WO2010134506A1 - 爆発物検出用の免疫センサおよびその製造方法 - Google Patents

爆発物検出用の免疫センサおよびその製造方法 Download PDF

Info

Publication number
WO2010134506A1
WO2010134506A1 PCT/JP2010/058320 JP2010058320W WO2010134506A1 WO 2010134506 A1 WO2010134506 A1 WO 2010134506A1 JP 2010058320 W JP2010058320 W JP 2010058320W WO 2010134506 A1 WO2010134506 A1 WO 2010134506A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
antigen
formula
electrode
immunosensor
Prior art date
Application number
PCT/JP2010/058320
Other languages
English (en)
French (fr)
Inventor
達 松本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2010134506A1 publication Critical patent/WO2010134506A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0057Warfare agents or explosives

Definitions

  • the present invention relates to an immunosensor that detects a peroxide derivative using a monoclonal antibody that is used as an explosive and has a binding ability to the peroxide derivative, and a method for producing the immunosensor.
  • Organic compounds used as explosives for example, TNT (2,4,6-trinitrotoluene), RDX (hexogen; 1,3,5-trinitro-1,3,5-triazinan), pen slit (pentaeritetranitrate) Slit: C (CH 2 ONO 2 ) 4 ) has a nitro group in its molecule.
  • TNT 2,4,6-trinitrotoluene
  • RDX hexogen; 1,3,5-trinitro-1,3,5-triazinan
  • pen slit pen slit
  • C CH 2 ONO 2 ) 4
  • the explosives detection scanner for various nitro compounds applies the above measurement principle.
  • organic peroxide explosives that do not have a nitro group in the molecule are also known.
  • acetone peroxide in particular, trimeric TATP (C 9 H 18 O 6 : triacetone triperoxide) or hexamethylenetriperoxide diamine (HMTD) is used in the molecule as a dioxy bond (—O—O—O).
  • HMTD hexamethylenetriperoxide diamine
  • Peroxide derivatives comprising-) have been known for a long time. Since these organic peroxide-type explosives do not have a nitro group in the molecule, they cannot be detected by an explosive detection scanner for various nitro compounds.
  • acetone peroxide in particular, trimer type TATP (C 9 H 18 O 6 : triacetone triperoxide) having a structure represented by the following formula (I) is a relatively easily available raw material. Synthesis can be performed on a laboratory scale by using acetone and aqueous hydrogen peroxide, and sulfuric acid and hydrochloric acid, which are used as acid catalysts. In addition, it has good crystallinity and can be isolated and purified as white crystals having a melting point of 91 ° C.
  • organic peroxide-type explosives such as trimer-type TATP (C 9 H 18 O 6 : triacetone triperoxide) have been used in explosive terrorist attacks in the past. It is used as
  • Non-Patent Document 1 Analytical Chemistry, Vol. 75, No. 4, p. 731-735. (2003).
  • the measurement operation is complicated, including the adjustment of the concentration to an appropriate concentration range in consideration of safety during measurement, so it can be used easily by anyone.
  • the measurement cost per measurement is high and the measurement time is 10 minutes or more, which is a problem in measuring a large number of samples.
  • explosives detection capable of selectively detecting a large number of samples as easily as an explosive detection scanner for various nitro compounds. Development of a sensor for use is desired.
  • the antigen-antibody reaction is applied using an antibody capable of binding to the target low molecular weight compound to measure the concentration of the target low molecular weight compound.
  • Immunoassays have been successful for some small molecule compounds. For example, since the organic peroxide explosive compound itself having a structure represented by the formula (I), such as a trimer type TATP, does not exhibit immunogenicity, the organic peroxide explosive compound No specific antibody has been reported so far. If an antibody having a selective binding ability to the organic peroxide-type explosive compound is available, an immunoassay method using the antibody having the selective binding ability is used for the organic peroxide type. There is a high possibility that it can be used to develop sensors for detecting explosive compounds.
  • an object of the present invention is to newly create an antibody having a binding ability to a target peroxide derivative-type explosive and apply the antigen-antibody reaction using the created antibody to detect the target excess.
  • An object of the present invention is to provide an immunosensor capable of detecting an oxide derivative explosive and a method for producing the same.
  • the object of the present invention is, for example, as a peroxide derivative-type explosive of interest, acetone peroxide, in particular, a trimer-type TATP (C 9 H 18 O 6 having the structure shown in the following formula (I): : A new antibody having a binding ability to triacetone triperoxide), and applying the antigen-antibody reaction using the created antibody, the peroxide derivative type explosive shown in the formula (I)
  • the object is to provide a detectable immunosensor and a method for producing the same.
  • the present inventors first studied a technique for newly creating an antibody having a binding ability to a target peroxide derivative-type explosive.
  • trimeric acetone peroxide (TATP) itself having the structure shown in formula (I) has a functional group that can be used to produce a modified protein by binding to a carrier protein.
  • TATP trimeric acetone peroxide
  • an antibody may exhibit a phenomenon that exhibits reactivity with a substance having a structure similar to the original antigen, so-called cross-reactivity. did. That is, in place of the target low molecular weight compound, when many kinds of specific antibodies against an antigen having a structure similar to the low molecular weight compound are created, Thus, it was conceived that there may be an antibody showing cross-reactivity.
  • the present inventors actually have a characteristic structure of the ring structure.
  • the inventors searched for an immunogenicity of the resulting modified protein when bound on a carrier protein.
  • the cross-reactivity to the trimeric acetone peroxide (TATP) of the formula (I) A search was conducted as to whether or not there was an antibody indicating the above.
  • a compound represented by formula (II) created by immunizing a mouse using a modified protein obtained by binding a dicarboxylic acid compound represented by formula (II) on a carrier protein as an immunogen.
  • a group of hybridoma cell lines producing antibodies is prepared, and antibodies exhibiting cross-reactivity to the trimeric acetone peroxide (TATP) of formula (I) are produced from the group of hybridoma cell lines.
  • TATP trimeric acetone peroxide
  • the monoclonal antibodies produced by several of the selected hybridoma cell lines do not show cross-reactivity with at least the endogenous substance of the mouse used as the immunized animal, but the dicarboxylic acid compound represented by the formula (II) and the formula It was confirmed that the compound had reactivity to the trimeric acetone peroxide (TATP) of (I).
  • the present inventors immobilized a monoclonal antibody produced by several of the selected hybridoma cell lines, and then trimeric acetone peroxide (TATP) of the formula (I)
  • TATP trimeric acetone peroxide
  • the amount of trimeric acetone peroxide (TATP) of the formula (I) bound to the monoclonal antibody during the antigen-antibody reaction with the monoclonal antibody is determined according to the amount of the trimeric superoxide of the formula (I) in the sample solution. It was also proportional to the concentration of acetone oxide (TATP), and it was confirmed that it could be used for quantitative detection.
  • trimeric acetone peroxide (TATP) of formula (I) bound to monoclonal antibodies produced by several of the selected hybridoma cell lines is of formula (I) contained in the surrounding solution.
  • concentration of the trimeric acetone peroxide (TATP) is zero, that is, when the washing treatment is performed, the trimer-type excess of the formula (I) that has been substantially bound in about 1 minute. It was also confirmed that dissociation of acetone oxide (TATP) was completed.
  • TATP trimeric acetone peroxide
  • 1 minute can be selected as the treatment time when dissociation is performed by washing treatment.
  • the immunosensor when applied to an immunosensor using an antigen-antibody reaction, it was confirmed that the immunosensor can be reused by performing the washing treatment for the above-described processing time.
  • the monoclonal antibody produced by the several selected hybridoma cell lines can be used for quantitative detection of trimeric acetone peroxide (TATP) of the formula (I). It was confirmed that it can be suitably used for an immunosensor using an antigen-antibody reaction.
  • TATP trimeric acetone peroxide
  • the present inventors have found that the trimeric acetone peroxide (TATP) of the above formula (I) and the characteristic structure and similarity in the trimeric acetone peroxide (TATP) of the above formula (I)
  • TATP trimeric acetone peroxide
  • the subject peroxide derivative-type explosive itself does not exhibit immunogenicity.
  • the inventors of the present invention completed the present invention based on the above-described series of findings and verification results.
  • the immunosensor according to the present invention is Peroxide derivative type explosive, acetone peroxide of the following formula (I) (TATP: 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane ) Is detected using an antigen-antibody reaction,
  • the immunosensor comprises at least A working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material; A counter electrode to the working electrode; A bias voltage is applied between the working electrode and the counter electrode, and a measuring unit having a function of measuring a current flowing between the working electrode and the counter electrode is provided.
  • the antibody used for the antigen-antibody reaction is: An immunosensor characterized by being a monoclonal antibody capable of binding to acetone peroxide of formula (I).
  • the monoclonal antibody having binding ability to acetone peroxide of formula (I) is: A monoclonal antibody against a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of the formula (I), and cross-reactive with the peroxide peroxide of the formula (I) It is preferable to have.
  • the low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of the formula (I) is a dicarboxylic acid compound having a structure represented by the following formula (II): 3- [12- (2 -Carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propionic acid (3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propanoic acid).
  • the monoclonal antibody having binding ability to acetone peroxide of the formula (I) is:
  • a non-human mammal can be obtained by using a modified protein obtained by binding a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of formula (I) on a carrier protein as an immunogen.
  • a monoclonal antibody against the low molecular weight compound created by immunization An antibody having cross-reactivity with acetone peroxide of the formula (I) is preferable.
  • the mammal other than the human is preferably a mouse.
  • a modified protein obtained by binding the low molecular weight compound on a carrier protein it is preferable to select Keyhole Limpet Hemocyanin as the carrier protein.
  • a compound having a carboxyl group (—COOH) in the molecule is selected as a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of formula (I);
  • a modified protein obtained by binding a compound having a carboxyl group (—COOH) in the molecule onto a carrier protein comprises the carboxyl group (—COOH) and an amino group (—NH 2 ) on the carrier protein. It is preferable that a compound having a carboxyl group (—COOH) in the molecule is bonded via an amide bond (—CO—NH—).
  • amide bond (—CO—NH—) between the carboxyl group (—COOH) and an amino group (—NH 2 ) on the carrier protein is made using a carbodiimide method. Is preferred.
  • a form using a monoclonal antibody against a dicarboxylic acid compound having a structure represented by the above formula (II) produced by a hybridoma cell line: NECP-C57Z 3B-7E (FERM BP-11125) can be used.
  • the working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material and the counter electrode with respect to the working electrode are formed on the same insulating substrate.
  • the electrode material for immobilizing the antibody used for the antigen-antibody reaction on its surface is preferably a carbon material.
  • a platinum electrode as the counter electrode with respect to the working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the carbon material.
  • a platinum electrode used as a counter electrode to the working electrode a silver / silver chloride electrode functioning as a reference electrode is provided. You can select the composition you want.
  • the method for producing an immunosensor according to the present invention includes: Peroxide derivative type explosive, acetone peroxide of the following formula (I) (TATP: 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane ) Is detected by utilizing an antigen-antibody reaction,
  • the immunosensor comprises at least A working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material; A counter electrode to the working electrode; A bias voltage is applied between the working electrode and the counter electrode, and a measuring unit having a function of measuring a current flowing between the working electrode and the counter electrode is provided.
  • the antibody used for the antigen-antibody reaction is: A monoclonal antibody capable of binding to acetone peroxide of formula (I),
  • the method for producing the immunosensor includes at least: Forming a working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material; Forming a counter electrode for the working electrode; And a step of providing a measuring unit having a function of measuring a current flowing between the working electrode and the counter electrode by applying a bias voltage between the working electrode and the counter electrode. Is the method.
  • the monoclonal antibody having binding ability to acetone peroxide of the formula (I) is: It is a monoclonal antibody against a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of formula (I) and has cross-reactivity to acetone peroxide of formula (I) Is preferred.
  • the low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of the formula (I) is a dicarboxylic acid compound having a structure represented by the following formula (II): 3- [12- (2 -Carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propionic acid (3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradec-9-yl] -propanoic acid).
  • the monoclonal antibody having binding ability to acetone peroxide of the formula (I) is:
  • a non-human mammal can be obtained by using a modified protein obtained by binding a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of formula (I) on a carrier protein as an immunogen.
  • a monoclonal antibody against the low molecular weight compound created by immunization An antibody having cross-reactivity with acetone peroxide of the formula (I) is preferable.
  • the mammal other than the human is preferably a mouse.
  • a modified protein obtained by binding the low molecular weight compound on a carrier protein it is preferable to select Keyhole Limpet Hemocyanin as the carrier protein.
  • a compound having a carboxyl group (—COOH) in the molecule is selected as a low molecular weight compound having a structure similar to the characteristic structure of acetone peroxide of formula (I);
  • a modified protein obtained by binding a compound having a carboxyl group (—COOH) in the molecule onto a carrier protein comprises the carboxyl group (—COOH) and an amino group (—NH 2 ) on the carrier protein. It is preferable that a compound having a carboxyl group (—COOH) in the molecule is bonded via an amide bond (—CO—NH—).
  • amide bond (—CO—NH—) between the carboxyl group (—COOH) and an amino group (—NH 2 ) on the carrier protein is made using a carbodiimide method. Is preferred.
  • an antibody used for the antigen-antibody reaction It is preferable to use a monoclonal antibody against a dicarboxylic acid compound having a structure represented by the above formula (II) produced by a hybridoma cell line: NECP-C57Z 3B-7E (FERM BP-11125).
  • the working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material and the counter electrode with respect to the working electrode are formed on the same insulating substrate.
  • the electrode material for immobilizing the antibody used for the antigen-antibody reaction on its surface is preferably a carbon material.
  • a platinum electrode as the counter electrode with respect to the working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the carbon material.
  • a platinum electrode used as a counter electrode to the working electrode a silver / silver chloride electrode functioning as a reference electrode is provided. You can select the composition you want.
  • the immunosensor for detecting a peroxide derivative explosive uses a monoclonal antibody against a low molecular weight compound having a structure similar to the characteristic structure of a peroxide derivative explosive.
  • the target peroxide derivative-type explosive can be selectively detected through the antigen-antibody reaction by the cross-reactivity of the monoclonal antibody to the peroxide derivative-type explosive.
  • the target peroxide derivative-type explosive is a trimeric acetone peroxide (TATP)
  • TATP trimeric acetone peroxide
  • TATP trimeric acetone peroxide
  • FIG. 1 shows a monoclonal antibody used for detecting a peroxide derivative-type explosive to be detected using an antigen-antibody reaction in an immunosensor for detecting a peroxide-derivative-type explosive according to the present invention. It is a figure which shows typically one form of the working electrode which has fix
  • FIG. 2 shows 3- [12- (2-carboxyethyl) -9,12-dimethyl-7,8,10,11,13,14 usable in the immunosensor according to the first embodiment of the present invention.
  • FIG. 3 shows the detection of trimeric acetone peroxide (TATP) contained in a solution sample by using the immunosensor according to the first embodiment of the present invention using the monoclonal antibody: mAb-T003. It is a graph which shows an example of the result of having performed.
  • FIG. 4 shows that the measurement technique described in the second embodiment is applied to the solution sample using the immunosensor according to the first embodiment of the present invention using the monoclonal antibody: mAb-T003. It is a graph which shows an example of the result of having detected the trimer-type acetone peroxide (TATP).
  • the antibody capable of binding to a peroxide derivative-type explosive used in the production of a peroxide derivative-type explosive immunosensor according to the present invention and a method for producing the antibody will be described in more detail.
  • the modified carrier obtained by binding the target low molecular weight organic compound on the carrier protein -There is a method of using a protein as an immunogen (Non-patent document 1: Chemistry Letters, Vol. 35, No. 10, p. 1126-1127 (2006)).
  • the low molecular weight organic compound has a reactive functional group such as an amino group (—NH 2 ), a hydroxyl group (—OH), a sulfanyl group (—SH), or a carboxyl group (—COOH).
  • the reactive functional group can be used to covalently link organic compounds having other reactive functional groups.
  • the carrier protein has a three-dimensional structure composed of a peptide chain in which a plurality of amino acid residues are linked, but on its surface, an amino acid residue having a reactive functional group on the side chain There are several.
  • the modified carrier protein which is modified on the surface by a low molecular weight organic compound, is a non-natural protein molecule and is recognized as a foreign substance that is different from the endogenous protein molecule of the mammal itself. Is frequent. In particular, a site that has been modified by a low molecular weight organic compound frequently exhibits immunogenicity.
  • the modified carrier protein surface modified with a low molecular weight organic compound exhibits immunogenicity, when the mammal is immunized with the modified carrier protein, the modified carrier Specific antibodies against proteins are created.
  • multiple types of antibodies specific to each of the plurality of immunogenic sites (antigenic determinants) are created.
  • the multiple types of antibodies that are specific to modified carriers and proteins that have been created there are antibodies that use the low molecular weight organic compounds themselves used for their modification as sites that exhibit immunogenicity (antigenic determinants) The frequency of doing is high.
  • an antibody that uses the low molecular weight organic compound itself used for modification as an immunogenic site (antigenic determinant) It is possible to sort.
  • the mammal to be immunized already has an antibody that exhibits high cross-reactivity with the antigenic determinant present on the surface of the modified carrier protein, the antigenic determination that exhibits this cross-reactivity is determined. Creation of new antibodies against the group does not occur. That is, when an immune reaction to the modified carrier protein is possible using the high cross-reactivity exhibited by the antibody already held by the mammal to be immunized, the antigen determinant exhibiting this cross-reactivity, Creation of new antibodies does not occur.
  • the modified site functions as a site that exhibits immunogenicity (antigenic determinant)
  • the antibody specific for the antigenic determinant has a low molecular weight used for the modification. There are many cases where the binding ability to the organic compound itself is not high.
  • the technique of binding the target low molecular weight organic compound on the carrier protein and using the resulting modified carrier protein as an immunogen it is specific to the low molecular weight organic compound itself used for modification. Whether or not a specific antibody can be created depends on the following factors. Specifically, it depends on the three-dimensional structure of the target low molecular weight organic compound itself, the combination with the carrier protein to be used, the binding form on the carrier protein, the selection of the modification site, and the above four factors. is doing.
  • the binding form on the carrier protein and its modification site depend on the type of carrier protein used, and are limited by the type of reactive functional group possessed by the target low molecular weight organic compound.
  • an appropriate combination may not be selected for the remaining three factors.
  • the peroxide derivative-type explosive itself does not have a reactive functional group in its molecule, it binds the target low molecular weight organic compound onto the carrier protein described above, and obtains it. It is not possible to apply a technique that uses a modified carrier protein to be used as an immunogen. Of course, the peroxide derivative-type explosive is a low molecular weight organic compound and itself does not exhibit immunogenicity.
  • a large number of antibodies against low molecular weight compounds having structures having similar structures and similarities to the target peroxide derivative type explosives are created, and low molecules having structures having similarities are created.
  • a method is employed in which antibodies having cross-reactivity with the target peroxide derivative-type explosive are selected.
  • TATP trimeric acetone peroxide
  • I 2,4,5,7,6-hexaoxacyclononane
  • TATP trimeric acetone peroxide
  • a reactive functional group present on the surface of a carrier protein is utilized using a carboxyl group (—COOH), which is a reactive functional group present in the molecule of the dicarboxylic acid compound having the structure represented by formula (II). It is preferable to select a form to be bonded to the surface of the carrier protein by forming an amide bond (—CO—NH—) with a group, particularly an amino group (—NH 2 ).
  • the carrier protein is a method of binding the target low molecular weight organic compound on the above carrier protein and using the resulting modified carrier protein as an immunogen (Non-patent Document 1: Chemistry Letters, Vol. 35, No. 10, p.1126-1127 (2006)), various carrier proteins already used can be used.
  • a carrier protein bovine serum albumin, bovine thyroglobulin, keyhole limpet hemocyanin (Keyhole Limpet Hemocyanin) and the like can be suitably used.
  • a specific antibody against the modified carrier protein is used in an immunized mammal. Is created.
  • the carrier protein itself to be used generally has immunogenicity, in addition to the antibody specific to the modified site in the modified carrier protein, it is specific to the antigenic determinant of the carrier protein itself. New antibodies are also created.
  • the mixing ratio of unmodified carrier / protein to the modified carrier / protein used for immunization is low.
  • the carrier protein to be used there are generally a plurality of sites (modifiable sites) that can be modified by binding the target low molecular weight organic compound.
  • Each of these modifiable sites has a reactive functional group, but generally there is a difference in reactivity. Therefore, the binding of the low molecular weight organic compound of interest proceeds preferentially from the highly reactive modifiable site, and the low molecular weight organic compound of interest is consumed. , The efficiency with which the low molecular weight organic compound of interest is bound tends to be further reduced.
  • the amount of the low molecular weight organic compound of interest used in the reaction must be multiple. It is desirable to select a considerably excessive amount relative to the total number of modifiable sites. For example, when there are N modifiable sites on the carrier protein, the amount of the low molecular weight organic compound to be used for the reaction requires a minimum of N molecules per carrier protein molecule. However, it is desirable to select at least 50 molecules or more, preferably 60 molecules or more.
  • the immunization can be performed by, for example, administering a solution containing an effective amount of a modified carrier protein combined with a low molecular weight organic compound of the subject to a mammal to be immunized by injection.
  • a solution containing an effective amount of a modified carrier protein combined with a low molecular weight organic compound of the subject to a mammal to be immunized by injection.
  • As the administration form by injection subcutaneous injection, intradermal injection, intravenous injection, or intraperitoneal administration can be used.
  • the solution is usually administered by subcutaneous injection.
  • an adjuvant that has been conventionally used for immunization can be used as the adjuvant.
  • adjuvants include Freund's complete adjuvant, water-in-oil-in-water emulsion, oil-in-water emulsion, liposome, aluminum hydroxide gel, and silica adjuvant.
  • Freund's complete adjuvant is widely used and can be suitably used in the present invention. For example, during the first immunization (sensitization), it is preferable to use Freund's complete adjuvant as the adjuvant.
  • booster immunization is performed when a predetermined period has elapsed after the first immunization (sensitization).
  • various adjuvants for example, it is preferable to use Freund's complete adjuvant as the adjuvant at the time of booster immunization, but a considerable effect can be obtained by using Freund's incomplete adjuvant.
  • the booster immunization is preferably performed multiple times. It is desirable to perform booster immunization when the antibody concentration in the blood shows a maximum due to the immune response to the previous immunization operation (sensitization) and the antibody concentration is decreasing.
  • the number of days until the antibody concentration in the blood reaches the maximum after the last immunization (sensitization) usually depends on the metabolic rate in the body of the immunogen used.
  • the booster interval depends on the type of immunogen used, the type of immunized animal of interest, and its health condition.
  • a form in which booster immunization is performed after the first immunization for example, 2 weeks, 4 weeks, 6 weeks, or 8 weeks can be selected.
  • the type of mammal to be immunized is not limited, but from an ethical point of view, it is selected from mammals other than humans.
  • it is selected from mammals other than humans.
  • mice, rats, goats, and the like can be selected as mammals other than humans that can be used for mammals to be immunized.
  • a mammal to be immunized a mammal that already holds an antibody showing cross-reactivity with the modified carrier protein is not preferable. That is, it is generally preferable that the mammal to be immunized is an individual who has no acquired immunity.
  • mammals grown after birth in an environment that is essentially free from exposure to various immunogenic substances.
  • a mammal having a short period until it grows to the extent that it can be subjected to immunization after giving birth In consideration of these conditions, it is more preferable to use small pedigree mammals used for medical research. Specifically, mice, rats, rabbits and the like that are used for the creation of various novel antibodies are preferable, and in particular, mice or rats, and more preferably mice are used.
  • Non-patent Document 1 Chemistry Letters, Vol. 35, No. 10, p. 1126-1127 (2006)
  • the various carrier proteins already used the above matters have already been described for mice, rats, rabbits, etc., which are used for the creation of various novel antibodies. It has been investigated and reports are available.
  • Non-patent Document 1 Chemistry Letters, Vol. 35, No. 10, p.1126-1127 (2006)
  • the immunization of modified carrier proteins for mice, rats, rabbits, etc. which are used for the creation of various new antibodies It is also possible to estimate the effective amount with considerable accuracy.
  • mice, rats, rabbits, etc. which are used to create various new antibodies, in accordance with the procedures used in the successful examples already reported.
  • the age at which the first immunization operation (sensitization) is performed is selected in consideration of the number of subsequent immunizations and the interval thereof. Specifically, it is necessary to verify that an antibody specific for the immunogen is present in the blood of the immunized animal after completion of multiple boosters. Therefore, it is preferable to select an age at which the first immunization operation (sensitization) is performed so that the immunized animal does not reach an age at which the ability to produce antibodies decreases at the time of completing multiple boosters. .
  • the age at which the first immunization (sensitization) is performed is: It is preferable to select a range of 10 to 15 weeks of age, and it is usually more preferable to select a range of 12 weeks of age. It is known that mice or rats have the ability to produce sufficient antibodies when they reach about 12 weeks of age, and the ability to create new antibodies is the highest.
  • the dicarboxylic acid compound having the structure represented by the formula (II) is a known compound, and its synthesis method has already been reported in the literature (Non-Patent Document 2: Organic & Biomolecular Chemistry Vol. 4, p.4431- 4436 (2006)). Since the dicarboxylic acid compound having the structure represented by the formula (II) is solid at room temperature, the reaction for binding the compound on the carrier protein is performed using a reaction solvent capable of dissolving the compound. There is a need. On the other hand, the carrier protein used may undergo denaturation depending on the type of solvent. Therefore, it is necessary to select a reaction solvent capable of dissolving the compound without causing denaturation of the carrier protein used.
  • dicarboxylic acids having a structure represented by the above formula (II) from various reaction solvents used in preparing modified carrier protein by binding a target low molecular weight organic compound on carrier protein. It is preferable to select a reaction solvent capable of dissolving the acid compound. In fact, when the selection of the reaction solvent was advanced, dimethyl sulfone (DMSO: (CH 3 ) 2 SO) and a borate buffer were selected as particularly preferable reaction solvents.
  • DMSO dimethyl sulfone
  • a borate buffer were selected as particularly preferable reaction solvents.
  • Dimethylsulfone (DMSO: (CH 3 ) 2 SO) is a non-aqueous solvent, but can be dissolved without denaturing the carrier protein, and is equivalent to a dicarboxylic acid compound having the structure represented by formula (II) It is a solvent that can be dissolved at a high concentration.
  • the boric acid buffer solution has a pH range in which the buffering action can be exerted in the range of 6.8 to 9.2, and can dissolve the dicarboxylic acid compound having the structure represented by the above formula (II).
  • the system it is usually preferable to select a composition in which the pH is selected in the range of 8.2 to 8.7, particularly a composition in which the pH can be adjusted to around 8.5.
  • a carboxyl group —COOH
  • an amide bond (—CO—NH—) is formed with an amino group (—NH 2 )
  • N, N′-dicyclohexylcarbodiimide (DCC), N, N′-diisopropylcarbodiimide (DIC), N- [3- (dimethylamino) propyl] -N ′ is used as a binder carbodiimide.
  • EDC Ethylcarbodiimide
  • EDAC N- [3- (dimethylamino) propyl] -N'-ethylcarbodiimide hydrochloride
  • the amount of the binder carbodiimide is preferably selected in the range of 5 to 20 molecules per molecule of the dicarboxylic acid compound having the structure represented by the formula (II).
  • the amount of the dicarboxylic acid compound having the structure represented by the formula (II) is determined based on the total number of amino groups (—NH 2 ) exposed on the surface of the carrier protein. At that time, when the total number of amino groups (—NH 2 ) exposed on the surface of one molecule of the carrier protein is N, the amount of the dicarboxylic acid compound having the structure represented by the formula (II) is used. It is preferable to select from a range of N ⁇ 3 molecules to N ⁇ 10 molecules per protein molecule.
  • a modified carrier protein is prepared in which a dicarboxylic acid compound having the structure shown in formula (II) is bound in a range of 1/2 ⁇ N molecule to N molecule per molecule of the carrier protein. It is desirable to do.
  • a modified carrier protein obtained by binding a target low molecular weight organic compound on a carrier protein is used as an immunogen to be used for the above immunization.
  • the multiple types of antibodies that are newly created by immunization and specific for the modified carrier protein it is also high against the low molecular weight organic compound itself that is not bound to the carrier protein used. First, it is verified that there is actually an antibody showing reactivity.
  • An enzyme immunoassay is preferably used as a means for verifying the presence of an antibody that specifically binds to a specific antigenic determinant in antisera containing multiple types of antibodies.
  • the enzyme immunoassay uses a specific reactivity of an antibody to a specific antigenic determinant, and therefore has high selectivity, particularly for a specific antigenic determinant contained in the antiserum. When the antibody concentration is unknown, the antibody titer can be easily evaluated.
  • an antibody that is not bound to the carrier protein used and shows high reactivity with the low molecular weight organic compound itself it is used in an enzyme immunoassay (ELISA method).
  • ELISA method enzyme immunoassay
  • another kind of modified carrier protein in which the low molecular weight organic compound is bound to the surface of another kind of carrier protein is used.
  • the different type of carrier protein itself does not react with a plurality of types of antibodies specific to the modified carrier protein.
  • the carrier protein used for the preparation of the immunogen and the other kind of carrier protein used for the preparation of the antigen used in the enzyme immunoassay (ELISA method) are preferably used for the preparation of the immunogen. It is preferable to select a combination of two different carrier proteins from the group of carrier proteins.
  • antigenic determinants of the carrier protein itself are usually different, and multiple types of antibodies specific to the modified carrier protein react with the different carrier protein itself.
  • the possibility of showing sex can be eliminated.
  • another type of modified carrier protein in which the low molecular weight organic compound is bound to the surface of another type of carrier protein among a plurality of types of antibodies specific to the modified carrier protein of the immunogen is regarded as an antibody that binds to the low molecular weight organic compound itself.
  • bovine serum albumin which is widely used as a blocking protein, is selected as another type of carrier protein used for the preparation of the antigen used in the enzyme immunoassay (ELISA method), while the production of the immunogen It is more preferable to select a general-purpose carrier protein other than bovine serum albumin, such as Keyhole Limpet Hemocyanin, as the carrier protein used in the above.
  • a general-purpose carrier protein other than bovine serum albumin such as Keyhole Limpet Hemocyanin
  • the modified carrier / protein type antigen The phenomenon of non-selective binding of antibody molecules to the bovine serum albumin moiety is also eliminated.
  • the modified carrier protein type antigen using bovine serum albumin as a carrier protein can be immobilized on an ELISA plate at a high density.
  • the obtained antiserum contains an antibody having reactivity to the low molecular weight organic compound itself, which is used to produce an immunogen, the reactivity to the low molecular weight organic compound itself Whether or not a polyclonal antibody having a cross-reactivity with a target peroxide derivative-type explosive, for example, trimeric acetone peroxide (TATP) itself having a structure represented by formula (I), Verify that.
  • TATP trimeric acetone peroxide
  • verification of the cross-reactivity of the antibody preferably uses a competitive reaction of the two antigens with the antibody.
  • the target peroxide derivative-type explosive for example, trimer acetone (TATP) itself having the structure shown in formula (I), is a low molecular weight organic compound, and is capable of antigen-antibody reaction with an antibody. In doing so, the binding is believed to be achieved by one of the complementarity determining sites of the antibody molecule.
  • TATP trimer acetone
  • a low molecular weight organic compound having a similar structure used for the production of a modified carrier / protein used for the above-described immunization is also subjected to an antigen-antibody reaction with an antibody, its binding is caused by an antibody molecule. It is thought that this is achieved by one of the complementarity determining sites.
  • the complementarity determining site of the antibody molecule involved in binding to a low molecular weight organic compound having a similar structure which is used to produce a modified carrier protein of an immunogen
  • the target peroxide derivative-type explosive for example, the complementarity determining site of the antibody molecule involved in the binding of the trimeric acetone peroxide (TATP) itself shown in formula (I).
  • TATP trimeric acetone peroxide
  • the low molecular weight compound having the similar structure used for the verification of the reactivity to the low molecular weight organic compound itself having a similar structure, which is used for the production of the modified carrier / protein of the above immunogen.
  • Another type of modified carrier protein having an organic compound bound to the surface of another type of carrier protein is immobilized on an ELISA plate.
  • the desired peroxide derivative-type explosive for example, trimer-type acetone peroxide (TATP) represented by the formula (I) is added to the polyclonal solution in the reaction solution for antigen-antibody reaction in the ELISA method. Dissolve with antiserum containing antibody.
  • the cross-reactive antibody present in the reaction solution is a target peroxide derivative-type explosive, for example, a trimeric acetone peroxide represented by the formula (I)
  • TATP antigen-antibody reaction with (TATP)
  • TATP trimeric acetone peroxide represented by the formula (I)
  • the polyclonal antibody against the low molecular weight organic compound itself having a similar structure used in the production of the modified carrier protein of the above-mentioned immunogen contained in the antiserum It is possible to verify that a peroxide derivative-type explosive, such as, for example, a trimer-type acetone peroxide (TATP) represented by the formula (I), and an antibody showing cross-reactivity are included.
  • a peroxide derivative-type explosive such as, for example, a trimer-type acetone peroxide (TATP) represented by the formula (I)
  • TATP trimer-type acetone peroxide
  • the antiserum verified as described above is a polyclonal antibody having a binding ability to a target peroxide derivative-type explosive, for example, a trimeric acetone peroxide (TATP) represented by the formula (I). Is included.
  • TATP trimeric acetone peroxide
  • TATP trimeric acetone peroxide
  • a spleen cell group is prepared by removing the spleen from the immunized animal verified as described above. This spleen cell group and myeloma-derived cell line cells are fused to produce a group of hybridoma cells.
  • the myeloma-derived cell line used for the above-mentioned cell fusion needs to be compatible with the spleen cell derived from the immunized animal to be fused.
  • the proliferation ability of hybridoma cells created by cell fusion depends on the myeloma-derived cell line used for cell fusion, and it is preferable to use a myeloma-derived cell line with excellent proliferation ability. .
  • the myeloma-derived cell line used for cell fusion is a mouse myeloma-derived cell line, P3X63 Ag8.653, P3X63Ag8U, Sp2 / O Ag14, FO.1, S194 / 5.
  • XX0 BU. 1 or the like is preferably used.
  • the use of the cell line P3X63Ag8U has high proliferation ability of the hybridoma cells to be created, and the antibody molecules produced by the hybridoma cells are all antibodies that have been properly assembled, and antibodies that have not been assembled yet More preferred because it does not contain molecular fragments.
  • the myeloma-derived cell line used for cell fusion is the rat myeloma-derived cell line 210, RCY3. Ag1.2.3, YB2 / 0, etc. are mentioned.
  • Examples of cell fusion methods for creating the above hybridoma cells include a polyethylene glycol method, a method using Sendai virus, and a method using electric current.
  • the polyethylene glycol method is more suitable for the present invention because it has low cytotoxicity, is easy to fuse, and particularly has high reproducibility. That is, in the present invention, among a group of hybridoma cells producing a specific monoclonal antibody against a modified carrier protein of an immunogen, a target peroxide derivative-type explosive, for example, three of the formula (I) It is necessary to select hybridoma cells that produce monoclonal antibodies having cross-reactivity to monomeric acetone peroxide (TATP).
  • TATP monomeric acetone peroxide
  • the created group of hybridoma cells are dispersed, dispensed into a microplate, and grown under known culture conditions appropriately selected according to the myeloma cell line used.
  • the monoclonal antibody produced by each hybridoma cell line is the target peroxide derivative-type explosive, for example, three of the formula (I) It is verified whether the antibody is cross-reactive with monomeric acetone (TATP).
  • the culture supernatant of each hybridoma cell line is collected.
  • the culture supernatant of each hybridoma cell line contains a monoclonal antibody produced by the cell line.
  • Monoclonal antibodies contained in the culture supernatant of each hybridoma cell line have reactivity to low molecular weight organic compounds themselves with similar structures used for the production of modified carrier proteins used for immunization. First, it is verified whether it has or not.
  • the verification is based on an enzyme immunoassay (ELISA method) in which a low molecular weight organic compound having a similar structure is bound to the surface of another type of carrier protein and another type of modified carrier protein is used as an antigen. Verification methods can be used. The specific measurement method is in principle the same as the verification regarding the reactivity of the polyclonal antibody contained in the antiserum.
  • ELISA method enzyme immunoassay
  • a cell line of hybridoma cells that produces is selected.
  • the monoclonal antibody produced by the cell line of hybridoma cells is the target peroxide derivative-type explosive, that is, three of the formula (I) It is verified whether or not the antibody exhibits cross-reactivity to monomeric acetone (TATP).
  • the verification regarding the cross-reactivity can be performed by applying the same method in principle as the verification regarding the cross-reactivity of the polyclonal antibody contained in the antiserum.
  • the target peroxide derivative type explosive that is, the target peroxide derivative is verified by the cross-reactivity (secondary screening) with respect to the trimeric acetone peroxide (TATP) represented by the formula (I)
  • TATP trimeric acetone peroxide
  • a hybridoma cell line is produced that produces a monoclonal antibody that exhibits cross-reactivity to the type of explosive, ie, the trimeric acetone peroxide (TATP) of formula (I).
  • the type of monoclonal antibody selected depends on the antibody type specificity exhibited by the anti-Ig antibody used in the enzyme immunoassay (ELISA method).
  • TATP trimeric acetone peroxide
  • the selected hybridoma cell line can be cultured in vitro, the supernatant of the culture can be collected, and the contained monoclonal antibody can be purified. Further, when the selected hybridoma cell line is inoculated into the abdominal cavity of a mammal other than a human used for immunization, it grows in the abdominal cavity and accumulates the monoclonal antibody produced in the ascites. Thereafter, the ascites can be collected and the contained monoclonal antibody can be purified.
  • a target peroxide derivative-type explosive for example, a monoclonal antibody capable of binding to trimeric acetone peroxide (TATP) represented by the formula (I) is detected with the peroxide derivative-type explosive.
  • TATP trimeric acetone peroxide
  • Hybridoma cell line NECP-C57Z 3B-7E, based on the Budapest Treaty, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center In addition, an international deposit (May 12, 2009) has been made.
  • the hybridoma cell line is a hybridoma cell line created and selected by the procedure disclosed in the first embodiment to be described later.
  • the hybridoma cell line: NECP-C57Z 3B-7E is a hybridoma cell line that produces the monoclonal antibody mAb-T003 described below.
  • an immunosensor having the following constitution by using a monoclonal antibody having binding ability to trimeric acetone peroxide (TATP) represented by the formula (I).
  • TATP trimeric acetone peroxide
  • the peroxide derivative-type explosive to be detected is fixed on the working electrode using an antigen-antibody reaction, and a bias voltage is applied between the working electrode and the counter electrode to fix the detection target.
  • the form which measures the response electric current resulting from the peroxide derivative type explosive of is adopted. for that reason,
  • the immunosensor comprises at least A working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material; A counter electrode to the working electrode; A measuring unit having a function of measuring a current flowing between the working electrode and the counter electrode by applying a bias voltage between the working electrode and the counter electrode;
  • the immunosensor according to the present invention employs an electrochemical sensor structure in which a bias voltage is applied between the working electrode and the counter electrode, and a current flowing between the working electrode and the counter electrode is measured. Therefore, it is preferable to select a combination in which the working electrode itself is a carbon electrode as the electrode material constituting the working electrode and the counter electrode, and the counter electrode for the working electrode is a platinum counter electrode.
  • the carbon electrode is manufactured on an insulating substrate using various conductive carbon materials.
  • the working electrode in which the antibody used for the antigen-antibody reaction is immobilized on the surface of the electrode material is preferably configured as illustrated in FIG.
  • the carbon electrode 2 is manufactured on the insulating substrate 1, and the monoclonal antibody 3 is immobilized on the carbon electrode 2.
  • the insulating substrate 1 is not particularly limited as long as it is a substrate made of an insulating material having chemical stability even in a reaction solution for performing an antigen-antibody reaction, such as glass, quartz, or transparent plastics. Usually, a glass substrate having high strength and transparency is suitably used on the insulating substrate 1.
  • Carbon paper, graphite carbon, carbon nanotubes, carbon nanohorns, fullerenes, carbon powder, etc. can be used as the conductive carbon material used for producing the carbon electrode 2.
  • These conductive carbon materials are fixed on the insulating substrate 1 using a binder or the like as appropriate to form the carbon electrode 2.
  • the monoclonal antibody 3 to be used is immobilized on the surface of the carbon electrode 2 using the constant region of the heavy chain of the antibody molecule.
  • the density of the monoclonal antibody 3 immobilized on the surface of the carbon electrode 2 is selected depending on the concentration range of the antigen substance to be detected. That is, all of the monoclonal antibodies immobilized on the surface of the carbon electrode 2 are contained in the reaction solution for carrying out the antigen-antibody reaction, even at the upper limit of the concentration range of the antigen substance to be detected. It is desirable not to reach a so-called saturation state that causes a reaction.
  • the proportion of the monoclonal antibody immobilized on the surface of the carbon electrode 2 that binds the antigen substance is desirable to select the density of the monoclonal antibody 3 to be immobilized so that it is proportional to the concentration of the antigenic substance to be detected.
  • the following method can be used as a method for immobilizing the monoclonal antibody 3 on the surface of the carbon electrode 2.
  • the surface of the carbon electrode 2 on which the monoclonal antibody 3 is immobilized may be preliminarily treated with the immobilized protein, and then contacted with a solution containing the monoclonal antibody.
  • the immobilized protein has a function for immobilizing the monoclonal antibody 3 on the surface of the carbon electrode 2.
  • proteins containing electrochemically active amino acids such as tryptophan and tyrosine may be used, and streptavidin, protein A, protein G and the like are preferably used. Needless to say, if the above-mentioned electrochemically active amino acid is contained in the substance to be measured (antigen substance), these amino acids may not be contained in the immobilized protein.
  • the solution used at the time of measurement may contain an electrochemically active amino acid.
  • the monoclonal antibody 3 may be immobilized on the surface of the carbon electrode 2 and then coated with a polymer material such as polyvinyl alcohol to improve the retention of the monoclonal antibody 3.
  • the film thickness of the coating film made of a polymer material such as polyvinyl alcohol formed so as to cover the monoclonal antibody 3 is usually in the range of 0.1 ⁇ m to 5 ⁇ m, preferably 0.5 ⁇ m to 2 ⁇ m. It is desirable to select a range.
  • the carbon electrode 2 after the immobilization of the monoclonal antibody 3 is mounted on a flexible substrate provided with wiring, and the wiring and the carbon electrode 2 are connected.
  • the connecting portion is coated with an insulating resin so as not to be in direct contact with the reaction solution for performing the antigen-antibody reaction.
  • a measuring unit having a function of applying a bias voltage between the working electrode and the counter electrode and measuring a current flowing between the working electrode and the counter electrode is usually arranged in an electrochemical measuring device. Therefore, the working electrode and the counter electrode are connected to an electrochemical measuring device to perform actual measurement.
  • the electrochemical measurement is preferably performed by the square wave voltammetry method with high measurement sensitivity. Usually when measuring by the square wave voltammetry method.
  • a three-electrode immunosensor having a reference electrode is provided.
  • the base current is measured using a solution that does not contain the antigen substance to be detected in a state where the antigen substance is not bound to the monoclonal antibody.
  • the response current is measured in a state where the antigenic substance is bound to the monoclonal antibody. The difference between the response current and the base current corresponds to a response current component caused by the antigen substance bound to the monoclonal antibody.
  • the concentration of the antigen substance to be detected in the sample solution containing the antigen substance to be detected can be determined based on the response current component caused by the antigen substance bound to this monoclonal antibody.
  • the following reaction can be used.
  • a bias voltage is applied between the working electrode and the counter electrode, in the monoclonal antibody 3 fixed to the carbon electrode 2, the hydroxyl group (—OH) of the tyrosine residue contained therein is oxidized and oxidized.
  • a current is generated.
  • the antigen is bound by the antigen-antibody reaction, oxidation of the tyrosine residue contained in the monoclonal antibody 3 to the hydroxyl group (—OH) is promoted.
  • an increase in oxidation current is observed in proportion to the amount of monoclonal antibody 3 binding the antigen substance.
  • the tyrosine can be an electrochemical measurement using another measurement principle.
  • tyrosine is added at a high concentration compared to the density of the immobilized monoclonal antibody 3 in the solution to be measured, the tyrosine contained in the monoclonal antibody 3 immobilized on the carbon electrode 2 and the solution
  • the ratio of the tyrosine contained in the solution is much higher in the vicinity of the carbon electrode. In that situation, the actually measured current corresponds to the oxidation current of tyrosine contained in the solution present in the immediate vicinity of the carbon electrode 2.
  • the concentration of tyrosine contained in the solution is high, and in this state, the amount of tyrosine contained in the solution present in the immediate vicinity of the carbon electrode surface is the amount of tyrosine contained in the monoclonal antibody 3.
  • the measured base current corresponds to the oxidation current caused by the high concentration of tyrosine contained in the solution present in the immediate vicinity of the carbon electrode surface.
  • the oxidation of tyrosine contained in the monoclonal antibody 3 bound to the antigen is promoted.
  • the size of the complex in which the antigen is bound to the monoclonal antibody 3 is significantly larger than the size of the monoclonal antibody 3 itself, and at least the volume ratio to be closed in the polyvinyl alcohol film covering the surface is increased. Yes.
  • the amount of tyrosine that penetrates the polyvinyl alcohol film covering the surface and can infiltrate to the very vicinity of the carbon electrode surface shows a relative decrease.
  • the amount of tyrosine that can infiltrate to the very vicinity of the surface of the carbon electrode 2 when the proportion of the antigen / antibody complex binding to the antigen increases.
  • the amount of tyrosine infiltrating in the very vicinity of the surface of the carbon electrode 2 is much higher than the amount of tyrosine present in the antigen / antibody complex. That is, the measured response current corresponds to an oxidation current caused by tyrosine infiltrating very close to the surface of the carbon electrode 2.
  • the measured response current is decreased, but the decreased amount is due to binding of the antigen in the monoclonal antibody 3 immobilized on the carbon electrode 2. It is proportional to the ratio of the antigen / antibody complex.
  • the surface of the antibody molecule fixed carbon electrode is covered with a polyvinyl alcohol film.
  • the film thickness of the polyvinyl alcohol film covering the surface is preferably selected in the range of 0.5 ⁇ m to 2 ⁇ m, and the monoclonal antibody 3 is preferably covered with the polyvinyl alcohol film.
  • the density of antibody molecules immobilized on the surface of the antibody molecule-immobilized carbon electrode is preferably selected in the range of 0.2 ⁇ g / mm 2 to 1.0 ⁇ g / mm 2 .
  • the concentration of tyrosine added to the solution to be measured is 2/3 to the saturation concentration of the saturation temperature in the liquid temperature at the time of measurement and the aqueous solvent constituting the solution so as to satisfy the high concentration condition. It is preferable to select the concentration range.
  • the present invention will be described more specifically by taking the first embodiment and the second embodiment of an immunosensor for detecting a peroxide derivative type explosive according to the present invention as an example.
  • (I) Synthesis of a dicarboxylic acid compound having the structure shown in formula (II) It has a ring structure having a characteristic ring structure and similarity to the trimeric acetone peroxide (TATP) of formula (I).
  • TATP trimeric acetone peroxide
  • a method for synthesizing a dicarboxylic acid compound (TATP3) having a structure represented by the formula (II) has already been reported in the literature (Non-patent Document 2: Organic & Biomolecular Chemistry Vol. 4, p.4431-4436 (2006)). .
  • a method for purifying a dicarboxylic acid compound (TATP3) having a structure represented by the formula (II) to be synthesized and a method for evaluating the purity thereof are also disclosed in this document.
  • the spiro ring structure carbon at the 9-position on the ring of 7,8,10,11,13,14-hexaoxa-spiro- [5.8] tetradecane
  • Both the atom and the carbon atom at the 12-position are asymmetric centers (chiral centers).
  • the meso-type dicarboxylic acid compound (TATP3) that can be expressed as (9R, 12S) has a three-dimensional structure having two-fold rotational symmetry. Yes.
  • the cis-form dicarboxylic acid compound (TATP3) that can be expressed as (9R, 12R) has a three-dimensional structure having a symmetry plane.
  • the dicarboxylic acid compound (TATP3) itself having a structure represented by the formula (II) does not exhibit immunogenicity.
  • TATP3 dicarboxylic acid compound having the structure shown in formula (II) on carrier protein
  • Keyhole Limpet Hemocyanin is selected as the carrier protein.
  • a modified carrier protein was prepared by binding a dicarboxylic acid compound (TATP3) represented by the formula (II) on the carrier protein by a carbodiimide method.
  • TATP3 dicarboxylic acid compound represented by the formula (II)
  • the following two modified carrier proteins were prepared and used as immunogens for immunization.
  • TATP3-KLH-DMSO Immunogen DMSO ((CH 3 ) 2 SO: Wako Pure Chemical Industries, Ltd.) as a reaction solvent
  • keyhole limpet hemocyanin A dicarboxylic acid compound (TATP3) represented by the formula (II) is bound on Keyhole Limpet Hemocyanin by the carbodiimide method to prepare a modified carrier protein (TATP3-KLH-DMSO immunogen).
  • the reaction solution using DMSO as a reaction solvent was allowed to stand at room temperature for 2 hours, and then allowed to stand at 4 ° C. for 12 hours to carry out the reaction.
  • 0.1 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP3-KLH-DMSO immunogen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP3-KLH-DMSO immunogen) and unreacted carrier protein was used as a TATP3-DMSO (TATP3-KLH-DMSO immunogen) solution.
  • the carboxyl group (—COOH) of the dicarboxylic acid compound (TATP3) represented by the formula (II) with respect to the amino group (—NH 2 ) exposed on the surface of the carrier protein.
  • the dicarboxylic acid compound (TATP3) represented by the formula (II) binds on average 150 to 200 sites. is doing. That is, this corresponds to a state in which TATP3 is bound to the amino group of the side chain of the lysine residue on the surface of the carrier protein KLH.
  • TATP3-KLH-borate buffer immunogen Preparation of a modified carrier protein (TATP3-KLH-borate buffer immunogen) Using a borate buffer at pH 8.5 as a reaction solvent, a formula is formed on Keyhole Limpet Hemocyanin. A dicarboxylic acid compound (TATP3) shown in (II) is bound by a carbodiimide method to prepare a modified carrier protein (TATP3-KLH-borate buffer immunogen).
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.) is used as the binder carbodiimide.
  • the pH 8.5 borate buffer is 0.992 g boric acid (Wako Pure Chemical Industries), 1.906 g borax (Wako Pure Chemical Industries), and 2.628 g NaCl (Wako Pure Chemical Industries).
  • TATP3 10 mg / (0.3 ml DMOS + 0.2 ml borate buffer) dissolved in a mixed solution of borate buffer and DMSO and keyhole limpet hemocyanin, 10 mg / 1.5 ml dissolved in borate buffer are mixed. After mixing, the binder carbodiimide, 50 mg / 0.5 ml, dissolved in borate buffer is added.
  • the reaction solution using the borate buffer as a reaction solvent was allowed to stand at room temperature for 2 hours and then allowed to stand at 4 ° C. for 12 hours to carry out the reaction.
  • 0.1 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP3-KLH-DMSO immunogen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP3-KLH-borate buffer immunogen) and unreacted carrier protein is converted into a TATP3-borate buffer (TATP3-KLH-borate buffer immunogen) solution. It was.
  • the carboxyl group (—COOH) of the dicarboxylic acid compound (TATP3) represented by the formula (II) with respect to the amino group (—NH 2 ) exposed on the surface of the carrier protein.
  • the dicarboxylic acid compound (TATP3) represented by the formula (II) averages 150 to 200. It is joined at a point.
  • a modified carrier protein was prepared by binding a dicarboxylic acid compound (TATP3) represented by the formula (II) on the carrier protein by a carbodiimide method.
  • TATP3 dicarboxylic acid compound represented by the formula (II)
  • the following modified carrier protein was prepared and used as an antigen to be used for confirmation of antibody reactivity.
  • TATP3-BSA Antigen a dicarboxylic acid compound (TATP3) represented by the formula (II) on bovine serum albumin (BSA)
  • TATP3-BSA antigen a dicarboxylic acid compound represented by the formula (II) on bovine serum albumin (BSA)
  • BSA bovine serum albumin
  • TATP3-BSA antigen a dicarboxylic acid compound represented by the formula (II) on bovine serum albumin
  • the modified carrier protein (TATP3-BSA antigen) is prepared by binding by the carbodiimide method.
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC ⁇ HCl) is used as the binder carbodiimide.
  • the pH 8.5 borate buffer is 0.992 g boric acid (Wako Pure Chemical Industries), 1.906 g borax (Wako Pure Chemical Industries), and 2.628 g NaCl (Wako Pure Chemical Industries). Is a buffer solution in which pH is adjusted to 8.5 by dissolving NaOH in 180 ml of pure water and adding NaOH.
  • TATP3 dissolved in DMSO, 10 mg / 0.1 ml, bovine serum albumin (BSA) dissolved in pure water, 30 mg / 1.5 ml, and borate buffer 0.9 ml are mixed. After mixing, the binder carbodiimide, 50 mg / 0.25 ml, dissolved in borate buffer is added.
  • BSA bovine serum albumin
  • the reaction solution using the borate buffer as a reaction solvent was allowed to stand at room temperature for 5 hours for reaction.
  • 0.3 ml of 1M glycine buffer (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to pH 8 was added to stop the reaction.
  • the modified carrier protein (TATP3-BSA antigen) and the unreacted carrier protein contained in the solution were purified by dialysis with PBS (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a protein solution containing the prepared modified carrier protein (TATP3-BSA antigen) and unreacted carrier protein was used as a TATP3-BSA (TATP3-BSA antigen) solution.
  • a solution prepared by mixing the above-mentioned two modified immunogen carriers and proteins and adding Freund's complete adjuvant (Funakoshi) is used.
  • the composition of the solution was 0.01 ml TATP3-DMSO (TATP3-KLH-DMSO immunogen) solution, 0.01 ml TATP3-borate buffer (TATP3-KLH-borate buffer immunogen) solution, 0.07 ml PBS and 0.01 ml of Freund's complete adjuvant (Funakoshi) are mixed uniformly.
  • Sensitization was performed by subcutaneously injecting 1.0 ml of the above solution into a 12-week-old mouse (SLC: C57BL / 6). On the 22nd, 35th, and 49th days after the first sensitization (first day), 1.0 ml of the solution was subcutaneously injected, and booster immunization was performed.
  • the polyclonal antibody contained in the obtained antiserum is presumed to contain a plurality of types of antibodies specific for the above-mentioned two types of modified immunogen carriers and proteins used for immunization. First, it is verified that an antibody exhibiting a specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) is present in the polyclonal antibody.
  • TATP3 dicarboxylic acid compound
  • the modified carrier protein for antigen (TATP3-BSA antigen) prepared using bovine serum albumin (BSA) instead of Keyhole Limpet Hemocyanin (Keyhole Limpet Hemocyanin)
  • BSA bovine serum albumin
  • Keyhole Limpet Hemocyanin Keyhole Limpet Hemocyanin
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • PBS PBS
  • 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 3 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate. The antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate.
  • the antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the measurement result denoted as “buffer” corresponds to the amount of antibody reacted with TATP3-BSA (TATP3-BSA antigen).
  • TATP3-BSA antigen reacts with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) bound on bovine serum albumin (BSA). It is an antibody. Therefore, it was verified that the polyclonal antibody contained in the obtained antiserum contains an antibody having a specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II).
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • 50 ⁇ l of TATP (AQ Standard) PBS solution is added to the ELISA measurement plate so that the final concentration is 100 ppm.
  • 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • the final concentration of 100 ppm of TATP (molecular weight 222.4) contained in the reaction solution corresponds to 0.45 mM.
  • TATP3-BSA antigen TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeling enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • PBS PBS
  • 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS 50 ⁇ l of a solution obtained by diluting the obtained antiserum 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeled enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the absorbance at 450 nm measured when the PBS solution of TATP is added is compared with the absorbance measured at 450 nm when PBS is added. As a result, it was confirmed that when the PBS solution of TATP was added, the absorbance at 450 nm was reduced as compared with the case where PBS was added. That is, it was confirmed that antibodies having cross-reactivity with TATP exist in the obtained antiserum.
  • the obtained antiserum polyclonal antibody contained an antibody exhibiting cross-reactivity with trimeric acetone peroxide (TATP) represented by the formula (I).
  • the anti-mouse IgG-POD-labeled antibody has specificity to the mouse IgG1-type antibody, and is an antibody that exhibits cross-reactivity with trimeric acetone peroxide (TATP) represented by the formula (I).
  • TATP trimeric acetone peroxide
  • the spleen is removed from the mouse on the 66th day, and spleen cells are prepared.
  • the HAT medium is a RPMI 1640 medium with an appropriate amount of HAT supplement (manufactured by Invitrogen) added. In the first embodiment, 20 ⁇ l of HAT supplement is added per 1 ml of RPMI 1640 medium.
  • HT medium is obtained by adding an appropriate amount of HT supplement (manufactured by Invitrogen) to RPMI1640 medium. In the first embodiment, 20 ⁇ l of HT supplement is added per 1 ml of RPMI 1640 medium.
  • the hybridoma cells dispensed on the microplate were cultured for 2 weeks to establish hybridoma cell lines, respectively.
  • the monoclonal antibody produced in the culture supernatant of each hybridoma cell line is a monoclonal antibody having a specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) was confirmed. Furthermore, among those that have been verified to be a monoclonal antibody having specific reactivity with the dicarboxylic acid compound (TATP3) itself represented by the formula (II), a trimeric acetone peroxide represented by the formula (I) ( Antibodies showing cross-reactivity to TATP) were selected.
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • PBS PBS
  • 50 ⁇ l of a solution obtained by diluting the culture supernatant of each hybridoma cell line 100 times with PBS is added. It is allowed to stand at room temperature for 2 hours, and the monoclonal antibody is reacted with the TATP3-BSA (TATP3-BSA antigen).
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 3 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate. The antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • an anti-mouse IgG-POD labeled antibody solution (Funakoshi) diluted 2000 times is added to the plate.
  • the antibody that has been allowed to stand at room temperature for 1 hour and reacted with the antigen-modified carrier protein (TATP3-BSA antigen) on the plate is reacted with an anti-mouse IgG-POD-labeled antibody.
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeling enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • TATP3-BSA antigen reacts with the dicarboxylic acid compound (TATP3) itself represented by the formula (II) bound on bovine serum albumin (BSA). It is a monoclonal antibody.
  • TATP3-BSA TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • 50 ⁇ l of TATP in PBS is added to the ELISA measurement plate to a final concentration of 100 ppm.
  • 50 ⁇ l of a solution obtained by diluting the culture supernatant of each selected hybridoma cell line 100 times with PBS is added.
  • the antibody is reacted with the TATP3-BSA (TATP3-BSA antigen) after standing at room temperature for 2 hours.
  • a final concentration of 100 ppm of TATP contained in the reaction solution corresponds to 0.45 mM.
  • TATP3-BSA antigen TATP3-BSA antigen
  • TATP3-BSA antigen TATP3-BSA antigen
  • the liquid on the ELISA measurement plate is removed, and the plate is washed 4 times with 100 ⁇ l of each PBS. After the washing, 50 ⁇ l of ELISA peroxidase substrate (TMBZ, Funakoshi) solution is added to the plate.
  • TMBZ ELISA peroxidase substrate
  • the enzyme reaction is carried out for 60 minutes with the labeling enzyme peroxidase of the anti-mouse IgG-POD-labeled antibody, and then 50 ⁇ l of 1N sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added to stop the reaction.
  • the concentration of the reaction product by the enzyme reaction is determined by measuring the absorbance at 450 nm.
  • the monoclonal antibody contained in the culture supernatant of the hybridoma cell line can be determined as a monoclonal antibody exhibiting cross-reactivity with TATP.
  • FIG. 2 shows, as an example, measurement results of four monoclonal antibodies: mAb-T001 to mAb-T004 among the plurality of monoclonal antibodies selected by the secondary screening.
  • the measurement result expressed as “Borate buffer” is the measurement result by the ELISA method in the primary screening (vi-a), that is, TATP3-BSA (TATP3-BSA) in the situation where TATP does not exist. This corresponds to the amount of the monoclonal antibody reacted against the antigen).
  • the measurement result expressed as “100 ppm TATP” corresponds to the amount of monoclonal antibody reacted with TATP3-BSA (TATP3-BSA antigen) in the situation where the above-mentioned TATP coexists. Yes.
  • the monoclonal antibody selected by the primary screening of (vi-a) and the secondary screening of (vi-b) is cross-linked to trimeric acetone peroxide (TATP) represented by formula (I). It was confirmed to be a monoclonal antibody exhibiting reactivity.
  • TATP trimeric acetone peroxide
  • TATP trimeric acetone peroxide
  • the manufacturing method of the immunosensor is described below.
  • a 10 ⁇ 10 ⁇ 0.7 mm glass substrate is used as the substrate.
  • the glass substrate is ultrasonically cleaned in a nitric acid-hydrogen peroxide solution for 5 minutes. Thereafter, rinsing is performed with pure water, followed by drying.
  • Carbon paper (TGP-H-120, manufactured by Toray Industries Inc.) of the same size as the substrate surface is bonded to the surface of the glass substrate with silicone resin (SE9186 manufactured by Toray Dow Corning Silicone Co., Ltd.). A carbon electrode is used.
  • the carbon electrode After immobilizing antibody molecules on the surface, the carbon electrode is immersed in 1 w / v% polyvinyl alcohol for 1 hour. As a result, a polyvinyl alcohol film that covers the entire antibody molecule layer immobilized on the surface of the carbon electrode is formed.
  • the average film thickness of the polyvinyl alcohol film formed under the above conditions is about 1 to 2 ⁇ m.
  • the polyvinyl alcohol film is permeable to a water-soluble low-molecular compound.
  • a low-molecular compound having a molecular size of about the dicarboxylic acid compound (TATP3) represented by the formula (II) is the polyvinyl alcohol. It is possible to permeate the membrane and react with the immobilized antibody molecule.
  • the density of antibody molecules immobilized on the surface of the antibody molecule-immobilized carbon electrode is about 0.7 ⁇ g / mm 2 .
  • a plurality of antibody molecule-immobilized carbon electrodes having the same configuration were prepared according to the above-described antibody molecule immobilization and polyvinyl alcohol film coating conditions.
  • the immunosensor has a triode structure in which an antibody molecule-fixed carbon electrode is used as a working electrode, and includes a glass reference electrode and a platinum counter electrode.
  • the immunosensor performs measurement by the square wave voltammetry method using the triode structure.
  • TATP trimeric acetone peroxide
  • the following conditions are adopted as measurement conditions by the square wave voltammetry method.
  • Sweep range 0.1-1.2V; Pulse potential of square wave pulse: 40 mV; Application frequency of square wave pulse: 4 Hz; Step potential between each square wave pulse application: 10 mV First, the base current in a state where no antigen is bound to the monoclonal antibody mAb-T003 of the antibody molecule-fixed carbon electrode of the immunosensor is measured using one of the prepared antibody molecule-fixed carbon electrodes. .
  • the immunosensor is immersed in a phosphate buffer (0.01 M, pH 6.8) and left for several minutes. Thereafter, sweeping is performed once under the above conditions, and the base current is measured.
  • a phosphate buffer (0.01 M, pH 6.8)
  • the response current in a state where the antigen is bound to the monoclonal antibody mAb-T003 of the antibody molecule-fixed carbon electrode of the immunosensor is measured using the other one of the prepared antibody molecule-fixed carbon electrodes. .
  • a TATP phosphate buffer solution is prepared by adding TATP to the phosphate buffer so that the final concentration is 10 ppm (10 ⁇ g / ml).
  • the immunosensor is immersed in the TATP phosphate buffer solution and allowed to stand for several minutes. Thereafter, sweeping is performed once under the above conditions, and the response current in a state where TATP is bound to the monoclonal antibody mAb-T003 is measured.
  • FIG. 3 shows the measurement results of the base current in a state where no antigen is bound and the response current in a state where TATP is bound, which are measured using the two electrodes.
  • the measured value of the response current (TATP) in a state where TATP is bound is shown as a relative value with the measured value of the base current (phosphate buffer) being 100%.
  • the difference between the measured value of the response current (TATP) and the measured value of the base current (phosphate buffer) corresponds to an increase in current caused by TATP bound to the monoclonal antibody mAb-T003 of the antibody molecule-fixed carbon electrode. is doing. Therefore, in the immunosensor, the response current caused by TATP, which is bound to the monoclonal antibody mAb-T003 of the antibody molecule fixed carbon electrode, is clearly measured by adopting the above measurement conditions. In other words, it was verified that the concentration of TATP contained in the solution can be measured using the immunosensor.
  • the second embodiment of the present invention is a peroxide derivative type explosive detection configured using the antibody molecule fixed carbon electrode prepared in the first embodiment.
  • This is an example in which an immunosensor is used for measurement of trimeric acetone peroxide (TATP) under different measurement conditions.
  • TATP trimeric acetone peroxide
  • the immunosensor also performs measurement by the square wave voltammetry method using the tripolar structure described in (vii-c) above.
  • the following conditions are adopted as measurement conditions by the square wave voltammetry method.
  • Sweep range 0.1-1.2V; Pulse potential of square wave pulse: 40 mV; Application frequency of square wave pulse: 4 Hz; Step potential between each square wave pulse application: 10 mV
  • the base current is measured in a state where no antigen is bound to the monoclonal antibody mAb-T003 of the antibody molecule-fixed carbon electrode of the immunosensor.
  • the immunosensor is immersed in a phosphate buffer (0.01 M, pH 6.8) saturated with tyrosine (tyrosine concentration: about 2.1 mM (20 ° C.)) and left for several minutes. Thereafter, the base current is measured by sweeping once in the above tyrosine saturated solution under the above conditions. Since the solubility (g / 100 ml) of tyrosine in the phosphate buffer (0.01 M, pH 6.8) is 0.038 (20 ° C.), tyrosine exceeding the solubility is present in the phosphate buffer. It only has to be included. It is sufficient that tyrosine having the solubility or higher is contained in the phosphate buffer. Actually, it is sufficient that tyrosine is added at a high concentration of 1.4 mM (20 ° C.) or higher in the solution to be measured.
  • the response current in a state where the antigen is bound to the monoclonal antibody mAb-T003 of the antibody molecule fixed carbon electrode of the immunosensor is measured.
  • a TATP tyrosine saturated phosphate buffer solution is prepared by adding TATP to the tyrosine saturated phosphate buffer to a final concentration of 10 ppm (10 ⁇ g / ml).
  • the immunosensor is immersed in the tyrosine-saturated phosphate buffer solution of TATP and left for several minutes. Thereafter, the TATP is swept once in the tyrosine-saturated phosphate buffer solution under the above conditions, and the response current in a state where TATP is bound to the monoclonal antibody mAb-T003 is measured.
  • FIG. 4 shows the measurement results of the base current in a state where no antigen is bound and the response current in a state where TATP is bound.
  • the measured value of the base current in the figure, phosphate buffer
  • TATP in the figure the measured value of the response current in the state where TATP is bound
  • the following measurement is used as the electrochemical measurement method of the immunosensor.
  • the oxidation current of tyrosine existing in the immediate vicinity of the carbon electrode is measured.
  • the ratio existing in the vicinity of the carbon electrode is contained in the solution.
  • the tyrosine is in a very high situation.
  • the current actually measured corresponds to the oxidation current of tyrosine contained in the solution.
  • the concentration of tyrosine contained in the solution is a saturated concentration, and passes through the polyvinyl alcohol film covering the surface during the immersion treatment in advance. A state in which a saturated concentration of tyrosine is present is achieved. In that state, the amount of tyrosine infiltrating very close to the surface of the carbon electrode is much larger than the amount of tyrosine contained in the monoclonal antibody molecule. That is, the measured base current corresponds to the oxidation current caused by the saturated concentration of tyrosine that has infiltrated in the immediate vicinity of the carbon electrode surface.
  • the concentration of tyrosine contained in the solution is a saturated concentration.
  • the tyrosine is passed through the polyvinyl alcohol film covering the surface to the very vicinity of the carbon electrode surface. Infiltrated. At that time, the size of the complex in which the antigen is bound to the monoclonal antibody molecule is significantly larger than the size of the monoclonal antibody molecule itself, and at least the volume ratio to be enclosed in the polyvinyl alcohol film covering the surface is increased. Yes.
  • the amount of tyrosine that penetrates the polyvinyl alcohol film covering the surface and can infiltrate to the very vicinity of the carbon electrode surface shows a relative decrease.
  • the amount of tyrosine that can infiltrate to the very vicinity of the carbon electrode surface decreases.
  • the ratio also increases.
  • the amount of tyrosine infiltrating very close to the surface of the carbon electrode is at a much higher level than the amount of tyrosine present in the antigen / antibody complex. That is, the measured response current corresponds to an oxidation current caused by tyrosine that has infiltrated in the very vicinity of the carbon electrode surface.
  • the measured response current is reduced compared to the measured base current, but the amount of decrease is bound to the antigen in the monoclonal antibody molecule immobilized on the carbon electrode. It is proportional to the ratio of the antigen / antibody complex.
  • the measured base current is caused by the oxidation current of tyrosine contained in the monoclonal antibody immobilized on the carbon electrode. Therefore, when the measurement of the base current is completed, a considerable amount of tyrosine contained in the monoclonal antibody immobilized on the carbon electrode is oxidized. Therefore, measurement of response current in a state where TATP is bound to a monoclonal antibody by an antigen-antibody reaction is performed using another antibody molecule-fixed carbon electrode.
  • the measured base current corresponds to an oxidation current caused by a saturated concentration of tyrosine that has infiltrated very close to the surface of the carbon electrode. . Therefore, the oxidation of tyrosine contained in the monoclonal antibody immobilized on the carbon electrode accompanying the measurement of the base current is not negligible, but remains in a negligible amount. Therefore, after measurement of the base current, the monoclonal antibody immobilized on the carbon electrode is not substantially subjected to tyrosine oxidation, and the binding ability to the antigen is not substantially changed. Therefore, it is possible to measure the response current in a state where TATP is bound to the monoclonal antibody, using the antibody molecule fixed carbon electrode used for the measurement of the base current as it is.
  • the measured response current corresponds to the oxidation current caused by tyrosine infiltrating in the very vicinity of the surface of the carbon electrode.
  • Oxidation of tyrosine contained in the formed monoclonal antibody is slightly increased as compared with the measurement of the base current.
  • both the decrease in the amount of tyrosine infiltrating very close to the surface of the carbon electrode and the increase in the amount of tyrosine contained in the monoclonal antibody molecule binding the antigen are both immobilized on the carbon electrode. It is proportional to the proportion of the antigen-antibody complex that binds the antigen in the monoclonal antibody molecule. As a result, the difference between the measured base current and the measured response current is the ratio of the antigen / antibody complex that binds to the antigen in the monoclonal antibody molecule immobilized on the carbon electrode.
  • the measurement principle used in the second embodiment is that the antigen-antibody complex that binds the antigen in the monoclonal antibody molecule immobilized on the carbon electrode. It enables a quantitative evaluation of the proportion of occupancy.
  • the measurement of the base current and the measurement of the response current are performed using another antibody molecule-immobilized carbon electrode. It is necessary to use two antibody molecule-immobilized carbon electrodes produced under exactly the same conditions.
  • the measurement principle used in the second embodiment has the advantage that the measurement of the base current and the measurement of the response current can be performed using one antibody molecule fixed carbon electrode. Specifically, the concentration of TATP contained in the sample to be measured is usually selected to be in a low concentration range. In that case, according to the measurement principle utilized in the first embodiment, a slight difference in the characteristics of the two antibody molecule-immobilized carbon electrodes used, in particular, a slight difference in the density of the immobilized monoclonal antibody is measured.
  • the measurement principle used in the second embodiment uses a single antibody molecule-immobilized carbon electrode. Therefore, with each individual antibody molecule-immobilized carbon electrode, the density of the immobilized monoclonal antibody is small. Differences are not a factor in introducing relatively large systematic errors.
  • An immunosensor for detecting a peroxide derivative explosive according to the present invention is for the purpose of easily detecting a peroxide derivative explosive to be detected, for example, trimeric acetone peroxide (TATP). It can be suitably used.
  • TATP trimeric acetone peroxide
  • Hybridoma cell line NECP-C57Z 3B-7E, based on the Budapest Treaty, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center In addition, an international deposit (May 12, 2009) has been made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Combustion & Propulsion (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 対象となる過酸化物誘導体型の爆薬に対する結合能を有する抗体を新たに創製し、創製された抗体を利用して、抗原抗体反応を応用して、対象の過酸化物誘導体型の爆薬を検出可能な免疫センサと、その作製方法を提供する。対象となる過酸化物誘導体型の爆薬、例えば、トリアセトントリペルオキシドに対する結合能を有する抗体として、該過酸化物誘導体と類似する構造を有する3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸に対するモノクローナル抗体のうち、該過酸化物誘導体型の爆薬に対する交叉反応性を示すものを選択し、抗原抗体反応を介して、対象の過酸化物誘導体を選択的に検出する免疫センサを製造する。

Description

爆発物検出用の免疫センサおよびその製造方法
 本発明は、爆薬として使用される、過酸化物誘導体に対する結合能を有するモノクローナル抗体を利用して、該過酸化物誘導体の検出を行う免疫センサ、ならびに、該免疫センサの製造方法に関する。
 爆薬として使用される有機化合物、例えば、TNT(2,4,6-トリニトロトルエン)、RDX(ヘキソーゲン;1,3,5-トリニトロ-1,3,5-トリアジナン)、ペンスリット(四硝酸ペンタエリスリット:C(CH2ONO2)4)は、その分子内にニトロ基を有している。これら爆薬に利用される、各種のニトロ化合物の検出には、前記特徴を利用して、ニトロ基形状の窒素を検出する手法が採用されている。各種のニトロ化合物を対象とする、爆発物検出用スキャナーは、前記の測定原理を応用している。
 一方、分子内にニトロ基を有していない、有機過酸化物型の爆薬も知られている。例えば、過酸化アセトン、特には、三量体型のTATP(C18:トリアセトントリペルオキシド)、あるいは、ヘキサメチレントリペルオキシドジアミン(HMTD)など、分子内にジオキシ結合(-O-O-)を具えている、過酸化物誘導体が、古くから知られている。これら有機過酸化物型の爆薬は、その分子内にニトロ基を有していないため、各種のニトロ化合物を対象とする、爆発物検出用スキャナーでは検出できない。
 なかでも、過酸化アセトン、特には、下記の式(I)に示す構造を有する、三量体型のTATP(C18:トリアセトントリペルオキシド)は、比較的に入手が容易な原料、アセトンと過酸化水素水、ならびに、酸触媒として利用する、硫酸、塩酸を使用して、実験室的規模で合成ができる。また、結晶性がよく、融点91℃の白色結晶として、単離、精製ができる。
Figure JPOXMLDOC01-appb-C000005
 上記の特徴が災いして、三量体型のTATP(C18:トリアセトントリペルオキシド)を初めとする、有機過酸化物型の爆薬は、過去に、爆発物テロ事件において、爆薬として使用されている。
Analytical Chemistry, Vol. 75, No.4, p.731-735 (2003) Chemistry Letters, Vol.35, No.10, p.1126-1127(2006) Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006)
 有機過酸化物型の爆薬を使用する、爆発物テロを未然に防止するためには、上記の有機過酸化物型の爆薬を検知し、有機過酸化物型の爆薬を使用する、爆発物を見つけ出すことは必要である。有機過酸化物型の爆薬、例えば、過酸化アセトンは、C,H,Oで構成される低分子化合物である。そのため、従来、その検知技術として、UV照射とフロロセンス検出を合わせた高速液体クロマトグラフィー法が用いられてきた(非特許文献1:Analytical Chemistry, Vol. 75, No.4, p.731-735 (2003))。しかしながら、対象物質は、爆薬であるため、測定時の安全性を考慮した、適正な濃度範囲へと濃度調整する操作を始めとして、測定操作が複雑であることから、誰にでも簡便に利用可能な測定手段ではなかった、その上、一回あたりの測定コストが高く、測定時間も10分以上を必要とし、多数の試料について、測定を行う上での、課題となっている。
 有機過酸化物型の爆薬についても、各種のニトロ化合物を対象とする、爆発物検出用スキャナーと同程度の簡便さで、多数の試料について、選択的に検出を行うことが可能な爆発物検出用センサの開発が望まれている。
 溶液試料中に含まれる、低分子化合物を検出する方法として、対象の低分子化合物に対する結合能を有する抗体を利用して、抗原抗体反応を応用して、対象の低分子化合物の濃度を測定する免疫測定法が、一部の低分子化合物では成功している。例えば、式(I)に示す構造を有する、三量体型のTATPを初めとする、有機過酸化物型の爆薬化合物自体は、免疫原性を示さないため、該有機過酸化物型の爆薬化合物に特異的な抗体は、これまで報告されていない。仮に、該有機過酸化物型の爆薬化合物に対して選択的な結合能を有する抗体が入手できれば、この選択的な結合能を有する抗体を利用する、免疫測定法は、該有機過酸化物型の爆薬化合物検出用センサの開発に利用できる可能性が高い。
 本発明は、前記の課題を解決するものである。すなわち、本発明の目的は、対象となる過酸化物誘導体型の爆薬に対する結合能を有する抗体を新たに創製し、創製された抗体を利用して、抗原抗体反応を応用して、対象の過酸化物誘導体型の爆薬を検出可能な免疫センサと、その作製方法を提供することにある。
 本発明の目的は、例えば、対象の過酸化物誘導体型の爆薬として、過酸化アセトン、特には、下記の式(I)に示す構造を有する、三量体型のTATP(C18:トリアセトントリペルオキシド)に対する結合能を有する抗体を新たに創製し、創製された抗体を利用して、抗原抗体反応を応用して、該式(I)に示す過酸化物誘導体型の爆薬を検出可能な免疫センサと、その作製方法を提供することにある。
 TATP(3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane):
Figure JPOXMLDOC01-appb-C000006
 本発明者らは、上記の課題を解決すべく、先ず、対象の過酸化物誘導体型の爆薬に対する結合能を有する抗体を新たに創製する手法を検討した。
 対象の過酸化物誘導体型の爆薬自体は免疫原性を示さないことは、既に判明している。一方、免疫原性を持たない低分子量化合物であっても、キャリア・タンパク質上に該低分子量化合物を結合させ、該低分子量化合物により修飾された修飾タンパク質とすると、免疫原として機能する場合がある(非特許文献1:Chemistry Letters, Vol.35, No.10, p.1126-1127(2006))。この手法を利用して、免疫原性を持たない低分子量化合物に対して特異的な反応性を示す抗体を作製した事例は少なくないが、全ての低分子量化合物に対して有効というものではない。すなわち、修飾タンパク質において、該低分子量化合物が結合されている部位が、実際に、免疫原性を示すか否かは、その部位の立体構造に依存するため、全ての低分子量化合物に対して有効というものではない。
 但し、例えば、式(I)に示す構造を有する、三量体型の過酸化アセトン(TATP)自体は、キャリア・タンパク質上に結合させ、修飾タンパク質を作製する際に利用可能な官能基を有してなく、前記の手法を適用できない。
 さらに、本発明者らは、抗原抗体反応においては、抗体は、本来の抗原と類似する構造を有する物質に対しても反応性を示す現象、所謂、交叉反応性を示す場合があることに着目した。すなわち、対象の低分子量化合物に代えて、該低分子量化合物と類似する構造を有する抗原に対する特異的な抗体を多数種創製すると、この多数種の抗体群のうちに、対象の低分子量化合物に対して、交叉反応性を示す抗体が存在する可能性があることに想到した。
 本発明者らは、実際に、式(I)に示す構造を有する、三量体型の過酸化アセトン(TATP)において、特徴的な構造は、その環構造であり、該環構造と構造的な類似性を有する低分子量化合物多数種のうち、キャリア・タンパク質上に結合された際、得られる修飾タンパク質が免疫原性を示すものを探索した。次いで、探索された、修飾タンパク質を免疫原として、マウスを免疫することで創製される抗体多数種のうち、式(I)の三量体型の過酸化アセトン(TATP)に対して、交叉反応性を示す抗体が存在するか、否かについて、探索を行った。上記の二段回の探索過程を実施したところ、幸運にも、下記の式(II)に示す化合物が、キャリア・タンパク質上に結合された際、得られる修飾タンパク質が免疫原性を示し、該修飾タンパク質を免疫原として、マウスを免疫することで創製される抗体多数種のうちに、交叉反応性を示す抗体が存在することが見出された。
 3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)
Figure JPOXMLDOC01-appb-C000007
 具体的には、式(II)に示すジカルボン酸化合物をキャリア・タンパク質上に結合させて得られる修飾タンパク質を免疫原として、マウスを免疫することで創製された、式(II)に示す化合物に対する抗体を産生する、一群のハイブリドーマ細胞株を作製し、この一群のハイブリドーマ細胞株から、式(I)の三量体型の過酸化アセトン(TATP)に対して、交叉反応性を示す抗体を産生する、ハイブリドーマ細胞株数種を選別することができた。
 この選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体は、少なくとも、免疫動物として利用したマウスの内因性物質とは、交叉反応性を示さないが、式(II)に示すジカルボン酸化合物と、式(I)の三量体型の過酸化アセトン(TATP)に対する反応性を具えていることが確認された。
 以上の一連の知見に加えて、本発明者らは、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体を固定化した上で、式(I)の三量体型の過酸化アセトン(TATP)と抗原抗体反応を行わせた際、該モノクローナル抗体に結合される式(I)の三量体型の過酸化アセトン(TATP)の量は、試料溶液中の式(I)の三量体型の過酸化アセトン(TATP)の濃度と、比例しており、定量的な検出に利用できることも確認した。
 特に、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体に結合された、式(I)の三量体型の過酸化アセトン(TATP)は、周囲の溶液中に含有される式(I)の三量体型の過酸化アセトン(TATP)の濃度を零とすると、すなわち、洗浄処理を施すと、凡そ、1分間のうちに、実質的に結合されていた式(I)の三量体型の過酸化アセトン(TATP)の解離が完了することも確認した。すわなち、抗原抗体反応を利用する免疫センサに応用した際、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体に一旦結合された式(I)の三量体型の過酸化アセトン(TATP)を、洗浄処理によって、解離する際、その処理時間として、1分間を選択することができることが確認された。換言すると、抗原抗体反応を利用する免疫センサに応用した際、前記の処理時間の洗浄処理を行うことで、該免疫センサの再利用が可能であることの確認がなされた。
 実際に、抗原抗体反応を利用する免疫センサの定量性を検証する上では、該免疫センサの抗体に結合されている抗原物質の量を別途に測定する必要がある。その際、前記の処理時間の洗浄処理を行うことで、該免疫センサのモノクローナル抗体に結合されていた式(I)の三量体型の過酸化アセトン(TATP)について、実質的に全量を解離させ、回収することができる。回収された式(I)の三量体型の過酸化アセトン(TATP)の量を別途定量することで、該抗原抗体反応を利用する免疫センサの定量性を検証することが可能となる。
 以上の一連の検証を行うことで、該選別されたハイブリドーマ細胞株数種が産生するモノクローナル抗体は、式(I)の三量体型の過酸化アセトン(TATP)の定量的な検出に利用可能な、抗原抗体反応を利用する免疫センサに好適に使用することが可能であることを確認した。
 さらに、本発明者らは、上記の式(I)の三量体型の過酸化アセトン(TATP)と、該式(I)の三量体型の過酸化アセトン(TATP)における特徴的構造と類似性を具えた構造を持つ式(II)に示すジカルボン酸化合物に対するモノクローナル抗体の組み合わせのみならず、対象の過酸化物誘導体型の爆薬自体は免疫原性を示さない場合、該過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクノーナル抗体を同様の手法で創製することが可能であることも見出した。その際、該過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクノーナル抗体多数種のうち、対象の過酸化物誘導体型の爆薬に対して交叉反応性を示す抗体を選別することが可能であり、選別される交叉反応性を示す抗体は、上記の抗原抗体反応を利用する免疫センサの作製に必要な特質を具えていることも見出した。
 本発明者らは、上述する一連の知見、ならびに、検証結果に基づき、本発明を完成させた。
 すなわち、本発明にかかる免疫センサは、
 過酸化物誘導体型の爆薬である、下記の式(I)の過酸化アセトン(TATP:3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane)を、抗原抗体反応を利用して検出する免疫センサであって、
Figure JPOXMLDOC01-appb-C000008
 該免疫センサは、少なくとも、
 前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、
 前記作用極に対する対極と、
 前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部とを具えてなり、
 前記抗原抗体反応に利用される抗体は、
 前記式(I)の過酸化アセトンに対して結合能を有するモノクローナル抗体である
ことを特徴とする免疫センサである。
 特には、
 前記式(I)の過酸化アセトンに対して結合能を有するモノクローナル抗体は、
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体であり、該式(I)の過酸化アセトン過酸化物に対して交叉反応性を有することが好ましい。
 その際、
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記の構成を有する本発明にかかる免疫センサにおいては、
 前記式(I)の過酸化アセトンに対する結合能を有するモノクローナル抗体は、
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するモノクローナル抗体であり、
 該式(I)の過酸化アセトンに対して交叉反応性を有する抗体であることが好ましい。
 その際、前記ヒト以外の哺乳動物は、マウスであることが好ましい。
 また、前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択することが好ましい。
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
 該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされていることが好ましい。
 例えば、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされていることが好ましい。
 さらには、前記抗原抗体反応に利用される抗体として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生する、前記式(II)に示す構造を有するジカルボン酸化合物に対するモノクローナル抗体を用いる形態とすることができる。
 上記の構成を有する本発明にかかる免疫センサにおいては、
 前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、前記作用極に対する対極は、同一の絶縁基板上に形成されていることが好ましい。
 前記抗原抗体反応に利用される抗体をその表面に固定化する電極材料は、カーボン材料であることが好ましい。
 その際、前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極に対して、前記対極として、白金電極を選択することが好ましい。
 さらには、前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極、前記作用極に対する対極として利用する白金電極に加えて、参照電極として機能する銀/塩化銀電極を具える構成を選択することができる。
 一方、本発明にかかる免疫センサの製造方法は、
 過酸化物誘導体型の爆薬である、下記の式(I)の過酸化アセトン(TATP:3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane)を、抗原抗体反応を利用して検出する免疫センサを製造する方法であって、
Figure JPOXMLDOC01-appb-C000010
 該免疫センサは、少なくとも、
 前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、
 前記作用極に対する対極と、
 前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部とを具えてなり、
 前記抗原抗体反応に利用される抗体は、
 前記式(I)の過酸化アセトンに対して結合能を有するモノクローナル抗体であり、
 該免疫センサを製造する方法は、少なくとも、
 前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極を形成する工程と、
 前記作用極に対する対極を形成する工程と、
 前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部を設ける工程とを具えている
ことを特徴とする免疫センサの製造方法である。
 特には、
 前記式(I)の過酸化アセトンに対する結合能を有するモノクローナル抗体は、
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体であり、該式(I)の過酸化アセトンに対して交叉反応性を有することが好ましい。
 その際、
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記の構成を有する本発明にかかる免疫センサの製造方法においては、
 前記式(I)の過酸化アセトンに対する結合能を有するモノクローナル抗体は、
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するモノクローナル抗体であり、
 該式(I)の過酸化アセトンに対して交叉反応性を有する抗体であることが好ましい。
 その際、前記ヒト以外の哺乳動物は、マウスであることが好ましい。
 また、前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択することが好ましい。
 前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
 該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされていることが好ましい。
 例えば、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされていることが好ましい。
 さらには、前記抗原抗体反応に利用される抗体として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM BP-11125)が産生する、前記式(II)に示す構造を有するジカルボン酸化合物に対するモノクローナル抗体を用いることが好ましい。
 上記の構成を有する本発明にかかる免疫センサの製造方法においては、
 前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、前記作用極に対する対極は、同一の絶縁基板上に形成されていることが好ましい。
 前記抗原抗体反応に利用される抗体をその表面に固定化する電極材料は、カーボン材料であることが好ましい。
 その際、前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極に対して、前記対極として、白金電極を選択することが好ましい。
 さらには、前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極、前記作用極に対する対極として利用する白金電極に加えて、参照電極として機能する銀/塩化銀電極を具える構成を選択することができる。
 本発明にかかる過酸化物誘導体型の爆薬検出用の免疫センサでは、過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体を利用しており、該モノクローナル抗体の該過酸化物誘導体型の爆薬に対する交叉反応性によって、抗原抗体反応を介して、対象の過酸化物誘導体型の爆薬を選択的に検出することが可能である。例えば、対象の過酸化物誘導体型の爆薬が、三量体型の過酸化アセトン(TATP)である際には、該三量体型の過酸化アセトン(TATP)と類似性を具えた構造を持つ低分子化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)に対するモノクローナル抗体を利用しており、該モノクローナル抗体の該過酸化物誘導体型の爆薬に対する交叉反応性によって、抗原抗体反応を介して、対象の過酸化物誘導体型の爆薬を選択的に検出することが可能である。特には、本発明にかかる過酸化物誘導体型の爆薬検出用の免疫センサを応用することによって、溶液試料中に含有される、対象の過酸化物誘導体型の爆薬の検出を簡便に行うことが可能となる。
図1は、本発明にかかる過酸化物誘導体型の爆薬検出用の免疫センサにおいて、検出対象の過酸化物誘導体型の爆薬を、抗原抗体反応を利用して検出するために使用される、モノクローナル抗体を電極材料の表面に固定化している作用極の一形態を模式的に示す図である。 図2は、本発明の第一の実施形態にかかる免疫センサにおいて利用可能な、3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)に対するモノクローナル抗体の、対象の過酸化物誘導体型の爆薬、三量体型の過酸化アセトン(TATP)に対する交叉反応性をELISA法により評価した結果を示すグラフである。 図3は、モノクノーナル抗体:mAb-T003を利用する、本発明の第一の実施態様にかかる免疫センサを用いて、溶液試料中に含まれる、三量体型の過酸化アセトン(TATP)の検出を行った結果の一例を示すグラフである。 図4は、モノクノーナル抗体:mAb-T003を利用する、本発明の第一の実施態様にかかる免疫センサを用いて、第二の実施態様に記載する測定手法を応用して、溶液試料中に含まれる、三量体型の過酸化アセトン(TATP)の検出を行った結果の一例を示すグラフである。
 (符号の説明)
 図1中に示す符号は、下記の意味を有する。
1 絶縁基板
2 カーボン電極
3 モノクローナル抗体
 以下に、本発明にかかる過酸化物誘導体型の爆薬検出用の免疫センサと、その製造方法に関して、詳細に説明する。
 まず、本発明にかかる過酸化物誘導体型の爆薬の免疫センサの作製に利用される、過酸化物誘導体型の爆薬に対する結合能を有する抗体と、その製造方法に関して、より詳しく説明する。
 低分子量の有機化合物に対する抗体を創製する手段として、対象の低分子量の有機化合物自体は免疫原性を示さない場合、キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法がある(非特許文献1:Chemistry Letters, Vol.35, No.10, p.1126-1127(2006))。
 具体的には、低分子量の有機化合物が反応性の官能基、例えば、アミノ基(-NH)、ヒドロキシル基(-OH)、スルファニル基(-SH)、カルボキシル基(-COOH)を具えている場合、該反応性の官能基を利用して、他の反応性官能基を有する有機化合物を共有結合的に連結することが可能である。キャリア・タンパク質は、複数のアミノ酸残基が連結されてなるペプチド鎖で構成される、三次元構造を有しているが、その表面には、側鎖上に反応性官能基を有するアミノ酸残基が複数個存在している。従って、三次元構造を有している、キャリア・タンパク質の表面に存在する、アミノ酸残基の側鎖上の反応性官能基を利用して、反応性の官能基を具えている、低分子量の有機化合物を結合させることが可能である。この表面に低分子量の有機化合物に因る修飾が施された、修飾キャリア・タンパク質は、非天然型タンパク質分子であり、哺乳動物自体の内因性タンパク質分子と相違する、異質な物質として、認識される頻度が高い。特に、低分子量の有機化合物に因る修飾が施された部位は、免疫原性を発揮する頻度が高い。修飾キャリア・タンパク質表面の、低分子量の有機化合物に因る修飾が施された部位が、免疫原性を発揮する場合、該修飾キャリア・タンパク質を用いて、哺乳動物を免疫すると、該修飾キャリア・タンパク質に対する、特異的な抗体が創製される。
 該修飾キャリア・タンパク質の表面において、免疫原性を発揮する部位(抗原決定基)が複数存在する可能性がある。その場合、前記複数の免疫原性を発揮する部位(抗原決定基)のそれぞれに特異的な抗体複数種が創製される。創製された、修飾キャリア・タンパク質に特異的な抗体複数種のうちには、その修飾に利用した低分子量の有機化合物自体を、免疫原性を発揮する部位(抗原決定基)とする抗体が存在する頻度が高い。修飾に利用した低分子量の有機化合物自体に対する結合能に基づき、スクリーニングを行うことで、修飾に利用した低分子量の有機化合物自体を、免疫原性を発揮する部位(抗原決定基)とする抗体を選別することが可能である。
 但し、修飾キャリア・タンパク質の表面に存在する抗原決定基に対して、高い交叉反応性を示す抗体を、免疫対象の哺乳動物が既に保持している場合には、この交叉反応性を示す抗原決定基に対する、新たな抗体の創製は起こらない。すなわち、免疫対象の哺乳動物が既に保持している抗体が示す高い交叉反応性を利用して、該修飾キャリア・タンパク質に対する免疫反応が可能である場合、この交叉反応性を示す抗原決定基に対する、新たな抗体の創製は起こらない。
 さらには、修飾が施された部位が、免疫原性を発揮する部位(抗原決定基)として機能する場合であっても、該抗原決定基に特異的な抗体は、修飾に利用した低分子量の有機化合物自体に対する結合能は高くない場合も、少なくない。
 すなわち、前記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法を利用して、修飾に利用した低分子量の有機化合物自体に特異的な抗体を創製できる、否かは、下記の要因に依存している。具体的には、対象の低分子量の有機化合物自体の立体構造、利用するキャリア・タンパク質との組み合わせ、ならびに、該キャリア・タンパク質上への結合形態、その修飾部位の選択、以上4つの要因に依存している。
 実際には、対象の低分子量の有機化合物自体の立体構造は既に決定されているため、残る3つの要因に関して、適切な組み合わせを選択できるか、否かは、多分に偶然性に依存したものである。すなわち、キャリア・タンパク質上への結合形態、その修飾部位は、利用するキャリア・タンパク質の種類に依存しており、また、対象の低分子量の有機化合物が有する反応性官能基の種類によって、制限される。対象の低分子量の有機化合物自体の立体構造によっては、残る3つの要因に関して、適切な組み合わせが選択できない場合もある。
 一方、過酸化物誘導体型の爆薬自体が、その分子内に反応性官能基を保持していない場合には、上記の前記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法を適用できない。勿論、過酸化物誘導体型の爆薬は、低分子量の有機化合物であり、それ自体は免疫原性を示さない。
 そのため、本発明では、対象の過酸化物誘導体型の爆薬における特徴的な構造と類似性を具えた構造を持つ低分子化合物に対する抗体多数を創製し、その類似性を具えた構造を持つ低分子化合物に対する抗体多数のうち、対象の過酸化物誘導体型の爆薬に対して交叉反応性を有する抗体を選別する方法を採用している。
 以下に、対象の過酸化物誘導体型の爆薬として、下記の式(I)に示す構造を有する三量体型の過酸化アセトン(TATP:3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane)を例に採り、本発明で利用される抗体の作製方法をより具体的に説明する。
Figure JPOXMLDOC01-appb-C000012
 式(I)に示す三量体型の過酸化アセトン(TATP)の構造的特徴は、その環構造そのものである。この環構造の特徴を具え、分子内に反応性官能基を有する、低分子量の過酸化物型化合物のうち、哺乳動物自体に対する毒性は高くなく、また、キャリア・タンパク質上に結合させる際、その環構造を保持可能なものを探索した。
 その探索の結果、毒性が低い抗マラリア薬剤としての利用が検討されている、低分子量の過酸化物型化合物の一群のうち、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)が前記の要件を満足する候補として、選択された。
Figure JPOXMLDOC01-appb-C000013
 本発明では、式(II)に示す構造を有するジカルボン酸化合物の分子内に存在する反応性官能基である、カルボキシル基(-COOH)を利用して、キャリア・タンパク質表面に存在する反応性官能基、特に、アミノ基(-NH)との間で、アミド結合(-CO-NH-)を形成させることで、キャリア・タンパク質の表面に結合させる形態を選択することが好ましい。
 その際、キャリア・タンパク質は、上記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法(非特許文献1:Chemistry Letters, Vol.35, No.10, p.1126-1127(2006))において、既に利用されている、各種のキャリア・タンパク質を利用することができる。キャリア・タンパク質として、ウシ血清アルブミン、ウシサイログロブリン、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)などが好適に利用できる。
 キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する場合、免疫操作を施した哺乳動物中では、該修飾キャリア・タンパク質に対する特異的な抗体が創製される。その際、利用するキャリア・タンパク質自体も、一般に、免疫原性を具えているため、該修飾キャリア・タンパク質中の修飾部位に特異的な抗体以外に、キャリア・タンパク質自体の抗原決定基に特異的な抗体の創製もなされる。
 その点を考慮すると、免疫操作に利用される、修飾キャリア・タンパク質に対して、未修飾のキャリア・タンパク質の混入比率が低いことが好ましい。勿論、未修飾のキャリア・タンパク質の混入が無い、修飾キャリア・タンパク質を使用することがより好ましい。
 一方、利用されるキャリア・タンパク質上には、対象の低分子量の有機化合物を結合させ、修飾を行うことが可能な部位(修飾可能部位)が、一般に、複数箇所存在している。この修飾可能部位は、それぞれ、反応性官能基が存在しているが、その反応性には、一般に、差違が存在している。従って、反応性の高い修飾可能部位から優先的に、対象の低分子量の有機化合物の結合が進行し、対象の低分子量の有機化合物が消費されるため、反応性の低い修飾可能部位に対して、対象の低分子量の有機化合物の結合が達成される効率は一層低下する傾向がある。キャリア・タンパク質上に存在する、複数の修飾可能部位の全てに、対象の低分子量の有機化合物の結合を達成させるためには、反応に使用する対象の低分子量の有機化合物の量は、複数の修飾可能部位の合計に対して、相当に過剰な量に選択することが望ましい。例えば、キャリア・タンパク質上に存在する、修飾可能部位がN箇所である場合、反応に使用する対象の低分子量の有機化合物の量は、キャリア・タンパク質1分子当たり、最低限、N分子が必要であるが、少なくとも、少なくとも、50分子以上、好ましくは、60分子以上に選択することが望ましい。
 免疫操作は、該対象の低分子量の有機化合物を結合させた、修飾キャリア・タンパク質の免疫有効量を含む溶液を、例えば、免疫対象の哺乳動物に対して、注射により投与することにより行うことが望ましい。その注射による投与の形態では、皮下注射、皮内注射、静脈注射、または腹腔内投与の形態が利用可能である。通常、皮下注射によって、前記溶液を投与する。その際、前記修飾キャリア・タンパク質の免疫有効量を含む溶液に、各種のアジュバンドを添加することが好ましい。通常、該アジュバンドとしては、従来から免疫操作に利用されているアジュバンドが利用できる。利用可能なアジュバントとしては、フロイント完全アジュバントや水中油中水型乳剤、水中油乳剤、リポソーム、水酸化アルミニウムゲル、シリカアジュバンドがある。フロイント完全アジュバンドは、汎用されており、本発明でも、好適に利用できる。例えば、初回の免疫操作(感作)時には、該アジュバンドとして、フロイント完全アジュバントを利用することが好ましい。
 また、免疫操作では、初回の免疫操作(感作)後、所定の期間が経過した時点で、追加免疫を行う。この追加免疫においても、修飾キャリア・タンパク質の免疫有効量を含む溶液に、各種のアジュバンドを添加することが好ましい。例えば、追加免疫時にも、該アジュバンドとして、フロイント完全アジュバントを利用することが好ましいが、フロイント不完全アジュバントを利用することでも、相当の効果が得られる。
 初回の免疫操作(感作)後、実施される追加免疫は、複数回行うことが望ましい。その間隔は、前回の免疫操作(感作)に対する免疫反応に伴う、血液中の抗体濃度が極大を示し、抗体濃度の減少期となった時点で、追加免疫を行うことが望ましい。前回の免疫操作(感作)後、血液中の抗体濃度が極大に達するまでの日数は、通常、用いる免疫原の体内での代謝速度に依存する。従って、追加免疫の間隔は、用いる免疫原の種類、対象の免疫動物の種類、その健康状態に依存する。マウスなどの小動物を免疫動物に利用する際には、初回の免疫操作(感作)後、例えば、2週間、4週間、6週間、8週間後に、追加免疫を実施する形態を選択できる。
 科学的には、免疫対象の哺乳動物の種類は問わないが、倫理的な観点から、ヒト以外の哺乳動物から選択する。モノクローナル抗体を産生するハイブリドーマ細胞を創製する場合、免疫対象の哺乳動物に利用可能な、ヒト以外の哺乳動物としては、マウス、ラット、ヤギなどを選択することができる。
 免疫対象の哺乳動物としては、該修飾キャリア・タンパク質に対して、交叉反応性を示す抗体を既に保持している哺乳動物は好ましくない。すなわち、当該免疫対象の哺乳動物は、後天的に獲得した免疫が無い個体であることが、一般に好ましい。前記の要件を考慮すると、各種の免疫原性物質に曝される機会が本質的にない環境下において、出産後、生育された哺乳動物を利用することが好ましい。あるいは、出産後、免疫操作を施すことが可能な程度に生育するまでの期間が短い哺乳動物を利用することが好ましい。これらの条件を考慮すると、医学的な研究に利用される、血統的に確立されている小型の哺乳動物を利用することがより好ましい。具体的には、各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどが好ましく、特には、マウスまたはラット、更には、マウスを利用することがより好ましい。
 免疫操作に先立ち、免疫動物として利用される、ヒト以外の哺乳動物において、該修飾キャリア・タンパク質の作製に利用される、キャリア・タンパク質自体の免疫原性と、該キャリア・タンパク質に対する特異的な抗体が創製される免疫条件を予め調査することが望ましい。上記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法(非特許文献1:Chemistry Letters, Vol.35, No.10, p.1126-1127(2006))において、既に利用されている、各種のキャリア・タンパク質に関しては、各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどについて、前記の事項は、既に調査されており、その報告が利用できる。
 また、上記のキャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を免疫原に利用する手法(非特許文献1:Chemistry Letters, Vol.35, No.10, p.1126-1127(2006))において、既に報告されている成功例を参照して、各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどについて、修飾キャリア・タンパク質の免疫有効量を相当の確度で推定することも可能である。
 各種の新規な抗体の創製に利用されている、マウス、ラット、ラビットなどに対する、免疫操作の手順は、既に報告されている成功例で利用された手順に沿って、選択することが望ましい。
 免疫対象の哺乳動物として、マウスまたはラットを選択する場合、初回の免疫操作(感作)を実施する齢は、その後の追加免疫の回数、その間隔を考慮して、選択される。具体的には、複数回の追加免疫を終了した後、当該免疫動物の血液中に、免疫原に特異的な抗体が存在することを検証する必要がある。従って、複数回の追加免疫を終了する時点で、当該免疫動物が抗体を生産する能力が低下する齢に達しないように、初回の免疫操作(感作)を実施する齢を選択することが好ましい。初回の免疫操作(感作)後、複数回の追加免疫を終了するまでの期間を、8週間程度に選択する場合、マウスまたはラットでは、初回の免疫操作(感作)を実施する齢は、10~15週齢の範囲に選択することが好ましく、通常、12週齢程度に選択することがより好ましい。マウスまたはラットでは、12週齢程度に達すると、十分な抗体を生産する能力を有しており、新規な抗体を創製する能力が最も高くなることが知られている。
 式(II)に示す構造を有するジカルボン酸化合物は、公知の化合物であり、その合成方法は、文献に既に報告されている(非特許文献2:Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006))。該式(II)に示す構造を有するジカルボン酸化合物は、室温において、固体であるため、キャリア・タンパク質上に該化合物を結合させる反応は、該化合物を溶解可能な反応溶媒を利用して実施する必要がある。一方、利用されるキャリア・タンパク質は、溶媒の種類によっては、変性を受ける場合がある。従って、利用されるキャリア・タンパク質の変性を引き起こさず、同時に、該化合物を溶解可能な反応溶媒を選択する必要がある。
 従来、キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、修飾キャリア・タンパク質を調製する際に利用された、各種の反応溶媒中から、前記の式(II)に示す構造を有するジカルボン酸化合物を溶解可能な反応溶媒を選択することが好ましい。実際に、前記の反応溶媒の選択を進めたところ、特に、好ましい反応溶媒として、ジメチルスルホン(DMSO:(CHSO)とホウ酸緩衝液が選択された。
 ジメチルスルホン(DMSO:(CHSO)は、非水溶媒であるが、キャリア・タンパク質を変性させずに溶解可能であり、また、式(II)に示す構造を有するジカルボン酸化合物を相当に高濃度で溶解可能な溶媒である。
 また、ホウ酸緩衝液は、その緩衝作用が発揮できるpH領域は、6.8~9.2の範囲であるが、上記の式(II)に示す構造を有するジカルボン酸化合物を溶解可能な溶媒系としては、通常、pHを8.2~8.7の範囲に選択する組成、特には、pHを、8.5前後に調整可能な組成を選択することが好ましい。
 式(II)に示す構造を有するジカルボン酸化合物の分子内に存在する反応性官能基である、カルボキシル基(-COOH)を利用して、キャリア・タンパク質表面に存在する反応性官能基、特に、アミノ基(-NH)との間で、アミド結合(-CO-NH-)を形成させる場合、カルボジイミドを利用するアミド結合形成法を利用することが好ましい。カルボジイミドを利用するアミド結合形成では、結合剤カルボジイミドとして、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド(DIC)、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド(EDC)、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド塩酸塩(EDAC)などを利用することができる。該結合剤カルボジイミドの量は、式(II)に示す構造を有するジカルボン酸化合物1分子当たり、5分子~20分子の範囲に選択することが好ましい。
 一方、式(II)に示す構造を有するジカルボン酸化合物の使用量は、キャリア・タンパク質の表面に露呈する、アミノ基(-NH)の総数に基づき、決定する。その際、キャリア・タンパク質1分子の表面に露呈する、アミノ基(-NH)の総数がN個である場合、式(II)に示す構造を有するジカルボン酸化合物の使用量を、該キャリア・タンパク質1分子当たり、N×3分子~N×10分子の範囲に選択することが好ましい。その結果として、該キャリア・タンパク質1分子当たり、式(II)に示す構造を有するジカルボン酸化合物が、1/2×N分子~N分子の範囲で、結合している、修飾キャリア・タンパク質を調製することが望ましい。
 本発明では、上記の免疫操作に利用する、免疫原として、キャリア・タンパク質上に対象の低分子量の有機化合物を結合させ、得られる修飾キャリア・タンパク質を利用している。免疫操作によって、新たに創製される、該修飾キャリア・タンパク質に特異的な抗体複数種のうちに、利用したキャリア・タンパク質上に結合していない、該低分子量の有機化合物自体に対しても高い反応性を示す抗体が実際に存在することを、先ず検証する。
 上記の最終回の追加免疫を終了した後、免疫原として利用する、該修飾キャリア・タンパク質に特異的な抗体の血液中濃度の有意な上昇が見出される時点で、当該免疫動物から採血し、採取した血液から、抗血清を調製する。この抗血清中に含まれる、該修飾キャリア・タンパク質に特異的な抗体複数種のうちに、利用したキャリア・タンパク質上に結合していない、該低分子量の有機化合物自体に対しても高い反応性を示す抗体が実際に存在することを、検証する。
 すなわち、該低分子量の有機化合物自体を抗原決定基とする、ポリクローナル抗体の有無を検証する。複数種の抗体を含有している抗血清中に、特定の抗原決定基に特異的に結合する抗体が存在することを検証する手段としては、酵素免疫測定法(ELISA法)が好適に利用される。酵素免疫測定法(ELISA法)は、特定の抗原決定基に対する抗体の特異的な反応性を利用するため、選択性が高く、特に、抗血清中に含有されている、特定の抗原決定基に対する抗体の濃度が不明な場合に、その抗体価を簡便に評価することが可能である。
 本発明では、利用したキャリア・タンパク質上に結合していない、該低分子量の有機化合物自体に対しても高い反応性を示す抗体の検出を行うため、酵素免疫測定法(ELISA法)で利用する抗原として、該低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質を利用する。勿論、その別種のキャリア・タンパク質自体は、該修飾キャリア・タンパク質に特異的な抗体複数種と反応しないことが必要である。
 免疫原の作製に利用されるキャリア・タンパク質と、前記の酵素免疫測定法(ELISA法)で利用する抗原の作製に利用される別種のキャリア・タンパク質を、免疫原の作製に好適に利用されるキャリア・タンパク質の群から、互いに相違する二種のキャリア・タンパク質の組み合わせを選択することが好ましい。
 前記のキャリア・タンパク質の組み合わせでは、該キャリア・タンパク質自体の抗原決定基は、通常、相違しており、該修飾キャリア・タンパク質に特異的な抗体複数種が、前記別種のキャリア・タンパク質自体に反応性を示す可能性を排除できる。また、前記の互いに相違する二種のキャリア・タンパク質の組み合わせでは、該低分子量の有機化合物を結合可能な部位の局所的な構造(部分アミノ酸配列)が実質的に一致する可能性も極めて低い。従って、前記の組み合わせでは、免疫原の修飾キャリア・タンパク質に特異的な抗体複数種のうち、該低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質に対して結合能を示す抗体は、該低分子量の有機化合物自体に結合する抗体と見做すことができる。
 特に、前記の酵素免疫測定法(ELISA法)で利用する抗原の作製に利用される別種のキャリア・タンパク質として、ブロッキング用タンパク質として、汎用されるウシ血清アルブミンを選択し、一方、免疫原の作製に利用されるキャリア・タンパク質として、ウシ血清アルブミン以外の汎用のキャリア・タンパク質、例えば、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択することがより好ましい。前記の酵素免疫測定法(ELISA法)で利用する、修飾キャリア・タンパク質型の抗原の作製に利用される別種のキャリア・タンパク質として、ウシ血清アルブミンを選択すると、その修飾キャリア・タンパク質型の抗原の、ウシ血清アルブミン部分に非選択的に抗体分子が結合する現象も排除される。さらに、ウシ血清アルブミンをキャリア・タンパク質とする、該修飾キャリア・タンパク質型の抗原は、ELISAプレート上に、高密度で固定することが可能である。
 取得された抗血清中に、免疫原の作製に利用している、該低分子量の有機化合物自体に対する反応性を有する抗体が存在することを検証した後、該低分子量の有機化合物自体に対する反応性を有するポリクローナル抗体が、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す構造を有する三量体型の過酸化アセトン(TATP)自体に対して、交叉反応性を示すか否かを検証する。
 本発明において、前記抗体の交叉反応性の検証は、二種の抗原の抗体に対する競合反応を利用することが好ましい。
 目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す構造を有する三量体型の過酸化アセトン(TATP)自体は、低分子量の有機化合物であり、抗体との抗原抗体反応を行う際、その結合は、抗体分子の相補性決定部位の一つにより達成されると考えられる。また、上記の免疫操作に利用される、修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物も、抗体との抗原抗体反応を行う際、その結合は、抗体分子の相補性決定部位の一つにより達成されると考えられる。
 従って、抗体が交叉反応性を有する場合、免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物との結合に関与する、該抗体分子の相補性決定部位と、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)自体の結合に関与する、該抗体分子の相補性決定部位とは一致する可能性が極めて高い。その場合、該抗体分子の相補性決定部位に、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)が結合すると、免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物の結合を阻害する。この競争阻害の現象を利用することで、当該抗体分子の特定の相補性決定部位に対して、交叉反応性を示すか否かを検証することができる。
 具体的には、上記の免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対する反応性に検証に利用した、該類似の構造を有する低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質を、ELISAプレート上に固定化する。一方、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)は、該ELISA法において、抗原抗体反応を行わせる反応液中に、ポリクローナル抗体の含む抗血清とともに溶解させる。
 上記の競合反応が進行すると、前記反応液中に存在する、交叉反応性を示す抗体は、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と抗原抗体反応する結果、プレート上に固定化されている、修飾キャリア・タンパク質型の抗原との抗原抗体反応を介して、固定化される抗体分子の量が減少する。この競合反応に起因する、プレート上に固定化されている、修飾キャリア・タンパク質型の抗原との抗原抗体反応を介して、固定化される抗体分子量の減少を、酵素免疫測定法(ELISA法)を応用して検出する。
 この手法を利用することで、抗血清中に含有される、上記の免疫原の修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対するポリクローナル抗体中、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と交叉反応性を示す抗体が含まれることを検証することができる。
 換言すると、前記の検証がなされた抗血清は、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するポリクローナル抗体を含むものである。
 前記の目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と交叉反応性を示す抗体を産生していることの検証がなされた免疫動物の抗体産生細胞群を採取し、この抗体産生細胞群と、骨髄腫由来の細胞株の細胞とを細胞融合させ、一群のハイブリドーマ細胞を作製する。
 通常、前記の検証がなされた免疫動物から、その脾臓を摘出して、脾臓細胞群を調製する。この脾臓細胞群と、骨髄腫由来の細胞株の細胞とを細胞融合させ、一群のハイブリドーマ細胞を作製する。
 前記の細胞融合に利用される、骨髄腫由来の細胞株は、融合対象である、免疫動物由来の脾臓細胞と適合性を有することが必要である。また、細胞融合で創製されるハイブリドーマ細胞の増殖能は、細胞融合に利用される、骨髄腫由来の細胞株に依っており、増殖能力の優れた骨髄腫由来の細胞株を利用することが好ましい。
 例えば、免疫動物として、マウスを選択する場合、細胞融合に利用される、骨髄腫由来の細胞株として、マウスの骨髄腫由来の細胞株である、P3X63 Ag8.653、P3X63Ag8U、Sp2/O Ag14、FO・1、S194/5.XX0 BU.1等が好適に使用される。特に、細胞株P3X63Ag8Uの利用は、創製されるハイブリドーマ細胞の増殖能が高く、また、該ハイブリドーマ細胞の産生する抗体分子は、適正な組み立てがなされた全抗体であり、組み立ての完了していない抗体分子の断片を含まないので、より好ましい。
 例えば、免疫動物として、ラットを選択する場合、細胞融合に利用される、骨髄腫由来の細胞株として、ラットの骨髄腫由来の細胞株、210、RCY3.Ag1.2.3、YB2/0などが挙げられる。
 上記のハイブリドーマ細胞を創製するための細胞融合の手法として、例えば、ポリエチレングリコール法、センダイウイルスを用いた方法、電流を利用する方法などが挙げられる。ポリエチレングリコール法は、細胞毒性が少なく、融合操作も容易であり、特に、再現性が高いので、本発明により適している。すなわち、本発明では、免疫原の修飾キャリア・タンパク質に対する特異的なモノクローナル抗体を産生する、一群のハイブリドーマ細胞のうち、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を有するモノクローナル抗体を産生するハイブリドーマ細胞を選別する必要がある。創製される、一群のハイブリドーマ細胞のうち、前記の交叉反応性を有するモノクローナル抗体を産生するハイブリドーマ細胞が含まれる頻度は、決して高く無いので、スクリーニング対象の一群のハイブリドーマ細胞の細胞株数(母数)を大きくする必要がある。従って、より再現性の高い細胞融合手法を選択することが好ましく、ポリエチレングリコール法は、前記の要請に適合している。
 創製された、一群のハイブリドーマ細胞は、分散した上で、マイクロプレートに分注して、利用した骨髄腫由来の細胞株に応じて、適宜選択される公知の培養条件で増殖させる。上記の培養により確立される、一群のハイブリドーマ細胞の細胞株について、各ハイブリドーマ細胞の細胞株が産生するモノクローナル抗体について、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)と交叉反応性を示す抗体か否かを検証する。
 培養により確立される、一群のハイブリドーマ細胞の細胞株について、各ハイブリドーマ細胞の細胞株の培養上清を採取する。各ハイブリドーマ細胞の細胞株の培養上清は、該細胞株の産生するモノクローナル抗体を含んでいる。
 各ハイブリドーマ細胞の細胞株の培養上清に含まれるモノクローナル抗体が、免疫操作に利用される、修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対する反応性を有するか、否かを先ず検証する。
 その検証には、該類似の構造を有する低分子量の有機化合物を、別種のキャリア・タンパク質の表面に結合させた、別種の修飾キャリア・タンパク質を抗原とする、酵素免疫測定法(ELISA法)による検証手法が利用できる。その具体的な測定法は、上記の抗血清中に含まれるポリクローナル抗体の反応性に関する検証と、原理的には同じである。
 この検証によって、一群のハイブリドーマ細胞の細胞株中から、免疫操作に利用される、修飾キャリア・タンパク質の作製に利用される、類似の構造を有する低分子量の有機化合物自体に対する反応性を有するモノクローナル抗体を産生する、ハイブリドーマ細胞の細胞株が選別される。この一次スクリーニングで選別される、ハイブリドーマ細胞の細胞株の群について、該ハイブリドーマ細胞の細胞株の産生するモノクローナル抗体は、目的とする過酸化物誘導体型の爆薬、すなわち、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体か否かを検証する。
 この交叉反応性に関する検証は、上記の抗血清中に含まれるポリクローナル抗体の交叉反応性に関する検証と、原理的には同じ手法を適用することで行うが可能である。
 前記目的とする過酸化物誘導体型の爆薬、すなわち、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性の検証(二次スクリーニング)によって、目的とする過酸化物誘導体型の爆薬、すなわち、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体を産生する、ハイブリドーマ細胞の細胞株が選別される。なお、選択されるモノクローナル抗体のタイプは、酵素免疫測定法(ELISA法)に利用される、抗Ig抗体の示す抗体タイプ特異性に依存する。
 この二次スクリーニングによって、選別されるハイブリドーマ細胞の細胞株を使用して、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を生産することができる。
 選別されたハイブリドーマ細胞の細胞株のin vitro細胞培養を行い、その培養上清を回収し、含有されるモノクローナル抗体を精製することができる。また、選別されたハイブリドーマ細胞の細胞株を、免疫に利用したヒト以外の哺乳動物の腹腔内に接種すると、該腹腔内で増殖し、腹水内に産生されたモノクローナル抗体が蓄積される。その後、該腹水を採取して、含有されるモノクローナル抗体を精製することができる。
 腹水または培養上清中に含まれる、モノクローナル抗体の精製は、例えば、DEAE陰イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、硫安分画法、PEG分画法,エタノール分画法などを、適宜組み合わせ、目的の純度まで精製を施す。望ましい純度は、95%以上、より好ましくは98%以上である。例えば、目的とする過酸化物誘導体型の爆薬、例えば、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を、当該過酸化物誘導体型の爆薬の検出装置、あるいは、濃度の測定装置に利用する際には、夾雑物に対する反応性を具える抗体が混入すると、その確度を低減させる要因となる。その点を考慮すると、前記の純度まで精製を行うことが望ましい。
 (受託番号)
 なお、
 本発明に利用される、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を産生するハイブリドーマ細胞として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7Eが、ブタペスト条約に基づき、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国 茨城県つくば市東1丁目1番地中央第6、郵便番号305-8566)に、国際寄託(平成21年 5月12日付け)がなされている。
Figure JPOXMLDOC01-appb-T000014
 上記のハイブリドーマ細胞株は、後述する第一の実施態様に開示する手順によって、創製され、選別されたハイブリドーマ細胞株である。なお、ハイブリドーマ細胞株:NECP-C57Z 3B-7Eは、後述のモノクローナル抗体mAb-T003を産生するハイブリドーマ細胞株である。
 本発明においては、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を利用することで、下記の構成を有する免疫センサを作製することが好ましい。
 本発明にかかる免疫センサでは、
 検出対象の過酸化物誘導体型の爆薬を、抗原抗体反応を利用して、作用極上に固定して、該作用極と、対極との間にバイアス電圧を印加して、固定されている検出対象の過酸化物誘導体型の爆薬に起因する応答電流を測定する形態を採用する。そのため、
 該免疫センサは、少なくとも、
 前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、
 前記作用極に対する対極と、
 前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部とを具えている。
 まず、前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極の構成と、前記作用極に対する対極を説明する。
 本発明にかかる免疫センサでは、前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する、電気化学センサの構造を採用している。そのため、作用極と、対極を構成する電極材料として、作用極自体は、カーボン電極であり、前記作用極に対する対極は、白金対極である組み合わせを選択することが好ましい。
 該カーボン電極は、絶縁基板上に、各種の導電性カーボン材料を利用して作製される。その際、前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極は、図1に例示する構成とすることが好ましい。
 具体的には、絶縁基板上1にカーボン電極2を製作し、このカーボン電極2上にモノクローナル抗体3を固定化する。
 絶縁基板上1は、ガラス、石英、透明なプラスチックスなど、抗原抗体反応を行わせる反応液中においても、化学的な安定性を有する絶縁材料からなる基板であれば、特に限定されない。通常、絶縁基板上1には、強度と透明性の高いガラス基板が、好適に利用される。
 カーボン電極2の作製に利用される、導電性カーボン材料として、カーボンペーパー、グラファイトカーボン、カーボンナノチューブ、カーボンナノホーン、フラーレン、カーボン粉末などが利用できる。これら導電性カーボン材料を、適宜バインダー等を用いて、絶縁基板1上に、固着させ、カーボン電極2を形成する。
 該カーボン電極2の表面に、利用されるモノクローナル抗体3を、該抗体分子の重鎖の定常領域を利用して、固定化する。該カーボン電極2の表面に固定化される、モノクローナル抗体3の密度は、検出対象の抗原物質の濃度範囲に依存して選択される。すなわち、抗原抗体反応を行わせる反応液中に含有される、検出対象の抗原物質の濃度範囲の上限においても、該カーボン電極2の表面に固定化される、モノクローナル抗体の全てが、抗原物質と反応してしまう、所謂、飽和状態に達しないことが望ましい。具体的には、反応液中に含有される、検出対象の抗原物質の濃度範囲内では、該カーボン電極2の表面に固定化される、モノクローナル抗体のうち、該抗原物質を結合している比率は、該検出対象の抗原物質の濃度と比例するように、固定化される、モノクローナル抗体3の密度を選択することが望ましい。
 一般に、抗原抗体反応を利用する免疫センサにおいて、カーボン電極2の表面にモノクローナル抗体3を固定化する手法として、下記の手法が利用可能である。
 モノクローナル抗体3を固定化する、カーボン電極2の表面に、予め固定化タンパク質の処理を施しておき、続いて、モノクローナル抗体を含む溶液を接触させればよい。該固定化タンパク質は、モノクローナル抗体3をカーボン電極2の表面に固定化するための機能を有する。具体的な固定化タンパク質としては、電気化学的に活性なアミノ酸であるトリプトファンやチロシンを含むタンパク質を用いればよく、ストレプトアビジン、プロテインA、プロテインG等が好適に利用されている。また、測定対象物質(抗原物質)に前述の電気化学的に活性なアミノ酸が含まれていれば、固定化タンパク質にこれらのアミノ酸が含まれなくてもよいことはいうまでもない。また、測定対象物質(抗原物質)および固定化タンパク質の両者に含まれなくても、測定時に用いる溶液中に、電気化学的に活性なアミノ酸が含まれていてもよい。これらの選択は適宜、測定対象物質(抗原物質)に依って変えることが可能である。
 また、必要に応じて、モノクローナル抗体3をカーボン電極2の表面に固定化した後、ポリビニルアルコール等の高分子材料で被覆し、モノクローナル抗体3の保持力を向上させても良い。なお、モノクローナル抗体3を覆うように形成される、該ポリビニルアルコール等の高分子材料からなる被覆膜の膜厚は、通常、0.1μm~5μmの範囲、好ましくは、0.5μm~2μmの範囲に選択することが望ましい。
 続いて、モノクローナル抗体3の固定化を終えた、カーボン電極2は、配線が施されたフレキシブル基板に実装し、該配線とカーボン電極2との間を結線する。該結線部分は、抗原抗体反応を行う反応液と直接接しないように、絶縁性樹脂により被覆を施す。
 前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部は、通常、電気化学測定装置に配置されている。従って、前記作用極と対極を、電気化学測定装置に接続して、実際の測定を行う。
 該免疫センサを利用する測定では、その電気化学的測定は、測定感度の高い方形波ボルタンメトリ法により、実施されることが望ましい。該方形波ボルタンメトリ法による測定を行う場合、通常。前記作用極と対極に加えて、参照極を具える、三極構成の免疫センサを構成する。
 なお、該免疫センサを利用する測定では、検出対象の抗原物質を含まない溶液を利用して、モノクローナル抗体に抗原物質が結合していない状態で、ベース電流を測定する。一方、検出対象の抗原物質を含有する試料溶液を利用して、モノクローナル抗体に抗原物質が結合している状態で、応答電流を測定する。該応答電流と、ベース電流との差違が、モノクローナル抗体に結合された抗原物質に起因する応答電流成分に相当している。
 このモノクローナル抗体に結合された抗原物質に起因する応答電流成分に基づき、検出対象の抗原物質を含有する試料溶液中の、検出対象の抗原物質濃度を決定することができる。
 なお、上記の電気化学的測定では、次の反応を利用することができる。前記作用極と対極との間にバイアス電圧を印加すると、カーボン電極2に固定されている、モノクローナル抗体3においては、含まれているチロシン残基のヒドロキシル基(-OH)が酸化を受け、酸化電流が発生する。その際、抗原抗体反応によって、抗原が結合している場合、前記のモノクローナル抗体3中に含まれるチロシン残基のヒドロキシル基(-OH)に対する酸化が促進される。その結果、抗原物質を結合している、モノクローナル抗体3の量に比例した、酸化電流の増加が観測される。
 さらには、別の測定原理を応用した電気化学的測定とすることもできる。測定する溶液中に、固定化されているモノクローナル抗体3の密度と比較して、高濃度でチロシンを添加すると、カーボン電極2上に固定化されているモノクローナル抗体3中に含まれるチロシンと、溶液中に含有されているチロシンとを比較すると、カーボン電極の近傍に存在する比率は、溶液中に含有されているチロシンが格段に高い状況となる。その状況では、実際に測定される電流は、カーボン電極2の極く近傍に存在する溶液中に含有されているチロシンの酸化電流に相当している。
 カーボン電極2上に固定化されているモノクローナル抗体3に抗原が結合していない場合、該モノクローナル抗体3に含まれるチロシンの酸化は、促進されてない。一方、溶液中に含有されているチロシンの濃度は、高濃度であり、その状態では、カーボン電極表面の極く近傍に存在する溶液中に含まれるチロシンの量は、モノクローナル抗体3に含まれるチロシンの量と比較して、格段に多くなっている。すなわち、測定されるベース電流は、カーボン電極表面の極く近傍に存在する溶液中に含有される、該高濃度のチロシンに起因する酸化電流に相当している。
 カーボン電極2上に固定化されているモノクローナル抗体3に抗原が結合している場合、該抗原を結合しているモノクローナル抗体3に含まれるチロシンの酸化は、促進される。その際、モノクローナル抗体3に抗原が結合した複合体のサイズは、モノクローナル抗体3自体のサイズよりも有意に大きくなっており、少なくとも、表面を被覆するポリビニルアルコール膜中に閉める体積比率が増加している。それに付随して、表面を被覆するポリビニルアルコール膜を透過し、カーボン電極表面の極く近傍まで浸潤可能なチロシンの量は、相対的に減少を示す。カーボン電極2上に固定化されているモノクローナル抗体3中、抗原を結合している、抗原・抗体の複合体の占める比率が増すと、カーボン電極2表面の極く近傍まで浸潤可能なチロシンの量の減少比率も増す。その状態でも、カーボン電極2表面の極く近傍に浸潤している、チロシンの量は、抗原・抗体の複合体中に存在するチロシンの量と比較すると、格段に多い水準である。すなわち、測定される応答電流は、カーボン電極2表面の極く近傍に浸潤している、チロシンに起因する酸化電流に相当している。
 結果的に、測定されるベース電流と比較して、測定される応答電流は、減少するが、その減少量は、カーボン電極2上に固定化されているモノクローナル抗体3中、抗原を結合している、抗原・抗体の複合体の占める比率に比例する。
 前記の測定原理を応用する際、抗体分子固定カーボン電極の表面は、ポリビニルアルコール膜により被覆されている形態とすることが望ましい。表面を被覆するポリビニルアルコール膜の膜厚は、0.5μm~2μmの範囲に選択し、モノクローナル抗体3は、該ポリビニルアルコール膜により覆われた状態とすることが好ましい。また、該抗体分子固定カーボン電極の表面に固定化されている、抗体分子の密度は、0.2μg/mm~1.0μg/mmの範囲に選択することが好ましい。
 一方、測定対象の溶液中に添加されるチロシンの濃度は、高濃度の条件を満足するように、測定時の液温度、溶液を構成する水性溶媒中において、その飽和濃度の2/3~飽和濃度の範囲に選択することが好ましい。
 本発明にかかる過酸化物誘導体型の爆薬検出用の免疫センサの第一の実施態様、第二の実施態様を例に挙げ、本発明をより具体的に説明する。
 以下に例示する第一の実施態様、第二の実施態様の具体例は、本発明の最良の実施形態の一例であるが、本発明の技術的範囲は、該具体例に例示する形態に限定されるものではない。
 (第一の実施態様)
 以下に説明する、本発明の第一の実施態様にかかる過酸化物誘導体型の爆薬検出用の免疫センサでは、検出対象の過酸化物誘導体型の爆薬として、下記の式(I)に示す構造を有する、三量体型の過酸化アセトン(TATP:3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane)を選択している。
Figure JPOXMLDOC01-appb-C000015
 (i) 式(II)に示す構造を有するジカルボン酸化合物の合成
 前記式(I)の三量体型の過酸化アセトン(TATP)における特徴的な環構造と類似性を具えた環構造を内在している、式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)の合成法を説明する。以下、式(II)に示す構造を有するジカルボン酸化合物をTATP3と略称する。
Figure JPOXMLDOC01-appb-C000016
 式(II)に示す構造を有するジカルボン酸化合物(TATP3)の合成法は、文献に既に報告されている(非特許文献2:Organic & Biomolecular Chemistry Vol.4, p.4431-4436 (2006))。合成される式(II)に示す構造を有するジカルボン酸化合物(TATP3)の精製手法と、その純度の評価方法も、該文献に開示されている。
 式(II)に示す構造を有するジカルボン酸化合物(TATP3)において、そのスピロ環構造:7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデカンの環上の9位の炭素原子と、12位の炭素原子は、ともに、不斉中心(キラル中心)となっている。該9位の炭素原子と、12位の炭素原子の立体配置に関して、(9R、12S)と表記可能なメソ体型のジカルボン酸化合物(TATP3)は、二回回転対称性を有する立体構造を具えている。該9位の炭素原子と、12位の炭素原子の立体配置に関して、(9R、12R)と表記可能なシス体型のジカルボン酸化合物(TATP3)は、対称面を有する立体構造を具えている。
 本第一の実施態様では、前記二種の立体異性体が混合したものを利用している。なお、式(II)に示す構造を有するジカルボン酸化合物(TATP3)自体は、免疫原性を示さない。
 (ii) キャリア・タンパク質上への式(II)に示す構造を有するジカルボン酸化合物(TATP3)の固定
 キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択している。
 該キャリア・タンパク質上に、カルボジイミド法により、式(II)に示すジカルボン酸化合物(TATP3)を結合させ、修飾キャリア・タンパク質の調製を行った。本第一の実施態様では、下記の二種の修飾キャリア・タンパク質を調製し、免疫操作に利用する免疫原とした。
 (ii-a) 修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)の調製
 反応溶媒として、DMSO((CHSO:和光純薬工業社製)を用いて、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。
 DMSOに溶解したTATP3、10mg/0.3mlと、DMSOに溶解したキーホールリンペツトヘモシアニン(シグマアルドリッチジャパン社製)、10mg/1.7mlとを混合する。混合した後、DMSOに溶解した、前記結合剤カルボジイミド、50mg/0.5mlを添加する。
 該DMSOを反応溶媒とする反応液を、室温に2時間放置し、引き続き、4℃で12時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.1mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP3-DMSO(TATP3-KLH-DMSO免疫原)溶液とした。
 上記の結合剤カルボジイミドを利用する反応条件では、キャリア・タンパク質の表面に露呈するアミノ基(-NH)に対して、式(II)に示すジカルボン酸化合物(TATP3)のカルボキシル基(-COOH)を利用して、アミド結合(-CO-NH-)を形成することで、式(II)に示すジカルボン酸化合物(TATP3)が結合される。
 なお、上記の反応条件で調製された修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)上には、式(II)に示すジカルボン酸化合物(TATP3)が、平均して、150~200箇所結合している。すなわち、キャリア・タンパク質KLH表面のリジン残基側鎖のアミノ基に対して、TATP3が結合されている状態に相当する。
 (ii-b) 修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)の調製
 反応溶媒として、pH8.5のホウ酸バッファーを用いて、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。pH8.5のホウ酸バッファーは、0.992gのホウ酸(和光純薬工業社製)、1.906gのホウ砂(和光純薬工業社製)、および2.628gのNaCl(和光純薬工業社製)を180mlの純水に溶解させ、NaOHを加えて、pHを8.5に調整した緩衝溶液である。
 ホウ酸バッファーとDMSOの混合液に溶解したTATP3、10mg/(0.3mlDMOS+0.2mlホウ酸バッファー)と、ホウ酸バッファーに溶解したキーホールリンペツトヘモシアニン、10mg/1.5mlとを混合する。混合した後、ホウ酸バッファーに溶解した、前記結合剤カルボジイミド、50mg/0.5mlを添加する。
 該ホウ酸バッファーを反応溶媒とする反応液を、室温に2時間放置し、引き続き、4℃で12時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.1mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP3-KLH-DMSO免疫原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP3-ホウ酸バッファー(TATP3-KLH-ホウ酸バッファー免疫原)溶液とした。
 上記の結合剤カルボジイミドを利用する反応条件では、キャリア・タンパク質の表面に露呈するアミノ基(-NH)に対して、式(II)に示すジカルボン酸化合物(TATP3)のカルボキシル基(-COOH)を利用して、アミド結合(-CO-NH-)を形成することで、式(II)に示すジカルボン酸化合物(TATP3)が結合される。
 なお、上記の反応条件で調製された修飾キャリア・タンパク質(TATP3-KLH-ホウ酸バッファー免疫原)上には、式(II)に示すジカルボン酸化合物(TATP3)が、平均して、150~200箇所結合している。
 (iii) 式(II)に示すジカルボン酸化合物(TATP3)により修飾された、抗原用修飾キャリア・タンパク質の調製
 キャリア・タンパク質として、牛血清アルブミン(BSA)を選択している。
 該キャリア・タンパク質上に、カルボジイミド法により、式(II)に示すジカルボン酸化合物(TATP3)を結合させ、修飾キャリア・タンパク質の調製を行った。本第一の実施態様では、下記の修飾キャリア・タンパク質を調製し、抗体の反応性の確認に利用する抗原とした。
 抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)の調製
 反応溶媒として、pH8.5のホウ酸バッファーを用いて、牛血清アルブミン(BSA)上に式(II)に示すジカルボン酸化合物(TATP3)をカルボジイミド法によって結合させ、修飾キャリア・タンパク質(TATP3-BSA抗原)を調製する。該カルボジイミド法による結合形成では、結合剤カルボジイミドとして、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(和光純薬工業社製)を利用している。pH8.5のホウ酸バッファーは、0.992gのホウ酸(和光純薬工業社製)、1.906gのホウ砂(和光純薬工業社製)、および2.628gのNaCl(和光純薬工業社製)を180mlの純水に溶解させ、NaOHを加えて、pHを8.5に調整した緩衝溶液である。
 DMSOに溶解したTATP3、10mg/0.1mlと、純水に溶解した牛血清アルブミン(BSA)、30mg/1.5mlと、ホウ酸バッファー0.9mlを混合する。混合した後、ホウ酸バッファーに溶解した、前記結合剤カルボジイミド、50mg/0.25mlを添加する。
 該ホウ酸バッファーを反応溶媒とする反応液を、室温に5時間放置し、反応を行った。pHを8に調整した、1Mのグリシン緩衝液(和光純薬工業社製)0.3mlを添加し、反応を停止させた。そして、該液中に含まれる、修飾キャリア・タンパク質(TATP3-BSA抗原)と、未反応のキャリア・タンパク質は、PBS(和光純薬工業社製)透析を行って、精製した。調製された修飾キャリア・タンパク質(TATP3-BSA抗原)と、未反応のキャリア・タンパク質を含む、タンパク質溶液を、TATP3-BSA(TATP3-BSA抗原)溶液とした。
 (iv) 免疫原用修飾キャリア・タンパク質を用いる免疫操作
 対象のヒト以外の哺乳動物に対して、上記の二種の免疫原用修飾キャリア・タンパク質を用いて、感作を行う。本第一の実施態様では、免疫操作を施す、ヒト以外の哺乳動物として、マウス(SLC:C57BL/6)を選択している。
 また、免疫には、上記の二種の免疫原用修飾キャリア・タンパク質を混合し、フロイント完全アジュバント(フナコシ社製)を添加した溶液を用いる。該溶液の組成は、0.01mlのTATP3-DMSO(TATP3-KLH-DMSO免疫原)溶液、0.01mlのTATP3-ホウ酸バッファー(TATP3-KLH-ホウ酸バッファー免疫原)溶液、0.07mlのPBS、およびは0.01mlのフロイント完全アジュバント(フナコシ社製)を均一に混合したものである。
 感作(免疫操作)は、前記溶液1.0mlを、12週齢のマウス(SLC:C57BL/6)に皮下注射を行うことで行った。初回感作(初日)後、22日目、35日目、および49日目に、それぞれ、前記溶液1.0mlを皮下注射し、追加免疫を実施した。
 初回感作(初日)後、66日目に、該免疫したマウスから採血を行った。採血された血液から、抗血清を調製した。
 (v) 取得された抗血清中に含まれるポリクローナル抗体の交叉反応性の検証
 取得された抗血清中に含まれるポリクローナル抗体が、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すことを、競合ELISA法を利用して検証する。
 取得された抗血清中に含まれるポリクローナル抗体は、免疫操作に利用した、上記二種の免疫原用修飾キャリア・タンパク質に特異的な抗体複数種が混在していると推定される。該ポリクローナル抗体中に、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示す抗体が存在することを先ず検証する。
 具体的には、キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)に代えて、牛血清アルブミン(BSA)を用いて作製した、前記抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)に対する反応性を有する抗体が存在することを、ELISA法を利用して検証する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、PBSを50μl加える。次いで、取得された抗血清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、3回洗浄する。前記洗浄後、プレート上に、2000倍に希釈した抗マウスIgG-POD標識抗体(フナコシ社製)液、50μlを加える。室温で1時間放置し、プレート上の抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)と反応した抗体に、抗マウスIgG-POD標識抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。図1中に、「バッファー」と表記する測定結果は、TATP3-BSA(TATP3-BSA抗原)に対して、反応した抗体の量に相当している。
 上記のTATP3-BSA(TATP3-BSA抗原)に対する反応性を有する抗体は、牛血清アルブミン(BSA)上に結合されている、式(II)に示すジカルボン酸化合物(TATP3)自体に反応している抗体である。従って、取得された抗血清中に含まれるポリクローナル抗体中に、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示す抗体が存在することが検証された。
 次に、取得された抗血清のポリクローナル抗体中に含まれる、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示す抗体複数種のうちに、式(I)で示される三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在することを、競合ELISA法を利用して検証する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、終濃度が100ppmとなるように、TATP(アキュースタンダード社製)PBS溶液を50μl加える。次いで、取得された抗血清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。なお、反応液中に含まれるTATP(分子量222.4)の終濃度100ppmは、0.45mMに相当している。
 前記の反応時、プレート上の液中に、添加されている、TATPと抗体との間で抗原抗体反応が進行すると、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じる。結果的に、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応を介して、プレート上に固定化される抗体の量が減少する。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 また、TATPのPBS溶液に代えて、PBSを加えて、同様に反応を行う。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、PBSを50μl加える。次いで、取得された抗血清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 TATPのPBS溶液を添加した際に測定される、450nmの吸光度と、PBSを添加した際に測定される、450nmの吸光度とを比較する。その結果、PBSを添加した場合と比較して、TATPのPBS溶液を添加した際、450nmの吸光度の低下が生じていることが確認された。すなわち、取得された抗血清中には、TATPに対する交叉反応性を有する抗体が存在していることが確認された。
 従って、取得された抗血清のポリクローナル抗体中には、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在していることが検証された。
 また、前記抗マウスIgG-POD標識抗体は、マウスIgG1型抗体に特異性を有しており、前記式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体のタイプは、IgG1型であることが確認された。
 (vi) 式(II)に示す構造を有するジカルボン酸化合物(TATP3)に対するモノクノーナル抗体の創製
 取得された抗血清のポリクローナル抗体中には、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体が存在していることが検証された、マウスの抗体生産細胞群を利用して、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体を生産するハイブリドーマ細胞の作製を行っている。
 この検証がなされた、初回感作(初日)後、66日目のマウスから、脾臓を摘出し、脾臓細胞を調製する。
 調製されたマウスの脾臓細胞と、P3-X63-Ag8-Uマウスミエローマ細胞とを、細胞数5:1の比率で、RPMI1640培地(インビトロジェン社製)中、重合度1500の50%ポリエチレングリコール(和光純薬工業社製)存在下で、37℃、2分間混合し、細胞融合させる。前記細胞融合処理後、得られるハイブリドーマ細胞は、HAT培地(20%牛胎児血清)に懸濁した後、マイクロプレートに分注する。該マイクロプレートに分注した、ハイブリドーマ細胞を、炭酸ガスインキュベータ中、37℃、5%COの条件で培養する。前記培養中、4日に1回の割合で、培地の半量を、新しいHT培地(10%牛胎児血清)に交換する。
 HAT培地は、RPMI1640培地に、HATサプリメント(インビトロジェン社製)を適量添加したものである。本第一の実施態様では、RPMI1640培地1ml当たり、HATサプリメント20μlを添加している。
 HT培地は、RPMI1640培地に、HTサプリメント(インビトロジェン社製)を適量添加したものである。本第一の実施態様では、RPMI1640培地1ml当たり、HTサプリメント20μlを添加している。
 上記の培養条件で、マイクロプレートに分注した、ハイブリドーマ細胞を、2週間培養して、それぞれハイブリドーマ細胞株を確立した。
 次に、各ハイブリドーマ細胞株の培養上清中に産生されているモノクローナル抗体が、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体であるか、否かの確認を行った。さらに、式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体であることの検証がなされたもののうち、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示す抗体の選別を行った。
 (vi-a) 式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体であるか、否かの検証
 具体的には、各ハイブリドーマ細胞株の培養上清中に含まれるモノクローナル抗体が、牛血清アルブミン(BSA)を用いて作製した、前記抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)に対する反応性を有するモノクローナル抗体であるか、否かを、ELISA法を利用して検証する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、PBSを50μl加える。次いで、各ハイブリドーマ細胞株の培養上清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に、モノクローナル抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、3回洗浄する。前記洗浄後、プレート上に、2000倍に希釈した抗マウスIgG-POD標識抗体(フナコシ社製)液、50μlを加える。室温で1時間放置し、プレート上の抗原用修飾キャリア・タンパク質(TATP3-BSA抗原)と反応した抗体に、抗マウスIgG-POD標識抗体を反応させる。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 上記のTATP3-BSA(TATP3-BSA抗原)に対する反応性を有するモノクローナル抗体は、牛血清アルブミン(BSA)上に結合されている、式(II)に示すジカルボン酸化合物(TATP3)自体に反応しているモノクローナル抗体である。
 このスクリーニング手順に従って、各ハイブリドーマ細胞株の培養上清中に式(II)に示すジカルボン酸化合物(TATP3)自体に特異的な反応性を示すモノクローナル抗体が存在するか、否かの検証を行った。その結果、ハイブリドーマ細胞株合計13クローン中、13クローンが式(II)に示すジカルボン酸化合物(TATP3)自体に反応しているモノクローナル抗体を産生していることが確認された。
 (vi-b) 式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体の選別
 前記(vi-a)の一次スクリーニングで選別された、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示すモノクローナル抗体複数種から、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体を、競合ELISA法を利用して選別する。
 1000倍に希釈したTATP3-BSA(TATP3-BSA抗原)溶液を用い、ELISA測定用のプレートに自然吸着法で、該TATP3-BSA(TATP3-BSA抗原)を固定化する。未吸着のタンパク質を洗浄、除去した後、ELISA測定用のプレートに、終濃度が100ppmとなるように、TATPのPBS溶液を50μl加える。次いで、選別された各ハイブリドーマ細胞株の培養上清を、PBSで100倍に希釈した液、50μlを加える。室温で2時間放置し、該TATP3-BSA(TATP3-BSA抗原)に抗体を反応させる。なお、反応液中に含まれるTATPの終濃度100ppmは、0.45mMに相当している。
 前記の反応時、プレート上の液中に、添加されている、TATPと抗体との間で抗原抗体反応が進行すると、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じる。結果的に、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応を介して、プレート上に固定化される抗体の量が減少する。
 反応終了後、ELISA測定用のプレート上の液を除去し、各PBS100μlを用いて、4回洗浄する。前記洗浄後、プレート上に、ELISA用ペルオキシダーゼ基質(TMBZ,フナコシ社製)液、50μlを加える。抗マウスIgG-POD標識抗体の標識酵素ペルオキシダーゼによる、酵素反応を60分間行った後、1Nの硫酸(和光純薬工業社製)50μlを添加し、反応を停止させる。前記酵素反応による反応産物の濃度を、450nmの吸光度を測定することで決定する。
 抗原抗体反応時に、プレート上の液中に、TATPを添加していない場合と比較し、TATPを添加した際に、前記酵素反応による反応産物の濃度が減少を示す結果が得られると、TATPを添加した際に、競合が生じていると判断される。すなわち、かかる競合が生じている場合、そのハイブリドーマ細胞株の培養上清中に含まれるモノクローナル抗体は、TATPに対する交叉反応性を示すモノクローナル抗体と判断できる。
 このスクリーニング手順に従って、(vi-a)の一次スクリーニングで選別された、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示すモノクローナル抗体複数種から、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体の選別を行った。
 その結果、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体が複数種選別された。図2に、この二次スクリーニングにより、選別されたモノクローナル抗体複数種のうち、4種のモノクローナル抗体:mAb-T001~mAb-T004について、測定結果を一例として、示す。
 図2中に、「Borate buffer」と表記する測定結果は、上記(vi-a)の一次スクリーニングにおけるELISA法による測定結果、すなわち、TATPが存在していない状況において、TATP3-BSA(TATP3-BSA抗原)に対して、反応したモノクローナル抗体の量に相当している。図2中に、「100ppm TATP」と表記する測定結果は、上記のTATPが共存している状況において、TATP3-BSA(TATP3-BSA抗原)に対して、反応したモノクローナル抗体の量に相当している。
 図2に示す結果は、前記の反応時、プレート上の液中に、添加されている、TATPとモノクローナル抗体との間で抗原抗体反応が進行するため、プレート上に固定化されている、TATP3-BSA(TATP3-BSA抗原)との抗原抗体反応と、競合が生じていることを明確に示している。すなわち、該4種のモノクローナル抗体は、式(II)に示すジカルボン酸化合物(TATP3)自体に反応性を示すモノクローナル抗体であり、さらに、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体でもあることを検証する結果である。
 従って、前記の(vi-a)の一次スクリーニングと、(vi-b)の二次スクリーニングによって、選別されるモノクローナル抗体は、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体であることが確認された。
 なお、図2に示す結果は、抗原抗体反応を行う反応液中に、式(I)に示す三量体型の過酸化アセトン(TATP)を終濃度0.45mMとなるように添加すると、
mAb-T001~mAb-T004では、少なくとも、その10%程度は、TATPと結合している
ことを示唆する結果である。
 (vii) 式(II)に示す構造を有するジカルボン酸化合物(TATP3)に対するモノクノーナル抗体を利用する免疫センサの作製
 前記の(vii)で選別された、式(I)に示す三量体型の過酸化アセトン(TATP)に対する交叉反応性を示すモノクローナル抗体:mAb-T001~mAb-T004のうち、モノクローナル抗体mAb-T003を用いて、免疫センサの作製を行っている。
 免疫センサの製作方法を以下に記載する。
 (vii-a) カーボン電極の製作
 モノクローナル抗体の固定化に利用する、カーボン電極は、下記の手順に従って作製する。
 基板として、10×10×0.7mmのガラス基板を利用している。
 該ガラス基板の表面に付着する汚れを除去するため、該ガラス基板を硝酸-過酸化水素の溶液中で、5分間、超音波洗浄する。その後、純水でリンスし、その後、乾燥を行う。
 該基板表面と同サイズのカーボンペーパー(東レ社製,TGP-H-120)を、該ガラス基板の表面に、シリコーン樹脂(東レ・ダウ・コーニング・シリコーン(株)社製のSE9186)で貼り合わせ、カーボン電極とする。
 (vii-b) カーボン電極上への抗体分子の固定化
 作製されたカーボン電極を、濃度1mg/0.2mlのモノクローナル抗体mAb-T003の溶液中に、1時間浸漬する。次いで、表面にモノクローナル抗体mAb-T003が吸着しているカーボン電極を、3mMの1,3-ジアミノベンゼン(アルドリッチ(株)社製、USA、pH7.4のリン酸緩衝液および0.1Mの塩化ナトリウムを含む)溶液中に浸漬する。対極と該カーボン電極の間に電圧を印加し、0V→0.8Vを2mV/sで100回掃引し、その後、5時間、0.65Vで電圧を印加することで、抗体分子を固定化する。
 表面に抗体分子の固定化を行った後、該カーボン電極を、1w/v%のポリビニルアルコール中に1時間浸漬する。その結果、該カーボン電極の表面に固定化された抗体分子層全体を被覆する、ポリビニルアルコール膜が形成される。前記の条件で形成される、該ポリビニルアルコール膜の平均膜厚は、1~2μm程度である。
 なお、該ポリビニルアルコール膜は、水溶性低分子化合物に対しては、透過性であり、例えば、式(II)に示すジカルボン酸化合物(TATP3)程度の分子サイズの低分子化合物は、該ポリビニルアルコール膜を透過し、固定化されている抗体分子と反応することが可能である。
 該抗体分子固定カーボン電極の表面に固定化されている、抗体分子の密度は、0.7μg/mm程度である。
 前記の抗体分子の固定化、ポリビニルアルコール膜の被覆条件によって、同じ構成の抗体分子固定カーボン電極を複数作製した。
 (vii-c) 免疫センサの構成
 該ポリビニルアルコール膜の被覆を行った、抗体分子固定カーボン電極は、配線されたフレキシブル基板に実装する。該フレキシブル基板上の配線と、該抗体分子固定カーボン電極との間は、ワイヤーボンディングで結線し、結線部分をシリコーン樹脂で封止する。
 免疫センサは、抗体分子固定カーボン電極を作用極とし、ガラス参照極と白金対極を具える、三極構造に構成されている。
 該免疫センサでは、前記三極構造を利用して、方形波ボルタンメトリ法による測定を行う。
 (viii) 免疫センサの測定条件
 作製された免疫センサを利用して、抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に反応する、三量体型の過酸化アセトン(TATP)が実際に測定可能であることを検証する。
 本第一の実施態様では、方形波ボルタンメトリ法による測定条件として、下記の条件を採用している。
 掃引範囲:0.1-1.2V;
 方形波パルスのパルス電位:40mV;
 方形波パルスの印加周波数:4 Hz;
 各方形波パルス印加間のステップ電位:10 mV
 まず、作製された抗体分子固定カーボン電極複数のうち、一つの電極を用いて、免疫センサの抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に抗原が結合していない状態における、ベース電流を測定する。
 該免疫センサをリン酸バッファー(0.01M,pH6.8)中に浸漬し、数分間放置する。その後、前記条件で1回掃引し、ベース電流を測定する。
 作製された抗体分子固定カーボン電極複数のうち、他の一つの電極を用いて、免疫センサの抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に抗原が結合している状態における、応答電流を測定する。
 該リン酸バッファー中に、TATPを終濃度として、10ppm(10μg/ml)となるように添加した、TATPのリン酸バッファー溶液をそれぞれ調製する。
 該免疫センサを前記TATPのリン酸バッファー溶液中に浸漬し、数分間放置する。その後、前記条件で1回掃引し、モノクローナル抗体mAb-T003にTATPが結合している状態における、応答電流を測定する。
 図3に、上記二つの電極を利用して測定された、抗原が結合していない状態におけるベース電流、TATPが結合している状態における応答電流の測定結果を示す。図3中には、ベース電流の測定値(リン酸バッファー)を100%として、TATPが結合している状態における応答電流の測定値(TATP)を、相対値表示している。
 応答電流の測定値(TATP)と、ベース電流の測定値(リン酸バッファー)との差は、抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に結合されている、TATPに起因する電流増加に相当している。従って、該免疫センサにおいて、上記の測定条件を採用することで、抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に結合されている、TATPに起因する応答電流が明確に測定されている。換言するならば、溶液中に含有されているTATPの濃度を、該免疫センサを使用して測定可能であることが検証された。
 (第二の実施態様)
 以下に説明する、本発明の第二の実施態様は、前記の第一の実施態様において、作製された抗体分子固定カーボン電極を利用して構成される、過酸化物誘導体型の爆薬検出用の免疫センサを、別の測定条件において、三量体型の過酸化アセトン(TATP)の測定に利用する一例である。
 (ix) 免疫センサの構成
 該第二の実施態様においても、前記の第一の実施態様で作製された抗体分子固定カーボン電極を利用して、第一の実施態様の(vii-c)に記載する免疫センサと全く同じ構成の免疫センサを利用している。
 該免疫センサでも、前記(vii-c)に記載する三極構造を利用して、方形波ボルタンメトリ法による測定を行う。
 (x) 免疫センサの測定条件
 作製された免疫センサを利用して、抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に反応する、三量体型の過酸化アセトン(TATP)が実際に測定可能であることを検証する。
 本第二の実施態様では、方形波ボルタンメトリ法による測定条件として、下記の条件を採用している。 
 掃引範囲:0.1-1.2V;
 方形波パルスのパルス電位:40mV;
 方形波パルスの印加周波数:4 Hz;
 各方形波パルス印加間のステップ電位:10 mV
 まず、免疫センサの抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に抗原が結合していない状態における、ベース電流を測定する。
 該免疫センサを、チロシンが飽和した(チロシン濃度 約2.1mM(20℃))リン酸バッファー(0.01M、pH6.8)中に浸漬し、数分間放置する。その後、該チロシン飽和溶液中において、上記条件で1回掃引し、ベース電流を測定する。前記リン酸バッファー(0.01M、pH6.8)中おける、チロシンの溶解度(g/100ml)は、0.038(20℃)であるから、該溶解度以上のチロシンが、前記リン酸バッファー中に含まれていればよい。該溶解度以上のチロシンが、前記リン酸バッファー中に含まれていればよい。実際には、測定対象の溶液中に、チロシンが1.4mM(20℃)以上の高濃度で添加されていればよい。
 なお、チロシンの水への溶解度(g/dm)は、0.196(0℃)、0.453(25℃)と報告されている。
 つづいて、免疫センサの抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に抗原が結合している状態における、応答電流を測定する。
 前記チロシン飽和リン酸バッファー中に、TATPを終濃度として、10ppm(10μg/ml)となるように添加した、TATPのチロシン飽和リン酸バッファー溶液を調製する。前記免疫センサを、該TATPのチロシン飽和リン酸バッファー溶液中に浸漬し、数分間放置する。その後、該TATPのチロシン飽和リン酸バッファー溶液中において、上記条件で1回掃引し、モノクローナル抗体mAb-T003にTATPが結合している状態における、応答電流を測定する。
 図4に、抗原が結合していない状態におけるベース電流、TATPが結合している状態における応答電流の測定結果を示す。図4中には、ベース電流の測定値(図中、リン酸バッファー)を100%として、TATPが結合している状態における応答電流の測定値(図中、TATP)を、相対値表示している。
 TATPが結合している状態における応答電流の測定値(TATP)と、ベース電流の測定値(リン酸バッファー)との差は、抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に結合されている、TATPに起因する電流減少に相当している。従って、該免疫センサにおいて、上記の測定条件を採用することで、抗体分子固定カーボン電極のモノクローナル抗体mAb-T003に結合されている、TATPに起因する応答電流が明確に測定されている。換言するならば、溶液中に含有されているTATPの濃度を、該免疫センサを使用して測定可能であることが検証された。
 なお、本第二の実施形態では、該免疫センサの電気化学測定方式とし、次の反応を利用している。該免疫センサにおいては、カーボン電極の極く近傍に存在するチロシンの酸化電流を測定する。その際、カーボン電極上に固定化されているモノクローナル抗体中に含まれるチロシンと、溶液中に含有されているチロシンとを比較すると、カーボン電極の近傍に存在する比率は、溶液中に含有されているチロシンが格段に高い状況となっている。その結果、実際に測定される電流は、溶液中に含有されているチロシンの酸化電流に相当している。
 カーボン電極上に固定化されているモノクローナル抗体分子に抗原が結合していない場合、該モノクローナル抗体分子に含まれるチロシンの酸化は、促進されてない。一方、溶液中に含有されているチロシンの濃度は、飽和濃度であり、予め、浸漬処理を施す間に、表面を被覆するポリビニルアルコール膜を透過し、カーボン電極表面の極く近傍には、該飽和濃度のチロシンが存在する状態を達成している。その状態では、カーボン電極表面の極く近傍に浸潤している、チロシンの量は、モノクローナル抗体分子に含まれるチロシンの量と比較して、格段に多くなっている。すなわち、測定されるベース電流は、カーボン電極表面の極く近傍に浸潤している、該飽和濃度のチロシンに起因する酸化電流に相当している。
 カーボン電極上に固定化されているモノクローナル抗体分子に抗原が結合している場合、該抗原を結合しているモノクローナル抗体分子に含まれるチロシンの酸化は、促進される。一方、溶液中に含有されているチロシンの濃度は、飽和濃度であり、予め、浸漬処理を施す間に、表面を被覆するポリビニルアルコール膜を透過し、カーボン電極表面の極く近傍まで、チロシンが浸潤している。その際、モノクローナル抗体分子に抗原が結合した複合体のサイズは、モノクローナル抗体分子自体のサイズよりも有意に大きくなっており、少なくとも、表面を被覆するポリビニルアルコール膜中に閉める体積比率が増加している。それに付随して、表面を被覆するポリビニルアルコール膜を透過し、カーボン電極表面の極く近傍まで浸潤可能なチロシンの量は、相対的に減少を示す。カーボン電極上に固定化されているモノクローナル抗体分子中、抗原を結合している、抗原・抗体の複合体の占める比率が増すと、カーボン電極表面の極く近傍まで浸潤可能なチロシンの量の減少比率も増す。その状態でも、カーボン電極表面の極く近傍に浸潤している、チロシンの量は、抗原・抗体の複合体中に存在するチロシンの量と比較すると、格段に多い水準である。すなわち、測定される応答電流は、カーボン電極表面の極く近傍に浸潤している、チロシンに起因する酸化電流に相当している。
 結果的に、測定されるベース電流と比較して、測定される応答電流は、減少するが、その減少量は、カーボン電極上に固定化されているモノクローナル抗体分子中、抗原を結合している、抗原・抗体の複合体の占める比率に比例する。
 上述の第一の実施形態で利用される測定原理では、測定されるベース電流は、カーボン電極上に固定化されているモノクローナル抗体中に含まれるチロシンの酸化電流に起因する。そのため、ベース電流の測定が完了した時点で、カーボン電極上に固定化されているモノクローナル抗体中に含まれるチロシンの相当量は、酸化されている。そのため、抗原抗体反応によって、TATPがモノクローナル抗体に結合した状態における応答電流の測定は、別の抗体分子固定カーボン電極を利用して行っている。
 一方、本第二の実施形態で利用される測定原理では、測定されるベース電流は、カーボン電極表面の極く近傍に浸潤している、飽和濃度のチロシンに起因する酸化電流に相当している。従って、ベース電流の測定に伴う、カーボン電極上に固定化されているモノクローナル抗体中に含まれるチロシンの酸化は、皆無では無いが、無視できる量に留まっている。従って、ベース電流の測定後、カーボン電極上に固定化されているモノクローナル抗体は、実質的にチロシンの酸化を受けてなく、抗原に対する結合能も、実質的に変化していない。そのため、ベース電流の測定に使用した、抗体分子固定カーボン電極をそのまま利用して、TATPがモノクローナル抗体に結合した状態における応答電流の測定を実施することが可能となっている。
 その際、測定される応答電流も、カーボン電極表面の極く近傍に浸潤している、チロシンに起因する酸化電流に相当しているが、勿論、応答電流の測定に伴う、カーボン電極上に固定化されているモノクローナル抗体中に含まれるチロシンの酸化は、ベース電流の測定時と比較すると、若干増している。
 カーボン電極表面の極く近傍に浸潤している、チロシンの量の減少量と、抗原を結合しているモノクローナル抗体分子に含まれるチロシンの量の増加量は、ともに、カーボン電極上に固定化されているモノクローナル抗体分子中、抗原を結合している、抗原・抗体の複合体の占める比率に比例している。その結果、測定されるベース電流と、測定される応答電流との差は、カーボン電極上に固定化されているモノクローナル抗体分子中、抗原を結合している、抗原・抗体の複合体の占める比率に比例する。この特徴を利用することで、本第二の実施形態で利用される測定原理は、カーボン電極上に固定化されているモノクローナル抗体分子中、抗原を結合している、抗原・抗体の複合体の占める比率の定量的な評価を可能としている。
 上述の第一の実施形態で利用される測定原理では、ベース電流の測定と、応答電流の測定は、別の抗体分子固定カーボン電極を利用して実施するため、定量的な評価を行う際、全く同じ条件で作製された、二つの抗体分子固定カーボン電極を使用する必要がある。本第二の実施形態で利用される測定原理は、一つの抗体分子固定カーボン電極を利用して、ベース電流の測定と、応答電流の測定を実施できるという利点を具えている。具体的には、測定する試料中に含有されるTATPの濃度は、通常、低い濃度範囲となるように選択される。その場合、第一の実施形態で利用される測定原理では、使用する二つの抗体分子固定カーボン電極の特性の僅かな差、特に、固定化されているモノクローナル抗体の密度の僅かな差が、測定されたベース電流と応答電流との差に、相対的に大きな系統的な誤差を導入する要因となる。極端な場合、実際には、測定する試料中には、TATPが含まれていない場合でも、使用する二つの抗体分子固定カーボン電極間において、固定化されているモノクローナル抗体の密度の僅かな差があると、見かけ上、測定されたベース電流と応答電流との間に差があると判断される。
 一方、第二の実施形態で利用される測定原理は、一つの抗体分子固定カーボン電極を利用しているので、個々の抗体分子固定カーボン電極では、固定化されているモノクローナル抗体の密度の僅かな差があっても、相対的に大きな系統的な誤差を導入する要因とはならない。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年 5月18日に出願された日本出願特願2009-119826を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明にかかる過酸化物誘導体型の爆薬検出用の免疫センサは、検出対象となる過酸化物誘導体型の爆薬、例えば、三量体型の過酸化アセトン(TATP)を簡便に検出する目的に、好適に利用可能である。
 (受託番号)
 本発明に利用される、式(I)に示す三量体型の過酸化アセトン(TATP)に対する結合能を有するモノクローナル抗体を産生するハイブリドーマ細胞として、
ハイブリドーマ細胞株:NECP-C57Z 3B-7Eが、ブタペスト条約に基づき、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国 茨城県つくば市東1丁目1番地中央第6、郵便番号305-8566)に、国際寄託(平成21年 5月12日付け)がなされている。
Figure JPOXMLDOC01-appb-T000017

Claims (26)

  1.  過酸化物誘導体型の爆薬である、下記の式(I)の過酸化アセトン(TATP:3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane)を、抗原抗体反応を利用して検出する免疫センサであって、
    Figure JPOXMLDOC01-appb-C000001
     該免疫センサは、少なくとも、
     前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、
     前記作用極に対する対極と、
     前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部とを具えてなり、
     前記抗原抗体反応に利用される抗体は、
     前記式(I)の過酸化アセトンに対して結合能を有するモノクローナル抗体である
    ことを特徴とする免疫センサ。
  2.  前記式(I)の過酸化アセトンに対して結合能を有するモノクローナル抗体は、
     前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体であり、該式(I)の過酸化アセトン過酸化物に対して交叉反応性を有する
    ことを特徴とする請求項1に記載の免疫センサ。
  3.  前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)である
    Figure JPOXMLDOC01-appb-C000002
    ことを特徴とする請求項2に記載の免疫センサ。
  4.  前記式(I)の過酸化アセトンに対する結合能を有するモノクローナル抗体は、
     前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するモノクローナル抗体であり、
     該式(I)の過酸化アセトンに対して交叉反応性を有する抗体である
    ことを特徴とする請求項2または3に記載の免疫センサ。
  5.  前記ヒト以外の哺乳動物は、マウスである
    ことを特徴とする請求項4に記載の免疫センサ。
  6.  前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択する
    ことを特徴とする請求項4または5に記載の免疫センサ。
  7.  前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
     該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされている
    ことを特徴とする請求項4~6のいずれか一項に記載の免疫センサ。
  8.  該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされている
    ことを特徴とする請求項7に記載の免疫センサ。
  9.  前記抗原抗体反応に利用される抗体として、
    ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM ABP-11125)が産生する、前記式(II)に示す構造を有するジカルボン酸化合物に対するモノクローナル抗体を用いる
    ことを特徴とする請求項4に記載の免疫センサ。
  10.  前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、前記作用極に対する対極は、同一の絶縁基板上に形成されている
    ことを特徴とする請求項1~9のいずれか一項に記載の免疫センサ。
  11.  前記抗原抗体反応に利用される抗体をその表面に固定化する電極材料は、カーボン材料である
    ことを特徴とする請求項1~10のいずれか一項に記載の免疫センサ。
  12.  前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極に対して、前記対極として、白金電極を選択する
    ことを特徴とする請求項11に記載の免疫センサ。
  13.  前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極、前記作用極に対する対極として利用する白金電極に加えて、参照電極として機能する銀/塩化銀電極を具える
    ことを特徴とする請求項12に記載の免疫センサ。
  14.  過酸化物誘導体型の爆薬である、下記の式(I)の過酸化アセトン(TATP:3,3,6,6,9,9-hexamethyl-1,2,4,5,7,6-hexaoxacyclononane)を、抗原抗体反応を利用して検出する免疫センサを製造する方法であって、
    Figure JPOXMLDOC01-appb-C000003
     該免疫センサは、少なくとも、
     前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、
     前記作用極に対する対極と、
     前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部とを具えてなり、
     前記抗原抗体反応に利用される抗体は、
     前記式(I)の過酸化アセトンに対して結合能を有するモノクローナル抗体であり、
     該免疫センサを製造する方法は、少なくとも、
     前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極を形成する工程と、
     前記作用極に対する対極を形成する工程と、
     前記作用極と対極との間にバイアス電圧を印加し、前記作用極と対極間に流れる電流を測定する機能を具えた測定部を設ける工程とを具えている
    ことを特徴とする免疫センサの製造方法。
  15.  前記式(I)の過酸化アセトンに対する結合能を有するモノクローナル抗体は、
     前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物に対するモノクローナル抗体であり、該式(I)の過酸化アセトンに対して交叉反応性を有する
    ことを特徴とする請求項14に記載の免疫センサの製造方法。
  16.  前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物は、下記の式(II)に示す構造を有するジカルボン酸化合物:3-[12-(2-カルボキシエチル)-9,12-ジメチル-7,8,10,11,13,14-ヘキサオクサ-スピロ-[5.8]テトラデック-9-イル]-プロピオン酸(3-[12-(2-carboxyethyl)-9,12-dimethyl-7,8,10,11,13,14-hexaoxa-spiro-[5.8]tetradec-9-yl]-propanoic acid)である
    Figure JPOXMLDOC01-appb-C000004
    ことを特徴とする請求項15に記載の免疫センサの製造方法。
  17.  前記式(I)の過酸化アセトンに対する結合能を有するモノクローナル抗体は、
     前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質を免疫原として、ヒト以外の哺乳動物を免疫することで創製される、該低分子化合物に対するモノクローナル抗体であり、
     該式(I)の過酸化アセトンに対して交叉反応性を有する抗体である
    ことを特徴とする請求項15または16に記載の免疫センサの製造方法。
  18.  前記ヒト以外の哺乳動物は、マウスである
    ことを特徴とする請求項17に記載の免疫センサの製造方法。
  19.  前記低分子化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質において、該キャリア・タンパク質として、キーホールリンペツトヘモシアニン(Keyhole Limpet Hemocyanin)を選択する
    ことを特徴とする請求項17または18に記載の免疫センサの製造方法。
  20.  前記式(I)の過酸化アセトンにおける特徴的な構造と類似性を具えた構造を持つ低分子化合物として、その分子内にカルボキシル基(-COOH)を有する化合物を選択し、
     該分子内にカルボキシル基(-COOH)を有する化合物を、キャリア・タンパク質上に結合させてなる修飾タンパク質は、該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)を介して、前記分子内にカルボキシル基(-COOH)を有する化合物の結合がなされている
    ことを特徴とする請求項17~19のいずれか一項に記載の免疫センサの製造方法。
  21.  該カルボキシル基(-COOH)と前記キャリア・タンパク質上のアミノ基(-NH)との間でアミド結合(-CO-NH-)の形成は、カルボジイミド法を利用してなされている
    ことを特徴とする請求項20に記載の免疫センサの製造方法。
  22.  前記抗原抗体反応に利用される抗体として、
    ハイブリドーマ細胞株:NECP-C57Z 3B-7E(FERM ABP-11125)が産生する、前記式(II)に示す構造を有するジカルボン酸化合物に対するモノクローナル抗体を用いる
    ことを特徴とする請求項17に記載の免疫センサの製造方法。
  23.  前記抗原抗体反応に利用される抗体を電極材料の表面に固定化している作用極と、前記作用極に対する対極は、同一の絶縁基板上に形成されている
    ことを特徴とする請求項14~22のいずれか一項に記載の免疫センサの製造方法。
  24.  前記抗原抗体反応に利用される抗体をその表面に固定化する電極材料は、カーボン材料である
    ことを特徴とする請求項14~23のいずれか一項に記載の免疫センサの製造方法。
  25.  前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極に対して、前記対極として、白金電極を選択する
    ことを特徴とする請求項24に記載の免疫センサの製造方法。
  26.  前記抗原抗体反応に利用される抗体をカーボン材料の表面に固定化している作用極、前記作用極に対する対極として利用する白金電極に加えて、参照電極として機能する銀/塩化銀電極を具える
    ことを特徴とする請求項25に記載の免疫センサの製造方法。
PCT/JP2010/058320 2009-05-18 2010-05-18 爆発物検出用の免疫センサおよびその製造方法 WO2010134506A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-119826 2009-05-18
JP2009119826 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134506A1 true WO2010134506A1 (ja) 2010-11-25

Family

ID=43126184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058320 WO2010134506A1 (ja) 2009-05-18 2010-05-18 爆発物検出用の免疫センサおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2010134506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188862A (zh) * 2018-05-22 2021-01-05 斯特雷拉生物技术股份有限公司 乙烯受体生物传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501860A (ja) * 1987-12-24 1990-06-21 イゲン,インコーポレーテッド 触媒的抗体を用いる化学センサー
JP2004519674A (ja) * 2001-02-28 2004-07-02 マクギル ユニバーシティ アモナフィドを用いた個別処置における代謝表現型決定の使用
JP2008209323A (ja) * 2007-02-27 2008-09-11 Toyama Univ 酵素センサ、該酵素センサを使用した分析方法及びキット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501860A (ja) * 1987-12-24 1990-06-21 イゲン,インコーポレーテッド 触媒的抗体を用いる化学センサー
JP2004519674A (ja) * 2001-02-28 2004-07-02 マクギル ユニバーシティ アモナフィドを用いた個別処置における代謝表現型決定の使用
JP2008209323A (ja) * 2007-02-27 2008-09-11 Toyama Univ 酵素センサ、該酵素センサを使用した分析方法及びキット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188862A (zh) * 2018-05-22 2021-01-05 斯特雷拉生物技术股份有限公司 乙烯受体生物传感器

Similar Documents

Publication Publication Date Title
JP2018502850A (ja) 抗原、抗体を作成するための組成物及び方法、ならびに免疫療法のための組成物及び方法
FR2557458A1 (fr) Nouveaux anticorps capables de reconnaitre specifiquement des groupements hapteniques, leur preparation et leur application, et nouveaux antigenes permettant de les preparer
EP2442804B1 (en) Derivatives, reagents, and immunoassay for detecting levetiracetam
CN112457392A (zh) 一种可溶性st2蛋白抗原决定簇多肽及其应用
AU2015358373B2 (en) Anti-acetaminophen antibodies and acetaminophen protein adducts
WO2011078800A1 (en) Method for the detection of an analyte
WO2010134506A1 (ja) 爆発物検出用の免疫センサおよびその製造方法
EP2446038A1 (fr) Sequences, anticorps, procedes et necessaires pour la detection et le dosage in vitro de la periostine, en vue du diagnostic du suivi ou du pronostic de pathologies ou de phenomenes biologiques impliquant la periostine
WO2010134505A1 (ja) 抗マラリア薬の免疫センサおよびその製造方法
KR102006997B1 (ko) IgG Fc 위치선택적 결합 펩티드 및 이를 포함하는 하이브리드 분자
JPWO2008018355A1 (ja) バイオセンサ及びその製造方法並びに当該バイオセンサを用いた検出方法
WO2010134507A1 (ja) 爆発物に対する抗体およびその製作方法
US20100143890A1 (en) Peptide compounds for capturing or inhibiting avian influenza virus and application thereof
JP2010266352A (ja) 有機硝酸系爆発物検出用の免疫センサおよびその製造方法
WO2009141458A1 (fr) Anticorps specifique de la lysine propionylee/butyrylee, son procede d'obtention et ses applications
KR101317321B1 (ko) 혈청 아밀로이드 p 요소 단백질의 분자각인 칩
JP5920761B2 (ja) 抗dcdモノクローナル抗体
CN116948034B (zh) 一种主动型异噬性抗体阻断剂Block-5S及其制备方法
JP2010285418A (ja) 有機硝酸系爆発物に対する抗体およびその製作方法
JP2014519036A (ja) ゲムシタビンイムノアッセイ
JP2011021145A (ja) 爆発物の処理材料およびその除去方法
JPH01269488A (ja) モノクローナル抗体産生細胞ラインおよびモノクローナル抗体
JP2001048900A (ja) 抗体及びこれを使用した測定法
JP2012097021A (ja) 爆発物に対する抗体およびその製作方法
WO2010134508A1 (ja) 抗マラリア薬の抗体、ならびにモノクローナル抗体、およびその製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP