WO2010136498A1 - Verfahren und empfänger zum empfangen und verarbeiten von satellitennavigationssignalen - Google Patents

Verfahren und empfänger zum empfangen und verarbeiten von satellitennavigationssignalen Download PDF

Info

Publication number
WO2010136498A1
WO2010136498A1 PCT/EP2010/057261 EP2010057261W WO2010136498A1 WO 2010136498 A1 WO2010136498 A1 WO 2010136498A1 EP 2010057261 W EP2010057261 W EP 2010057261W WO 2010136498 A1 WO2010136498 A1 WO 2010136498A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
satellite navigation
receiver
reference code
calibration
Prior art date
Application number
PCT/EP2010/057261
Other languages
English (en)
French (fr)
Inventor
Manuel Cuntz
Holmer Denks
Andriy Konovaltsev
Michael Meurer
Original Assignee
Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum für Luft- und Raumfahrt e.V. filed Critical Deutsches Zentrum für Luft- und Raumfahrt e.V.
Publication of WO2010136498A1 publication Critical patent/WO2010136498A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • receivers used in global navigation satellite systems determine their location based on received signals transmitted by satellites that are part of a global satellite constellation, eg GPS satellites are.
  • the satellites belonging to the GPS satellite constellation transmit their signals at two carrier frequencies L1 and L2, the carrier L1 having a frequency of 1575.42 MHz and the carrier L2 having a frequency of 1227.60 MHz.
  • Each carrier is modulated with at least one pseudo random binary code sequence PRN (pseudorandom noise) consisting of a seemingly random, periodically repeating sequence of zeros and ones.
  • PRN sequences are also referred to as ranging codes, since they allow the estimation of the distances ("ranges") between receiver and satellite.
  • the PRN code sequences used are characterized by having a unique "peak" in the autocorrelation function, allowing for transit time measurement.
  • Each satellite uses its own PRN code sequence, which is why the receiver can assign the received signal to the satellite that sent it.
  • the receiver calculates the difference between the time at which the satellite transmitted the signal, this information being contained in the signal itself and the time at which the receiver itself received the signal. Based on the time difference, the receiver calculates its own distance from the satellite.
  • the receiver can calculate its own global spatial position based on the distances determined to at least four satellites.
  • the receiver In order to determine the time difference between the said transmission time of the signal and the said time of reception of this signal, the receiver synchronizes a locally generated PRN reference code sequence with the PRN code sequence contained in the received signal. In this way, the receiver determines the amount of time deviation of the locally generated PRN reference code sequence with respect to the satellite time and calculates the distance.
  • the synchronization operations include the acquisition of the satellite's PRN code sequence and its tracking (code tracking).
  • the receiver usually tracks the phase of the carrier used by the satellite to broadcast the PRN code sequence and the navigation data (phase tracking).
  • Galileo a new satellite navigation system called Galileo is being realized, offering very high accuracy and various services.
  • FIG. 1 shows in a block diagram an exemplary structure of a known satellite navigation receiver enabling calibration with a group antenna consisting of three individual antennas 1, 2 and 3.
  • the satellite navigation signals received via the three individual antennas 1, 2 and 3 are transmitted for their reception switched through switches 4, 5 and 6, each first in a low-noise preamplifier [LUh) 7, 8, 9 amplified and then filtered by means of three band filters 10, 11 and 12 to the respective frequency band.
  • a low-noise preamplifier [LUh) 7, 8, 9 amplified and then filtered by means of three band filters 10, 11 and 12 to the respective frequency band.
  • the filtered signals are then amplified m an RF amplifier 13, 14 and 15 and then by means of a down mixer 16, 17 and 18, which is operated by a local reference oscillator 19, when filtered by a polyphase filter 20, 21 and 22 implemented in the intermediate frequency position.
  • the received signals converted into the intermediate frequency position are then amplified in each of the three received signal branches by means of an intermediate frequency amplifier 23, 24 or 25 and then fed to a variable gain amplifier 26, 27 or 28 with controllable gain, the is set by means of an AGC control loop by a digital signal processor 29 for evaluating the individual signal receiving branches, which can be formed in the form of an FPGA (FIeld Programmable Gate Array) A / D board and also the analog / digital converters for digitizing contains the analog Ernp- catch signals.
  • FPGA Field Programmable Gate Array
  • the digital signal processor 29 contains means for code acquisition and for code tracking using a PRN reference code sequence generator provided in the receiver as well as a device for tracking the carrier signal. phase.
  • the raw data determined in the digital signal processor are fed to a device for the final navigation calculation.
  • the IF amplification signal amplified in the VGA amplifier 26, 27 or 28 is, before it is subjected to the analog-to-digital conversion in the digital signal processor 29, routed in each received signal branch via an anti-aliasing filter 30, 31 and 32, respectively.
  • a carrier signal (CW signal) is generated centrally, the power of which significantly exceeds the noise level during normal reception of satellite navigation signals.
  • This centrally generated carrier signal is fed via a distribution network into each of the three receiver signal branches immediately after the individual antennas 1, 2 and 3.
  • the three switches 4, 5 and 6 are brought into a position which separates the individual antennas 1, 2 and 3 from the respective noise amplifiers 7, 8 and 9 and switches the carrier signal to these amplifiers 7, 8 and 9.
  • a disadvantage of this known Kalib ⁇ réellesmethode is therefore that the calibration due to the much larger signal strength of the carrier signal not simultaneously with the Reception and processing of the satellite navigation signals can be done. Moreover, intermodulation effects may disadvantageously arise because of the greater signal strength of the carrier signal. Moreover, permanent calibration is not possible since the calibration and normal signal processing can not be parallel in time. However, in particular with SoL services interruption of the normal signal processing is intolerable, which is why a (re) calibration had to be omitted there.
  • a further disadvantage of the known calibration method with carrier signal is that the operating point of the received signal branch shifts and thus a calibration for other conditions than the pre-standards present at the operating point is obtained.
  • a disadvantage must also be considered that the received signal branches are measured in the carried out by means of a sinusoidal signal with the carrier frequency calibration with a signal that has spectral properties other than the satellite navigation signal, in particular extremely narrow-band, while the received signal branches are broadband.
  • the object of the present invention is to provide a method for receiving and processing satellite navigation signals in which the antenna RF front ends of such a receiver can be precisely calibrated in phase and amplitude to provide reliable and precise signal processing, in particular for DOA estimation and adaptive beamforming.
  • a permanently operating calibration is to be achieved so that, in addition to aging effects, even short-term changes, which can occur, for example, as a result of temperature fluctuations or air pressure fluctuations, can be compensated and the functionality guaranteed. It should be beyond that Also, a satellite navigation receiver for carrying out such a method are created.
  • this object is achieved analogously by the fact that in the receiver for the calibration additionally a (eg to the PRN receiver used in the receiver. reference code sequence orthogonal PRN reference code sequence or a PRN reference code sequence with respect to the longest or shortest used in the receiver PRN reference code sequence of greater or lesser length) is generated after digital / analog conversion and upcrossing in the respective carrier frequency level to a satellite is added to each individual antenna in the RF front end distributed to the individual receive signal branches as Pseudo satellite navigation signal continuously, and that the pseudo-satellite navigation signal representing an additional signal in the digital signal processor is also tracked in a reserved for this group antenna tracking channel, the evaluations, i. Code and in particular Tragerphase, are used directly for calibrating the transit time differences between the individual receive signal branches.
  • a eg to the PRN receiver used in the receiver. reference code sequence orthogonal PRN reference code sequence or a PRN reference code sequence with respect to the longest or shortest used in the receiver PRN reference code sequence of greater or lesser length
  • Receipt of the analog PRN reference code sequence signal effective as a calibration signal presents to the receiver as an additional satellite navigation signal, meaning that a tracking channel of the digital receiver is to be reserved for the calibration signal.
  • the evaluations of the recipient, i. Code and in particular carrier phase, are now used according to the invention for calibrating the running time differences between the received signal branches.
  • the method of the present invention advantageously allows the normal reception of the satellite navigation signals to be performed during calibration. There is no interruption in the signal processing, i. a permanent calibration can take place.
  • Calibration takes place in the method according to the present invention in the operating point of the amplifier set for the processing of the GNSS useful signal, since the calibration signal has a power level such as the GNSS useful signals to be received.
  • the calibration signal in the method according to the invention has the same spectral characteristics as those signals for which the calibration is performed, namely the GNSS satellite navigation signals. This is especially interesting when the GNSS signals not on the carrier, such as in BOC (Binary Offset Carrier) signals where the power maximum is shifted towards the edges of the spectrum.
  • BOC Binary Offset Carrier
  • a low-noise preamplifier LNA is provided in each bit frame signal branch after the point of injection of the additional PRN reference code sequence.
  • a band filter is expediently arranged downstream of the low-noise amplifier LNA for passing through the respective frequency band, followed by an RF amplifier, a down-converter which is operated by a local reference oscillator and converts into the intermediate frequency position, a polyphase filter, an intermediate frequency amplifier. an amplifier with AGC controllable gain and an anti-aliasing filter. Thereafter, the analog / digital conversion takes place for the subsequent processing and evaluation in the digital signal processor.
  • a satellite navigation receiver designed in accordance with the present invention advantageously does not require its own calibration circuit, but one of the conventional tracking channels already in use may be used.
  • the method according to the present invention can advantageously play a decisive role in the area of satellite navigation receivers for safety-critical and highly accurate applications as well as in reference stations for GNSS, for example in the RIM (ranging and integrity monitoring) stations of the Galileo system currently being set up ,
  • Advantageous and expedient developments and refinements of the satellite navigation receiver and method according to the present invention are disclosed in the claims based on the independent patent claims.
  • FIG. 1 shows the already explained block diagram of an example of a known satellite navigation receiver having a group antenna with three individual antennas, with calibration by means of a CW carrier signal which can be temporarily coupled into the receiver signal branches,
  • FIG. 2 shows the block diagram of an exemplary embodiment of a satellite navigation receiver having an antenna array with three individual antennas and having an advantageous calibration by means of an additional PRN reference code sequence permanently coupled into the receiver signal branches, which is effective as a calibration signal, and FIG
  • FIG. 3 shows in a diagram as a function of PLL epochs [ms] the measured phase difference [degrees] between the four channels of a satellite navigation receiver with one of four individual antennas
  • FIG. 2 shows in a block diagram the exemplary embodiment of a satellite navigation receiver operating according to the present invention with a group antenna comprising three individual antennas 34, 35 and 36.
  • the satellite navigation signals received via the three individual antennas 34, 35 and 36 are shown in FIG. gationssignale are first each amplified in a low-noise preamplifier (LNA) 37, 38 and 39 and then filtered by means of three band filters 40, 41 and 42 to the respective frequency band.
  • LNA low-noise preamplifier
  • the filtered signals are then amplified in an RF amplifier 43, 44 and 45 and then by means of a down mixer 46, 41 and 48, which is operated by means of a local reference oscillator 49, Anssfilterung by a polyphase filter 50, 51 and 52 implemented in the intermediate frequency position.
  • the received signals converted into the intermediate frequency position are then amplified in each of the three received signal branches by means of an intermediate frequency amplifier 53, 54 and 55, respectively, and then fed to a controllable gain VGA (Variable Gain Amplifier) amplifier 56, 57 or 58, respectively is adjusted by means of an AGC control loop (automatic gain control) by a digital signal processor 59 for evaluating the individual signal reception branches, which can be designed in the form of an FPGA (field programmable gate array) A / D board and also the analog / digital Converter for digitizing the analog received signals contains.
  • VGA Very Gain Amplifier
  • AGC control loop automatic gain control
  • digital signal processor 59 for evaluating the individual signal reception branches, which can be designed in the form of an FPGA (field programmable gate array) A / D board and also the analog / digital Converter for digitizing the analog received signals contains.
  • the circuit components between the individual antennas 34, 35, 36 and the signal processor 59 are also referred to as RF frontend.
  • the digital signal processor 59 includes means for code acquisition and code tracking using a PRN reference code sequence generator provided in the receiver and means for tracking the carrier phase.
  • the PRN reference code sequence generator contained therein generates both the PRN reference code sequences for the acquisition of the satellite navigation signals and a similar additional PRN reference code sequence for the calibration.
  • the raw data determined in the digital signal processor are fed to a device for the final navigation calculation.
  • the ZF receive signal amplified in the VGA amplifier 56, 57 or 58 is, before it is subjected to the analog-to-digital conversion in the signal processor 59, in each received signal branch via an anti-aliasing (band) filter 60, 61 and 62 headed,
  • the additional calibration PRN reference code sequence generated in the PRN reference code sequence generator of the signal processor 59 for each frequency band is digital / analog converted into a particular means 63 for generating the analog calibration signal from the additional PRN reference code sequence and then upconverted to the carrier frequency plane.
  • the analog, high-mix PRN reference code sequence is then placed in device 63 at a power level equal to the power level of the GNSS satellite navigation signals, which is below the noise level of the normal satellite navigation signals.
  • the pseudo-satellite navigation signal (calibration signal) formed on the basis of the additional PRN reference code sequence has substantially the same power at the coupling-in points in the received signal branches as the satellite signals actually received via the individual antennas 34, 35, 36.
  • This calibration signal thus formed is then distributed via a distribution network in each of the three received signal branches immediately after the individual antennas 34, 35 and 36, in which case no switches are required as in the receivers with calibration by means of CW carrier signals.
  • the signal processor 59 therefore, an evaluation of the satellite navigation always takes place simultaneously during the evaluation of the individual received signal branches. tion signal and the calibration signal used for calibration.
  • a comparison of the individual calibration signals from the three received signal branches with respect to the relative phase and amplitude then enables the calibration.
  • the reception of the calibration signal is for the receiver as the reception of an additional satellite navigation signal, which means that in the signal processor 59, a reception signal branch for the calibration signal is to reserve.
  • the evaluations in the signal processor 59 of the receiver i. Code and in particular carrier phase, are then used directly for calibration.
  • FIG. 3 shows by way of example in a diagram as a function of the PLL epochs [ms] the phase difference [degree] resulting between the four channels of a satellite navigation receiver according to the present invention with one of four individual antennas Ant # 1, Ant # 2 , Ant # 3 and Ant # 4 existing group antenna.
  • the calibration signal with PRN 16 was fed into the calibration input of the receiver immediately after the individual antennas and the relative phase was determined with the aid of the receiver. It can be seen from the diagram that the phase difference between the four channels is essentially constant over the wide epoch region shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Satellitennavigationssignale werden mit mehreren eine Gruppenantenne bildenden Einzelantennen (34, 35, 36) empfangen und in einem HF-Frontend danach in mehreren, jeweils einer Einzelantenne zugeordneten Empfangssignalzweigen separat bei Kalibrierung in Phase und Amplitude analog verarbeitet und dann digitalisiert und danach einem digitalen Signalprozessor (59) zugeführt, in dem eine Code-Akquisition und eine Code-Nachführung unter Verwendung von im Empfänger erzeugten PRN-Referenzcodesequenzen sowie eine Nachführung der Trägerphase durchgeführt und daraus Rohdaten zur abschließenden Navigationsberechnung ermittelt werden. Für die Kalibrierung wird zusätzlich für jedes Frequenzband eine den im Empfänger verwendeten PRN-Referenzcodesequenzen ähnliche PRN-Referenzcodesequenz kontinuierlich erzeugt, die nach Digital/Analog-Wandlung und Hochmischung in die Tragerfrequenzebene auf einen dem Satellitennavigationssignalpegel entsprechenden Leistungspegel gebracht und dann direkt nach jeder Einzelantenne auf die einzelnen Empfangssignalzweige als Pseudo-Satellitennavigationssignal verteilt kontinuierlich eingekoppelt wird, wobei ein Empfangssignalzweig im Signalprozessor für das Kalibriersignal reserviert wird. Das Pseudo-Satellitennavigationssignal wird mitnachgeführt, wobei die Auswertungen, d.h, Code- und insbesondere Trägerphase, direkt zur kontinuierlichen Kalibrierung verwendet werden. Anwendung bei Satellitennavigationsempfängern.

Description

Titel: Verfahren und Empfänger zum Empfangen und Verarbeiten von Satellitennavigationssignalen
Die Erfindung betrifft ein Verfahren zum Empfangen und Verar- beiten von Satellitennavigationssignalen, die mit mehreren eine Gruppenantenne bildenden Einzelantennen empfangen und in einem HF-Frontend danach in mehreren, jeweils einer Einzelantenne zugeordneten und eine Abwärtsmischung durchführenden Ernpfangssignalzweigen separat bei Kalibrierung in Phase und Amplitude analog verarbeitet und dann mittels Analog/Digital™ Wandlung digitalisiert und danach einem digitalen Signalprozessor zugeführt werden, in dem eine Code-Akquisition und eine Code-Nachführung unter Verwendung von im Empfänger erzeugten PRN-Referenzcodesequenzen sowie eine Nachführung der Trägerphase durchgeführt und daraus Rohdaten zur abschließenden Navigationsberechnung ermittelt werden.
Die Erfindung betrifft auch einen Satellitennavigationsempfänger zur Durchführung des Verfahrens.
Bekanntlich ermitteln Empfänger, die in globalen Satellitennavigationssystemen (GNSSs) wie z.B. bei GPS (Global Positio- ning System) verwendet werden, ihre Ortsposition auf der Grundlage von empfangenen Signalen, die von Satelliten ausge- sendet werden, die Teil einer globalen Satellitenkonstellation, z.B. von GPS-Satelliten, sind. Die Satelliten, die zur GPS-Satellitenkonstellation gehören, senden ihre Signale mit zwei Trägerfrequenzen Ll und L2 aus, wobei der Träger Ll eine Frequenz von 1575,42 MHz und der Träger L2 eine Frequenz von 1227,60 MHz hat. Jeder Träger ist mit wenigstens einer pseudozufälligen Binärcodesequenz PRN (pseudorandom noise) moduliert, die aus einer scheinbar zufälligen, sich periodisch wiederholenden Sequenz von Nullen und Einsen besteht. Die PRN-Sequenzen werden auch als Ranging-Codes bezeichnet, da sie die Schätzung der Entfernungen ("Ranges") zwischen Empfänger und Satellit ermöglichen. Die verwendeten PRN- Codesequenzen zeichnen sich dadurch aus, dass sie eine eindeutige "Spitze" in der Autokorrelationsfunktion besitzen, was eine Laufzeitmessung ermöglicht.
Jeder Satellit benutzt eine eigene PRN-Codesequenz, weswegen der Empfänger das empfangene Signal dem Satelliten zuordnen kann, der es ausgesendet hat. Der Empfänger berechnet den Un- terschied zwischen dem Zeitpunkt, zu dem der Satellit das Signal ausgesendet hat, wobei diese Information im Signal selbst enthalten ist, und dem Zeitpunkt, zu dem der Empfänger selbst das Signal empfangen hat. Auf der Grundlage des zeitlichen Unterschiedes berechnet der Empfänger seine eigene Entfernung vom Satelliten. Der Empfänger kann seine eigene globale Ortsposition anhand der ermittelten Entfernungen zu mindestens vier Satelliten berechnen.
Zum Ermitteln des zeitlichen Unterschiedes zwischen dem ge- nannten Sendezeitpunkt des Signals und dem genannten Empfangszeitpunkt dieses Signals synchronisiert der Empfänger eine lokal erzeugte PRN-Referenzcodesequenz mit der im empfangenen Signal enthaltenen PRN-Codesequenz. Auf diese Weise ermittelt der Empfänger das Maß der Zeitabweichung der lokal erzeugten PRN-Referenzcodesequenz in Bezug auf die Satellitenzeit und berechnet die Entfernung. Die Synchronisierungs- operationen enthalten die Akquisition der PRN-Codesequenz des Satelliten und deren Nachfϋhrung (Code-Tracking) . Darüber hinaus wird normalerweise im Empfänger die Phase des Trägers nachgeführt, der vom Satelliten zum Aussenden der PRN-Codesequenz und der Navigationsdaten benutzt wird (Phase Tracking) . Zur Zeit wird ein neues Satellitennavigationssystem mit der Bezeichnung Galileo realisiert, das eine sehr hohe Genauigkeit und verschiedene Dienste anbietet. Die Entwicklung des neuen Satellitennavigationssystems Galileo eröffnet die Mog- lichkeit für neue Anwendungen, unter ihnen sogenannte Safety- of-Life (SoL) -Dienste . Für diese Dienste ist eine besondere Storsicherheit hinsichtlich Mehrwegeausbreitung und Interferenz notwendig. Eine technische Losung hierfür sind Empfanger mit einer Gruppenantenne (Antennen-Array) , d.h. einer aus mehreren Einzelantennen (Antennenelemente) bestehenden Mehr- Elemente-Antenne, und einer entsprechend ausgebildeten anschließenden Signalverarbeitung, z.B. adaptives Beamforming zur gezielten Storerunterdruckung.
Um eine zuverlässige und präzise Signalverarbeitung, insbesondere für DOA (Direction of Arrival) -Schätzung und adaptives Beamforming (Adaptive Nulling) zu erreichen, ist es notwendig, die den Einzelantennen der Gruppenantenne folgenden analogen Empfangssignalzweige des HF-Frontends eines solchen Empfangers von Satellitennavigationssignalen in Phase und Amplitude genau zu kalibrieren.
Heute erfolgt die Kalibrierung einer solchen Gruppenantenne durch die Verwendung eines Tragersignals (CW-Signal), das in der Leistung deutlich über dem Rauschen liegen muss, um de- tektiert werden zu können. Dieses Tragersignal wird zentral erzeugt und dann über ein Verteilnetzwerk in die einzelnen HF-Signalempfangszweige einer aus mehreren Einzelantennen bestehenden Gruppenantenne verteilt. Wahrend der Einspeisung des der Kalibrierung dienenden Tragersignals kann keine Signalverarbeitung der Satellitennavigationssignale selbst stattfinden. Ein Vergleich der einzelnen CW-Trägersignale bezuglich der relativen Phase und Amplitude ermöglicht dann die Kalibrierung . Fig.l stellt in einem Blockschaltbild einen beispielhaften Aufbau eines bekannten, eine Kalibrierung ermöglichenden Sa- tellitennavigationsempfangers mit einer aus drei Einzelanten- nen 1, 2 und 3 bestehenden Gruppenantenne dar. Die über die drei Einzelantennen 1, 2 und 3 empfangenen Satellitennavigationssignale werden über für deren Empfang durchgeschaltete Umschalter 4, 5 und 6 zunächst jeweils in einem rauscharmen Vorverstärker [LUh) 7, 8, 9 verstärkt und dann mittels dreier Bandfilter 10, 11 und 12 auf das jeweilige Frequenzband gefiltert.
In jedem der drei Empfangssignalzweige werden die gefilterten Signale dann m einem HF-Verstarker 13, 14 bzw. 15 verstärkt und danach mittels eines Abwartsmischers 16, 17 bzw. 18, der mittels eines lokalen Referenzoszillators 19 betrieben wird, bei Ausfilterung durch ein Polyphasenfilter 20, 21 bzw. 22 in die Zwischenfrequenzlage umgesetzt. Die in die Zwischenfre- quenzlage umgesetzten Empfangssignale werden dann in jedem der drei Empfangssignalzweige mittels eines Zwischenfrequenz- verstarkers 23, 24 bzw. 25 verstärkt und danach einem VGA (Variable Gain Aπiplifier) -Verstärker 26, 27 bzw. 28 mit steuerbarer Verstärkung zugeführt, die mittels einer AGC-Regelschleife von einem digitalen Signalprozessor 29 zur Auswertung der einzelnen Signalempfangszweige eingestellt wird, der in Form eines FPGA(FIeId Programmable Gate Array) - A/D-Boards ausgebildet werden kann und auch die Ana- log/Digital-Wandler zur Digitalisierung der analogen Ernp- fangssignale enthält.
Der digitale Signalprozessor 29 enthalt Einrichtungen zur Code-Akquisition und zur Code-Nachfuhrung unter Verwendung eines im Empfanger vorgesehenen PRN-Referenzcodesequenz- generators sowie eine Einrichtung zur Nachfuhrung der Trager- phase. Die im digitalen Signalprozessor ermittelten Rohdaten werden einer Einrichtung zur abschließenden Navigationsberechnung zugeführt. Das im VGA-Verstarker 26, 27 bzw 28 verstärkte ZF-Erapfangssignal wird, bevor es der Analog-Digital- Wandlung im digitalen Signalprozessor 29 unterzogen wird, in jedem Empfangssignalzweig noch über ein Anti-Aliasing-Filter 30, 31 bzw. 32 geleitet.
In einem Frequenzgenerator 33 wird zentral ein Tragersignal (CW-Signal) erzeugt, das in seiner Leistung deutlich den Rauschpegel beim normalen Empfang von Satellitennavigations- signalen übersteigt. Dieses zentral erzeugte Tragersignal wird über ein Verteilnetzwerk verteilt in jeden der drei Emp- fangssignalzweige unmittelbar nach den Einzelantennen 1, 2 und 3 eingespeist. Dazu werden die drei Umschalter 4, 5 und 6 in eine Position gebracht, welche die Einzelantennen 1, 2 und 3 von den betreffenden rauscharrnen Verstarkern 7, 8 und 9 trennt und das Tragersignal auf diese Verstarker 7, 8 und 9 durchschaltet .
Wahrend der Emspeisung des zur Kalibrierung dienenden Tragersignals in die Empfangssignalzweige kann somit keine Signalverarbeitung der eigentlichen Satellitennavigationssignale stattfinden Im Signalprozessor 29 erfolgt also im Rahmen der Ausweitung der einzelnen Empfangssignalzweige zeitlich getrennt entweder eine Auswertung des Satellitennavigations- signals oder des zur Kalibrierung verwendeten Tragersignals. Ein Vergleich der einzelnen Tragersignale aus den drei Dmp- fangssignalzweigen bezüglich der relativen Phase und Ämplitu- de ermöglicht dann die Kalibrierung.
Em Nachteil dieser bekannten Kalibπerungsmethode besteht mithin darin, dass die Kalibrierung auf Grund der viel größeren Signalstarke des Tragersignals nicht gleichzeitig mit dem Empfang und der Verarbeitung der Satellitennavigationssignale erfolgen kann. Darüber hinaus können in nachteiliger Weise Intermodulationseffekte wegen der größeren Signalstarke des Tragersignals entstehen. Überdies ist eine permanente Kalib™ rierung nicht möglich, da die Kalibrierung und die normale Signalverarbeitung zeitlich nicht parallel verlaufen können. Insbesondere bei SoL-Diensten ist aber eine Unterbrechung der normalen Signalverarbeitung nicht tolerierbar, weswegen dort eine (Nach-) Kalibrierung unterbleiben musste.
Nachteilig bei der bekannten Kalibrierungsmethode mit Tragersignal ist ferner, dass sich der Arbeitspunkt des Empfangssignalzweiges verschiebt und somit eine Kalibrierung für andere Bedingungen als die im Arbeitspunkt vorliegenden vorge- normen wird. Als nachteilig muss auch angesehen werden, dass die Empfangssignalzweige bei der mittels eines sinusförmigen Signals mit der Tragerfrequenz durchgeführten Kalibrierung mit einem Signal vermessen werden, das andere spektrale Eigenschaften als das Satellitennavigationssignal hat, insbe- sondere extrem schmalbandig ist, wahrend die Empfangssignalzweige breitbandig sind.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Empfang und Verarbeiten von Satellitennavigationssignalen zu schaffen, bei dem die Antennen-HF-Frontends eines solchen Empfangers genau in Phase und Amplitude kalibrierbar sind, um eine zuverlässige und präzise Signalverarbeitung, insbesondere für DOA~Schatzung und adaptives Beamforming, zu erzielen. Dabei soll eine permanent arbeitende Kalibrierung er- reicht werden, um neben Alterungseffekten auch kurzfristige Veränderungen, die z.B. infolge von Temperaturschwankungen oder Luftdruckschwankungen auftreten können, aufzufangen und die Funktionsfahigkeit zu garantieren. Es soll darüber hinaus auch ein Satellitennavigationsempfanger zum Durchfuhren eines solchen Verfahrens geschaffen werden.
Zur Losung dieser Aufgabe dient ein Verfahren nach Anspruch 1 und ein Satellitennavigationsernpfanger nach Anspruch 8.
Gemäß der Erfindung, die sich auf ein Verfahren zum Empfang und Verarbeiten von Ξatellitennavigationssignalen der eingangs genannten Art bezieht, wird diese Aufgabe sinngemäß dadurch gelost, dass im Empfänger für die Kalibrierung zusätzlich eine (z. B. zu den im Empfanger verwendeten PRN-Re- ferenzcodesequenzen orthogonale PRN-Referenzcodesequenz oder eine PRN-Referenzcodesequenz mit einer gegenüber der längsten oder kürzesten im Empfanger verwendeten PRN- Referenzcodesequenz größeren bzw. kleineren Lange) erzeugt wird, die nach Digital/Analog-Wandlung und Aufwartsmischung in die jeweilige Tragerfrequenzebene auf einen dem Satelli- tennavigationssignalpegel entsprechenden Leistungspegel gebracht wird und dann direkt nach jeder Einzelantenne in das HF-Frontend auf die einzelnen Empfangssignalzweige als Pseu- do-Satellitennavigationssignal verteilt kontinuierlich eingekoppelt wird, und dass das sich als zusätzliches Signal darstellende Pseudo-Satellitennavigationssignal im digitalen Signalprozessor in einem hierfür reservierten Gruppenanten- nen-Trackingkanal ebenfalls nachgefuhrt wird, wobei die Auswertungen, d.h. Code- und insbesondere Tragerphase, direkt zur Kalibrierung der Laufzeitunterschiede zwischen den einzelnen Empfangssignalzweigen verwendet werden.
Bei dem erfindungsgernaß arbeitenden Verfahren wird an Stelle des CW-Tragersignals der PRN-Referenzcodegenerator im Empfanger genutzt, um eine zusätzliche PRN-Referenzcodesequenz zu erzeugen. Dieses zusatzliche PRN-Referenzcodesequenz-Signal wird dann digital/analog gewandelt, auf die Tragerfrequenz hochgemischt und auf einen den GNSS-Signalen nach den Einzelantennen entsprechenden Leistungspegel gebracht, d.h. es liegt unter dem Rauschen. Anschließend wird es analog der bekannten CW-Trägersignal-Einkopplungstechnik auf die einzelnen Empfangssignalzweige verteilt und kontinuierlich eingespeist; es wird also nicht nur zeitweise eingekoppelt.
Der Empfang des als Kalibriersignal wirksamen analogen PRN-Referenzcodesequenz-Signals stellt sich für den Empfanger wie ein zusätzliches Satellitennavigationssignal dar, was bedeutet, dass ein Trackingkanal des digitalen Empfängers für das Kalibriersignal zu reservieren ist. Die Auswertungen des Empfängers, d.h. Code- und insbesondere Trägerphase, werden nun erfindungsgemäß zur Kalibrierung der LaufZeitunterschiede zwischen den Empfangssignalzweigen verwendet.
Das Verfahren nach der vorliegenden Erfindung ermöglicht es in vorteilhafter Weise, dass der normale Empfang der Satellitennavigationssignale während der Kalibrierung ausgeführt werden kann. Es tritt keine Unterbrechung in der Signalverarbeitung ein, d.h. es kann eine permanente Kalibrierung stattfinden .
Die Kalibrierung findet bei dem Verfahren nach der vorliegen- den Erfindung im sich für die Verarbeitung des GNSS- Nutzsignals eingestellten Arbeitspunkt des Verstärkers statt, da das Kalibriersignal einen Leistungspegel wie die zu empfangenden GNSS-Nutzsignale aufweist.
Das Kalibriersignal hat beim Verfahren nach der vorliegenden Erfindung die gleichen spektralen Eigenschaften wie diejenigen Signale, für welche die Kalibrierung durchgeführt wird, nämlich die GNSS-Satellitennavigationssignale . Dies ist insbesondere dann interessant, wenn die GNSS-Signale den Schwer- punkt ihrer Leistung nicht auf dem Trager haben, wie z.B. bei BOC(Binary Offset Carrier) -Signalen, bei denen das Leistungsmaximum zu den Randern des Spektrums hin verschoben wird.
Im HF-Frontend des Satellitennavigationsempfangers nach der vorliegenden Erfindung xst in jedem Biripfangssignalzweig nach dem Einkopplungspunkt der zusatzlichen PRN-Referenzcodese- quenz ein rauscharmer Vorverstärker LNA vorgesehen. In jedem Empfangssignalzweig ist zweckmäßig im Anschluss an den rauscharmen Verstarker LNA ein Bandfilter zum Durchlassen des jeweiligen Frequenzbandes angeordnet und danach folgen jeweils ein HF-Verstarker, ein mittels eines lokalen Referenzoszillators betriebener, in die Zwischenfrequenzlage umset- zender Abwartsmischer, ein Polyphasenfilter, ein Zwischenfre- quenzverstarker, ein Verstarker mit AGC-steuerbarer Verstärkung und ein Anti-Aliasing-Filter . Danach erfolgt die Ana- log/Digital~Wandlung für die nachfolgende Verarbeitung und Auswertung im digitalen Signalprozessor .
Ein gernaß der vorliegenden Erfindung ausgebildeter Satelli- tennavigationsempfanger erfordert in vorteilhafter Weise keine eigene Schaltung für die Kalibrierung, sondern es kann einer der konventionellen, schon vorhandenen Tracking-Kanale genutzt werden.
Das Verfahren nach der vorliegenden Erfindung kann vorteilhaft im Bereich der Satellitennavigationsempfanger für sicherheitskritische und hochgenaue Anwendungen sowie in Refe- renzstationen für GNSS, beispielsweise in den RIM (Ranging and Integrity Monitoring) -Stationen des zur Zeit im Aufbau befindlichen Galileo-Systems eine entscheidende Rolle spielen. Vorteilhafte und zweckmäßige Weiterbildungen und Ausgestaltungen des Satellitennavigationsempfangers und -Verfahrens nach der vorliegenden Erfindung sind in den sich auf die unabhängigen Patentansprüche ruckbeziehenden Ansprüchen angege- ben .
Die Erfindung wird nachfolgend im Einzelnen anhand von Zeich- nungen erläutert. Es zeigen:
Fig.l das bereits erläuterte Blockschaltbild eines Beispiels eines bekanntem eine Gruppenantenne mit drei Einzelantennen aufweisenden Satellitennavigationsemp- fangers mit Kalibrierung mittels zeitweise in die Empfangssignalzweige einkoppelbarem CW-Tragersignal,
Fig.2 das Blockschaltbild eines Ausfuhrungsbeispiels eines gemäß der vorliegenden Erfindung ausgebildeten, eine Gruppenantenne mit drei Einzelantennen aufweisenden Satellitennavigationsempfangers mit vorteilhafter Ka- librierung mittels permanent in die Empfangssignalzweige eingekoppelter zusatzlicher PRN-Referenzcode- sequenz, die als Kalibriersignal wirksam ist, und
Fig .3 in einem Diagramm in Abhängigkeit von PLL-Epochen [ms] die gemessene Phasendifferenz [Grad] zwischen den vier Kanälen eines Satellitennavigationsempfan- gers mit einer aus vier Einzelantennen bestehenden
Gruppenantenne ,
Fig.2 stellt in einem Blockschaltbild das Ausfuhrungsbeispiel eines gemäß der vorliegenden Erfindung arbeitenden Satellitennavigationsempfängers mit einer aus drei Einzelantennen 34, 35 und 36 bestehenden Gruppenantenne dar. Die über die drei Einzelantennen 34, 35 und 36 empfangenen Satellitennavi- gationssignale werden zunächst jeweils in einem rauscharmen Vorverstärker (LNA) 37, 38 und 39 verstärkt und dann mittels dreier Bandfilter 40, 41 und 42 auf das jeweilige Frequenzband gefiltert.
In jedem der drei Empfangssignalzweige werden die gefilterten Signale dann in einem HF-Verstarker 43, 44 bzw. 45 verstärkt und danach mittels eines Abwärtsmischers 46, 41 bzw. 48, der mittels eines lokalen Referenzoszillators 49 betrieben wird, bei Aυsfilterung durch ein Polyphasenfilter 50, 51 bzw. 52 in die Zwischenfrequenzlage umgesetzt. Die in die Zwischenfre- quenzlage umgesetzten Empfangssignale werden dann in jedem der drei Empfangssignalzweige mittels eines Zwischenfrequenz- verstärkers 53, 54 bzw. 55 verstärkt und danach einem VGA (Variable Gain Amplifier) -Verstärker 56, 57 bzw. 58 mit steuerbarer Verstärkung zugeführt, die mittels einer AGC-Regelschleife (Automatic Gain Control) von einem digitalen Signalprozessor 59 zur Auswertung der einzelnen Signalempfangszweige eingestellt wird, der in Form eines FPGA(Field Programmable Gate Array) -A/D-Boards ausgebildet werden kann und auch die Analog/DIgital-Wandler zur Digitalisierung der analogen Empfangssignale enthält. Die Schaltungskomponenten zwischen den Einzelantennen 34, 35, 36 und dem Signalprozessor 59 werden auch als HF-Frontend bezeichnet.
Der digitale Signalprozessor 59 enthält Einrichtungen zur Code-Akquisition und zur Code-Nachführung unter Verwendung eines im Empfänger vorgesehenen PRN-Referenzcodesequenz- generators sowie eine Einrichtung zur Nachführung der Träger- phase. Im Signalprozessor 59 werden im darin enthaltenen PRN-Referenzcodesequenzgenerator sowohl die PRN-Referenzcode- sequenzen für die Erfassung der Satellitennavigationssignale als auch eine diesbezüglich ähnliche, zusätzliche PRN-Re- ferenzcodesequenz für die Kalibrierung erzeugt. Die im digitalen Signalprozessor ermittelten Rohdaten werden einer Einrichtung zur abschließenden Navigationsberechnung zugeführt. Das im VGA-Verstärker 56, 57 bzw. 58 verstärkte ZF-Empfangssignal wird, bevor es der Analog-Digital-Wandlung im Signalprozessor 59 unterzogen wird, in jedem Empfangssignalzweig noch über ein Anti-Aliasing- (Band-) Filter 60, 61 bzw. 62 geleitet,
Die im PRN-Referenzcodesequenzgenerator des Signalprozessors 59 für jedes Frequenzband erzeugte zusätzliche PRN~Referenz- codesequenz für die Kalibrierung wird in einer besonderen Einrichtung 63 zur Erzeugung des analogen Kalibriersignals aus der zusätzlichen PRN-Referenzcodesequenz digital/analog gewandelt und dann in die Trägerfrequenzebene aufwärtsgemischt. Die analoge, hochgemischte PRN-Referenzcodesequenz wird dann in der Einrichtung 63 noch auf einen dem Leistungspegel der GNSS-Satellitennavigationssignale gleichenden Leis- tungspegel gebracht, der unter dem Rauschpegel der normalen Satellitennavigationssignale liegt. Damit weist das auf Basis der zusätzlichen PRN-Referenzcodesequenz gebildete Pseudo- Satellitennavigationssignal (Kalibrier-Signal) an den Einkoppelstellen in den Empfangssignalzweigen im Wesentlichen die gleiche Leistung wie die über die Einzelantennen 34, 35, 36 tatsächlich empfangenen Satellitensignale auf.
Dieses so gebildete Kalibriersignal wird dann über ein Verteilnetzwerk verteilt in jeden der drei Empfangssignalzweige unmittelbar nach den Einzelantennen 34, 35 und 36 eingekoppelt, wobei hier keine Umschalter erforderlich sind wie bei den Empfängern mit Kalibrierung mittels CW-Trägersignalen. Im Signalprozessor 59 erfolgt also im Rahmen der Auswertung der einzelnen Empfangssignal∑weige permanent gleichzeitig eine Auswertung des Satellitennaviga- tionssignals und des zur Kalibrierung verwendeten Kalibriersignals .
Ein Vergleich der einzelnen Kalibriersignale aus den drei Empfangssignalzweigen bezüglich der relativen Phase und Amplitude ermöglicht dann die Kalibrierung. Der Empfang des Kalibriersignals stellt sich für den Empfänger wie der Empfang eines zusätzlichen Satellitennavigationssignals dar, was bedeutet, dass im Signalprozessor 59 ein Empfangssignalzweig für das Kalibriersignal zu reservieren ist. Die Auswertungen im Signalprozessor 59 des Empfängers, d.h. Code- und insbesondere Trägerphase, werden dann direkt zur Kalibrierung verwendet .
Fig.3 zeigt beispielhaft in einem Diagramm in Abhängigkeit von den PLL-Epochen [ms] die sich als Kalibrierergebnis ergebende Phasendifferenz [Grad] zwischen den vier Kanälen eines entsprechend der vorliegenden Erfindung ausgebildeten Satellitennavigationsempfängers mit einer aus vier Einzelantennen Ant#l, Ant#2, Ant#3 und Ant#4 bestehenden Gruppenantenne. Hierzu wurde das Kalibriersignal mit PRN 16 in den Kalibriereingang des Empfängers unmittelbar hinter den Einzelantennen eingespeist und die relative Phase mit Hilfe des Empfängers bestimmt. Aus dem Diagramm ist ersichtlich, dass die Phasen- differenz zwischen den vier Kanälen über den weiten dargestellten Epochenbereich im Wesentlichen konstant ist.
Bezugszeichenliste
1, 2, 3 Einzelantenne
A1 5, 6 Umschalter 7, 8, 9 Rauscharmer Verstarker LNA
10, 11, 12 Bandfilter
13, 14, 15 HF-Verstarker
16, 17, 18 Abwartsmischer
19 Lokaler Referenzoszillator (LO) 20, 21, 22 Polyphasenfilter
23, 24, 25 Zwischenfrequenzverstarker
26, 27, 28 Verstarker mit steuerbarer Verstärkung (VGA)
29 Signalprozessor
30, 31, 32 Anti-Aliasing-Filter 33 Frequenzgenerator
34, 35, 36 Einzelantenne
37, 38, 39 Rauscharmer Verstarker LNA
40, 41, 42 Bandfilter
43, 44, 45 HF-Verstarker 46, 47, 48 Abwartsmischer
49 Lokaler Referenzoszillator (LO)
50, 51, 52 Polyphasenfilter
53, 54, 55 Zwischenfrequenzverstarker
56, 57, 58 Verstarker mit steuerbarer Verstärkung (VGA) 59 Signalprozessor
60, 61, 62 Anti-Aliasing-Pilter
63 Einrichtung zur Erzeugung des analogen Signals aus PRN-Referenzcodesequenz

Claims

Patentansprüche
1. Verfahren zum Empfangen und Verarbeiten von Tragerfrequenzen aufweisenden Satellitennavigationssignalen, die mit mehreren eine Gruppenantenne bildenden Einzelantennen (34, 35, 36) empfangen und in einem HF-Frontend in mehreren, jeweils einer Einzelantenne (34, 35, 36) zugeordneten und eine Abwartsmischung auf eine Zwischenfrequenz durchfuhrenden Empfangssignalzweigen separat bei KaIi- brierung in Phase und Amplitude analog verarbeitet, mittels Analog/Digital-Wandlung digitalisiert und einem digitalen Signalprozessor (59) zugeführt werden, in dem eine Code-Akquxsition sowie eine Code-Nachfuhrung unter Verwendung von im Empfanger erzeugten PRN-Referenzcode- sequenzen durchgeführt werden und eine Nachfuhrung der Tragerphase erfolgt und daraus Rohdaten zur Navigations™ berechnung ermittelt werden, dadurch gekennzeichnet, dass im Empfanger für die Kalibrierung eine zusatzliche PRN-Referenzcodesequenz erzeugt wird, die nach Di- gital/Analog-Wandlung und Aufwartsmischung auf die jeweilige Tragerfrequenz auf einen dem Sa- tellitennavigationssignalpegel im Wesentlichen gleichen Leistungspegel gebracht wird und in das HF-Frontend auf die einzelnen den Einzelantennen (34, 35, 36) zugeordneten Empfangssignalzweige als Pseudo- Satellitennavigationssignal verteilt kontinuierlich eingekoppelt wird, und dass das sich als zusätzliches Signal darstellende Pseudo-Satellitennavigationssignal im digitalen Sig- nalprozessor (59) in einem dafür reservierten Gruppen- antennen-Trackingkanal kontinuierlich nachgefuhrt wird, wobei die Auswertungen, d.h. Code- und insbesondere Tragerphase, zur Kalibrierung von Laufzeitunter- schieden zwischen den Empfangssignalzweigen verwendet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das kontinuierliche Kalibriersignal ausgenutzt wird, um eine kontinuierliche und absolute Signalempfangsrich- tungsschatzung zur Detektion von "Spoofing" (Zielvortau- schung) zu ermöglichen.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das kontinuierliche Kalibriersignal ausgenutzt wird, um eine kontinuierliche und absolute Signalpegelschatzung zu ermöglichen .
4, Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die ungestörte Referenz bezüglich der Signalleistung des kontinuierlichen Kalibriersignals ausgenutzt wird, um "Spoofing" (Zielvortauschung) anhand der Leistungsvariationen zu detektieren.
5, Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das kontinuierliche Kalibriersignal ausgenutzt wird, um "Spoofing" {Zielvortauschung} anhand der Signalempfangs- richtungsvariationen zu detektieren.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei Anwendung dieses Verfahrens das Wegdriften von Empfangereigenschaften entdeckt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als zusätzliche PRN- Referenzcodesequenz eine zu den im Empfanger für die Erzeugung der Rohdaten verwendeten PRN- Referenzcodesequenzen orthogonale PRN-Referenzcodesequenz oder eine gegenüber den im Empfänger für die Erzeugung der Rohdaten verwendeten PRN-Referenzcodesequenzen kürzere oder längere PRN-Referenzcodesequenz gewählt wird,
Satellitennavigationsernpfänger zum Empfang und zur Verarbeitung von Trägerfrequenzen aufweisenden Satellitennavigationssignalen mit einer aus mehreren Einzelantennen (34, 35, 36) bestehenden Gruppenantenne, - einem mit dieser verbundenen HF-Frontend mit mehreren kalibrierbaren, jeweils einer Einzelantenne {34, 35 ,36) zugeordneten und mit einem Abwärtsrnischer (46, 47, 48} für eine Zwischenfrequenz versehenen Empfangssignalzweigen zur separaten Analog-Verarbeitung und anschließendem Analog/Digital-Wandler und einem digitalen Signalprozessor (59} , in dem Einrichtungen zur Code-Akquisition sowie zur Code-Nachführung unter Verwendung eines im Empfänger vorgesehenen PRN- Referenzcodesequenzgenerators (63) und eine Einrich- tung zur Nachführung der Trägerphase vorgesehen sind, wobei daraus ermittelte Rohdaten einer Einrichtung zur Navigationsberechnung zυführbar sind, dadurch gekennzeichnet, dass der PRN-Referenzcodesequenzgenerator (63) zur Er- zeugung einer zusätzlichen PRN-Referenzcodesequenz für jedes Frequenzband ausgebildet ist, dass die zusätzliche PRN-Referenzcodesequenz in einer Einrichtung (63} zur auf Basis der zusätzlichen PRN-Referenzcodesequenz erfolgenden Erzeugung des ana- logen Kalibriersignals einem Digital/Analog-Wandler und danach einem Aufwärtsmischer für die Trägerfrequenz zugeführt und auf einen dem Satelli- tennavigationssignalpegel im Wesentlichen gleichen Leistungspegel gebracht wird und dann in das HF-Frontend auf die einzelnen den Einzelantennen (34, 35, 36) zugeordneten Empfangssignalzweige als Pseudo- Satellitennavigationssignal verteilt eingekoppelt wird, - dass ein Empfangssignalzweig im digitalen Signalprozessor (59) fϋr das Kalibriersignal reserviert ist und dass das sich als zusätzliches Signal darstellende Pseudo-Satellitennavigationssignal im digitalen Sig- nalprozessor nachgeführt ist, wobei die Auswertungen, d.h. Code- und insbesondere Trägerphase, zur Kalibrierung von Laufzeitunterschieden zwischen den Empfangssignalzweigen verwendet werden.
9. Satellitennavigationsempfänger nach Anspruch 8, dadurch gekennzeichnet, dass im HF-Frontend in jedem Empfangssignalzweig nach dem Einkopplungspunkt fϋr die zusätzliche PRN-Referenzcodesequenz ein Vorverstärker (LNA, 37, 38, 39) vorgesehen ist.
10. Verwendung des Verfahrens und des Satellitennavigationsempfängers in einem CDMA basierten Satellitennavigationssystem, wie Galileo, GPS oder im zukünftigen GLONASS.
PCT/EP2010/057261 2009-05-26 2010-05-26 Verfahren und empfänger zum empfangen und verarbeiten von satellitennavigationssignalen WO2010136498A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022728 2009-05-26
DE102009022728.8 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010136498A1 true WO2010136498A1 (de) 2010-12-02

Family

ID=42830386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/057261 WO2010136498A1 (de) 2009-05-26 2010-05-26 Verfahren und empfänger zum empfangen und verarbeiten von satellitennavigationssignalen

Country Status (1)

Country Link
WO (1) WO2010136498A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830407A (zh) * 2012-09-18 2012-12-19 桂林电子科技大学 北斗接收机抗干扰性能自动测试方法和系统
DE102012205817A1 (de) 2012-04-10 2013-10-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung zum Empfangen von Trägerfrequenzen und Codes aufweisenden Signalen
CN104698474A (zh) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 一种卫星导航接收机抗干扰测试系统及方法
CN104698475A (zh) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 一种卫星导航接收机仿真抗干扰测试方法
FR3023010A1 (fr) * 2014-06-30 2016-01-01 Sagem Defense Securite Procede de calibrage du temps de propagation d'un recepteur gnss
US20160156100A1 (en) * 2014-12-02 2016-06-02 Raytheon Company Satellite-based phased array calibration
CN109407116A (zh) * 2018-11-20 2019-03-01 桂林电子科技大学 一种多频点卫星导航质量测试信号生成装置及生成方法
CN110764126A (zh) * 2019-11-11 2020-02-07 北京航空航天大学 一种gps信息缺失情况下的无人车导航方法及系统
CN112649820A (zh) * 2020-11-04 2021-04-13 深圳市三七智联科技有限公司 射频前端芯片的信号接收方法、卫星定位系统及存储介质
CN113126131A (zh) * 2021-03-25 2021-07-16 中国电子科技集团公司第五十四研究所 一种超低失真导航信号采集及无混叠分离方法
CN114114347A (zh) * 2021-10-29 2022-03-01 航天恒星科技有限公司 一种跨频点辅助信号跟踪方法及装置
CN117761678A (zh) * 2024-02-22 2024-03-26 成都鹰谷米特科技有限公司 一种基于v频段的复杂环境目标探测方法及芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938204A1 (de) * 1997-03-18 1999-08-25 Matsushita Electric Industrial Co., Ltd. Kalibrierungseinrichtung für gruppenantenne eines drahtlosen empfängers
EP1083680A1 (de) * 1999-04-01 2001-03-14 Matsushita Electric Industrial Co., Ltd. Funkkommunikationsgerät mit gruppenantenna
GB2418537B (en) * 2004-09-27 2008-10-08 Nortel Networks Ltd Antenna calibration method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938204A1 (de) * 1997-03-18 1999-08-25 Matsushita Electric Industrial Co., Ltd. Kalibrierungseinrichtung für gruppenantenne eines drahtlosen empfängers
EP1083680A1 (de) * 1999-04-01 2001-03-14 Matsushita Electric Industrial Co., Ltd. Funkkommunikationsgerät mit gruppenantenna
GB2418537B (en) * 2004-09-27 2008-10-08 Nortel Networks Ltd Antenna calibration method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERNANDEZ PRADES C ET AL: "New trends in global navigation systems: implementation of a GPS antenna array receiver", 28 August 2005, SIGNAL PROCESSING AND ITS APPLICATIONS, 2005. PROCEEDINGS OF THE EIGHT H INTERNATIONAL SYMPOSIUM ON SYDNEY, AUSTRALIA AUGUST 28-31, 2005, PISCATAWAY, NJ, USA,IEEE, PISCATAWAY, NJ, USA, PAGE(S) 903 - 906, ISBN: 978-0-7803-9243-4, XP010882940 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205817A1 (de) 2012-04-10 2013-10-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung zum Empfangen von Trägerfrequenzen und Codes aufweisenden Signalen
WO2013153061A1 (de) 2012-04-10 2013-10-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung zum empfangen von trägerfrequenzen und codes aufweisenden signalen
DE102012205817B4 (de) * 2012-04-10 2014-03-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung zum Empfangen von Trägerfrequenzen und Codes aufweisenden Signalen
US9103911B2 (en) 2012-04-10 2015-08-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for receiving signals which have carrier frequencies and codes
CN102830407A (zh) * 2012-09-18 2012-12-19 桂林电子科技大学 北斗接收机抗干扰性能自动测试方法和系统
FR3023010A1 (fr) * 2014-06-30 2016-01-01 Sagem Defense Securite Procede de calibrage du temps de propagation d'un recepteur gnss
EP2963448A1 (de) * 2014-06-30 2016-01-06 Sagem Defense Securite Verfahren zum einstellen der übertragungszeit eines gnss-empfängers
US20160156100A1 (en) * 2014-12-02 2016-06-02 Raytheon Company Satellite-based phased array calibration
US9979084B2 (en) * 2014-12-02 2018-05-22 Raytheon Company Satellite-based phased array calibration
CN104698475A (zh) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 一种卫星导航接收机仿真抗干扰测试方法
CN104698474A (zh) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 一种卫星导航接收机抗干扰测试系统及方法
CN109407116A (zh) * 2018-11-20 2019-03-01 桂林电子科技大学 一种多频点卫星导航质量测试信号生成装置及生成方法
CN109407116B (zh) * 2018-11-20 2024-02-27 桂林电子科技大学 一种多频点卫星导航质量测试信号生成装置及生成方法
CN110764126A (zh) * 2019-11-11 2020-02-07 北京航空航天大学 一种gps信息缺失情况下的无人车导航方法及系统
CN112649820A (zh) * 2020-11-04 2021-04-13 深圳市三七智联科技有限公司 射频前端芯片的信号接收方法、卫星定位系统及存储介质
CN113126131A (zh) * 2021-03-25 2021-07-16 中国电子科技集团公司第五十四研究所 一种超低失真导航信号采集及无混叠分离方法
CN114114347A (zh) * 2021-10-29 2022-03-01 航天恒星科技有限公司 一种跨频点辅助信号跟踪方法及装置
CN114114347B (zh) * 2021-10-29 2024-06-11 航天恒星科技有限公司 一种跨频点辅助信号跟踪方法及装置
CN117761678A (zh) * 2024-02-22 2024-03-26 成都鹰谷米特科技有限公司 一种基于v频段的复杂环境目标探测方法及芯片
CN117761678B (zh) * 2024-02-22 2024-04-26 成都鹰谷米特科技有限公司 一种基于v频段的复杂环境目标探测方法及芯片

Similar Documents

Publication Publication Date Title
WO2010136498A1 (de) Verfahren und empfänger zum empfangen und verarbeiten von satellitennavigationssignalen
DE60013662T2 (de) Empfängereichungsverfahren für GLONASS
EP2286259B1 (de) Mehrfrequenzband-empfänger
DE60320592T2 (de) Erhöhung der leistung eines empfängers unter dem einfluss von interferenzen
DE19601309A1 (de) Parallel-Korrelator für den Empfänger eines globalen Ortungssystems
DE102009012171B4 (de) Empfänger mit Kanalauswahlfilter zum Empfangen eines Satellitensignals und Empfangsverfahren hierzu
DE102012019986A1 (de) Verfahren zur Inter-Channel-Bias-Kalibrierung in einem GNSS-Empfänger und zugehörige Vorrichtung
DE102009022729B4 (de) Verfahren und Empfänger zum Empfang und Verarbeiten von AltBOC-modulierten Satellitennavigationssignalen
DE102011051593A1 (de) Hybrider Satellitenpositionierungsempfänger
DE112016002574T5 (de) Satelliten-positonierungssystem-empfänger
DE102006017558A1 (de) Satellitenradiobasiertes Fahrzeugpositionsbestimmungssystem
DE19836966A1 (de) Verfahren und Datenempfänger zum Empfang von Korrekturdaten enthaltenden Funksignalen für ein Global Navigation Satellite System
DE102010000835B4 (de) GPS-Empfänger
EP2836855B1 (de) Vorrichtung zum empfangen von trägerfrequenzen und codes aufweisenden signalen
DE60317193T2 (de) Hilfe in einem satellitenpositionierungssystem
EP2418788A1 (de) Verfahren und System zum Nachführen zweier Kommunikationsteilnehmer eines optischen Satelliten-Kommunikationssystems
DE10356580B4 (de) Verfahren zur Aussendung von Navigationssignalen durch einen Navigationssatelliten
DE19531998C2 (de) Verfahren und Vorrichtung zur Kompensierung des Gleichspannungsanteils und zur Korrektur des Quadraturfehlers einer Basisbandumsetzeinrichtung von Funkempfängern für ein zu detektierendes Empfangssignal
WO2019206567A1 (de) Verfahren zur erfassung einer kanalimpulsantwort in einem, insbesondere zur kommunikation betriebenen, system, sendeeinrichtung und empfangseinrichtung
DE102019120700A1 (de) Verfahren zur Ermittlung des Abstands zweier Objekte, insbesondere zweier Satelliten
EP0207213B1 (de) Verfahren zum Erzeugen von Antennennachführsignalen
DE3422851C2 (de)
DE102006040102A1 (de) Verfahren und Vorrichtung zur selektiven Störung von Empfängern, insbesondere von Systemen zur satellitengestützten Positionsbestimmung
DE102009044731A1 (de) Sperrung von Quadrierungsverlusten für niedrige Signalpegel in Positionsbestimmungssystemen
DE102015203992B4 (de) Verfahren und System zur Bestimmung der Position eines Flugobjekts, insbesondere eines bemannten Luftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720627

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10720627

Country of ref document: EP

Kind code of ref document: A1