WO2010137507A1 - Communication apparatus - Google Patents

Communication apparatus Download PDF

Info

Publication number
WO2010137507A1
WO2010137507A1 PCT/JP2010/058469 JP2010058469W WO2010137507A1 WO 2010137507 A1 WO2010137507 A1 WO 2010137507A1 JP 2010058469 W JP2010058469 W JP 2010058469W WO 2010137507 A1 WO2010137507 A1 WO 2010137507A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
communication apparatus
signal
signals
Prior art date
Application number
PCT/JP2010/058469
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 平井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011515993A priority Critical patent/JPWO2010137507A1/en
Publication of WO2010137507A1 publication Critical patent/WO2010137507A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end

Definitions

  • the present invention relates to a communication apparatus that performs data transmission requiring real-time characteristics on a wireless transmission channel.
  • Non-Patent Document 1 the luminance signal Y and the color difference are used as 4: 2: 2 component digital parallel interface of the size used in television broadcasting such as NTSC (National Television System Committee) system and PAL (Phase Alternating Line) system. It is defined that signals CB and CR are bundled in a digital bus. When the bundled signals are sampled at 27 MHz, for example, if the gradation is defined by 10 bits, the signal is 270 Mbps (in the case of Japanese television broadcasting).
  • NTSC National Television System Committee
  • PAL Phase Alternating Line
  • NTSC video signal Video signal
  • SAV Start of Active Video data
  • EAV End of Active Video data
  • a serial digital interface for efficiently transmitting a video signal as described above is standardized in Non-Patent Document 2 below, and is called SD-SDI (Standard Definition Serial Digital Interface).
  • SD-SDI Standard Definition Serial Digital Interface
  • HD-SDI High Definition SDI
  • 3G-SDI Third Definition SDI having a transmission band of about 3 Gbps are about the following non-patent documents 3 and 4 with the development of high definition television broadcasting. Each is planned.
  • Non-Patent Document 5 describes a method for realizing SDI transmission with a small number of wires.
  • Non-Patent Document 5 Since the above-mentioned conventional technology (the technology described in Non-Patent Document 5) is realized on the premise that there is almost no communication error by using a metal cable or an optical fiber cable, the communication error frequently occurs. There is a problem that it can not be applied to wireless communication that performs communication control on the premise of. In recent years, broadband video signals have low delay and low cost for the purpose of reducing wiring cost, wiring cost, and physical cost for wiring. The realization of a wireless communication system that can transmit at
  • the present invention has been made in view of the above, and it is an object of the present invention to obtain a communication apparatus capable of low-latency transmission of a large amount of data via a wireless transmission channel.
  • the present invention is a communication apparatus on the transmission side of a data transmission system, which converts transmission data into parallel data to generate a plurality of data strings, and In order to generate a redundant data string for performing error correction on the receiving side based on a plurality of data strings, and to detect a transmission error on the receiving side for each of the plurality of data strings and the redundant data string.
  • transmission means for wirelessly transmitting one or more of them.
  • FIG. 1 is a diagram showing an example of the configuration of a transmission side communication apparatus in a data transmission system.
  • FIG. 2 is a diagram showing an example of the configuration of video data to be subjected to channel coding processing.
  • FIG. 3 is a diagram showing an example of a signal obtained by performing the transmission path coding process.
  • FIG. 4 is a diagram showing the correspondence on the time axis of video data, a parallel clock, and a timing signal (horizontal synchronization signal) among input signals to the transmission signal generation unit.
  • FIG. 5 is a diagram showing data after performing 10 to 3 parallel-parallel conversion.
  • FIG. 6 is a diagram showing a data configuration after setting a synchronization signal (specified fixed pattern) in an invalid period.
  • FIG. 7 is a diagram illustrating an exemplary configuration of a transmission device.
  • FIG. 8 is a view showing an example of the configuration of a communication apparatus on the receiving side in the data transmission system.
  • FIG. 9 is a diagram showing an example of a general BTR process.
  • FIG. 10 is a diagram illustrating an exemplary configuration of a receiving device.
  • FIG. 1 is a diagram showing an example of the configuration of a transmission side communication apparatus in a data transmission system. Note that only the components related to the transmission operation are shown.
  • the communication device illustrated in FIG. 1 includes a transmission signal generation unit 10 and a transmission unit 11.
  • the transmission signal generation unit 10 generates a transmission signal using the illustrated input signals (video data, parallel clock, timing signal, auxiliary data), and outputs the transmission signal as parallel data together with the parallel clock.
  • the transmission unit 11 includes a plurality of transmission devices, and each transmission device receives any one of the transmission signals output in parallel from the transmission signal generation unit 10, executes predetermined transmission processing, Space transmission to the receiving communication device). Note that some transmission devices spatially transmit transmission signals generated based on redundant data for performing error correction on the reception side.
  • a transmitting device for transmitting actual data hereinafter referred to as “first transmitting device if necessary” and “differently referred to as necessary”
  • a transmitting device for transmitting redundant data hereinafter referred to as necessary
  • the ratio of the first transmission device to the second transmission device is determined in consideration of the occurrence rate of transmission errors in the used transmission line, the transmission quality required by the system, and the like.
  • the transmission signal generation unit 10 sequentially performs each processing of parallel / parallel conversion, timing information addition, synchronization pattern addition, channel coding, CRC addition, and scrambling on input video data.
  • input video data that is parallel data is converted into parallel data according to the number of transmission devices included in the transmission unit 11. Specifically, it is converted into parallel data (a plurality of data strings) having the same number of parallels as the number of transmission devices (the number of first transmission devices) for transmitting actual data.
  • timing information addition process information (alternative timing information) having the same purpose as the vertical and horizontal timing information (SAV, EAV) when forming the screen, which is included in the normal video data, is It is added to each of a plurality of data strings obtained by performing the parallel-to-parallel conversion processing.
  • SAV, EAV vertical and horizontal timing information
  • the synchronization pattern (fixed bit string known on the reception side) used when the reception side of the signal transmitted from each transmission device performs timing synchronization as communication data is added with the above alternative timing information.
  • each data string is used so that the communication apparatus on the receiving side can perform timing synchronization for each data string. Add synchronization pattern to.
  • each data string to which the above-mentioned synchronization pattern is added is coded.
  • redundant data is generated to restore the signal that has become a transmission error on the receiving side.
  • an error detection code for checking on the receiving side whether or not the data is normally received for each of a plurality of code word sequences obtained by performing the above-mentioned channel coding process
  • Add CRC CRC
  • This randomization process is a process of rearranging bits so that the ratio of bits having a value of 0 and bits having a value of 1 becomes equal in data during space transmission, and bit synchronization or a frame on the receiving side is performed. It is performed for the purpose of facilitating timing synchronization and channel state detection.
  • channel coding processing in an environment where five transmission paths can be used and four out of five can be transmitted without errors will be described.
  • the communication apparatus on the transmission side uses five transmission devices, transmits actual data in four of them, and transmits redundant data in the remaining one.
  • channel coding processing channel coding processing is performed on data of the configuration shown in FIG. In FIG. 2, video data (actual data) is a 4-bit value.
  • X k indicates the k-th video data
  • X m indicates the m-th bit in one video data.
  • Video data (4 bits of information transmitted simultaneously) can be reproduced (restored). For example, when the first bit in the k-th video data becomes a transmission error, it can be restored by executing the processing shown in the following equation (2). The method of determining the bit that caused the transmission error by the communication apparatus on the receiving side will be described in the description of the operation on the receiving side.
  • a video data to be input to the transmission signal generation unit 10 is a 10-bit value, and an operation example in the case of parallel transmission of the video data according to the number of transmission devices included in the transmission unit 11 will be shown. Note that there are three transmission devices constituting the transmission unit 11, and transmission is performed in an environment where a transmission error may occur in a maximum of one system. That is, real data is transmitted by two systems, and redundant data is transmitted by the remaining one system.
  • FIG. 4 shows correspondence among video data, a parallel clock (described as a clock in FIG. 4), and a timing signal (horizontal synchronization signal) among input signals to the transmission signal generation unit 10 on a time axis.
  • FIG. In addition to the illustrated horizontal synchronization signal, the vertical synchronization signal is also included in the timing signal, but only the horizontal synchronization signal necessary for the description here is shown.
  • the clock for drawing is 27 MHz. Therefore, the signal bandwidth as video data is 270 Mbps.
  • drawing is performed using a synchronization signal as a cue.
  • each transmitting device performs 135 Mbps transmission in space transmission so that a signal bandwidth of 270 Mbps can be achieved for any two systems.
  • the transmission signal generation unit 10 first performs simple 5-to-1 parallel-serial conversion processing (2 bits in which the input 10-bit parallel video data is made to correspond to the number of transmission paths used for transmission of actual data). Executes a process of converting into parallel video data, and adds timing information and a synchronization pattern to the video data of 2 systems, and then executes the transmission path coding process described above to generate 2 systems of data. By expanding into 3 systems of data (2 systems of real data and 1 system of redundant data), 10 to 3 parallel / parallel conversion is performed. The data after performing this conversion is shown in FIG. As illustrated, the horizontal synchronization signal, which is one clock wide in FIG. 4 (before conversion), is extended to five clocks.
  • FIG. 6 is a diagram showing a data configuration after setting a synchronization signal (specified fixed pattern) in the invalid period.
  • the specific fixed pattern which is timing information, is a bit string unique to each system and known at the receiving side.
  • the transmission signal generation unit 10 removes the horizontal synchronization signal running in parallel. Even if the horizontal synchronization signal is removed, the reception side can generate (restore) the horizontal synchronization signal by finding a specific unique pattern for each channel.
  • FIG. 7 is a view showing a configuration example of a transmission device, and the transmission device shown includes a level conversion unit 12, a light emission unit 13 and a lens 14.
  • the level conversion unit 12 performs conversion so that the input electrical signal has a desired signal level, and the issuing unit 13 causes an LED or LD (Laser Diode) to emit light according to the signal after the level conversion. .
  • the lens 14 condenses and transmits the light from the light emitting unit 13. Depending on the distance, a lens may not be necessary.
  • the illustration of light shows an example for multiplexing a plurality of signals in space, and the transmitting device may multiplex signals using different frequencies instead of using light. Even if the same frequency is used, CDMA is used to change code spreading, MIMO using antenna multiplexing is used, or millimeter wave communication with high linearity and optical communication with different wavelengths are used respectively. Also good.
  • FIG. 8 is a diagram showing a configuration example of a communication apparatus on the receiving side in the data transmission system according to the present invention. Note that only the components related to the receiving operation are shown.
  • the communication device shown in FIG. 8 includes a receiving unit 20 and a signal reproduction unit 21.
  • the receiving unit 20 is composed of a plurality of receiving devices, and each receiving device receives any one of a plurality of signals spatially multiplexed and transmitted from the communication apparatus on the opposite side of transmission, and executes a predetermined reception process.
  • To the signal reproduction unit 21 To the signal reproduction unit 21.
  • the signal reproduction unit 21 reproduces (restores) the data transmitted from the communication apparatus on the transmission side based on the input signal from the reception unit 20.
  • the redundant data input at the same time is used to restore the data that caused the transmission error. Do.
  • the operation of the signal reproduction unit 21 will be described in detail.
  • the signal reproduction unit 21 performs BTR (Bit Timing Recovery), transmission path state detection, descrambling, CRC check, transmission path decoding, frequency timing synchronization, frame timing synchronization, parallel-parallel conversion, and the like for input parallel data. Implement each process in order.
  • FIG. 9 is a diagram showing an example of a general BTR process. In BTR processing, oversampling is performed on a transmission signal. FIG. 9 shows an example in which a 25 Mbps transmission signal is oversampled by four times.
  • a moving average is performed on each sampling value acquired by executing oversampling, at an integral multiple of the oversampling value (an integer multiple of 4 in the example of FIG. 9), and a correlation value is generated at a bit period. .
  • the transmission clock is regenerated by detecting the high (or low) position of the correlation value as the bit switching timing.
  • the communication apparatus on the receiving side performs signal regeneration without using the signal (data) from this transmission path. That is, the data that has become a transmission error is restored based on the normally received data and the redundant data, and signal generation is performed using the restored data and the normally received data.
  • the transmission path state detection process the state of the transmission path (the transmission path between the transmitting device and the corresponding receiving device) is detected, and the reliability of the signal transmitted through each transmission path, that is, a transmission error occurs. Determine if you are not. Also, in this process, in addition to detecting the state of the transmission path, for example, monitoring the power supply and component abnormal state of the receiving device, periodically transmitting fixed patterns (fixed patterns known on the receiving side) from the transmitting side. In this case, a signal line with low reliability is detected by performing fixed pattern detection, and when transmitting signals at the same timing from the transmitting side, observe simultaneously the signal patterns output from the receiving device. An error within an assumed range can be detected by (detecting a signal line whose detection signal does not go up) or the like.
  • the descrambling process a process opposite to the scrambling process performed by the communication apparatus on the transmission side (the transmission signal generation unit 10, see FIG. 1) is executed, and the bit string is returned in the original arrangement order.
  • the transmission quality between each device is confirmed. This is implemented in order to select data between devices with high communication quality from received data and use it to improve the reliability in reproducing video data. As an implementation, a check is performed on the one to which the CRC is added in the space transmission unit.
  • decoding processing is performed on the reliable signal data detected in the transmission path state detection processing, and transmission video data is reproduced.
  • the transmission video data reproduced by the transmission path decoding process is synchronized with the internal clock of the communication apparatus (the communication apparatus on the receiving side).
  • FIG. 10 is a diagram showing a configuration example of the receiving device, and shows a configuration example corresponding to the transmitting device shown in FIG.
  • the receiving device includes a lens 22, a photodiode 23, a transimpedance amplifier 24, a comparing unit 25, and a level converting unit 26.
  • the lens 22 condenses the incoming light signal.
  • the photodiode 23 converts the light collected by the lens 22 into an electrical signal
  • the transimpedance amplifier 24 converts a current signal, which is an electrical signal output from the photodiode 23, into a voltage signal.
  • the comparison unit 25 determines the voltage signal output from the transimpedance amplifier 24 and converts it into a signal of 0 and 1.
  • the level converter 26 adjusts the level of the signal output from the comparator 25.
  • a lens is unnecessary depending on the distance to the communication apparatus on the transmission side.
  • an amplifier that performs the same process may be provided without using the transimpedance amplifier 24 and the comparison unit 25. As long as it is a method that can be separated by each receiving device provided on the receiving side, if wireless communication is used, demodulation processing corresponding to the modulation processing performed on each of the transmitting devices provided on the transmitting side is performed , To reproduce the signal.
  • the communication apparatuses on both the transmitting side and the receiving side are provided with a plurality of transmitting / receiving means (sending device, receiving device), and are assumed in the wireless section among the plurality of devices. It was decided to transmit redundant data for error correction on the receiving side of a signal that has become a transmission error, using a number of devices according to the transmission quality. As a result, low delay transmission of a large amount of data can be realized in a wireless transmission channel where transmission errors are expected to occur frequently.
  • the present invention is useful for realizing low delay transmission of a large amount of data, and is particularly suitable for the transmission side communication apparatus of a data transmission system for realizing low delay transmission in a wireless transmission channel. .

Abstract

A communication apparatus at the transmitting side of a data transmission system is provided with a transmission signal generation unit (10) and a transmitter unit (11). The transmission signal generation unit (10) converts transmission data to parallel data to generate a plurality of data sequences, and based on the plurality of data sequences, generates redundant data sequences to be used for error correction, further, imparts transmission error detection information, for detecting transmission errors, to each of the plurality of data sequences and redundant data sequences to generate a plurality of transmission signals. The transmitter unit (11) is comprised of a number of transmitter devices the same as the plurality of transmission signals, and each transmitter device wirelessly transmits one signal from among the plurality of transmission signals.

Description

通信装置Communication device
 本発明は、リアルタイム性が要求されるデータ伝送を無線伝送路上で行う通信装置に関する。 The present invention relates to a communication apparatus that performs data transmission requiring real-time characteristics on a wireless transmission channel.
 近年、広帯域な動画像信号を伝送するための標準規格の策定作業が、SMPTE(Society of Motion Picture and Television Engineers)を中心として、日本や欧米にて盛んに行われている。例えば、下記非特許文献1では、NTSC(National Television System Committee)方式やPAL(Phase Alternating Line)方式といったテレビ放送で用いられるサイズの4:2:2コンポーネントデジタルパラレルインターフェースとして、輝度信号Yと、色差信号CB,CRとをデジタルバスに束ねる事を規定している。束ねられた信号を27MHzでサンプリングする場合、例えば10bitで階調を定義していのであれば、270Mbpsの信号となる(日本のテレビ放送の場合)。 In recent years, work on the development of standards for transmitting wide-band moving image signals has been actively performed in Japan, Europe, and the United States, with a focus on the Society of Motion Picture and Television Engineers (SMPTE). For example, in Non-Patent Document 1 below, the luminance signal Y and the color difference are used as 4: 2: 2 component digital parallel interface of the size used in television broadcasting such as NTSC (National Television System Committee) system and PAL (Phase Alternating Line) system. It is defined that signals CB and CR are bundled in a digital bus. When the bundled signals are sampled at 27 MHz, for example, if the gradation is defined by 10 bits, the signal is 270 Mbps (in the case of Japanese television broadcasting).
 NTSCの映像信号(Video信号)には、受信側で画面の水平と垂直を定義出来るように、フレーム同期用のタイミング信号としてSAV(Start of Active Video data)およびEAV(End of Active Video data)が埋め込まれている。これらのSAVおよびEAVは垂直方向同期のために、ライン番号に応じて値が変わるようになっている。 In the NTSC video signal (Video signal), SAV (Start of Active Video data) and EAV (End of Active Video data) are used as timing signals for frame synchronization so that the horizontal and vertical of the screen can be defined on the receiving side. It is embedded. The values of these SAV and EAV change according to the line number for vertical synchronization.
 また、上記のような映像信号を効率良く伝送させるためのシリアルデジタルインターフェースが下記非特許文献2で規格化されており、SD-SDI(Standard Definition Serial Digital Interface)と呼ばれている。現在は、テレビ放送のハイビジョン化に伴い、約1.5Gbpsの伝送帯域を持ったHD-SDI(High Definition SDI),約3Gbpsの伝送帯域を持った3G-SDIが、下記非特許文献3,4でそれぞれ企画化されている。 Further, a serial digital interface for efficiently transmitting a video signal as described above is standardized in Non-Patent Document 2 below, and is called SD-SDI (Standard Definition Serial Digital Interface). At present, HD-SDI (High Definition SDI) having a transmission band of about 1.5 Gbps and 3G-SDI having a transmission band of about 3 Gbps are about the following non-patent documents 3 and 4 with the development of high definition television broadcasting. Each is planned.
 また、下記非特許文献5には、SDI伝送を少ない配線数で実現する手法について記載されている。 In addition, Non-Patent Document 5 below describes a method for realizing SDI transmission with a small number of wires.
 上記従来の技術(非特許文献5に記載の技術)は、メタルケーブルや光ファイバーケーブルを用いることにより、通信誤りがほとんど無いことを前提として実現したものであるため、通信誤りが頻繁に発生することを前提として通信制御を行う無線通信に対しては適用できない、という問題があった。近年は、伝送ケーブルの引き回しが困難な場所への配線の要望や、引き回しに対しての物理的なコストや配線時の設置コスト低減などの目的から、広帯域な動画像信号を低遅延かつ低コストで伝送できる無線通信システムの実現が強く期待されている。 Since the above-mentioned conventional technology (the technology described in Non-Patent Document 5) is realized on the premise that there is almost no communication error by using a metal cable or an optical fiber cable, the communication error frequently occurs. There is a problem that it can not be applied to wireless communication that performs communication control on the premise of. In recent years, broadband video signals have low delay and low cost for the purpose of reducing wiring cost, wiring cost, and physical cost for wiring. The realization of a wireless communication system that can transmit at
 本発明は、上記に鑑みてなされたものであって、大容量データを無線伝送路経由で低遅延伝送することができる通信装置を得ることを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to obtain a communication apparatus capable of low-latency transmission of a large amount of data via a wireless transmission channel.
 上述した課題を解決し、目的を達成するために、本発明は、データ伝送システムの送信側の通信装置であって、送信データをパラレルデータに変換して複数のデータ列を生成し、また当該複数のデータ列に基づいて、受信側で誤り訂正を行うための冗長データ列を生成し、さらに、当該複数のデータ列および当該冗長データ列の各々に対して受信側で伝送エラーを検出するための伝送エラー検出用情報を付与して複数の送信信号を生成する送信信号生成手段と、前記複数の送信信号と同数の送信デバイスからなり、当該各送信デバイスは前記複数の送信信号の中のいずれか一つを無線伝送する送信手段と、を備えることを特徴とする。 In order to solve the problems described above and achieve the object, the present invention is a communication apparatus on the transmission side of a data transmission system, which converts transmission data into parallel data to generate a plurality of data strings, and In order to generate a redundant data string for performing error correction on the receiving side based on a plurality of data strings, and to detect a transmission error on the receiving side for each of the plurality of data strings and the redundant data string. And transmission devices for generating transmission signals by adding transmission error detection information, and transmission devices of the same number as the plurality of transmission signals, each of the transmission devices being any of the plurality of transmission signals And transmission means for wirelessly transmitting one or more of them.
 本発明によれば、無線伝送路を介した通信装置間において、大容量データの低遅延伝送を実現できる、という効果を奏する。 According to the present invention, it is possible to realize low delay transmission of a large amount of data between communication apparatuses via a wireless transmission channel.
図1は、データ伝送システムにおける送信側の通信装置の構成例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a transmission side communication apparatus in a data transmission system. 図2は、伝送路符号化処理の対象とするビデオデータの構成例を示す図である。FIG. 2 is a diagram showing an example of the configuration of video data to be subjected to channel coding processing. 図3は、伝送路符号化処理を実施して得られた信号の一例を示す図である。FIG. 3 is a diagram showing an example of a signal obtained by performing the transmission path coding process. 図4は、送信信号生成部への入力信号のうち、ビデオデータ、パラレルクロックおよびタイミング信号(水平同期信号)の時間軸上における対応関係を示した図である。FIG. 4 is a diagram showing the correspondence on the time axis of video data, a parallel clock, and a timing signal (horizontal synchronization signal) among input signals to the transmission signal generation unit. 図5は、10対3のパラレルパラレル変換を実施した後のデータを示す図である。FIG. 5 is a diagram showing data after performing 10 to 3 parallel-parallel conversion. 図6は、無効期間に同期用の信号(特定固定パターン)を設定した後のデータ構成を示す図である。FIG. 6 is a diagram showing a data configuration after setting a synchronization signal (specified fixed pattern) in an invalid period. 図7は、送信デバイスの構成例を示す図である。FIG. 7 is a diagram illustrating an exemplary configuration of a transmission device. 図8は、データ伝送システムにおける受信側の通信装置の構成例を示す図である。FIG. 8 is a view showing an example of the configuration of a communication apparatus on the receiving side in the data transmission system. 図9は、一般的なBTR処理の一例を示した図である。FIG. 9 is a diagram showing an example of a general BTR process. 図10は、受信デバイスの構成例を示す図である。FIG. 10 is a diagram illustrating an exemplary configuration of a receiving device.
 以下に、本発明にかかる通信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a communication apparatus according to the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.
実施の形態.
 まず、データ伝送システムにおける送信側の通信装置について説明する。図1は、データ伝送システムにおける送信側の通信装置の構成例を示す図である。なお、送信動作に関連する構成要素のみを示している。
Embodiment.
First, the transmission side communication apparatus in the data transmission system will be described. FIG. 1 is a diagram showing an example of the configuration of a transmission side communication apparatus in a data transmission system. Note that only the components related to the transmission operation are shown.
 図1に示した通信装置は、送信信号生成部10および送信部11を備える。送信信号生成部10は、図示した入力信号(ビデオデータ,パラレルクロック,タイミング信号,補助データ)を利用して送信信号を生成し、パラレルクロックとともにパラレルデータとして出力する。送信部11は複数の送信デバイスからなり、各送信デバイスは、送信信号生成部10からパラレルに出力された送信信号のいずれか一つを受け取り、所定の送信処理を実行して対向する通信装置(受信側の通信装置)へ空間伝送する。なお、一部の送信デバイスは、受信側で誤り訂正を実施するための冗長データに基づき生成された送信信号を空間伝送する。すなわち、送信デバイスには、実データを伝送するための送信デバイス(以下、必要に応じて第1の送信デバイスと呼んで区別する)と冗長データを伝送するための送信デバイス(以下、必要に応じて第2の送信デバイスと呼ぶ)が含まれている。第1の送信デバイスと第2の送信デバイスの割合は、使用する伝送路における伝送エラーの発生率やシステムで要求される伝送品質などを考慮して決定される。 The communication device illustrated in FIG. 1 includes a transmission signal generation unit 10 and a transmission unit 11. The transmission signal generation unit 10 generates a transmission signal using the illustrated input signals (video data, parallel clock, timing signal, auxiliary data), and outputs the transmission signal as parallel data together with the parallel clock. The transmission unit 11 includes a plurality of transmission devices, and each transmission device receives any one of the transmission signals output in parallel from the transmission signal generation unit 10, executes predetermined transmission processing, Space transmission to the receiving communication device). Note that some transmission devices spatially transmit transmission signals generated based on redundant data for performing error correction on the reception side. That is, to the transmitting device, a transmitting device for transmitting actual data (hereinafter referred to as “first transmitting device if necessary” and “differently referred to as necessary”) and a transmitting device for transmitting redundant data (hereinafter referred to as necessary) (Referred to as a second transmission device). The ratio of the first transmission device to the second transmission device is determined in consideration of the occurrence rate of transmission errors in the used transmission line, the transmission quality required by the system, and the like.
 つづいて、送信信号生成部10および送信部11の動作について詳しく説明する。まず、送信信号生成部10では、入力されたビデオデータに対して、パラレルパラレル変換,タイミング情報付加,同期パターン付加,伝送路符号化,CRC付加,スクランブル、の各処理を順番に実施する。 Subsequently, operations of the transmission signal generation unit 10 and the transmission unit 11 will be described in detail. First, the transmission signal generation unit 10 sequentially performs each processing of parallel / parallel conversion, timing information addition, synchronization pattern addition, channel coding, CRC addition, and scrambling on input video data.
 パラレルパラレル変換処理では、パラレルデータである入力ビデオデータを、送信部11が備えている送信デバイスの数に応じたパラレルデータに変換する。具体的には、実データを伝送するための送信デバイスの数(第1の送信デバイスの数)と同じ並列数のパラレルデータ(複数のデータ列)に変換する。 In parallel-to-parallel conversion processing, input video data that is parallel data is converted into parallel data according to the number of transmission devices included in the transmission unit 11. Specifically, it is converted into parallel data (a plurality of data strings) having the same number of parallels as the number of transmission devices (the number of first transmission devices) for transmitting actual data.
 タイミング情報付加処理では、通常のビデオデータに含まれている、画面を構成する際の垂直方向と水平方向のタイミング情報(SAV,EAV)、と同じ目的の情報(代替タイミング情報)を、上記のパラレルパラレル変換処理を実施して得られた複数のデータ列それぞれに対して付加する。付加する情報および付加方法については後述する。 In the timing information addition process, information (alternative timing information) having the same purpose as the vertical and horizontal timing information (SAV, EAV) when forming the screen, which is included in the normal video data, is It is added to each of a plurality of data strings obtained by performing the parallel-to-parallel conversion processing. The information to be added and the addition method will be described later.
 同期パターン付加処理では、各送信デバイスから送信した信号の受信側が通信データとしてのタイミング同期を行う際に使用する同期パターン(受信側で既知の固定ビット列)を、上記代替タイミング情報が付加された後の各データ列に対して付加する。上述した従来のSDI伝送時は、1つの同期パターンを使用していたが、本実施の形態のデータ伝送システムでは、受信側の通信装置がデータ列ごとにタイミング同期を行えるように、各データ列に対して同期パターンを付加する。 In the synchronization pattern addition process, the synchronization pattern (fixed bit string known on the reception side) used when the reception side of the signal transmitted from each transmission device performs timing synchronization as communication data is added with the above alternative timing information. For each data string of Although one synchronization pattern was used in the above-described conventional SDI transmission, in the data transmission system according to the present embodiment, each data string is used so that the communication apparatus on the receiving side can perform timing synchronization for each data string. Add synchronization pattern to.
 伝送路符号化処理では、上記の同期パターンを付加した後の各データ列を符号化する。このとき、遮蔽や機器の故障などにより一部の信号が空間伝送時にエラーとなった場合を考慮し、伝送エラーとなった信号を受信側で復元するための冗長データを生成してこれも符号化する。符号化処理の具体的な方法については後述する。 In the channel coding process, each data string to which the above-mentioned synchronization pattern is added is coded. At this time, in consideration of a case where a part of the signals becomes an error during space transmission due to shielding or equipment failure, etc., redundant data is generated to restore the signal that has become a transmission error on the receiving side. Turn The specific method of the encoding process will be described later.
 CRC付加処理では、上記の伝送路符号化処理を実施して得られた複数の符号語系列のそれぞれに対して、データを正常に受信したかどうかを受信側で確認するための誤り検出符号(CRC)を付加する。 In the CRC attachment process, an error detection code (for checking on the receiving side whether or not the data is normally received for each of a plurality of code word sequences obtained by performing the above-mentioned channel coding process) Add CRC).
 スクランブル処理では、上記のCRC付加処理が実施された後の各符号語系列のそれぞれについて、ランダム化を行う。このランダム化処理は、空間伝送される際のデータにおいて、値が0のビットと値が1のビットの割合が均等となるようにビットを並び替える処理であり、受信側でのビット同期やフレームタイミング同期、および伝送路状態検出が容易となるようにする目的で実施する。 In the scrambling process, randomization is performed for each of the codeword sequences after the above-described CRC addition process is performed. This randomization process is a process of rearranging bits so that the ratio of bits having a value of 0 and bits having a value of 1 becomes equal in data during space transmission, and bit synchronization or a frame on the receiving side is performed. It is performed for the purpose of facilitating timing synchronization and channel state detection.
 ここで、伝送路符号化処理の詳細について説明する。一例として、5本の伝送路が使用可能で、かつ5本のうち4本では誤りなく空間伝送が行える環境での伝送路符号化処理について示す。このような環境では、送信側の通信装置は、5系統の送信デバイスを使用し、そのうちの4系統で実データを伝送し、また残りの1系統で冗長データを伝送する。この場合、伝送路符号化処理では、図2に示した構成のデータを対象として伝送路符号化処理を実施する。図2においては、ビデオデータ(実データ)を4bit値としている。Xkはk番目のビデオデータを示し、またXmは1ビデオデータ内のm番目のビットを示す。 Here, the details of the channel coding process will be described. As an example, transmission path coding processing in an environment where five transmission paths can be used and four out of five can be transmitted without errors will be described. In such an environment, the communication apparatus on the transmission side uses five transmission devices, transmits actual data in four of them, and transmits redundant data in the remaining one. In this case, in channel coding processing, channel coding processing is performed on data of the configuration shown in FIG. In FIG. 2, video data (actual data) is a 4-bit value. X k indicates the k-th video data, and X m indicates the m-th bit in one video data.
 図3は、伝送路符号化処理を実施して得られた信号の一例を示す図であり、図示したように、この伝送路符号化処理では、4ビットのビデオデータそれぞれに対して冗長データ(冗長ビット)Yを付加して符号語を生成する。Ykはk番目のビデオデータに付加する冗長データ(k番目の冗長データ)を示し、Ynは冗長データ内のn番目のビットを示す(この例ではn=1の固定値となっている)。また、冗長データは次式(1)に従って算出する。なお、式(1)において、“^”は排他的論理和(XOR)を示す。 FIG. 3 is a diagram showing an example of a signal obtained by performing channel coding processing, and as shown in the figure, in this channel coding processing, redundant data (for each of 4-bit video data) is shown. Redundant bit) Y is added to generate a code word. Y k indicates redundant data (k-th redundant data) to be added to the k-th video data, and Y n indicates the n-th bit in the redundant data (in this example, it is a fixed value of n = 1 ). Also, redundant data is calculated according to the following equation (1). In equation (1), “^” indicates exclusive OR (XOR).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 従って、受信側では、使用可能な5本の伝送路のうちの4本を用いて同時に伝送されたビデオデータ4ビットの内、どの1ビットが受信出来なくても、冗長データYを用いて元のビデオデータ(同時に伝送された4ビットの情報)を再生(復元)できる。たとえば、k番目のビデオデータの中の1番目のビットが伝送エラーとなった場合には、次式(2)で示した処理を実行すれば復元できる。受信側の通信装置が伝送エラーとなったビットを判別する方法については、受信側の動作説明にて示す。 Therefore, on the receiving side, even if one bit of video data simultaneously transmitted using four of the available five transmission paths can not be received, redundant data Y is used for the original. Video data (4 bits of information transmitted simultaneously) can be reproduced (restored). For example, when the first bit in the k-th video data becomes a transmission error, it can be restored by executing the processing shown in the following equation (2). The method of determining the bit that caused the transmission error by the communication apparatus on the receiving side will be described in the description of the operation on the receiving side.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、タイミング情報付加処理の詳細について説明する。一例として、送信信号生成部10への入力となるビデオデータが10ビット値であり、このビデオデータを送信部11に含まれる送信デバイスの数に応じてパラレル伝送する場合の動作例について示す。なお、送信部11を構成している送信デバイスは3系統あり、最大1系統で伝送誤りが生じる可能性がある環境で伝送を行うものとする。すなわち、2系統で実データを伝送し、また、残りの1系統で冗長データを伝送するものとする。 Next, the details of the timing information addition process will be described. As an example, a video data to be input to the transmission signal generation unit 10 is a 10-bit value, and an operation example in the case of parallel transmission of the video data according to the number of transmission devices included in the transmission unit 11 will be shown. Note that there are three transmission devices constituting the transmission unit 11, and transmission is performed in an environment where a transmission error may occur in a maximum of one system. That is, real data is transmitted by two systems, and redundant data is transmitted by the remaining one system.
 図4は、送信信号生成部10への入力信号のうち、ビデオデータ、パラレルクロック(図4ではクロックと記載している)およびタイミング信号(水平同期信号)の時間軸上における対応関係を示した図である。なお、タイミング信号には図示した水平同期信号の他に垂直同期信号も含まれるが、ここでの説明に必要な水平同期信号のみを示している。また、描画のためのクロックを27MHzとする。したがって、ビデオデータとしての信号帯域は270Mbpsとなる。ビデオデータの受信側では、一般に同期信号を合図として描画を行う。ビデオデータには、一定の幅で表示しない無効区間が含まれる。図4においては、Xk(k=1,2,3,4)の4クロック間を無効区間とし、ビデオデータとしては不要な信号とする。 FIG. 4 shows correspondence among video data, a parallel clock (described as a clock in FIG. 4), and a timing signal (horizontal synchronization signal) among input signals to the transmission signal generation unit 10 on a time axis. FIG. In addition to the illustrated horizontal synchronization signal, the vertical synchronization signal is also included in the timing signal, but only the horizontal synchronization signal necessary for the description here is shown. In addition, the clock for drawing is 27 MHz. Therefore, the signal bandwidth as video data is 270 Mbps. On the receiving side of video data, in general, drawing is performed using a synchronization signal as a cue. Video data includes an invalid section which is not displayed in a fixed width. In FIG. 4, an interval of 4 clocks of X k (k = 1, 2, 3, 4) is an invalid period, and a signal unnecessary as video data.
 また、送信部11を構成している送信デバイスは3系統あり、最大1系統で伝送誤りが生じる可能性がある状態で伝送を行う場合の動作について示す。この場合、どの2系統であっても270Mbpsの信号帯域を達成可能なように、空間伝送上は各送信デバイスが135Mbpsの伝送を行う。 In addition, there are three transmission devices constituting the transmission unit 11, and an operation in the case where transmission is performed in a state where a transmission error may occur in a maximum of one system will be described. In this case, each transmitting device performs 135 Mbps transmission in space transmission so that a signal bandwidth of 270 Mbps can be achieved for any two systems.
 したがって、送信信号生成部10は、まず、単純な5対1のパラレルシリアル変換処理(入力された10ビットパラレルのビデオデータを、実データの伝送で使用する伝送路の数に対応させた2ビットパラレルのビデオデータに変換する処理)を実行し、さらに、2系統のビデオデータに対して、タイミング情報および同期パターンを付加した後、上述した伝送路符号化処理を実施して2系統のデータを3系統のデータ(実データ2系統+冗長データ1系統)へ拡張することにより、10対3のパラレルパラレル変換を行う。この変換を実施した後のデータを図5に示す。図示したように、図4(変換前)では1クロック幅であった水平同期信号は5クロック幅に延びた形となる。またビデオデータとしては、変換前の5倍の20クロック間が無効区間になる。ここで、送信信号生成部10は、タイミング情報として、この20クロック間の無効区間に同期用の信号を設定する(図6参照)。図6は、上記無効期間に同期用の信号(特定固定パターン)を設定した後のデータ構成を示す図である。タイミング情報である特定固定パターンは、系統ごとに固有かつ受信側で既知のビット列とする。また送信信号生成部10は、併走する水平同期信号については除去する。水平同期信号を除去しても、受信側では系統ごとの特定固有パターンを見つける事により、水平同期信号を自分で作り出す(復元する)ことが可能である。 Therefore, the transmission signal generation unit 10 first performs simple 5-to-1 parallel-serial conversion processing (2 bits in which the input 10-bit parallel video data is made to correspond to the number of transmission paths used for transmission of actual data). Executes a process of converting into parallel video data, and adds timing information and a synchronization pattern to the video data of 2 systems, and then executes the transmission path coding process described above to generate 2 systems of data. By expanding into 3 systems of data (2 systems of real data and 1 system of redundant data), 10 to 3 parallel / parallel conversion is performed. The data after performing this conversion is shown in FIG. As illustrated, the horizontal synchronization signal, which is one clock wide in FIG. 4 (before conversion), is extended to five clocks. In addition, as video data, an interval of 20 clocks that is 5 times that before conversion is an invalid period. Here, the transmission signal generation unit 10 sets, as timing information, a signal for synchronization in an invalid section between the 20 clocks (see FIG. 6). FIG. 6 is a diagram showing a data configuration after setting a synchronization signal (specified fixed pattern) in the invalid period. The specific fixed pattern, which is timing information, is a bit string unique to each system and known at the receiving side. In addition, the transmission signal generation unit 10 removes the horizontal synchronization signal running in parallel. Even if the horizontal synchronization signal is removed, the reception side can generate (restore) the horizontal synchronization signal by finding a specific unique pattern for each channel.
 最後に、送信部11を構成している送信デバイスについての説明を行う。図7は送信デバイスの構成例を示す図であり、図示した送信デバイスは、レベル変換部12、発光部13およびレンズ14を備える。レベル変換部12では、入力された電気信号が所望の信号レベルとなるように変換を行い、このレベル変換実施後の信号に応じて、発行部13は、LEDまたはLD(Laser Diode)を発光させる。レンズ14は、発光部13からの光を集光して送信する。なお、距離によって、レンズは不要である。ここで光を例示したのは、空間に複数の信号を多重するための一例を示しており、送信デバイスは、光を利用するのではなく、異なる周波数を用いて信号を多重するようにしてもよい、また、同じ周波数を用いた場合でもコード拡散を変えるCDMAを用いたり、アンテナで多重するMIMOを用いたり、直進性の高いミリ波通信や波長の異なる光通信のようなものをそれぞれ用いても良い。 Finally, the transmitting device constituting the transmitting unit 11 will be described. FIG. 7 is a view showing a configuration example of a transmission device, and the transmission device shown includes a level conversion unit 12, a light emission unit 13 and a lens 14. The level conversion unit 12 performs conversion so that the input electrical signal has a desired signal level, and the issuing unit 13 causes an LED or LD (Laser Diode) to emit light according to the signal after the level conversion. . The lens 14 condenses and transmits the light from the light emitting unit 13. Depending on the distance, a lens may not be necessary. Here, the illustration of light shows an example for multiplexing a plurality of signals in space, and the transmitting device may multiplex signals using different frequencies instead of using light. Even if the same frequency is used, CDMA is used to change code spreading, MIMO using antenna multiplexing is used, or millimeter wave communication with high linearity and optical communication with different wavelengths are used respectively. Also good.
 つづいて、データ伝送システムの受信側の通信装置について説明する。図8は、本発明にかかるデータ伝送システムにおける受信側の通信装置の構成例を示す図である。なお、受信動作に関連する構成要素のみを示している。 Subsequently, the communication apparatus on the receiving side of the data transmission system will be described. FIG. 8 is a diagram showing a configuration example of a communication apparatus on the receiving side in the data transmission system according to the present invention. Note that only the components related to the receiving operation are shown.
 図8に示した通信装置は、受信部20および信号再生部21を備える。受信部20は複数の受信デバイスからなり、各受信デバイスは、対向する送信側の通信装置から空間多重伝送された複数の信号の中のいずれか一つを受け取り、所定の受信処理を実行した後、信号再生部21へ出力する。信号再生部21は、受信部20からの入力信号に基づいて、送信側の通信装置から送信されたデータを再生(復元)する。なお、受信部20からパラレルに入力された信号のうち実データの一部が正しく受信できなかったことを検出すると、これと同時に入力された冗長データを用いて、伝送エラーとなったデータを復元する。 The communication device shown in FIG. 8 includes a receiving unit 20 and a signal reproduction unit 21. The receiving unit 20 is composed of a plurality of receiving devices, and each receiving device receives any one of a plurality of signals spatially multiplexed and transmitted from the communication apparatus on the opposite side of transmission, and executes a predetermined reception process. , To the signal reproduction unit 21. The signal reproduction unit 21 reproduces (restores) the data transmitted from the communication apparatus on the transmission side based on the input signal from the reception unit 20. When it is detected that a part of the actual data can not be received correctly from the signals input in parallel from the reception unit 20, the redundant data input at the same time is used to restore the data that caused the transmission error. Do.
 信号再生部21の動作について詳しく説明する。信号再生部21は、入力されたパラレルデータに対して、BTR(Bit Timing Recovery),伝送路状態検出,デスクランブル,CRCチェック,伝送路復号,周波数タイミング同期,フレームタイミング同期,パラレルパラレル変換、の各処理を順番に実施する。 The operation of the signal reproduction unit 21 will be described in detail. The signal reproduction unit 21 performs BTR (Bit Timing Recovery), transmission path state detection, descrambling, CRC check, transmission path decoding, frequency timing synchronization, frame timing synchronization, parallel-parallel conversion, and the like for input parallel data. Implement each process in order.
 BTR処理(ビットタイミング再生処理)では、受信信号に基づいて送信側の通信装置との間の周波数偏差を抽出し、信号処理の実行タイミング(ビット判定の実行タイミング)を適切なタイミングに調整する。また、信号再生部21は、このBTR処理の結果を利用して送信デバイスと受信デバイスとの間の各伝送品質(伝送路ごとの伝送品質)を調べる。図9は、一般的なBTR処理の一例を示した図である。BTR処理では、送信信号に対してオーバーサンプリングを実施する。図9では、25Mbpsの送信信号を4倍でオーバーサンプリングした場合の例を示している。BTR処理では、オーバーサンプリングを実行して取得した各サンプリング値に対して、オーバーサンプリング値の整数倍(図9の例では4の整数倍)で移動平均を実行し、ビット周期で相関値を作る。そして、相関値の高い所(または低い所)をビットの切り替えタイミングとして検出することにより、送信クロックを再生する。ここで、信号が受信できない場合は、この相関値の高い(または低い)所が得られない事になり、そのデバイス間では何らかの要因により伝送エラーが発生したこととなる。したがって、このような場合、受信側の通信装置は、この伝送路からの信号(データ)を使用せずに信号再生を行うようにする。すなわち、伝送エラーとなったデータを、正常に受信したデータおよび冗長データに基づいて復元し、この復元したデータと正常に受信したデータを用いて信号生成を行う。 In the BTR processing (bit timing recovery processing), the frequency deviation between the communication apparatus on the transmission side is extracted based on the received signal, and the execution timing of signal processing (the execution timing of bit determination) is adjusted to an appropriate timing. In addition, the signal reproduction unit 21 examines each transmission quality (transmission quality for each transmission path) between the transmission device and the reception device using the result of the BTR processing. FIG. 9 is a diagram showing an example of a general BTR process. In BTR processing, oversampling is performed on a transmission signal. FIG. 9 shows an example in which a 25 Mbps transmission signal is oversampled by four times. In BTR processing, a moving average is performed on each sampling value acquired by executing oversampling, at an integral multiple of the oversampling value (an integer multiple of 4 in the example of FIG. 9), and a correlation value is generated at a bit period. . Then, the transmission clock is regenerated by detecting the high (or low) position of the correlation value as the bit switching timing. Here, when the signal can not be received, the high (or low) part of the correlation value can not be obtained, and a transmission error occurs due to some cause between the devices. Therefore, in such a case, the communication apparatus on the receiving side performs signal regeneration without using the signal (data) from this transmission path. That is, the data that has become a transmission error is restored based on the normally received data and the redundant data, and signal generation is performed using the restored data and the normally received data.
 伝送路状態検出処理では、伝送路(送信デバイスとこれに対応する受信デバイスとの間の伝送路)の状態を検出し、各伝送路で伝送されてきた信号の信頼性、すなわち伝送エラーが発生していないかどうか判断する。また、この処理では、伝送路の状態を検出するだけでなく、例えば受信デバイスの電源や部品異常状態を監視すること、送信側から定期的に固定パターン(受信側で既知の固定パターン)を送信する場合には、固定パターン検出を行う事により信頼性の低い信号線を検出すること、送信側から同じタイミングで送信信号を送る場合には、受信デバイスから出力される信号パターンを同時に観測すること(検出信号が上がらない信号線路を検出すること)、などにより、仮定した範囲内での誤りを検出可能である。 In the transmission path state detection process, the state of the transmission path (the transmission path between the transmitting device and the corresponding receiving device) is detected, and the reliability of the signal transmitted through each transmission path, that is, a transmission error occurs. Determine if you are not. Also, in this process, in addition to detecting the state of the transmission path, for example, monitoring the power supply and component abnormal state of the receiving device, periodically transmitting fixed patterns (fixed patterns known on the receiving side) from the transmitting side. In this case, a signal line with low reliability is detected by performing fixed pattern detection, and when transmitting signals at the same timing from the transmitting side, observe simultaneously the signal patterns output from the receiving device. An error within an assumed range can be detected by (detecting a signal line whose detection signal does not go up) or the like.
 デスクランブル処理では、送信側の通信装置(送信信号生成部10,図1参照)で実施されたスクランブル処理と逆の処理を実行し、ビット列を元の並び順に戻す。 In the descrambling process, a process opposite to the scrambling process performed by the communication apparatus on the transmission side (the transmission signal generation unit 10, see FIG. 1) is executed, and the bit string is returned in the original arrangement order.
 CRCチェック処理では、各デバイス間の伝送品質を確認する。これは、受信データから通信品質の高いデバイス間のデータを取捨選択し、ビデオデータを再生する際の信頼性向上に用いるために実装するものである。実装としては、空間伝送単位でCRC付加を行われたものに対してチェックを行う。 In the CRC check process, the transmission quality between each device is confirmed. This is implemented in order to select data between devices with high communication quality from received data and use it to improve the reliability in reproducing video data. As an implementation, a check is performed on the one to which the CRC is added in the space transmission unit.
 伝送路復号処理では、伝送路状態検出処理で検出した信頼性のある信号データに対して復号処理を実行し、送信ビデオデータを再生する。 In the transmission path decoding processing, decoding processing is performed on the reliable signal data detected in the transmission path state detection processing, and transmission video data is reproduced.
 周波数タイミング同期処理では、伝送路復号処理で再生した送信ビデオデータを自身(受信側の通信装置)が有している内部クロックに同期させる。 In the frequency timing synchronization process, the transmission video data reproduced by the transmission path decoding process is synchronized with the internal clock of the communication apparatus (the communication apparatus on the receiving side).
 フレームタイミング同期処理では、ビデオデータの水平、垂直同期信号に合わせて出力を行う。この処理では、送信側のタイミング情報付加処理で付加されたタイミング情報を利用する。 In frame timing synchronization processing, output is performed in accordance with horizontal and vertical synchronization signals of video data. In this process, timing information added in timing information addition processing on the transmission side is used.
 パラレルパラレル変換処理では、送信側で実施されたパラレルパラレル変換処理と逆の処理を実施し、送信前の状態(送信側の送信信号生成部10に入力される前のビデオデータ)に戻す。 In the parallel-to-parallel conversion process, a process opposite to the parallel-to-parallel conversion process performed on the transmission side is performed, and the state before transmission (video data before being input to the transmission signal generation unit 10 on the transmission side) is restored.
 次に、受信部20を構成している受信デバイスについての説明を行う。図10は、受信デバイスの構成例を示す図であり、図7に示した送信デバイスに対応した構成例を示している。この受信デバイスは、レンズ22、フォトダイオード23、トランスインピーダンスアンプ24、比較部25およびレベル変換部26を備える。 Next, the receiving device constituting the receiving unit 20 will be described. FIG. 10 is a diagram showing a configuration example of the receiving device, and shows a configuration example corresponding to the transmitting device shown in FIG. The receiving device includes a lens 22, a photodiode 23, a transimpedance amplifier 24, a comparing unit 25, and a level converting unit 26.
 レンズ22は、到来した光信号を集光する。フォトダイオード23は、レンズ22で集光された光を電気信号に変換し、トランスインピーダンスアンプ24は、フォトダイオード23から出力された電気信号である電流信号を電圧信号に変換する。比較部25は、トランスインピーダンスアンプ24から出力された電圧信号を判定して0と1の信号に変換する。レベル変換部26では、比較部25から出力された信号のレベルを調整する。なお、送信側の通信装置との距離によって、レンズは不要である。また、トランスインピーダンスアンプ24と比較部25を用いずに、同様の処理を実行する増幅器を備えるように構成してもよい。受信側で備えているそれぞれの受信デバイスで分離可能な方式であれば良いため、無線通信を用いる場合には、送信側が備えている送信デバイスでそれぞれ実行された変調処理に対応する復調処理を行い、信号を再生する。 The lens 22 condenses the incoming light signal. The photodiode 23 converts the light collected by the lens 22 into an electrical signal, and the transimpedance amplifier 24 converts a current signal, which is an electrical signal output from the photodiode 23, into a voltage signal. The comparison unit 25 determines the voltage signal output from the transimpedance amplifier 24 and converts it into a signal of 0 and 1. The level converter 26 adjusts the level of the signal output from the comparator 25. A lens is unnecessary depending on the distance to the communication apparatus on the transmission side. In addition, an amplifier that performs the same process may be provided without using the transimpedance amplifier 24 and the comparison unit 25. As long as it is a method that can be separated by each receiving device provided on the receiving side, if wireless communication is used, demodulation processing corresponding to the modulation processing performed on each of the transmitting devices provided on the transmitting side is performed , To reproduce the signal.
 このように、本実施の形態のデータ伝送システムでは、送信側および受信側双方の通信装置が複数の送受信手段(送信デバイス,受信デバイス)を備え、複数のデバイスのうち、無線区間で想定される伝送品質に応じた数のデバイスを用いて、伝送エラーとなった信号を受信側で誤り訂正するための冗長データを伝送することとした。これにより、伝送エラーが頻繁に発生するが想定される無線伝送路において、大容量データの低遅延伝送を実現できる。 As described above, in the data transmission system according to the present embodiment, the communication apparatuses on both the transmitting side and the receiving side are provided with a plurality of transmitting / receiving means (sending device, receiving device), and are assumed in the wireless section among the plurality of devices. It was decided to transmit redundant data for error correction on the receiving side of a signal that has become a transmission error, using a number of devices according to the transmission quality. As a result, low delay transmission of a large amount of data can be realized in a wireless transmission channel where transmission errors are expected to occur frequently.
 以上のように、本発明は、大容量データの低遅延伝送を実現する場合に有用であり、特に、無線伝送路における低遅延伝送を実現するデータ伝送システムの送信側の通信装置に適している。 As described above, the present invention is useful for realizing low delay transmission of a large amount of data, and is particularly suitable for the transmission side communication apparatus of a data transmission system for realizing low delay transmission in a wireless transmission channel. .
 10 送信信号生成部
 11 送信部
 12 レベル変換部
 13 発光部
 14,22 レンズ
 20 受信部
 21 信号再生部
 23 フォトダイオード
 24 トランスインピーダンスアンプ
 25 比較部
 26 レベル変換部
DESCRIPTION OF REFERENCE NUMERALS 10 transmission signal generation unit 11 transmission unit 12 level conversion unit 13 light emission unit 14, 22 lens 20 reception unit 21 signal reproduction unit 23 photodiode 24 transimpedance amplifier 25 comparison unit 26 level conversion unit

Claims (11)

  1.  データ伝送システムの送信側の通信装置であって、
     送信データをパラレルデータに変換して複数のデータ列を生成し、また当該複数のデータ列に基づいて、受信側で誤り訂正を行うための冗長データ列を生成し、さらに、当該複数のデータ列および当該冗長データ列の各々に対して受信側で伝送エラーを検出するための伝送エラー検出用情報を付与して複数の送信信号を生成する送信信号生成手段と、
     前記複数の送信信号と同数の送信デバイスからなり、当該各送信デバイスは前記複数の送信信号の中のいずれか一つを無線伝送する送信手段と、
     を備えることを特徴とする通信装置。
    A communication apparatus on the transmission side of a data transmission system,
    The transmission data is converted into parallel data to generate a plurality of data strings, and based on the plurality of data strings, a redundant data string for error correction is generated on the receiving side, and the plurality of data strings are further generated. And transmission signal generation means for generating transmission signals by adding transmission error detection information for detecting a transmission error on the reception side to each of the redundant data strings.
    Transmission means comprising the same number of transmission devices as the plurality of transmission signals, each of the transmission devices wirelessly transmitting any one of the plurality of transmission signals;
    A communication apparatus comprising:
  2.  前記送信信号生成手段は、前記複数のデータ列を生成する際、送信データを、前記送信デバイスの数、および伝送路における伝送エラーの発生率に応じた数のデータ列に変換することを特徴とする請求項1に記載の通信装置。 When generating the plurality of data strings, the transmission signal generation unit converts the transmission data into data strings according to the number of transmission devices and the number of transmission errors in the transmission path. The communication device according to claim 1.
  3.  前記伝送エラー検出用情報をCRCとすることを特徴とする請求項1または2に記載の通信装置。 The communication apparatus according to claim 1, wherein the transmission error detection information is a CRC.
  4.  前記伝送エラー検出用情報を受信側で既知の固定パターンのビット列とすることを特徴とする請求項1または2に記載の通信装置。 3. The communication apparatus according to claim 1, wherein the transmission error detection information is a bit string of a fixed pattern known on the receiving side.
  5.  前記送信データをビデオデータとし、
     前記送信信号生成手段は、前記複数の送信信号のうち、ビデオデータの無効領域に対応する部分に対し、ビデオデータ再生におけるフレーム同期処理で使用する信号を受信側で復元するための補助情報を配置する
     ことを特徴とする請求項1~4のいずれか一つに記載の通信装置。
    Let the transmission data be video data,
    The transmission signal generation means arranges auxiliary information for recovering, on the reception side, a signal used in frame synchronization processing in video data reproduction with respect to a portion corresponding to an invalid area of video data among the plurality of transmission signals. The communication apparatus according to any one of claims 1 to 4, characterized in that:
  6.  前記各送信デバイスは、LEDまたはLDにて発光した光を利用して前記複数の送信信号を伝送することを特徴とする請求項1~5のいずれか一つに記載の通信装置。 The communication apparatus according to any one of claims 1 to 5, wherein each of the transmission devices transmits the plurality of transmission signals using light emitted by an LED or an LD.
  7.  前記各送信デバイスは、MIMO技術を利用して前記複数の送信信号を伝送することを特徴とする請求項1~5のいずれか一つに記載の通信装置。 The communication apparatus according to any one of claims 1 to 5, wherein each of the transmission devices transmits the plurality of transmission signals using MIMO technology.
  8.  前記各送信デバイスは、それぞれ異なる周波数を使用して前記複数の送信信号を伝送することを特徴とする請求項1~5のいずれか一つに記載の通信装置。 The communication apparatus according to any one of claims 1 to 5, wherein each of the transmission devices transmits the plurality of transmission signals using different frequencies.
  9.  前記各送信デバイスは、CDMA技術を用いて使用して前記複数の送信信号を伝送することを特徴とする請求項1~5のいずれか一つに記載の通信装置。 The communication apparatus according to any one of claims 1 to 5, wherein each transmission device transmits the plurality of transmission signals using CDMA technology.
  10.  請求項1~8のいずれか一つに記載の通信装置から送信された信号を受信する通信装置であって、
     ビットタイミング再生処理でのサンプリング結果に基づき、送信側の通信装置から送信された複数の送信信号の各々について伝送エラーが発生したかどうかを判定する
     ことを特徴とする通信装置。
    A communication device for receiving a signal transmitted from the communication device according to any one of claims 1 to 8, comprising:
    A communication apparatus characterized by determining whether a transmission error has occurred for each of a plurality of transmission signals transmitted from a communication apparatus on the transmission side, based on a sampling result in bit timing recovery processing.
  11.  ビデオデータに基づいて生成された信号を受信した場合、ビデオデータの無効領域に対応する部分に配置された補助情報に基づいて、フレーム同期処理で使用する情報を復元することを特徴とする請求項10に記載の通信装置。 When the signal generated based on the video data is received, the information used in the frame synchronization process is restored based on the auxiliary information arranged in the portion corresponding to the invalid area of the video data. The communication device according to 10.
PCT/JP2010/058469 2009-05-28 2010-05-19 Communication apparatus WO2010137507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515993A JPWO2010137507A1 (en) 2009-05-28 2010-05-19 Communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009129281 2009-05-28
JP2009-129281 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137507A1 true WO2010137507A1 (en) 2010-12-02

Family

ID=43222618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058469 WO2010137507A1 (en) 2009-05-28 2010-05-19 Communication apparatus

Country Status (2)

Country Link
JP (1) JPWO2010137507A1 (en)
WO (1) WO2010137507A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431750A (en) * 2017-03-22 2019-11-08 三菱电机株式会社 Symbol mapping device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130081A (en) * 1991-11-08 1993-05-25 Toshiba Corp Communication system and error correction system in communication system
JPH07319718A (en) * 1994-05-20 1995-12-08 Fujitsu Ltd Method and device for data identification
JPH0936849A (en) * 1995-07-20 1997-02-07 Hitachi Ltd Bit synchronization circuit/system
JPH1028146A (en) * 1996-07-12 1998-01-27 Fukushima Nippon Denki Kk Code error correcting device
JPH11341102A (en) * 1998-02-16 1999-12-10 Nippon Telegr & Teleph Corp <Ntt> Inter-channel skew compensating device
JPH11355386A (en) * 1998-06-08 1999-12-24 Matsushita Graphic Communication Systems Inc Serial interface and modem using it
JP2003046965A (en) * 2001-05-23 2003-02-14 Sony Corp Method and device for transmitting data
JP2004096612A (en) * 2002-09-03 2004-03-25 Matsushita Electric Ind Co Ltd Receiver for digital video signal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064506A (en) * 2000-08-17 2002-02-28 Ricoh Co Ltd Data transfer system
JP2004320087A (en) * 2003-04-10 2004-11-11 Nec Corp Transmission system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130081A (en) * 1991-11-08 1993-05-25 Toshiba Corp Communication system and error correction system in communication system
JPH07319718A (en) * 1994-05-20 1995-12-08 Fujitsu Ltd Method and device for data identification
JPH0936849A (en) * 1995-07-20 1997-02-07 Hitachi Ltd Bit synchronization circuit/system
JPH1028146A (en) * 1996-07-12 1998-01-27 Fukushima Nippon Denki Kk Code error correcting device
JPH11341102A (en) * 1998-02-16 1999-12-10 Nippon Telegr & Teleph Corp <Ntt> Inter-channel skew compensating device
JPH11355386A (en) * 1998-06-08 1999-12-24 Matsushita Graphic Communication Systems Inc Serial interface and modem using it
JP2003046965A (en) * 2001-05-23 2003-02-14 Sony Corp Method and device for transmitting data
JP2004096612A (en) * 2002-09-03 2004-03-25 Matsushita Electric Ind Co Ltd Receiver for digital video signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431750A (en) * 2017-03-22 2019-11-08 三菱电机株式会社 Symbol mapping device
US10652071B2 (en) 2017-03-22 2020-05-12 Mitsubishi Electric Corporation Symbol mapping device
CN110431750B (en) * 2017-03-22 2023-06-06 三菱电机株式会社 Symbol mapping device

Also Published As

Publication number Publication date
JPWO2010137507A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
US8760322B2 (en) Transmission of pathological data patterns
JP4192802B2 (en) Digital video communication device
US8369235B2 (en) Method of exchanging messages and transmitting and receiving devices
KR101247178B1 (en) System and method for consecutive identical digit reduction
CN1497883A (en) Single carrier transmission system and its method
US6820230B2 (en) Self synchronous scrambler apparatus and method for use in dense wavelength division multiplexing
US20060176991A1 (en) System for adjusting sampling timing of DLL circuit, method therefor and transmitter-receiver used therefor
KR20150096764A (en) Communication method, system and device for optical network system
CN108322483B (en) Realization method of receiving end circuit based on JESD204B protocol
JPH11284671A (en) Signal processing circuit and signal processing method
WO2008035428A1 (en) Communication terminal apparatus and signal receiving method
KR101527114B1 (en) Apparatus and method for detecting signal based on lattice reduction capable to support different encoding scheme by stream in a multiple input multiple output wireless communication system
US20160173151A1 (en) Receiving device, communication system, and interference detection method
WO2010137507A1 (en) Communication apparatus
JP2013239940A (en) Serial communication system, image forming system, and transmitter
CN109688440B (en) Video signal transmission method based on FPGA, storage medium and smart television
US20210367710A1 (en) Apparatus and method for sending side-channel bits on an ethernet cable
US7477168B2 (en) Apparatus for and method of processing data
US20110216783A1 (en) Sending apparatus, receiving apparatus, and transmission system
JP4888488B2 (en) Communication terminal device and signal receiving method
JP6484409B2 (en) Transmitting apparatus and receiving apparatus
Kawamoto et al. Field transmission of an uncompressed 8K ultra-high definition television optical signal with forward error correction codes
JP4533111B2 (en) Transmitter and receiver
JP2013046364A (en) Transmitter, receiver and transmission/reception system
JP2007274533A (en) Transmission apparatus for serial transmission, scramble processing method, and reception apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780462

Country of ref document: EP

Kind code of ref document: A1