WO2010134507A1 - 爆発物に対する抗体およびその製作方法 - Google Patents

爆発物に対する抗体およびその製作方法 Download PDF

Info

Publication number
WO2010134507A1
WO2010134507A1 PCT/JP2010/058321 JP2010058321W WO2010134507A1 WO 2010134507 A1 WO2010134507 A1 WO 2010134507A1 JP 2010058321 W JP2010058321 W JP 2010058321W WO 2010134507 A1 WO2010134507 A1 WO 2010134507A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
formula
carrier protein
represented
acetone peroxide
Prior art date
Application number
PCT/JP2010/058321
Other languages
English (en)
French (fr)
Inventor
明 原田
浩靖 山口
達 松本
憲一 上條
広晃 福西
Original Assignee
国立大学法人大阪大学
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 日本電気株式会社 filed Critical 国立大学法人大阪大学
Publication of WO2010134507A1 publication Critical patent/WO2010134507A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids

Definitions

  • the present invention relates to a monoclonal antibody having a binding ability to a peroxide derivative used as an explosive, a polyclonal antibody, and a method for producing the monoclonal antibody and the polyclonal antibody.
  • Organic compounds used as explosives for example, TNT (2,4,6-trinitrotoluene), RDX (hexogen; 1,3,5-trinitro-1,3,5-triazinan), pen slit (pentaeritetranitrate) Slit: C (CH 2 ONO 2 ) 4 ) has a nitro group in its molecule.
  • TNT 2,4,6-trinitrotoluene
  • RDX hexogen; 1,3,5-trinitro-1,3,5-triazinan
  • pen slit pen slit
  • C CH 2 ONO 2 ) 4
  • the explosives detection scanner for various nitro compounds applies the above measurement principle.
  • organic peroxide explosives that do not have a nitro group in the molecule are also known.
  • acetone peroxide in particular, trimeric TATP (C 9 H 18 O 6 : triacetone triperoxide) or hexamethylenetriperoxide diamine (HMTD) is used in the molecule as a dioxy bond (—O—O—O).
  • HMTD hexamethylenetriperoxide diamine
  • Peroxide derivatives comprising-) have been known for a long time. Since these organic peroxide-type explosives do not have a nitro group in the molecule, they cannot be detected by an explosive detection scanner for various nitro compounds.
  • acetone peroxide in particular, trimer type TATP (C 9 H 18 O 6 : triacetone triperoxide) having a structure represented by the following formula (I) is a relatively easily available raw material. Synthesis can be performed on a laboratory scale by using acetone and aqueous hydrogen peroxide, and sulfuric acid and hydrochloric acid, which are used as acid catalysts. In addition, it has good crystallinity and can be isolated and purified as white crystals having a melting point of 91 ° C.
  • organic peroxide-type explosives such as trimer-type TATP (C 9 H 18 O 6 : triacetone triperoxide) have been used in explosive terrorist attacks in the past. It is used as
  • Non-patent Document 1 Analytical Chemistry, Vol. 75, No. 4, p. 731-735. (2003).
  • the measurement operation is complicated, including the adjustment of the concentration to an appropriate concentration range in consideration of safety during measurement, so it can be used easily by anyone.
  • the measurement cost per measurement is high and the measurement time is 10 minutes or more, which is a problem in measuring a large number of samples.
  • explosives detection capable of selectively detecting a large number of samples as easily as an explosive detection scanner for various nitro compounds. Development of a sensor for use is desired.
  • the antigen-antibody reaction is applied using an antibody capable of binding to the target low molecular weight compound to measure the concentration of the target low molecular weight compound.
  • Immunoassays have been successful for some small molecule compounds. For example, since the organic peroxide explosive compound itself having a structure represented by the formula (I), such as a trimer type TATP, does not exhibit immunogenicity, the organic peroxide explosive compound No specific antibody has been reported so far. If an antibody having a selective binding ability to the organic peroxide-type explosive compound is available, an immunoassay method using the antibody having the selective binding ability is used for the organic peroxide type. There is a high possibility that it can be used to develop sensors for detecting explosive compounds. Therefore, creation of an antibody having a selective binding ability that can be used for detection of the organic peroxide explosive compound by applying an immunoassay is desired.
  • an object of the present invention is to newly create a monoclonal antibody or a polyclonal antibody having a binding ability to a target peroxide derivative-type explosive, and among the created antibodies, particularly, it is contained in a sample solution.
  • Another object of the present invention is to provide a monoclonal antibody or a polyclonal antibody having a selective binding ability to a target peroxide derivative-type explosive and a method for producing the monoclonal antibody or the polyclonal antibody.
  • the object of the present invention is to newly create, for example, a monoclonal antibody or a polyclonal antibody capable of binding to a trimeric acetone peroxide represented by the following formula (I) as a target peroxide derivative-type explosive.
  • a monoclonal antibody or a polyclonal antibody having a selective binding ability to the peroxide derivative-type explosive of formula (I) contained in the sample solution Another object of the present invention is to provide a method for producing the monoclonal antibody or the polyclonal antibody.
  • Trimeric acetone peroxide (C 9 H 18 O 6 : TATP; triacetone triperoxide):
  • the present inventors first studied a technique for newly creating an antibody having a binding ability to a target peroxide derivative-type explosive.
  • trimeric acetone peroxide (TATP) itself having the structure shown in formula (I) has a functional group that can be used to produce a modified protein by binding to a carrier protein.
  • TATP trimeric acetone peroxide
  • an antibody may exhibit a phenomenon that exhibits reactivity with a substance having a structure similar to the original antigen, so-called cross-reactivity. did. That is, in place of the target low molecular weight compound, when many kinds of specific antibodies against an antigen having a structure similar to the low molecular weight compound are created, Thus, it was conceived that there may be an antibody showing cross-reactivity.
  • the present inventors actually have a characteristic structure of the ring structure.
  • the inventors searched for an immunogenicity of the resulting modified protein when bound on a carrier protein.
  • the cross-reactivity to the trimeric acetone peroxide (TATP) of the formula (I) A search was conducted as to whether or not there was an antibody indicating the above.
  • a compound represented by formula (II) created by immunizing a mouse using a modified protein obtained by binding a dicarboxylic acid compound represented by formula (II) on a carrier protein as an immunogen.
  • a group of hybridoma cell lines producing antibodies is prepared, and antibodies exhibiting cross-reactivity to the trimeric acetone peroxide (TATP) of formula (I) are produced from the group of hybridoma cell lines.
  • TATP trimeric acetone peroxide
  • the monoclonal antibodies produced by several of the selected hybridoma cell lines do not show cross-reactivity with at least the endogenous substance of the mouse used as the immunized animal, but the dicarboxylic acid compound represented by the formula (II) and the formula It was confirmed that the compound had reactivity to the trimeric acetone peroxide (TATP) of (I).
  • the present inventors immobilized a monoclonal antibody produced by several of the selected hybridoma cell lines, and then trimeric acetone peroxide (TATP) of the formula (I)
  • TATP trimeric acetone peroxide
  • the amount of trimeric acetone peroxide (TATP) of the formula (I) bound to the monoclonal antibody during the antigen-antibody reaction with the monoclonal antibody is determined according to the amount of the trimeric superoxide of the formula (I) in the sample solution. It was also proportional to the concentration of acetone oxide (TATP), and it was confirmed that it could be used for quantitative detection.
  • trimeric acetone peroxide (TATP) of formula (I) bound to monoclonal antibodies produced by several of the selected hybridoma cell lines is of formula (I) contained in the surrounding solution.
  • concentration of the trimeric acetone peroxide (TATP) is zero, that is, when the washing treatment is performed, the trimer-type excess of the formula (I) that has been substantially bound in about 1 minute. It was also confirmed that dissociation of acetone oxide (TATP) was completed.
  • TATP trimeric acetone peroxide
  • 1 minute can be selected as the treatment time when dissociation is performed by washing treatment.
  • the immunosensor when applied to an immunosensor using an antigen-antibody reaction, it was confirmed that the immunosensor can be reused by performing the washing treatment for the above-described processing time.
  • the monoclonal antibody produced by the several selected hybridoma cell lines can be used for quantitative detection of trimeric acetone peroxide (TATP) of the formula (I). It was confirmed that it can be suitably used for an immunosensor using an antigen-antibody reaction.
  • TATP trimeric acetone peroxide
  • the present inventors have found that the trimeric acetone peroxide (TATP) of the above formula (I) and the characteristic structure and similarity in the trimeric acetone peroxide (TATP) of the above formula (I)
  • TATP trimeric acetone peroxide
  • the subject peroxide derivative-type explosive itself does not exhibit immunogenicity.
  • the inventors of the present invention completed the present invention based on the above-described series of findings and verification results.
  • the peroxide derivative explosive antibody according to the present invention is: It is an antibody having a binding ability to acetone peroxide having a structure represented by the following formula (I).
  • an antibody capable of binding to acetone peroxide having the structure represented by the formula (I) is: It is an antibody against a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) and has cross-reactivity with the acetone peroxide represented by the formula (I) It is an antibody characterized by this.
  • the low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) is a dicarboxylic acid compound having the structure represented by the following formula (II): 3- [ 12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propionic acid (3- [12- ( 2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propanoic acid).
  • the antibody having binding ability to acetone peroxide represented by the formula (I) is: Mammals other than humans using as an immunogen a modified protein obtained by binding a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) onto a carrier protein A peroxide derivative type, which is a polyclonal antibody against the low molecular weight compound, which is created by immunizing the above, and has cross-reactivity with acetone peroxide represented by the formula (I) Is an explosive antibody.
  • the antibody having binding ability to acetone peroxide represented by the formula (I) is: Mammals other than humans using as an immunogen a modified protein obtained by binding a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) onto a carrier protein A peroxide derivative type, characterized in that it is a monoclonal antibody to the low molecular weight compound created by immunizing the above-mentioned compound, and is an antibody having cross-reactivity with acetone peroxide represented by the formula (I) Is an explosive antibody.
  • the non-human mammal is preferably a mouse.
  • a modified protein obtained by binding the low molecular weight compound on a carrier protein it is preferable to select keyhole limpet hemocyanin as the carrier protein.
  • a compound having a carboxyl group (—COOH) in the molecule is selected as a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I),
  • a modified protein obtained by binding a compound having a carboxyl group (—COOH) in the molecule onto a carrier protein comprises the carboxyl group (—COOH) and an amino group (—NH 2 ) on the carrier protein. It is desirable that a compound having a carboxyl group (—COOH) in the molecule is bonded via an amide bond (—CO—NH—). At that time, formation of an amide bond (—CO—NH—) between the carboxyl group (—COOH) and the amino group (—NH 2 ) on the carrier protein is performed using a carbodiimide method. It is preferable.
  • a monoclonal antibody produced by the hybridoma cell line: NECP-C57Z 3B-7E (FERM BP-11125) is selected.
  • the monoclonal antibody produced by the hybridoma cell line: NECP-C57Z 3B-7E (FERM BP-11125) is: A mouse IgG antibody
  • the variable region V H of the heavy chain of the IgG antibody consists of the following amino acid sequence (SEQ ID NO: 7), E V Q L Q Q S S G P E 10 L V K PGA S V K M 20 SC KA S G Y T FT 30 DY NI H W V K Q S 40 HG KG LE W IG Y 50 INP NNG GTSY 60 N Q K F K G K A T L 70 TVN KSS SS TA Y 80 NEL RLS T S E D 90 S A V Y Y C ARL A 100 V W G Q G T T L T V 110 S S 112
  • the variable region V L of the L chain of the IgG antibody has the following amino acid sequence (SEQ ID NO: 8).
  • a method for producing an antibody of a peroxide derivative-type explosive according to the first aspect of the present invention, A method for producing an antibody having an ability to bind to acetone peroxide having a structure represented by the following formula (I):
  • the antibody is A polyclonal antibody against a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I), and having a cross-reactivity with the acetone peroxide represented by the formula (I)
  • An antibody derived from a mammal other than a human The production process of the polyclonal antibody derived from the non-human mammal is at least: The non-human mammal is prepared by using, as an immunogen, a modified protein obtained by binding a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) onto a carrier protein.
  • Immunizing the animal A step of collecting blood from the immunized mammal other than the immunized mammal after the establishment of immunity using the modified protein as an immunogen, and preparing antiserum from the collected blood; In the prepared antiserum, the presence of an antibody having cross-reactivity with acetone peroxide represented by the formula (I) is determined by an antigen-antibody reaction using the acetone peroxide represented by the formula (I) as an antigen.
  • a method for producing an antibody comprising the step of verifying.
  • a method for producing an antibody of a peroxide derivative type explosive according to the second aspect of the present invention A method for producing an antibody having an ability to bind to acetone peroxide having a structure represented by the following formula (I):
  • the antibody is A monoclonal antibody against a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) and having cross-reactivity with the acetone peroxide represented by the formula (I)
  • An antibody derived from a mammal other than a human The production process of the monoclonal antibody derived from the non-human mammal is at least:
  • the non-human mammal is prepared by using, as an immunogen, a modified protein obtained by binding a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) onto a carrier protein.
  • Immunizing the animal After establishing immunity using the modified protein as an immunogen, collecting spleen cells from the immunized mammal other than the immunized mammal, and producing a monoclonal antibody-producing hybridoma cell from the collected spleen cells; From the group of monoclonal antibodies produced by the produced antibody-producing hybridoma cells, a monoclonal antibody having cross-reactivity with acetone peroxide represented by the formula (I) is used as an antigen.
  • a method for producing an antibody comprising a step of screening by an antigen-antibody reaction.
  • the low-formation having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I) is used.
  • the molecular compound is a dicarboxylic acid compound having a structure represented by the following formula (II): 3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa -Spiro- [5.8] tetradec-9-yl] -propionic acid (3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [ 5.8] tetradec-9-yl] -propanoic acid).
  • the non-human mammal is preferably a mouse.
  • a modified protein obtained by binding the low molecular weight compound on a carrier protein it is desirable to select keyhole limpet hemocyanin as the carrier protein.
  • a compound having a carboxyl group (—COOH) in the molecule is selected as a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide represented by the formula (I),
  • a modified protein obtained by binding a compound having a carboxyl group (—COOH) in the molecule onto a carrier protein comprises the carboxyl group (—COOH) and an amino group (—NH 2 ) on the carrier protein.
  • a compound having a carboxyl group (—COOH) in the molecule is bonded via an amide bond (—CO—NH—).
  • formation of an amide bond (—CO—NH—) between the carboxyl group (—COOH) and the amino group (—NH 2 ) on the carrier protein is performed using a carbodiimide method. It is desirable.
  • an antibody having binding ability to acetone peroxide shown in the formula (I) More preferably, a monoclonal antibody produced by the hybridoma cell line: NECP-C57Z 3B-7E (FERM BP-11125) is selected.
  • the antibody having binding ability to the peroxide derivative-type explosive according to the present invention is an antibody against a low molecular weight compound having a structure similar to the characteristic structure of the peroxide derivative-type explosive,
  • the antibody is selected as an antibody exhibiting cross-reactivity to the peroxide derivative-type explosive and can be used for detecting a target peroxide derivative-type explosive through an antigen-antibody reaction.
  • the target peroxide derivative-type explosive is a trimeric acetone peroxide (TATP)
  • TATP trimeric acetone peroxide
  • TATP trimeric acetone peroxide
  • the subject matter can be obtained by using the method for producing an antibody capable of binding to a peroxide-derivative-type explosive according to the present invention. It is possible to obtain an antibody having the ability to bind to a peroxide derivative-type explosive with high reproducibility.
  • FIG. 1 shows 3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8, selected as an antibody of a peroxide derivative-type explosive according to the first embodiment of the present invention.
  • 10,11,13,14-Hexaoxa-spiro- [5.8] tetradec-9-yl] -propionic acid (3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11, Cross-reactivity of polyclonal antibody against 13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propanoic acid) to the target peroxide derivative explosive, trimeric acetone peroxide (TATP)
  • TATP trimeric acetone peroxide
  • FIG. 2 shows 3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8, selected as an antibody of a peroxide derivative-type explosive according to the second embodiment of the present invention.
  • 10,11,13,14-Hexaoxa-spiro- [5.8] tetradec-9-yl] -propionic acid (3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11, Monoclonal antibody against 13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propanoic acid): mAb-T001 to mAb-T004, the target peroxide derivative explosive, trimeric peroxidation It is a graph which shows the result of having evaluated the cross-reactivity to acetone (TATP) by ELISA method.
  • TATP acetone
  • Non-patent Document 2 Chemistry Letters, Vol. 35, No. 10, p. 1126-1127 (2006).
  • the low molecular weight organic compound has a reactive functional group such as an amino group (—NH 2 ), a hydroxyl group (—OH), a sulfanyl group (—SH), or a carboxyl group (—COOH).
  • the reactive functional group can be used to covalently link organic compounds having other reactive functional groups.
  • the carrier protein has a three-dimensional structure composed of a peptide chain in which a plurality of amino acid residues are linked, but on its surface, an amino acid residue having a reactive functional group on the side chain There are several.
  • the modified carrier protein which is modified on the surface by a low molecular weight organic compound, is a non-natural protein molecule and is recognized as a foreign substance that is different from the endogenous protein molecule of the mammal itself. Is frequent. In particular, a site that has been modified by a low molecular weight organic compound frequently exhibits immunogenicity.
  • the modified carrier protein surface modified with a low molecular weight organic compound exhibits immunogenicity, when the mammal is immunized with the modified carrier protein, the modified carrier Specific antibodies against proteins are created.
  • multiple types of antibodies specific to each of the plurality of immunogenic sites (antigenic determinants) are created.
  • the multiple types of antibodies that are specific to modified carriers and proteins that have been created there are antibodies that use the low molecular weight organic compounds themselves used for their modification as sites that exhibit immunogenicity (antigenic determinants) The frequency of doing is high.
  • an antibody that uses the low molecular weight organic compound itself used for modification as an immunogenic site (antigenic determinant) It is possible to sort.
  • the mammal to be immunized already has an antibody that exhibits high cross-reactivity with the antigenic determinant present on the surface of the modified carrier protein, the antigenic determination that exhibits this cross-reactivity is determined. Creation of new antibodies against the group does not occur. That is, when an immune reaction to the modified carrier protein is possible using the high cross-reactivity exhibited by the antibody already held by the mammal to be immunized, the antigen determinant exhibiting this cross-reactivity, Creation of new antibodies does not occur.
  • the modified site functions as a site that exhibits immunogenicity (antigenic determinant)
  • the antibody specific for the antigenic determinant has a low molecular weight used for the modification. There are many cases where the binding ability to the organic compound itself is not high.
  • the technique of binding the target low molecular weight organic compound on the carrier protein and using the resulting modified carrier protein as an immunogen it is specific to the low molecular weight organic compound itself used for modification. Whether or not a specific antibody can be created depends on the following factors. Specifically, it depends on the three-dimensional structure of the target low molecular weight organic compound itself, the combination with the carrier protein to be used, the binding form on the carrier protein, the selection of the modification site, and the above four factors. is doing.
  • the binding form on the carrier protein and its modification site depend on the type of carrier protein used, and are limited by the type of reactive functional group possessed by the target low molecular weight organic compound.
  • an appropriate combination may not be selected for the remaining three factors.
  • the peroxide derivative-type explosive does not have a reactive functional group in its molecule, so that the modified carrier obtained by binding the target low molecular weight organic compound on the carrier protein described above ⁇ Methods that use proteins as immunogens cannot be applied.
  • the peroxide derivative-type explosive is a low molecular weight organic compound and itself does not exhibit immunogenicity.
  • a large number of antibodies against low molecular weight compounds having structures having similar structures and similarities to the target peroxide derivative type explosives are created, and low molecules having structures having similarities are created.
  • a method is employed in which antibodies having cross-reactivity with the target peroxide derivative-type explosive are selected.
  • the structural feature of the trimeric acetone peroxide (C 9 H 18 O 6 : TATP; triacetone triperoxide) represented by the formula (I) is the ring structure itself.
  • TATP triacetone triperoxide
  • a reactive functional group present on the surface of a carrier protein is utilized using a carboxyl group (—COOH), which is a reactive functional group present in the molecule of the dicarboxylic acid compound having the structure represented by formula (II). It is preferable to select a form to be bonded to the surface of the carrier protein by forming an amide bond (—CO—NH—) with a group, particularly an amino group (—NH 2 ).
  • the carrier protein is a technique in which the target low molecular weight organic compound is bound to the above carrier protein and the resulting modified carrier protein is used as an immunogen (Non-patent Document 2: Chemistry Letters, Vol. 35, No. 10, p. 1126-1127 (2006)), various carrier proteins already used can be used.
  • a carrier protein bovine serum albumin, bovine thyroglobulin, keyhole limpet hemocyanin (Keyhole Limpet Hemocyanin) and the like can be suitably used.
  • a specific antibody against the modified carrier protein is used in an immunized mammal. Is created.
  • the carrier protein itself to be used generally has immunogenicity, in addition to the antibody specific to the modified site in the modified carrier protein, it is specific to the antigenic determinant of the carrier protein itself. New antibodies are also created.
  • the mixing ratio of unmodified carrier / protein to the modified carrier / protein used for immunization is low.
  • the carrier protein to be used there are generally a plurality of sites (modifiable sites) that can be modified by binding the target low molecular weight organic compound.
  • Each of these modifiable sites has a reactive functional group, but generally there is a difference in reactivity. Therefore, the binding of the low molecular weight organic compound of interest proceeds preferentially from the highly reactive modifiable site, and the low molecular weight organic compound of interest is consumed. , The efficiency with which the low molecular weight organic compound of interest is bound tends to be further reduced.
  • the amount of the low molecular weight organic compound of interest used in the reaction must be multiple. It is desirable to select a considerably excessive amount relative to the total number of modifiable sites. For example, when there are N modifiable sites on the carrier protein, the amount of the low molecular weight organic compound to be used for the reaction requires a minimum of N molecules per carrier protein molecule. However, it is desirable to select at least 50 molecules or more, preferably 60 molecules or more.
  • the immunization can be performed by, for example, administering a solution containing an effective amount of a modified carrier protein combined with a low molecular weight organic compound of the subject to a mammal to be immunized by injection.
  • a solution containing an effective amount of a modified carrier protein combined with a low molecular weight organic compound of the subject to a mammal to be immunized by injection.
  • As the administration form by injection subcutaneous injection, intradermal injection, intravenous injection, or intraperitoneal administration can be used.
  • the solution is usually administered by subcutaneous injection.
  • an adjuvant that has been conventionally used for immunization can be used as the adjuvant.
  • adjuvants include Freund's complete adjuvant, water-in-oil-in-water emulsion, oil-in-water emulsion, liposome, aluminum hydroxide gel, and silica adjuvant.
  • Freund's complete adjuvant is widely used and can be suitably used in the present invention. For example, during the first immunization (sensitization), it is preferable to use Freund's complete adjuvant as the adjuvant.
  • booster immunization is performed when a predetermined period has elapsed after the first immunization (sensitization).
  • various adjuvants for example, it is preferable to use Freund's complete adjuvant as the adjuvant at the time of booster immunization, but a considerable effect can be obtained by using Freund's incomplete adjuvant.
  • the booster immunization is preferably performed multiple times. It is desirable to perform booster immunization when the antibody concentration in the blood shows a maximum due to the immune response to the previous immunization operation (sensitization) and the antibody concentration is decreasing.
  • the number of days until the antibody concentration in the blood reaches the maximum after the last immunization (sensitization) usually depends on the metabolic rate in the body of the immunogen used.
  • the booster interval depends on the type of immunogen used, the type of immunized animal of interest, and its health condition.
  • a form in which booster immunization is performed after the first immunization for example, 2 weeks, 4 weeks, 6 weeks, or 8 weeks can be selected.
  • the type of mammal to be immunized is not limited, but from an ethical point of view, it is selected from mammals other than humans.
  • it is selected from mammals other than humans.
  • mice, rats, goats, and the like can be selected as mammals other than humans that can be used for mammals to be immunized.
  • a mammal to be immunized a mammal that already holds an antibody showing cross-reactivity with the modified carrier protein is not preferable. That is, it is generally preferable that the mammal to be immunized is an individual who has no acquired immunity.
  • mammals grown after birth in an environment that is essentially free from exposure to various immunogenic substances.
  • a mammal having a short period until it grows to the extent that it can be subjected to immunization after giving birth In consideration of these conditions, it is more preferable to use small pedigree mammals used for medical research. Specifically, mice, rats, rabbits and the like that are used for the creation of various novel antibodies are preferable, and in particular, mice or rats, and more preferably mice are used.
  • Non-patent Document 2 Chemistry Letters, Vol. 35, No. 10, p. 1126-1127 (2006)
  • the various carrier proteins already used the above matters have already been described for mice, rats, rabbits, etc. that are used for the creation of various novel antibodies. It has been investigated and reports are available.
  • Non-patent Document 2 Chemistry Letters, Vol. 35, No. 10, p.1126-1127 (2006)
  • immunization of modified carrier proteins for mice, rats, rabbits, etc. which are used to create various new antibodies It is also possible to estimate the effective amount with considerable accuracy.
  • mice, rats, rabbits, etc. which are used to create various new antibodies, in accordance with the procedures used in the successful examples already reported.
  • the age at which the first immunization operation (sensitization) is performed is selected in consideration of the number of subsequent immunizations and the interval thereof. Specifically, it is necessary to verify that an antibody specific for the immunogen is present in the blood of the immunized animal after completion of multiple boosters. Therefore, it is preferable to select an age at which the first immunization operation (sensitization) is performed so that the immunized animal does not reach an age at which the ability to produce antibodies decreases at the time of completing multiple boosters. .
  • the age at which the first immunization (sensitization) is performed is: It is preferable to select a range of 10 to 15 weeks of age, and it is usually more preferable to select a range of 12 weeks of age. It is known that mice or rats have the ability to produce sufficient antibodies when they reach about 12 weeks of age, and the ability to create new antibodies is the highest.
  • the dicarboxylic acid compound having the structure represented by the formula (II) is a known compound, and its synthesis method has already been reported in the literature (Non-Patent Document 3: Organic & Biomolecular Chemistry Vol. 4, p.4431- 4436 (2006)). Since the dicarboxylic acid compound having the structure represented by the formula (II) is solid at room temperature, the reaction for binding the compound on the carrier protein is performed using a reaction solvent capable of dissolving the compound. There is a need. On the other hand, the carrier protein used may undergo denaturation depending on the type of solvent. Therefore, it is necessary to select a reaction solvent capable of dissolving the compound without causing denaturation of the carrier protein used.
  • dicarboxylic acids having a structure represented by the above formula (II) from various reaction solvents used in preparing modified carrier protein by binding a target low molecular weight organic compound on carrier protein. It is preferable to select a reaction solvent capable of dissolving the acid compound. In fact, when the selection of the reaction solvent was advanced, dimethyl sulfone (DMSO: (CH 3 ) 2 SO) and a borate buffer were selected as particularly preferable reaction solvents.
  • DMSO dimethyl sulfone
  • a borate buffer were selected as particularly preferable reaction solvents.
  • Dimethylsulfone (DMSO: (CH 3 ) 2 SO) is a non-aqueous solvent, but can be dissolved without denaturing the carrier protein, and is equivalent to a dicarboxylic acid compound having the structure represented by formula (II) It is a solvent that can be dissolved at a high concentration.
  • the boric acid buffer solution has a pH range in which the buffering action can be exerted in the range of 6.8 to 9.2, and can dissolve the dicarboxylic acid compound having the structure represented by the above formula (II).
  • the system it is usually preferable to select a composition in which the pH is selected in the range of 8.2 to 8.7, particularly a composition in which the pH can be adjusted to around 8.5.
  • a carboxyl group —COOH
  • an amide bond (—CO—NH—) is formed with an amino group (—NH 2 )
  • N, N′-dicyclohexylcarbodiimide (DCC), N, N′-diisopropylcarbodiimide (DIC), N- [3- (dimethylamino) propyl] -N ′ is used as a binder carbodiimide.
  • EDC Ethylcarbodiimide
  • EDAC N- [3- (dimethylamino) propyl] -N'-ethylcarbodiimide hydrochloride
  • the amount of the binder carbodiimide is preferably selected in the range of 5 to 20 molecules per molecule of the dicarboxylic acid compound having the structure represented by the formula (II).
  • the amount of the dicarboxylic acid compound having the structure represented by the formula (II) is determined based on the total number of amino groups (—NH 2 ) exposed on the surface of the carrier protein. At that time, when the total number of amino groups (—NH 2 ) exposed on the surface of one molecule of the carrier protein is N, the amount of the dicarboxylic acid compound having the structure represented by the formula (II) is used. It is preferable to select from a range of N ⁇ 3 molecules to N ⁇ 10 molecules per protein molecule.
  • a modified carrier protein is prepared in which a dicarboxylic acid compound having the structure shown in formula (II) is bound in a range of 1/2 ⁇ N molecule to N molecule per molecule of the carrier protein. It is desirable to do.
  • a modified carrier protein obtained by binding a target low molecular weight organic compound on a carrier protein is used as an immunogen to be used for the above immunization.
  • the multiple types of antibodies that are newly created by immunization and specific for the modified carrier protein it is also high against the low molecular weight organic compound itself that is not bound to the carrier protein used. First, it is verified that there is actually an antibody showing reactivity.
  • An enzyme immunoassay is preferably used as a means for verifying the presence of an antibody that specifically binds to a specific antigenic determinant in antisera containing multiple types of antibodies.
  • the enzyme immunoassay uses a specific reactivity of an antibody to a specific antigenic determinant, and therefore has high selectivity, particularly for a specific antigenic determinant contained in the antiserum. When the antibody concentration is unknown, the antibody titer can be easily evaluated.
  • an antibody that is not bound to the carrier protein used and shows high reactivity with the low molecular weight organic compound itself it is used in an enzyme immunoassay (ELISA method).
  • ELISA method enzyme immunoassay
  • another kind of modified carrier protein in which the low molecular weight organic compound is bound to the surface of another kind of carrier protein is used.
  • the different type of carrier protein itself does not react with a plurality of types of antibodies specific to the modified carrier protein.
  • the carrier protein used for the preparation of the immunogen and the other kind of carrier protein used for the preparation of the antigen used in the enzyme immunoassay (ELISA method) are preferably used for the preparation of the immunogen. It is preferable to select a combination of two different carrier proteins from the group of carrier proteins.
  • antigenic determinants of the carrier protein itself are usually different, and multiple types of antibodies specific to the modified carrier protein react with the different carrier protein itself.
  • the possibility of showing sex can be eliminated.
  • another type of modified carrier protein in which the low molecular weight organic compound is bound to the surface of another type of carrier protein among a plurality of types of antibodies specific to the modified carrier protein of the immunogen is regarded as an antibody that binds to the low molecular weight organic compound itself.
  • bovine serum albumin which is widely used as a blocking protein, is selected as another type of carrier protein used for the preparation of the antigen used in the enzyme immunoassay (ELISA method), while the production of the immunogen It is more preferable to select a general-purpose carrier protein other than bovine serum albumin, such as Keyhole Limpet Hemocyanin, as the carrier protein used in the above.
  • a general-purpose carrier protein other than bovine serum albumin such as Keyhole Limpet Hemocyanin
  • the modified carrier / protein type antigen The phenomenon of non-selective binding of antibody molecules to the bovine serum albumin moiety is also eliminated.
  • the modified carrier protein type antigen using bovine serum albumin as a carrier protein can be immobilized on an ELISA plate at a high density.
  • the obtained antiserum contains an antibody having reactivity to the low molecular weight organic compound itself, which is used to produce an immunogen
  • the reactivity to the low molecular weight organic compound itself It is verified whether or not a polyclonal antibody having a cross-reactivity with a target peroxide derivative-type explosive, for example, trimeric acetone peroxide (TATP) itself represented by the formula (I) To do.
  • a target peroxide derivative-type explosive for example, trimeric acetone peroxide (TATP) itself represented by the formula (I)
  • verification of the cross-reactivity of the antibody preferably uses a competitive reaction of the two antigens with the antibody.
  • the target peroxide derivative-type explosive for example, the trimeric acetone peroxide (TATP) itself represented by the formula (I) is a low molecular weight organic compound, and when performing an antigen-antibody reaction with an antibody, That binding is believed to be achieved by one of the complementarity determining sites of the antibody molecule.
  • TATP trimeric acetone peroxide
  • a low molecular weight organic compound having a similar structure used for the production of a modified carrier / protein used for the above-described immunization is also subjected to an antigen-antibody reaction with an antibody, its binding is caused by an antibody molecule. It is thought that this is achieved by one of the complementarity determining sites.
  • the complementarity determining site of the antibody molecule involved in binding to a low molecular weight organic compound having a similar structure which is used to produce a modified carrier protein of an immunogen
  • the target peroxide derivative-type explosive for example, the complementarity determining site of the antibody molecule involved in the binding of the trimeric acetone peroxide (TATP) itself shown in formula (I).
  • TATP trimeric acetone peroxide
  • the low molecular weight compound having the similar structure used for the verification of the reactivity to the low molecular weight organic compound itself having a similar structure, which is used for the production of the modified carrier / protein of the above immunogen.
  • Another type of modified carrier protein having an organic compound bound to the surface of another type of carrier protein is immobilized on an ELISA plate.
  • the desired peroxide derivative-type explosive for example, trimer-type acetone peroxide (TATP) represented by the formula (I) is added to the polyclonal solution in the reaction solution for antigen-antibody reaction in the ELISA method. Dissolve with antiserum containing antibody.
  • the cross-reactive antibody present in the reaction solution is a target peroxide derivative-type explosive, for example, a trimeric acetone peroxide represented by the formula (I)
  • TATP antigen-antibody reaction with (TATP)
  • TATP trimeric acetone peroxide represented by the formula (I)
  • the polyclonal antibody against the low molecular weight organic compound itself having a similar structure used in the production of the modified carrier protein of the above-mentioned immunogen contained in the antiserum It is possible to verify that a peroxide derivative-type explosive, such as, for example, a trimer-type acetone peroxide (TATP) represented by the formula (I), and an antibody showing cross-reactivity are included.
  • a peroxide derivative-type explosive such as, for example, a trimer-type acetone peroxide (TATP) represented by the formula (I)
  • TATP trimer-type acetone peroxide
  • the antiserum verified as described above is a polyclonal antibody having a binding ability to a target peroxide derivative-type explosive, for example, a trimeric acetone peroxide (TATP) represented by the formula (I). Is included.
  • TATP trimeric acetone peroxide
  • TATP trimeric acetone peroxide
  • a spleen cell group is prepared by removing the spleen from the immunized animal verified as described above. This spleen cell group and myeloma-derived cell line cells are fused to produce a group of hybridoma cells.
  • the myeloma-derived cell line used for the above-mentioned cell fusion needs to be compatible with the spleen cell derived from the immunized animal to be fused.
  • the proliferation ability of hybridoma cells created by cell fusion depends on the myeloma-derived cell line used for cell fusion, and it is preferable to use a myeloma-derived cell line with excellent proliferation ability. .
  • the myeloma-derived cell line used for cell fusion is a mouse myeloma-derived cell line, P3X63 Ag8.653, P3X63Ag8U, Sp2 / O Ag14, FO.1, S194 / 5.
  • XX0 BU. 1 or the like is preferably used.
  • the use of the cell line P3X63Ag8U has high proliferation ability of the hybridoma cells to be created, and the antibody molecules produced by the hybridoma cells are all antibodies that have been properly assembled, and antibodies that have not been assembled yet More preferred because it does not contain molecular fragments.
  • the myeloma-derived cell line used for cell fusion is the rat myeloma-derived cell line 210, RCY3. Ag1.2.3, YB2 / 0, etc. are mentioned.
  • Examples of cell fusion methods for creating the above hybridoma cells include a polyethylene glycol method, a method using Sendai virus, and a method using electric current.
  • the polyethylene glycol method is more suitable for the present invention because it has low cytotoxicity, is easy to fuse, and particularly has high reproducibility. That is, in the present invention, among a group of hybridoma cells producing a specific monoclonal antibody against a modified carrier protein of an immunogen, a target peroxide derivative-type explosive, for example, three of the formula (I) It is necessary to select hybridoma cells that produce monoclonal antibodies having cross-reactivity to monomeric acetone peroxide (TATP).
  • TATP monomeric acetone peroxide
  • the created group of hybridoma cells are dispersed, dispensed into a microplate, and grown under known culture conditions appropriately selected according to the myeloma cell line used.
  • the monoclonal antibody produced by each hybridoma cell line is the target peroxide derivative-type explosive, for example, three of the formula (I) It is verified whether the antibody is cross-reactive with monomeric acetone (TATP).
  • the culture supernatant of each hybridoma cell line is collected.
  • the culture supernatant of each hybridoma cell line contains a monoclonal antibody produced by the cell line.
  • Monoclonal antibodies contained in the culture supernatant of each hybridoma cell line have reactivity to low molecular weight organic compounds themselves with similar structures used for the production of modified carrier proteins used for immunization. First, it is verified whether it has or not.
  • the verification is based on an enzyme immunoassay (ELISA method) in which a low molecular weight organic compound having a similar structure is bound to the surface of another type of carrier protein and another type of modified carrier protein is used as an antigen. Verification methods can be used. The specific measurement method is in principle the same as the verification regarding the reactivity of the polyclonal antibody contained in the antiserum.
  • ELISA method enzyme immunoassay
  • a cell line of hybridoma cells that produces is selected.
  • the monoclonal antibody produced by the cell line of hybridoma cells is a target peroxide derivative-type explosive, for example, three of the formula (I) It is verified whether or not the antibody exhibits cross-reactivity with monomeric acetone (TATP).
  • the verification regarding the cross-reactivity can be performed by applying the same method in principle as the verification regarding the cross-reactivity of the polyclonal antibody contained in the antiserum.
  • the target peroxide derivative-type explosive for example, the trimeric acetone peroxide (TATP) represented by formula (I)
  • the target peroxide derivative A hybridoma cell line is produced that produces a monoclonal antibody exhibiting cross-reactivity to a type of explosive, for example, the trimeric acetone peroxide (TATP) of formula (I).
  • the type of monoclonal antibody selected depends on the antibody type specificity exhibited by the anti-Ig antibody used in the enzyme immunoassay (ELISA method).
  • TATP trimeric acetone peroxide
  • the selected hybridoma cell line can be cultured in vitro, the supernatant of the culture can be collected, and the contained monoclonal antibody can be purified. Further, when the selected hybridoma cell line is inoculated into the abdominal cavity of a mammal other than a human used for immunization, it grows in the abdominal cavity and accumulates the monoclonal antibody produced in the ascites. Thereafter, the ascites can be collected and the contained monoclonal antibody can be purified.
  • a target peroxide derivative-type explosive for example, a monoclonal antibody capable of binding to trimeric acetone peroxide (TATP) represented by the formula (I) is detected with the peroxide derivative-type explosive.
  • TATP trimeric acetone peroxide
  • Hybridoma cell line NECP-C57Z 3B-7E, based on the Budapest Treaty, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center In addition, an international deposit (May 12, 2009) has been made.
  • the hybridoma cell line is a hybridoma cell line created and selected by the procedure disclosed in the second embodiment to be described later.
  • the hybridoma cell line: NECP-C57Z 3B-7E is a hybridoma cell line that produces the monoclonal antibody mAb-T003 described below.
  • the antibody having the binding ability to the peroxide derivative-type explosive according to the present invention and the production method thereof will be specifically described by taking the first embodiment as an example.
  • TATP trimeric acetone peroxide
  • the 9th and 12th carbon atoms of the hexaoxa-spiro- [5.8] tetradecane ring are both asymmetric centers (chiral centers).
  • the meso-type dicarboxylic acid compound (TATP3) that can be expressed as (9R, 12S) has a three-dimensional structure having two-fold rotational symmetry. Yes.
  • the cis-form dicarboxylic acid compound (TATP3) that can be expressed as (9R, 12R) has a three-dimensional structure having a symmetry plane.
  • the dicarboxylic acid compound (TATP3) represented by the formula (II) was synthesized according to the synthesis method described in the above literature. And it refine
  • a modified carrier protein was prepared by binding a dicarboxylic acid compound (TATP3) represented by the formula (II) on the carrier protein by a carbodiimide method.
  • TATP3 dicarboxylic acid compound represented by the formula (II)
  • the following two modified carrier proteins were prepared and used as immunogens for immunization.
  • TATP3-KLH-DMSO Immunogen DMSO ((CH 3 ) 2 SO: Wako Pure Chemical Industries, Ltd.) as a reaction solvent
  • keyhole limpet hemocyanin A dicarboxylic acid compound (TATP3) represented by the formula (II) is bound on Keyhole Limpet Hemocyanin by the carbodiimide method to prepare a modified carrier protein (TATP3-KLH-DMSO immunogen).
  • the reaction solution using DMSO as a reaction solvent was allowed to stand at room temperature for 2 hours, and then allowed to stand at 4 ° C. for 12 hours to carry out the reaction.
  • 0.1 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP3-KLH-DMSO immunogen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP3-KLH-DMSO immunogen) and unreacted carrier protein was used as a TATP3-DMSO (TATP3-KLH-DMSO immunogen) solution.
  • the carboxyl group (—COOH) of the dicarboxylic acid compound (TATP3) represented by the formula (II) with respect to the amino group (—NH 2 ) exposed on the surface of the carrier protein.
  • the dicarboxylic acid compound (TATP3) represented by the formula (II) binds on average 150 to 200 sites. is doing.
  • TATP3-KLH-borate buffer immunogen Preparation of a modified carrier protein (TATP3-KLH-borate buffer immunogen) Using a borate buffer at pH 8.5 as a reaction solvent, a formula is formed on Keyhole Limpet Hemocyanin. A dicarboxylic acid compound (TATP3) shown in (II) is bound by a carbodiimide method to prepare a modified carrier protein (TATP3-KLH-borate buffer immunogen).
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.) is used as the binder carbodiimide.
  • the pH 8.5 borate buffer is 0.992 g boric acid (Wako Pure Chemical Industries), 1.906 g borax (Wako Pure Chemical Industries), and 2.628 g NaCl (Wako Pure Chemical Industries).
  • TATP3 10 mg / (0.3 ml DMOS + 0.2 ml borate buffer) dissolved in a mixed solution of borate buffer and DMSO and keyhole limpet hemocyanin, 10 mg / 1.5 ml dissolved in borate buffer are mixed. After mixing, the binder carbodiimide, 50 mg / 0.5 ml, dissolved in borate buffer is added.
  • the reaction solution using the borate buffer as a reaction solvent was allowed to stand at room temperature for 2 hours and then allowed to stand at 4 ° C. for 12 hours to carry out the reaction.
  • 0.1 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP3-KLH-DMSO immunogen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP3-KLH-borate buffer immunogen) and unreacted carrier protein is converted into a TATP3-borate buffer (TATP3-KLH-borate buffer immunogen) solution. It was.
  • the carboxyl group (—COOH) of the dicarboxylic acid compound (TATP3) represented by the formula (II) with respect to the amino group (—NH 2 ) exposed on the surface of the carrier protein.
  • the dicarboxylic acid compound (TATP3) represented by the formula (II) averages 150 to 200. The place is connected. That is, this corresponds to a state in which TATP3 is bound to the amino group of the side chain of the lysine residue on the surface of the carrier protein KLH.
  • a modified carrier protein was prepared by binding a dicarboxylic acid compound (TATP3) represented by the formula (II) on the carrier protein by a carbodiimide method.
  • TATP3 dicarboxylic acid compound represented by the formula (II)
  • the following modified carrier protein was prepared and used as an antigen to be used for confirmation of antibody reactivity.
  • TATP3-BSA Antigen a dicarboxylic acid compound (TATP3) represented by the formula (II) on bovine serum albumin (BSA)
  • TATP3-BSA antigen a dicarboxylic acid compound represented by the formula (II) on bovine serum albumin (BSA)
  • BSA bovine serum albumin
  • TATP3-BSA antigen a dicarboxylic acid compound represented by the formula (II) on bovine serum albumin
  • the modified carrier protein (TATP3-BSA antigen) is prepared by binding by the carbodiimide method.
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⁇ HCl) is used as the binder carbodiimide.
  • the pH 8.5 borate buffer is 0.992 g boric acid (Wako Pure Chemical Industries), 1.906 g borax (Wako Pure Chemical Industries), and 2.628 g NaCl (Wako Pure Chemical Industries). Is a buffer solution in which pH is adjusted to 8.5 by dissolving NaOH in 180 ml of pure water and adding NaOH.
  • TATP3 dissolved in DMSO, 10 mg / 0.1 ml, bovine serum albumin (BSA) dissolved in pure water, 30 mg / 1.5 ml, and borate buffer 0.9 ml are mixed. After mixing, the binder carbodiimide, 50 mg / 0.25 ml, dissolved in borate buffer is added.
  • BSA bovine serum albumin
  • the reaction solution using the borate buffer as a reaction solvent was allowed to stand at room temperature for 5 hours for reaction.
  • 0.3 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP3-BSA antigen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP3-BSA antigen) and unreacted carrier protein was used as a TATP3-BSA (TATP3-BSA antigen) solution.
  • a solution prepared by mixing the above-mentioned two modified immunogen carriers and proteins and adding Freund's complete adjuvant (Funakoshi) is used.
  • the composition of the solution was 0.01 ml TATP3-DMSO (TATP3-KLH-DMSO immunogen) solution, 0.01 ml TATP3-borate buffer (TATP3-KLH-borate buffer immunogen) solution, 0.07 ml PBS and 0.01 ml of Freund's complete adjuvant (Funakoshi) are mixed uniformly.
  • Sensitization was performed by subcutaneously injecting 1.0 ml of the above solution into a 12-week-old mouse (SLC: C57BL / 6). On the 22nd, 35th, and 49th days after the first sensitization (first day), 1.0 ml of the solution was subcutaneously injected, and booster immunization was performed.
  • the polyclonal antibody contained in the obtained antiserum is presumed to contain a plurality of types of antibodies specific for the above-mentioned two types of modified immunogen carriers and proteins used for immunization. First, it is verified that an antibody exhibiting a specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) is present in the polyclonal antibody.
  • TATP3 dicarboxylic acid compound
  • the modified carrier protein for antigen (TATP3-BSA antigen) prepared using bovine serum albumin (BSA) instead of Keyhole Limpet Hemocyanin (Keyhole Limpet Hemocyanin)
  • BSA bovine serum albumin
  • Keyhole Limpet Hemocyanin Keyhole Limpet Hemocyanin
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • PBS PBS
  • 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 3 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate. The antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate.
  • the antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the measurement result denoted as “buffer” corresponds to the amount of antibody reacted with TATP3-BSA (TATP3-BSA antigen).
  • TATP3-BSA antigen reacts with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) bound on bovine serum albumin (BSA). It is an antibody. Therefore, it was verified that the polyclonal antibody contained in the obtained antiserum contains an antibody having a specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II).
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • 50 ⁇ l of TATP (AQ Standard) PBS solution is added to the ELISA measurement plate so that the final concentration is 100 ppm.
  • 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • a final concentration of 100 ppm of TATP contained in the reaction solution corresponds to 0.45 mM.
  • TATP3-BSA antigen TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the measurement result expressed as “100 ppm TATP” corresponds to the amount of antibody reacted with TATP3-BSA (TATP3-BSA antigen) in the situation where the above-mentioned TATP coexists. .
  • the results shown in FIG. 1 show that the antigen-antibody reaction progresses between TATP and the antibody, which are added to the solution on the plate during the above reaction, and are immobilized on the plate. It clearly shows that an antigen-antibody reaction with BSA (TATP3-BSA antigen) and competition have occurred. That is, among the plurality of types of antibodies having specific reactivity to the dicarboxylic acid compound (TATP3) itself represented by the formula (II) contained in the polyclonal antibody, the trimeric peroxidation represented by the formula (I) It was verified that an antibody showing cross-reactivity with acetone (TATP) was present.
  • the obtained antiserum polyclonal antibody contained an antibody exhibiting cross-reactivity with trimeric acetone peroxide (TATP) represented by the formula (I).
  • the anti-mouse IgG-POD-labeled antibody has specificity to the mouse IgG1-type antibody, and is an antibody that exhibits cross-reactivity with trimeric acetone peroxide (TATP) represented by the formula (I).
  • TATP trimeric acetone peroxide
  • trimeric acetone peroxide (C 9 H 18 O 6 : represented by the above formula (I): TATP; triacetone triperoxide) is selected.
  • the obtained antiserum polyclonal antibody has a cross-reactivity with trimeric acetone peroxide (TATP) represented by the formula (I).
  • TATP trimeric acetone peroxide
  • blood is collected from the immunized mouse on the 66th day after the first sensitization (first day), antiserum is prepared from the collected blood, and the antiserum It is verified that an antibody exhibiting cross-reactivity with the trimeric acetone peroxide (TATP) represented by the formula (I) is present in the polyclonal antibody.
  • TATP trimeric acetone peroxide
  • the spleen is extracted from the mouse on the 66th day, and spleen cells are prepared.
  • the HAT medium is a RPMI 1640 medium with an appropriate amount of HAT supplement (manufactured by Invitrogen) added. In the second embodiment, 20 ⁇ l of HAT supplement is added per 1 ml of RPMI 1640 medium.
  • HT medium is obtained by adding an appropriate amount of HT supplement (manufactured by Invitrogen) to RPMI1640 medium.
  • HT supplement manufactured by Invitrogen
  • 20 ⁇ l of HT supplement is added per 1 ml of RPMI 1640 medium.
  • the hybridoma cells dispensed on the microplate were cultured for 2 weeks to establish hybridoma cell lines, respectively.
  • the monoclonal antibody produced in the culture supernatant of each hybridoma cell line is a monoclonal antibody having a specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) was confirmed. Furthermore, among those that have been verified to be a monoclonal antibody having specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II), a trimeric acetone peroxide represented by the formula (I) ( Antibodies showing cross-reactivity to TATP) were selected.
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • PBS PBS
  • 50 ⁇ l of a solution obtained by diluting the culture supernatant of each hybridoma cell line 100 times with PBS is added. It is allowed to stand at room temperature for 2 hours, and the monoclonal antibody is reacted with the TATP3-BSA (TATP3-BSA antigen).
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 3 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate. The antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate.
  • the antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • TATP3-BSA antigen reacts with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) bound on bovine serum albumin (BSA). It is a monoclonal antibody.
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • 50 ⁇ l of TATP (AQ Standard) PBS solution is added to the ELISA measurement plate so that the final concentration is 100 ppm.
  • 50 ⁇ l of a solution obtained by diluting the culture supernatant of each selected hybridoma cell line 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • a final concentration of 100 ppm of TATP contained in the reaction solution corresponds to 0.45 mM.
  • TATP3-BSA antigen TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the monoclonal antibody contained in the culture supernatant of the hybridoma cell line can be determined as a monoclonal antibody exhibiting cross-reactivity with TATP.
  • the trimeric form represented by the formula (I) was selected from a plurality of types of monoclonal antibodies reactive with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) selected by the primary screening of (a).
  • TATP3 dicarboxylic acid compound
  • TATP acetone peroxide
  • FIG. 2 shows, as an example, measurement results of four monoclonal antibodies: mAb-T001 to mAb-T004 among the plurality of monoclonal antibodies selected by the secondary screening.
  • the measurement result expressed as “Borate Buffer” is the measurement result by the ELISA method in the primary screening described above (a), that is, TATP3-BSA (TATP3-BSA antigen) in the situation where TATP is not present. On the other hand, it corresponds to the amount of the reacted monoclonal antibody.
  • the measurement result expressed as “100 ppm TATP” corresponds to the amount of monoclonal antibody reacted with TATP3-BSA (TATP3-BSA antigen) in the situation where the above-mentioned TATP coexists. Yes.
  • the monoclonal antibodies selected by the primary screening (a) and the secondary screening (b) show cross-reactivity with the trimeric acetone peroxide (TATP) shown in the formula (I). It was confirmed to be a monoclonal antibody.
  • TATP trimeric acetone peroxide
  • the result shown in FIG. 2 shows that when a trimeric acetone peroxide (TATP) represented by the formula (I) is added to a final concentration of 0.45 mM in the reaction solution for antigen-antibody reaction, In mAb-T001, at least about 18% is bound to TATP; In mAb-T002, at least about 20% is bound to TATP; In mAb-T003, at least about 45% is bound to TATP; In mAb-T004, at least about 35% is bound to TATP; This result suggests that.
  • TATP trimeric acetone peroxide
  • TATP3-BSA antigen TATP3-BSA antigen
  • the monoclonal antibody of the whole antibody type is a divalent, when the probability of TATP on one binds is P, the probability of TATP monoclonal antibody 2 molecule binding can be estimated as P 2 is there.
  • TATP2 ′ 3- (3-methyl-1,2,4,5-tetraoxa-spiro [5.5] undec-3-yl) -propionic acid TATP2 ′) is also a known compound, and its synthesis method has already been reported in the literature (Non-Patent Document 2: Organic & Biomolecular Chemistry Vol. 4, p.4431-4436 (2006)).
  • ester compound (TATP2) represented by the formula (I) by converting the ester bond (—CO—OEt) to a carboxyl group (—COOH) using KOH. Then, purification was performed and the carboxylic acid compound (TATP2 ') was recovered.
  • the modified carrier protein was prepared by binding the carboxylic acid compound (TATP2 ') onto the carrier protein by the carbodiimide method. Also in this reference example, the following two modified carrier proteins were prepared and used as immunogens for immunization.
  • TATP2′-KLH-DMSO Immunogen Preparation of Modified Carrier Protein (TATP2′-KLH-DMSO Immunogen) Using DMSO ((CH 3 ) 2 SO: Wako Pure Chemical Industries, Ltd.) as a reaction solvent, The carboxylic acid compound (TATP2 ′) is bound to Keyhole Limpet Hemocyanin by the carbodiimide method to prepare a modified carrier protein (TATP2′-KLH-DMSO immunogen).
  • the reaction solution using DMSO as a reaction solvent was allowed to stand at room temperature for 2 hours, and then allowed to stand at 4 ° C. for 12 hours to carry out the reaction.
  • 0.1 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP2'-KLH-DMSO immunogen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP2'-KLH-DMSO immunogen) and unreacted carrier protein was used as a TATP2'-DMSO (TATP2'-KLH-DMSO immunogen) solution.
  • the carboxyl group (—COOH) of the carboxylic acid compound (TATP2 ′) is used for the amino group (—NH 2 ) exposed on the surface of the carrier protein.
  • the carboxylic acid compound (TATP2 ′) is bound.
  • the target carboxylic acid compound (TATP2 ′) binds on average 150 to 200 sites. is doing.
  • the pH 8.5 borate buffer is 0.992 g boric acid (Wako Pure Chemical Industries), 1.906 g borax (Wako Pure Chemical Industries), and 2.628 g NaCl (Wako Pure Chemical Industries). Is a buffer solution in which pH is adjusted to 8.5 by dissolving NaOH in 180 ml of pure water and adding NaOH.
  • the reaction solution using the borate buffer as a reaction solvent was allowed to stand at room temperature for 2 hours and then allowed to stand at 4 ° C. for 12 hours to carry out the reaction.
  • 0.1 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP2'-KLH-DMSO immunogen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP2′-KLH-borate buffer immunogen) and unreacted carrier protein is treated with TATP2′-borate buffer (TATP2′-KLH-borate buffer immunogen).
  • Raw Raw
  • the carboxyl group (—COOH) of the carboxylic acid compound (TATP2 ′) is used for the amino group (—NH 2 ) exposed on the surface of the carrier protein.
  • the carboxylic acid compound (TATP2 ′) is bound.
  • the target carboxylic acid compound (TATP2 ′) averages 150 to 200 sites. Are connected.
  • modified carrier protein TATP2′-KLH-DMSO immunogen
  • modified carrier protein TATP2′-KLH-borate buffer immunogen
  • the modified carrier protein was prepared by binding the carboxylic acid compound (TATP2 ') onto the carrier protein by the carbodiimide method.
  • TATP2 ' carboxylic acid compound
  • the following modified carrier protein was prepared and used as an antigen to be used for confirmation of antibody reactivity.
  • TATP2′-BSA Antigen Dicarboxylic acid compound (TATP3) represented by formula (II) on bovine serum albumin (BSA) using borate buffer at pH 8.5 as a reaction solvent
  • TATP3-BSA antigen Dicarboxylic acid compound (TATP3) represented by formula (II) on bovine serum albumin (BSA) using borate buffer at pH 8.5 as a reaction solvent
  • BSA bovine serum albumin
  • EDC ⁇ HCl 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⁇ HCl) (manufactured by Wako Pure Chemical Industries, Ltd.) is used as the binder carbodiimide.
  • the pH 8.5 borate buffer is 0.992 g boric acid (Wako Pure Chemical Industries), 1.906 g borax (Wako Pure Chemical Industries), and 2.628 g NaCl (Wako Pure Chemical Industries). Is a buffer solution in which pH is adjusted to 8.5 by dissolving NaOH in 180 ml of pure water and adding NaOH.
  • TATP2 ' carboxylic acid compound dissolved in DMSO, 10 mg / 0.1 ml, bovine serum albumin (BSA) dissolved in pure water, 30 mg / 1.5 ml and borate buffer 0.9 ml are mixed. After mixing, the binder carbodiimide, 50 mg / 0.25 ml, dissolved in borate buffer is added.
  • BSA bovine serum albumin
  • the reaction solution using the borate buffer as a reaction solvent was allowed to stand at room temperature for 5 hours for reaction.
  • 0.3 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP2'-BSA antigen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP2'-BSA antigen) and unreacted carrier protein was used as a TATP2'-BSA (TATP2'-BSA antigen) solution.
  • modified carrier protein TATP2′-BSA antigen
  • TATP2′-BSA antigen the modified carrier protein prepared under the above reaction conditions undergoes an antigen-antibody reaction with the monoclonal antibodies mAb-T001 to mAb-T004 created in the second embodiment. It was confirmed.
  • (D-4) Immunization using a modified carrier protein for immunogen The modified carrier protein (TATP2′-KLH-DMSO immunogen) and the modified carrier protein (TATP2) are applied to the target non-human mammal. Sensitization is performed using '-KLH-borate buffer immunogen). Also in this reference example, a mouse (SLC: C57BL / 6) is selected as a mammal other than a human to be immunized.
  • TATP2′-KLH-DMSO immunogen TATP2′-KLH-DMSO immunogen
  • TATP2′-KLH-borate buffer immunogen modified carrier protein
  • Freund's complete adjuvant Funakoshi
  • the composition of the solution was 0.01 ml of TATP2′-DMSO (TATP2′-KLH-DMSO immunogen) solution, 0.01 ml of TATP2′-borate buffer (TATP2′-KLH-borate buffer immunogen) solution, 0.07 ml PBS and 0.01 ml Freund's complete adjuvant (manufactured by Funakoshi) were mixed uniformly.
  • Sensitization was performed by subcutaneously injecting 1.0 ml of the above solution into a 12-week-old mouse (SLC: C57BL / 6). On the 22nd, 35th, and 49th days after the first sensitization (first day), 1.0 ml of the solution was subcutaneously injected, and booster immunization was performed.
  • the antibodies in the obtained serum are specific to the modified carrier protein (TATP2'-KLH-DMSO immunogen) and modified carrier protein (TATP2'-KLH-borate buffer immunogen) used for immunization. It is estimated that multiple types of typical antibodies are mixed. It is verified that an antibody exhibiting a specific reactivity with the target carboxylic acid compound (TATP2 ') itself is present in the polyclonal antibody.
  • TATP2'-KLH-DMSO immunogen modified carrier protein
  • TATP2'-KLH-borate buffer immunogen modified carrier protein
  • the modified carrier protein for antigen (TATP2′-BSA antigen) prepared using bovine serum albumin (BSA) instead of Keyhole Limpet Hemocyanin as a carrier protein. It is verified by using the ELISA method that an antibody having reactivity with is present.
  • BSA bovine serum albumin
  • TATP2'-BSA TATP2'-BSA antigen
  • TATP2'-BSA antigen TATP2'-BSA antigen
  • PBS PBS
  • 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS is added.
  • the antibody is reacted with the TATP2'-BSA (TATP2'-BSA antigen) after standing at room temperature for 2 hours.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 3 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate.
  • the antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP2'-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the target carboxylic acid compound (TATP2′-KLH-DMSO immunogen) and the modified carrier protein (TATP2′-KLH-borate buffer immunogen), the target carboxylic acid compound ( It was judged that no IgG antibody showing specific reactivity to TATP2 ′) itself was created.
  • the ester represented by the formula (I) It was judged that no IgG antibody showing the binding ability to the compound (TATP2) was created. That is, unlike the modified protein: TATP3-KLH, the modified carrier protein: TATP2′-KLH was determined not to have immunogenicity.
  • a hybridoma cell line producing the above monoclonal antibody mAb-T003 from a cultured cell of NECP-C57Z 3B-7E (FERM BP-11125), the hybridoma cell line
  • the cDNA of mRNA encoding the H chain and L chain of the antibody expressed in is prepared and cloned.
  • the cultured cells of the hybridoma cell line: NECP-C57Z 3B-7E are collected.
  • the total amount of the collected cultured cells is homogenized in RNAiso, and the total RNA derived from the cultured cells is extracted and purified using a total RNA extraction kit (GE Healthcare Bioscience).
  • the monoclonal antibody mAb-T003 produced by the hybridoma cell line: NECP-C57Z 3B-7E is a mouse / IgG antibody because of its reactivity with the anti-IgG antibody. Therefore, cDNA of mRNA encoding the H chain and L chain of mouse IgG antibody is selectively prepared from the purified total RNA.
  • mouse / IgG antibody Base sequence-specific RT reaction is carried out to prepare cDNA of mRNA encoding the H chain and L chain of mouse IgG antibody.
  • Monoclonal antibody mAb-T003 is presumed to contain a mouse / IgG antibody, in particular, a subclass of IgG1, and therefore includes a ⁇ 1 chain as a heavy chain and a ⁇ chain as a L chain as the mouse / IgG antibody. Therefore, a mouse / IgG antibody base sequence-specific RT reaction was performed using an mRNA base sequence-specific RT primer encoding the mouse IgG antibody ⁇ 1 chain and ⁇ chain, and the mouse / IgG antibody ⁇ 1 chain and ⁇ chain were Prepare cDNA of mRNA encoding.
  • a mouse antibody (IgG) sequence-specific RACE PCR reaction is performed using the SMART TM RACE cDNA Amplification Kit. Specifically, using the cDNA of the mRNA encoding the ⁇ 1 chain and ⁇ chain of the prepared mouse / IgG antibody as a template, the same Primer used in the mouse / IgG antibody base sequence-specific RT reaction is referred to as Reverse Primer. Then, RACE PCR reaction is performed using Universal primer mix contained in the Kit as Forward Primer.
  • the PCR product obtained by the RACE PCR reaction is electrophoresed with 3% Agarose Gel to separate the PCR product derived from the cDNA of mRNA encoding the ⁇ 1 chain and ⁇ chain of the mouse / IgG antibody. Collect a gel slice containing the PCR product band of the desired size, extract the PCR product derived from the cDNA of the mRNA encoding the ⁇ 1 chain and ⁇ chain of the mouse / IgG antibody from the gel slice, and purify it. Do.
  • Two kinds of PCR products extracted from the gel slice and purified are ligated to the cloning site of Cloning Plasmid pMD20-T and inserted.
  • Escherichia coli is transformed using the plasmids into which the two PCR products are inserted, respectively, and the transformed strains are selected.
  • 2 transformants into which two kinds of purified PCR products have been introduced are cultured for the transformants to prepare Plasmid.
  • base sequence analysis of two types of PCR products inserted into the plasmids is performed.
  • a primer complementary to the base sequence derived from the Cloning Plasmid pMD20-T is used to sequence two base sequences of PCR products inserted into the cloning site.
  • the Sequence reaction is performed using BigDye Terminators v 3.1 Cycle Sequencing Kit (manufactured by ABI) according to the standard protocol attached to the Kit.
  • Table 2-1 shows the result of analyzing the base sequence of a part of the cloned cDNA of mRNA encoding the mouse IgG antibody H chain ( ⁇ 1 chain).
  • the 5 ′ terminal region and the 3 ′ terminal region contain the primer base sequence used for PCR amplification.
  • Table 2-2 shows the result of analyzing the base sequence of a part of the cDNA of the mRNA encoding the L chain ( ⁇ chain) of the mouse IgG antibody.
  • the 5 ′ end region and the 3 ′ end region contain the base sequence of the Primer used for PCR amplification.
  • variable region (V H region) and L variable region of the chain (kappa chain) of the H chain of a mouse ⁇ IgG antibody (.gamma.1 chain) (V L region) are both formed of about 110 amino acid residues Yes.
  • signal peptide region of the H chain ( ⁇ 1 chain) of the mouse / IgG antibody and the frame part (FR-1, FR-2, FR-) contained in the variable region (V H region) of the H chain ( ⁇ 1 chain) 3 the partial amino acid sequence of FR-4) has been reported to show high homology.
  • variable region (V L region) of the L chain ( ⁇ chain) is: Presumed to be the parts shown in Table 4-1 and Table 4-2 below.
  • the monoclonal antibody mAb-T003 produced by the hybridoma cell line: NECP-C57Z 3B-7E has a variable region (V H region) and an L chain of its H chain ( ⁇ 1 chain).
  • the variable region ( VL region) of ( ⁇ chain) is judged to be a mouse IgG1 antibody consisting of the partial amino acid sequences shown in Tables 4-1 and 4-2, respectively. While the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
  • the antibody capable of binding to a peroxide derivative-type explosive according to the present invention can be used for detection of the peroxide derivative-type explosive.
  • Hybridoma cell line NECP-C57Z 3B-7E, based on the Budapest Treaty, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center In addition, an international deposit (May 12, 2009) has been made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、対象の過酸化物誘導体型の爆薬に対して、選択的な結合能を有するモノクローナル抗体、あるいはポリクローナル抗体と、該モノクローナル抗体、あるいはポリクローナル抗体を製造する方法を提供する。免疫原性を示さない過酸化物誘導体型の爆薬に対する結合能を有する抗体として、前記過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対する抗体の群から、該過酸化物誘導体型の爆薬に対して交叉反応性を有する抗体を選別して、該交叉反応性を有する抗体を利用する。

Description

爆発物に対する抗体およびその製作方法
 本発明は、爆薬として使用される、過酸化物誘導体に対する結合能を有するモノクローナル抗体、ならびにポリクローナル抗体、および、該該モノクローナル抗体、ならびにポリクローナル抗体の製造方法に関する。
 爆薬として使用される有機化合物、例えば、TNT(2,4,6-トリニトロトルエン)、RDX(ヘキソーゲン;1,3,5-トリニトロ-1,3,5-トリアジナン)、ペンスリット(四硝酸ペンタエリスリット:C(CH2ONO2)4)は、その分子内にニトロ基を有している。これら爆薬に利用される、各種のニトロ化合物の検出には、前記特徴を利用して、ニトロ基形状の窒素を検出する手法が採用されている。各種のニトロ化合物を対象とする、爆発物検出用スキャナーは、前記の測定原理を応用している。
 一方、分子内にニトロ基を有していない、有機過酸化物型の爆薬も知られている。例えば、過酸化アセトン、特には、三量体型のTATP(C18:トリアセトントリペルオキシド)、あるいは、ヘキサメチレントリペルオキシドジアミン(HMTD)など、分子内にジオキシ結合(-O-O-)を具えている、過酸化物誘導体が、古くから知られている。これら有機過酸化物型の爆薬は、その分子内にニトロ基を有していないため、各種のニトロ化合物を対象とする、爆発物検出用スキャナーでは検出できない。
 なかでも、過酸化アセトン、特には、下記の式(I)に示す構造を有する、三量体型のTATP(C18:トリアセトントリペルオキシド)は、比較的に入手が容易な原料、アセトンと過酸化水素水、ならびに、酸触媒として利用する、硫酸、塩酸を使用して、実験室的規模で合成ができる。また、結晶性がよく、融点91℃の白色結晶として、単離、精製ができる。
Figure JPOXMLDOC01-appb-C000006
 上記の特徴が災いして、三量体型のTATP(C18:トリアセトントリペルオキシド)を初めとする、有機過酸化物型の爆薬は、過去に、爆発物テロ事件において、爆薬として使用されている。
Analytical Chemistry, Vol. 75, No.4, p.731-735 (2003) Chemistry Letters, Vol.35, No.10, p.1126-1127 (2006) Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006)
 有機過酸化物型の爆薬を使用する、爆発物テロを未然に防止するためには、上記の有機過酸化物型の爆薬を検知し、有機過酸化物型の爆薬を使用する、爆発物を見つけ出すことは必要である。有機過酸化物型の爆薬、例えば、過酸化アセトンは、C,H,Oで構成される低分子化合物である。そのため、従来、その検知技術として、UV照射とフルオレッセンス検出を合わせた高速液体クロマトグラフィー法が用いられてきた(非特許文献1:Analytical Chemistry, Vol. 75, No.4, p.731-735 (2003))。しかしながら、対象物質は、爆薬であるため、測定時の安全性を考慮した、適正な濃度範囲へと濃度調整する操作を始めとして、測定操作が複雑であることから、誰にでも簡便に利用可能な測定手段ではなかった、その上、一回あたりの測定コストが高く、測定時間も10分以上を必要とし、多数の試料について、測定を行う上での、課題となっている。
 有機過酸化物型の爆薬についても、各種のニトロ化合物を対象とする、爆発物検出用スキャナーと同程度の簡便さで、多数の試料について、選択的に検出を行うことが可能な爆発物検出用センサの開発が望まれている。
 溶液試料中に含まれる、低分子化合物を検出する方法として、対象の低分子化合物に対する結合能を有する抗体を利用して、抗原抗体反応を応用して、対象の低分子化合物の濃度を測定する免疫測定法が、一部の低分子化合物では成功している。例えば、式(I)に示す構造を有する、三量体型のTATPを初めとする、有機過酸化物型の爆薬化合物自体は、免疫原性を示さないため、該有機過酸化物型の爆薬化合物に特異的な抗体は、これまで報告されていない。仮に、該有機過酸化物型の爆薬化合物に対して選択的な結合能を有する抗体が入手できれば、この選択的な結合能を有する抗体を利用する、免疫測定法は、該有機過酸化物型の爆薬化合物検出用センサの開発に利用できる可能性が高い。従って、免疫測定法を応用する、該有機過酸化物型の爆薬化合物の検出に利用可能な、選択的な結合能を有する抗体の創製が望まれている。
 本発明は、前記の課題を解決するものである。すなわち、本発明の目的は、対象となる過酸化物誘導体型の爆薬に対する結合能を有するモノクローナル抗体、あるいはポリクローナル抗体を新たに創製し、創製された抗体のうち、特に、試料溶液中に含有されている、対象の過酸化物誘導体型の爆薬に対して、選択的な結合能を有するモノクローナル抗体、あるいはポリクローナル抗体と、該モノクローナル抗体、あるいはポリクローナル抗体を製造する方法を提供することにある。
 本発明の目的は、例えば、対象の過酸化物誘導体型の爆薬として、下記の式(I)に示される三量体型の過酸化アセトンに対する結合能を有するモノクローナル抗体、あるいはポリクローナル抗体を新たに創製し、創製された抗体のうち、特に、試料溶液中に含有されている、式(I)の過酸化物誘導体型の爆薬に対して、選択的な結合能を有するモノクローナル抗体、あるいはポリクローナル抗体と、該モノクローナル抗体、あるいはポリクローナル抗体を製造する方法を提供することにある。
 三量体型の過酸化アセトン(C18:TATP;トリアセトントリペルオキシド):
Figure JPOXMLDOC01-appb-C000007
 本発明者らは、上記の課題を解決すべく、先ず、対象の過酸化物誘導体型の爆薬に対する結合能を有する抗体を新たに創製する手法を検討した。
 対象の過酸化物誘導体型の爆薬自体は免疫原性を示さないことは、既に判明している。一方、免疫原性を持たない低分子量化合物であっても、キャリア・タンパク質上に該低分子量化合物を結合させ、該低分子量化合物により修飾された修飾タンパク質とすると、免疫原として機能する場合がある(非特許文献2:Chemistry Letters, Vol.35, No.10, p.1126-1127 (2006))。この手法を利用して、免疫原性を持たない低分子量化合物に対して特異的な反応性を示す抗体を作製した事例は少なくないが、全ての低分子量化合物に対して有効というものではない。すなわち、修飾タンパク質において、該低分子量化合物が結合されている部位が、実際に、免疫原性を示すか否かは、その部位の立体構造に依存するため、全ての低分子量化合物に対して有効というものではない。
 但し、例えば、式(I)に示す構造を有する、三量体型の過酸化アセトン(TATP)自体は、キャリア・タンパク質上に結合させ、修飾タンパク質を作製する際に利用可能な官能基を有してなく、前記の手法を適用できない。
 さらに、本発明者らは、抗原抗体反応においては、抗体は、本来の抗原と類似する構造を有する物質に対しても反応性を示す現象、所謂、交叉反応性を示す場合があることに着目した。すなわち、対象の低分子量化合物に代えて、該低分子量化合物と類似する構造を有する抗原に対する特異的な抗体を多数種創製すると、この多数種の抗体群のうちに、対象の低分子量化合物に対して、交叉反応性を示す抗体が存在する可能性があることに想到した。
 本発明者らは、実際に、式(I)に示す構造を有する、三量体型の過酸化アセトン(TATP)において、特徴的な構造は、その環構造であり、該環構造と構造的な類似性を有する低分子量化合物多数種のうち、キャリア・タンパク質上に結合された際、得られる修飾タンパク質が免疫原性を示すものを探索した。次いで、探索された、修飾タンパク質を免疫原として、マウスを免疫することで創製される抗体多数種のうち、式(I)の三量体型の過酸化アセトン(TATP)に対して、交叉反応性を示す抗体が存在するか、否かについて、探索を行った。上記の二段回の探索過程を実施したところ、幸運にも、下記の式(II)に示す化合物が、キャリア・タンパク質上に結合された際、得られる修飾タンパク質が免疫原性を示し、該修飾タンパク質を免疫原として、マウスを免疫することで創製される抗体多数種のうちに、交叉反応性を示す抗体が存在することが見出された。
 3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)
Figure JPOXMLDOC01-appb-C000008
 具体的には、式(II)に示すジカルボン酸化合物をキャリア・タンパク質上に結合させて得られる修飾タンパク質を免疫原として、マウスを免疫することで創製された、式(II)に示す化合物に対する抗体を産生する、一群のハイブリドーマ細胞株を作製し、この一群のハイブリドーマ細胞株から、式(I)の三量体型の過酸化アセトン(TATP)に対して、交叉反応性を示す抗体を産生する、ハイブリドーマ細胞株数種を選別することができた。
 この選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体は、少なくとも、免疫動物として利用したマウスの内因性物質とは、交叉反応性を示さないが、式(II)に示すジカルボン酸化合物と、式(I)の三量体型の過酸化アセトン(TATP)に対する反応性を具えていることが確認された。
 以上の一連の知見に加えて、本発明者らは、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体を固定化した上で、式(I)の三量体型の過酸化アセトン(TATP)と抗原抗体反応を行わせた際、該モノクローナル抗体に結合される式(I)の三量体型の過酸化アセトン(TATP)の量は、試料溶液中の式(I)の三量体型の過酸化アセトン(TATP)の濃度と、比例しており、定量的な検出に利用できることも確認した。
 特に、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体に結合された、式(I)の三量体型の過酸化アセトン(TATP)は、周囲の溶液中に含有される式(I)の三量体型の過酸化アセトン(TATP)の濃度を零とすると、すなわち、洗浄処理を施すと、凡そ、1分間のうちに、実質的に結合されていた式(I)の三量体型の過酸化アセトン(TATP)の解離が完了することも確認した。すわなち、抗原抗体反応を利用する免疫センサに応用した際、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体に一旦結合された式(I)の三量体型の過酸化アセトン(TATP)を、洗浄処理によって、解離する際、その処理時間として、1分間を選択することができることが確認された。換言すると、抗原抗体反応を利用する免疫センサに応用した際、前記の処理時間の洗浄処理を行うことで、該免疫センサの再利用が可能であることの確認がなされた。
 実際に、抗原抗体反応を利用する免疫センサの定量性を検証する上では、該免疫センサの抗体に結合されている抗原物質の量を別途に測定する必要がある。その際、前記の処理時間の洗浄処理を行うことで、該免疫センサのモノクローナル抗体に結合されていた式(I)の三量体型の過酸化アセトン(TATP)について、実質的に全量を解離させ、回収することができる。回収された式(I)の三量体型の過酸化アセトン(TATP)の量を別途定量することで、該抗原抗体反応を利用する免疫センサの定量性を検証することが可能となる。
 以上の一連の検証を行うことで、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体は、式(I)の三量体型の過酸化アセトン(TATP)の定量的な検出に利用可能な、抗原抗体反応を利用する免疫センサに好適に使用することが可能であることを確認した。
 さらに、本発明者らは、上記の式(I)の三量体型の過酸化アセトン(TATP)と、該式(I)の三量体型の過酸化アセトン(TATP)における特徴的構造と類似性を具えた構造を持つ式(II)に示すジカルボン酸化合物に対するモノクローナル抗体の組み合わせのみならず、対象の過酸化物誘導体型の爆薬自体は免疫原性を示さない場合、該過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクノーナル抗体を同様の手法で創製することが可能であることも見出した。その際、該過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクノーナル抗体多数種のうち、対象の過酸化物誘導体型の爆薬に対して交叉反応性を示す抗体を選別することが可能であり、選別される交叉反応性を示す抗体は、上記の抗原抗体反応を利用する免疫センサの作製に必要な特質を具えていることも見出した。
 なお、前記修飾タンパク質を免疫原として、マウスを免疫すると、該マウスの血液中には、式(II)に示す化合物に対する特異的な抗体が複数種存在している。この免疫を施したマウスから採取した血液から調製される血漿は、式(II)に示す化合物に対する特異的なポリクローナル抗体を含有している。前記の式(II)に示す化合物に対する特異的なポリクローナル抗体も、式(I)の三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すことも確認された。結論として、先に選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体に加えて、前記の式(II)に示す化合物に対する特異的なポリクローナル抗体も、式(I)の三量体型の過酸化アセトン(TATP)を選択的に結合でき、免疫測定法に利用可能であることが確認された。
 本発明者らは、上述する一連の知見、ならびに、検証結果に基づき、本発明を完成させた。
 すなわち、本発明にかかる過酸化物誘導体型の爆薬の抗体は、
 下記の式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体である。
Figure JPOXMLDOC01-appb-C000009
 特には、前記式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体は、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対する抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する
ことを特徴とする抗体である。
 その際、前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記の構成において、
 本発明の第一の形態では、
 前記式(I)に示す過酸化アセトンに対する結合能を有する抗体は、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するポリクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する抗体である
ことを特徴とする過酸化物誘導体型の爆薬の抗体である。
 本発明の第二の形態では、
 前記式(I)に示す過酸化アセトンに対する結合能を有する抗体は、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するモノクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する抗体である
ことを特徴とする過酸化物誘導体型の爆薬の抗体である。
 本発明の第一の形態、ならびに、第二の形態にかかる抗体においては、
 前記ヒト以外の哺乳動物は、マウスであることが好ましい。
 前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択することが好ましい。
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
 該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされていることが望ましい。その際、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされていることが好ましい。
 なお、本発明の第二の形態においては、
 前記式(I)に示す過酸化アセトンに対する結合能を有する抗体として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体を選択することがより好ましい。
 なお、前記ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体は、
 マウスIgG抗体であり、
 該IgG抗体のH鎖の可変領域Vは、下記のアミノ酸配列(配列番号:7)からなり、
E  V  Q  L  Q  Q  S  G  P  E  10
L  V  K  P  G  A  S  V  K  M  20
S  C  K  A  S  G  Y  T  F  T  30
D  Y  N  I  H  W  V  K  Q  S  40
H  G  K  G  L  E  W  I  G  Y  50
I  N  P  N  N  G  G  T  S  Y  60
N  Q  K  F  K  G  K  A  T  L  70
T  V  N  K  S  S  S  T  A  Y  80
N  E  L  R  S  L  T  S  E  D  90
S  A  V  Y  Y  C  A  R  L  A  100
V  W  G  Q  G  T  T  L  T  V  110
S  S                          112
 該IgG抗体のL鎖の可変領域Vは、下記のアミノ酸配列(配列番号:8)からなっている。
D  I  V  K  T  Q  S  P  A  T  10
L  S  V  T  P  G  D  S  V  S  20
L  S  C  R  A  S  Q  S  I  S  30
N  N  L  H  W  Y  Q  Q  K  S  40
H  E  S  P  R  L  L  I  K  Y  50
A  S  Q  S  I  S  G  I  P  S  60
R  F  S  G  S  G  S  G  T  D  70
F  T  L  S  I  N  S  V  E  T  80
E  D  F  G  M  Y  F  C  Q  Q  90
S  N  S  W  P  F  T  F  G  S  100
G  T  K  L  E  I  K           107
 さらに、本発明の第一の形態にかかる過酸化物誘導体型の爆薬の抗体の製造方法は、
 下記の式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体を製造する方法であって、
Figure JPOXMLDOC01-appb-C000011
 該抗体は、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するポリクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する、ヒト以外の哺乳動物由来の抗体であり、
 該ヒト以外の哺乳動物由来のポリクローナル抗体の作製プロセスは、少なくとも、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、前記ヒト以外の哺乳動物を免疫する工程;
 前記修飾タンパク質を免疫原とする免疫の確立がなされた後、免疫された前記ヒト以外の哺乳動物から血液を採取し、採取した血液から抗血清を調製する工程;
 調製された抗血清中に、前記式(I)に示す過酸化アセトンに対する交叉反応性を有する抗体が存在することを、前記式(I)に示す過酸化アセトンを抗原とする、抗原抗体反応によって、検証する工程
を含んでいる
ことを特徴とする抗体の製造方法である。
 また、本発明の第二の形態にかかる過酸化物誘導体型の爆薬の抗体の製造方法は、
 下記の式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体を製造する方法であって、
Figure JPOXMLDOC01-appb-C000012
 該抗体は、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する、ヒト以外の哺乳動物由来の抗体であり、
 該ヒト以外の哺乳動物由来のモノクローナル抗体の作製プロセスは、少なくとも、
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、前記ヒト以外の哺乳動物を免疫する工程;
 前記修飾タンパク質を免疫原とする免疫の確立がなされた後、免疫された前記ヒト以外の哺乳動物から脾臓細胞を採取し、採取した脾臓細胞からモノクローナル抗体産生ハイブリドーマ細胞を作製する工程;
 作製された抗体産生ハイブリドーマ細胞が産生するモノクローナル抗体の群から、前記式(I)に示す過酸化アセトンに対する交叉反応性を有するモノクローナル抗体を、前記式(I)に示す過酸化アセトンを抗原とする、抗原抗体反応によって、選別する工程
を含んでいる
ことを特徴とする抗体の製造方法である。
 本発明の第一の形態、ならびに、第二の形態にかかる抗体の製造方法においては、特に、前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 本発明の第一の形態、ならびに、第二の形態にかかる抗体の製造方法においては、
 前記ヒト以外の哺乳動物は、マウスであることが好ましい。
 前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択することが望ましい。
 前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
 該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされていることが好ましい。その際、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされていることが望ましい。
 なお、本発明の第二の形態にかかる抗体の製造方法おいては、
 前記式(I)に示す過酸化アセトンに対する結合能を有する抗体として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体を選択することがより好ましい。
 本発明にかかる過酸化物誘導体型の爆薬に対する結合能を有する抗体は、該過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対する抗体のうちから、該過酸化物誘導体型の爆薬に対する交叉反応性を示す抗体として選別されたものであり、抗原抗体反応を介して、対象の過酸化物誘導体型の爆薬を検出する用途に利用できる。例えば、対象の過酸化物誘導体型の爆薬が、三量体型の過酸化アセトン(TATP)である際には、該三量体型の過酸化アセトン(TATP)と類似性を具えた構造を持つ低分子化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)に対する抗体のうちから、該三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体として選別されたものであり、抗原抗体反応を介して、該三量体型の過酸化アセトン(TATP)を検出する用途に利用できる。特には、本発明にかかる過酸化物誘導体型の爆薬に対する結合能を有するモノクローナル抗体を利用することで、抗原抗体反応を介して、溶液試料中に含有される、対象の過酸化物誘導体型の爆薬の検出を簡便に行うことが可能となる。
 特に、対象となる過酸化物誘導体型の爆薬自体は、免疫原性を示さない場合、本発明にかかる過酸化物誘導体型の爆薬に対する結合能を有する抗体の製造方法を利用することで、対象となる過酸化物誘導体型の爆薬に対する結合能を有する抗体を高い再現性で取得することが可能である。
図1は、本発明の第一の実施形態にかかる過酸化物誘導体型の爆薬の抗体として選択される、3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)に対するポリクローナル抗体の、対象の過酸化物誘導体型の爆薬、三量体型の過酸化アセトン(TATP)に対する交叉反応性をELISA法により評価した結果を示すグラフである。 図2は、本発明の第二の実施形態にかかる過酸化物誘導体型の爆薬の抗体として選択される、3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)に対するモノクローナル抗体:mAb-T001~mAb-T004の、対象の過酸化物誘導体型の爆薬、三量体型の過酸化アセトン(TATP)に対する交叉反応性をELISA法により評価した結果を示すグラフである。
 以下に、本発明にかかる過酸化物誘導体型の爆薬に対する結合能を有する抗体と、その製造方法に関して、より詳しく説明する。
 低分子量の有機化合物に対する抗体を創製する手段として、対象の低分子量の有機化合物自体は免疫原性を示さない場合、キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法がある(非特許文献2:Chemistry Letters, Vol.35, No.10, p.1126-1127 (2006))。
 具体的には、低分子量の有機化合物が反応性の官能基、例えば、アミノ基(-NH)、ヒドロキシル基(-OH)、スルファニル基(-SH)、カルボキシル基(-COOH)を具えている場合、該反応性の官能基を利用して、他の反応性官能基を有する有機化合物を共有結合的に連結することが可能である。キャリア・タンパク質は、複数のアミノ酸残基が連結されてなるペプチド鎖で構成される、三次元構造を有しているが、その表面には、側鎖上に反応性官能基を有するアミノ酸残基が複数個存在している。従って、三次元構造を有している、キャリア・タンパク質の表面に存在する、アミノ酸残基の側鎖上の反応性官能基を利用して、反応性の官能基を具えている、低分子量の有機化合物を結合させることが可能である。この表面に低分子量の有機化合物に因る修飾が施された、修飾キャリア・タンパク質は、非天然型タンパク質分子であり、哺乳動物自体の内因性タンパク質分子と相違する、異質な物質として、認識される頻度が高い。特に、低分子量の有機化合物に因る修飾が施された部位は、免疫原性を発揮する頻度が高い。修飾キャリア・タンパク質表面の、低分子量の有機化合物に因る修飾が施された部位が、免疫原性を発揮する場合、該修飾キャリア・タンパク質を用いて、哺乳動物を免疫すると、該修飾キャリア・タンパク質に対する、特異的な抗体が創製される。
 該修飾キャリア・タンパク質の表面において、免疫原性を発揮する部位(抗原決定基)が複数存在する可能性がある。その場合、前記複数の免疫原性を発揮する部位(抗原決定基)のそれぞれに特異的な抗体複数種が創製される。創製された、修飾キャリア・タンパク質に特異的な抗体複数種のうちには、その修飾に利用した低分子量の有機化合物自体を、免疫原性を発揮する部位(抗原決定基)とする抗体が存在する頻度が高い。修飾に利用した低分子量の有機化合物自体に対する結合能に基づき、スクリーニングを行うことで、修飾に利用した低分子量の有機化合物自体を、免疫原性を発揮する部位(抗原決定基)とする抗体を選別することが可能である。
 但し、修飾キャリア・タンパク質の表面に存在する抗原決定基に対して、高い交叉反応性を示す抗体を、免疫対象の哺乳動物が既に保持している場合には、この交叉反応性を示す抗原決定基に対する、新たな抗体の創製は起こらない。すなわち、免疫対象の哺乳動物が既に保持している抗体が示す高い交叉反応性を利用して、該修飾キャリア・タンパク質に対する免疫反応が可能である場合、この交叉反応性を示す抗原決定基に対する、新たな抗体の創製は起こらない。
 さらには、修飾が施された部位が、免疫原性を発揮する部位(抗原決定基)として機能する場合であっても、該抗原決定基に特異的な抗体は、修飾に利用した低分子量の有機化合物自体に対する結合能は高くない場合も、少なくない。
 すなわち、前記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法を利用して、修飾に利用した低分子量の有機化合物自体に特異的な抗体を創製できる、否かは、下記の要因に依存している。具体的には、対象の低分子量の有機化合物自体の立体構造、利用するキャリア・タンパク質との組み合わせ、ならびに、該キャリア・タンパク質上への結合形態、その修飾部位の選択、以上4つの要因に依存している。
 実際には、対象の低分子量の有機化合物自体の立体構造は既に決定されているため、残る3つの要因に関して、適切な組み合わせを選択できるか、否かは、多分に偶然性に依存したものである。すなわち、キャリア・タンパク質上への結合形態、その修飾部位は、利用するキャリア・タンパク質の種類に依存しており、また、対象の低分子量の有機化合物が有する反応性官能基の種類によって、制限される。対象の低分子量の有機化合物自体の立体構造によっては、残る3つの要因に関して、適切な組み合わせが選択できない場合もある。
 一方、過酸化物誘導体型の爆薬は、その分子内に反応性官能基を保持していないため、上記の前記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法を適用できない。勿論、過酸化物誘導体型の爆薬は、低分子量の有機化合物であり、それ自体は免疫原性を示さない。
 そのため、本発明では、対象の過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対する抗体多数を創製し、その類似性を具えた構造を持つ低分子化合物に対する抗体多数のうち、対象の過酸化物誘導体型の爆薬に対して交叉反応性を有する抗体を選別する方法を採用している。
 以下に、対象の過酸化物誘導体型の爆薬として、下記の式(I)に示す構造を有する過酸化アセトンを例に採り、本発明をより具体的に説明する。
Figure JPOXMLDOC01-appb-C000014
 式(I)に示す三量体型の過酸化アセトン(C18:TATP;トリアセトントリペルオキシド)の構造的特徴は、その環構造そのものである。この環構造の特徴を具え、分子内に反応性官能基を有する、低分子量の過酸化物型化合物のうち、哺乳動物自体に対する毒性は高くなく、また、キャリア・タンパク質上に結合させる際、その環構造を保持可能なものを探索した。
 その探索の結果、毒性が低い抗マラリア薬剤としての利用が検討されている、低分子量の過酸化物型化合物の一群のうち、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)が前記の要件を満足する候補として、選択された。
Figure JPOXMLDOC01-appb-C000015
 本発明では、式(II)に示す構造を有するジカルボン酸化合物の分子内に存在する反応性官能基である、カルボキシル基(-COOH)を利用して、キャリア・タンパク質表面に存在する反応性官能基、特に、アミノ基(-NH)との間で、アミド結合(-CO-NH-)を形成させることで、キャリア・タンパク質の表面に結合させる形態を選択することが好ましい。
 その際、キャリア・タンパク質は、上記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法(非特許文献2:Chemistry Letters, Vol.35, No.10, p.1126-1127 (2006))において、既に利用されている、各種のキャリア・タンパク質を利用することができる。キャリア・タンパク質として、ウシ血清アルブミン、ウシサイログロブリン、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)などが好適に利用できる。
 キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する場合、免疫操作を施した哺乳動物中では、該修飾キャリア・タンパク質に対する特異的な抗体が創製される。その際、利用するキャリア・タンパク質自体も、一般に、免疫原性を具えているため、該修飾キャリア・タンパク質中の修飾部位に特異的な抗体以外に、キャリア・タンパク質自体の抗原決定基に特異的な抗体の創製もなされる。
 その点を考慮すると、免疫操作に利用される、修飾キャリア・タンパク質に対して、未修飾のキャリア・タンパク質の混入比率が低いことが好ましい。勿論、未修飾のキャリア・タンパク質の混入が無い、修飾キャリア・タンパク質を使用することがより好ましい。
 一方、利用されるキャリア・タンパク質上には、対象の低分子量の有機化合物を結合させ、修飾を行うことが可能な部位(修飾可能部位)が、一般に、複数箇所存在している。この修飾可能部位は、それぞれ、反応性官能基が存在しているが、その反応性には、一般に、差違が存在している。従って、反応性の高い修飾可能部位から優先的に、対象の低分子量の有機化合物の結合が進行し、対象の低分子量の有機化合物が消費されるため、反応性の低い修飾可能部位に対して、対象の低分子量の有機化合物の結合が達成される効率は一層低下する傾向がある。キャリア・タンパク質上に存在する、複数の修飾可能部位の全てに、対象の低分子量の有機化合物の結合を達成させるためには、反応に使用する対象の低分子量の有機化合物の量は、複数の修飾可能部位の合計に対して、相当に過剰な量に選択することが望ましい。例えば、キャリア・タンパク質上に存在する、修飾可能部位がN箇所である場合、反応に使用する対象の低分子量の有機化合物の量は、キャリア・タンパク質1分子当たり、最低限、N分子が必要であるが、少なくとも、50分子以上、好ましくは、60分子以上に選択することが望ましい。
 免疫操作は、該対象の低分子量の有機化合物を結合させた、修飾キャリア・タンパク質の免疫有効量を含む溶液を、例えば、免疫対象の哺乳動物に対して、注射により投与することにより行うことが望ましい。その注射による投与の形態では、皮下注射、皮内注射、静脈注射、または腹腔内投与の形態が利用可能である。通常、皮下注射によって、前記溶液を投与する。その際、前記修飾キャリア・タンパク質の免疫有効量を含む溶液に、各種のアジュバンドを添加することが好ましい。通常、該アジュバンドとしては、従来から免疫操作に利用されているアジュバンドが利用できる。利用可能なアジュバントとしては、フロイント完全アジュバントや水中油中水型乳剤、水中油乳剤、リポソーム、水酸化アルミニウムゲル、シリカアジュバンドがある。フロイント完全アジュバンドは、汎用されており、本発明でも、好適に利用できる。例えば、初回の免疫操作(感作)時には、該アジュバンドとして、フロイント完全アジュバントを利用することが好ましい。
 また、免疫操作では、初回の免疫操作(感作)後、所定の期間が経過した時点で、追加免疫を行う。この追加免疫においても、修飾キャリア・タンパク質の免疫有効量を含む溶液に、各種のアジュバンドを添加することが好ましい。例えば、追加免疫時にも、該アジュバンドとして、フロイント完全アジュバントを利用することが好ましいが、フロイント不完全アジュバントを利用することでも、相当の効果が得られる。
 初回の免疫操作(感作)後、実施される追加免疫は、複数回行うことが望ましい。その間隔は、前回の免疫操作(感作)に対する免疫反応に伴う、血液中の抗体濃度が極大を示し、抗体濃度の減少期となった時点で、追加免疫を行うことが望ましい。前回の免疫操作(感作)後、血液中の抗体濃度が極大に達するまでの日数は、通常、用いる免疫原の体内での代謝速度に依存する。従って、追加免疫の間隔は、用いる免疫原の種類、対象の免疫動物の種類、その健康状態に依存する。マウスなどの小動物を免疫動物に利用する際には、初回の免疫操作(感作)後、例えば、2週間、4週間、6週間、8週間後に、追加免疫を実施する形態を選択できる。
 科学的には、免疫対象の哺乳動物の種類は問わないが、倫理的な観点から、ヒト以外の哺乳動物から選択する。モノクローナル抗体を産生するハイブリドーマ細胞を創製する場合、免疫対象の哺乳動物に利用可能な、ヒト以外の哺乳動物としては、マウス、ラット、ヤギなどを選択することができる。
 免疫対象の哺乳動物としては、該修飾キャリア・タンパク質に対して、交叉反応性を示す抗体を既に保持している哺乳動物は好ましくない。すなわち、当該免疫対象の哺乳動物は、後天的に獲得した免疫が無い個体であることが、一般に好ましい。前記の要件を考慮すると、各種の免疫原性物質に曝される機会が本質的にない環境下において、出産後、生育された哺乳動物を利用することが好ましい。あるいは、出産後、免疫操作を施すことが可能な程度に生育するまでの期間が短い哺乳動物を利用することが好ましい。これらの条件を考慮すると、医学的な研究に利用される、血統的に確立されている小型の哺乳動物を利用することがより好ましい。具体的には、各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどが好ましく、特には、マウスまたはラット、更には、マウスを利用することがより好ましい。
 免疫操作に先立ち、免疫動物として利用される、ヒト以外の哺乳動物において、該修飾キャリア・タンパク質の作製に利用される、キャリア・タンパク質自体の免疫原性と、該キャリア・タンパク質に対する特異的な抗体が創製される免疫条件を予め調査することが望ましい。上記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法(非特許文献2:Chemistry Letters, Vol.35, No.10, p.1126-1127 (2006))において、既に利用されている、各種のキャリア・タンパク質に関しては、各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどについて、前記の事項は、既に調査されており、その報告が利用できる。
 また、上記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法(非特許文献2:Chemistry Letters, Vol.35, No.10, p.1126-1127 (2006))において、既に報告されている成功例を参照して、各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどについて、修飾キャリア・タンパク質の免疫有効量を相当の確度で推定することも可能である。
 各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどに対する、免疫操作の手順は、既に報告されている成功例で利用された手順に沿って、選択することが望ましい。
 免疫対象の哺乳動物として、マウスまたはラットを選択する場合、初回の免疫操作(感作)を実施する齢は、その後の追加免疫の回数、その間隔を考慮して、選択される。具体的には、複数回の追加免疫を終了した後、当該免疫動物の血液中に、免疫原に特異的な抗体が存在することを検証する必要がある。従って、複数回の追加免疫を終了する時点で、当該免疫動物が抗体を生産する能力が低下する齢に達しないように、初回の免疫操作(感作)を実施する齢を選択することが好ましい。初回の免疫操作(感作)後、複数回の追加免疫を終了するまでの期間を、8週間程度に選択する場合、マウスまたはラットでは、初回の免疫操作(感作)を実施する齢は、10~15週齢の範囲に選択することが好ましく、通常、12週齢程度に選択することがより好ましい。マウスまたはラットでは、12週齢程度に達すると、十分な抗体を生産する能力を有しており、新規な抗体を創製する能力が最も高くなることが知られている。
 式(II)に示す構造を有するジカルボン酸化合物は、公知の化合物であり、その合成方法は、文献に既に報告されている(非特許文献3:Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006))。該式(II)に示す構造を有するジカルボン酸化合物は、室温において、固体であるため、キャリア・タンパク質上に該化合物を結合させる反応は、該化合物を溶解可能な反応溶媒を利用して実施する必要がある。一方、利用されるキャリア・タンパク質は、溶媒の種類によっては、変性を受ける場合がある。従って、利用されるキャリア・タンパク質の変性を引き起こさず、同時に、該化合物を溶解可能な反応溶媒を選択する必要がある。
 従来、キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、修飾キャリア・タンパク質を調製する際に利用された、各種の反応溶媒中から、前記の式(II)に示す構造を有するジカルボン酸化合物を溶解可能な反応溶媒を選択することが好ましい。実際に、前記の反応溶媒の選択を進めたところ、特に、好ましい反応溶媒として、ジメチルスルホン(DMSO:(CHSO)とホウ酸緩衝液が選択された。
 ジメチルスルホン(DMSO:(CHSO)は、非水溶媒であるが、キャリア・タンパク質を変性させずに溶解可能であり、また、式(II)に示す構造を有するジカルボン酸化合物を相当に高濃度で溶解可能な溶媒である。
 また、ホウ酸緩衝液は、その緩衝作用が発揮できるpH領域は、6.8~9.2の範囲であるが、上記の式(II)に示す構造を有するジカルボン酸化合物を溶解可能な溶媒系としては、通常、pHを8.2~8.7の範囲に選択する組成、特には、pHを、8.5前後に調整可能な組成を選択することが好ましい。
 式(II)に示す構造を有するジカルボン酸化合物の分子内に存在する反応性官能基である、カルボキシル基(-COOH)を利用して、キャリア・タンパク質表面に存在する反応性官能基、特に、アミノ基(-NH)との間で、アミド結合(-CO-NH-)を形成させる場合、カルボジイミドを利用するアミド結合形成法を利用することが好ましい。カルボジイミドを利用するアミド結合形成では、結合剤カルボジイミドとして、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド(DIC)、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド(EDC)、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド塩酸塩(EDAC)などを利用することができる。該結合剤カルボジイミドの量は、式(II)に示す構造を有するジカルボン酸化合物1分子当たり、5分子~20分子の範囲に選択することが好ましい。
 一方、式(II)に示す構造を有するジカルボン酸化合物の使用量は、キャリア・タンパク質の表面に露呈する、アミノ基(-NH)の総数に基づき、決定する。その際、キャリア・タンパク質1分子の表面に露呈する、アミノ基(-NH)の総数がN個である場合、式(II)に示す構造を有するジカルボン酸化合物の使用量を、該キャリア・タンパク質1分子当たり、N×3分子~N×10分子の範囲に選択することが好ましい。その結果として、該キャリア・タンパク質1分子当たり、式(II)に示す構造を有するジカルボン酸化合物が、1/2×N分子~N分子の範囲で、結合している、修飾キャリア・タンパク質を調製することが望ましい。
 本発明では、上記の免疫操作に利用する、免疫原として、キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を利用している。免疫操作によって、新たに創製される、該修飾キャリア・タンパク質に特異的な抗体複数種のうちに、利用したキャリア・タンパク質上に結合していない、該低分子量の有機化合物自体に対しても高い反応性を示す抗体が実際に存在することを、先ず検証する。
 上記の最終回の追加免疫を終了した後、免疫原として利用する、該修飾キャリア・タンパク質に特異的な抗体の血液中濃度の有意な上昇が見出される時点で、当該免疫動物から採血し、採取した血液から、抗血清を調製する。この抗血清中に含まれる、該修飾キャリア・タンパク質に特異的な抗体複数種のうちに、利用したキャリア・タンパク質上に結合していない、該低分子量の有機化合物自体に対しても高い反応性を示す抗体が実際に存在することを、検証する。
 すなわち、該低分子量の有機化合物自体を抗原決定基とする、ポリクローナル抗体の有無を検証する。複数種の抗体を含有している抗血清中に、特定の抗原決定基に特異的に結合する抗体が存在することを検証する手段としては、酵素免疫測定法(ELISA法)が好適に利用される。酵素免疫測定法(ELISA法)は、特定の抗原決定基に対する抗体の特異的な反応性を利用するため、選択性が高く、特に、抗血清中に含有されている、特定の抗原決定基に対する抗体の濃度が不明な場合に、その抗体価を簡便に評価することが可能である。
 本発明では、利用したキャリア・タンパク質上に結合していない、該低分子量の有機化合物自体に対しても高い反応性を示す抗体の検出を行うため、酵素免疫測定法(ELISA法)で利用する抗原として、該低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質を利用する。勿論、その別種のキャリア・タンパク質自体は、該修飾キャリア・タンパク質に特異的な抗体複数種と反応しないことが必要である。
 免疫原の作製に利用されるキャリア・タンパク質と、前記の酵素免疫測定法(ELISA法)で利用する抗原の作製に利用される別種のキャリア・タンパク質を、免疫原の作製に好適に利用されるキャリア・タンパク質の群から、互いに相違する二種のキャリア・タンパク質の組み合わせを選択することが好ましい。
 前記のキャリア・タンパク質の組み合わせでは、該キャリア・タンパク質自体の抗原決定基は、通常、相違しており、該修飾キャリア・タンパク質に特異的な抗体複数種が、前記別種のキャリア・タンパク質自体に反応性を示す可能性を排除できる。また、前記の互いに相違する二種のキャリア・タンパク質の組み合わせでは、該低分子量の有機化合物を結合可能な部位の局所的な構造(部分アミノ酸配列)が実質的に一致する可能性も極めて低い。従って、前記の組み合わせでは、免疫原の修飾キャリア・タンパク質に特異的な抗体複数種のうち、該低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質に対して結合能を示す抗体は、該低分子量の有機化合物自体に結合する抗体と見做すことができる。
 特に、前記の酵素免疫測定法(ELISA法)で利用する抗原の作製に利用される別種のキャリア・タンパク質として、ブロッキング用タンパク質として、汎用されるウシ血清アルブミンを選択し、一方、免疫原の作製に利用されるキャリア・タンパク質として、ウシ血清アルブミン以外の汎用のキャリア・タンパク質、例えば、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択することがより好ましい。前記の酵素免疫測定法(ELISA法)で利用する、修飾キャリア・タンパク質型の抗原の作製に利用される別種のキャリア・タンパク質として、ウシ血清アルブミンを選択すると、その修飾キャリア・タンパク質型の抗原の、ウシ血清アルブミン部分に非選択的に抗体分子が結合する現象も排除される。さらに、ウシ血清アルブミンをキャリア・タンパク質とする、該修飾キャリア・タンパク質型の抗原は、ELISAプレート上に、高密度で固定することが可能である。
 取得された抗血清中に、免疫原の作製に利用している、該低分子量の有機化合物自体に対する反応性を有する抗体が存在することを検証した後、該低分子量の有機化合物自体に対する反応性を有するポリクローナル抗体が、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)自体に対して、交叉反応性を示すか否かを検証する。
 本発明において、前記抗体の交叉反応性の検証は、二種の抗原の抗体に対する競合反応を利用することが好ましい。
 目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)自体は、低分子量の有機化合物であり、抗体との抗原抗体反応を行う際、その結合は、抗体分子の相補性決定部位の一つにより達成されると考えられる。また、上記の免疫操作に利用される、修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物も、抗体との抗原抗体反応を行う際、その結合は、抗体分子の相補性決定部位の一つにより達成されると考えられる。
 従って、抗体が交叉反応性を有する場合、免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物との結合に関与する、該抗体分子の相補性決定部位と、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)自体の結合に関与する、該抗体分子の相補性決定部位とは一致する可能性が極めて高い。その場合、該抗体分子の相補性決定部位に、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)が結合すると、免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物の結合を阻害する。この競争阻害の現象を利用することで、当該抗体分子の特定の相補性決定部位に対して、交叉反応性を示すか否かを検証することができる。
 具体的には、上記の免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対する反応性に検証に利用した、該類似の構造を有する低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質を、ELISAプレート上に固定化する。一方、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)は、該ELISA法において、抗原抗体反応を行わせる反応液中に、ポリクローナル抗体の含む抗血清とともに溶解させる。
 上記の競合反応が進行すると、前記反応液中に存在する、交叉反応性を示す抗体は、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と抗原抗体反応する結果、プレート上に固定化されている、修飾キャリア・タンパク質型の抗原との抗原抗体反応を介して、固定化される抗体分子の量が減少する。この競合反応に起因する、プレート上に固定化されている、修飾キャリア・タンパク質型の抗原との抗原抗体反応を介して、固定化される抗体分子量の減少を、酵素免疫測定法(ELISA法)を応用して検出する。
 この手法を利用することで、抗血清中に含有される、上記の免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対するポリクローナル抗体中、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と交叉反応性を示す抗体が含まれることを検証することができる。
 換言すると、前記の検証がなされた抗血清は、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するポリクローナル抗体を含むものである。
 前記の目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と交叉反応性を示す抗体を産生していることの検証がなされた免疫動物の抗体産生細胞群を採取し、この抗体産生細胞群と、骨髄腫由来の細胞株の細胞とを細胞融合させ、一群のハイブリドーマ細胞を作製する。
 通常、前記の検証がなされた免疫動物から、その脾臓を摘出して、脾臓細胞群を調製する。この脾臓細胞群と、骨髄腫由来の細胞株の細胞とを細胞融合させ、一群のハイブリドーマ細胞を作製する。
 前記の細胞融合に利用される、骨髄腫由来の細胞株は、融合対象である、免疫動物由来の脾臓細胞と適合性を有することが必要である。また、細胞融合で創製されるハイブリドーマ細胞の増殖能は、細胞融合に利用される、骨髄腫由来の細胞株に依っており、増殖能力の優れた骨髄腫由来の細胞株を利用することが好ましい。
 例えば、免疫動物として、マウスを選択する場合、細胞融合に利用される、骨髄腫由来の細胞株として、マウスの骨髄腫由来の細胞株である、P3X63 Ag8.653、P3X63Ag8U、Sp2/O Ag14、FO・1、S194/5.XX0 BU.1等が好適に使用される。特に、細胞株P3X63Ag8Uの利用は、創製されるハイブリドーマ細胞の増殖能が高く、また、該ハイブリドーマ細胞の産生する抗体分子は、適正な組み立てがなされた全抗体であり、組み立ての完了していない抗体分子の断片を含まないので、より好ましい。
 例えば、免疫動物として、ラットを選択する場合、細胞融合に利用される、骨髄腫由来の細胞株として、ラットの骨髄腫由来の細胞株、210、RCY3.Ag1.2.3、YB2/0などが挙げられる。
 上記のハイブリドーマ細胞を創製するための細胞融合の手法として、例えば、ポリエチレングリコール法、センダイウイルスを用いた方法、電流を利用する方法などが挙げられる。ポリエチレングリコール法は、細胞毒性が少なく、融合操作も容易であり、特に、再現性が高いので、本発明により適している。すなわち、本発明では、免疫原の修飾キャリア・タンパク質に対する特異的なモノクローナル抗体を産生する、一群のハイブリドーマ細胞のうち、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を有するモノクローナル抗体を産生するハイブリドーマ細胞を選別する必要がある。創製される、一群のハイブリドーマ細胞のうち、前記の交叉反応性を有するモノクローナル抗体を産生するハイブリドーマ細胞が含まれる頻度は、決して高く無いので、スクリーニング対象の一群のハイブリドーマ細胞の細胞株数(母数)を大きくする必要がある。従って、より再現性の高い細胞融合手法を選択することが好ましく、ポリエチレングリコール法は、前記の要請に適合している。
 創製された、一群のハイブリドーマ細胞は、分散した上で、マイクロプレートに分注して、利用した骨髄腫由来の細胞株に応じて、適宜選択される公知の培養条件で増殖させる。上記の培養により確立される、一群のハイブリドーマ細胞の細胞株について、各ハイブリドーマ細胞の細胞株が産生するモノクローナル抗体について、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と交叉反応性を示す抗体か否かを検証する。
 培養により確立される、一群のハイブリドーマ細胞の細胞株について、各ハイブリドーマ細胞の細胞株の培養上清を採取する。各ハイブリドーマ細胞の細胞株の培養上清は、該細胞株の産生するモノクローナル抗体を含んでいる。
 各ハイブリドーマ細胞の細胞株の培養上清に含まれるモノクローナル抗体が、免疫操作に利用される、修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対する反応性を有するか、否かを先ず検証する。
 その検証には、該類似の構造を有する低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質を抗原とする、酵素免疫測定法(ELISA法)による検証手法が利用できる。その具体的な測定法は、上記の抗血清中に含まれるポリクローナル抗体の反応性に関する検証と、原理的には同じである。
 この検証によって、一群のハイブリドーマ細胞の細胞株中から、免疫操作に利用される、修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対する反応性を有するモノクローナル抗体を産生する、ハイブリドーマ細胞の細胞株が選別される。この一次スクリーニングで選別される、ハイブリドーマ細胞の細胞株の群について、該ハイブリドーマ細胞の細胞株の産生するモノクローナル抗体は、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体か否かを検証する。
 この交叉反応性に関する検証は、上記の抗血清中に含まれるポリクローナル抗体の交叉反応性に関する検証と、原理的には同じ手法を適用することで行うが可能である。
 前記目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性の検証(二次スクリーニング)によって、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体を産生する、ハイブリドーマ細胞の細胞株が選別される。なお、選択されるモノクローナル抗体のタイプは、酵素免疫測定法(ELISA法)に利用される、抗Ig抗体の示す抗体タイプ特異性に依存する。
 この二次スクリーニングによって、選別されるハイブリドーマ細胞の細胞株を使用して、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を生産することができる。
 選別されたハイブリドーマ細胞の細胞株のin vitro細胞培養を行い、その培養上清を回収し、含有されるモノクローナル抗体を精製することができる。また、選別されたハイブリドーマ細胞の細胞株を、免疫に利用したヒト以外の哺乳動物の腹腔内に接種すると、該腹腔内で増殖し、腹水内に産生されたモノクローナル抗体が蓄積される。その後、該腹水を採取して、含有されるモノクローナル抗体を精製することができる。
 腹水または培養上清中に含まれる、モノクローナル抗体の精製は、例えば、DEAE陰イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、硫安分画法、PEG分画法,エタノール分画法などを、適宜組み合わせ、目的の純度まで精製を施す。望ましい純度は、95%以上、より好ましくは98%以上である。例えば、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を、当該過酸化物誘導体型の爆薬の検出装置、あるいは、濃度の測定装置に利用する際には、夾雑物に対する反応性を具える抗体が混入すると、その確度を低減させる要因となる。その点を考慮すると、前記の純度まで精製を行うことが望ましい。
 (受託番号)
 なお、
 本発明にかかる、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を産生するハイブリドーマ細胞として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7Eが、ブタペスト条約に基づき、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国 茨城県つくば市東1丁目1番地中央第6、郵便番号305-8566)に、国際寄託(平成21年 5月12日付け)がなされている。
Figure JPOXMLDOC01-appb-T000016
 上記のハイブリドーマ細胞株は、後述する第二の実施態様に開示する手順によって、創製され、選別されたハイブリドーマ細胞株である。なお、ハイブリドーマ細胞株:NECP-C57Z 3B-7Eは、後述のモノクローナル抗体mAb-T003を産生するハイブリドーマ細胞株である。
 本発明にかかる過酸化物誘導体型の爆薬に対する結合能を有する抗体と、その作製方法について、第一の実施態様を例に挙げ、具体的に説明する。
 以下に例示する第一の実施態様の具体例は、本発明の最良の実施形態の一例であるが、本発明の技術的範囲は、該具体例に例示する形態に限定されるものではない。
 (第一の実施態様)
 以下に説明する、本発明の第一の実施態様では、対象となる過酸化物誘導体型の爆薬として、上記式(I)で示される三量体型の過酸化アセトン(C18:TATP;トリアセトントリペルオキシド)を選択している。
 一方、キャリア・タンパク質上に結合し、修飾タンパク質型の免疫原の作製に利用する、該三量体型の過酸化アセトン(TATP)と類似性を具えた構造を持つ低分子化合物として、下記式(II)に示す3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(TATP3)を選択している。
Figure JPOXMLDOC01-appb-C000017
 該式(II)に示すジカルボン酸化合物は、そのヘキサオクサ-スピロ-[5.8]テトラデカン環の9位と12位の炭素原子は、ともに、不斉中心(キラル中心)となっている。該9位の炭素原子と、12位の炭素原子の立体配置に関して、(9R、12S)と表記可能なメソ体型のジカルボン酸化合物(TATP3)は、二回回転対称性を有する立体構造を具えている。該9位の炭素原子と、12位の炭素原子の立体配置に関して、(9R、12R)と表記可能なシス体型のジカルボン酸化合物(TATP3)は、対称面を有する立体構造を具えている。
 本第一の実施態様では、前記二種の立体異性体が混合したものを利用している。
 (i) 式(II)に示す構造を有するジカルボン酸化合物の合成
 式(II)に示すジカルボン酸化合物(TATP3)は、公知の化合物であり、その合成方法は、文献に既に報告されている(非特許文献3:Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006))。
 前記文献に記載する合成法に従って、式(II)に示すジカルボン酸化合物(TATP3)の合成を行った。そして、精製を行い、式(II)に示すジカルボン酸化合物(TATP3)を回収した。
 (ii) 式(II)に示すジカルボン酸化合物(TATP3)により修飾された、免疫原用修飾キャリア・タンパク質の調製
 キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択している。
 該キャリア・タンパク質上に、カルボジイミド法により、式(II)に示すジカルボン酸化合物(TATP3)を結合させ、修飾キャリア・タンパク質の調製を行った。本第一の実施態様では、下記の二種の修飾キャリア・タンパク質を調製し、免疫操作に利用する免疫原とした。
 (ii-a) 修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)の調製
 反応溶媒として、DMSO((CHSO:和光純薬工業社製)を用いて、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。
 DMSOに溶解したTATP3、10mg/0.3mlと、DMSOに溶解したキーホールリンペツトヘモシアニン(シグマアルドリッチジャパン社製)、10mg/1.7mlとを混合する。混合した後、DMSOに溶解した、前記結合剤カルボジイミド、50mg/0.5mlを添加する。
 該DMSOを反応溶媒とする反応液を、室温に2時間放置し、引き続き、4℃で12時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.1mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP3-DMSO(TATP3-KLH-DMSO免疫原)溶液とした。
 上記の結合剤カルボジイミドを利用する反応条件では、キャリア・タンパク質の表面に露呈するアミノ基(-NH)に対して、式(II)に示すジカルボン酸化合物(TATP3)のカルボキシル基(-COOH)を利用して、アミド結合(-CO-NH-)を形成することで、式(II)に示すジカルボン酸化合物(TATP3)が結合される。
 なお、上記の反応条件で調製された修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)上には、式(II)に示すジカルボン酸化合物(TATP3)が、平均して、150~200箇所結合している。
 (ii-b) 修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)の調製
 反応溶媒として、pH8.5のホウ酸バッファーを用いて、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。pH8.5のホウ酸バッファーは、0.992gのホウ酸(和光純薬工業社製)、1.906gのホウ砂(和光純薬工業社製)、および2.628gのNaCl(和光純薬工業社製)を180mlの純水に溶解させ、NaOHを加えて、pHを8.5に調整した緩衝溶液である。
 ホウ酸バッファーとDMSOの混合液に溶解したTATP3、10mg/(0.3mlDMOS+0.2mlホウ酸バッファー)と、ホウ酸バッファーに溶解したキーホールリンペツトヘモシアニン、10mg/1.5mlとを混合する。混合した後、ホウ酸バッファーに溶解した、前記結合剤カルボジイミド、50mg/0.5mlを添加する。
 該ホウ酸バッファーを反応溶媒とする反応液を、室温に2時間放置し、引き続き、4℃で12時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.1mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP3-ホウ酸バッファー(TATP3-KLH-ホウ酸バッファー免疫原)溶液とした。
 上記の結合剤カルボジイミドを利用する反応条件では、キャリア・タンパク質の表面に露呈するアミノ基(-NH)に対して、式(II)に示すジカルボン酸化合物(TATP3)のカルボキシル基(-COOH)を利用して、アミド結合(-CO-NH-)を形成することで、式(II)に示すジカルボン酸化合物(TATP3)が結合される。
 なお、上記の反応条件で調製された修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)上には、式(II)に示すジカルボン酸化合物(TATP3)が、平均して、150~200箇所結合している。すなわち、キャリア・タンパク質KLH表面のリジン残基側鎖のアミノ基に対して、TATP3が結合されている状態に相当する。
 (iii) 式(II)に示すジカルボン酸化合物(TATP3)により修飾された、抗原用修飾キャリア・タンパク質の調製
 キャリア・タンパク質として、牛血清アルブミン(BSA)を選択している。
 該キャリア・タンパク質上に、カルボジイミド法により、式(II)に示すジカルボン酸化合物(TATP3)を結合させ、修飾キャリア・タンパク質の調製を行った。本第一の実施態様では、下記の修飾キャリア・タンパク質を調製し、抗体の反応性の確認に利用する抗原とした。
 抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)の調製
 反応溶媒として、pH8.5のホウ酸バッファーを用いて、牛血清アルブミン(BSA)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-BSA抗原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。pH8.5のホウ酸バッファーは、0.992gのホウ酸(和光純薬工業社製)、1.906gのホウ砂(和光純薬工業社製)、および2.628gのNaCl(和光純薬工業社製)を180mlの純水に溶解させ、NaOHを加えて、pHを8.5に調整した緩衝溶液である。
 DMSOに溶解したTATP3、10mg/0.1mlと、純水に溶解した牛血清アルブミン(BSA)、30mg/1.5mlと、ホウ酸バッファー0.9mlを混合する。混合した後、ホウ酸バッファーに溶解した、前記結合剤カルボジイミド、50mg/0.25mlを添加する。
 該ホウ酸バッファーを反応溶媒とする反応液を、室温に5時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.3mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP3-BSA抗原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP3-BSA抗原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP3-BSA(TATP3-BSA抗原)溶液とした。
 (iv) 免疫原用修飾キャリア・タンパク質を用いる免疫操作
 対象のヒト以外の哺乳動物に対して、上記の二種の免疫原用修飾キャリア・タンパク質を用いて、感作を行う。本第一の実施態様では、免疫操作を施す、ヒト以外の哺乳動物として、マウス(SLC:C57BL/6)を選択している。
 また、免疫には、上記の二種の免疫原用修飾キャリア・タンパク質を混合し、フロイント完全アジュバント(フナコシ社製)を添加した溶液を用いる。該溶液の組成は、0.01mlのTATP3-DMSO(TATP3-KLH-DMSO免疫原)溶液、0.01mlのTATP3-ホウ酸バッファー(TATP3-KLH-ホウ酸バッファー免疫原)溶液、0.07mlのPBS、およびは0.01mlのフロイント完全アジュバント(フナコシ社製)を均一に混合したものである。
 感作(免疫操作)は、前記溶液1.0mlを、12週齢のマウス(SLC:C57BL/6)に皮下注射を行うことで行った。初回感作(初日)後、22日目、35日目、および49日目に、それぞれ、前記溶液1.0mlを皮下注射し、追加免疫を実施した。
 初回感作(初日)後、66日目に、該免疫したマウスから採血を行った。採血された血液から、抗血清を調製した。
 (v) 取得された抗血清中に含まれるポリクローナル抗体の交叉反応性の検証
 取得された抗血清中に含まれるポリクローナル抗体が、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すことを、競合ELISA法を利用して検証する。
 取得された抗血清中に含まれるポリクローナル抗体は、免疫操作に利用した、上記二種の免疫原用修飾キャリア・タンパク質に特異的な抗体複数種が混在していると推定される。該ポリクローナル抗体中に、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示す抗体が存在することを先ず検証する。
 具体的には、キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)に代えて、牛血清アルブミン(BSA)を用いて作製した、前記抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)に対する反応性を有する抗体が存在することを、ELISA法を利用して検証する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、PBSを50μl加える。次いで、取得された抗血清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、3回洗浄する。前記洗浄後、プレート上に、2000倍に希釈した抗マウスIgG-POD標識抗体(フナコシ社製)液、50μlを加える。室温で1時間放置し、プレート上の抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)と反応した抗体に、抗マウスIgG-POD標識抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。図1中に、「バッファー」と表記する測定結果は、TATP3-BSA(TATP3-BSA抗原)に対して、反応した抗体の量に相当している。
 上記のTATP3-BSA(TATP3-BSA抗原)に対する反応性を有する抗体は、牛血清アルブミン(BSA)上に結合されている、式(II)に示すジカルボン酸化合物(TATP3)自体に反応している抗体である。従って、取得された抗血清中に含まれるポリクローナル抗体中に、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示す抗体が存在することが検証された。
 次に、取得された抗血清のポリクローナル抗体中に含まれる、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示す抗体複数種のうちに、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在することを、競合ELISA法を利用して検証する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、終濃度が100ppmとなるように、TATP(アキュースタンダード社製)PBS溶液を50μl加える。次いで、取得された抗血清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。なお、反応液中に含まれるTATPの終濃度100ppmは、0.45mMに相当している。
 前記の反応時、プレート上の液中に、添加されている、TATPと抗体との間で抗原抗体反応が進行すると、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じる。結果的に、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応を介して、プレート上に固定化される抗体の量が減少する。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。図1中に、「100ppm TATP」と表記する測定結果は、上記のTATPが共存している状況において、TATP3-BSA(TATP3-BSA抗原)に対して、反応した抗体の量に相当している。
 図1に示す結果は、前記の反応時、プレート上の液中に、添加されている、TATPと抗体との間で抗原抗体反応が進行するため、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じていることを明確に示している。すなわち、該ポリクローナル抗体中に含まる、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示す抗体複数種のうちに、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在していることが検証された。
 従って、取得された抗血清のポリクローナル抗体中には、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在していることが検証された。
 また、前記抗マウスIgG-POD標識抗体は、マウスIgG1型抗体に特異性を有しており、前記式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体のタイプは、IgG1型であることが確認された。
 (第二の実施態様)
 以下に説明する、本発明の第二の実施態様でも、対象となる過酸化物誘導体型の爆薬として、上記式(I)で示される三量体型の過酸化アセトン(C18:TATP;トリアセトントリペルオキシド)を選択している。
 本第二の実施態様では、上記の第一の実施態様において、取得された抗血清のポリクローナル抗体中には、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在していることが検証された、マウスの抗体生産細胞群を利用して、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体を生産するハイブリドーマ細胞の作製を行っている。
 上記第一の実施態様に記載する手順に従って、初回感作(初日)後、66日目に、該免疫したマウスから採血を行い、採血された血液から、抗血清を調製し、該抗血清のポリクローナル抗体中には、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在していることを検証する。この検証がなされた、初回感作(初日)後、66日目のマウスから、脾臓を摘出し、脾臓細胞を調製する。
 調製されたマウスの脾臓細胞と、P3-X63-Ag8-Uマウスミエローマ細胞とを、細胞数5:1の比率で、RPMI1640培地(インビトロジェン社製)中、重合度1500の50%ポリエチレングリコール(和光純薬工業社製)存在下で、37℃、2分間混合し、細胞融合させる。前記細胞融合処理後、得られるハイブリドーマ細胞は、HAT培地(20%牛胎児血清)に懸濁した後、マイクロプレートに分注する。該マイクロプレートに分注した、ハイブリドーマ細胞を、炭酸ガスインキュベータ中、37℃、5%COの条件で培養する。前記培養中、4日に1回の割合で、培地の半量を、新しいHT培地(10%牛胎児血清)に交換する。
 HAT培地は、RPMI1640培地に、HATサプリメント(インビトロジェン社製)を適量添加したものである。本第二の実施態様では、RPMI1640培地1ml当たり、HATサプリメント20μlを添加している。
 HT培地は、RPMI1640培地に、HTサプリメント(インビトロジェン社製)を適量添加したものである。本第二の実施態様では、RPMI1640培地1ml当たり、HTサプリメント20μlを添加している。
 上記の培養条件で、マイクロプレートに分注した、ハイブリドーマ細胞を、2週間培養して、それぞれハイブリドーマ細胞株を確立した。
 次に、各ハイブリドーマ細胞株の培養上清中に産生されているモノクローナル抗体が、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体であるか、否かの確認を行った。さらに、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体であることの検証がなされたもののうち、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体の選別を行った。
 (a) 式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体であるか、否かの検証
 具体的には、各ハイブリドーマ細胞株の培養上清中に含まれるモノクローナル抗体が、牛血清アルブミン(BSA)を用いて作製した、前記抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)に対する反応性を有するモノクローナル抗体であるか、否かを、ELISA法を利用して検証する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、PBSを50μl加える。次いで、各ハイブリドーマ細胞株の培養上清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に、モノクローナル抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、3回洗浄する。前記洗浄後、プレート上に、2000倍に希釈した抗マウスIgG-POD標識抗体(フナコシ社製)液、50μlを加える。室温で1時間放置し、プレート上の抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)と反応した抗体に、抗マウスIgG-POD標識抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 上記のTATP3-BSA(TATP3-BSA抗原)に対する反応性を有するモノクローナル抗体は、牛血清アルブミン(BSA)上に結合されている、式(II)に示すジカルボン酸化合物(TATP3)自体に反応しているモノクローナル抗体である。
 このスクリーニング手順に従って、各ハイブリドーマ細胞株の培養上清中に式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体が存在するか、否かの検証を行った。その結果、ハイブリドーマ細胞株合計13クローン中、13クローンが式(II)に示すジカルボン酸化合物(TATP3)自体に反応しているモノクローナル抗体を産生していることが確認された。
 (b) 式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体の選別
 前記(a)の一次スクリーニングで選別された、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示すモノクローナル抗体複数種から、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体を、競合ELISA法を利用して選別する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、終濃度が100ppmとなるように、TATP(アキュースタンダード社製)PBS溶液を50μl加える。次いで、選別された各ハイブリドーマ細胞株の培養上清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。なお、反応液中に含まれるTATPの終濃度100ppmは、0.45mMに相当している。
 前記の反応時、プレート上の液中に、添加されている、TATPと抗体との間で抗原抗体反応が進行すると、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じる。結果的に、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応を介して、プレート上に固定化される抗体の量が減少する。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 抗原抗体反応時に、プレート上の液中に、TATPを添加していない場合と比較し、TATPを添加した際に、前記酵素反応による反応産物の濃度が減少を示す結果が得られると、TATPを添加した際に、競合が生じていると判断される。すなわち、かかる競合が生じている場合、そのハイブリドーマ細胞株の培養上清中に含まれるモノクローナル抗体は、TATPに対する交叉反応性を示すモノクローナル抗体と判断できる。
 このスクリーニング手順に従って、(a)の一次スクリーニングで選別された、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示すモノクローナル抗体複数種から、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体の選別を行った。
 その結果、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体が複数種選別された。図2に、この二次スクリーニングにより、選別されたモノクローナル抗体複数種のうち、4種のモノクローナル抗体:mAb-T001~mAb-T004について、測定結果を一例として、示す。
 図2中に、「Borate Buffer」と表記する測定結果は、上記(a)の一次スクリーニングにおけるELISA法による測定結果、すなわち、TATPが存在していない状況において、TATP3-BSA(TATP3-BSA抗原)に対して、反応したモノクローナル抗体の量に相当している。図2中に、「100ppm TATP」と表記する測定結果は、上記のTATPが共存している状況において、TATP3-BSA(TATP3-BSA抗原)に対して、反応したモノクローナル抗体の量に相当している。
 図2に示す結果は、前記の反応時、プレート上の液中に、添加されている、TATPとモノクローナル抗体との間で抗原抗体反応が進行するため、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じていることを明確に示している。すなわち、該4種のモノクローナル抗体は、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示すモノクローナル抗体であり、さらに、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体でもあることを検証する結果である。
 従って、前記の(a)の一次スクリーニングと、(b)の二次スクリーニングによって、選別されるモノクローナル抗体は、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体であることが確認された。
 なお、図2に示す結果は、抗原抗体反応を行う反応液中に、式(I)に示す三量体型の過酸化アセトン(TATP)を終濃度0.45mMとなるように添加すると、
mAb-T001では、少なくとも、その18%程度がTATPと結合している;
mAb-T002では、少なくとも、その20%程度がTATPと結合している;
mAb-T003では、少なくとも、その45%程度がTATPと結合している;
mAb-T004では、少なくとも、その35%程度がTATPと結合している;
ことを示唆する結果である。
 全抗体型のモノクローナル抗体は、二価であり、その一方にTATPが結合しても、TATP3-BSA(TATP3-BSA抗原)との反応性は本質的に低下しないと仮定すると、
図2に示す結果は、抗原抗体反応を行う反応液中に、式(I)に示す三量体型の過酸化アセトン(TATP)を終濃度0.45mMとなるように添加すると、
mAb-T001では、少なくとも、その18%程度がTATPを2分子結合している;
mAb-T002では、少なくとも、その20%程度がTATPを2分子結合している;
mAb-T003では、少なくとも、その45%程度がTATPと2分子結合している;
mAb-T004では、少なくとも、その35%程度がTATPと2分子結合している;
ことを示唆する結果である。
 その際、全抗体型のモノクローナル抗体は、二価であり、その一方にTATPが結合する確率をPとすると、モノクローナル抗体にTATPが2分子結合する確率は、Pと推定することが可能である。
 (参考例1)
 以下に説明する、参考例1では、式(II)に示すジカルボン酸化合物(TATP3)と類似する、下記の式(III)に示すエステル酸化合物(TATP2)を構成するカルボン酸化合物をキャリア・タンパク質上に結合してなる修飾キャリア・タンパク質の免疫原性の有無を検証している。
Figure JPOXMLDOC01-appb-C000018
 本参考例1では、式(III)に示すエステル化合物(TATP2)を構成するカルボン酸化合物:3-(3-メチル-1,2,4,5-テトラオクサ-スピロ[5.5]アンデック-3-イル)-プロピオン酸をキャリア・タンパク質上に結合してなる修飾キャリア・タンパク質を利用して、式(III)に示すエステル化合物(TATP2)に対する結合能を有する抗体の創製を試みた。
 (d-1) カルボン酸化合物(TATP2’):3-(3-メチル-1,2,4,5-テトラオクサ-スピロ[5.5]アンデック-3-イル)-プロピオン酸の調製
 該カルボン酸化合物(TATP2’)も公知の化合物であり、その合成方法は、文献に既に報告されている(非特許文献2:Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006))。
 具体的には、式(I)に示すエステル化合物(TATP2)から、KOHを利用して、該エステル結合(-CO-OEt)をカルボキシル基(-COOH)に変換することで調製される。そして、精製を行い、該カルボン酸化合物(TATP2’)を回収した。
 (d-2) カルボン酸化合物(TATP2’)により修飾された、免疫原用修飾キャリア・タンパク質の調製
 キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択している。
 該キャリア・タンパク質上に、カルボジイミド法により、該カルボン酸化合物(TATP2’)を結合させ、修飾キャリア・タンパク質の調製を行った。本参考例でも、下記の二種の修飾キャリア・タンパク質を調製し、免疫操作に利用する免疫原とした。
 (d-2-a) 修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)の調製
 反応溶媒として、DMSO((CHSO:和光純薬工業社製)を用いて、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)上に、該カルボン酸化合物(TATP2’)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。
 DMSOに溶解した該カルボン酸化合物(TATP2’)、10mg/0.3mlと、DMSOに溶解したキーホールリンペツトヘモシアニン(シグマアルドリッチジャパン社製)、10mg/1.7mlとを混合する。混合した後、DMSOに溶解した、前記結合剤カルボジイミド、50mg/0.5mlを添加する。
 該DMSOを反応溶媒とする反応液を、室温に2時間放置し、引き続き、4℃で12時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.1mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP2’-DMSO(TATP2’-KLH-DMSO免疫原)溶液とした。
 上記の結合剤カルボジイミドを利用する反応条件では、キャリア・タンパク質の表面に露呈するアミノ基(-NH)に対して、該カルボン酸化合物(TATP2’)のカルボキシル基(-COOH)を利用して、アミド結合(-CO-NH-)を形成することで、該カルボン酸化合物(TATP2’)が結合される。
 なお、上記の反応条件で調製された修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)上には、目的とする該カルボン酸化合物(TATP2’)が、平均して、150~200箇所結合している。
 (d-2-b) 修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)の調製
 反応溶媒として、pH8.5のホウ酸バッファーを用いて、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)上に該カルボン酸化合物(TATP2’)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。pH8.5のホウ酸バッファーは、0.992gのホウ酸(和光純薬工業社製)、1.906gのホウ砂(和光純薬工業社製)、および2.628gのNaCl(和光純薬工業社製)を180mlの純水に溶解させ、NaOHを加えて、pHを8.5に調整した緩衝溶液である。
 ホウ酸バッファーとDMSOの混合液に溶解した該カルボン酸化合物(TATP2’)、10mg/(0.3mlDMOS+0.2mlホウ酸バッファー)と、ホウ酸バッファーに溶解したキーホールリンペツトヘモシアニン、10mg/1.5mlとを混合する。混合した後、ホウ酸バッファーに溶解した、前記結合剤カルボジイミド、50mg/0.5mlを添加する。
 該ホウ酸バッファーを反応溶媒とする反応液を、室温に2時間放置し、引き続き、4℃で12時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.1mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP2’-ホウ酸バッファー(TATP2’-KLH-ホウ酸バッファー免疫原)溶液とした。
 上記の結合剤カルボジイミドを利用する反応条件では、キャリア・タンパク質の表面に露呈するアミノ基(-NH)に対して、該カルボン酸化合物(TATP2’)のカルボキシル基(-COOH)を利用して、アミド結合(-CO-NH-)を形成することで、該カルボン酸化合物(TATP2’)が結合される。
 なお、上記の反応条件で調製された修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)上には、目的の該カルボン酸化合物(TATP2’)が、平均して、150~200箇所結合している。
 また、上記の二種の反応条件で作製された、修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)は、上記第二の実施態様で創製された、モノクローナル抗体mAb-T001~mAb-T004と抗原抗体反応を行うことを確認した。
 (d-3) 該カルボン酸化合物(TATP2’)により修飾された、抗原用修飾キャリア・タンパク質の調製
 キャリア・タンパク質として、牛血清アルブミン(BSA)を選択している。
 該キャリア・タンパク質上に、カルボジイミド法により、該カルボン酸化合物(TATP2’)を結合させ、修飾キャリア・タンパク質の調製を行った。本参考例では、下記の修飾キャリア・タンパク質を調製し、抗体の反応性の確認に利用する抗原とした。
 抗原用修飾キャリア・タンパク質(TATP2’-BSA抗原)の調製
 反応溶媒として、pH8.5のホウ酸バッファーを用いて、牛血清アルブミン(BSA)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-BSA抗原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。pH8.5のホウ酸バッファーは、0.992gのホウ酸(和光純薬工業社製)、1.906gのホウ砂(和光純薬工業社製)、および2.628gのNaCl(和光純薬工業社製)を180mlの純水に溶解させ、NaOHを加えて、pHを8.5に調整した緩衝溶液である。
 DMSOに溶解した該カルボン酸化合物(TATP2’)、10mg/0.1mlと、純水に溶解した牛血清アルブミン(BSA)、30mg/1.5mlと、ホウ酸バッファー0.9mlを混合する。混合した後、ホウ酸バッファーに溶解した、前記結合剤カルボジイミド、50mg/0.25mlを添加する。
 該ホウ酸バッファーを反応溶媒とする反応液を、室温に5時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.3mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP2’-BSA抗原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP2’-BSA抗原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP2’-BSA(TATP2’-BSA抗原)溶液とした。
 また、上記反応条件で作製された、修飾キャリア・タンパク質(TATP2’-BSA抗原)は、上記第二の実施態様で創製された、モノクローナル抗体mAb-T001~mAb-T004と抗原抗体反応を行うことを確認した。
 (d-4) 免疫原用修飾キャリア・タンパク質を用いる免疫操作
 対象のヒト以外の哺乳動物に対して、上記の修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)を用いて、感作を行う。本参考例でも、免疫操作を施す、ヒト以外の哺乳動物として、マウス(SLC:C57BL/6)を選択している。
 また、免疫には、上記の修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)を混合し、フロイント完全アジュバント(フナコシ社製)を添加した溶液を用いる。該溶液の組成は、0.01mlのTATP2’-DMSO(TATP2’-KLH-DMSO免疫原)溶液、0.01mlのTATP2’-ホウ酸バッファー(TATP2’-KLH-ホウ酸バッファー免疫原)溶液、0.07mlのPBS、およびは0.01mlのフロイント完全アジュバント(フナコシ社製)を均一に混合したものである。
 感作(免疫操作)は、前記溶液1.0mlを、12週齢のマウス(SLC:C57BL/6)に皮下注射を行うことで行った。初回感作(初日)後、22日目、35日目、および49日目に、それぞれ、前記溶液1.0mlを皮下注射し、追加免疫を実施した。
 初回感作(初日)後、66日目に、該免疫したマウスから採血を行った。採血された血液から、血清を調製した。
 (d-5) 取得された血清中に含まれる抗体の反応性の検証
 取得された血清中に含まれる抗体が、目的とするカルボン酸化合物(TATP2’)に対する反応性を示すことを、ELISA法を利用して検証する。
 取得された血清中に抗体は、免疫操作に利用した、上記の修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)に特異的な抗体複数種が混在していると推定される。該ポリクローナル抗体中に、目的とするカルボン酸化合物(TATP2’)自体に特異的な反応性を示す抗体が存在することを検証する。
 具体的には、キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)に代えて、牛血清アルブミン(BSA)を用いて作製した、前記抗原用修飾キャリア・タンパク質(TATP2’-BSA抗原)に対する反応性を有する抗体が存在することを、ELISA法を利用して検証する。
 1000倍に希釈したTATP2’-BSA(TATP2’-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP2’-BSA(TATP2’-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、PBSを50μl加える。次いで、取得された抗血清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP2’-BSA(TATP2’-BSA抗原)に抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、3回洗浄する。前記洗浄後、プレート上に、2000倍に希釈した抗マウスIgG-POD標識抗体(フナコシ社製)液、50μlを加える。室温で1時間放置し、プレート上の抗原用修飾キャリア・タンパク質(TATP2’-BSA抗原)と反応した抗体に、抗マウスIgG-POD標識抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 上記のELISA法による反応性の検証を行ったところ、前記酵素反応による反応産物の存在が確認されなかった。すなわち、抗原用修飾キャリア・タンパク質(TATP2’-BSA抗原)に対する反応性を示すIgG抗体の存在を示す結果は得られなかった。
 従って、上記の修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)を利用する免疫操作によっては、目的とするカルボン酸化合物(TATP2’)自体に特異的な反応性を示すIgG抗体の創製がなされなかったと判断した。
 すなわち、上記の修飾キャリア・タンパク質(TATP2’-KLH-DMSO免疫原)と修飾キャリア・タンパク質(TATP2’-KLH-ホウ酸バッファー免疫原)を利用する免疫操作によっては、式(I)に示すエステル化合物(TATP2)に対する結合能を示すIgG抗体の創製がなされなかったと判断した。すなわち、修飾タンパク質:TATP3-KLHと異なり、上記修飾キャリア・タンパク質:TATP2’-KLHは、免疫原性を有していないと判断された。
 (第三の実施態様)
 以下に説明する、本発明の第三の実施態様では、上記モノクローナル抗体mAb-T003を産生するハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)の培養細胞から、該ハイブリドーマ細胞株中で発現されている抗体のH鎖とL鎖をコードするmRNAのcDNAを調製し、そのクローニングを行っている。
 はじめに、ハイブリドーマ細胞株:NECP-C57Z 3B-7Eの培養細胞を回収する。回収された培養細胞全量をRNAiso中でホモジェナイズし、total RNA抽出キット(GEヘルスケアバイオサイエンス社製)を用いて、該培養細胞由来のtotal RNAの抽出と精製を行う。
 上記抗IgG抗体との反応性を示すことより、該ハイブリドーマ細胞株:NECP-C57Z 3B-7Eが産生するモノクローナル抗体mAb-T003は、マウス・IgG抗体であることは既に確認されている。従って、精製済みのtotal RNAから、マウス・IgG抗体のH鎖とL鎖をコードするmRNAのcDNAを選択的に調製する。マウスIgG抗体をコードするmRNA塩基配列特異的RT Primerを用いて、精製済みのtotal RNA中に含有される、マウス・IgG抗体のH鎖とL鎖をコードするmRNAを鋳型として、マウス・IgG抗体塩基配列特異的RT反応を実施し、マウス・IgG抗体のH鎖とL鎖をコードするmRNAのcDNAを調製する。
 モノクローナル抗体mAb-T003は、マウス・IgG抗体、特に、サブクラスは、IgG1と推定されるため、マウス・IgG抗体のH鎖として、γ1鎖を、L鎖として、κ鎖を含むと推定される。従って、マウスIgG抗体のγ1鎖ならびにκ鎖をコードするmRNA塩基配列特異的RT Primerを用いて、マウス・IgG抗体塩基配列特異的RT反応を実施し、マウス・IgG抗体のγ1鎖ならびにκ鎖をコードするmRNAのcDNAを調製する。
 次に、SMARTTM RACE cDNA Amplification Kitを用いて、マウス抗体(IgG)配列特異的RACE PCR反応を実施する。具体的には、調製されたマウス・IgG抗体のγ1鎖ならびにκ鎖をコードするmRNAのcDNAを鋳型として、前記マウス・IgG抗体塩基配列特異的RT反応で使用したPrimerと同じPrimerをReverse Primerとし、該Kit中に含まれるUniversal primer mixをForward Primerとして、RACE PCR反応を行う。続いて、前記RACE PCR反応で得られたPCR産物を3% Agarose Gelで電気泳動を行い、マウス・IgG抗体のγ1鎖ならびにκ鎖をコードするmRNAのcDNAに由来するPCR産物を分離する。それぞれ目的とするサイズのPCR産物のバンドを含むゲル切片を採取し、前記ゲル切片から、マウス・IgG抗体のγ1鎖ならびにκ鎖をコードするmRNAのcDNAに由来するPCR産物を抽出し、精製を行う。
 ゲル切片から抽出し、精製したPCR産物二種を、それぞれ、Cloning Plasmid pMD20- Tのクローニング・サイトにLigationし、挿入する。該PCR産物二種をそれぞれ挿入したPlasmidを用いて、大腸菌の形質転換を行い、それぞれ、形質転換株を選別する。選別された形質転換株のうち、精製したPCR産物二種がそれぞれ導入されている、2 cloneについて、該形質転換株を培養し、Plasmidの調製を行う。
 調製された二種のPlasmidを用いて、該Plasmid中に挿入されている、PCR産物二種の塩基配列解析を行う。該塩基配列解析では、該Cloning Plasmid pMD20- T由来の塩基配列に相補的なPrimerを用いて、そのクローニング・サイトに挿入されている、PCR産物二種の塩基配列のSequenceを行う。該Sequence反応は、BigDye Terminators v 3.1 Cycle Sequencing Kit (ABI社製)を使用し、該Kitに添付される標準プロトコルに従って実施する。
 クローニングされている、マウス・IgG抗体のγ1鎖ならびにκ鎖をコードするmRNAのcDNAに由来するPCR産物の塩基配列解析結果から、コードされているγ1鎖ならびにκ鎖の定常領域のアミノ酸配列に基づき、実際に、該cDNA二種は、それぞれγ1鎖ならびにκ鎖をコードしていることを確認した。
 表2-1に、クローニングされた、マウス・IgG抗体のH鎖(γ1鎖)をコードするmRNAのcDNAの一部について、その塩基配列を解析した結果を示す。表2-1に示す塩基配列中、その5’末端領域、ならびに、3’末端領域には、PCR増幅に利用したPrimerの塩基配列が含まれている。
 表2-2に、クローニングされた、マウス・IgG抗体のL鎖(κ鎖)をコードするmRNAのcDNAの一部について、その塩基配列を解析した結果を示す。表3-1に示す塩基配列中、その5’末端領域、ならびに、3’末端領域には、PCR増幅に利用したPrimerの塩基配列が含まれている。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 通常、マウス・IgG抗体のH鎖(γ1鎖)の可変領域(V領域)ならびにL鎖(κ鎖)の可変領域(V領域)は、いずれも、約110アミノ酸残基で構成されている。また、マウス・IgG抗体のH鎖(γ1鎖)のシグナルペプチド領域、ならびに、H鎖(γ1鎖)の可変領域(V領域)に含まれるFrame部分(FR-1、FR-2、FR-3、FR-4)の部分アミノ酸配列は、高い相同性を示すことが報告されている。また、マウス・IgG抗体のL鎖(κ鎖)のシグナルペプチド領域、ならびに、L鎖(κ鎖)の可変領域(V領域)に含まれるFrame部分(FR-1、FR-2、FR-3、FR-4)の部分アミノ酸配列は、高い相同性を示すことも報告されている。
 表3-1、表3-2に示すアミノ酸配列と、公表されている、公知のマウス・IgG抗体のH鎖(γ1鎖)のシグナルペプチド領域、ならびに、H鎖(γ1鎖)の可変領域(V領域)に含まれるFrame部分(FR-1、FR-2、FR-3、FR-4)の部分アミノ酸配列、L鎖(κ鎖)の可変領域(V領域)に含まれるFrame部分(FR-1、FR-2、FR-3、FR-4)の部分アミノ酸配列との対比を行った。その結果、クローニングされた、マウス・IgG抗体のH鎖(γ1鎖)をコードするmRNAのcDNA中のORF領域のうち、H鎖(γ1鎖)のシグナルペプチド領域、該H鎖(γ1鎖)の可変領域(V領域)と、マウス・IgG抗体のL鎖(κ鎖)をコードするmRNAのcDNA中のORF領域のうち、該L鎖(κ鎖)の可変領域(V領域)は、下記の表4-1、表4-2に示す部分と推定される。下記表4-1、表4-2中、H鎖(γ1鎖)の可変領域(V領域)に含まれるFrame部分(FR-1、FR-2、FR-3、FR-4)、L鎖(κ鎖)の可変領域(V領域)に含まれるFrame部分(FR-1、FR-2、FR-3、FR-4)には、下線が付されている。
 
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 以上の解析結果から、ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体mAb-T003は、そのH鎖(γ1鎖)の可変領域(V領域)とL鎖(κ鎖)の可変領域(V領域)は、それぞれ表4-1、表4-2に示す部分アミノ酸配列からなる、マウスIgG1抗体であると判断される。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年5月18日に出願された日本出願特願2009-119827を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明にかかる過酸化物誘導体型の爆薬に対する結合能を有する抗体は、当該過酸化物誘導体型の爆薬の検出に利用できる。
 本発明にかかる、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を産生するハイブリドーマ細胞として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7Eが、ブタペスト条約に基づき、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国 茨城県つくば市東1丁目1番地中央第6、郵便番号305-8566)に、国際寄託(平成21年 5月12日付け)がなされている。
Figure JPOXMLDOC01-appb-T000025

Claims (19)

  1.  下記の式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記式(I)に示す過酸化アセトンに対する結合能を有する抗体は、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対する抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する
    ことを特徴とする請求項1に記載の抗体。
  3.  前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)である
    Figure JPOXMLDOC01-appb-C000002
    ことを特徴とする請求項2に記載の抗体。
  4.  前記式(I)に示す過酸化アセトンに対する結合能を有する抗体は、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するポリクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する抗体である
    ことを特徴とする請求項2または3に記載の抗体。
  5.  前記式(I)に示す過酸化アセトンに対する結合能を有する抗体は、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するモノクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する抗体である
    ことを特徴とする請求項2または3に記載の抗体。
  6.  前記ヒト以外の哺乳動物は、マウスである
    ことを特徴とする請求項2~5のいずれか一項に記載の抗体。
  7.  前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択する
    ことを特徴とする請求項2~6のいずれか一項に記載の抗体。
  8.  前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
     該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされている
    ことを特徴とする請求項2~7のいずれか一項に記載の抗体。
  9.  該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされている
    ことを特徴とする請求項8に記載の抗体。
  10.  前記式(I)に示す過酸化アセトンに対する結合能を有する抗体として、
    ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体を選択する
    ことを特徴とする請求項5に記載の抗体。
  11.  下記の式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体を製造する方法であって、
    Figure JPOXMLDOC01-appb-C000003
     該抗体は、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するポリクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する、ヒト以外の哺乳動物由来の抗体であり、
     該ヒト以外の哺乳動物由来のポリクローナル抗体の作製プロセスは、少なくとも、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、前記ヒト以外の哺乳動物を免疫する工程;
     前記修飾タンパク質を免疫原とする免疫の確立がなされた後、免疫された前記ヒト以外の哺乳動物から血液を採取し、採取した血液から抗血清を調製する工程;
     調製された抗血清中に、前記式(I)に示す過酸化アセトンに対する交叉反応性を有する抗体が存在することを、前記式(I)に示す過酸化アセトンを抗原とする、抗原抗体反応によって、検証する工程
    を含んでいる
    ことを特徴とする抗体の製造方法。
  12.  下記の式(I)に示す構造を有する過酸化アセトンに対する結合能を有する抗体を製造する方法であって、
    Figure JPOXMLDOC01-appb-C000004
     該抗体は、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体であり、該式(I)に示す過酸化アセトンに対して交叉反応性を有する、ヒト以外の哺乳動物由来の抗体であり、
     該ヒト以外の哺乳動物由来のモノクローナル抗体の作製プロセスは、少なくとも、
     前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、前記ヒト以外の哺乳動物を免疫する工程;
     前記修飾タンパク質を免疫原とする免疫の確立がなされた後、免疫された前記ヒト以外の哺乳動物から脾臓細胞を採取し、採取した脾臓細胞からモノクローナル抗体産生ハイブリドーマ細胞を作製する工程;
     作製された抗体産生ハイブリドーマ細胞が産生するモノクローナル抗体の群から、前記式(I)に示す過酸化アセトンに対する交叉反応性を有するモノクローナル抗体を、前記式(I)に示す過酸化アセトンを抗原とする、抗原抗体反応によって、選別する工程
    を含んでいる
    ことを特徴とする抗体の製造方法。
  13.  前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)である
    Figure JPOXMLDOC01-appb-C000005
    ことを特徴とする請求項11または12に記載の抗体の製造方法。
  14.  前記ヒト以外の哺乳動物は、マウスである
    ことを特徴とする請求項11~13のいずれか一項に記載の抗体の製造方法。
  15.  前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択する
    ことを特徴とする請求項11~14のいずれか一項に記載の抗体の製造方法。
  16.  前記式(I)に示す過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
     該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされている
    ことを特徴とする請求項11~15のいずれか一項に記載の抗体の製造方法。
  17.  該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされている
    ことを特徴とする請求項16に記載の抗体の製造方法。
  18.  前記式(I)に示す過酸化アセトンに対する結合能を有する抗体として、
    ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体を選択する
    ことを特徴とする請求項12に記載の抗体の製造方法。
  19.  前記ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生するモノクローナル抗体は、
     マウスIgG抗体であり、
     該IgG抗体のH鎖の可変領域Vは、下記のアミノ酸配列(配列番号:7)からなり、
    E  V  Q  L  Q  Q  S  G  P  E  10
    L  V  K  P  G  A  S  V  K  M  20
    S  C  K  A  S  G  Y  T  F  T  30
    D  Y  N  I  H  W  V  K  Q  S  40
    H  G  K  G  L  E  W  I  G  Y  50
    I  N  P  N  N  G  G  T  S  Y  60
    N  Q  K  F  K  G  K  A  T  L  70
    T  V  N  K  S  S  S  T  A  Y  80
    N  E  L  R  S  L  T  S  E  D  90
    S  A  V  Y  Y  C  A  R  L  A  100
    V  W  G  Q  G  T  T  L  T  V  110
    S  S                      112
     
     該IgG抗体のL鎖の可変領域Vは、下記のアミノ酸配列(配列番号:8)からなる
    D  I  V  K  T  Q  S  P  A  T  10
    L  S  V  T  P  G  D  S  V  S  20
    L  S  C  R  A  S  Q  S  I  S  30
    N  N  L  H  W  Y  Q  Q  K  S  40
    H  E  S  P  R  L  L  I  K  Y  50
    A  S  Q  S  I  S  G  I  P  S  60
    R  F  S  G  S  G  S  G  T  D  70
    F  T  L  S  I  N  S  V  E  T  80
    E  D  F  G  M  Y  F  C  Q  Q  90
    S  N  S  W  P  F  T  F  G  S  100
    G  T  K  L  E  I  K         107
    ことを特徴とする請求項10に記載の抗体。
PCT/JP2010/058321 2009-05-18 2010-05-18 爆発物に対する抗体およびその製作方法 WO2010134507A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009119827 2009-05-18
JP2009-119827 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134507A1 true WO2010134507A1 (ja) 2010-11-25

Family

ID=43126185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058321 WO2010134507A1 (ja) 2009-05-18 2010-05-18 爆発物に対する抗体およびその製作方法

Country Status (1)

Country Link
WO (1) WO2010134507A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021115465A1 (en) * 2019-12-13 2021-06-17 Biosion Inc. Antibodies binding rankl and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093559A (ja) * 2005-09-30 2007-04-12 Kyushu Univ 特定分子構造により化学物質を検出、分類するセンサ
JP2009150820A (ja) * 2007-12-21 2009-07-09 Pratt & Whitney Rocketdyne Inc 試料に含まれる化合物を検出するシステムおよび方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093559A (ja) * 2005-09-30 2007-04-12 Kyushu Univ 特定分子構造により化学物質を検出、分類するセンサ
JP2009150820A (ja) * 2007-12-21 2009-07-09 Pratt & Whitney Rocketdyne Inc 試料に含まれる化合物を検出するシステムおよび方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMEWU, R. ET AL.: "Design and synthesis of orally active dispiro 1,2,4,5-tetraoxanes; synthetic antimalarials with superior activity to artemisinin.", ORG. BIOMOL. CHEM., vol. 4, 2006, pages 4431 - 4436 *
GAURAV, D. ET AL.: "High-performance liquid chromatographic methods for the analysis of explosives", CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, vol. 37, 2007, pages 227 - 268 *
TAKESHI ONODERA ET AL.: "Security-yo Cho Kokando Nioi Sensor no Kaihatsu Hyomen Plasmon Kyomei Sensor to Kogen Kotai Hanno ni yoru Teibunshi Busshitsu no Sokutei", INSPECTION ENGINEERING, vol. 12, no. 4, 2007, pages 36 - 42 *
TOSHIKAZU KAWAGUCHI ET AL.: "Bakuyakurui Kenshutsuyo Cho Kokando SPR Men'eki Sensor", CHEMICAL SENSORS, vol. 22, no. 4, 2006, pages 146 - 153 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021115465A1 (en) * 2019-12-13 2021-06-17 Biosion Inc. Antibodies binding rankl and uses thereof

Similar Documents

Publication Publication Date Title
US8841419B2 (en) Hybridoma cell line 10G4 and a monoclonal antibody against the total of aflatoxin B1, B2, G1 and G2
EP0359063A2 (en) Antibody having high affinity to methamphetamine and immunogen for obtaining the same
EP2596022A1 (en) Anti-il-23 heterodimer specific antibodies
RU2011138060A (ru) Средства и способы получения высокоочищенного нейротоксина
CN111808193B (zh) 可结合人cd38的纳米抗体及其应用
Liu et al. Fragment-based hapten design and screening of a highly sensitive and specific monoclonal antibody for ractopamine
AU2014409558B2 (en) Monoclonal anti-GPC-1 antibodies and uses thereof
WO2010134507A1 (ja) 爆発物に対する抗体およびその製作方法
JP2020522475A5 (ja)
CN114560945B (zh) 特异性结合红霉素的新型单克隆抗体及其应用
CN115850462A (zh) 可识别和中和MERS-CoV的多肽NbM14及其应用
WO2003061595A2 (en) Antibodies against and compositions containing new amphetamine derivatives
WO2010134508A1 (ja) 抗マラリア薬の抗体、ならびにモノクローナル抗体、およびその製作方法
WO2010134506A1 (ja) 爆発物検出用の免疫センサおよびその製造方法
JP2010285418A (ja) 有機硝酸系爆発物に対する抗体およびその製作方法
WO2010134505A1 (ja) 抗マラリア薬の免疫センサおよびその製造方法
JP2012097021A (ja) 爆発物に対する抗体およびその製作方法
JP2010265239A (ja) 抗マラリア薬の精製および濃縮方法
JP6630116B2 (ja) モノクローナル抗AGEs抗体及びその製造方法
JP2013010723A (ja) 抗dcdモノクローナル抗体
CN115873122B (zh) 一种抗甲萘威单克隆抗体的轻链和重链可变区及其应用
US20220049018A1 (en) Anti-naloxone and anti-naltrexone monoclonal antibodies and methods of production and use thereof
JP3820519B6 (ja) シガトキシンctx3cを検出するサンドイッチ測定キット類
JP3820519B2 (ja) シガトキシンctx3cを検出するサンドイッチ測定キット類
CN114213539A (zh) 可结合cd4的纳米抗体4nb357及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP