は、表示装置600に出力される。
 表示装置600には、切除された癌患部組織101の断端において、癌組織が強調された画像が表示されるため、術者は、映し出された像から、切除の適正性を、簡便かつ確実に認識することができる。また、例えば、得られた差分画像データと自家蛍光像のデータから擬似カラー像を描出することもできる。
 本発明の画像診断用装置は、多様な癌組織の診断、例えば、内視鏡を用いた診断や、癌切除手術における切除組織の確認等の診断に適用できるが、中でも、舌癌手術時に用いることが効果的である。
 図5は、当該画像診断装置の他の構成例を、模式的に示した図である。
 図5に示す画像診断用装置の構成は、図1で説明した装置を自動化したものである。なお、図5では、第1光源110および第2光源120を、それぞれ1基にしているが、図1と同じく2基ずつの照明にしてもよいし、さらに多くの光源を用いてもよい。
 図5の画像診断装置は、図1の装置に加えて、制御装置700、第1光源コントローラ115、および、第2光源コントローラ125を備えている。
 制御装置700は、第1光源コントローラ115および第2光源コントローラ125を制御して、第1光源110と第2光源120のそれぞれの作動と停止(照射と消灯)を行わせるように構成されている。また、制御装置700は、第1光源110が作動(照射)している時には、撮像装置400に反射光像を撮像させ、一方、第2光源120が作動している時には、撮像装置400に自家蛍光像を撮像させる。制御装置700は、さらに、連続して撮像された反射光像と自家蛍光像に基づいて、画像処理装置500に差分画像を描出させる。
 このように、照射と撮像とを同期させてスイッチングすることにより、極めて短時間に、差分画像を表示させることができるため、癌組織をビデオレートで表示装置上に描出させることが可能となる。
 ビデオレートで描出することができれば、観察テーブル100をスキャンさせることで、癌患部を含む切除臓器が大きな場合でも、癌組織の分布を描出することも可能になる。あるいは、倍率の高い結像レンズを用いて、切除臓器の断端における詳細な癌組織分布を描出することもできる。
 本実施例では、図1に示す装置を用いて扁平上皮癌である舌癌の切除断端の診断を行った例を、図2のフローチャートに従って説明する。なお、本発明は、下記の実施例に限定されるわけではない。
[実施例1]
 手術により切除した癌患部を観察テーブルにセットした(図2のS100)。
 切除された癌患部に、グリーンフィルタをつけた2基の白色LED光源により、500~550nmの緑色光(第1の光)を照射した(図2のS110)。
 癌患部からの反射光を、460~510nmの光を透過するバンドパスフィルター(オリンパス(株)製U−MCFPHQ/XL)を通過させ、通過してきた反射光を実体顕微鏡で結像させ、高感度CCDカメラで撮像し、画像信号をメモリに記憶した(S120)。なお、LED光源は、実体顕微鏡をはさんで対向する位置に設置して、癌患部が均一に照明されるようにした。
 次に、切除された癌患部に、425~450nmの光を透過するバンドバスフィルターをつけた2基の白色LED光源により、青色光を照射した(S130)。癌患部からの反射光および自家蛍光を、上記460~510nmのバンドパスフィルターを通過させることで第2の光を排除し、通過してきた反射光、自家蛍光を、実体顕微鏡で結像させ、高感度CCD素子で撮像し、画像信号をメモリに記憶させた(S140)。
 メモリに記憶された反射光像および、自家蛍光像を表示装置に表示し、表示装置上で、両者の平均輝度が整合するように調整した(S150)。このとき、コントラスト強調処理を同時に行った。
 次に、反射光像から自家蛍光像を減算処理(差分演算処理)した(S160)。
 減算処理によって得られた信号を、液晶表示装置に出力し、正常組織に対して癌組織が強調された差分画像を表示させた(S170)。これらの処理は、NIH(National Institutes of Health:アメリカ国立衛生研究所)で開発されたサイエンス系イメージ解析ソフトウェア「NIH Image」の最新版である「ImageJ」を用いて行った。
 図3(a)は、本実施例のステップS120で得られた反射光像を示す写真図であり、図3(b)は、ステップS140で得られた自家蛍光像を示す写真図であり、図3(c)は、ステップS170で得られた減算処理後の差分画像を示す写真図である。
 術者は、表示された差分画像に基づいて、癌患部切除範囲の適正性目視確認(S180)することができる。
 図3(a)の反射光像、および、図3(b)の自家蛍光像に比べて、図3(c)の差分画像は、癌組織(図中、Cancerと記載)の分布をより鮮明に描出している。
 本発明の方法で得られた図3(c)の差分画像は、術者が、手術中に切除が適正であるかどうかを判定することを容易にするものである。
[実施例2]
 本実施例は、本発明の図1に示した装置を用いて正常な舌を観察した例である。
 実施例1では、図1に示した装置を用いて、切除した癌患部101を観察テーブル100上に置いて観察したが、本実施例では、切除前の舌を診断対象とすることで、生体中の臓器の診断にも適用できることを示した。
 図4(a)は、舌の反射光像を示す写真図である。反射光像から舌の形態的特徴が確認できる。図4(b)は、舌の自家蛍光像を示す写真図である。既に説明したように、自家蛍光像では癌組織・筋組織などが低輝度であり、真皮や神経などは高輝度を示す。
 本実施例では、正常な舌を撮像しているため、低輝度の箇所は観察されず、舌全体が高輝度に撮像されている。図4(c)は、反射光像と自家蛍光像から得られた差分画像である。図4(d)は、舌の輪郭および舌(ハッチング領域)を模式的に示しており、図4(c)では舌の輪郭の内側が全体として均一な輝度となっていることが分かる。図4(c)から、観察された舌の表面には癌組織が無いことが診断される。
 本実施例2は、正常な舌を観察した結果であるが、癌組織を切除した後に、切除された臓器側の切除面を観察することで、切除後の臓器における癌組織の残留の有無を迅速、的確に診断することができる。
[実施例3]
 本実施例では、腺癌である大腸癌を対象とし、実施例1の装置を用いて、組織の反射光像と自家蛍光像とを撮像し、それらの差分画像によって、癌組織が鮮明に表示できることを確認した。
 また、本実施例では、差分画像を作成するだけでなく、その差分画像に対してさらに画像処理を施し、癌組織に着色をして、画像を見た者が正常組織と癌組織とをより識別し易い画像を作成した。
(観察対象の組織)
 癌組織が含まれていることがその後の病理検査で判明した、ヒトの大腸の内壁表面の組織の一部を取り出したサンプル。
(撮影条件)
 高開口数実体顕微鏡:オリンパス社製、VMX10
 撮像装置:デジタルカメラ(オリンパス社製、DP71)、ISO800、1360×1024ピクセル
 光源装置:ツインアームLED照明装置(Hayashi製、HDAーTE3)に2種類のフィルターを組み合わせ、それらのフィルターを通過させることによって、第1の光(反射光像を撮影するための照射光:中心波長533nmの単色光)と、第2の光(自家蛍光像を撮影するための照射光(励起光):中心波長450nmの単色光)とを照射し得る構成とした。
 第1の光を形成するためのフィルター:Hayashi製、緑色フィルター G−533
 第2の光を形成するためのフィルター:Chroma製、D455/70
 尚、第2の光が撮像装置に入射するのを防止するためのフィルターとして、Chroma製ロングパスフィルター、ET500を用いた。
 露光条件:反射光像の撮像を1/700秒とし、自家蛍光像の撮像を1/1.5秒とした。
 撮像の結果を図6に示す。
 図6(a)は反射光像であり、図6(b)は自家蛍光像であり、図6(c)は差分画像であり、図6(d)は差分画像にさらに加工を加え、疑似カラー画像とした処理画像である。
 図6(d)はRGBチャネルのうちRおよびBチャネルに、図6(c)の差分画像を入力し、図6(b)の自家蛍光像をRGBチャネル全てに入力し加えたものである。この加工の結果、反射光像と自家蛍光像との輝度の差分が大きい部位はマゼンタ色(ピンク色)に見え、正常部位は背景の灰色として観察できる。
(評価)
 図6(c)の差分画像では、本図では、顕著には現れていないが、矢印で示す部分に癌組織が見られる。尚、明確に白くなっている部分は、図6(a)の反射光像において光が強く反射したことにより輝度差が過度に大きくなった部分であって癌組織ではない。
 これに対して、図6(d)の処理画像では、マゼンタ色に着色された部分が癌組織を示しており、癌組織の広がりの様子がより分かり易く示されている。
 図6(d)の処理画像では、画像中に矢印で示したように、顕著な陽性所見が見られる。癌組織に血液が乗っている部分は、黒く見える。
 本実施例の結果から、正常な粘膜部分は、反射光像、自家蛍光像ともに輝度が高く(明るく)、癌組織の部分は、反射光像の輝度は高いのに、自家蛍光像の輝度は低いという特徴を示すことがわかった。
[実施例4]
 本実施例では、上記実施例3とは別の大腸癌組織の摘出サンプルを用い、露光条件や画像処理の条件を変更して撮像した。装置の構成や、照射光の波長は、実施例3と同様である。
 撮像の結果を図7、図8に示す。これらの図は、図6と同様に、各図中の(a)が反射光像であり、(b)が自家蛍光像であり、(c)が差分画像であり、(d)が該差分画像にさらに加工を加えた処理画像である。
(評価)
 癌組織は、図7(c)の差分画像では薄暗く見られるが、図7(d)の処理画像では、より明るく、マゼンタ色に着色されて表示されている。
 図8の写真図は、図7の写真図と同じ撮像条件であるが、カメラのRGB出力のうちのGチャンネルからG信号のみを取り出し、反射光像、自家蛍光像を、白黒のモノクローム画像とした。その結果、図8(c)の差分画像、および、図8(d)の処理画像から明らかなとおり、差分演算の後は、図7の場合と同じ画像が得られることがわかった。
 図8(b)のとおり、自家蛍光像の輝度が全体的に小さい値であったために、輝度の差分が全体的に大きくなり、図8(d)のとおり、全体が陽性のように示されている。このことから、癌細胞が顕著に表示されるように、自家蛍光像の露光や輝度を適宜調整すべきであることがわかった。
 以上、摘出された癌患部についての画像診断に本発明を適用した例を用いて説明した。しかしながら、本発明は、これに限定されるわけではなく、癌患部が切除された後の、残された臓器表面の観察にも用いることができる。
 また、反射光像から自家蛍光像を減算して差分画像を得ることで、癌組織を描出できる本願発明は、照明光を光ファイバに導入することで、内視鏡による診断にも適用できる。
 本出願は、日本で出願された特願2009−127956を基礎としており、その内容は本明細書に全て包含される。

Claims (20)

  1. 生体組織に含まれる癌組織の存在や分布を診断するための画像診断装置であって、
     診断対象とすべき組織部位に、自家蛍光を放出させず実質的に反射光だけが得られる波長領域の光である第1の光を照射するための第1光源と、
     該組織部位に、該組織部位を励起して自家蛍光を放出させる波長領域の光である第2の光を照射するための第2光源と、
     前記反射光によって得られる該組織部位の画像である反射光像と、前記自家蛍光によって得られる該組織部位の画像である自家蛍光像とを、それぞれに撮像し得るように構成された撮像装置と、
     前記反射光像の輝度と、前記自家蛍光像の輝度との差分を求め、該差分に基づいた組織部位の差分画像を生成する画像処理装置と、
     前記差分画像を表示する表示装置と、
    を有する画像診断装置。
  2. 組織部位が、生体内に存在するそのままの状態のものであるか、または、切除され生体外に取り出された状態のものである、請求項1記載の画像診断装置。
  3. 撮像装置の前段に、さらに、組織部位から発せられた自家蛍光を透過させかつ第2の光を実質的に遮断できる光学フィルターが設けられている、請求項1または2記載の画像診断装置。
  4. 光学フィルターが、反射光像の撮像時には反射光の通過を妨げないように撮像の為の光路上には位置せず、自家蛍光像の撮像時には、第2の光の透過を妨げるように撮像の為の光路上に位置し得るように構成されている、請求項3記載の装置。
  5. 光学フィルターが、反射光を透過させ得るものである、請求項3記載の装置。
  6. 光学フィルターが、反射光像の撮像時および自家蛍光像の撮像時の双方において、撮像の為の光路上に位置するように構成されている、請求項5記載の装置。
  7. 光学フィルターが、波長460nm以上の光を透過させるフィルターである、請求項3または4記載の装置。
  8. 光学フィルターが、波長460nm以上、600nm以下の光を透過させるバンドパスフィルターである、請求項3~7のいずれか1項に記載の装置。
  9. 第1光源が、460nm以上、600nm以下の波長領域に属する光を発する光源である、請求項1~8のいずれか1項に記載の装置。
  10. 第2光源が、400nm以上、460nm未満の波長領域に属する光を発する光源である、請求項1~9のいずれか1項に記載の装置。
  11. 第1光源が460nm以上、600nm以下の波長領域に属する光を発する光源であり、第2光源が400nm以上、460nm未満の波長領域に属する光を発する光源であり、かつ、光学フィルターが、波長460nm以上、600nm以下の光を透過させるバンドパスフィルターである、請求項6記載の装置。
  12. 画像処理装置が、反射光像および自家蛍光像を記憶するメモリと、記憶された反射光像と自家蛍光像のそれぞれの平均輝度を整合させる輝度調整回路と、反射光像の輝度と自家蛍光像の輝度との差分を演算して差分画像を得る減算回路とを有する、請求項1~11のいずれか1項に記載の装置。
  13. 画像処理装置が、反射光像、自家蛍光像または差分画像のコントラストを強調する、コントラスト強調回路をさらに有する、請求項1~12のいずれか1項に記載の装置。
  14. 更に、内視鏡システムを備え、生体内に存在するそのままの状態の組織部位に対して、第1の光を照射して反射光像を撮像し得、第2の光を照射して自家蛍光像を撮像し得る構成となっており、それによって、癌組織の存在の有無や癌組織の分布を診断することが可能となっている、請求項1~13のいずれか1項に記載の装置。
  15. 癌摘出手術時において、生体外に摘出された組織部位における癌組織の存在の有無や癌組織の分布の診断に用いられる、請求項1~13のいずれか1項に記載の装置。
  16. 第1光源と第2光源のそれぞれの作動と停止を制御する制御装置をさらに有し、該制御装置は、第1光源を作動させる時には、第2光源を停止し、撮像装置に反射光像を撮像させ、第2光源を作動させる時には、第1光源を停止し、撮像装置に自家蛍光像を撮像させるように構成されている、請求項1~15のいずれか1項に記載の装置。
  17. 癌が、胃癌、大腸癌、食道癌、咽頭癌、肝臓癌、子宮癌、肺癌である、請求項14記載の装置。
  18. 癌が、胃癌、大腸癌、食道癌、咽頭癌、肝臓癌、子宮癌、肺癌、膵臓癌、前立腺癌、脳腫瘍、膀胱癌である、請求項15記載の装置。
  19. 生体組織に含まれる癌組織の存在や分布を診断するための画像診断方法であって、
     診断対象とすべき組織部位に、自家蛍光を放出させず実質的に反射光だけが得られる波長領域の光である第1の光を照射し、該反射光によって得られる該組織部位の画像である反射光像を撮像するステップと、
     該組織部位に、該組織部位を励起して自家蛍光を放出させる波長領域の光である第2の光を照射し、該自家蛍光によって得られる該組織部位の画像である自家蛍光像を撮像するステップと、
     前記反射光像の輝度と、前記自家蛍光像の輝度との差分を求め、該輝度の差分に基づいた差分画像を形成する画像処理ステップとを、
    少なくとも有する、画像診断方法。
  20. 少なくとも自家蛍光像を撮像するステップにおいて、組織部位から発せられた自家蛍光を透過させかつ第2の光を実質的に遮断できる光学フィルターを通して撮像を行ない、それによって、組織部位で反射した第2の光によるきょう雑を防ぐ、請求項19記載の方法。
PCT/JP2010/059406 2009-05-27 2010-05-27 画像診断装置および診断方法 WO2010137739A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-127956 2009-05-27
JP2009127956 2009-05-27

Publications (1)

Publication Number Publication Date
WO2010137739A1 true WO2010137739A1 (ja) 2010-12-02

Family

ID=43222838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059406 WO2010137739A1 (ja) 2009-05-27 2010-05-27 画像診断装置および診断方法

Country Status (1)

Country Link
WO (1) WO2010137739A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010519A1 (en) * 2020-07-09 2022-01-13 Axon Imaging, Llc Tissue imaging system
US11839361B2 (en) 2020-07-09 2023-12-12 Axon Imaging, Llc Advanced nervous tissue imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330919A (ja) * 2001-05-10 2002-11-19 Asahi Optical Co Ltd 蛍光観察用内視鏡システム
JP2004248721A (ja) * 2003-02-18 2004-09-09 Pentax Corp 診断補助用装置
JP2008125934A (ja) * 2006-11-24 2008-06-05 Olympus Corp 蛍光観察装置
JP2008229026A (ja) * 2007-03-20 2008-10-02 Olympus Corp 蛍光内視鏡装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330919A (ja) * 2001-05-10 2002-11-19 Asahi Optical Co Ltd 蛍光観察用内視鏡システム
JP2004248721A (ja) * 2003-02-18 2004-09-09 Pentax Corp 診断補助用装置
JP2008125934A (ja) * 2006-11-24 2008-06-05 Olympus Corp 蛍光観察装置
JP2008229026A (ja) * 2007-03-20 2008-10-02 Olympus Corp 蛍光内視鏡装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010519A1 (en) * 2020-07-09 2022-01-13 Axon Imaging, Llc Tissue imaging system
US11839361B2 (en) 2020-07-09 2023-12-12 Axon Imaging, Llc Advanced nervous tissue imaging system

Similar Documents

Publication Publication Date Title
JP6785941B2 (ja) 内視鏡システム及びその作動方法
JP6005303B2 (ja) 蛍光観察内視鏡システム
JP5426620B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
JP4855728B2 (ja) 照明装置及び観察装置
JP7190597B2 (ja) 内視鏡システム
US10602917B2 (en) Switching between white light imaging and excitation light imaging leaving last video frame displayed
US10602918B2 (en) Switching between white light imaging and excitation light imaging leaving last video frame displayed
WO2010122884A1 (ja) 蛍光画像装置及び蛍光画像取得方法
JP2001299676A (ja) センチネルリンパ節検出方法および検出システム
JP2009039510A (ja) 撮像装置
JP2012147935A (ja) 内視鏡装置
JP4297887B2 (ja) 蛍光内視鏡装置
JP2004000505A (ja) 内視鏡装置
JP5766773B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
JP2004024656A (ja) 蛍光内視鏡装置
JP2006340796A (ja) センチネルリンパ節検出システム
US20230237659A1 (en) Image processing apparatus, endoscope system, operation method of image processing apparatus, and non-transitory computer readable medium
WO2010137739A1 (ja) 画像診断装置および診断方法
JP2008272507A (ja) 内視鏡装置
JP2004305382A (ja) 特殊光観察システム
JP5764472B2 (ja) 内視鏡診断装置
JP6926242B2 (ja) 電子内視鏡用プロセッサ及び電子内視鏡システム
WO2022059233A1 (ja) 画像処理装置、内視鏡システム、画像処理装置の作動方法、及び画像処理装置用プログラム
WO2021210331A1 (ja) 画像処理装置及びその作動方法
JPWO2021041217A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP