WO2010137126A1 - 無線装置制御装置、無線装置、および通信方法 - Google Patents

無線装置制御装置、無線装置、および通信方法 Download PDF

Info

Publication number
WO2010137126A1
WO2010137126A1 PCT/JP2009/059653 JP2009059653W WO2010137126A1 WO 2010137126 A1 WO2010137126 A1 WO 2010137126A1 JP 2009059653 W JP2009059653 W JP 2009059653W WO 2010137126 A1 WO2010137126 A1 WO 2010137126A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
area
slowc
wireless device
processing unit
Prior art date
Application number
PCT/JP2009/059653
Other languages
English (en)
French (fr)
Inventor
忠行 坂間
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2009/059653 priority Critical patent/WO2010137126A1/ja
Priority to JP2011515785A priority patent/JP5187443B2/ja
Priority to EP09845193.3A priority patent/EP2437413A4/en
Publication of WO2010137126A1 publication Critical patent/WO2010137126A1/ja
Priority to US13/291,260 priority patent/US8594731B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This case relates to a wireless device control device, a wireless device, and a communication method of a base station that performs internal data transfer based on a common interface.
  • a base station in a radio communication system such as a mobile phone can be separated into a radio unit (RE: Radio Equipment) for processing radio signals and a radio control unit (REC: Radio Equipment Control) for controlling RE.
  • RE Radio Equipment
  • REC Radio Equipment Control
  • CPRI Common public radio Interface
  • the base station is separated into REs and RECs, and the interfaces are opened, so that each part in the base station can be multi-vendored.
  • REC and RE exchange monitoring control information by sharing the SlowC & M area defined by CPRI. For this reason, when a plurality of REs are connected in a daisy chain, for example, if one RE occupies the SlowC & M area of the monitoring control signal transmitted / received via the CPRI and transmits the monitoring control information, the other REs However, there is a problem that monitoring control information cannot be inserted into the Slow C & M area, and communication of monitoring control information between the REC and the RE is not ensured.
  • FIG. 18 is a diagram for explaining the occupation of the Slow C & M area of the monitor control signal.
  • REs 111 to 113 are daisy chain connected to one REC 101.
  • the REC 101 and the REs 111 to 113 transmit and receive monitoring control information based on the CPRI.
  • the REC 101 has a monitoring control processing unit 101a.
  • the monitoring control processing unit 101a transmits monitoring control information to the REs 111 to 113 using the Slow C & M area of the monitoring control signal transmitted / received via the CPRI link. Further, the supervisory control processing unit 101a extracts the supervisory control information transmitted from the REs 111 to 113 from the Slow C & M area of the received supervisory control signal.
  • REs 111 to 113 extract monitoring control information from the Slow C & M area of the monitoring control signal received from the CPRI link. Also, the REs 111 to 113 insert the monitoring control information related to the own device into the Slow C & M area of the monitoring control signal, and send it to the CPRI link.
  • the RE 113 has inserted a large amount of monitoring control information into the Slow C & M area of the monitoring control signal. Since the REC 101 and the REs 111 to 113 exchange monitoring control information by sharing the SlowC & M area of the monitoring control signal, the REs 111 and 112 cannot insert their own monitoring control information into the SlowC & M area of the monitoring control signal. , Communication of monitoring control information between the REC 101 and the REs 111 to 113 is not ensured.
  • the present case has been made in view of such a point, and an object thereof is to provide a wireless device control device, a wireless device, and a communication method for ensuring communication between the wireless device control device and the wireless device.
  • the wireless device control device includes: a division allocation unit that divides an information area of a frame for transmitting and receiving information to and from a plurality of wireless devices that are daisy chain connected to the wireless device control device; A transmission unit configured to transmit address information of the information area allocated to the plurality of wireless devices by the unit to the plurality of wireless devices.
  • a base station radio apparatus that performs internal data transfer based on a common interface.
  • the wireless device controls the wireless device based on a wireless device control device that controls the wireless device or a receiving unit that receives a frame from another wireless device, and position information included in the frame received by the receiving unit.
  • a position recognizing unit that recognizes its own connection position connected to the device in a daisy chain, and refers to the frame based on its own connection position recognized by the position recognizing unit, and transmits and receives information to and from the wireless device control device And an acquisition unit for acquiring address information of the information area of the frame for performing.
  • FIG. 1 is a diagram illustrating a base station according to the first embodiment.
  • the base station includes a wireless device control device 1 and wireless devices 2, 3,.
  • the wireless devices 2, 3,... Are daisy chain connected to the wireless device control device 1.
  • the wireless device control device 1 includes a division allocation unit 1a and a transmission unit 1b.
  • the wireless device 2 includes a reception unit 2a, a position recognition unit 2b, and an acquisition unit 2c.
  • the wireless device 3 includes a receiving unit, a position recognizing unit, and an acquiring unit, like the wireless device 2.
  • the division allocation unit 1a of the wireless device control device 1 divides an information area for transmitting / receiving information to / from the wireless devices 2, 3,. Assign to.
  • the information transmitted / received to / from the wireless devices 2, 3,... Is information related to monitoring and control of the wireless devices 2, 3,.
  • the division allocation unit 1a divides the information area of the frame into four equal parts, and four units are provided for each of the divided information areas. Assign each of the wireless devices.
  • the transmission unit 1b transmits the address information of the information area allocated to the wireless devices 2, 3,... By the divisional allocation unit 1a to the wireless devices 2, 3,.
  • the transmission unit 1b stores position information for the wireless devices 2, 3,... To recognize their connection positions in a vendor area that can be freely used by the frame vendor. Then, the transmission unit 1b stores the address information of the information area in the vendor area of the frame and transmits it so that the wireless devices 2, 3,... Can acquire the address information of the information area based on the position information. More specifically, the transmission unit 1b stores address information of information areas assigned to the wireless devices 2, 3,... In order from the first stage in ascending order of addresses in the vendor area.
  • the first-stage radio apparatus 2 recognizes that it is connected to the first stage from the radio apparatus control apparatus 1 based on the position information stored in the vendor area of the frame, and the first-stage radio apparatus 2 The address information of the information area allocated to itself is acquired by referring to the vendor area in which the address information is stored.
  • the reception unit 2 a of the wireless device 2 receives a frame from the wireless device control device 1 that controls the wireless device 2 or another wireless device 3.
  • the position recognition unit 2b recognizes its own connection position that is daisy chain connected to the wireless device control device 1 based on the position information included in the frame received by the reception unit 2a.
  • the position information is “0” when output from the wireless device control device 1, and “1” is added by the wireless devices 2, 3,. Information.
  • the position recognition unit 2b of the wireless device 2 can recognize that the daisy chain is connected to the first stage from the wireless device control device 1 by receiving the position information “0”.
  • the wireless device 3 can recognize that the wireless device control device 1 is daisy chain connected to the second stage by receiving the position information “1”.
  • the acquisition unit 2c refers to the frame based on its own connection position recognized by the position recognition unit 2b, and acquires address information of the information area of the frame for transmitting and receiving information to and from the wireless device control device 1.
  • the wireless device control device 1 divides the information area of a frame for transmitting / receiving information to / from a plurality of wireless devices 2, 3,. As a result, it is possible to prevent the information area from being occupied by a plurality of wireless devices 2, 3,..., And to secure communication between the wireless device control device 1 and the wireless devices 2, 3,.
  • the wireless devices 2, 3,... Transmit and receive information to and from the wireless device control device 1 using the information area assigned by the wireless device control device 1, the information region is occupied by a plurality of wireless devices 2, 3,. Can be prevented, and communication between the wireless device control device 1 and the wireless devices 2, 3.
  • FIG. 2 is a diagram illustrating a system configuration example of a base station according to the second embodiment.
  • FIG. 2 shows the base station 11, the terminals 41 and 42, and the monitoring control device 51.
  • the base station 11 has REC 21 and REs 31 to 34.
  • the REC 21 and the REs 31 to 34 are connected by, for example, an optical fiber.
  • the REs 31 to 34 are daisy chain connected to one REC 21.
  • the REC 21 and the REs 31 to 34 transmit and receive monitoring control signals based on the CPRI.
  • FIG. 2 shows four REs 31 to 34. Of course, more or less than this number may be connected.
  • the terminals 41 and 42 are, for example, mobile phones.
  • the terminal 41 performs wireless communication with the RE 32
  • the terminal 42 performs wireless communication with the RE 33.
  • the data of the terminals 41 and 42 is transmitted to the REC 21 by the monitoring control signal via the REs 32 and 33.
  • the data of the terminals 41 and 42 transmitted to the REC 21 is transmitted to other base stations (not shown) and transmitted to other terminals, for example. Further, data transmitted from a terminal (not shown) is received by the REC 21, and is transmitted to the terminals 41 and 42 via the REs 31 to 33 by a monitoring control signal.
  • the monitoring control device 51 is operated by a maintenance person of the base station 11, for example.
  • the monitoring control device 51 transmits monitoring control information for monitoring and controlling the REs 31 to 34 to the REC 21 in accordance with the operation of the maintenance person.
  • the REC 21 terminates the monitoring control information transmitted from the monitoring control device 51, inserts it in the Slow C & M area of the monitoring control signal, and transmits it to the REs 31 to 34.
  • the Slow C & M area is an area in which monitoring control information for monitoring and controlling the REC 21 and the REs 31 to 34 is stored.
  • the information in the Slow C & M area is transmitted and received in HDLC (High-Level Data Link Control) format.
  • REs 31 to 34 insert the monitoring control information into the SlowC & M area of the monitoring control signal and transmit it to REC21.
  • the monitoring control information of the REs 31 to 34 is, for example, information on the monitoring control result of the own device with respect to the monitoring control information of the monitoring control device 51.
  • the REC 21 extracts the monitoring control information transmitted from the REs 31 to 34 from the monitoring control signal, terminates it, and transmits it to the monitoring control device 51.
  • FIG. 3 is a diagram illustrating a frame configuration example of the monitoring control signal.
  • the supervisory control signal has a hierarchical structure of a basic frame, a hyper frame, and a UMTS (Universal Mobile Telecommunication Systems) radio frame.
  • An aggregate of 256 basic frames becomes a hyperframe, and an aggregate of 150 hyperframes becomes a UMTS radio frame.
  • Basic frames are assigned indexes X0 to X255, and hyperframes are assigned indexes Z0 to Z149.
  • the basic frame is given Y0 to Y3 as row numbers.
  • the basic frame is Z. X. Y (Z, X, Y: positive integer) can indicate where it is placed in the UMTS radio frame.
  • the basic frame is managed with values of Y0 to Y3 with 16 bytes as one unit.
  • the first byte of the basic frame is defined as a control word (CW).
  • IQ data is stored in the remaining 15 bytes of the basic frame.
  • FIG. 4 is a diagram showing details of the hyperframe.
  • FIG. 4 shows one hyperframe.
  • one hyper frame is composed of 256 basic frames X0 to X255.
  • the shaded portion of the basic frame shown in FIG. 4 indicates a control word.
  • 256 basic frames are grouped into 64 subchannels as shown in FIG. As shown in the figure, an index Ns of 0 to 63 is assigned to the basic frame of each subchannel. An index Xs of 0 to 4 is assigned to the control word in each subchannel.
  • a control word in one hyperframe has a meaning as a header by collecting 256 basic frames into 64 subchannels.
  • FIG. 5 is a diagram showing control word mapping. As shown in FIG. 5, the control word has a meaning as a header by collecting one hyperframe basic frame into 64 subchannels. Xs in FIG. 5 corresponds to Xs in FIG. The control word has a predetermined meaning by being collected as shown in FIG.
  • the address of the Slow C & M area is Z. 1.0, Z. 65.0, Z. 129.0, Z. 193.0, and the number of Slow C & M areas is four.
  • the address of the Slow C & M area is Z. 1.0, Z. 65.0, Z. 129.0, Z. 193.0, Z.M. 1.1, Z. 65.1, Z. 129.1, Z. 193.1, Z. 1.2, Z. 65.2, Z. 129.2, Z. 193.2, Z. 1.3, Z. 65.3, Z. 129.3, Z. 193.3, and the number of SlowC & M areas is 16.
  • the basic frame uses row numbers Y0 to Y3, and the number of Slow C & M areas is 16.
  • REC 21 shown in FIG. 2 divides a plurality of Slow C & M areas and assigns them to REs 31 to 34.
  • REC 21 divides 16 Slow C & M areas equally into four, and RE 31 has addresses Z. 1,0-Z. 1 and 3 Slow C & M areas are allocated, and the address Z. 65,0-Z. 65, 3 SlowC & M areas are allocated, and the address Z. 129, 0-Z. 129, 3 SlowC & M areas are allocated, and the address Z. 193, 0-Z. Allocate 193,3 Slow C & M areas.
  • the REC 21 notifies the RE 31 to 34 of the Slow C & M area allocated to the REs 31 to 34 by the address information of the Slow C & M area.
  • the REs 31 to 34 recognize the Slow C & M area that can be used based on the notified address information, and perform transmission and reception of monitoring control information using the recognized Slow C & M area.
  • the REC 21 Before establishing the link between the REs 31 to 34 and the slow C & M area, the REC 21 uses the vendor control area (Vendor Specific in FIG. 5) to send the address information of the slow C & M area assigned to the REs 31 to 34 to the RE 31 to 34. Notice. At this time, the REC 21 stores position information for the REs 31 to 34 to recognize their connection positions in the vendor area of the monitor control signal.
  • the vendor area is an area that can be freely used by the user.
  • each of the REs 31 to 34 When each of the REs 31 to 34 receives the monitoring control signal including the address information and the position information of the Slow C & M area, the RE 31 to 34 increments the position information of the vendor area, for example, by 1 and outputs it to the subsequent REs 31 to 34. Accordingly, each of the REs 31 to 34 that have received the monitoring control signal can recognize the connection position of the daisy chain connection from the REC 21.
  • FIG. 6 is a diagram for explaining position information.
  • FIG. 6 shows the REC 21 and REs 31 to 33 shown in FIG.
  • FIG. 6 also shows position information 61 to 63 stored in the vendor area of the monitoring control signal.
  • the REC 21 stores the position information “0” in the vendor area (the position information of the vendor area shown in FIG. 5), for example, and transmits it to the first RE 31.
  • the RE 31 can recognize that it is daisy chain connected to the first stage from the REC 21 by receiving the monitoring control signal of the position information of “0”.
  • the RE 31 adds 1 to the position information received from the REC 21, and transmits the result to the subsequent RE 32.
  • the RE 32 can recognize that it is daisy chain connected to the second stage from the REC 21 by receiving the monitoring control signal of the position information “1”.
  • the RE 32 adds 1 to the position information received from the RE 31, and transmits it to the subsequent RE 33.
  • the RE 33 can recognize that it is daisy chain connected to the third stage from the REC 21 by receiving the monitoring control signal of the position information “2”.
  • the subsequent RE 34 recognizes the position where it is daisy chained from the REC 21.
  • the REC 21 stores the address information and position information of the Slow C & M area allocated to the REs 31 to 34 in the vendor area of the monitoring control signal, and transmits the information to the REs 31 to 34.
  • the REC 21 associates the vendor area with the connection positions of the REs 31 to 34, and stores the address information of the Slow C & M area assigned to the REs 31 to 34 in the vendor area.
  • the vendor area of 16.0 is associated with RE1 connected to the first stage from REC21, and the address information of the SlowC & M area assigned to RE1 of the first stage is assigned to address Z.
  • REC21 has an address Z.
  • the vendor area of 80.0 is associated with the RE2 connected to the second stage from the REC 21, and the address information of the SlowC & M area assigned to the second stage RE2 is assigned to the address Z.
  • the REC 21 associates the vendor area with the REs 3 and 4 connected to the third and fourth stages from the REC 21, and the address information of the Slow C & M area assigned to the third and fourth stage REs 3 and 4 Z. 144.0, Z.
  • RE1 to RE4 in FIG. 5 correspond to RE31 to 34 in FIG.
  • Each of the REs 31 to 34 recognizes which address in the vendor area is connected to which stage from the REC 21 and which address information of the slow C & M area of the REs 31 to 34 is stored.
  • REs 31 to 34 have addresses Z. It is recognized that the address information of the Slow C & M area assigned to the first-stage RE 31 is stored in the 16.0 vendor area.
  • the REs 31 to 34 have addresses Z. It is recognized that the address information of the SlowC & M area assigned to RE32 is stored in the vendor area of 80.0.
  • REs 31 to 34 recognize their connection positions based on the position information, as described above. As a result, the REs 31 to 34 can recognize which address in the vendor area should be referred to acquire the address information of the Slow C & M area assigned to the RE 31-34.
  • RE31 connected to the first stage from REC21 is address Z. It recognizes that the address information of the Slow C & M area allocated to itself is stored in the 16.0 vendor area. Then, RE31 has an address Z. The address information stored in the 16.0 vendor area is acquired.
  • the RE 32 connected to the second stage from the REC 21 has an address Z. It recognizes that the address information of the Slow C & M area allocated to itself is stored in the 80.0 vendor area. Then, REC 21 has address Z. Address information stored in the vendor area of 80.0 is acquired.
  • FIG. 7 is a diagram for explaining a vendor area in which address information of the Slow C & M area is stored.
  • FIG. 7 shows the vendor area of the SlowC & M address information for RE1 shown in FIG.
  • the vendor area has an 8-bit data area.
  • the upper 4 bits of the vendor area store the address ID of the start address of the SlowC & M area assigned to RE1 (RE31), and the lower 4 bits store the address ID of the end address of the SlowC & M area assigned to RE31.
  • the start address ID of the address of the SlowC & M area assigned to the RE 31 is “0”
  • the end address ID of the address of the SlowC & M area assigned to the RE 31 is “3”.
  • Vendor areas assigned to the other REs 2 to 4 (REs 32 to 34) also have the same data structure as in FIG.
  • the start address ID and the end address ID may be expressed as an address ID.
  • FIG. 8 is a table showing the relationship between the address of the slow C & M area and the address ID. As shown in FIG. 8, the address of the Slow C & M area and the address ID are associated in a table.
  • the REC 21 and the REs 31 to 34 store the table shown in FIG. 8 in a storage device.
  • the REC 21 refers to the table of FIG. 8, converts the start address and end address of the C & M area allocated to the REs 31 to 34 into address IDs, stores them as address information in the vendor area of the monitor control signal, 34.
  • REC21 has an address Z. 1.0 to Z. Assume that the Slow C & M area of 1.3 is allocated to the RE 31. In this case, the REC 21 refers to the table shown in FIG. 8 and starts the S.C & M area start address Z. 1.0 and end address Z. 1.3 is converted into a start address ID “0” and an end address ID “3”. The REC 21 stores the converted start address ID “0” and end address “3” in the vendor area corresponding to the RE 31 as shown in FIG.
  • REs 31 to 34 refer to the table of FIG. 8 and recognize the Slow C & M area assigned to them from the address ID included in the vendor area. For example, assume that the RE 31 receives a supervisory control signal having the vendor area shown in FIG. In this case, the RE 31 refers to the table of FIG. 8, and the Slow C & M area allocated to itself from the start address ID “0” and the end address ID “3” of the vendor area is the address Z. 1.0 to Z. Recognize that it is 1.3.
  • FIG. 9 is a diagram for explaining the bandwidth of the monitoring control information transmitted / received between the REC and the RE.
  • FIG. 9 shows the REC 21 and REs 31 to 34 shown in FIG. REC21 is connected to RE31 by Z. 1.0, Z. 1.1, Z. 1.2, Z. Assume that the Slow C & M area with the address of 1.3 is allocated. REC21 is connected to RE32. 65.0, Z. 65.1, Z. 65.2, Z. Assume that a Slow C & M area having an address of 65.3 is allocated. REC21 is in Z. 129.0, Z. 129.1, Z. 129.2, Z. Assume that a Slow C & M area having an address of 129.3 is allocated. REC21 is a RE. 193.0, Z.M. 193.1, Z. 193.2, Z. Assume that a Slow C & M area having an address of 193.3 is allocated.
  • the REs 31 to 34 exchange monitoring control information with the REC 21 using the Slow C & M area allocated to the REs 31 to 34.
  • the REs 31 to 34 do not occupy the entire SlowC & M area, and can ensure communication of monitoring control information.
  • FIG. 10 is a block diagram of REC.
  • the REC 21 includes an operation data DB (DB: Data) Base) 71, a monitoring control unit 72, a SlowC & M area division allocation unit 73, a position information setting unit 74, a conversion TB (TB: Table) 75, and vendor area data. It has a processing unit 76, a Slow C & M area data processing unit 77, a CPRI frame processing unit 78, and an optical device 79.
  • the operation data DB 71 stores operation data of the REC 21.
  • the operation data includes daisy chain connection information (daisy chain connection information) of the REs 31 to 34 connected to the REC 21.
  • the daisy chain connection information indicates, for example, the number of connected REs 31 to 34 connected to the REC 21 in a daisy chain.
  • the number of connected REs 31 to 34 is determined, for example, when the base station 11 is designed. Further, the number of connected operation data DBs 71 can be changed when an RE is additionally connected.
  • the monitoring control unit 72 performs activation, monitoring, and control processing of the REC 21. For example, the monitoring control unit 72 reads operation data from the operation data DB 71 when the REC 21 is activated. The monitoring control unit 72 extracts daisy chain connection information from the read operation data, and outputs the daisy chain connection information to the Slow C & M area division allocation unit 73.
  • the monitoring control unit 72 outputs the monitoring control information to be transmitted to the REs 31 to 34 to the SlowC & M area data processing unit 77 as SlowC & M transmission information. In addition, the monitoring control unit 72 receives SlowC & M reception information output from the SlowC & M area data processing unit 77.
  • the SlowC & M area division assigning unit 73 divides the SlowC & M area based on the daisy chain connection information output from the monitoring control unit 72, and assigns the divided SlowC & M areas to the REs 31 to 34.
  • the SlowC & M area division allocation unit 73 outputs the division allocation result of the SlowC & M area to the vendor area data processing unit 76 and the SlowC & M area data processing unit 77 as division allocation information.
  • the SlowC & M area division allocation unit 73 divides 16 SlowC & M areas into four equal parts, and allocates four SlowC & M areas equally from the first RE 31 in order, and assigns the division allocation information to the vendor area data processing unit 76 and SlowC & M area data The data is output to the processing unit 77. More specifically, the Slow C & M area division allocating unit 73 sends the Z. 1.0, Z. 1.1, Z. 1.2, Z.
  • the SlowC & M area division allocation unit 73 outputs the division allocation information to the vendor area data processing unit 76 and the SlowC & M area data processing unit 77.
  • the position information setting unit 74 outputs its own apparatus position information to the vendor area data processing unit 76.
  • the own apparatus position information is position information for the REs 31 to 34 to recognize their own connection position, and is “0”, for example.
  • the vendor area data processing unit 76 refers to the conversion TB 75 based on the division allocation information output from the Slow C & M area division allocation unit 73, and acquires an address ID (address information) stored in the vendor area of the monitoring control signal.
  • the vendor area data processing unit 76 outputs the address ID acquired by referring to the conversion TB 75 and the own apparatus position information output from the position information setting unit 74 to the CPRI frame processing unit 78 as vendor area transmission data.
  • the vendor area data processing unit 76 refers to the conversion TB 75 based on the division allocation information output from the Slow C & M area division allocation unit 73, and sets the start address ID and end address ID of the Slow C & M area allocated to the REs 31 to 34. To get. In the case of the example in FIG. 8, the vendor area data processing unit 76 acquires “0” and “3” as the start address ID and end address ID of the Slow C & M area assigned to the RE 31. Further, the vendor area data processing unit 76 acquires “4” and “7” as the start address ID and end address ID of the Slow C & M area to be allocated to the RE 32.
  • the vendor area data processing unit 76 acquires “8” and “B”, and “C” and “F” as the start address ID and end address ID of the Slow C & M area to be assigned to the REs 33 and 34.
  • the vendor area data processing unit 76 outputs the acquired address ID and its own device location information to the CPRI frame processing unit 78 as vendor area transmission data.
  • the SlowC & M area data processing unit 77 monitors and controls SlowC & M transmission information (monitoring control information) transmitted to the REs 31 to 34 output from the monitoring control unit 72 based on the division allocation information output from the SlowC & M area division allocation unit 73. Assign to SlowC & M area of signal.
  • the SlowC & M area data processing unit 77 outputs the SlowC & M transmission information assigned to the SlowC & M area to the CPRI frame processing unit 78 as SlowC & M transmission data.
  • the address Z. 1.0, Z. 1.1, Z. 1.2, Z. A Slow C & M area of 1.3 is allocated. Therefore, the Slow C & M area data processing unit 77 transmits the Slow C & M transmission data to be transmitted to the RE 31 to the address Z. 1.0, Z. 1.1, Z. 1.2, Z. Assign to 1.3 Slow C & M area. Further, the Slow C & M area data processing unit 77 converts the Slow C & M transmission data to be transmitted to the RE 32 into the address Z. 65.0, Z. 65.1, Z. 65.2, Z. Assign to the SlowC & M area of 65.3.
  • the SlowC & M area data processing unit 77 assigns SlowC & M transmission data to be transmitted to the REs 33 and 34 to the SlowC & M area of the monitoring control signal.
  • the SlowC & M area data processing unit 77 outputs the SlowC & M transmission information assigned to the SlowC & M area to the CPRI frame processing unit 78 as SlowC & M transmission data.
  • the SlowC & M area data processing unit 77 is the data transmitted from which REs 31 to 34 the SlowC & M received data output from the CPRI frame processing unit 78 based on the division allocation information output from the SlowC & M area division allocation unit 73. Recognize if there is.
  • the Slow C & M area data processing unit 77 is a Z. 1.0, Z. 1.1, Z. 1.2, Z.
  • the SlowC & M received data stored in the SlowC & M area of 1.3 is recognized as data transmitted from the RE 31.
  • the Slow C & M area data processing unit 77 is connected to the Z.M. 65.0, Z. 65.1, Z. 65.2, Z.
  • the SlowC & M received data stored in the SlowC & M area of 65.3 is recognized as data transmitted from the RE 32.
  • the Slow C & M area data processing unit 77 recognizes data transmitted from the REs 33 and 34.
  • the SlowC & M area data processing unit 77 outputs the SlowC & M reception data received from the REs 31 to 34 to the monitoring control unit 72 as SlowC & M reception information.
  • the CPRI frame processing unit 78 stores the vendor area transmission data output from the vendor area data processing unit 76 in the vendor area of the monitoring control signal, and generates a frame of the monitoring control signal.
  • the CPRI frame processing unit 78 stores the start address ID and end address ID assigned to the REs 31 to 34 in the vendor region transmission data output from the vendor region data processing unit 76 in the vendor region of the monitoring control signal. To do. Specifically, the CPRI frame processing unit 78 stores the start address ID “0” and the end address ID “3” assigned to the RE 31 in the “RE1 Slow C & M address information” in the vendor area shown in FIG. . The CPRI frame processing unit 78 stores the start address ID “4” and the end address ID “7” assigned to the RE 32 in the “RE2 Slow C & M address information” in the vendor area shown in FIG.
  • the CPRI frame processing unit 78 stores the address IDs assigned to the REs 33 and 34 in 'RE3 SlowC & M address information' and 'RE4 SlowC & M address information'. Further, the CPRI frame processing unit 78 stores its own device position information “0” included in the vendor area transmission data output from the vendor area data processing unit 76 in the position information illustrated in FIG. 5.
  • the CPRI frame processing unit 78 stores the SlowC & M transmission data output from the SlowC & M area data processing unit 77 in the SlowC & M area of the monitoring control signal, and generates a monitoring control signal frame.
  • the CPRI frame processing unit 78 converts the Slow C & M transmission data of the RE 31 into the address Z. 1.0, Z. 1.1, Z. 1.2, Z. Store in 1.3 SlowC & M area.
  • the CPRI frame processing unit 78 converts the SlowC & M transmission data of RE32 into the address Z. 65.0, Z. 65.1, Z. 65.2, Z. Store in the SlowC & M area of 65.3.
  • the CPRI frame processing unit 78 stores the Slow C & M transmission data of the REs 33 and 34 in the Slow C & M area of the assigned address.
  • the CPRI frame processing unit 78 extracts SlowC & M reception data from the SlowC & M area of the reception monitoring control signal output from the optical device 79.
  • the CPRI frame processing unit 78 outputs the extracted SlowC & M received data to the SlowC & M area data processing unit 77.
  • the optical device 79 converts the transmission monitoring control signal output from the CPRI frame processing unit 78 into an optical signal and outputs it to the optical fiber.
  • the optical device 79 converts the reception monitoring control signal received from the optical fiber into an electrical signal and outputs the electrical signal to the CPRI frame processing unit 78.
  • FIG. 11 is a block diagram of RE.
  • the RE 31 includes optical devices 81 and 88, CPRI frame processing units 82 and 87, vendor area data processing units 83 and 86, position information processing unit 84, SlowC & M area acquisition unit 85, and SlowC & M area data processing unit 89.
  • the REs 32 to 34 also have the same blocks as those in FIG.
  • the optical device 81 receives the monitoring control signal from the optical fiber, converts the reception monitoring control signal into an electrical signal, and outputs the electrical signal to the CPRI frame processing unit 82.
  • the optical device 81 converts the transmission monitoring control signal output from the CPRI frame processing unit 82 into an optical signal and outputs the optical signal to the optical fiber.
  • the CPRI frame processing unit 82 extracts information stored in the vendor area of the reception monitoring control signal.
  • the CPRI frame processing unit 82 outputs the extracted vendor area information to the vendor area data processing unit 83 as vendor area reception data.
  • the CPRI frame processing unit 82 acquires the monitoring control information stored in the Slow C & M area of the reception monitoring control signal.
  • the CPRI frame processing unit 82 outputs the acquired monitoring control information of the SlowC & M area to the SlowC & M area data processing unit 89 as SlowC & M reception data.
  • the CPRI frame processing unit 82 stores the SlowC & M transmission data output from the SlowC & M area data processing unit 89 in the SlowC & M area of the monitoring control signal frame, and generates a monitoring control signal frame.
  • the CPRI frame processing unit 82 outputs the generated monitoring control signal frame to the optical device 81 as a transmission monitoring control signal.
  • the vendor area data processing unit 83 extracts position information from the vendor area reception data output from the CPRI frame processing unit 82, and outputs the extracted position information to the position information processing unit 84 as its own apparatus position reception data.
  • the vendor area data processing unit 83 extracts Slow C & M address information from the vendor area reception data output from the CPRI frame processing unit 82.
  • the vendor area data processing unit 83 extracts the SlowC & M address information for RE1 to the SlowC & M address information for RE4 shown in FIG.
  • the vendor area data processing unit 83 outputs the extracted SlowC & M address information to the SlowC & M area acquisition unit 85 and the vendor area data processing unit 86.
  • the position information processing unit 84 recognizes the connection position of the daisy chain connection of the own device based on the own device position reception data output from the vendor area data processing unit 83.
  • the RE 31 is an RE connected to the first stage, and receives the position information “0”, for example. Therefore, the position information processing unit 84 is the RE connected to the first stage based on the position information “0”. Recognize that.
  • the position information processing unit 84 outputs the recognized connection position as connection position information to the Slow C & M region acquisition unit 85.
  • the position information processing unit 84 adds (changes) “1” to the own device position reception data (position information) output from the vendor region data processing unit 83, and sets the vendor information processing unit as the own device position transmission data. 86.
  • the RE 32 connected to the subsequent stage receives the position information “1”, and can recognize that the RE is connected to the second stage.
  • the Slow C & M area acquisition unit 85 refers to the Slow C & M address information output from the vendor area data processing unit 83 based on the connection position information output from the position information processing unit 84, and the address information of the Slow C & M area assigned to itself. (Start address ID and end address) are acquired.
  • the Slow C & M area acquisition unit 85 refers to the conversion TB 91 based on the acquired address information, and acquires the address of the Slow C & M area assigned to itself.
  • the SlowC & M area acquisition unit 85 outputs the acquired address of the SlowC & M area to the SlowC & M area data processing unit 89 as SlowC & M area allocation information.
  • the conversion TB 91 stores the relationship between the address of the Slow C & M area and the address ID.
  • the Slow C & M area acquisition unit 85 acquires the connection position information “0” from the position information processing unit 84.
  • the Slow C & M area acquisition unit 85 acquires, for example, the Slow C & M address information for RE1 in the vendor area shown in FIG.
  • the Slow C & M area acquisition unit 85 refers to the conversion TB 91 based on the acquired address information, and acquires the address of the Slow C & M area assigned to itself.
  • the Slow C & M area acquisition unit 85 receives the address Z.M. 1.0, Z. 1.1, Z. 1.2, Z. Get 1.3.
  • the SlowC & M area acquisition unit 85 outputs the acquired addresses of these SlowC & M areas to the SlowC & M area data processing unit 89 as SlowC & M area allocation information.
  • the vendor area data processing unit 86 stores its own device position transmission data output from the position information processing unit 84 and Slow C & M address information output from the vendor area data processing unit 83 in the vendor area of the monitoring control signal.
  • the data is output to the CPRI frame processing unit 87 as vendor area transmission data. That is, the vendor area information of the monitoring control signal received from the REC 21 is transmitted to the RE 32 in the next stage. However, “1” is added to the position information by the position information processing unit 84.
  • the CPRI frame processing unit 87 stores the vendor area transmission data output from the vendor area data processing unit 86 in the vendor area of the monitor control signal frame.
  • the CPRI frame processing unit 87 stores vendor area transmission data in the areas of the vendor area position information and the RE1 Slow C & M address information to the RE4 Slow C & M address information shown in FIG.
  • the CPRI frame processing unit 87 stores the SlowC & M next link transmission data output from the SlowC & M area data processing unit 89 in the SlowC & M area of the monitoring control signal. That is, the information in the Slow C & M area of the monitoring control signal received from the REC 21 is transmitted to the RE 32 in the next stage.
  • the CPRI frame processing unit 87 extracts Slow C & M area data from the next-stage reception monitoring control signal output from the optical device 88, and outputs it to the Slow C & M area data processing unit 89 as Slow C & M next link reception data. That is, the information in the Slow C & M area of the monitoring control signal received from the RE 32 is transmitted to the REC 21 (or the previous RE).
  • the CPRI frame processing unit 87 generates a next-stage transmission monitoring control signal including the vendor area transmission data output from the vendor area data processing unit 86, and outputs it to the optical device 88. Further, the CPRI frame processing unit 87 generates a next-stage transmission monitoring control signal including the C & M next-link transmission data output from the Slow C & M area data processing unit 89 and outputs the generated signal to the optical device 88.
  • the optical device 88 converts the next-stage transmission monitoring control signal output from the CPRI frame processing unit 87 into an optical signal and outputs it to the optical fiber.
  • the optical device 88 converts the next-stage reception monitoring control signal received from the optical fiber into an electrical signal and outputs the electrical signal to the CPRI frame processing unit 87.
  • the SlowC & M area data processing unit 89 outputs the SlowC & M reception data output from the CPRI frame processing unit 82 to the CPRI frame processing unit 87 as SlowC & M next link transmission data in order to transmit to the RE 32 in the next stage.
  • the SlowC & M area data processing unit 89 acquires the monitoring control information addressed to itself from the SlowC & M reception data output from the CPRI frame processing unit 82 based on the SlowC & M area allocation information output from the SlowC & M area acquisition unit 85.
  • the SlowC & M area data processing unit 89 outputs the acquired monitoring control information of the SlowC & M area to the monitoring control unit 90 as SlowC & M reception information.
  • the Slow C & M area data processing unit 89 receives the address Z.M from the Slow C & M area acquisition unit 85. 1.0, Z. 1.1, Z. 1.2, Z.
  • the Slow C & M area allocation information of 1.3 is output, the monitoring control information stored in the Slow C & M area is acquired by referring to the Slow C & M area of the monitoring control signal based on the address.
  • the SlowC & M area acquisition unit 85 outputs the acquired monitoring control information of the SlowC & M area to the monitoring control unit 90 as SlowC & M reception information.
  • the Slow C & M area data processing unit 89 uses the Slow C & M area allocation information output from the Slow C & M area acquisition unit 85 based on the Slow C & M area allocation information output from the Slow C & M area acquisition unit 85. Assign to.
  • the Slow C & M area data processing unit 89 receives the address Z.M from the Slow C & M area acquisition unit 85. 1.0, Z. 1.1, Z. 1.2, Z.
  • SlowC & M area allocation information of 1.3 is output, SlowC & M transmission information is allocated to the SlowC & M area of the address.
  • the SlowC & M area data processing unit 89 outputs the SlowC & M transmission information assigned to the address of the SlowC & M area allocation information and the SlowC & M next link reception data output from the CPRI frame processing unit 87 to the CPRI frame processing unit 82 as SlowC & M transmission data. To do.
  • the monitoring control unit 90 receives SlowC & M reception information output from the SlowC & M area data processing unit 89. That is, the monitoring control unit 90 receives the monitoring control information addressed to itself transmitted from the REC 21. When the monitoring control unit 90 receives the monitoring control information from the REC 21, the monitoring control unit 90 performs various monitoring control processes based on the received monitoring control information. The monitoring control unit 90 outputs the result related to the monitoring control process related to the own device to the SlowC & M area data processing unit 89 as SlowC & M transmission information (monitoring control information).
  • FIG. 12 is a sequence diagram showing a REC Slow C & M area dividing process.
  • the REC 12 divides the Slow C & M area for transmitting / receiving the monitoring control information to the REs 31 to 34 and assigns the information to the REs 31 to 34 by transmitting the information to the REs 31 to 34 by executing the processing of the following steps.
  • the monitoring control unit 72 activates the REC 21 by, for example, turning on the power.
  • the monitoring control unit 72 reads operation data from the operation data DB 71.
  • the operation data includes daisy chain connection information in addition to the initial setting information of the REC 21.
  • the monitoring control unit 72 initializes the REC 21 based on the initial setting information included in the operation data.
  • the monitoring controller 72 extracts daisy chain connection information from the operation data.
  • Step S5 The monitoring control unit 72 outputs the daisy chain connection information extracted from the operation data to the Slow C & M area division allocation unit 73.
  • Step S6 The SlowC & M area division assigning unit 73 divides the SlowC & M area based on the daisy chain connection information, and assigns the divided SlowC & M areas to the REs 31 to 34.
  • Step S7 The SlowC & M area partition allocation unit 73 outputs the SlowC & M area partition allocation result to the vendor area data processing unit 76 as SlowC & M area partition allocation information.
  • the position information setting unit 74 outputs the own apparatus position information to the vendor area data processing unit 76.
  • the own apparatus position information is position information for the REs 31 to 34 to recognize their own connection position, and is “0”, for example.
  • the vendor area data processing unit 76 refers to the conversion TB 75 based on the division allocation information output from the SlowC & M area division allocation unit 73, and acquires the address ID stored in the vendor area of the monitoring control signal. That is, the vendor area data processing unit 76 acquires the address ID of the Slow C & M area allocated to the REs 31 to 34.
  • the vendor area data processing section 76 outputs the acquired address ID and the own apparatus position information received from the position information setting section 74 to the CPRI frame processing section 78 as vendor area transmission data.
  • the CPRI frame processing unit 78 stores the address IDs assigned to the REs 31 to 34 of the vendor area transmission data output from the vendor area data processing unit 76 in the vendor area of the monitoring control signal. Further, the CPRI frame processing unit 78 stores its own apparatus location information included in the vendor area transmission data output from the vendor area data processing unit 76 in the vendor area. The CPRI frame processing unit 78 outputs a transmission monitoring control signal in which the vendor area transmission data is stored in the vendor area to the optical device 79. The optical device 79 converts the transmission monitoring control signal into an optical signal and transmits the optical signal to the RE 31 via the optical fiber.
  • FIG. 13 is a sequence diagram showing allocation information reception processing of the Slow C & M area of the RE.
  • FIG. 13 shows the sequence of RE31.
  • the RE 31 executes the processing of the following steps to acquire information related to the address of the Slow C & M area allocated to itself, and transmits the information to the REs 32 to 34 in the next stage.
  • the optical device 81 receives the monitoring control signal from the optical fiber, converts it into a reception monitoring control signal of an electrical signal, and outputs it to the CPRI frame processing unit 82.
  • the CPRI frame processing unit 82 extracts information (vendor area reception data) stored in the vendor area of the reception monitoring control signal. In the vendor area of the reception monitoring control signal, address information of the Slow C & M area allocated to the REs 31 to 34 and position information for the REs 31 to 34 to recognize their connection positions are stored.
  • the CPRI frame processing unit 82 outputs the extracted vendor area reception data to the vendor area data processing unit 83.
  • the vendor area data processing unit 83 extracts its own apparatus location reception data (position information) from the vendor area reception data received from the CPRI frame processing unit 82.
  • the vendor area data processing unit 83 outputs the extracted position reception data of the own device to the position information processing unit 84.
  • the position information processing unit 84 recognizes the connection position of the daisy chain connection of the own device based on the own device position reception data output from the vendor area data processing unit 83. For example, the position information processing unit 84 recognizes that the own apparatus is connected to the first stage from the REC 21 based on the own apparatus position reception data of “0”.
  • the position information processing unit 84 outputs the recognized connection position to the Slow C & M area acquisition unit 85 as connection position information.
  • the position information processing unit 84 generates own device position transmission data obtained by adding “1” to the own device maintenance reception data output from the vendor area data processing unit 83. Note that the own device position transmission data (position information) to which “1” is added is transmitted to the next-stage RE 32, thereby recognizing that the RE 32 is connected to the second stage from the REC 21. it can.
  • the position information processing unit 84 outputs the generated own device position transmission data to the vendor area data processing unit 86.
  • the vendor area data processing unit 83 extracts Slow C & M address information from the vendor area reception data received from the CPRI frame processing unit 82. For example, the vendor area data processing unit 83 extracts the SlowC & M address information for RE1 to the SlowC & M address information for RE4 shown in FIG.
  • the vendor area data processing unit 83 outputs the extracted SlowC & M address information to the SlowC & M area acquisition unit 85 and the vendor area data processing unit 86.
  • the vendor area data processing unit 86 uses its own device position transmission data output from the position information processing unit 84 and Slow C & M address information output from the vendor area data processing unit 83 as the vendor area of the monitoring control signal. Is output to the CPRI frame processing unit 87 as the vendor area transmission data stored in. That is, the allocation information of the Slow C & M area allocated by the REC 21 to the REs 31 to 34 and the position information added with '1' are stored in the vendor area of the monitoring control signal and transmitted to the RE 32 in the next stage. Become.
  • the CPRI frame processing unit 87 stores the vendor area transmission data output from the vendor area data processing unit 86 in the vendor area of the monitoring control signal, and outputs it to the optical device 88 as the next-stage transmission monitoring control signal. .
  • the optical device 88 converts the next-stage transmission monitoring control signal into an optical signal, and transmits the optical signal to the next-stage RE 32 via the optical fiber.
  • the Slow C & M area acquisition unit 85 refers to the Slow C & M address information output from the vendor area data processing unit 83 based on the connection position information output from the position information processing unit 84, and the Slow C & M assigned to itself. Get area address information.
  • the Slow C & M area acquiring unit 85 acquires the Slow C & M address information for RE1 of the vendor area shown in FIG. 5 based on the connection position information “0”.
  • the Slow C & M area acquisition unit 85 refers to the conversion TB 91 based on the acquired address information (address ID), and acquires the address of the Slow C & M area assigned to itself.
  • Step S35 The SlowC & M area acquisition unit 85 outputs the acquired address to the SlowC & M area data processing unit 89 as SlowC & M area allocation information.
  • FIG. 14 is a sequence diagram showing a transmission process of REC monitoring control information.
  • the REC 21 assigns the Slow C & M area to the monitoring control information to be transmitted to the REs 31 to 34 by executing the processing of the following steps, and transmits the monitoring control information to the REs 31 to 34.
  • the SlowC & M area division allocation unit 73 outputs the SlowC & M area division allocation information allocated to the REs 31 to 34 to the SlowC & M area data processing unit 77.
  • the monitoring control unit 72 outputs the monitoring control information transmitted to the REs 31 to 34 to the SlowC & M area data processing unit 77 as SlowC & M transmission information.
  • the SlowC & M area data processing unit 77 allocates the SlowC & M transmission information output from the monitoring control unit 72 to the SlowC & M area of the monitoring control signal based on the division allocation information output from the SlowC & M area division allocation unit 73. .
  • Step S44 The SlowC & M area data processing unit 77 outputs the SlowC & M transmission information allocated to the SlowC & M area to the CPRI frame processing unit 78 as SlowC & M transmission data.
  • the CPRI frame processing unit 78 stores the SlowC & M transmission data output from the SlowC & M region data processing unit 77 in the SlowC & M region of the monitoring control signal, and generates a transmission monitoring control signal.
  • Step S46 The CPRI frame processing unit 78 outputs the generated transmission monitoring control signal to the optical device 79.
  • the optical device 79 converts the transmission monitoring control signal into an optical signal and outputs the optical signal to the RE 31 via the optical fiber.
  • FIG. 15 is a sequence diagram showing reception processing of RE monitoring control information.
  • the RE 31 receives the monitoring control information transmitted from the REC 21 by executing the processing of the following steps, and acquires the monitoring control information addressed to itself. Also, the RE 31 transmits the received monitoring control information to the next RE 32.
  • the optical device 81 receives the monitoring control signal from the optical fiber, converts it into an electrical signal of the reception monitoring control signal, and outputs it to the CPRI frame processing unit 82.
  • the CPRI frame processing unit 82 acquires monitoring control information stored in the Slow C & M area of the reception monitoring control signal.
  • Step S53 The CPRI frame processing unit 82 outputs the acquired monitoring control information of the SlowC & M area to the SlowC & M area data processing unit 89 as SlowC & M reception data.
  • Step S54 The SlowC & M area data processing unit 89 outputs the SlowC & M reception data output from the CPRI frame processing unit 82 to the CPRI frame processing unit 87 as SlowC & M next link transmission data in order to transmit it to the RE 32 in the next stage. .
  • the CPRI frame processing unit 87 stores the SlowC & M next link transmission data output from the SlowC & M area data processing unit 89 in the SlowC & M area of the monitoring control signal, and generates a next-stage transmission monitoring control signal.
  • Step S56 The CPRI frame processing unit 87 outputs the generated next-stage transmission monitoring control signal to the optical device 88.
  • the optical device 88 converts the next-stage transmission monitoring control signal into an optical signal, and transmits the optical signal to the next-stage RE 32 via the optical fiber.
  • the SlowC & M area data processing unit 89 uses the SlowC & M area data output from the CPRI frame processing unit 82 based on the SlowC & M area allocation information (step S35 in FIG. 13) acquired by the SlowC & M area acquisition unit 85. Get monitoring control information for the destination.
  • the SlowC & M area data processing unit 89 outputs the acquired monitoring control information of the SlowC & M area to the monitoring control unit 90 as SlowC & M reception information.
  • the monitoring control unit 90 Upon receiving the monitoring control information from the REC 21, the monitoring control unit 90 performs various types of monitoring control processing based on the received monitoring control information.
  • FIG. 16 is a sequence diagram showing transmission processing of RE monitoring control information.
  • the RE 31 receives the monitoring control signal including the monitoring control information from the subsequent-stage RE 32 by executing the processing of the following steps, includes the monitoring control information of its own device in the monitoring control signal, and includes the REC 21 (or the next stage). Output to (RE).
  • the optical device 88 receives the monitoring control signal from the subsequent RE 32 via the optical fiber, converts the monitoring control signal into a next-stage reception monitoring control signal of an electrical signal, and outputs the signal to the CPRI frame processing unit 87.
  • the CPRI frame processing unit 87 extracts data from the Slow C & M area of the next-stage reception monitoring control signal output from the optical device 88.
  • the CPRI frame processing unit 87 outputs the data extracted from the SlowC & M area of the next-stage reception monitoring control signal to the SlowC & M area data processing unit 89 as SlowC & M next link reception data.
  • the supervisory control unit 90 outputs supervisory control information related to the device itself to the SlowC & M area data processing unit 89 as SlowC & M transmission information.
  • the SlowC & M region data processing unit 89 acquires the SlowC & M next link reception data output from the CPRI frame processing unit 87 and the SlowC & M transmission information output from the monitoring control unit 90 by the SlowC & M region acquisition unit 85. Based on the SlowC & M area allocation information (step S35 in FIG. 13), the SlowC & M area allocation is performed.
  • Step S66 The SlowC & M area data processing unit 89 outputs the SlowC & M next link reception data and the SlowC & M transmission information allocated to the SlowC & M area to the CPRI frame processing unit 82 as SlowC & M transmission data.
  • the CPRI frame processing unit 82 stores the SlowC & M transmission data output from the SlowC & M region data processing unit 89 in the SlowC & M region of the monitoring control signal, and generates a transmission monitoring control signal.
  • Step S68 The CPRI frame processing unit 82 outputs the generated transmission monitoring control signal to the optical device 81.
  • the optical device 81 converts the transmission monitoring control signal into an optical signal and outputs the optical signal to the REC 21 via the optical fiber.
  • FIG. 17 is a sequence diagram showing reception processing of monitoring control information of REC.
  • the REC 21 receives the monitoring control signal including the monitoring control information of the RE 31 to RE 34 by executing the processing of the following steps.
  • the optical device 79 receives the monitoring control signal from the RE 31 via the optical fiber, converts it into an electrical signal of the reception monitoring control signal, and outputs it to the CPRI frame processing unit 78.
  • the CPRI frame processing unit 78 extracts SlowC & M reception data from the SlowC & M area of the reception monitoring control signal. That is, the CPRI frame processing unit 78 extracts the monitoring control information of the REs 31 to 34 stored in the Slow C & M area.
  • Step S73 The CPRI frame processing unit 78 outputs the extracted SlowC & M received data to the SlowC & M area data processing unit 77.
  • the SlowC & M area data processing unit 77 determines which SlowC & M received data output from the CPRI frame processing unit 78 is based on the division allocation information (step S7 in FIG. 12) output from the SlowC & M area division allocation unit 73. Recognizing whether the data is transmitted from REs 31 to 34, Slow C & M reception information (monitoring control information) is generated.
  • Step S75 The SlowC & M area data processing unit 77 outputs the SlowC & M reception information of the REs 31 to 34 to the monitoring control unit 72.
  • the REC 21 divides the SlowC & M area of the monitoring control signal and assigns it to the plurality of REs 31 to 34.
  • the Slow C & M area can be prevented from being occupied by the REs 31 to 34, and communication between the REC 21 and the REs 31 to 34 can be ensured.
  • the REs 31 to 34 transmit and receive monitoring control information to and from the REC 21 through the Slow C & M area allocated by the REC 21, it is possible to prevent the Slow C & M area from being occupied by the REs 31 to 34 and to ensure communication between the REC 21 and the REs 31 to 34. can do.
  • the REs 31 to 34 recognize their connection positions based on the position information. As a result, the RE can be additionally connected.
  • the link connection is established in the vendor area of the monitor control signal earlier than the Slow C & M area. Therefore, by sending the address information of the SlowC & M area by the vendor area, the allocation information of the SlowC & M area can be transmitted to the REs 31 to 34 before the link connection of the SlowC & M area.
  • the SlowC & M area has been described above, the FastC & M area can be similarly assigned to the REs 31 to 34 for communication.
  • the number of Slow C & M areas has been described as 16 but is not limited to this and can be varied according to the value of Y.
  • the Slow C & M area is divided and allocated equally to REs 31 to 34, the present invention is not limited to this.
  • a large number of SlowC & M areas may be allocated to the other REs 31 to 34 for the REs 31 to 34 that need to transmit and receive a large amount of monitoring control information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

 無線装置制御装置と無線装置との間の通信を確保する。 無線装置制御装置(1)の分割割り当て部(1a)は、デイジーチェーン接続される無線装置(2,3,…)と情報を送受信するためのフレームの情報領域を分割して、無線装置(2,3,…)に割り当てる。送信部1bは、分割割り当て部(1a)によって無線装置(2,3,…)に割り当てられた情報領域のアドレス情報を無線装置(2,3,…)に送信する。無線装置(2)の受信部(2a)は、無線装置制御装置(1)または無線装置(2)からフレームを受信する。位置認識部(2b)は、受信されたフレームに含まれる位置情報に基づいて、デイジーチェーン接続されている自己の接続位置を認識する。取得部(2c)は、位置認識部(2b)によって認識された自己の接続位置に基づいてフレームを参照し、無線装置制御装置(1)と情報を送受信するためのフレームの情報領域のアドレス情報を取得する。

Description

無線装置制御装置、無線装置、および通信方法
 本件は内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置制御装置、無線装置、および通信方法に関する。
 携帯電話などの無線通信システムにおける基地局は、無線信号を処理する無線部(RE:Radio Equipment)と、REを制御する無線制御部(REC:Radio Equipment Control)とに分離することができる。このREC-RE間を結ぶインターフェースとして、CPRI(Common public Radio Interface)がある(例えば、特許文献1参照)。CPRIは、基地局内をREとRECとに分離し、そのインターフェースをオープンにすることにより、基地局内の各部のマルチベンダ化を図ることができる。
特開2007-312185号公報
 RECとREは、CPRIで規定されているSlowC&M領域を共用して監視制御情報のやり取りを行う。このため、複数のREをデイジーチェーン接続した場合に、例えば、1台のREがCPRIを経由して送受信される監視制御信号のSlowC&M領域を占有して監視制御情報を送信すると、他のREは、監視制御情報をSlowC&M領域に挿入することができず、RECとRE間の監視制御情報の通信が確保されないという問題点があった。
 図18は、監視制御信号のSlowC&M領域の占有を説明する図である。図18に示すようにRE111~113は、1台のREC101にデイジーチェーン接続されている。REC101およびRE111~113は、CPRIに基づいて監視制御情報を送受信する。
 REC101は、監視制御処理部101aを有している。監視制御処理部101aは、CPRIリンクを経由して送受信される監視制御信号のSlowC&M領域を用いて、監視制御情報をRE111~113に送信する。また、監視制御処理部101aは、受信した監視制御信号のSlowC&M領域から、RE111~113より送信された監視制御情報を抽出する。
 RE111~113は、CPRIリンクから受信した監視制御信号のSlowC&M領域から監視制御情報を抽出する。また、RE111~113は、自装置に関する監視制御情報を監視制御信号のSlowC&M領域に挿入し、CPRIリンクに送出する。
 ここで、RE113が大量の監視制御情報を監視制御信号のSlowC&M領域に挿入したとする。REC101とRE111~113は、監視制御信号のSlowC&M領域を共用して監視制御情報のやり取りを行うため、RE111,112は、監視制御信号のSlowC&M領域に自分の監視制御情報を挿入することができなくなり、REC101およびRE111~113間の監視制御情報の通信は確保されなくなってしまう。
 本件はこのような点に鑑みてなされたものであり、無線装置制御装置と無線装置との間の通信を確保する無線装置制御装置、無線装置、および通信方法を提供することを目的とする。
 上記課題を解決するために、内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置制御装置が提供される。この無線装置制御装置は、当該無線装置制御装置にデイジーチェーン接続される複数の無線装置と情報を送受信するフレームの情報領域を分割して前記複数の無線装置に割り当てる分割割り当て部と、前記分割割り当て部によって前記複数の無線装置に割り当てられた前記情報領域のアドレス情報を前記複数の無線装置に送信する送信部と、を有する。
 また、上記課題を解決するために、内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置が提供される。この無線装置は、当該無線装置を制御する無線装置制御装置または他の無線装置からフレームを受信する受信部と、前記受信部によって受信された前記フレームに含まれる位置情報に基づいて前記無線装置制御装置にデイジーチェーン接続されている自己の接続位置を認識する位置認識部と、前記位置認識部によって認識された自己の接続位置に基づいて前記フレームを参照し、前記無線装置制御装置と情報を送受信するための前記フレームの情報領域のアドレス情報を取得する取得部と、を有する。
 開示の無線装置制御装置、無線装置、および通信方法によれば、無線装置制御装置と無線装置との間の通信を確保することができる。
 本件の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態に係る基地局を示した図である。 第2の実施の形態に係る基地局のシステム構成例を示した図である。 監視制御信号のフレーム構成例を示した図である。 ハイパーフレームの詳細を示した図である。 コントロールワードマッピングを示した図である。 位置情報を説明する図である。 SlowC&M領域のアドレス情報が格納されるベンダ領域を説明する図である。 SlowC&M領域のアドレスとアドレスIDの関係を示したテーブルである。 RECとREとで送受信される監視制御情報の帯域を説明する図である。 RECのブロック図である。 REのブロック図である。 RECのSlowC&M領域の分割処理を示したシーケンス図である。 REのSlowC&M領域の割り当て情報受信処理を示したシーケンス図である。 RECの監視制御情報の送信処理を示したシーケンス図である。 REの監視制御情報の受信処理を示したシーケンス図である。 REの監視制御情報の送信処理を示したシーケンス図である。 RECの監視制御情報の受信処理を示したシーケンス図である。 監視制御信号のSlowC&M領域の占有を説明する図である。
 以下、第1の実施の形態を、図面を参照して詳細に説明する。
 図1は、第1の実施の形態に係る基地局を示した図である。図1に示すように基地局は、無線装置制御装置1および無線装置2,3,…を有している。無線装置2,3,…は、無線装置制御装置1にデイジーチェーン接続されている。
 無線装置制御装置1は、分割割り当て部1aおよび送信部1bを有している。無線装置2は、受信部2a、位置認識部2b、および取得部2cを有している。無線装置3は、図示していないが、無線装置2と同様に受信部、位置認識部、および取得部を有している。
 無線装置制御装置1の分割割り当て部1aは、無線装置2,3,…と送受信するフレームの、無線装置2,3,…と情報を送受信する情報領域を分割して無線装置2,3,…に割り当てる。無線装置2,3,…と送受信する情報は、例えば、無線装置2,3,…の監視および制御に関する情報である。
 例えば、分割割り当て部1aは、当該無線装置制御装置1に4台の無線装置がデイジーチェーン接続されている場合、フレームの情報領域を4等分し、4等分した情報領域のそれぞれに4台の無線装置のそれぞれを割り当てる。
 送信部1bは、分割割り当て部1aによって無線装置2,3,…に割り当てられた情報領域のアドレス情報を無線装置2,3,…に送信する。
 例えば、送信部1bは、フレームのベンダが自由に使用できるベンダ領域に、無線装置2,3,…が自己の接続位置を認識するための位置情報を格納する。そして、送信部1bは、無線装置2,3,…がその位置情報に基づいて情報領域のアドレス情報を取得できるように、フレームのベンダ領域に情報領域のアドレス情報を格納して送信する。より具体的には、送信部1bは、ベンダ領域のアドレスの小さい順に、1段目から順に無線装置2,3,…に割り当てた情報領域のアドレス情報を格納する。これにより、1段目の無線装置2は、フレームのベンダ領域に格納されている位置情報により、無線装置制御装置1から1段目に接続されていることを認識し、1段目の無線装置のアドレス情報が格納されているベンダ領域を参照して、自己に割り当てられた情報領域のアドレス情報を取得する。
 無線装置2の受信部2aは、当該無線装置2を制御する無線装置制御装置1または他の無線装置3からフレームを受信する。
 位置認識部2bは、受信部2aによって受信されたフレームに含まれる位置情報に基づいて、無線装置制御装置1にデイジーチェーン接続されている自己の接続位置を認識する。
 例えば、位置情報は、無線装置制御装置1から出力されたときは‘0’で、無線装置2,3,…を経由するたびに、無線装置2,3,…によって‘1’が加算される情報である。これにより、例えば、無線装置2の位置認識部2bは、‘0’の位置情報を受信することにより、無線装置制御装置1から1段目にデイジーチェーン接続されていることを認識できる。また、無線装置3は、‘1’の位置情報を受信することにより、無線装置制御装置1から2段目にデイジーチェーン接続されていることを認識できる。
 取得部2cは、位置認識部2bによって認識された自己の接続位置に基づいてフレームを参照し、無線装置制御装置1と情報を送受信するためのフレームの情報領域のアドレス情報を取得する。
 このように、無線装置制御装置1は、複数の無線装置2,3,…と情報を送受信するためのフレームの情報領域を分割して複数の無線装置2,3,…に割り当てる。これにより、情報領域の複数の無線装置2,3,…による占有を防止でき、無線装置制御装置1と無線装置2,3…との間の通信を確保することができる。
 また、無線装置2,3,…は、無線装置制御装置1によって割り当てられた情報領域によって無線装置制御装置1と情報の送受信を行うので、情報領域の複数の無線装置2,3,…による占有を防止でき、無線装置制御装置1と無線装置2,3…との間の通信を確保することができる。
 次に、第2の実施の形態を、図面を参照して詳細に説明する。
 図2は、第2の実施の形態に係る基地局のシステム構成例を示した図である。図2には、基地局11、端末41,42、および監視制御装置51が示してある。
 基地局11は、REC21およびRE31~34を有している。REC21およびRE31~34は、例えば、光ファイバによって接続される。RE31~34は、1台のREC21にデイジーチェーン接続されている。REC21およびRE31~34は、CPRIに基づいて監視制御信号を送受信する。図2には、4台のRE31~34を示しているが、もちろんこの台数よりも多く接続してもよいし、少なく接続してもよい。
 端末41,42は、例えば、携帯電話である。端末41は、例えば、RE32と無線通信し、端末42は、RE33と無線通信を行う。端末41,42のデータは、RE32,33を介して監視制御信号によりREC21に送信される。REC21に送信された端末41,42のデータは、例えば、図示していない他の基地局へ送信されて他の端末へと送信される。また、図示していない端末から送信されたデータは、REC21によって受信され、監視制御信号によりRE31~33を介して、端末41,42に送信される。
 監視制御装置51は、例えば、基地局11の保守者によって操作される。監視制御装置51は、保守者の操作に応じて、RE31~34を監視制御するための監視制御情報をREC21に送信する。
 REC21は、監視制御装置51から送信された監視制御情報を終端し、監視制御信号のSlowC&M領域に挿入してRE31~34に送信する。SlowC&M領域は、REC21,RE31~34を監視制御する監視制御情報が格納される領域である。SlowC&M領域の情報は、HDLC(High-Level Data Link Control)形式で送受信される。
 RE31~34は、監視制御情報を監視制御信号のSlowC&M領域に挿入し、REC21に送信する。RE31~34の監視制御情報は、例えば、監視制御装置51の監視制御情報に対する自装置の監視制御結果の情報である。REC21は、RE31~34から送信された監視制御情報を監視制御信号から抽出して終端し、監視制御装置51に送信する。
 REC21およびRE31~34間で送受信される監視制御信号について説明する。図3は、監視制御信号のフレーム構成例を示した図である。監視制御信号は、図3に示すように、ベーシックフレーム、ハイパーフレーム、UMTS(Universal Mobile Telecommunication Systems)ラジオフレームの階層構造を持つ。256個のベーシックフレームの集合体がハイパーフレームとなり、150個のハイパーフレームの集合体がUMTSラジオフレームとなる。
 ベーシックフレームは、インデックスとしてX0~X255が付与され、ハイパーフレームは、インデックスとしてZ0~Z149が付与される。また、ベーシックフレームは、行番号としてY0~Y3が付与される。ベーシックフレームは、Z.X.Y(Z,X,Y:正の整数)によって、UMTSラジオフレーム内のどこに配置されているかを示すことができる。
 ベーシックフレームは、図3に示すように、16バイトを1単位とし、Y0~Y3の値で管理される。ベーシックフレームの先頭の1バイトは、コントロールワード(CW)として定義される。ベーシックフレームの残りの15バイトには、IQデータが格納される。
 図4は、ハイパーフレームの詳細を示した図である。図4には、1ハイパーフレームが示してある。上述したように、1ハイパーフレームは、X0~X255の256個のベーシックフレームから構成される。図4に示すベーシックフレームの斜線部分は、コントロールワードを示す。
 256個のベーシックフレームは、図4に示すように64個のサブチャネルにまとめられる。各サブチャネルのベーシックフレームには、図に示すように、0~63のインデックスNsが付与される。また、各サブチャネル内のコントロールワードには、0~4のインデックスXsが付与される。
 1ハイパーフレーム内のコントロールワードは、256個のベーシックフレームを64個のサブチャネルにまとめることによって、ヘッダとしての意味を持つ。
 図5は、コントロールワードマッピングを示した図である。図5に示すように、コントロールワードは、1ハイパーフレームのベーシックフレームを64サブチャネルにまとめることで、ヘッダとしての意味を持つ。図5のXsは、図4のXsに対応している。コントロールワードは、図5に示すようにまとめることによって、所定の意味を持つ。
 ここで、SlowC&M領域のアドレスは、図5の例の場合、Z.1.0,Z.65.0,Z.129.0,Z.193.0となり、SlowC&M領域の個数は、4個となる。ベーシックフレームの行番号Y0~Y3を使用した場合は、SlowC&M領域のアドレスは、Z.1.0,Z.65.0,Z.129.0,Z.193.0,Z.1.1,Z.65.1,Z.129.1,Z.193.1,Z.1.2,Z.65.2,Z.129.2,Z.193.2,Z.1.3,Z.65.3,Z.129.3,Z.193.3となり、SlowC&M領域の個数は、16個となる。以下では、ベーシックフレームは、行番号Y0~Y3を使用するものとし、SlowC&M領域の個数は、16個として説明する。
 図2に示すREC21は、複数のSlowC&M領域を分割し、RE31~34に割り当てる。例えば、REC21は、16個のSlowC&M領域を4つに均等に分割し、RE31に、アドレスZ.1,0~Z.1,3のSlowC&M領域を割り当て、RE32に、アドレスZ.65,0~Z.65,3のSlowC&M領域を割り当て、RE33に、アドレスZ.129,0~Z.129,3のSlowC&M領域を割り当て、RE34に、アドレスZ.193,0~Z.193,3のSlowC&M領域を割り当てる。
 REC21は、RE31~34に割り当てたSlowC&M領域を、SlowC&M領域のアドレス情報によってRE31~34に通知する。RE31~34は、通知を受けたアドレス情報に基づいて、自分の使用できるSlowC&M領域を認識し、認識したSlowC&M領域を用いて、監視制御情報の送受信を行う。
 REC21は、RE31~34とSlowC&M領域のリンクを確立する前に、監視制御信号のベンダ領域(図5のVendor Specific)を用いて、RE31~34に割り当てたSlowC&M領域のアドレス情報をRE31~34に通知する。このとき、REC21は、RE31~34が自分の接続位置を認識するための位置情報を、監視制御信号のベンダ領域に格納する。なお、ベンダ領域は、ユーザで自由に使用できる領域である。
 RE31~34のそれぞれは、SlowC&M領域のアドレス情報と位置情報とを含む監視制御信号を受信すると、ベンダ領域の位置情報を、例えば、1インクリメントし、後段のRE31~34へ出力する。これにより、監視制御信号を受信したRE31~34のそれぞれは、REC21から何番目にデイジーチェーン接続されているか、接続位置を認識することができる。
 図6は、位置情報を説明する図である。図6には、図2で示したREC21とRE31~33が示してある。また、図6には、監視制御信号のベンダ領域に格納される位置情報61~63が示してある。
 REC21は、位置情報61に示すように、例えば、ベンダ領域(図5に示すベンダ領域の位置情報)に‘0’の位置情報を格納して、1段目のRE31に送信する。RE31は、‘0’の位置情報の監視制御信号を受信することにより、REC21から1段目にデイジーチェーン接続されていることを認識できる。
 RE31は、位置情報62に示すように、REC21から受信した位置情報に1を加算して後段のRE32に送信する。RE32は、‘1’の位置情報の監視制御信号を受信することにより、REC21から2段目にデイジーチェーン接続されていることを認識できる。
 RE32は、位置情報63に示すように、RE31から受信した位置情報に1を加算して後段のRE33に送信する。RE33は、‘2’の位置情報の監視制御信号を受信することにより、REC21から3段目にデイジーチェーン接続されていることを認識できる。以下、同様にして、後段のRE34は、自分がREC21からどの位置にデイジーチェーン接続されているか認識する。
 REC21は、前述したように、RE31~34に割り当てたSlowC&M領域のアドレス情報と位置情報とを監視制御信号のベンダ領域に格納して、RE31~34に送信する。REC21は、ベンダ領域とRE31~34の接続位置を対応付けて、RE31~34に割り当てたSlowC&M領域のアドレス情報をベンダ領域に格納する。
 例えば、REC21は、図5に示すように、アドレスZ.16.0のベンダ領域と、REC21から1段目に接続されたRE1とを対応付け、1段目のRE1に割り当てたSlowC&M領域のアドレス情報を、アドレスZ.16.0のベンダ領域に格納する。REC21は、アドレスZ.80.0のベンダ領域と、REC21から2段目に接続されたRE2とを対応付け、2段目のRE2に割り当てたSlowC&M領域のアドレス情報を、アドレスZ.16.0のベンダ領域に格納する。以下、同様に、REC21は、ベンダ領域とREC21から3,4段目に接続されたRE3,4とを対応付け、3,4段目のRE3,4に割り当てたSlowC&M領域のアドレス情報を、アドレスZ.144.0,Z.208.0のベンダ領域に格納する。なお、図5のRE1~RE4は、図2のRE31~34に対応する。
 RE31~34のそれぞれは、ベンダ領域のどのアドレスに、REC21から何段目に接続されたか、RE31~34のSlowC&M領域のアドレス情報が格納されているか認識している。例えば、RE31~34は、アドレスZ.16.0のベンダ領域に、1段目のRE31に割り当てたSlowC&M領域のアドレス情報が格納されていることを認識している。また、RE31~34は、アドレスZ.80.0のベンダ領域に、RE32に割り当てたSlowC&M領域のアドレス情報が格納されていることを認識している。
 RE31~34は、前述したように、位置情報によって自分の接続位置を認識する。これにより、RE31~34は、ベンダ領域のどのアドレスを参照して、自分に割り当てられたSlowC&M領域のアドレス情報を取得すべきか認識できる。
 例えば、REC21から1段目に接続されたRE31は、アドレスZ.16.0のベンダ領域に、自分に割り当てられたSlowC&M領域のアドレス情報が格納されていることを認識する。そして、RE31は、アドレスZ.16.0のベンダ領域に格納されているアドレス情報を取得する。REC21から2段目に接続されたRE32は、アドレスZ.80.0のベンダ領域に、自分に割り当てられたSlowC&M領域のアドレス情報が格納されていることを認識する。そして、REC21は、アドレスZ.80.0のベンダ領域に格納されているアドレス情報を取得する。
 図7は、SlowC&M領域のアドレス情報が格納されるベンダ領域を説明する図である。図7には、図5に示すRE1用SlowC&Mアドレス情報のベンダ領域が示してある。
 図7に示すように、ベンダ領域は、8ビットのデータ領域を有している。ベンダ領域の上位4ビットは、RE1(RE31)に割り当てたSlowC&M領域の開始アドレスのアドレスIDが格納され、下位4ビットは、RE31に割り当てたSlowC&M領域の終了アドレスのアドレスIDが格納される。図7の例では、RE31に割り当てられたSlowC&M領域のアドレスの開始アドレスIDは‘0’であり、RE31に割り当てられたSlowC&M領域のアドレスの終了アドレスIDは‘3’である。他のRE2~4(RE32~34)に割り当てられたベンダ領域も、図7と同様のデータ構成となっている。なお、以下では、開始アドレスIDと終了アドレスIDとをアドレスIDと表現することもある。
 図8は、SlowC&M領域のアドレスとアドレスIDの関係を示したテーブルである。図8に示すように、SlowC&M領域のアドレスとアドレスIDとは、テーブルにて対応付けられている。REC21およびRE31~34は、図8に示すテーブルを記憶装置に記憶している。
 REC21は、図8のテーブルを参照して、RE31~34に割り当てたC&M領域の開始アドレスと終了アドレスとをアドレスIDに変換し、アドレス情報として監視制御信号のベンダ領域に格納して、RE31~34に送信する。
 例えば、REC21は、アドレスZ.1.0~Z.1.3のSlowC&M領域をRE31に割り当てたとする。この場合、REC21は、図8に示すテーブルを参照して、RE31に割り当てたSlowC&M領域の開始アドレスZ.1.0と終了アドレスZ.1.3とを、開始アドレスID‘0’と終了アドレスID‘3’とに変換する。REC21は、変換した開始アドレスID‘0’と終了アドレス‘3’とを、図7に示したようにRE31に対応するベンダ領域に格納する。
 RE31~34は、図8のテーブルを参照し、ベンダ領域に含まれるアドレスIDから、自分に割り当てられたSlowC&M領域を認識する。例えば、RE31は、図7に示したベンダ領域を有する監視制御信号を受信したとする。この場合、RE31は、図8のテーブルを参照し、ベンダ領域の開始アドレスID‘0’と終了アドレスID‘3’とから、自分に割り当てられたSlowC&M領域は、アドレスZ.1.0~Z.1.3であることを認識する。
 図9は、RECとREとで送受信される監視制御情報の帯域を説明する図である。図9には、図2で示したREC21とRE31~34が示してある。
 REC21は、RE31にZ.1.0,Z.1.1,Z.1.2,Z.1.3のアドレスのSlowC&M領域を割り当てたとする。REC21は、RE32にZ.65.0,Z.65.1,Z.65.2,Z.65.3のアドレスのSlowC&M領域を割り当てたとする。REC21は、RE33にZ.129.0,Z.129.1,Z.129.2,Z.129.3のアドレスのSlowC&M領域を割り当てたとする。REC21は、RE34にZ.193.0,Z.193.1,Z.193.2,Z.193.3のアドレスのSlowC&M領域を割り当てたとする。
 この場合、図9に示すように、RE31~34は、自分に割り当てられたSlowC&M領域を用いてREC21と監視制御情報のやり取りをする。これにより、RE31~34は、SlowC&M領域の全部を占有するということはなく、監視制御情報の通信を確保できる。
 図10は、RECのブロック図である。図10に示すようにREC21は、運用データDB(DB:Data Base)71、監視制御部72、SlowC&M領域分割割り当て部73、位置情報設定部74、変換TB(TB:Table)75、ベンダ領域データ処理部76、SlowC&M領域データ処理部77、CPRIフレーム処理部78、および光デバイス79を有している。
 運用データDB71には、REC21の運用データが記憶されている。運用データには、REC21に接続されるRE31~34のデイジーチェーンの接続情報(デイジーチェーン接続情報)が含まれる。デイジーチェーン接続情報は、例えば、REC21にデイジーチェーン接続されるRE31~34の接続台数を示す。RE31~34の接続台数は、例えば、基地局11の設計時に決定される。また、運用データDB71の接続台数は、REを追加接続する場合、変更することができる。
 監視制御部72は、REC21の起動、監視、制御処理を行う。監視制御部72は、例えば、REC21の起動時に運用データDB71から運用データを読み出す。監視制御部72は、読み出した運用データからデイジーチェーン接続情報を抽出して、SlowC&M領域分割割り当て部73に出力する。
 また、監視制御部72は、RE31~34に送信する監視制御情報を、SlowC&M送信情報としてSlowC&M領域データ処理部77に出力する。また、監視制御部72は、SlowC&M領域データ処理部77から出力されるSlowC&M受信情報を受信する。
 SlowC&M領域分割割り当て部73は、監視制御部72から出力されるデイジーチェーン接続情報に基づいてSlowC&M領域を分割し、分割したSlowC&M領域をRE31~34に割り当てる。SlowC&M領域分割割り当て部73は、SlowC&M領域の分割割り当て結果を、分割割り当て情報としてベンダ領域データ処理部76とSlowC&M領域データ処理部77とに出力する。
 例えば、図2の例の場合、4台のRE31~34がデイジーチェーン接続されており、デイジーチェーン接続情報は‘4’となる。また、SlowC&M領域の個数は、例えば、ベーシックフレームの行番号Y0~Y3を使用した場合、16個となる。SlowC&M領域分割割り当て部73は、例えば、16個のSlowC&M領域を4等分し、初段のRE31から順に4個のSlowC&M領域を均等に割り当て、分割割り当て情報をベンダ領域データ処理部76とSlowC&M領域データ処理部77とに出力する。より具体的には、SlowC&M領域分割割り当て部73は、RE31にZ.1.0,Z.1.1,Z.1.2,Z.1.3の4個のSlowC&M領域を割り当てる。RE32にZ.65.0,Z.65.1,Z.65.2,Z.65.3の4個のSlowC&M領域を割り当てる。RE33にZ.129.0,Z.129.1,Z.129.2,Z.129.3の4個のSlowC&M領域を割り当てる。RE34にZ.193.0,Z.193.1,Z.193.2,Z.193.3の4個のSlowC&M領域を割り当てる。SlowC&M領域分割割り当て部73は、これらの分割割り当て情報をベンダ領域データ処理部76とSlowC&M領域データ処理部77とに出力する。
 位置情報設定部74は、自装置位置情報をベンダ領域データ処理部76に出力する。自装置位置情報は、RE31~34が自分の接続位置を認識するための位置情報であり、例えば、‘0’である。
 変換TB75には、図8で示したように、SlowC&M領域のアドレスとアドレスIDとの関係が記憶されている。
 ベンダ領域データ処理部76は、SlowC&M領域分割割り当て部73から出力される分割割り当て情報に基づいて変換TB75を参照し、監視制御信号のベンダ領域に格納するアドレスID(アドレス情報)を取得する。ベンダ領域データ処理部76は、変換TB75を参照して取得したアドレスIDと、位置情報設定部74から出力される自装置位置情報とを、ベンダ領域送信データとしてCPRIフレーム処理部78に出力する。
 例えば、ベンダ領域データ処理部76は、SlowC&M領域分割割り当て部73から出力される分割割り当て情報に基づいて変換TB75を参照し、RE31~34に割り当てられたSlowC&M領域の開始アドレスIDと終了アドレスIDとを取得する。図8の例の場合、ベンダ領域データ処理部76は、RE31に割り当てるSlowC&M領域の開始アドレスIDと終了アドレスIDとして、‘0’と‘3’を取得する。また、ベンダ領域データ処理部76は、RE32に割り当てるSlowC&M領域の開始アドレスIDと終了アドレスIDとして、‘4’と‘7’を取得する。同様にして、ベンダ領域データ処理部76は、RE33,34に割り当てるSlowC&M領域の開始アドレスIDと終了アドレスIDとして、‘8’と‘B’、‘C’と‘F’を取得する。ベンダ領域データ処理部76は、取得したこれらのアドレスIDと、自装置位置情報とを、ベンダ領域送信データとしてCPRIフレーム処理部78に出力する。
 SlowC&M領域データ処理部77は、SlowC&M領域分割割り当て部73から出力される分割割り当て情報に基づいて、監視制御部72から出力されるRE31~34に送信するSlowC&M送信情報(監視制御情報)を監視制御信号のSlowC&M領域に割り当てる。SlowC&M領域データ処理部77は、SlowC&M領域に割り当てたSlowC&M送信情報を、SlowC&M送信データとしてCPRIフレーム処理部78に出力する。
 例えば、上記例の場合、RE31には、アドレスZ.1.0,Z.1.1,Z.1.2,Z.1.3のSlowC&M領域が割り当てられている。従って、SlowC&M領域データ処理部77は、RE31に送信するSlowC&M送信データを、監視制御信号のアドレスZ.1.0,Z.1.1,Z.1.2,Z.1.3のSlowC&M領域に割り当てる。また、SlowC&M領域データ処理部77は、RE32に送信するSlowC&M送信データを、監視制御信号のアドレスZ.65.0,Z.65.1,Z.65.2,Z.65.3のSlowC&M領域に割り当てる。同様にして、SlowC&M領域データ処理部77は、RE33,34に送信するSlowC&M送信データを、監視制御信号のSlowC&M領域に割り当てる。SlowC&M領域データ処理部77は、SlowC&M領域に割り当てたSlowC&M送信情報を、SlowC&M送信データとしてCPRIフレーム処理部78に出力する。
 また、SlowC&M領域データ処理部77は、SlowC&M領域分割割り当て部73から出力される分割割り当て情報に基づいて、CPRIフレーム処理部78から出力されるSlowC&M受信データがどのRE31~34から送信されたデータであるか認識する。
 例えば、SlowC&M領域データ処理部77は、Z.1.0,Z.1.1,Z.1.2,Z.1.3のSlowC&M領域に格納されたSlowC&M受信データを、RE31から送信されたデータであると認識する。また、SlowC&M領域データ処理部77は、Z.65.0,Z.65.1,Z.65.2,Z.65.3のSlowC&M領域に格納されたSlowC&M受信データを、RE32から送信されたデータであると認識する。同様に、SlowC&M領域データ処理部77は、RE33,34から送信されたデータを認識する。SlowC&M領域データ処理部77は、RE31~34から受信したSlowC&M受信データを、SlowC&M受信情報として監視制御部72に出力する。
 CPRIフレーム処理部78は、ベンダ領域データ処理部76から出力されるベンダ領域送信データを監視制御信号のベンダ領域に格納し、監視制御信号のフレームを生成する。
 例えば、CPRIフレーム処理部78は、ベンダ領域データ処理部76から出力されるベンダ領域送信データの、RE31~34に割り当てられた開始アドレスIDと終了アドレスIDとを、監視制御信号のベンダ領域に格納する。具体的には、CPRIフレーム処理部78は、RE31に割り当てられた開始アドレスID‘0’と終了アドレスID‘3’を、図5に示したベンダ領域の‘RE1用SlowC&Mアドレス情報’に格納する。CPRIフレーム処理部78は、RE32に割り当てられた開始アドレスID‘4’と終了アドレスID‘7’を、図5に示したベンダ領域の‘RE2用SlowC&Mアドレス情報’に格納する。同様に、CPRIフレーム処理部78は、RE33,34に割り当てられたアドレスIDを、‘RE3用SlowC&Mアドレス情報’と‘RE4用SlowC&Mアドレス情報’に格納する。また、CPRIフレーム処理部78は、ベンダ領域データ処理部76から出力されるベンダ領域送信データに含まれる、自装置位置情報‘0’を、図5に示した位置情報に格納する。
 また、CPRIフレーム処理部78は、SlowC&M領域データ処理部77から出力されるSlowC&M送信データを監視制御信号のSlowC&M領域に格納し、監視制御信号のフレームを生成する。
 例えば、CPRIフレーム処理部78は、RE31のSlowC&M送信データをアドレスZ.1.0,Z.1.1,Z.1.2,Z.1.3のSlowC&M領域に格納する。CPRIフレーム処理部78は、RE32のSlowC&M送信データをアドレスZ.65.0,Z.65.1,Z.65.2,Z.65.3のSlowC&M領域に格納する。同様に、CPRIフレーム処理部78は、RE33,34のSlowC&M送信データを、割り当てられたアドレスのSlowC&M領域に格納する。
 また、CPRIフレーム処理部78は、光デバイス79から出力される受信監視制御信号のSlowC&M領域から、SlowC&M受信データを抽出する。CPRIフレーム処理部78は、抽出したSlowC&M受信データをSlowC&M領域データ処理部77に出力する。
 光デバイス79は、CPRIフレーム処理部78から出力される送信監視制御信号を光信号に変換して光ファイバに出力する。また、光デバイス79は、光ファイバから受信した受信監視制御信号を電気信号に変換してCPRIフレーム処理部78に出力する。
 図11は、REのブロック図である。図11に示すようにRE31は、光デバイス81,88、CPRIフレーム処理部82,87、ベンダ領域データ処理部83,86、位置情報処理部84、SlowC&M領域取得部85、SlowC&M領域データ処理部89、監視制御部90、および変換TB91を有している。RE32~34も図11と同様のブロックを有し、その説明を省略する。
 光デバイス81は、光ファイバから監視制御信号を受信し、受信監視制御信号を電気信号に変換して、CPRIフレーム処理部82に出力する。また、光デバイス81は、CPRIフレーム処理部82から出力される送信監視制御信号を光信号に変換し、光ファイバに出力する。
 CPRIフレーム処理部82は、受信監視制御信号のベンダ領域に格納されている情報を抽出する。CPRIフレーム処理部82は、抽出したベンダ領域の情報をベンダ領域受信データとしてベンダ領域データ処理部83に出力する。
 また、CPRIフレーム処理部82は、受信監視制御信号のSlowC&M領域に格納されている監視制御情報を取得する。CPRIフレーム処理部82は、取得したSlowC&M領域の監視制御情報をSlowC&M受信データとしてSlowC&M領域データ処理部89に出力する。
 また、CPRIフレーム処理部82は、SlowC&M領域データ処理部89から出力されるSlowC&M送信データを、監視制御信号のフレームのSlowC&M領域に格納し、監視制御信号のフレームを生成する。CPRIフレーム処理部82は,生成した監視制御信号のフレームを送信監視制御信号として光デバイス81に出力する。
 ベンダ領域データ処理部83は、CPRIフレーム処理部82から出力されるベンダ領域受信データから位置情報を抽出し、抽出した位置情報を自装置位置受信データとして位置情報処理部84に出力する。また、ベンダ領域データ処理部83は、CPRIフレーム処理部82から出力されるベンダ領域受信データから、SlowC&Mアドレス情報を抽出する。例えば、ベンダ領域データ処理部83は、図5に示したRE1用SlowC&Mアドレス情報~RE4用SlowC&Mアドレス情報を抽出する。ベンダ領域データ処理部83は、抽出したSlowC&Mアドレス情報をSlowC&M領域取得部85とベンダ領域データ処理部86に出力する。
 位置情報処理部84は、ベンダ領域データ処理部83から出力される自装置位置受信データに基づいて、自装置のデイジーチェーン接続の接続位置を認識する。RE31は、1段目に接続されたREであり、例えば、位置情報‘0’を受信するので、位置情報処理部84は、位置情報‘0’に基づき1段目に接続されたREであることを認識する。位置情報処理部84は、認識した接続位置を接続位置情報として、SlowC&M領域取得部85に出力する。
 また、位置情報処理部84は、ベンダ領域データ処理部83から出力された自装置位置受信データ(位置情報)に‘1’を加算(変更)し、自装置位置送信データとしてベンダ領域データ処理部86に出力する。これにより、後段に接続されたRE32は、位置情報‘1’を受信し、2段目に接続されたREであることを認識することができる。
 SlowC&M領域取得部85は、位置情報処理部84から出力される接続位置情報に基づいて、ベンダ領域データ処理部83から出力されるSlowC&Mアドレス情報を参照し、自分に割り当てられたSlowC&M領域のアドレス情報(開始アドレスIDおよび終了アドレス)を取得する。SlowC&M領域取得部85は、取得したアドレス情報に基づいて、変換TB91を参照し、自分に割り当てられたSlowC&M領域のアドレスを取得する。SlowC&M領域取得部85は、取得したSlowC&M領域のアドレスを、SlowC&M領域割り当て情報としてSlowC&M領域データ処理部89に出力する。
 変換TB91は、図8で示したように、SlowC&M領域のアドレスとアドレスIDとの関係が記憶されている。
 例えば、RE31は、1段目のREなので、SlowC&M領域取得部85は、接続位置情報‘0’を位置情報処理部84から取得することになる。SlowC&M領域取得部85は、接続位置情報‘0’に基づいて、例えば、図5に示したベンダ領域のRE1用SlowC&Mアドレス情報(RE31に割り当てられたSlowC&M領域のアドレス情報)を取得する。SlowC&M領域取得部85は、取得したアドレス情報に基づいて、変換TB91を参照し、自分に割り当てられたSlowC&M領域のアドレスを取得する。例えば、SlowC&M領域取得部85は、アドレスZ.1.0,Z.1.1,Z.1.2,Z.1.3を取得する。SlowC&M領域取得部85は、取得したこれらのSlowC&M領域のアドレスを、SlowC&M領域割り当て情報としてSlowC&M領域データ処理部89に出力する。
 ベンダ領域データ処理部86は、位置情報処理部84から出力される自装置位置送信データと、ベンダ領域データ処理部83から出力されるSlowC&Mアドレス情報とを、監視制御信号のベンダ領域に格納されるベンダ領域送信データとしてCPRIフレーム処理部87に出力する。すなわち、REC21から受信した監視制御信号のベンダ領域の情報は、次段のRE32に送信されることになる。ただし、位置情報は、位置情報処理部84によって‘1’が加算されている。
 CPRIフレーム処理部87は、ベンダ領域データ処理部86から出力されるベンダ領域送信データを、監視制御信号のフレームのベンダ領域に格納する。例えば、CPRIフレーム処理部87は、図5に示したベンダ領域の位置情報と、RE1用SlowC&Mアドレス情報~RE4用SlowC&Mアドレス情報との領域に、ベンダ領域送信データを格納する。
 また、CPRIフレーム処理部87は、SlowC&M領域データ処理部89から出力されるSlowC&M次リンク送信データを、監視制御信号のSlowC&M領域に格納する。すなわち、REC21から受信した監視制御信号のSlowC&M領域の情報は、次段のRE32に送信されることになる。
 また、CPRIフレーム処理部87は、光デバイス88から出力される次段受信監視制御信号からSlowC&M領域のデータを抽出し、SlowC&M次リンク受信データとしてSlowC&M領域データ処理部89に出力する。すなわち、RE32から受信した監視制御信号のSlowC&M領域の情報は、REC21(または前段のRE)に送信されることになる。
 CPRIフレーム処理部87は、ベンダ領域データ処理部86から出力されるベンダ領域送信データを含む次段送信監視制御信号を生成し、光デバイス88に出力する。また、CPRIフレーム処理部87は、SlowC&M領域データ処理部89から出力されるC&M次リンク送信データを含む次段送信監視制御信号を生成し、光デバイス88に出力する。
 光デバイス88は、CPRIフレーム処理部87から出力される次段送信監視制御信号を光信号に変換して光ファイバに出力する。また、光デバイス88は、光ファイバから受信した次段受信監視制御信号を電気信号に変換してCPRIフレーム処理部87に出力する。
 SlowC&M領域データ処理部89は、CPRIフレーム処理部82から出力されるSlowC&M受信データを、次段のRE32に送信するために、SlowC&M次リンク送信データとしてCPRIフレーム処理部87に出力する。
 また、SlowC&M領域データ処理部89は、SlowC&M領域取得部85から出力されるSlowC&M領域割り当て情報に基づいて、CPRIフレーム処理部82より出力されるSlowC&M受信データから自分宛の監視制御情報を取得する。SlowC&M領域データ処理部89は、取得したSlowC&M領域の監視制御情報をSlowC&M受信情報として監視制御部90に出力する。
 例えば、SlowC&M領域データ処理部89は、SlowC&M領域取得部85からアドレスZ.1.0,Z.1.1,Z.1.2,Z.1.3のSlowC&M領域割り当て情報が出力されている場合、当該アドレスに基づいて監視制御信号のSlowC&M領域を参照し、SlowC&M領域に格納されている監視制御情報を取得する。SlowC&M領域取得部85は、取得したSlowC&M領域の監視制御情報をSlowC&M受信情報として監視制御部90に出力する。
 また、SlowC&M領域データ処理部89は、監視制御部90から出力されるSlowC&M送信情報(自装置に関する監視制御情報)を、SlowC&M領域取得部85から出力されるSlowC&M領域割り当て情報に基づいて、SlowC&M領域に割り当てる。
 例えば、SlowC&M領域データ処理部89は、SlowC&M領域取得部85からアドレスZ.1.0,Z.1.1,Z.1.2,Z.1.3のSlowC&M領域割り当て情報が出力されている場合、当該アドレスのSlowC&M領域に、SlowC&M送信情報を割り当てる。
 SlowC&M領域データ処理部89は、SlowC&M領域割り当て情報のアドレスに割り当てたSlowC&M送信情報と、CPRIフレーム処理部87から出力されるSlowC&M次リンク受信データとを、SlowC&M送信データとしてCPRIフレーム処理部82に出力する。
 監視制御部90は、SlowC&M領域データ処理部89から出力されるSlowC&M受信情報を受信する。すなわち、監視制御部90は、REC21から送信された自分宛の監視制御情報を受信する。監視制御部90は、REC21から監視制御情報を受信すると、受信した監視制御情報に基づいて、各種監視制御処理を行う。監視制御部90は、自装置に関する監視制御処理に関する結果をSlowC&M送信情報(監視制御情報)としてSlowC&M領域データ処理部89に出力する。
 図12は、RECのSlowC&M領域の分割処理を示したシーケンス図である。REC12は、以下のステップの処理を実行することにより、RE31~34に監視制御情報を送受信するためのSlowC&M領域を分割してRE31~34に割り当て、その情報をRE31~34に送信する。
 [ステップS1]監視制御部72は、例えば、電源投入により、REC21を起動する。
 [ステップS2]監視制御部72は、運用データDB71から運用データを読み出す。運用データには、REC21の初期設定情報の他に、デイジーチェーン接続情報が含まれる。
 [ステップS3]監視制御部72は、運用データに含まれる初期設定情報に基づいて、REC21を初期設定する。
 [ステップS4]監視制御部72は、運用データからデイジーチェーン接続情報を抽出する。
 [ステップS5]監視制御部72は、運用データから抽出したデイジーチェーン接続情報をSlowC&M領域分割割り当て部73に出力する。
 [ステップS6]SlowC&M領域分割割り当て部73は、デイジーチェーン接続情報に基づいてSlowC&M領域を分割し、分割したSlowC&M領域をRE31~34に割り当てる。
 [ステップS7]SlowC&M領域分割割り当て部73は、SlowC&M領域の分割割り当て結果を、SlowC&M領域の分割割り当て情報としてベンダ領域データ処理部76に出力する。
 [ステップS8]位置情報設定部74は、自装置位置情報をベンダ領域データ処理部76に出力する。自装置位置情報は、RE31~34が自分の接続位置を認識するための位置情報であり、例えば、‘0’である。
 [ステップS9]ベンダ領域データ処理部76は、SlowC&M領域分割割り当て部73から出力される分割割り当て情報に基づいて変換TB75を参照し、監視制御信号のベンダ領域に格納するアドレスIDを取得する。すなわち、ベンダ領域データ処理部76は、RE31~34に割り当てられたSlowC&M領域のアドレスIDを取得する。
 [ステップS10]ベンダ領域データ処理部76は、取得したアドレスIDと、位置情報設定部74から受信した自装置位置情報とを、ベンダ領域送信データとしてCPRIフレーム処理部78に出力する。
 [ステップS11]CPRIフレーム処理部78は、ベンダ領域データ処理部76から出力されるベンダ領域送信データの、RE31~34に割り当てられたアドレスIDを監視制御信号のベンダ領域に格納する。また、CPRIフレーム処理部78は、ベンダ領域データ処理部76から出力されるベンダ領域送信データに含まれる自装置位置情報を、ベンダ領域に格納する。CPRIフレーム処理部78は、ベンダ領域にベンダ領域送信データを格納した送信監視制御信号を光デバイス79に出力する。光デバイス79は、送信監視制御信号を光信号に変換し、光ファイバを介して、RE31に送信する。
 図13は、REのSlowC&M領域の割り当て情報受信処理を示したシーケンス図である。図13には、RE31のシーケンスを示している。RE31は、以下のステップの処理を実行することにより、自分に割り当てられたSlowC&M領域のアドレスに関する情報を取得し、その情報をさらに次段のRE32~34へと送信する。
 [ステップS21]光デバイス81は、光ファイバから監視制御信号を受信し、電気信号の受信監視制御信号に変換してCPRIフレーム処理部82に出力する。
 [ステップS22]CPRIフレーム処理部82は、受信監視制御信号のベンダ領域に格納されている情報(ベンダ領域受信データ)を抽出する。受信監視制御信号のベンダ領域には、RE31~34に割り当てられたSlowC&M領域のアドレス情報と、RE31~34が自分の接続位置を認識するための位置情報とが格納されている。
 [ステップS23]CPRIフレーム処理部82は、抽出したベンダ領域受信データをベンダ領域データ処理部83に出力する。
 [ステップS24]ベンダ領域データ処理部83は、CPRIフレーム処理部82から受信したベンダ領域受信データから自装置位置受信データ(位置情報)を抽出する。
 [ステップS25]ベンダ領域データ処理部83は、抽出した自装置位置受信データを位置情報処理部84に出力する。
 [ステップS26]位置情報処理部84は、ベンダ領域データ処理部83から出力される自装置位置受信データに基づいて、自装置のデイジーチェーン接続の接続位置を認識する。例えば、位置情報処理部84は、‘0’の自装置位置受信データにより、自装置はREC21から1段目に接続されていることを認識する。
 [ステップS27]位置情報処理部84は、認識した接続位置を接続位置情報としてSlowC&M領域取得部85に出力する。
 [ステップS28]位置情報処理部84は、ベンダ領域データ処理部83から出力される自装置維持受信データに‘1’を加算した自装置位置送信データを生成する。なお、‘1’が加算された自装置位置送信データ(位置情報)は、次段のRE32に送信され、これにより、RE32は、REC21から2段目に接続されていることを認識することができる。
 [ステップS29]位置情報処理部84は、生成した自装置位置送信データをベンダ領域データ処理部86に出力する。
 [ステップS30]ベンダ領域データ処理部83は、CPRIフレーム処理部82から受信したベンダ領域受信データから、SlowC&Mアドレス情報を抽出する。例えば、ベンダ領域データ処理部83は、図5に示したRE1用SlowC&Mアドレス情報~RE4用SlowC&Mアドレス情報を抽出する。
 [ステップS31]ベンダ領域データ処理部83は、抽出したSlowC&Mアドレス情報を、SlowC&M領域取得部85とベンダ領域データ処理部86に出力する。
 [ステップS32]ベンダ領域データ処理部86は、位置情報処理部84から出力される自装置位置送信データと、ベンダ領域データ処理部83から出力されるSlowC&Mアドレス情報とを、監視制御信号のベンダ領域に格納されるベンダ領域送信データとして、CPRIフレーム処理部87に出力する。すなわち、REC21がRE31~34に割り当てたSlowC&M領域の割り当て情報と、‘1’が加算された位置情報とが、監視制御信号のベンダ領域に格納されて、次段のRE32に送信されることになる。
 [ステップS33]CPRIフレーム処理部87は、ベンダ領域データ処理部86から出力されるベンダ領域送信データを、監視制御信号のベンダ領域に格納し、次段送信監視制御信号として光デバイス88に出力する。光デバイス88は、次段送信監視制御信号を光信号に変換し、光ファイバを介して、次段のRE32に送信する。
 [ステップS34]SlowC&M領域取得部85は、位置情報処理部84から出力される接続位置情報に基づいて、ベンダ領域データ処理部83から出力されるSlowC&Mアドレス情報を参照し、自分に割り当てられたSlowC&M領域のアドレス情報を取得する。例えば、SlowC&M領域取得部85は、接続位置情報‘0’に基づいて、図5に示したベンダ領域のRE1用SlowC&Mアドレス情報を取得する。SlowC&M領域取得部85は、取得したアドレス情報(アドレスID)に基づいて変換TB91を参照し、自分に割り当てられたSlowC&M領域のアドレスを取得する。
 [ステップS35]SlowC&M領域取得部85は、取得したアドレスを、SlowC&M領域割り当て情報としてSlowC&M領域データ処理部89に出力する。
 図14は、RECの監視制御情報の送信処理を示したシーケンス図である。REC21は、以下のステップの処理を実行することにより、RE31~34に送信する監視制御情報をSlowC&M領域を割り当て、RE31~34に送信する。
 [ステップS41]SlowC&M領域分割割り当て部73は、RE31~34に割り当てたSlowC&M領域の分割割り当て情報を、SlowC&M領域データ処理部77に出力する。
 [ステップS42]監視制御部72は、RE31~34に送信する監視制御情報を、SlowC&M送信情報としてSlowC&M領域データ処理部77に出力する。
 [ステップS43]SlowC&M領域データ処理部77は、SlowC&M領域分割割り当て部73から出力される分割割り当て情報に基づいて、監視制御部72から出力されるSlowC&M送信情報を、監視制御信号のSlowC&M領域に割り当てる。
 [ステップS44]SlowC&M領域データ処理部77は、SlowC&M領域に割り当てたSlowC&M送信情報を、SlowC&M送信データとしてCPRIフレーム処理部78に出力する。
 [ステップS45]CPRIフレーム処理部78は、SlowC&M領域データ処理部77から出力されるSlowC&M送信データを監視制御信号のSlowC&M領域に格納し、送信監視制御信号を生成する。
 [ステップS46]CPRIフレーム処理部78は、生成した送信監視制御信号を光デバイス79に出力する。光デバイス79は、送信監視制御信号を光信号に変換し、光ファイバを介して、RE31に出力する。
 図15は、REの監視制御情報の受信処理を示したシーケンス図である。RE31は、以下のステップの処理を実行することにより、REC21から送信される監視制御情報を受信し、自分宛の監視制御情報を取得する。また、RE31は、受信した監視制御情報を次段のRE32に送信する。
 [ステップS51]光デバイス81は、光ファイバから監視制御信号を受信し、受信監視制御信号の電気信号に変換して、CPRIフレーム処理部82に出力する。
 [ステップS52]CPRIフレーム処理部82は、受信監視制御信号のSlowC&M領域に格納されている監視制御情報を取得する。
 [ステップS53]CPRIフレーム処理部82は、取得したSlowC&M領域の監視制御情報を、SlowC&M受信データとしてSlowC&M領域データ処理部89に出力する。
 [ステップS54]SlowC&M領域データ処理部89は、CPRIフレーム処理部82から出力されるSlowC&M受信データを、次段のRE32に送信するために、SlowC&M次リンク送信データとしてCPRIフレーム処理部87に出力する。
 [ステップS55]CPRIフレーム処理部87は、SlowC&M領域データ処理部89から出力されるSlowC&M次リンク送信データを、監視制御信号のSlowC&M領域に格納し、次段送信監視制御信号を生成する。
 [ステップS56]CPRIフレーム処理部87は、生成した次段送信監視制御信号を光デバイス88に出力する。光デバイス88は、次段送信監視制御信号を光信号に変換し、光ファイバを介して、次段のRE32に送信する。
 [ステップS57]SlowC&M領域データ処理部89は、SlowC&M領域取得部85によって取得されたSlowC&M領域割り当て情報(図13のステップS35)に基づいて、CPRIフレーム処理部82より出力されるSlowC&M受信データから自分宛の監視制御情報を取得する。
 [ステップS58]SlowC&M領域データ処理部89は、取得したSlowC&M領域の監視制御情報を、SlowC&M受信情報として監視制御部90に出力する。
 [ステップS59]監視制御部90は、REC21からの監視制御情報を受信すると、受信した監視制御情報に基づいて、各種監視制御処理を行う。
 図16は、REの監視制御情報の送信処理を示したシーケンス図である。RE31は、以下のステップの処理を実行することにより、後段のRE32から監視制御情報を含む監視制御信号を受信し、自装置の監視制御情報を監視制御信号に含めて、REC21(または次段のRE)に出力する。
 [ステップS61]光デバイス88は、光ファイバを介して後段のRE32から監視制御信号を受信し、電気信号の次段受信監視制御信号に変換してCPRIフレーム処理部87に出力する。
 [ステップS62]CPRIフレーム処理部87は、光デバイス88から出力される次段受信監視制御信号のSlowC&M領域からデータを抽出する。
 [ステップS63]CPRIフレーム処理部87は、次段受信監視制御信号のSlowC&M領域から抽出したデータを、SlowC&M次リンク受信データとしてSlowC&M領域データ処理部89に出力する。
 [ステップS64]監視制御部90は、自装置に関する監視制御情報を、SlowC&M送信情報としてSlowC&M領域データ処理部89に出力する。
 [ステップS65]SlowC&M領域データ処理部89は、CPRIフレーム処理部87から出力されるSlowC&M次リンク受信データと、監視制御部90から出力されるSlowC&M送信情報とを、SlowC&M領域取得部85によって取得されたSlowC&M領域割り当て情報(図13のステップS35)に基づいて、SlowC&M領域に割り当てる。
 [ステップS66]SlowC&M領域データ処理部89は、SlowC&M領域に割り当てたSlowC&M次リンク受信データとSlowC&M送信情報とを、SlowC&M送信データとしてCPRIフレーム処理部82に出力する。
 [ステップS67]CPRIフレーム処理部82は、SlowC&M領域データ処理部89から出力されるSlowC&M送信データを、監視制御信号のSlowC&M領域に格納し、送信監視制御信号を生成する。
 [ステップS68]CPRIフレーム処理部82は、生成した送信監視制御信号を光デバイス81に出力する。光デバイス81は、送信監視制御信号を光信号に変換し、光ファイバを介して、REC21に出力する。
 図17は、RECの監視制御情報の受信処理を示したシーケンス図である。REC21は、以下のステップの処理を実行することにより、RE31~RE34の監視制御情報を含む監視制御信号を受信する。
 [ステップS71]光デバイス79は、RE31から光ファイバを介して監視制御信号を受信し、受信監視制御信号の電気信号に変換してCPRIフレーム処理部78に出力する。
 [ステップS72]CPRIフレーム処理部78は、受信監視制御信号のSlowC&M領域から、SlowC&M受信データを抽出する。すなわち、CPRIフレーム処理部78は、SlowC&M領域に格納されているRE31~34の監視制御情報を抽出する。
 [ステップS73]CPRIフレーム処理部78は、抽出したSlowC&M受信データをSlowC&M領域データ処理部77に出力する。
 [ステップS74]SlowC&M領域データ処理部77は、SlowC&M領域分割割り当て部73から出力された分割割り当て情報(図12のステップS7)に基づいて、CPRIフレーム処理部78から出力されるSlowC&M受信データがどのRE31~34から送信されたデータであるか認識し、SlowC&M受信情報(監視制御情報)を生成する。
 [ステップS75]SlowC&M領域データ処理部77は、RE31~34のSlowC&M受信情報を監視制御部72に出力する。
 このように、REC21は、監視制御信号のSlowC&M領域を分割して複数のRE31~34に割り当てる。これにより、RE31~34によるSlowC&M領域の占有を防止でき、REC21とRE31~34との間の通信を確保することができる。
 また、RE31~34は、REC21によって割り当てられたSlowC&M領域によってREC21と監視制御情報の送受信を行うので、SlowC&M領域のRE31~34による占有を防止でき、REC21とRE31~34との間の通信を確保することができる。
 また、位置情報によってRE31~34は、自己の接続位置を認識する。これにより、REを追加接続することができる。
 また、監視制御信号のベンダ領域は、SlowC&M領域より早くリンク接続が確立される。従って、ベンダ領域によってSlowC&M領域のアドレス情報を送信することにより、SlowC&M領域のリンク接続前にSlowC&M領域の割り当て情報をRE31~34に送信することができる。
 なお、上記では、SlowC&M領域について説明したが、FastC&M領域についても同様にRE31~34に割り当て通信することができる。
 また、SlowC&M領域の個数は、16個として説明したがこれに限るものではなく、Yの値によって可変することができる。
 また、SlowC&M領域をRE31~34に均等に分割して割り当てたが、これに限るものではない。例えば、多くの監視制御情報の送受信が必要なRE31~34に対しては、他のRE31~34に対し、多くのSlowC&M領域を割り当てるようにしてもよい。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 無線装置制御装置
 1a 分割割り当て部
 1b 送信部
 2,3 無線装置
 2a 受信部
 2b 位置認識部
 2c 取得部

Claims (12)

  1.  内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置制御装置において、
     当該無線装置制御装置にデイジーチェーン接続される複数の無線装置と情報を送受信するためのフレームの情報領域を分割して前記複数の無線装置に割り当てる分割割り当て部と、
     前記分割割り当て部によって前記複数の無線装置に割り当てられた前記情報領域のアドレス情報を前記複数の無線装置に送信する送信部と、
     を有することを特徴とする無線装置制御装置。
  2.  前記送信部は、前記フレームのベンダが自由に使用できるベンダ領域に前記アドレス情報を格納して前記複数の無線装置に送信することを特徴とする請求の範囲第1項記載の無線装置制御装置。
  3.  前記送信部は、前記ベンダ領域に前記複数の無線装置が自無線装置の接続位置を認識するための位置情報を格納することを特徴とする請求の範囲第2項記載の無線装置制御装置。
  4.  前記送信部は、前記複数の無線装置が前記位置情報に基づいて前記アドレス情報を取得できるように前記ベンダ領域に前記アドレス情報を格納して送信することを特徴とする請求の範囲第3項記載の無線装置制御装置。
  5.  前記分割割り当て部は、前記複数の無線装置の台数分前記情報領域を分割することを特徴とする請求の範囲第1項記載の無線装置制御装置。
  6.  前記複数の無線装置に送信する前記情報を前記複数の無線装置に割り当てた前記情報領域に格納して送信する情報送信部をさらに有することを特徴とする請求の範囲第1項記載の無線装置制御装置。
  7.  前記ベンダ領域は、前記情報領域より早くリンクが確立されることを特徴とする請求の範囲第2項記載の無線装置制御装置。
  8.  内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置において、
     当該無線装置を制御する無線装置制御装置または他の無線装置からフレームを受信する受信部と、
     前記受信部によって受信された前記フレームに含まれる位置情報に基づいて前記無線装置制御装置にデイジーチェーン接続されている自無線装置の接続位置を認識する位置認識部と、
     前記位置認識部によって認識された自無線装置の接続位置に基づいて前記フレームを参照し、前記無線装置制御装置と情報を送受信するための前記フレームの情報領域のアドレス情報を取得する取得部と、
     を有することを特徴とする無線装置。
  9.  前記位置認識部は、後段の無線装置が自無線装置の接続位置を認識できるように、前記後段の無線装置に送信する前記フレームに含まれる前記位置情報を変更することを特徴とする請求の範囲第8項記載の無線装置。
  10.  前記無線装置制御装置から当該無線装置宛に送信される前記情報を、前記取得部によって取得した前記アドレス情報に基づいて前記フレームの前記情報領域を参照して取得し、当該無線装置から前記無線装置制御装置に送信する前記情報を、前記取得部によって取得した前記アドレス情報に基づいて前記フレームの前記情報領域に格納する情報処理部をさらに有することを特徴とする請求の範囲第8項記載の無線装置。
  11.  内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置制御装置の通信方法において、
     当該無線装置制御装置にデイジーチェーン接続される複数の無線装置と情報を送受信するためのフレームの情報領域を分割して前記複数の無線装置に割り当てし、
     前記複数の無線装置に割り当てられた前記情報領域のアドレス情報を前記複数の無線装置に送信する、
     ことを特徴とする通信方法。
  12.  内部でのデータ転送を共通インターフェースに基づいて行う基地局の無線装置の通信方法において、
     当該無線装置を制御する無線装置制御装置または他の無線装置からフレームを受信し、
     受信された前記フレームに含まれる位置情報に基づいて前記無線装置制御装置にデイジーチェーン接続されている自無線装置の接続位置を認識し、
     認識された自無線装置の接続位置に基づいて前記フレームを参照し、前記無線装置制御装置と情報を送受信するための前記フレームの情報領域のアドレス情報を取得する、
     ことを特徴とする通信方法。
PCT/JP2009/059653 2009-05-27 2009-05-27 無線装置制御装置、無線装置、および通信方法 WO2010137126A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/059653 WO2010137126A1 (ja) 2009-05-27 2009-05-27 無線装置制御装置、無線装置、および通信方法
JP2011515785A JP5187443B2 (ja) 2009-05-27 2009-05-27 無線装置制御装置、無線装置、および通信方法
EP09845193.3A EP2437413A4 (en) 2009-05-27 2009-05-27 DEVICE FOR CONTROLLING RADIO COMMUNICATION DEVICES, RADIO COMMUNICATION DEVICE, AND COMMUNICATION METHOD
US13/291,260 US8594731B2 (en) 2009-05-27 2011-11-08 Radio equipment controller, radio equipment, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059653 WO2010137126A1 (ja) 2009-05-27 2009-05-27 無線装置制御装置、無線装置、および通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/291,260 Continuation US8594731B2 (en) 2009-05-27 2011-11-08 Radio equipment controller, radio equipment, and communication method

Publications (1)

Publication Number Publication Date
WO2010137126A1 true WO2010137126A1 (ja) 2010-12-02

Family

ID=43222267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059653 WO2010137126A1 (ja) 2009-05-27 2009-05-27 無線装置制御装置、無線装置、および通信方法

Country Status (4)

Country Link
US (1) US8594731B2 (ja)
EP (1) EP2437413A4 (ja)
JP (1) JP5187443B2 (ja)
WO (1) WO2010137126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130095A (ja) * 2009-12-16 2011-06-30 Fujitsu Ltd 無線基地局、無線制御装置及び無線装置、並びに通信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041035B2 (ja) * 2010-06-04 2012-10-03 住友電気工業株式会社 無線装置及び無線基地局装置
CN103580780B (zh) * 2012-07-23 2018-03-09 中兴通讯股份有限公司 数据传输方法及装置
US9392640B2 (en) 2012-10-01 2016-07-12 Freescale Semiconductor, Inc. Method and system for automatically controlling the insertion of control word in CPRI daisy chain configuration
WO2014155159A1 (en) * 2013-03-28 2014-10-02 Freescale Semiconductor, Inc. Method and apparatus for processing data flows
US11343781B2 (en) 2019-02-01 2022-05-24 Cisco Technology, Inc. Link establishment between a radio equipment controller (REC) and radio equipment (RE) in a fronthaul network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312185A (ja) 2006-05-19 2007-11-29 Nec Corp 無線基地局システム
JP2009503778A (ja) * 2005-07-27 2009-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数の光源を制御するための照明システム及び方法
JP2009080455A (ja) * 2007-05-14 2009-04-16 Christie Digital Systems Usa Inc 種々に構成できる画像化システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001239934A1 (en) * 2000-04-27 2001-11-12 Lgc Wireless, Inc. Adaptive capacity management in a centralized basestation architecture
SE0302596D0 (sv) * 2003-09-30 2003-09-30 Ericsson Telefon Ab L M Improvments in or relating to base stations
US7856029B2 (en) * 2003-11-17 2010-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Pre-start-up procedure for internal interface of distributed radio base station
EP1810534B1 (en) * 2004-10-12 2015-06-17 Telefonaktiebolaget LM Ericsson (publ) Communication between a radio equipment control node and multiple remote radio equipment nodes
CN1956564A (zh) * 2005-10-26 2007-05-02 Ut斯达康通讯有限公司 分布式基站系统中基于cpri的多协议信号传输方法及其装置
JP4981494B2 (ja) * 2006-05-30 2012-07-18 株式会社日立国際電気 無線通信システム及び張り出し局装置
JP4791320B2 (ja) * 2006-10-13 2011-10-12 富士通株式会社 コモン・パブリック・ラジオ・インタフェース(cpri)のベンダー特有領域を使った回線迂回方式
EP2139243B1 (en) * 2007-03-16 2014-07-30 Fujitsu Limited Base station, wireless control device, and wireless device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503778A (ja) * 2005-07-27 2009-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数の光源を制御するための照明システム及び方法
JP2007312185A (ja) 2006-05-19 2007-11-29 Nec Corp 無線基地局システム
JP2009080455A (ja) * 2007-05-14 2009-04-16 Christie Digital Systems Usa Inc 種々に構成できる画像化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2437413A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130095A (ja) * 2009-12-16 2011-06-30 Fujitsu Ltd 無線基地局、無線制御装置及び無線装置、並びに通信方法
US8676263B2 (en) 2009-12-16 2014-03-18 Fujitsu Limited Wireless base station, wireless apparatus, wireless controlling apparatus, and communication method

Also Published As

Publication number Publication date
JPWO2010137126A1 (ja) 2012-11-12
EP2437413A4 (en) 2014-12-24
EP2437413A1 (en) 2012-04-04
US8594731B2 (en) 2013-11-26
JP5187443B2 (ja) 2013-04-24
US20120052878A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5187443B2 (ja) 無線装置制御装置、無線装置、および通信方法
JP4814992B2 (ja) 基地局、無線制御装置、無線装置およびデータ転送方法
EP1959707B1 (en) Method of configuring and updating connection identifier in a broadband wireless access communication system
US7649907B2 (en) Method of processing data in a medium access control (MAC) layer
US20220369177A1 (en) Methods and devices for updating iab-node configuration information during inter-donor migration
JP5146037B2 (ja) 無線制御装置、無線装置、および通信システム
JP4171004B2 (ja) バックボーンネットワークに連結された調整子基盤無線網と異種のネットワークとの通信方法及び装置並びにプログラムの記録媒体
US6185412B1 (en) Procedure and system for ensuring emergency communication in a wireless local loop environment
US8254987B2 (en) Method and apparatus for transmitting data between radio equipment and radio equipment controls
CN1096810C (zh) 在基站系统和移动交换机之间的接口上对无线接口多样性的支持
US8676263B2 (en) Wireless base station, wireless apparatus, wireless controlling apparatus, and communication method
JP2573738B2 (ja) 無線通信システムにおける仮アドレス方式
CN101233771A (zh) 用于选择接入信道或业务信道进行数据传输的方法
JP2812192B2 (ja) 無線チャンネル選択方法および無線チャンネル選択システム
CN108023869A (zh) 多媒体通信的参数调整方法、装置及移动终端
CN100473237C (zh) 无线接入网络系统、无线通信方法、控制服务器及数据服务器
CN100571285C (zh) 一种多级远端无线设备的标识方法及装置
CN101651473A (zh) 通信装置,制造芯片的方法以及提供无线通信规范的方法
EP1252782B1 (en) System and method for wireless connection to base station external equipment
KR102330500B1 (ko) 기지국 장치, 단말 장치, 통신 방법 및 통신 시스템
KR100621649B1 (ko) 소프트 핸드오프를 위한 이 기종 이동통신 시스템간의 데이터 전송방법
US7376108B2 (en) Data transmission method and data transmission arrangement
CN103188743A (zh) 无线通信装置和系统
KR100525522B1 (ko) 무선 레지덴셜 게이트웨이를 이용한 홈 네트워크 시스템과그 운영 방법
WO1999009685A2 (en) Wireless telecommunications system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515785

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009845193

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE