WO2010134305A1 - Hiv立体構造認識抗体誘導ペプチド抗原、及びその合成方法 - Google Patents

Hiv立体構造認識抗体誘導ペプチド抗原、及びその合成方法 Download PDF

Info

Publication number
WO2010134305A1
WO2010134305A1 PCT/JP2010/003280 JP2010003280W WO2010134305A1 WO 2010134305 A1 WO2010134305 A1 WO 2010134305A1 JP 2010003280 W JP2010003280 W JP 2010003280W WO 2010134305 A1 WO2010134305 A1 WO 2010134305A1
Authority
WO
WIPO (PCT)
Prior art keywords
hiv
peptide
antibody
derivative
antigen
Prior art date
Application number
PCT/JP2010/003280
Other languages
English (en)
French (fr)
Inventor
玉村啓和
中原徹
野村渉
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Priority to EP10777543.9A priority Critical patent/EP2444414A4/en
Priority to US13/319,813 priority patent/US9066983B2/en
Priority to JP2011514322A priority patent/JPWO2010134305A1/ja
Publication of WO2010134305A1 publication Critical patent/WO2010134305A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/641Branched, dendritic or hypercomb peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • C07K16/1063Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/32Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a peptide antigen that induces an antibody recognizing the three-dimensional structure of HIV (human immunodeficiency virus: HIV), a method for synthesizing the same, a vaccine comprising the peptide antigen, or HIV induced by the peptide antigen.
  • HIV human immunodeficiency virus
  • the present invention relates to a three-dimensional structure recognition antibody, and further to a preventive and / or therapeutic agent for HIV infection comprising the vaccine or the HIV three-dimensional structure recognition antibody as an active ingredient.
  • the trimer of the helix region N36 An antibody-derived peptide antigen that recognizes an HIV three-dimensional structure that inhibits hexamer formation by N36 and C34 of gp41 and prevents entry of HIV into target cells by acting on the region, its synthesis method, and the peptide
  • the present invention relates to a vaccine comprising an antigen or an HIV three-dimensional structure recognition antibody induced by the peptide antigen, and further to an agent for preventing and / or treating HIV infection comprising the peptide antigen, the vaccine or the HIV three-dimensional structure recognition antibody as an active ingredient.
  • HIV human immunodeficiency virus
  • SIV simian immunodeficiency virus
  • the biggest cause of sexual infection is contact with sexual secretions, and blood infection is caused by blood transfusions, wounds, and repeated use of injection needles. Therefore, infection prevention from an ethical point of view is required.
  • Maternal and child infections are also caused by contact of bodily fluids in the birth canal during childbirth, breastfeeding of mothers, and virus movement through the placenta during pregnancy.
  • HIV is a kind of retrovirus, and is an exogenous virus that specifically targets and infects human CD4-positive T cells (see Non-Patent Document 1). HIV is activated through a relatively long incubation period after infecting human CD4-positive T cells and destroys such T cells. Since T cells play an important role in the immune system, destruction of T cells significantly reduces the immune capacity of the body. As a result, even against pathogens that can be easily eliminated under normal conditions, it will not be possible to exert sufficient resistance, and a chronic immune deficiency state, that is, a state referred to as “AIDS onset” Fall into.
  • Non-Patent Document 2 The number of people living with HIV worldwide has already reached 33 million, although the rate of increase has slowed. In 2007, 2.4 million people were newly infected with HIV, and the number of deaths related to HIV was 200. It was all people (see Non-Patent Document 2). Especially in Asia, which has the world's largest population, the spread of HIV infection is rapid. Japan is no exception, and it is unusual among developed countries, but is increasing. Specifically, in 2007, the number of AIDS patients was 418 and the number of HIV-infected persons was 1082, exceeding 1000 for the first time, and the current situation is that there is no stopping in Japan (see Non-Patent Document 3).
  • Non-Patent Documents 4 and 5 Due to its vigorous research and development on therapeutics, AIDS is no longer a directly fatal disease. However, the fundamental treatment has not been established yet, and new problems are emerging. Therefore, a novel therapeutic agent is desired.
  • HIV has proteins called gp120 and gp41 necessary for binding to target cells on a viral membrane derived from a host cell.
  • Matrix protein exists as a backing protein inside the viral membrane, and thus the HIV structure is maintained.
  • the HIV nucleoid has a regular dodecahedron structure surrounded by a capsid protein, and the RNA genome, integrase (IN), protease (PR), and reverse transcriptase are contained therein. (reverse transcriptase; RT) is included (FIG. 1).
  • the RNA genome of HIV is about 9000 bp, and its gene group exists in a structure called a long terminal repeat (LTR). Dozens of viral proteins encoded by this gene control complex replication (see Non-Patent Documents 4 and 5).
  • a series of growth cycles from HIV invasion to budding and budding is called life cycle.
  • This life cycle consists of the following steps (1) to (6): (1) adsorption and membrane fusion of virus to the cell membrane, (2) reverse transcription of RNA genome, and (3) host DNA of viral DNA. Incorporation and replication, (4) processing of virus constituent proteins, (5) virus particle construction, (6) budding process, HIV grows through these processes (see Fig. 2) (non- (See Patent Documents 4 to 7).
  • Azidothymidine (AZT) developed as the first anti-HIV drug in 1985, is a competitive inhibitor of reverse transcriptase and suppresses the proliferation of HIV by inhibiting the above life cycle.
  • Non-Patent Documents 8 and 9 Since the development of this AZT, the life cycle of HIV has become clear in more detail, and the development of anti-HIV drugs has progressed dramatically (see Non-Patent Documents 8 and 9). As a result, there are more than 15 types of anti-HIV drugs currently clinically applied, and Highly Active Anti-Retroviral Therapy (HAART) using anti-HIV drugs with different mechanisms of action has become possible. HAART has not only removed HIV from being a disease that is directly linked to death, but also improved the quality of life (QOL) of HIV-infected individuals.
  • QOL quality of life
  • HIV uses receptors such as CD4 and CXCR4 / CXCR5 on target cells to infect target cells.
  • HIV coat protein binds to these receptors and changes the three-dimensional structure of the coat protein, bringing the HIV viral membrane closer to the cell membrane of the target cell to cause membrane fusion (FIG. 3).
  • membrane fusion is established, infection is established by releasing the HIV RNA genome and viral proteins into the target cells (see Non-Patent Documents 10 to 15).
  • T-20 a drug that inhibits the early growth process of HIV.
  • DP178 a peptide drug
  • This T-20 is a partial peptide of the HIV coat protein.
  • the conformational change of the HIV coat protein is prevented, and as a result, HIV membrane fusion is inhibited and HIV entry is inhibited. Will prevent.
  • Non-Patent Documents 21 to 30 Such peptide-type HIV growth inhibitors have been actively developed, and drugs targeting the second receptor such as CCR5 and CXCR4 are also being developed.
  • T-20 is a peptidic inhibitor, there is a problem that oral administration is impossible (see Non-Patent Documents 21 to 30).
  • the HIV RNA genome that has entered the target cell is converted into complementary DNA by reverse transcriptase, and then converted into double-stranded DNA (DNA genome) (see FIG. 2).
  • This reverse transcriptase reaction is carried out in a complex containing an enzyme and a template RNA, and the DNA genome generated by the reverse transcriptase reaction is considered to subsequently move into the nucleus.
  • the aforementioned complex is called a preintegration complex (PIC), and it is considered that nuclear translocation is caused by viral protein R (vpr) contained in the complex.
  • PIC preintegration complex
  • vpr viral protein R
  • viral RNA as the main body is synthesized by the transcription function of the host cell.
  • a viral protein is also transcribed, translated and spliced to be expressed as a precursor protein, and then cleaved by a protease to become a mature protein.
  • a virus core is formed from these mature proteins and the RNA genome of HIV, and the virus core is released in such a way as to break the cell membrane from the inside to the outside, thereby forming new HIV particles and releasing them outside the cell.
  • the base substitution speed of the HIV genome is 1 million times or more that of the mammalian genome, and the HIV genome changes at a speed of 1 million times or more compared to the mammalian genome (see Non-patent Document 32).
  • a point mutation is introduced on the base sequence of the HIV genome, and some strains that have acquired resistance to the HIV drug are generated in some cases.
  • HIV that has acquired resistance to a reverse transcriptase inhibitor which is a main agent of HAART, has also been reported to have cross-resistance, such as acquiring resistance to other reverse transcriptase inhibitors.
  • Development of a drug with a novel mechanism of action that can be expected to be effective against viruses that have acquired the above has been desired (see Non-Patent Documents 4, 8, and 33).
  • gp120 can bind to CXCR4 or CCR5, which is a second receptor, and forms a ternary complex called gp120-CD4-second receptor (see Non-Patent Documents 9 and 10). Formation of this three-component complex exposes the N-terminal side of gp41 that forms a complex non-covalently with gp120, and the membrane-inserted peptide present in gp41 anchors to the cell membrane of the target cell. After anchoring, N36, which is an N-terminal helix region, and C34, which is a C-terminal helix region, bind in antiparallel to form a hexamer, so that the HIV viral membrane and the cell membrane of the target cell approach each other. Causes fusion (FIGS. 3 and 5) (see Non-Patent Document 10).
  • Patent Document 1 describes that an antibody against gp120 is used to prevent HIV infection or to inactivate a stage essential for the HIV life cycle.
  • the above-mentioned antibodies showed anti-HIV activity against certain HIV strains, but not so much anti-HIV activity against other strains. Therefore, it has not reached clinical application at present.
  • Crystal structure of the simian immunodeficiency virus (SIV) gp41 core conserveed helical inter lieliehibithe bactivity peptides. Proc. Natl. Acad. Sci.U. S. A. 95, 9134-9139 (1998) Lu, M., Blacklow, S. C., Kim, P. S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat. Struct. Biol. 12, 1075-82 (1995) Eckert, D. M., Kim, P. S. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc. Natl. Acad. Sci. U. S. A. 98, 11187-11192 ( 2001) Joyce, J.
  • Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of -1 eith target cells.
  • Angew. Chem. Int. Ed. 16, 2937-2940 (2002) Bewley, C. A., Louis, J. M., Ghirlando, R., Clore, G. M. Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J. C. . 277, 14238-14245 (2002) Welch, B. D ,. VanDemark, A. P., Heroux, A., Hill, C. P., Kay, .M. S. Potent D-peptide inhibitors of HIV-1 entry. Proc. Natl.
  • Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors tl .Sci.
  • U. S. A. 102, 12903-12905-12 (2005) Qiao, S., Kim, M., Reinhold, B., Montefiori, D., Wang, J., Reinherz, E, L. Design, expression, and immunogenicity of a soluble HIV trimeric envelope fragment adopting a prefusion gp41 J. Biol. Chem. 280, 23138-23146 (2005) Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A., Kim, P. S.
  • Inhibiting HIV-1 entry discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103-115, (1999) Root, M. J., Kay, M. S., Kim, P. S. Protein design of an HIV-1 entry inhibitor.Science 291, 884-888 (2001) Masuda, T. Host factors that regulate the intercellular dynamics of HIV-1 genome during the early phase of infection. Virus 1, 41-50 (2006) Sato, H., Yokoyama, M. RNA viruses and mutation.Virus 55, 221-230 (2005) Baba M. Advances in antiviral chemotherapy. Virus 55, 69-76 (2005) Belyakov, I. M., Berzofsky, J. A.
  • antibody induction is aimed at synthesizing a partial sequence in the protein and inducing a sequence-specific antibody.
  • the antibody induced using the partial sequence is specific to the amino acid sequence. Although it can bind, there is a problem that the specificity and binding activity of the neutralizing target to the three-dimensional structure are generally low.
  • the problem of the present invention is that it can be used without causing problems even for HIV with such severe mutations, and it is also possible to deal with the three-dimensional structure of the neutralization target as a mechanism of HIV entry into the target cell.
  • HIV antibody-derived peptide antigen effective for development of an antibody or vaccine having specificity and binding activity excellent also in specificity and binding activity, synthesis method thereof, vaccine comprising the peptide antigen, or HIV induced by the peptide antigen
  • the object of the present invention is to provide a three-dimensional structure-recognizing antibody, and further a preventive and / or therapeutic agent for HIV infection comprising the vaccine or HIV three-dimensional structure-recognizing antibody as an active ingredient.
  • the present inventor has intensively studied to solve the above problems, and when targeting HIV with severe mutation, it is desirable to induce an antibody that recognizes and binds not only the amino acid sequence but also the three-dimensional structure. Therefore, if a specific antibody can be induced against a three-dimensional structure by using an antigen molecule that retains the three-dimensional structure, an antibody having higher neutralizing activity against HIV can be induced.
  • H An HIV antibody-derived peptide antigen effective for the development of an antibody or vaccine having specificity and binding activity excellent in the specificity and binding activity to the three-dimensional structure of the neutralization target as a mechanism of entry of V into the target cell It has been found that it can be provided, and the present invention has been completed.
  • the present invention includes a step of synthesizing a derivative of the N-terminal helix region N36 peptide of transmembrane protein gp41 of HIV particles as an antigen peptide, and a template compound having C3 symmetry having three equivalent linker structures And an N36 peptide derivative trimer comprising the step of synthesizing a trimer of the N36 peptide derivative by binding to the N36 peptide derivative. It consists of an antigen synthesis method.
  • the desired N36-derived peptide is synthesized by Fmoc (9-fluorenylmethoxycarbonyl) -solid phase synthesis, and then a low molecular template compound with three equivalent linkers is designed to facilitate the formation of a trimer structure. -Synthesized. Furthermore, a thiazoligine ligation method utilizing the N-terminal Cys of a peptide and a glycol aldehyde ester forming a thiazoligine and bonding has already been reported. By using this method, a template compound is formed on the template compound. We have succeeded in synthesizing antigen molecules that mimic trimers by accumulating peptides.
  • a trimer of a derivative of N36 peptide by binding a template compound having C3 symmetry having three equivalent linker structures and the aforementioned derivative of N36 peptide.
  • a template compound having C3 symmetry having an equivalent linker structure of the book a compound represented by the following general formula (1) or a salt thereof can be used.
  • X is an integer in the range of 1 to 5
  • a compound represented by the following general formula (2) or a salt thereof is particularly preferred as a preferred template compound. Can be selected.
  • the derivative of the N36 peptide in the step of synthesizing the N-terminal helix region N36 peptide of the transmembrane protein gp41 of HIV particles includes the hydrophilic amino acid Arg on the N-terminal side of the N36 peptide and A total of 6 residues of Glu are added to enhance water solubility. Furthermore, Cys used for thiazolidine ligation is arranged on the N-terminal side, so that the reaction does not drop due to steric hindrance as a spacer between Cys and Arg. What arrange
  • three equivalent linkers are prepared by stirring a template compound having C3 symmetry having three equivalent linker structures and a derivative of the N36 peptide synthesized in the present invention in an acetate buffer.
  • a template compound having a C3 symmetry having a structure and a derivative of the aforementioned N36 peptide can be combined to synthesize a trimer of the N36 peptide derivative.
  • a compound represented by the above general formula (1) (wherein X represents a positive integer) or a template compound represented by a salt thereof can be used.
  • a template compound that is an integer within a range of from 5 to 5 can be suitably used.
  • a host animal can be sensitized using an HIV three-dimensional structure recognition antibody-derived peptide antigen synthesized by the peptide antigen synthesis method of the present invention, and an antibody against the antigen can be induced.
  • HIV vaccine can be manufactured using this HIV three-dimensional structure recognition antibody induction peptide antigen.
  • a preventive and / or therapeutic agent for HIV infection can be provided using the HIV three-dimensional structure recognition antibody or HIV vaccine that recognizes the N36 trimer region as an active ingredient.
  • the HIV infection preventive and / or therapeutic agent of the present invention is such that the HIV infection preventive and / or therapeutic agent is an amount of the three-dimensional helix region N36 on the N-terminal side of the transmembrane protein gp41 of the HIV three-dimensional structure recognition antibody or HIV vaccine HIV particle of the HIV vaccine.
  • the HIV infection preventive and / or therapeutic agent is an amount of the three-dimensional helix region N36 on the N-terminal side of the transmembrane protein gp41 of the HIV three-dimensional structure recognition antibody or HIV vaccine HIV particle of the HIV vaccine.
  • an HIV antibody effective in developing an antibody or vaccine having specificity and binding activity excellent in specificity and binding activity with respect to the three-dimensional structure of a neutralizing target as a mechanism of HIV entry into target cells Derived peptide antigens can be provided.
  • the HIV antibody-derived peptide antigen it is possible to produce an HIV three-dimensional structure recognition antibody or vaccine, and an agent for preventing and / or treating HIV infection comprising the peptide antigen, the vaccine or the HIV three-dimensional structure recognition antibody as an active ingredient.
  • an agent for preventing and / or treating HIV infection comprising the peptide antigen, the vaccine or the HIV three-dimensional structure recognition antibody as an active ingredient.
  • the HIV antibody-derived peptide antigen of the present invention has not only an amino acid sequence targeting HIV with severe mutations, but also the specificity and binding activity to the three-dimensional structure of the neutralization target as a mechanism of HIV entry into the target cell.
  • the present invention provides an HIV antibody-derived peptide antigen that is effective for the development of antibodies or vaccines having the above-mentioned problems. Therefore, it solves the problems in the development of conventional HIV vaccines as described above, and is safe and effective against HIV infection.
  • a prophylactic and / or therapeutic agent for HIV infection that can provide HIV antibodies and HIV vaccines and is safe and effective against HIV infection It is possible to provide.
  • A A figure showing the amino acid sequence of NP101, etc .;
  • (b) A figure showing an HPLC chart after purification of NP101;
  • (c) A figure showing a result of MALDI-TOF MS after HPLC; It is a figure regarding the synthesis
  • (A) A figure showing the amino acid sequence of the positive control antigen;
  • (b) A figure showing an HPLC chart after purification of the positive control antigen;
  • D) The figure which shows the ion peak reconstructed from the multivalent body; It is a figure regarding the synthesis
  • NP103 shows the amino acid sequence or the like; (b) drawing showing the NP103 HPLC chart after purification; by (c) after HPLC ESI-TOF MS, the [M + 2H] 2+ / 2 of NP103 [M + 5H] The figure which shows the ion peak of 5 + / 5; (d) The figure which shows the ion peak reconstructed from the multivalent body; It is a figure which shows the structure of a template compound. It is a figure which shows the synthetic scheme of a template compound. It is a figure which shows the presumed distance between the -SH groups of cysteine in the amino acid sequence added to the N terminal side of N36 derivative
  • Temporative in the figure represents the template compound of the present invention. It is a figure which shows the HPLC chart which followed the synthesis reaction of NP104. It is a figure regarding the synthesis
  • Upper left panel a diagram showing the results of ELISA using “a plate with NP102 immobilized” and “serum obtained by administering NP102”; lower left panel: “a plate with NP104 immobilized” and “NP104” The figure which shows the result of ELISA using "the serum obtained by administering”; Right panel: It is a figure which shows the result of p24 assay. It is the figure which evaluated anti-HIV activity by the MTT assay about the serum containing the antibody of this invention.
  • Upper left panel diagram showing anti-HIV activity (EC 50 ( ⁇ M)); upper right panel: diagram showing cytotoxicity (CC 50 ( ⁇ M)); lower panel: EC 50 ( ⁇ M) and CC 50 ( ⁇ M) summarized Figure;
  • the present invention includes a step of synthesizing a derivative of the N-terminal helix region N36 peptide of the transmembrane protein gp41 of HIV particles (hereinafter also simply referred to as “N36 peptide derivative”), and three equivalent linker structures.
  • template compound in the present invention A method for synthesizing an HIV three-dimensional structure-recognizing antibody-derived peptide antigen that recognizes the N36 trimer region (hereinafter also simply referred to as “method for synthesizing peptide antigen of the present invention”).
  • the N36 peptide derivative in the present invention is 1 or 2 or more (preferably 2 to 15, more preferably 2 to 10, more preferably 2 to 5) in the amino acid sequence of N36 peptide (SEQ ID NO: 1).
  • Preferable examples of such N36 peptide derivatives include peptides in which Cys used for thiazolidine ligation is arranged on the N-terminal side of the N36 peptide on the N-terminal side, and hydrophilic amino acids Arg and Glu are present on the N-terminal side of the N36 peptide.
  • a total of 6 residues are added to enhance water solubility, and Cys used for thiazolidine ligation is arranged on the N-terminal side so that the reaction does not drop due to steric hindrance, Gly is used as a spacer between Cys and Arg.
  • the arranged peptide can be illustrated more preferably, and among them, the compound represented by the general formula (3) can be particularly preferably illustrated. Whether a specific N36 peptide derivative is a peptide that can be used for the synthesis of an HIV three-dimensional structure recognition antibody-derived peptide antigen is determined by inducing an HIV three-dimensional structure recognition antibody that recognizes the N36 trimer region. You can check by looking to see if you get.
  • Fmoc solid-phaseNpeptide synthesis can be used to synthesize N36 peptide derivatives in the step of synthesizing N36 peptide derivatives (Hirokazu Tamamura et al. Bioorganic & See Medicinal Chemistry 6 (1998) 1033-1041 and "Solid phase peptide synthesis, -practical approach" by E, Atherton, R, C, Sheppard, and IPI.
  • the target peptide can be synthesized.
  • the template compound of the present invention is used in the step of synthesizing the trimer of the N36 peptide derivative.
  • the compound or its salt represented with the following general formula (1) can be illustrated suitably.
  • X is preferably an integer in the range of 1 to 5 from the viewpoint of obtaining a trimer of the N36 peptide derivative closer to the structure of the N36 trimer in the natural gp41 protein.
  • An integer within the range is more preferable, and 1 is particularly preferable.
  • the template compound of the present invention may be in the form of a salt such as an acid addition salt or a base addition salt.
  • acid addition salts include hydrochloride, phosphate, nitrate, sulfate, acetate, propionate, butyrate, valerate, citrate, fumarate, maleate, malate, etc.
  • organic acid salts such as oxalate or tartrate.
  • the base addition salt include metal salts such as sodium salt, potassium salt, magnesium salt, and calcium salt, ammonium salts, and organic amine salts such as triethylamine salt and ethanolamine salt.
  • the template compound of this invention may have 1 or 2 or more arbitrary substituents, as long as it can be used for this invention.
  • the template compound of the present invention can be prepared, for example, by the method outlined in FIG. 22 described later, and specifically, can be manufactured by the method described in (1) of Example 1 described later.
  • a thiazolidine ligation reaction is used to form the N36 peptide derivative trimer.
  • the thiazolidine ligation reaction is a method in which unprotected peptide fragments are bound together in a proline-like structure.
  • the N-terminal Cys amino group is compared with a peptide whose C-terminal is peptidylglycolaldehyde ester.
  • Nucleophilic attack on the carbonyl carbon forms an imine
  • the thiol group of the cysteine side chain forms a thiazolidine ring by molecular nucleophilic attack in the molecule.
  • a thiazolidine ester is formed, and a stable proline-like bond can be formed by the occurrence of an O, N, -acyl rearrangement reaction.
  • TFE 2,2, -Trifluoreethanol
  • a template compound having C3 symmetry having three equivalent linker structures and the above-mentioned N36 peptide derivative are bound to each other, and the N36 peptide derivative
  • a method for synthesizing the trimer of can be suitably exemplified.
  • Such thiazolidine ligation reaction occurs specifically in the N-terminal Cys of the N36 peptide derivative, and the progress of the reaction can be traced using HPLC and ESI-TOF-MS to detect the completion of the reaction.
  • the HIV three-dimensional structure recognition antibody-derived peptide antigen of the present invention (hereinafter also simply referred to as “the peptide antigen of the present invention”) is not particularly limited as long as it is a peptide antigen synthesized by the peptide antigen synthesis method of the present invention. Is preferably exemplified by a peptide antigen (trimer of N36 peptide derivative) represented by the following general formula (4) (wherein X represents a positive integer and Monomer represents an N36 peptide derivative). it can.
  • X in the general formula (4) is an integer in the range of 1 to 5 from the viewpoint of obtaining a trimer of the N36 peptide derivative that is closer to the structure of the trimer of N36 in the natural gp41 protein. It is preferably an integer in the range of 1 to 3, more preferably 1.
  • a host animal can be sensitized with the peptide antigen of the present invention, and an antibody against the antigen (hereinafter also simply referred to as “antibody in the present invention”) can be induced according to a conventional method.
  • an antibody in the present invention is an HIV three-dimensional structure recognition antibody that recognizes the N36 trimer region.
  • the antibody in the present invention includes a human antibody.
  • the “human antibody” means an antibody that is an expression product of a human-derived antibody gene.
  • the human antibody can be obtained by introducing the human antibody locus and administering the peptide antigen of the present invention to a transgenic animal having the ability to produce a human-derived antibody.
  • An example of the transgenic animal is a mouse.
  • mice capable of producing human antibodies include, for example, chromosome 14 fragment (SC20) lacking endogenous mouse immunoglobulin (Ig) heavy chain and mouse ⁇ light chain and containing human Ig heavy chain gene (SC20) and human A mouse that simultaneously holds an Ig ⁇ chain transgene (KCo5) can be mentioned.
  • SC20 chromosome 14 fragment
  • Ig immunoglobulin
  • SC20 human ⁇ light chain
  • KCo5 human A mouse that simultaneously holds an Ig ⁇ chain transgene
  • This mouse is produced by crossing a strain A mouse having a human Ig heavy chain locus with a strain B mouse having a human Ig kappa chain transgene.
  • Strain A is homozygous for both endogenous Ig heavy chain and kappa light chain disruption, and has a mouse strain (Tomizuka. Et al., Proc Natl Acad Sci) carrying a progeny chromosome 14 fragment (SC20).
  • Line B is a mouse line (Nat Biotechnol., 1996 Vol14: 845) that is homozygous for both the endogenous mouse Ig heavy chain and ⁇ light chain deficient and carries the human Ig ⁇ chain transgene (KCo5). .
  • any of a polyclonal antibody, a monoclonal antibody, and a functional fragment thereof is an antibody in the present invention as long as it is an HIV three-dimensional structure recognition antibody that recognizes the N36 trimer region.
  • the functional fragment of the antibody according to the present invention means a fragment of an antibody that specifically binds to an antigen to which the antibody according to the present invention specifically binds, and more specifically, F (ab ′) 2, Fab ', Fab, Fv, disulphide-linked FV, Single-Chain FV (scFV) and polymers thereof (DJKing, Applications and Engineering Engineering Engineering of 1998 Monoclonal Antibodies, 1998 TJ International Ltd.).
  • Such an antibody fragment can be obtained by a conventional method, for example, digestion of an antibody molecule with a protease such as papain or pepsin, or a known genetic engineering technique.
  • the polyclonal antibody in the present invention can be produced, for example, by the method described below.
  • the peptide antigen of the present invention can be obtained by immunizing non-human mammals such as mice, rabbits, goats and horses with an immunostimulant (Freund's un Adjuvant etc.) as necessary.
  • the monoclonal antibody in the present invention is prepared by preparing a hybridoma from an antibody-producing cell obtained from an immunized animal and a myeloma cell (myeloma cell) having no autoantibody-producing ability, cloning the hybridoma, and reacting against the antigen used for immunization. Can be obtained by selecting a clone that produces a monoclonal antibody exhibiting specific affinity.
  • the hybridoma can be prepared according to the method of Köhler and Milstein et al. (Nature, 1975 Vol. 256: 495-497) and the like.
  • Hybridoma clones that produce monoclonal antibodies are screened by culturing the hybridomas, for example, in a microtiter plate, and measuring the reactivity of the culture supernatant in the wells in which proliferation has been observed with the immunoantigen, for example, enzyme immunoassay such as ELISA. It can be carried out by measuring using an immunological method such as radioimmunoassay or fluorescent antibody method.
  • the hybridomas can be cultured in vitro and isolated from the culture supernatant. It can also be cultured in vivo in ascites of mice, rats, guinea pigs, hamsters or rabbits and isolated from ascites.
  • a gene encoding a monoclonal antibody is cloned from an antibody-producing cell such as a hybridoma and incorporated into an appropriate vector, which is then used as a host (for example, a mammalian cell line such as Chinese hamster ovary (CHO) cell, E. coli, yeast cell, insect).
  • Recombinant antibodies can be prepared using genetic recombination technology (PJDelves, ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES, 1997 WILEY, P.Shepherd and C.Dean, Monoclonal Antibodies, 2000 OXFORD UNIVERSITY PRESS, JWGoding, Monoclonal Antibodies: principles and practice, 1993 ACADEMIC PRESS).
  • transgenic bovine, goat, sheep or pig in which the gene of the target antibody is incorporated into the endogenous gene is produced using a transgenic animal production technique, and the antibody gene is derived from the milk of the transgenic animal. It is also possible to obtain a large amount of antibody.
  • the antibody produced can be purified by an appropriate combination of methods well known in the art, such as chromatography using a protein A column, ion exchange chromatography, hydrophobic chromatography, ammonium sulfate salting out method, gel filtration, affinity chromatography and the like. Can do.
  • an HIV vaccine can be produced using the peptide antigen of the present invention.
  • the antibody of the present invention can also be induced in the subject.
  • a preventive and / or therapeutic agent for HIV infection can be provided using the peptide antigen, antibody or HIV vaccine of the present invention as an active ingredient.
  • the peptide antigen of the present invention can be used, and a method usually used for producing an HIV antibody or HIV vaccine can be used.
  • an HIV infection prevention and / or treatment agent using the peptide antigen, antibody or HIV vaccine of the present invention When preparing an HIV infection prevention and / or treatment agent using the peptide antigen, antibody or HIV vaccine of the present invention as an active ingredient, it is usually used in an infection prevention and / or treatment agent containing a peptide antigen, antibody or vaccine as an active ingredient.
  • the formulation form employed can be employed.
  • the form of the formulation normally used in the infection prevention and / or treatment agent containing a peptide antigen, antibody or vaccine as an active ingredient, or adjuvants and additives can be used.
  • a peptide When a peptide is used as an antigen molecule, the molecular weight is adjusted by binding to a carrier protein such as hemocyanin (keyhole limpet hemocyanin; KLH) or multi antigen peptide (MAP).
  • a carrier protein such as hemocyanin (keyhole limpet hemocyanin; KLH) or multi antigen peptide (MAP).
  • KLH keyhole limpet hemocyanin
  • MAP multi antigen peptide
  • the synthesized N36 peptide derivative was bound to this MAP and used for immunization of mice.
  • the mice used in the Reference Examples and Examples in this application are all male BALB / c mice. These mice were purchased from CLEA Japan, and then raised at the animal facility of Tokyo Medical and Dental University and used at the age of 6-8 weeks at the start of each experiment.
  • MAP is an immunologically inactive molecule composed of a dendrimer of lysine (Lys) residues branched radially.
  • Lys lysine
  • the antigenicity of the antigen molecule can be increased by arranging a large number of antigen molecules in the MAP1 molecule.
  • an arginine (Arg) residue and a glutamic acid (Glu) residue were arranged on the N-terminal side of MAP in order to enhance hydrophilicity (FIG. 7).
  • N36 peptide derivative binding site to MAP has a region important for hexamer formation on the C-terminal side of the N36 peptide derivative (Non-Patent Documents in Background Art) 12-17). For this reason, the N-terminal side of the N36 peptide derivative was bound to MAP.
  • this synthesized antigen molecule of the N36 peptide derivative the antigenicity of the N36 peptide derivative was confirmed, antibody induction experiments using mice, and establishment of a serum evaluation system were established. Therefore, first, a peptide antigen molecule that has already been reported to have a high antibody-inducing ability was synthesized as a positive control.
  • N36 peptide derivative hereinafter also referred to as “NP101” was also synthesized.
  • the peptide was synthesized by Fmoc solid-phase peptide synthesis (Fmoc-SPPS).
  • Fmoc-SPPS Fmoc solid-phase peptide synthesis
  • the synthesis scheme is shown below (FIG. 8).
  • the solid-phase synthesis method repeats the operations of selective deprotection and condensation reaction of the 9-fluorenylmethoxycarbonyl (Fmoc) group, which is a protecting group for the main chain amino group, and finally deresining and deprotecting from the resin, This is a method for synthesizing a target peptide.
  • the reaction is carried out on an insoluble resin, and all the reagents used in the reaction can be washed away, so that the target compound can be obtained without requiring purification on the way.
  • Peptide synthesis by the solid phase synthesis method was specifically performed by the following method.
  • Each cycle consists of (1) 15% deprotection with 20% by weight piperidine / DMF, (2) 5 times equivalent Fmoc amino acid (Fmoc-AA-OH), 5 times equivalent HOBt in 2 mL DMF, And a 90 minute coupling with a solution containing 5 times the equivalent of DIPCI.
  • Fmoc-AA-OH Fmoc-AA-OH
  • HOBt HOBt
  • a 90 minute coupling with a solution containing 5 times the equivalent of DIPCI.
  • the coupling was performed by adding 3 times equivalent of Fmoc amino acid (Fmoc-AA-OH), 3 times equivalent of HOBt, 3 times equivalent of DIPEA, and 2.9 times equivalent of HBTU in 2 mL of DMF. Performed with the solution containing. Even after the second coupling, when the result of the Kaiser ninhydrin test described above was positive, the remaining free amino groups were acetylated (capped) using a mixture of acetic anhydride (Ac 2 O) and DMF. After peptide synthesis was completed, the resin washed extensively with DMF and DCM and dried in vacuum for 6 hours.
  • the synthesized peptide is a resin using a mixed solution of TFA, thioanisole, ethanedithiol, m-cresol, water and triisopropylsilane (10: 0.75: 0.75: 0.25: 0.25: 0.1 (volume ratio)) at room temperature for 90 minutes. Pulled away from. The reaction solution was filtered through a filter, and the resin was washed 3 times with TFA. The filtrate was dehydrated under vacuum and ethanol was added to precipitate the peptide as a solid powder. After centrifugation, these operations from washing with TFA to precipitation were repeated three times. The resulting peptide was dried under vacuum for 6 hours.
  • peptides were purified by RP-HPLC (column, YMC-Pack ODS-A, 10 ⁇ ⁇ 250 mm).
  • HPLC solvent water (solvent A) containing 0.1% by mass of TFA and acetonitrile (solvent B) containing 0.1% by mass of TFA were used. All purified peptides were identified by MALDI-TOF-MS. All peptides were obtained as TFA salts after lyophilization.
  • V3 region peptide that is a partial peptide of the surface protein gp120 possessed by HIV (FIG. 10).
  • A was adopted.
  • This V3 region peptide is a peptide at the binding site with CXCR4 that binds as a second receptor when HIV is membrane-fused.
  • this V3 region peptide is a peptide having a cysteine residue on the C-terminal side, and has an advantage that the thiol group of the cysteine residue can be used as it is when it is introduced (bound) into MAP.
  • V3 region peptide has also been reported to have anti-HIV activity, although limited to certain strains of HIV.
  • the synthesis of the V3 region peptide was performed by the aforementioned Fmoc-SPPS.
  • the resulting reaction solution was de-resinized and deprotected, and then purified by HPLC.
  • HPLC 5C18-AR-II Waters 4.6 ⁇ 250 mm was used as a column, and 17-22 mass% acetonitrile / water (0.1 mass% TFA) was used as an elution solvent for 30 minutes at a flow rate of 1.0 mL / min. Detection was performed at a detection wavelength of 220 nm (FIG. 10B).
  • N, N′-diisopropylcarbodiimide (DIPCI) was used to introduce a chloroacetyl group by dehydration condensation reaction.
  • the reaction solution was deresinized, deprotected and purified by HPLC.
  • HPLC 5C18-AR-II Waters 4.6 ⁇ 250 mm was used as a column, 25-28% by mass acetonitrile / water (0.1% by mass TFA) was used as an elution solvent at a flow rate of 1.0 mL / min. Detection was performed at a detection wavelength of 220 nm (FIG. 11B).
  • the product purified by HPLC was identified by ESI-TOF-MS (FIG.
  • MAP 130 ⁇ g, 0.06 ⁇ mol
  • NP101 4.1 mg, 0.95 ⁇ mol
  • 100 mM PBS pH 8.5
  • ESI-TOF-MS ESI-TOF-MS
  • FIG. 12 shows the HPLC chart result for the NP101-MAP antigen molecule.
  • 5C18-AR-II Waters 4.6 ⁇ 250 mm was used as a column, 15-45 wt% acetonitrile / water (0.1 wt% TFA) was used as an elution solvent for 30 minutes at a flow rate of 1.0 mL / min. Detection was performed at a detection wavelength of 220 nm.
  • FIG. 13 shows the result of identification by MALDI-TOF MS of the product purified by HPLC. As can be seen from the results of FIG.
  • the generated NP101-MAP antigen molecule has one NP101-bound MAP (one-substituted), two NP101-bound MAP (two-substituted), and three NP101-bonded three molecules.
  • MAP trisubstituted.
  • the aforementioned Gu ⁇ HCl is known as a protein denaturing agent, and was added for the purpose of improving aggregation and insolubility, which are considered to be caused by the steric structure of NP101, in this reaction as well.
  • reaction was completed when the polysubstituent was confirmed and the HPLC chart no longer changed, and the reaction solution was desalted by filtration with 10% aqueous acetic acid with sephadex G-10, and the filtrate was frozen. It was dried and used as a sample antigen molecule (hereinafter also referred to as “positive control-MAP antigen molecule”) in an antibody induction experiment described later.
  • FIG. 15 shows the result of identification by MALDI-TOF MS of the product purified by HPLC.
  • the generated positive control-MAP antigen molecule includes MAP in which one molecule, two molecules, three molecules, four molecules or five molecules of the positive control antigen are bound (one substituted, two substituted, respectively). , 3-substituted, 4-substituted, 5-substituted).
  • the reaction proceeded only up to 3 substitutions for NP101-MAP. This is because the precipitation of the NP101 itself synthesized during the synthesis of NP101-MAP is lower than that of the positive control, and the reactivity decreased due to the formation of a disulfide. It seems to be.
  • adjuvants were used in the antibody induction experiments of this reference example and examples. Moreover, there are two types of adjuvants that are usually used: incomplete adjuvants and complete adjuvants. All of these adjuvants use mineral oil as the main raw material, but the complete adjuvant further contains tuberculosis killed bacteria in addition to mineral oil, and is expected to have a higher immunogenicity enhancing action.
  • incomplete adjuvants and complete adjuvants. All of these adjuvants use mineral oil as the main raw material, but the complete adjuvant further contains tuberculosis killed bacteria in addition to mineral oil, and is expected to have a higher immunogenicity enhancing action.
  • Freud in complete adjuvant which is a kind of incople adjuvant, is used. did.
  • the immunization amount, administration method, and immunization schedule of each antigen molecule for the aforementioned mouse were also set as follows with reference to the procedure for antibody induction experiments performed so far (FIG. 16) (Roberts , W. K., Livingston, P. O., Agus, D. B., Ibarz, J. P., Scheinberg, Z. A. Vaccination with CD20 peptides induces a biologically active, specific immune response in mice. Blood , 3748-3755 (2002); Kutzler, M. K., Cao, C., Bai, Y., Dong, H. Q., Choe, P.
  • DMSO dimethylsulfoxide
  • an adjuvant solution 50 ⁇ L adjuvant + 50 ⁇ L PBS
  • an adjuvant solution 50 ⁇ L adjuvant + 50 ⁇ L PBS
  • the final concentration of DMSO in these immunization emulsions was adjusted to 1% by mass or less.
  • the immunization emulsions were then immunized by subcutaneous injection into 6 week old mice of BALB / c strain anesthetized with diethyl ether.
  • the number of immunized mice was 4 for the NP101-MAP antigen molecule, 4 for the positive control-MAP antigen molecule, and 3 for the negative control. In these mice, a part of the ear was excised so that it was possible to distinguish which immunization emulsion was immunized.
  • Blood collection from mice after immunization was performed at intervals of 1 week using a method of collecting blood from the orbital floor after anesthesia with diethyl ether. These immunization and blood collection schedules are shown in FIG. The obtained blood was separated into serum and clot by centrifugation, and only the serum was collected and stored frozen at ⁇ 80 ° C. and dissolved and used when necessary for the experiment.
  • the microplate was incubated overnight at 4 ° C. with 25 ⁇ L synthetic peptide in 10 ⁇ g / mL PBS. Coated. The coated microplate was washed 10 times with deionized water and blocked with 150 ⁇ L blocking buffer (0.02 wt% PBST containing 5 wt% skim milk) at 37 ° C. for 1 hour. The microplate was washed with deionized water.
  • Each serum obtained in (1) of Reference Example 2 was diluted with 1% by mass skimmed milk containing 0.02% by mass PBST, and diluted 201 times. , 401-fold dilution, 801-fold dilution, and 102400-fold dilution were prepared for each serum. 50 ⁇ L of each diluted solution was added to the aforementioned microplate and incubated at 37 ° C. for 2 hours. All subsequent steps were performed at room temperature. The aforementioned microplate was washed 10 times with deionized water.
  • the antibody titer to NP101-MAP of the serum induced by the negative control is not different from the above-mentioned antibody titer of the serum determined before immunization, and the antibody to NP101-MAP No increase in value was observed.
  • the thiazolidine ligation reaction that has been reported so far is used as a reaction that is difficult to form a disulfide bond and can form a covalent bond under an acidic condition that is considered to increase the solubility.
  • Thiazolidine ligation is a method in which unprotected peptide fragments are bound together in a proline-like structure.
  • the reaction first forms an imine by nucleophilic attack of the amino group of the N-terminal cysteine residue of the other peptide against one peptide whose C-terminus is a peptidyl glycol aldehyde ester, Both peptides bind.
  • the thiol group of the cysteine side chain undergoes an intramolecular nucleophilic attack, whereby thiazolidine ring formation occurs. This series of reactions forms a thiazolidine ester.
  • this thiazolidine ligation reaction occurs under mild conditions such as in a buffer adjusted to a pH of 4 to 6, and the reaction proceeds even in a reduced buffer mixed with TCEP (tris (2-carboxyethyl) phosphine hydrochloride). Therefore, formation of disulfide bonds between cysteines can also be suppressed.
  • TCEP tris (2-carboxyethyl) phosphine hydrochloride
  • N36 monomer peptide derivatives (NP102 and NP103)
  • the N36 monomer peptide derivatives were redesigned and synthesized.
  • As an N36 monomer peptide for constituting the target NP104 arginine (Arg; R) and glutamic acid (Glu; E) which are hydrophilic amino acids on the N-terminal side of the natural sequence in order to enhance its water solubility
  • Arg; R arginine
  • Glu glutamic acid
  • FIG. 19 (a) shows the amino acid sequence of NP102
  • FIG. 19 (b) shows an HPLC chart after purification of NP102.
  • cysteine (Cys) used for thiazolidine ligation reaction is further arranged on the N-terminal side, and glycine (Gly) is used as a spacer between cysteine and arginine so that the reactivity does not decrease due to steric hindrance.
  • NP103 cysteine (Cys) used for thiazolidine ligation reaction
  • glycine (Gly) is used as a spacer between cysteine and arginine so that the reactivity does not decrease due to steric hindrance.
  • N36 peptide which is the N-terminal helix region of gp41, covalently immobilized to form a trimer structure. is there. Therefore, the template compound structure serving as a scaffold for trimerizing the N36 peptide derivative has three equivalent linkers and has C3 contrast (FIG. 21). Therefore, the equivalent linker was further extended using the compound of “Compound 5” (see FIG. 22) in which three symmetrical bonds extending around the nitrogen atom as a starting material. For the three linker portions, amide bonds and ester bonds were employed instead of carbon chains.
  • the amide bond has advantages such as easy synthesis, increased hydrophilicity, and ability to detect by HPLC at the same wavelength as the peptide upon conjugation with the N36-derived peptide.
  • the ester bond and terminal aldehyde in the linker moiety are necessary for thiazolidine ligation ring formation during the binding of the N36 peptide to the template compound.
  • the HPLC solvent water (solvent A) containing 0.1% by mass of TFA and acetonitrile (solvent B) containing 0.1% by mass of TFA were used.
  • the purified compound 8 was identified by ESI-TOF-MS. Compound 8 was further purified in solvent B using a linear gradient of 0-15% by weight over 30 minutes. The purified compound 8 was lyophilized to obtain 7.9 mg (0.014 mmol) of compound 8 (template compound of the present invention: compound in which X is 1 in the general formula (1)) (yield 42%).
  • the identification data of this compound 8 are as follows.
  • NP104 Trimer of N36 Peptide Derivative
  • the concentration of tryptophan contained in NP102 (monomer) and NP104 (trimer) synthesized this time was calculated using the above-described value of the molar extinction coefficient of tryptophan, and the concentrations of NP102 and NP104 in the measurement sample were corrected.
  • the concentration was corrected such that the concentration of NP104 (trimer) was one third of the concentration of NP102 (monomer) in order to make the concentration of N36 monomer (monomer) uniform. Specifically, since the concentration of NP102 was 10 ⁇ M, the concentration of NP104 was 10/3 ⁇ M.
  • helix contents of NP102 and NP104 were determined.
  • the formula for determining the helix content is the previous report (Chen, Y. -H., Yang, JT, Chau, KH Determination of the helix and beta form of proteins in aqueous solution by circular dichroism.
  • [ ⁇ ] ⁇ represents the infinite helix molar ellipticity, ⁇ 41000, k represents an empirically determined constant, 4.3, and n represents the number of amino acid residues.
  • the ⁇ -helix content of NP102 and NP104 was calculated using both the above formulas, which were 73% and 95%, respectively, and NP104 showed stronger ⁇ -helix properties than NP102 (FIG. 29).
  • the value of [ ⁇ ] 222 / [ ⁇ ] 208 is greater than 1, it has been known from previous studies that the structure has a coiled coil structure.
  • the value of [ ⁇ ] 222 / [ ⁇ ] 208 in the NP 104 is 0.96, which is closer to 1 than that of the NP 102.
  • NP104 when NP104 takes a trimer structure, it can be considered to take a coiled coil structure. This is consistent with the experimental results of gp41 conducted so far (Non-Patent Documents 10 to 12). From the above experimental results, it was shown that the synthesized NP104 is a trimer of the target N36 peptide derivative.
  • mice were immunized with NP102 and NP104, respectively.
  • the immunization amount and schedule for mice were in accordance with the method performed in Reference Example 2. Specifically, the following method was used.
  • the immunization solution consists of 1.0 ⁇ L of DMSO (endotoxin free) (Sigma Aldrich) containing 100 ⁇ g of synthetic peptide, 50 ⁇ L of PBS (Wako Pure Chemical Industries, Ltd.), and 50 ⁇ L of Freud in complete adjuvant ( Wako Pure Chemical Industries, Ltd.) was mixed for production.
  • mice Each mouse anesthetized with diethyl ether was placed in a supine position and immunized by subcutaneous injection with a positive control, negative control, NP102 or NP104-containing solution. Immunization was repeated 5 times at 1 week intervals for all mice.
  • an antibody recognizing NP102 is induced in the serum of a mouse immunized with NP102 (FIG. 32 (a)), and an antibody recognizing NP104 is induced in the serum of a mouse immunized with NP104 (FIG. 32).
  • an antibody recognizing the positive control was induced in the serum of the mouse immunized with the positive control (FIG. 32 (c)).
  • Antibodies contained in the serum of mice immunized with NP102 (monomer of N36 peptide derivative) or NP104 (trimer of N36 peptide derivative) are specific to each antigen molecule.
  • an antigen molecule different from the immunized antigen molecule was immobilized on a microplate, and the antibody titer of the antibody in the serum was evaluated. Specifically, the experiment was conducted by the following method.
  • FIG. 33 (a) shows the results of the evaluation of antibodies in the serum of mice immunized with NP102 by immobilizing NP104 on the microplate.
  • the serum of mice immunized with NP104 immobilized on the microplate is shown in FIG.
  • FIG. 33 (b) shows the results of evaluating the antibodies in the inside.
  • the antibody titer was finally detected depending on the time of blood collection, when the dilution ratio of serum was about 10 ⁇ 2 .
  • the antibody contained in the serum obtained by immunizing NP102 or NP104 is sufficiently specific for the immunized antigen molecule (NP102 or NP104). Since both NP102 and NP104 are derivatives of N36 peptide and have the same amino acid sequence, the antibody contained in the serum obtained by immunizing NP104 specifically recognizes the steric structure of NP104. It was strongly suggested that they are combined.
  • PNL4-3 (clade B; X4-tropic virus), an HIV-1 molecular clone, was prepared.
  • 293T cells were added to a petri dish having a diameter of 10 cm containing 10% FBS / DMEM (WAKO) and cultured until 60% confluent.
  • the cultured 293T cells were transfected with 10 ⁇ g of pNL4-3 using Lipofectamine LTX (manufactured by Invitrogen).
  • the culture medium was replaced with 10% FBS / RPMI1640 (manufactured by WAKO). Thereafter, the cells were cultured for 24 to 48 hours at 37 ° C. and a carbon dioxide concentration of 5% by mass.
  • the supernatant of the obtained culture broth was collected, and the supernatant was filtered through a 0.45 ⁇ m diameter filter to obtain a virus solution.
  • the virus solution was quenched with liquid nitrogen and stored at -80 ° C. or lower until use.
  • the infectious titer of the virus solution prepared in the above (1) of Example 3 was measured. Specifically, the following method was used. First, the virus solution prepared in the above (1) of Example 3 was diluted 10-fold with 10% FBS / RPMI1640. The diluted virus solution was added to the wells of a 96-well plate, and a 2-fold or 3-fold serial dilution series (11 wells in the horizontal direction and the 12th well was blank) was prepared. The volume of this dilution series was adjusted to 100 ⁇ L.
  • MT-4 cells T cell line
  • 10% FBS / RPMI1640 were added to each well of the above-mentioned dilution series so as to be 10 4 cells / 100 ⁇ L, and cultured.
  • the culture solution 100 ⁇ L was slowly changed so as not to change the number of cells in each well.
  • the culture supernatant of the culture broth was collected, the HIV-1 p24 amount was measured, and the virus titer (number of viruses / mL) was determined from the dilution factor at which the p24 value was zero.
  • the measured value of HIV-1 p24 amount of the culture solution obtained by culturing the diluted series of the virus solution as it is without adding MT-4 cells was used as the background.
  • the measured value of HIV-1 p24 amount of the culture solution obtained by culturing the diluted series of the virus solution as it is without adding MT-4 cells was used as the background.
  • the background was used as the background.
  • wells containing only MT-4 cells and pNL4-3 virus solution were also prepared without adding serum. After 3 days, 5 days and 7 days after virus infection, the supernatant of the wells was collected, and the expression level of p24 was measured by ELISA for HIV-1 p24. The serum obtained by immunizing NP104 was confirmed to have an inhibitory effect on HIV infection.
  • the solution in the wells after 3 days from virus infection was centrifuged to collect cells, and Western blot analysis for p24 was performed.
  • Western blot analysis was similarly performed on those collected from wells containing only MT-4 cells and pNL4-3 virus solution without adding serum.
  • NP104 trimer
  • EC 50 EC 50
  • CC 50 ⁇ M of anti-HIV activity
  • an N36 monomer peptide or template compound which is a target monomer peptide, is used to mimic a natural three-dimensional structure “N36 peptide derivative 3 Since a “mer” can be obtained, application to various fields is expected.
  • a peptide trimer in which a derivative of a peptide (monomer) that constitutes a virus type I fusion protein, such as HIV N36 peptide, is bound to a template compound, the virus (particularly HIV) enters the cell. Is particularly useful in the field of viral (especially HIV) infection preventive and therapeutic agents.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • AIDS & HIV (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 本発明は、変異の激しいHIVに対しても問題を生じることなく用いることができ、しかも、HIVの標的細胞への侵入機構としての中和標的の立体構造に対しての特異性や結合活性においても優れた特異性及び結合活性を有する抗体或いはワクチンの開発に有効なHIV抗体誘導ペプチド抗原、その合成方法、及び該ペプチド抗原からなるワクチン或いは該ペプチド抗原によって誘導されたHIV立体構造認識抗体、更には、該ペプチド抗原、該ワクチン或いはHIV立体構造認識抗体を有効成分とするHIV感染の予防及び/又は治療剤を提供することを目的とする。HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体と、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物とを結合させて合成した、N36ペプチドの誘導体の3量体を用いることを特徴とする。

Description

HIV立体構造認識抗体誘導ペプチド抗原、及びその合成方法
 本発明は、HIV(ヒト免疫不全ウイルス:Human Immunodeficiency Virus :HIV)の立体構造を認識する抗体を誘導するペプチド抗原、その合成方法、及び該ペプチド抗原からなるワクチン或いは該ペプチド抗原によって誘導されたHIV立体構造認識抗体、更には、該ワクチン或いはHIV立体構造認識抗体を有効成分とするHIV感染の予防及び/又は治療剤に関する。特に、HIVの標的細胞内への侵入機構であるHIVワクチンのHIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36とC34による6量体の形成に対して、ヘリックス領域N36の3量体領域への作用により、該gp41のN36とC34による6量体形成を阻害して、HIVの標的細胞への侵入を阻止するHIV立体構造を認識する抗体誘導ペプチド抗原、その合成方法、及び該ペプチド抗原からなるワクチン或いは該ペプチド抗原によって誘導されたHIV立体構造認識抗体、更には、該ペプチド抗原、該ワクチン或いはHIV立体構造認識抗体を有効成分とするHIV感染の予防及び/又は治療剤に関する。
 後天性免疫不全症候群(acquired immunodeficiency syndrome;AIDS)は1983年Montagnier Lらによって単離・発見されたヒト免疫不全ウイルス(Human Immunodeficiency Virus;HIV)により引き起こされる疾患である(非特許文献1参照)。HIVの起源は、霊長類を自然宿主とするサル免疫不全ウイルス(Simian Immunodeficiency Virus;SIV)が、突然変異によってヒトへの感染能力を獲得したことによるものと考えられている。HIVは空気感染ではなく、主に性的感染、血液感染、母子感染の3つの経路により感染する。性的感染は性分泌液が接触することが最大の原因とされており、血液感染は輸血、傷、注射針の使い回しなどが原因で感染が起る。そのため、倫理的観点からの感染予防が必要とされている。また、母子感染は、出産時の産道における体液の接触、母親の授乳、妊娠中における胎盤を通したウイルスの移動などが原因とされている。
 HIVは、レトロウイルスの一種であり、特にヒトCD4陽性T細胞を標的にして感染する外来性ウイルスである(非特許文献1参照)。HIVは、ヒトCD4陽性T細胞に感染した後、比較的長い潜伏期間を経て活性化し、かかるT細胞を破壊する。T細胞は免疫系において重要な役割を果たしているため、T細胞の破壊により、体内の免疫能力が著しく低下する。その結果、正常な状態であれば簡単に排除できるような病原体に対しても、十分な抵抗力を発揮することができなくなり、慢性的な免疫不全状態、すなわち、「AIDS発症」と言われる状態に陥る。
 全世界のHIV感染者数は、増加のスピードこそ緩やかになったものの、既に3300万人に達しており、2007年の新規HIV感染者数は240万人、HIVに関連する死亡者数は200万人であった(非特許文献2参照)。特に、世界最大の人口を有するアジアでは、HIVの感染拡大が急速である。日本もその例外ではなく、先進国の中では異例であるものの、増加の一途をたどっている。具体的には、2007年にはAIDS患者数が418人、HIV感染者数が1082人となり、初めて1000人を超え現在も歯止めがかからないのが日本の現状である(非特許文献3参照)。しかしながら、HIVはその発見当時から盛んに研究が行われ、現在に至るまでの25年の間に、感染症の診断法の確立、さらには治療法についても、他の感染症と比較して圧倒的な進歩を見せている(非特許文献4及び5参照)。治療薬に関するその精力的な研究開発により、AIDSは直接死に至る病ではなくなった。しかし、根本的な治療法は未だ確立されておらず、新たな問題点も出現している。そのため新規な治療薬が望まれている。
 HIVは、標的細胞に結合するために必要なgp120、gp41と呼ばれるタンパク質を、宿主細胞由来のウイルス膜上に有している。ウイルス膜の内部には裏打ちタンパク質としてマトリクス(Matrix)タンパク質が存在し、これによりHIVの構造が保たれている。また、HIVの核様体はカプシド(Capsid)タンパク質に囲まれた正12面体構造をしており、その内部にRNAゲノム、インテグラーゼ(integrase;IN)、プロテアーゼ(protease;PR)、逆転写酵素(reverse transcriptase;RT)を含んでいる(図1)。
HIVのRNAゲノムは、約9000bpであり、その遺伝子群は末端反復配列(long terminal repeat;LTR)と呼ばれる構造にはさまれて存在している。この遺伝子にコードされる十数種類のウイルスタンパク質が複雑な複製を制御している(非特許文献4及び5参照)。
 HIVの標的細胞への侵入から出芽までの一連の増殖サイクルのことをライフサイクルという。このライフサイクルは以下の(1)~(6)の各段階、すなわち、(1)ウイルスの細胞膜への吸着・膜融合、(2)RNAゲノムの逆転写、(3)ウイルスDNAの宿主染色体への組み込みと複製、(4)ウイルス構成タンパク質のプロセッシング、(5)ウイルス粒子の構築、(6)出芽の過程に分けられ、HIVはこれらの過程を経て増殖していく(図2参照)(非特許文献4~7参照)。1985年に最初の抗HIV薬として開発されたアジドチミジン(AZT)は、逆転写酵素の競合阻害薬であり、上記のライフサイクルを阻害することによって、HIVの増殖を抑制する薬剤である。このAZTが開発されて以降、HIVのライフサイクルがより詳細に明らかとなり、抗HIV薬の開発も飛躍的に進んできた(非特許文献8及び9参照)。その結果、現在では臨床応用されている抗HIV薬は15種類以上にも及び、作用機序の違う抗HIV薬を併用するHighly Active Anti Retroviral Therapy(HAART)が可能となった。HAARTによって、HIVは必ずしも死に直結する病ではなくなったばかりではなく、HIV感染者のQuality of life(QOL)が改善した。
 HIVの標的細胞への感染機構について説明する。HIVは標的細胞に感染するために、標的細胞上にあるCD4やCXCR4/CXCR5といった受容体を利用する。HIVの外皮タンパク質がこれらの受容体に結合し、その外皮タンパクの立体構造を変化させることでHIVのウイルス膜と標的細胞の細胞膜とが近づき膜融合を引き起こす(図3)。膜融合が成立すると、標的細胞内にHIVのRNAゲノムやウイルスタンパク質が放出されることで感染が成立する(非特許文献10~15参照)。
 HIVは自己複製ができず、増殖するためには宿主細胞に感染し、宿主細胞の持つ転写、翻訳機能を利用するしかない。そのため、HIVの増殖初期過程を阻害する薬剤が注目されている。このような薬剤として、実際に欧米で臨床応用されているものの中に、ペプチド性の薬剤であるenfuvirtide(T-20;DP178)がある(非特許文献16~20参照)。このT-20は、HIV外皮タンパク質の部分ペプチドであり、かかる部分ペプチドがHIVに結合すると、HIV外皮タンパク質の立体構造変化が妨げられ、その結果、HIVの膜融合が阻害されてHIVの侵入を防ぐこととなる。このようなペプチド性のHIV増殖阻害剤の開発は盛んに行われており、CCR5やCXCR4といった第2受容体をターゲットとした薬剤の開発も進んでいる。しかしながらT-20はペプチド性阻害剤であるために、経口投与が不可能であるという問題点がある(非特許文献21~30参照)。
 標的細胞内に侵入したHIVのRNAゲノムは逆転写酵素によって相補的なDNAへと変換された後に2本鎖のDNA(DNAゲノム)にされる(図2参照)。この逆転写酵素反応は酵素や鋳型RNAを含む複合体の中でおこなわれ、かかる逆転写酵素反応により生じたDNAゲノムはその後に核内に移行すると考えられている。前述の複合体はプレインテグレーション複合体(preintegration complex;PIC)と呼ばれており、特にこの複合体に含まれるviral protein R (vpr)によって核移行が起こっていると考えられている。核移行後、ウイルスのDNAゲノムは、インテグラーゼの働きによって宿主細胞の染色体DNAに挿入される(非特許文献31参照)。
 挿入されたウイルスゲノムDNAを鋳型として、宿主細胞の転写機能により、本体であるウイルスRNAが合成される。また、ウイルスタンパク質も転写、翻訳されスプライシングを受けることで前躯体タンパク質として発現されたのちに、プロテアーゼにより切断され成熟タンパク質になる。これら成熟タンパク質とHIVのRNAゲノムとからウイルスコアが形成され、かかるウイルスコアが細胞膜を内側から外側へと破る形で放出されることによって、新たなHIV粒子の形成及び細胞外への放出がなされる。
 このHIVのライフサイクルに欠かせない逆転写酵素、インテグラーゼ、プロテアーゼなどの酵素に対する阻害剤の開発が進み、HIVの増殖抑制に対して大きな効果をあげている。しかし、体内ウイルス量を極力抑制し続けるためには、長期にわたった薬剤の投与が必要となり、その結果薬剤耐性株の出現、重篤な副作用、さらに高額な治費が必要となるといった問題点もある。特に薬剤耐性ウイルスの出現は深刻である。薬剤耐性ウイルスの出現の原因としては、薬剤の長期服用のほか、HIVはDNAポリメラーゼのようなDNAの修復機構を持たないため、非常に変異を起こし易い(易変異性)ことが挙げられる。
 HIVゲノムの塩基置換速度は、哺乳動物ゲノムのそれの100万倍以上であり、HIVゲノムは哺乳動物ゲノムと比較して100万倍以上のスピードで変化していく(非特許文献32参照)。その結果、HIVゲノムの塩基配列上に点変異が導入され、HIV薬剤に対する耐性を獲得した株が一部に生じる。しかも、HAARTの主要な薬剤である逆転写酵素阻害剤に対する耐性を獲得したHIVは、その他の逆転写酵素阻害剤に対しても耐性を獲得するといった交差耐性の例も報告されており、薬剤耐性を獲得したウイルスに対しても効果が期待できる新規作用機序の薬剤の開発が望まれている(非特許文献4、8、33参照)。
 一方、HIVワクチンは、HIVの予防を目的として開発が進んできた。その最初にまず取り組まれてきたのがHIV動物モデルの確立であった。1980年代後半にSIV感染マカクザルモデルの確立により飛躍的に研究が進んだが、このモデルがヒトHIV-1感染症をどの程度反映しているかという根本的な問題は今現在も解決していない(非特許文献4参照)。この問題はワクチン開発においてだけではなく、新薬の開発においても同様のことが言える。つまり、HIV動物モデルの信頼性が十分でないことが懸念されるため、抗HIV活性を発揮する物質を、HIV動物モデルを利用してスクリーニングしたとしても、HIVに感染した実際のヒト患者に効果を発揮し得る抗HIV薬や抗HIVワクチンの候補物質まで排除されてしまう可能性が否定できない。
 また、ワクチン開発には、どのような免疫システムを誘導するべきか、すなわち、AIDS発症抑制のために誘導すべき免疫システムが何であるのかが不明であるという問題もある。この問題も、依然として解決していないが、昨今、細胞性免疫、液性免疫と数々の免疫システムについてHIV抑制との関係の調査が試みられ、現在は粘膜免疫の増強もHIVの抑制に効果があるのではないかとういう報告もある(非特許文献34及び35参照)。
 このような中、HIVワクチンとして、サルモデルにおける不活性ウイルスワクチンが開発され、当初、HIV感染防御効果を有しているとの報告がなされた。しかし、その後、そのHIV感染防御効果は、ウイルス粒子を構成しているヒト由来の抗原に対するものであることが分かり、かかるワクチンの有効性は否定されるに至った。その後、弱毒化ワクチンの有効性が示されたが、前述のようなHIVの易変異性に起因する危険性から、現時点においては臨床応用の可能性は考えられていない。このように、HIVワクチンの開発は難行している。しかし、HIVの標的細胞に対する侵入機構の詳細が明らかにされたことから、新たな視点に基づいたHIVワクチン開発が行われてきている。
 HIVの標的細胞に対する侵入機構について説明すると、HIV粒子の表面には、表面タンパク質であるgp120と膜貫通タンパク質であるgp41がありヘテロダイマーを形成している。このヘテロダイマーを形成したタンパク質がさらにホモ3量体を形成してHIV細胞膜上に十数個存在している(図4)。HIVの膜融合過程において、gp120は、標的細胞上のHIV感染における第1受容体であるCD4に結合することでその立体構造に変化が起こる(非特許文献9参照)。
 次いで、gp120は、第2受容体であるCXCR4もしくはCCR5に結合することが可能となりgp120-CD4-第2受容体という3者複合体を形成する(非特許文献9及び10参照)。この3者複合体の形成により、gp120と非共有結合的に複合体を形成しているgp41のN末端側が露出し、gp41に存在する膜挿入ペプチドが標的細胞の細胞膜にアンカリングする。アンカリングの後、N末端側のヘリックス領域であるN36とC末端側ヘリックス領域であるC34が逆平行に結合し、6量体を形成することでHIVのウイルス膜と標的細胞の細胞膜が近づき膜融合を引き起こす(図3及び5)(非特許文献10参照)。
 HIVのこのような侵入機構に基づき、gp120やgp41を標的とし、かつ、抗HIV活性を有する抗体がいくつか誘導されている。現在、gp120に対する抗体としてb12、2G12などが、また、gp41に対する抗体として4E10と2F5などが、比較的強い抗HIV活性を示すものとして知られている(図6)(非特許文献36~43参照)。また、特許文献1には、gp120に対する抗体を、HIVの感染を阻止するためや、HIVのライフサイクルに必須な段階を不活性化させるために用いることが記載されている。しかしながら、HIVゲノムは著しく易変異性であるためか、前述の抗体はある特定のHIV株に対して抗HIV活性を示したものの、それ以外の株に対してはそれほど抗HIV活性を示さなかったことから、現在のところ臨床応用にまでは至っていない。
特開2009-080118号公報
Sinoussi, B. F., Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 20, 868-871 (1983) WHO, World Health Statistics 2008 厚生労働省 エイズ動向委員会報告 「エイズ発生動向報告」2008年発行 山本 直樹 編 ヒトレトロウイルス研究の最前線 シュプリンガー・フェアラーク東京株式会社2002年2月22日発行 Koyanagi, Y. Outline of the HIV replication and its celluiar: the track of an invader in cell. Virus 55, 251-258 (2005) Carter, C. A., Ehrlich, L. S. Cell biology of HIV-1 infection of macrophages. Annu. Rev. Macrobiol. 62, 425-443 (2008) Eckert, D. M., Kim, P. S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777-810 (2001) Baba, M. Recent progress of anti-HIV-1 reseach. Virus 54, 59-66 (2004) Kwong, P. D., Wyatt, R., Robinson, J. Sructure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a newtralizing human antibody. Nature 393, 648-659 (1997) Chan, D. C., Fass, D., Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263-273 (1997) Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. Atomic structure of the ectodomain HIV-1 gp41. Nature 387, 426-430 (1997) Tan, K. J., Liu, J., Wang, S., Shen, S., Lu, M. Atomic structure of a thermostablesubdomain HIV-1 gp41. Proc. Natl. Acad. Sci.U. S. A. 94,12303-12308 (1997) Malashkevich, V. N., Chan, D. C., Chutkowski, C. T., Kim, P. S. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: Conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci.U. S. A. 95, 9134-9139 (1998) Lu, M., Blacklow, S. C., Kim, P. S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat. Struct. Biol. 12, 1075-82 (1995) Eckert, D. M., Kim, P. S. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc. Natl. Acad. Sci. U. S. A. 98, 11187-11192 (2001) Joyce, J. G., Hurni, W. M., Keller,P, M. Enhancement of α-Helicity in the HIV-1 inhibitory peptide DP178 lead to an increseed affinity for human monoclonal antibody 2F5 but does elicit neutralizing responses in Vitro.J. Biol. Chem. 277, 45811-45820 (2002) Kildy, M. J., Eron, J. J. Novel therapies based on mechanisms of HIV-1 cell entry. N. Engl. J. Med. 348, 2228-2238 (2003) Kilby, M. J., Hopkins, S., Saag, M. S. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med. 4, 1303-1307 (1998) Lalezari, J. P., Henry, K., O’Hearn, M., Salgo, M. Enfuvirtide, an HIV-1 Fusion Inhibitor, for Drug-Resistant HIV Infection in North and South America. N. Engl. J. Med. 348, 2175-2185 (2003) Liu, S., Lu, H., Niu, J., Jiang, S. Different from the HIVfusion inhibitor C34, The anti-HIV drug Fuzeon (T-20) inhibits entry by targeting multiple sites in gp41 snd gp120. J. Biol. Chem. 280, 11259-11273 (2005) Munch, J., Standker, L., Adermann, K., Schulz, A., Kirchhoff, F. Dascovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 129, 263-275 (2007) Jiang, S., Lin, K., Lu, M. A conformation-specific monoclonal antibody reacting with fusion-active gp41 from the human immunodeficiency virus type 1 envelope glycoprotein. J. Virol. 72, 10213-10217 (2007) Otaka, A., Nakamura, M., Nameki, D., Tamamura, H., Kobayashi, Y., Matsuoka, M., Hujii, N. Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 eith target cells. Angew. Chem. Int. Ed. 16, 2937-2940 (2002) Bewley, C. A., Louis, J. M., Ghirlando, R., Clore, G. M. Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J. Biol. Chem. 277, 14238-14245 (2002) Welch, B. D,. VanDemark, A. P., Heroux, A., Hill, C. P., Kay, M. S. Potent D-peptide inhibitors of HIV-1 entry. Proc. Natl. Acad. Sci. U. S. A. 104, 16828-16833 (2007) Louis, J. M., Nesheiwat, I., Chang, L., Clore, G. M., Bewley, C. A. Covalent trimers of the internal N-terminal trimeric coiled-coil of gp41 and antibodies directed against them are potent inhibitors of HIV envelope-mediated cell fusion. J. Biol. Chem. 278, 20278-20285 (2003) Bianchi, E., Finotto, M., Ingallinella, P., Renee, H., Pessi, P. Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection. Proc. Natl. Acad. Sci. U. S. A. 102, 12903-12905 (2005) Qiao, S., Kim, M., Reinhold, B., Montefiori, D., Wang, J.,Reinherz, E, L. Design, expression, and immunogenicity of a soluble HIV trimeric envelope fragment adopting a prefusion gp41 configuration. J. Biol. Chem. 280,23138-23146 (2005) Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A., Kim, P. S. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103-115, (1999) Root, M. J., Kay, M. S., Kim, P. S. Protein design of an HIV-1 entry inhibitor. Science 291, 884-888 (2001) Masuda, T. Host factors that regulate the intercellular dynamics of HIV-1 genome during the early phase of infection. Virus 1, 41-50 (2006) Sato, H., Yokoyama, M. RNA viruses and mutation. Virus 55, 221-230 (2005) Baba M. Advances in antiviral chemotherapy. Virus 55, 69-76 (2005) Belyakov, I. M., Berzofsky, J. A. Immunobiology of mucosalHIV infection review and the basis for development of a new generation of mucosal AIDS vaccines. Immunity 247-253 (2004) Yukia Y, Nochia T, Kiyonoa H. Progress towards an AIDS mucosal vaccine:An overview. Tuberculosis 87, 35-44 (2007) Alam, M. S., McAdams, M., Boren, D., Haynes, B. F. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope humanmonoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immun. 178, 4442-4435 (2007) Cardoso, R. M. F., Zwick, M. B., Stanfield, R. L., Ian A. Wilson, I. A. Broadly Neutralizing Anti-HIV Antibody 4E10 Recognizes a Helical Conformation of a Highly Conserved Fusion-Associated Motif in gp41. Immunity 22, 247-253 (2004) Ofek, G., Tang, M., Sambor, A., Kwong, P. D. Structure andmechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 incomplex with Its gp41 epitope. J. Virol. 78, 10724-10737 (2004) Nelson, J. D., Brunel, F. M., Jensen, R., Michael B. Zwick, M. B. An affinity-enhanced neutralizing antibody against the membrane-proximalexternal region of human immunodeficiency virus type 1 gp41recognizes an epitopebetween those of 2F5 and 4E10. J. Virol. 81, 4033-4043 (2007) Conley, A. J., Kessler, I. I., Boots, J. L., Tung, S. J., Arnold, B. A., Keller, P. M., Shaw, A. R., Emini, E. A. Neutralization of divergenthuman immunodeficiency virus type 1 variants and primary isolates by IAM- 41-2F5, an anti-gp41 human monoclonal antibody. Proc. Natl. Acad. Sci. U. S. A. 91, 3348-3352 (1994) Trkola, A., Purtscher, T. M., Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, Moore, J. P., Katinger, H. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70, 1100-1108 (1996) Hewer, R., Meyer, D. Peptide Immunogens based on the envelope region of HIV-1 are recognized by HIV/AIDS patient polyclonal antibodies are induce strong humoral immune responses inmice and rabbits. Mol. Immune. 40, 327-335 (2003) Pantophlet, R., Saphire, E. O., Poignard, P., Burton, P. D. Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J. Virol. 77, 642-658 (2003)
 HIVワクチンの開発においてはこれまでの感染症に対して有効であった弱毒化ワクチン、生ワクチンといった方法がHIVの易変異性ゆえに危険視されたこともあり使うことができないという問題があり、また、通常抗体誘導を行う際には、そのタンパク質における部分配列を合成しその配列特異的な抗体を誘導することを目的としているが、部分配列を用いて誘導された抗体はアミノ酸配列に特異的に結合し得るが、中和標的の立体構造に対しての特異性や結合活性は概して低いという問題がある。
 そこで本発明の課題は、このように変異の激しいHIVに対しても問題を生じることなく用いることができ、しかも、HIVの標的細胞への侵入機構としての中和標的の立体構造に対しての特異性や結合活性においても優れた特異性及び結合活性を有する抗体或いはワクチンの開発に有効なHIV抗体誘導ペプチド抗原、その合成方法、及び該ペプチド抗原からなるワクチン或いは該ペプチド抗原によって誘導されたHIV立体構造認識抗体、更には、該ワクチン或いはHIV立体構造認識抗体を有効成分とするHIV感染の予防及び/又は治療剤を提供することにある。
 本発明者は、上記課題を解決すべく鋭意検討する中で、変異の激しいHIVを標的とする場合、アミノ酸配列だけではなく、立体構造を認識して結合する抗体を誘導することが望ましいと考え、そこで、立体構造を保持した状態の抗原分子を用いることによって、立体構造に対しても特異的な抗体を誘導することができれば、HIVに対してもより高い中和活性を有する抗体が誘導できることを想定し、そして、HIVの標的細胞侵入機構において、膜融合の鍵となるgp41を標的とし、その中間体構造を特異的に認識する抗体を誘導するための抗原分子創出を目的として、gp41のヘリックス領域の中でももっとも重要なN36と呼ばれる部分の3量体を抗原分子として化学合成し、該抗体誘導抗原分子として用いることにより、HIVの標的細胞への侵入機構としての中和標的の立体構造に対しての特異性や結合活性においても優れた特異性及び結合活性を有する抗体或いはワクチンの開発に有効なHIV抗体誘導ペプチド抗原を提供することができることを見い出し、本発明を完成するに至った。
 すなわち本発明は、抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程、及び、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合することにより、N36ペプチドの誘導体の3量体を合成する工程からなることを特徴とするN36の3量体領域を認識するHIV立体構造認識抗体誘導ペプチド抗原の合成方法からなる。
 本発明の概要について説明すると、AIDSおよびHIV感染症の患者に対する治療法として、HIVワクチンの開発について検討する中で、HIV感染症の治療に向けて感染の初期過程における膜融合に注目し、HIVワクチンを開発することを目指した。その膜融合機構は、3量体構造を形成するHIV表面タンパク質が宿主の細胞膜に突き刺さった後、gp41のN末端側ヘリックス領域であるN36に対してgp41のC末端側ヘリックス領域であるC34が逆平行に結合することで6量体(6 helical bundle)構造を形成する。その結果、宿主細胞とHIVの膜同士が近づき膜融合することで感染が成立する(図3)。したがって、6量体構造の前段階であるgp41の3量体構造を特異的に認識する抗体を誘導できれば6量体構造の形成を阻害し、HIVの侵入を抑制できると想定した。そのために、抗原分子としてN36の3量体構造を化学合成により創製した。
 まず、Fmoc(9-fluorenylmethoxycarbonyl)-固相合成法により目的とするN36由来のペプチドを合成し、ついで、3量体構造をとりやすいように3本の等価なリンカーを持つ低分子テンプレート化合物を設計・合成した。更に、ペプチドのN末端Cysとグリコールアルデヒドエステルがチアゾリジン(thiazoligine)を形成して結合することを利用したチアゾリジンライゲーション(thiazoligine ligation)法が既に報告されており、その方法を用いることでテンプレート化合物上にペプチドを集積して3量体を模倣した抗原分子を合成することに成功した。
 本発明において、抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程におけるN36ペプチドの誘導体は、9-fluorenylmethoxycarbonyl(Fmoc)基の選択的脱保護と縮合反応による固相合成法により合成することができる。
 更に、抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程において、N36ペプチドの誘導体に、テンプレート化合物に結合するために必要なCysを導入し、N36の天然の配列と該Cysの間には立体障害による反応性の軽減を防ぐためにスペーサーとしてGlyを1残基導入することにより、テンプレート化合物への結合を良くし、更に、天然の配列とCysとの立体障害による反応性の軽減を防ぐことができる。
 本発明において、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合することにより、N36ペプチドの誘導体の3量体を合成する工程における、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物として、下記一般式(1)で表される化合物又はその塩を用いることができる。
Figure JPOXMLDOC01-appb-C000001

(式中、Xは正の整数を示す)。
 上記一般式のテンプレート化合物において、好ましい化合物として、Xが、1~5の範囲内の整数のものが選択され、特に、好ましいテンプレート化合物として、下記一般式(2)で表される化合物又はその塩を選択することができる。
Figure JPOXMLDOC01-appb-C000002
 本発明において、抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程におけるN36ペプチドの誘導体としては、N36ペプチドのN末端側に親水性アミノ酸Arg及びGluを計6残基付与して水溶性を増強し、更に、そのN末端側にチアゾリジンライゲーションに用いるCysを配置し、立体障害によって反応が落ちないように、CysとArgとの間にスペーサーとしてGlyを配置したものを用いることができる。このものとして、下記一般式(3)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 本発明においては、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、本発明で合成したN36ペプチドの誘導体とを、acetate buffer中で攪拌することにより、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合させて、N36ペプチドの誘導体の3量体を合成することができる。
 本発明においては、上記の一般式(1)(式中、Xは正の整数を示す)で表される化合物又はその塩で表されるテンプレート化合物を用いることができ、中でも、かかるXが1~5の範囲内の整数であるテンプレート化合物を好適に用いることができる。
 本発明においては、本発明のペプチド抗原合成方法によって合成されたHIV立体構造認識抗体誘導ペプチド抗原を用いて、宿主動物を感作し、該抗原に対する抗体を誘導することができる。また、該HIV立体構造認識抗体誘導ペプチド抗原を用いてHIVワクチンを製造することができる。本発明においては、該N36の3量体領域を認識するHIV立体構造認識抗体又はHIVワクチンを有効成分としてHIVの感染予防及び/又は治療剤を提供することができる。本発明のHIVの感染予防及び/又は治療剤は、HIV感染予防及び/又は治療が、HIV立体構造認識抗体又はHIVワクチンのHIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36の3量体領域への作用により、gp41のN36とC34による6量体形成を阻害して、HIVの標的細胞への侵入を阻止することにより、HIVの感染に対する予防及び/又は治療効果を発揮することができる。
 本発明により、HIVの標的細胞への侵入機構としての中和標的の立体構造に対しての特異性や結合活性においても優れた特異性及び結合活性を有する抗体或いはワクチンの開発に有効なHIV抗体誘導ペプチド抗原を提供することができる。該HIV抗体誘導ペプチド抗原の提供により、HIV立体構造認識抗体やワクチンの製造が可能となり、該ペプチド抗原、該ワクチン或いはHIV立体構造認識抗体を有効成分とするHIV感染の予防及び/又は治療剤を提供することができる。HIVワクチンの開発においてはこれまでの感染症に対して有効であった弱毒化ワクチン、生ワクチンといった方法がHIVの易変異性ゆえに危険視されたこともあり使うことができないという問題があったが、本発明のHIV抗体誘導ペプチド抗原は、変異の激しいHIVを標的とするアミノ酸配列だけではなく、HIVの標的細胞への侵入機構としての中和標的の立体構造に対しての特異性や結合活性を有する抗体或いはワクチンの開発に有効なHIV抗体誘導ペプチド抗原を提供するものであるから、上記のような従来のHIVワクチンの開発における問題を解決して、HIV感染に対して、安全かつ有効なHIV抗体やHIVワクチンを提供することができ、HIV感染に対して、安全かつ有効なHIV感染の予防及び/又は治療剤を提供することができる。
HIVの模式図を示す図である。 HIVのライフサイクルを示す図である。 HIVの膜融合機構を示す図である。 HIV外皮タンパク質gp41の3量体構造を示す図である。 膜融合におけるgp41の6量体構造のX線結晶構造解析を示す図である。 HIV外皮タンパク質に対する抗体名とその認識領域を示す図である。 MAP-N36ペプチド抗原分子の合成スキームを示す図である。 Fmoc固相合成法による抗原ペプチドの合成スキームを示す図である。 NP101の合成に関する図である。(a)NP101のアミノ酸配列等を示す図;(b)NP101の精製後のHPLCチャートを示す図;(c)HPLC後のMALDI-TOF MSの結果を示す図; ポジティブコントロール抗原の合成に関する図である。(a)ポジティブコントロール抗原のアミノ酸配列等を示す図;(b)ポジティブコントロール抗原の精製後のHPLCチャートを示す図;(c)HPLC後のESI-TOF MSによる2価のイオンピークを示す図;(d)多価体から再構成したイオンピークを示す図; MAPの合成に関する図である。(a)MAPのアミノ酸配列等を示す図;(b)MAPの精製後のHPLCチャートを示す図;(c)HPLC後のESI-TOF MSによる、MAPの[M+H]と[M+2H]2+/2のイオンピークを示す図; NP101とMAPとの結合反応のHPLCチャートを示す図である。 HPLC後のNP101-MAPのMALDI-TOF MSの結果を示す図である。 ポジティブコントロールとMAPとの結合反応のHPLCチャートを示す図である。 HPLC後のポジティブコントロール-MAPのMALDI-TOF MSの結果を示す図である。 抗体誘導実験における免疫及び採血のスケジュールを示す図である。 血清中の抗体価をELISAで評価した結果を示す図である。(a)「NP101-MAPを固定化したプレート」と、「ネガティブコントロールを投与して得られた血清」とを用いたELISAの結果を示す図;(b)「NP101-MAPを固定化したプレート」と、「NP101-MAPを投与して得られた血清」とを用いたELISAの結果を示す図;(c)「ポジティブコントロール-MAPを固定化したプレート」と、「ポジティブコントロール-MAPを投与して得られた血清」とを用いたELISAの結果を示す図; チアゾリジンライゲーションのスキームを示す図である。 NP102の合成に関する図である。(a)NP102のアミノ酸配列等を示す図;(b)NP102の精製後のHPLCチャートを示す図;(c)HPLC後のESI-TOF MSによる、NP102の[M+4H]4+/4のイオンピークを示す図;(d)多価体から再構成したイオンピークを示す図; NP103の合成に関する図である。(a)NP103のアミノ酸配列等を示す図;(b)NP103の精製後のHPLCチャートを示す図;(c)HPLC後のESI-TOF MSによる、NP103の[M+2H]2+/2から[M+5H]5+/5のイオンピークを示す図;(d)多価体から再構成したイオンピークを示す図; テンプレート化合物の構造を示す図である。 テンプレート化合物の合成スキームを示す図である。 N36誘導体のN末端側に付加されたアミノ酸配列中のシステインの-SH基同士の間の推定距離を示す図である。 NP104の合成スキームに関する図である。なお、図中の「Template」とは、本発明のテンプレート化合物を表す。 NP104の合成反応を追跡したHPLCチャートを示す図である。 NP104の合成に関する図である。(a)NP104の模式図等を表す図;(b)NP104の精製後のHPLCチャートを示す図;(c)HPLC後のESI-TOF MSによる、NP103の[M+6H]6+/6から[M+15H]15+/15のイオンピークを示す図;(d)多価体から再構成したイオンピークを示す図; NP104の合成の際におけるHPLCの保持時間と、ESI-TOF-MSによる同定結果を示す図である。 NP102とNP104のCDスペクトルを示す図である。 NP102とNP104のモル楕円率やαヘリックス性を示す図である。 NP104等による抗体誘導実験における免疫及び採血のスケジュールを示す図である。 血清中の抗体価をELISAで評価した結果を示す図である。(a)「NP102を固定化したプレート」と、「ネガティブコントロールを投与して得られた血清」とを用いたELISAの結果を示す図;(b)「NP104を固定化したプレート」と、「ネガティブコントロールを投与して得られた血清」とを用いたELISAの結果を示す図; 血清中の抗体価をELISAで評価した結果を示す図である。(a)「NP102を固定化したプレート」と、「NP102を投与して得られた血清」とを用いたELISAの結果を示す図;(b)「NP104を固定化したプレート」と、「NP104を投与して得られた血清」とを用いたELISAの結果を示す図;(c)「ポジティブコントロールを固定化したプレート」と、「ポジティブコントロールを投与して得られた血清」とを用いたELISAの結果を示す図; 血清中の抗体価をELISAで評価した結果を示す図である。(a)「NP104を固定化したプレート」と、「NP102を投与して得られた血清」とを用いたELISAの結果を示す図;(b)「NP102を固定化したプレート」と、「NP104を投与して得られた血清」とを用いたELISAの結果を示す図; 本発明の抗体を含む血清について、HIV感染抑制効果を評価した図である。左上パネル:「NP102を固定化したプレート」と、「NP102を投与して得られた血清」とを用いたELISAの結果を示す図;左下パネル:「NP104を固定化したプレート」と、「NP104を投与して得られた血清」とを用いたELISAの結果を示す図;右パネル:p24アッセイの結果を示す図である。 本発明の抗体を含む血清について、MTTアッセイにより抗HIV活性を評価した図である。左上パネル:抗HIV活性(EC50(μM))を示す図;右上パネル:細胞毒性(CC50(μM))を示す図;下パネル:EC50(μM)とCC50(μM)をまとめた図;
 本発明は、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体(以下、単に「N36ペプチド誘導体」とも表示する。)を合成する工程、及び、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物(以下、単に「本発明におけるテンプレート化合物」とも表示する。)と、前述のN36ペプチド誘導体とを結合することにより、N36ペプチド誘導体の3量体を合成する工程からなることを特徴とするN36の3量体領域を認識するHIV立体構造認識抗体誘導ペプチド抗原を合成する方法(以下、単に「本発明のペプチド抗原の合成方法」とも表示する。)からなる。
 本発明におけるN36ペプチド誘導体とは、N36ペプチドのアミノ酸配列(配列番号1)において、1又は2個以上(好ましくは2~15個、より好ましくは2~10個、さらに好ましくは2~5個)のアミノ酸が置換、欠失、挿入されたアミノ酸配列からなり、かつ、HIV立体構造認識抗体誘導ペプチド抗原の合成に用い得るペプチドを意味する。かかるN36ペプチド誘導体としては、N36ペプチドのN末端側にチアゾリジンライゲーションに用いるCysをN末端側に配置したペプチドを好適に例示することができ、N36ペプチドのN末端側に親水性アミノ酸Arg及びGluを計6残基付与して水溶性を増強し、更に、チアゾリジンライゲーションに用いるCysをそのN末端側に配置し、立体障害によって反応が落ちないように、CysとArgとの間にスペーサーとしてGlyを配置したペプチドをより好適に例示することができ、中でも、上記の一般式(3)で表される化合物を特に好適に例示することができる。なお、ある特定のN36ペプチド誘導体が、HIV立体構造認識抗体誘導ペプチド抗原の合成に用い得るペプチドであるかどうかは、そのペプチドがN36の3量体領域を認識するHIV立体構造認識抗体を誘導し得るかどうかを調べることによって確認することができる。
 本発明のペプチド抗原の合成方法において、N36ペプチド誘導体を合成する工程において、N36ペプチド誘導体を合成するには、Fmoc solid-phase peptide synthesis (SPPS)を用いることができる(Hirokazu Tamamura et al. Bioorganic & Medicinal Chemistry 6 (1998)1033-1041や、"Solid phase peptide synthesis - a practical approach" by E Atherton & R C Sheppard IPI PRESS参照)。すなわち、固相合成法により、主鎖アミノ基の保護基である9-fluorenylmethoxycarbonyl(Fmoc)基の選択的脱保護と縮合反応の操作を繰り返し、最後に樹脂からの脱樹脂、脱保護を行なうことにより、目的とするペプチドを合成することができる。
 本発明において、N36ペプチド誘導体の3量体を合成する工程には、本発明のテンプレート化合物が用いられる。本発明のテンプレート化合物としては、下記一般式(1)で表される化合物又はその塩を好適に例示することができる。
Figure JPOXMLDOC01-appb-C000004

(式中、Xは正の整数を示す)
 上記Xとしては、天然のgp41タンパク質におけるN36の3量体の構造により近い、N36ペプチド誘導体の3量体を得る観点から、1~5の範囲内の整数であることが好ましく、1~3の範囲内の整数であることがより好ましく、1であることが特に好ましい。かかるテンプレート化合物を用いると、N36ペプチド誘導体を簡便に、かつ、天然構造に類似した構造に3量体化することができる。本発明のテンプレート化合物の末端のグリコールアルデヒドエステル部分は、N36ペプチド誘導体-キャリアータンパク質結合体とのチアゾリジンライゲーションに利用することができ、また、アミド結合は親水性を高めると共に、合成が容易であるという利点がある。
 本発明のテンプレート化合物は、酸付加塩又は塩基付加塩などの塩の形態であってもよい。例えば、酸付加塩としては、塩酸塩、リン酸塩、硝酸塩、硫酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、クエン酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩などの鉱酸塩や、シュウ酸塩、若しくは酒石酸塩などの有機酸塩を挙げることができる。また、塩基付加塩としては、ナトリウム塩、カリウム塩、マグネシウム塩、若しくはカルシウム塩などの金属塩や、アンモニウム塩、又はトリエチルアミン塩若しくはエタノールアミン塩などの有機アミン塩などを挙げることができる。また、本発明のテンプレート化合物は、本発明に用い得る限り、1又は2個以上の任意の置換基を有していてもよい。2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。本発明に用い得る限り、置換基の存在位置は限定されず、置換可能な任意の部位に存在することができる。置換基の種類は特に限定されない。本発明のテンプレート化合物は、例えば後述の図22に概略を記した方法により作製することができ、具体的には、後述の実施例1の(3)記載の方法により作製することができる。
 本発明におけるN36ペプチド誘導体を、本発明のテンプレート化合物と結合することにより、N36ペプチド誘導体の3量体を合成する工程において、N36ペプチド誘導体の3量体を形成するには、チアゾリジンライゲーション反応を用いることができる(Biologicals, 29, 189-196, 2001;Biopolymers, 60, 194-205, 2001; Proc. Natl. Acad. Sci. U. S. A., 91, 6584-6588, 1994;J.Am.Chem.Soc. 123, 2487-3494, 2001: 125, 73-82, 2002: 121, 9013-9022, 1999; Biopolymers, 90, 320-329, 2008)。
 すなわち、チアゾリジンライゲーション反応は、無保護のペプチド断片同士をプロリン様の構造で結合させる方法で、その反応は、まず、C末端がペプチジルグリコールアルデヒドエステルのペプチドに対して、N末端Cysのアミノ基がカルボニル炭素を求核攻撃することによって、イミンを形成し、次いで分子内においてシステイン側鎖のチオール基が分子求核攻撃によりチアゾリジン環形成が起こる。この反応によって、チアゾリジンエステルが形成され、そして、O,N,-アシル転位反応が起こることによって、安定なプロリン様の結合を形成することができる。
 このプロリン様の結合によるライゲーションは、これまでに多くの方法が開発されており、Cysだけでなく、Trp、Ser、Thr、His、Asnでも類似した構造をとって結合することが知られているが、その中でも特にCysは反応性が高く高収率でで得られることが報告されている(J.Am.Chem.Soc. 121,9013-9022,1999)。この反応は、pH4~6に調節されたbuffer中という温和な条件下で起こり、tris(2-carboxyethyl)phosphine hydrochloride(TCEP)を混合した還元状態にしたbufferでも反応が進行するためCys同士のジスルフィド結合のような不都合な結合の形成を抑制することができる。
 上記のチアゾリジンライゲーション反応の方法としては、本発明のリンカー化合物と、本発明で合成したN36ペプチド誘導体とを、acetate buffer中、より好ましくは200mM acetate buffer(pH=5.2)、20% 2,2,2,-Trifluoreethanol(TFE)中で攪拌することにより、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合させて、N36ペプチドの誘導体の3量体を合成する方法を好適に例示することができる。かかるチアゾリジンライゲーション反応は、N36ペプチド誘導体のN末端のCysに特異的に起こり、反応の経過をHPLC、ESI-TOF-MSを用いて追跡し、反応終了を検知することができる。
 本発明のHIV立体構造認識抗体誘導ペプチド抗原(以下、単に「本発明のペプチド抗原」とも表示する。)としては、本発明のペプチド抗原の合成方法によって合成されるペプチド抗原である限り特に制限されないが、下記一般式(4)(式中、Xは正の整数を示し、MonomerはN36ペプチド誘導体を示す)で表されるペプチド抗原(N36ペプチド誘導体の3量体)を好適に例示することができる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(4)におけるXとしては、天然のgp41タンパク質におけるN36の3量体の構造により近い、N36ペプチド誘導体の3量体を得る観点から、1~5の範囲内の整数であることが好ましく、1~3の範囲内の整数であることがより好ましく、1であることが特に好ましい。
 本発明においては、本発明のペプチド抗原を用いて、宿主動物を感作し、該抗原に対する抗体(以下、単に「本発明における抗体」とも表示する。)を常法にしたがって誘導することができる。かかる本発明における抗体は、N36の3量体領域を認識するHIV立体構造認識抗体である。本発明における抗体は、ヒト抗体を含む。ここで本発明において「ヒト抗体」とは、ヒト由来の抗体遺伝子の発現産物である抗体を意味する。ヒト抗体は、ヒト抗体遺伝子座を導入し、ヒト由来抗体を産生する能力を有するトランスジェニック動物に本発明のペプチド抗原を投与することにより得ることができる。該トランスジェニック動物の例として例えばマウスが挙げられる。ヒト抗体を産生し得るマウスとして、例えば、内在性マウスイムノグロブリン(Ig)重鎖及びマウスκ軽鎖を欠損しており、かつ、ヒトIg重鎖遺伝子を含む14番染色体断片(SC20)及びヒトIgκ鎖トランスジーン(KCo5)を同時に保持するマウスを挙げることができる。このマウスはヒトIg重鎖遺伝子座を持つ系統Aのマウスと、ヒトIgκ鎖トランスジーンを持つ系統Bのマウスとの交配により作製される。系統Aは、内因性Ig重鎖及びκ軽鎖破壊の両者についてホモ接合体であり、子孫伝達可能な14番染色体断片(SC20)を保持するマウス系統(Tomizuka. et al., Proc Natl Acad Sci USA., 2000 Vol97:722)である。また、系統Bは内在性マウスIg重鎖及びκ軽鎖欠損の両者についてホモ接合体であり、ヒトIgκ鎖トランスジーン(KCo5)を保持するマウス系統(Nat Biotechnol., 1996 Vol14:845)である。
 また、ポリクローナル抗体、モノクローナル抗体およびその機能的断片のいずれであっても、N36の3量体領域を認識するHIV立体構造認識抗体である限り、本発明における抗体である。本発明による抗体の機能的断片とは、本発明による抗体が特異的に結合する抗原に対して、特異的に結合する抗体の断片を意味し、より具体的にはF(ab’)2、Fab’、Fab、Fv、disulphide-linked FV、Single-Chain FV(scFV)およびこれらの重合体等が挙げられる(D.J.King,Applications and Engineering of Monoclonal Antibodies,1998 T.J.International Ltd)。このような抗体断片は慣用法、例えばパパイン、ペプシン等のプロテアーゼによる抗体分子の消化、あるいは公知の遺伝子工学的手法により得ることができる。
 本発明におけるポリクローナル抗体は、例えば、以下に述べる方法によって製造することができる。本発明のペプチド抗原を、必要に応じて免疫賦活剤(Freund’s Adjuvant等)とともに、マウス、ウサギ、ヤギ、ウマ等の非ヒト哺乳動物に免疫することにより得られる。本発明におけるモノクローナル抗体は、免疫感作動物から得た抗体産生細胞と自己抗体産生能のない骨髄腫系細胞(ミエローマ細胞)からハイブリドーマを調製し、ハイブリドーマをクローン化し、免疫に用いた抗原に対して特異的親和性を示すモノクローナル抗体を産生するクローンを選択することによって取得することができる。該ハイブリドーマの調製は、ケーラーおよびミルシュタインらの方法(Nature,1975 Vol.256:495-497)およびそれに準じて行うことができる。モノクローナル抗体を産生するハイブリドーマクローンのスクリーニングは、ハイブリドーマを、例えばマイクロタイタープレート中で培養し、増殖の見られたウェル中の培養上清の免疫抗原に対する反応性を、例えばELISA等の酵素免疫測定法、ラジオイムノアッセイ、蛍光抗体法などの免疫学的方法を用いて測定することにより行なうことができる。
 ハイブリドーマからのモノクローナル抗体の製造は、ハイブリドーマをインビトロで培養して培養上清から単離することができる。また、マウス、ラット、モルモット、ハムスターまたはウサギ等の腹水中等でのインビボで培養し、腹水から単離することもできる。また、ハイブリドーマ等の抗体産生細胞からモノクローナル抗体をコードする遺伝子をクローニングし、適当なベクターに組み込んで、これを宿主(例えばチャイニーズハムスター卵巣(CHO)細胞等の哺乳類細胞株、大腸菌、酵母細胞、昆虫細胞、植物細胞など)に導入し、遺伝子組換え技術を用いて組換型抗体を調製することができる(P.J.Delves,ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES,1997 WILEY、P.Shepherd and C.Dean,Monoclonal Antibodies,2000 OXFORD UNIVERSITY PRESS、J.W.Goding,Monoclonal Antibodies:principles and practice,1993 ACADEMIC PRESS)。
 さらに、トランスジェニック動物作製技術を用いて目的抗体の遺伝子が内在性遺伝子に組み込まれたトランスジェニックなウシ、ヤギ、ヒツジまたはブタを作製し、そのトランスジェニック動物のミルク中からその抗体遺伝子に由来する抗体を大量に取得することも可能である。
 産生された抗体は、当該分野において周知の方法、例えばプロテインAカラムによるクロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、硫安塩析法、ゲル濾過、アフィニティクロマトグラフィー等を適宜組み合わせることにより精製することができる。
 また、本発明のペプチド抗原を用いてHIVワクチンを製造することができる。該ペプチド抗原やHIVワクチンを対象に投与することにより、対象において、本発明における抗体を誘導することもできる。本発明においては、本発明のペプチド抗原、抗体又はHIVワクチンを有効成分としてHIVの感染予防及び/又は治療剤を提供することができる。該抗体或いはHIVワクチンの製造は、本発明のペプチド抗原を用いるほか、通常HIV抗体或いはHIVワクチンの製造に用いられる方法を用いることができる。
 本発明のペプチド抗原、抗体又はHIVワクチンを有効成分としてHIVの感染予防及び/又は治療剤を調製する場合には、ペプチド抗原、抗体又はワクチンを有効成分とした感染予防及び/又は治療剤において通常採用される製剤形態を採用することができる。例えば、ペプチド抗原、抗体又はワクチンを有効成分とした感染予防及び/又は治療剤において通常採用される製剤の形態、或いは、補助剤、添加剤を用いることができる。
 以下、本発明を参考例や実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例の範囲に限定されることはない。なお、本発明は、平成20年度厚生労働科学研究費補助金(エイズ対策研究事業)に基づく成果である。
[参考例1]
[N36ペプチド誘導体の合成及びその抗原性の確認]
(1)N36ペプチド誘導体と抗原分子の合成スキームの概略
 N36ペプチド誘導体の3量体の合成及びその抗原性を確認する前に、まず、N36ペプチド誘導体の抗原性の有無を確認することとした。N36ペプチド誘導体が単量体の状態で抗原性を全く示さなかった場合、それを3量体の状態にしても、抗原性が大きく上昇するとは考えにくいためである。そこで、N36ペプチド誘導体を合成してマウスに免疫することで、抗原性を確認することとした。ペプチドを抗原分子として用いる際には従来から用いられている方法として、ヘモシアニン(keyhole limpet hemocyanin;KLH)もしくは多価抗原ペプチド(multi antigen peptide;MAP)などのキャリアータンパク質に結合させることによって、分子量を大きくして抗原性を高める方法が知られている。今回は従来からの方法に準じて、合成及び同定が簡便なMAPをキャリアーとすることとし、MAPについても合成をおこなった。このMAPに、合成したN36ペプチド誘導体(抗原分子)を結合させ、マウスへの免疫に用いることとした。なお、本願参考例や実施例で用いているマウスは、すべて雄のBALB/cマウスである。これらのマウスは、日本クレア株式会社から購入した後、東京医科歯科大学の動物施設にて育成し、各実験の開始時に6~8週齢で使用した。
 MAPは、放射状に分岐したリシン(Lys)残基のデンドリマーからなり、免疫的に不活性な分子である。MAP分子の先端に抗原分子を結合させることにより、全体の分子量大きくするだけでなく、MAP1分子に抗原分子を多数配置することで、抗原分子の抗原性を増加させることができる。さらに、MAPのN末端側には、親水性を増強するためにアルギニン(Arg)残基、グルタミン酸(Glu)残基を配置した(図7)。
 N36ペプチド誘導体のMAPへの結合部分はこれまでの研究において、6量体形成に重要な領域がN36ペプチド誘導体のC末端側に存在することが明らかとなっている(背景技術中の非特許文献12~17参照)。そのため、N36ペプチド誘導体のN末端側をMAPと結合させることとした。この合成されたN36ペプチド誘導体の抗原分子を用いて、N36ペプチド誘導体の持つ抗原性を確認するとともにマウスを用いた抗体誘導実験、血清の評価系の確立をすることとした。そこで、まず、高い抗体誘導能が既に報告されているペプチド性の抗原分子を、ポジティブコントロールとして合成することとした。同時にN36ペプチド誘導体 (以下、「NP101」ともいう)についても合成することとした。
 ペプチドの合成はFmoc solid-phase peptide synthesis(Fmoc-SPPS)によって行なうこととした。その合成スキームを以下(図8)に示す。固相合成法は、主鎖アミノ基の保護基である9-fluorenylmethoxycarbonyl(Fmoc)基の選択的脱保護と縮合反応という操作を繰り返し、最後に樹脂からの脱樹脂、脱保護を行うことで、目的とするペプチドを合成する方法である。この固相合成法の場合、不溶性の樹脂上で反応を行い、反応に用いた試薬は全て洗い流すことができるため、途中精製を要さずに目的の化合物を得ることができる。固相合成法によるペプチド合成は、具体的には以下のような方法で行なった。
 ペプチド合成のためのFmoc保護アミノ酸を含む化学試薬は、Novabiochem、国産化学株式会社、及び、渡辺化学工業株式会社から購入した。N36に関するペプチド誘導体については、NovaSyn TGR樹脂を用いて合成した。ペプチドの合成は、以下の側鎖保護アミノ酸を用いて手動で行なった。一方、単量体ペプチド及びMAPについては、Fmocの化学的性質を用いて作製した。それぞれのサイクルは、(1)20質量%のピペリジン/DMFによる15分間の脱保護、(2)DMF2mL中に5倍等量のFmocアミノ酸(Fmoc-AA-OH)、5倍等量のHOBt、及び、5倍等量のDIPCIを含む溶液で90分間カップリングした。カップリング効率をカイザーニンヒドリンテストで確認したところ、結果はネガティブであり、遊離アミノ基は0.05%よりも少なかった。カイザーニンヒドリンテストの結果がややポジティブである場合は、カップリングをもう1度繰り返した。この場合のカップリングは、DMF2mL中に3倍等量のFmocアミノ酸(Fmoc-AA-OH)、3倍等量のHOBt、3倍等量のDIPEA、及び、2.9倍等量のHBTUを含む溶液で行なった。2回目のカップリング後でも、前述のカイザーニンヒドリンテストの結果がポジティブである場合は、残りの遊離アミノ基は、無水酢酸(AcO)とDMFの混合物を用いてアセチル化(キャッピング)した。ペプチド合成が終了した後、樹脂をDMFとDCMで広範囲に洗浄し、真空内で6時間乾燥した。合成したペプチドは、TFA、チオアニソール、エタンジチオール、m-クレゾール、水、トリイソプロピルシラン(10:0.75:0.75:0.25:0.25:0.1(体積比))の混合溶液を室温で90分間用いて樹脂から引き離した。反応溶液をフィルターでろ過し、TFAで樹脂を3回洗浄した。そのろ液を真空下で脱水し、エタノールを添加することにより、固形粉末としてペプチドを析出させた。遠心分離した後、TFAでの洗浄から析出までのこれらの操作を3回繰り返した。得られたペプチドは、真空下で6時間乾燥させた。これらのペプチドを、RP-HPLC(column, YMC-Pack ODS-A, 10φ×250mm)で精製した。HPLC溶媒としては、0.1質量%のTFAを含む水(溶媒A)と、0.1質量%のTFAを含むアセトニトリル(溶媒B)を用いた。精製したすべてのペプチドは、MALDI-TOF-MSで同定した。すべてのペプチドは、凍結乾燥の後、TFA塩として得た。
(2)NP101の合成
 合成するNP101の構造としては、後にMAPに結合させるときの反応基として、天然のN36ペプチドのN末端側にシステイン残基を導入し、また、立体障害による反応性の軽減を抑制するために、天然のN36ペプチドとシステイン(Cys)残基の間にスペーサーとしてグリシン(Gly)残基を導入した(図9(a))。NP101の合成は、前述のFmoc-SPPSにより行った。得られた反応液を、脱樹脂、脱保護した後に、HPLC(high performance liquid chromatography)で精製を行った。このHPLCでは、カラムとして、5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、35~65質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った(図9(b))。このHPLCで精製したものを、MALDI-TOF MS(matrix assisted laser desorption/ionization time of flight mass spectrometer)により同定した(図9(c))。
MALDI-TOF MSによるNP101の分析データを以下に示す。
NP101; m/z calcd for C191H322N38O53S [M+H+]: 4325.0, found: 4326.6. 
(3)ポジティブコントロール抗原の合成
 後述の抗体誘導実験におけるポジティブコントロール抗原としては、高い抗体誘導能が既に報告されており、かつ、HIVの持つ表面タンパク質gp120の部分ペプチドであるV3領域ペプチド(図10(a))を採用した。このV3領域ペプチドは、HIVが膜融合する際に第2受容体として結合するCXCR4との結合部位のペプチドである。また、このV3領域ペプチドは、C末端側にシステイン残基を持つペプチドであり、MAPに導入する(結合させる)際にシステイン残基のチオール基をそのまま使えるといった利点もある。さらに、このV3領域ペプチドから誘導される抗体は、HIVの特定の株に限られるものの、抗HIV活性も有することも報告されている。V3領域ペプチドの合成は、前述のFmoc-SPPSにより行った。得られた反応液を、脱樹脂、脱保護した後、HPLCで精製を行った。このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、17~22質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った(図10(b))。このHPLCで精製したものを、ESI-TOF MSにより同定した(図10(c)、(d))。ESI-TOF MSによるポジティブコントロールの分析データを以下に示す。
ポジティブコントロール; m/z calcd for C112H180N38O27S [M+H+]: 2523.9, found: 2524.1.
(4)MAPの合成
 MAP(図11(a))も、V3領域ペプチドと同様の手法を利用して合成・精製・同定を行った。具体的には、樹脂上でFmoc-Lys(Fmoc)-OHを縮合することにより放射状に分岐したリシン残基のデンドリマーとして合成した。その後、結合パートナーのシステイン残基との反応に用いるクロロアセチル基をMAPに導入するため、N末端と側鎖のアミノ基を保護しているFmoc基を除去し、クロロ酢酸、1-hydroxybenzotriazole(HOBt)、N,N'-diisopropylcarbodiimide(DIPCI)を用いて脱水縮合反応によりクロロアセチル基を導入した。その反応液を、脱樹脂、脱保護及びHPLCによる精製を行った。このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、25~28質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った(図11(b))。このHPLCで精製したものを、ESI-TOF-MSで同定して(図11(c))、目的物を得た。ESI-TOF MSによるMAPの分析データを以下に示す。MAP; m/z calcd for m/z calcd for C112H18N38O27S [M+H+]: 2097.7, found 2097.0.
(5)MAPとNP101の結合
 参考例1の上記(2)で合成したNP101を、参考例1の上記(4)で合成したMAPに結合させた。より詳細には、まずMAPにクロロアセチル基を導入し、そのMAPに対して、N末端側にシステイン(Cys)残基を導入したN36のチオール基が求核攻撃して、共有結合を形成する反応を利用して、NP101をMAPに結合させた。この反応は塩基性に調整した緩衝液という温和な条件で進行するためペプチド性の化合物の反応に多く用いられている。MAPとNP101の結合は具体的には以下の方法で行なった。
 6MのGu・HClを含む100mM PBS(pH8.5)1mLに、窒素条件下で、MAP(130μg、0.06μmol)及びNP101(4.1mg、0.95μmol)を溶解し、この溶液を室温で2日間撹拌した。これにより生じる反応をHPLC及びESI-TOF-MSでモニターした。HPLCチャートに変化がなくなった時点で反応終了として、すべての多置換体が混在したままの反応溶液をsephadex G-10で10質量%酢酸水溶液にてろ過して脱塩した後に、そのろ液を凍結乾燥して後述の抗体誘導実験におけるサンプル抗原分子(以下、「NP101-MAP抗原分子」とも言う)とした。
 NP101-MAP抗原分子についてのHPLCチャートの結果を図12に示す。このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、15~45質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った。このHPLCで精製したものを、MALDI-TOF MSで同定した結果を図13に示す。図13の結果から分かるように、生成したNP101-MAP抗原分子には、NP101が1分子結合したMAP(1置換体)、NP101が2分子結合したMAP(2置換体)、NP101が3分子結合したMAP(3置換体)が含まれている。なお、前述のGu・HClはタンパク質の変性剤として知られており、今回の反応においても、NP101の立体構造が原因と考えられる凝集性や不溶性を改善することを目的として添加した。
(6)MAPとポジティブコントロール抗原の結合
 参考例1の上記(3)で合成したポジティブコントロール抗原を、参考例1の上記(5)と同様の方法により、MAPに結合させた。具体的には、6MのGu・HClを含む100mM リン酸ナトリウムバッファー(pH8.5)500μLに、窒素条件下で、MAP(500μg、0.21μmol)及びポジティブコントロール(6.36mg、2.52μmol)を溶解し、この溶液を室温で6時間撹拌した。これにより生じる反応をHPLC及びESI-TOF-MSでモニターした。多置換体が確認でき、かつ、HPLCチャートに変化がなくなった時点で反応終了として、反応液をsephadex G-10で10質量%酢酸水溶液にてろ過して脱塩した後に、そのろ液を凍結乾燥して後述の抗体誘導実験におけるサンプル抗原分子(以下、「ポジティブコントロール-MAP抗原分子」とも言う)とした。
 ポジティブコントロール-MAP抗原分子についてのHPLCチャートの結果を図14に示す。このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、17~30質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った。このHPLCで精製したものを、MALDI-TOF MSで同定した結果を図15に示す。図15の結果から分かるように、生成したポジティブコントロール-MAP抗原分子には、ポジティブコントロール抗原が1分子、2分子、3分子、4分子又は5分子結合したMAP(それぞれ、1置換体、2置換体、3置換体、4置換体、5置換体)が含まれている。なお、抗原分子の合成の際に、ポジティブコントロール-MAPについては5置換体まで確認できたのに対して、NP101-MAPについては3置換体までしか反応が進行しなかった。これは、NP101-MAPの合成の際に合成したNP101自体の溶解性がポジティブコントロールと比較して低いことに起因すると考えられる沈殿の析出と、ジスルフィド体が形成されたことにより反応性が低下したものと思われる。
[参考例2]
[抗体誘導実験]
(1)抗体誘導実験のスキームの概略
 抗体誘導能を評価するにあたっては、従来から一般的に用いられている実験系として、マウスを用いた抗体誘導の実験系を用いることとした。かかるマウスとしては、BALB/c系統の6週齢のマウスを用いることとした。かかる系統のマウスを用いることとした理由は、モノクローナル抗体を作成する際にBALB/cマウス由来のミエローマ細胞を用いると、同種間での融合が可能でありハイブリドーマ作成法として一般的に使われているためである(Lidqvist, M., Nilsson, O., Holmgren, J., Hall, C., Fermer, C. Phage display for site-specific immunization and characterization of high-risk human papillomavirus specific E7 monoclonal antibodies. J. Immune. Meth. 337, 88-96 (2008)参照)。
 抗原分子をアジュバントと混合して用いると、免疫原性が増強され、体内における抗原分子の代謝速度を緩やかにする効果があり、マウスの免疫系をより長期間にわたって刺激することが可能となる。そこで、本参考例や実施例の抗体誘導実験では、アジュバントを用いることとした。また、通常用いられるアジュバントには、インコンプリートアジュバントと、コンプリートアジュバントの二種類がある。これらのアジュバントのいずれも、鉱物油を主原料としているが、コンプリートアジュバントの方は鉱物油の他に、結核死菌がさらに含まれており、免疫原性のより高い増強作用が期待できるとされているが、これまでに行なわれたペプチド性抗原分子を用いた抗体誘導実験の操作法を参考にして、本参考例や実施例ではインコプリートアジュバントの一種であるフロイトインコンプリートアジュバントを用いることとした。
 前述のマウスに対する一回の抗原分子の免疫量、投与方法、及びその免疫スケジュールに関しても、これまでに行なわれた抗体誘導実験の操作法を参考に以下のように設定した(図16)(Roberts, W. K., Livingston, P. O., Agus, D. B., Ibarz, J. P., Scheinberg, Z. A. Vaccination with CD20 peptides induces a biologically active, specific immune response in mice. Blood 99, 3748-3755 (2002); Kutzler, M. K., Cao, C., Bai, Y., Dong, H. Q., Choe, P. Y., Saulino, V., McLaughlin, L., Whelan, A., Chooa, A. Y., David, B. Weiner D. B., Ugenc, K. E. Mapping of immune responses following wild-type and mutant ABeta42 plasmid or peptide vaccination in different mouse haplotypes and HLA Class II transgenic mice. Vaccine 24, 4630-4639 (2006); Vancott, T. C., Mascola, J. R., Kaminski, R. W, Birx, D. L. Antibodyes with specificity to native gp120 and neutralization activity against primary human immunodeficiency virus type 1 isolates elicited by immunization with oligomerric gp160. J. Virol. 71, 4319-4330 (1997); Burton, D. R., Desrosiers, R. C., Doms, R. W., Koff, W. C., Kwong, P. D., Moore, J. P., Nabel, G. J., Sodroski, J., Wilson, I. A., Wyatt, R. T. HIV vaccine design and the neutralizing antibody problem.Nat. Immunol. 5, 233-236 (2004)参照)。
 免疫用の抗原分子を、DMSO(dimethylsulfoxide)やHOで溶かしたストック溶液を作った。すなわち、4mgのNP101-MAPを、100μLの溶媒(HO:DMSO溶液=1:1(容積比))に溶解した「NP101-MAP抗原分子ストック溶液」や、2mgのポジティブコントロール抗原を、200μLの溶媒(HO)に溶解した「ポジティブコントロール-MAP抗原分子ストック溶液」を調製した。これらの各ストック溶液100μgを分取し、それぞれに100μLのアジュバント溶液(50μLアジュバント+50μL PBS)を添加して混合することによって免疫用エマルジョンを作製した。なお、DMSOは毒性を示すことも考えられるため、これらの免疫用エマルジョン中のDMSOの終濃度は1質量%以下となるようにした。また、ネガティブコントロールとして、抗原分子を含まないアジュバンド溶液(アジュバンド:PBS=1:1(容積比))に、DMSOを終濃度1質量%で添加した免疫用エマルジョンを作製した。次いで、これらの免疫用エマルジョンを、ジエチルエーテルで麻酔をかけたBALB/c系統の6週齢のマウスに皮下注射することによって、免疫を行なった。免疫したマウスの頭数は、NP101-MAP抗原分子について4頭、ポジティブコントロール-MAP抗原分子について4頭、ネガティブコントロールについて3頭とした。なお、これらのマウスは、いずれの免疫用エマルジョンを免疫したかを区別ができるように、耳の一部を切除した。免疫後のマウスからの採血は、ジエチルエーテルにて麻酔をかけた後、眼窩底から採血する方法を用い、1週間間隔で行なった。これらの免疫及び採血のスケジュールを図16に示す。得られた血液は、遠心分離することで血清と血餅とに分離し、血清のみを分取して-80℃で凍結保存し、実験に必要な時に溶解して使用することとした。
(2)ELISAによる抗体価の評価
 参考例2の上記(1)で得られた血清の抗体価を評価するための系として、ELISA(Enzyme-Linked Immunosorbent Assay)法(Godefroy, S., Peyre, M., Garcia, N., Muller, S., Sesardic, D., Partidos, C. D.Effect of skin barrier disruption on immune responses to topically applied cross-reacting material, CRM197, of diphtheria toxin Infect. Immin. 73, 4803-4809 (2005); Albu, D. I., Trower, A. J., Woron, A. M., Stellrecht, K., Broder, C. C., Metzger, D. W. Intranasal vaccination using interleukin-12 and cholera toxin subunit B as adjuvants to enhance mucosal and systemic immunity to human immunodeficiency virus type 1 glycoproteins. J. Virol. 77, 5589-5597 (2003))を採用した。具体的には、以下の方法で行なった。
 まずは試薬の準備を行なった。Tween (Polyoxyethylene (20) Sorbitan Monolaurate)及び30質量%過酸化水素水を和光純薬工業株式会社から購入し、ブロッキングバッファー用のスキムミルクを雪印乳業株式会社から購入し、ABTS((2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt)をシグマアルドリッチ社から購入し、HRP標識ヤギ抗マウスIgG(H+L)をNOVAGEN社から購入し、96ウェルのHalf Area Plate-Flat-Hight Bind(マイクロプレート)をCorning社から購入した。
 抗原分子であるNP101-MAP抗原分子又はポジティブコントロール-MAP抗原分子を上記のマイクロプレート上に吸着させるために、このマイクロプレートを、10μg/mLのPBS中で25μLの合成ペプチドにて4℃一晩コートした。コートしたマイクロプレートを脱イオン水で10回洗浄し、150μLのブロッキングバッファー(5質量%のスキムミルクを含む0.02質量%のPBST)で、37℃、1時間ブロッキングを行なった。このマイクロプレートを脱イオン水で洗浄した。参考例2の上記(1)で得られた各血清(抗原分子を免疫したマウスから得られた血清)を、0.02質量%のPBSTを含む1質量%スキムミルクで希釈し、201倍希釈液、401倍希釈液、801倍希釈液、102400倍希釈液をそれぞれの血清について作製した。各希釈液を50μLずつ前述のマイクロプレートに添加し、37℃で2時間インキュベートした。なお、この後に続く工程はすべて室温で行なった。前述のマイクロプレートを脱イオン水で10回洗浄した。0.02質量%PBSTで2001倍希釈したHRP(horseradish peroxidase)標識抗マウスIgG抗体(二次抗体)溶液を、マイクロプレートの各ウェル中の溶液(25μL)に充分量添加し、45分間インキュベートした。それからマイクロプレートのウェルを10回洗浄し、1ウェル当たり25μLのHRP基質溶液を添加した。なお、このHRP基質溶液は、0.02質量%のPBSTを含むHRP染色バッファー(1mLの0.5M citrate buffer(pH4)、3μLの過酸化水素、8.8mLの水)200μLに、10mgのABTS(2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)を添加することによって作製した溶液である。HRP基質溶液を添加してから30分間インキュベーションした後、1ウェル当たり25μLの0.5M硫酸を添加して反応を停止させ、405nmでその溶液のODを測定した。
 これらの操作によって、得られた血清の抗体価を測定した。その結果を図17に示す。図17(a)には、「NP101-MAPを固定化したプレート」と、「ネガティブコントロールを投与して得られた血清」とを用いたELISAの結果を示し、図17(b)には、「NP101-MAPを固定化したプレート」と、「NP101-MAPを投与して得られた血清」とを用いたELISAの結果を示し、図17(c)には、「ポジティブコントロール-MAPを固定化したプレート」と、「ポジティブコントロール-MAPを投与して得られた血清」とを用いたELISAの結果を示す。なお、図17中の「d」とは、初回の免疫日(0d)から起算した経過日数を意味し、例えば20dとは初回の免疫日から20日後であることを意味し、-7dとは初回の免疫日から7日前であることを意味する。
 図17(a)の結果から分かるように、ネガティブコントロールで誘導した血清のNP101-MAPへの抗体価は、免疫前に採決した血清の前述の抗体価とかわりはなく、NP101-MAPへの抗体価の上昇は認められなかった。
 また、図17(b)の結果から分かるように、NP101-MAPで誘導した血清のNP101-MAPへの抗体価は、序所に上昇していく様子が確認できた。さらにポジティブコントロール-MAPを免疫して誘導した43d(初回の免疫から43日後)の血清は免疫前の血清と同様の活性しか示さなかった。これらのことからNP101-MAPを免疫することによって得られる血清は、NP101を特異的に認識していることが確認された。
 一方、図17(c)の結果から分かるように、ポジティブコントロール-MAPで誘導した血清のポジティブコントロール-MAPへの抗体価は、徐々に上昇していく様子が確認できた。さらにNP101-MAPを免疫して誘導した43d(初回の免疫から43日後)の血清は免疫前の血清と同様の活性しか示さなかった。これらのことからポジティブコントロール-MAPを免疫することによって得られる血清は、ポジティブコントロールを特異的に認識していることが確認された。
 以上の結果から、上記のマウスによる抗体誘導実験系が機能することが確認されたほか、N36単量体ペプチドの誘導体であるNP101-MAPがポジティブコントロールと比較しても十分な抗体誘導効果を有していることが確認された(図17(b)及び(c))。このことから、N36ペプチドの3量体についても抗原性を示すことが期待された。
[N36ペプチドの三量体の合成]
(1)抗原分子の設計
 前述の参考例2の実験によって、N36ペプチドの抗原性の確認、並びに、抗体誘導実験系及びELISAが正常に機能することが確認できた。そこで、当初の目的として、gp41を模倣したN36ペプチド誘導体を三量体にしたペプチド(以下、「NP104」ともいう)の合成を試みた。しかしながら、NP101-MAPの合成過程から塩基性条件下でNP101の溶解性が低いこと、ジスルフィド形成が進行することなどの原因により目的とするNP104の合成および精製が困難になることが予測された。そこで、3量体の形成には、ジスルフィド結合を形成しにくく、溶解性が上昇すると考えられる酸性条件下で共有結合が形成できる反応としてこれまでに報告されているチアゾリジンライゲーション反応を用いることとした(Tam, J. P., Yu, Q., Lu, Y-A. Tandem peptide ligation for synthetic and natural biological. Biologicals 29, 189-196 (2001); Tam, J. P., Xu, J., Eom, K. D. Methods and strategies of peptide ligation. Biopolymers 60, 194-205 (2001); Liu, C.-A., Tam, J. P. Peptide segment ligation strategy without use of protecting groups. Proc. Natl. Acad. Sci. U. S. A. 91, 6584-6588 (1994); Tam, J. P., Yu, Q., Yang, J. -L. Tandem ligation of unprotected peptides through thiaprolyl and cysteinyl bonds in water. J. Am. Chem. Soc. 123, 2487-2494 (2001); Sadler, K., Zhang, Y., Xu, J., Yu, Q., Tam, J. P. Quaternary protein mimetics of gp41 elicit newtralizing antibodies against HIV fusion-active intermediate state. Biopolymers 90, 320-329 (2008); Miao, Z., Tam, J. P. Bidirectional tandem pseudoproline ligations of proline-rich helical peptides. J. Am. Chem. Soc. 122, 4253-4260 (2000); Eom, K. D., Miao, Z., Yang, J. -L., Tam, J. P. Tandem ligation multipartite peptide with cell-permeable activity. J. Am. Chem. Soc. 125, 73-82 (2002); Tam, J. P., Miao, Z. Stereospecific pseudoproline ligation of N-terminal serine, threonine, or cysteine-containing unprotected peptides.J. Am. Chem. Soc. 121, 9013-9022 (1999))。
 チアゾリジンライゲーションは無保護のペプチド断片同士をプロリン様の構造で結合させる方法である。その反応は、まず、C末端がペプチジルグリコールアルデヒドエステルである一方のペプチドに対して、他方のペプチドのN末端システイン残基のアミノ基がカルボニル炭素を求核攻撃することによって、イミンを形成し、両ペプチドが結合する。次いで、結合したペプチド分子内においてシステイン側鎖のチオール基が分子内求核攻撃をすることにより、チアゾリジン環形成が起こる。この一連の反応によってチアゾリジンエステルが形成される。そして、O,N-アシル転位反応が起こることによって、安定なプロリン様の結合を形成する(図18)。このプロリン様の結合によるライゲーションはこれまでに多くの方法が開発されており、前述のシステイン残基に代えて、トリプトファン残基、セリン残基、トレオニン残基、ヒスチジン残基、アスパラギン残基を用いた場合でも類似した構造をとって結合することが知られている。その中でも特にシステイン残基は反応性が高く、ペプチドの結合体が高収率で得られることが報告されている(Tam, J. P., Miao, Z. Stereospecific pseudoproline ligation of N-terminal serine, threonine, or cysteine-containing unprotected peptides. J. Am. Chem. Soc. 121, 9013-9022 (1999))。チアゾリジンライゲーション反応では、ラセミ体が形成されるが、今回目的とする抗原分子においてはR体、S体のどちらであっても抗体誘導に対する影響はないと考えた。それは、抗体誘導の際に重要となる3量体の形成にはどちらであってもかまわないこと、及び、目的とする抗体認識部分にこのプロリン様結合の部位は含まれないためである。さらにこのチアゾリジンライゲーション反応は、pH4~6の範囲内に調節されたバッファー中という温和な条件下で起こり、TCEP(tris(2-carboxyethyl)phosphine hydrochloride)を混合した還元状態にしたバッファーでも反応が進行するためシステイン同士のジスルフィド結合の形成も抑制することができる。
(2)N36単量体ペプチド誘導体(NP102及びNP103)の再設計及び合成
 N36単量体ペプチド誘導体の再設計及び合成を行った。目的であるNP104を構成するためのN36単量体ペプチドとして、その水溶性を増強するために、天然配列のN末端側に親水性アミノ酸であるアルギニン(Arg;R)とグルタミン酸(Glu;E)を合計で6残基付与したペプチド(以下、「NP102」ともいう)を、上記参考例1記載の方法と同様の方法で合成した(図19)。図19(a)にはNP102のアミノ酸配列を示し、図19(b)にはNP102を精製した後のHPLCチャートを示す。このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、37~47質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った。このHPLCで精製したものを、ESI-TOF-MSで同定した結果を図19(c)及び(d)に示す。なお、ESI-TOF MSによるNP102の分析データを以下に示す。
NP102; m/z calcd for C217H370N72O62[M+H+]: 4978.7, found 4977.1.
 次に、このNP102において、さらに、チアゾリジンライゲーション反応に用いるシステイン(Cys)をN末端側に配置することとし、立体障害によって反応性が落ちないようシステインとアルギニンンとの間にスペーサーとしてグリシン(Gly)を配置したペプチド(以下、「NP103」ともいう)を、上記参考例1記載の方法と同様の方法で合成した(図20)。図20(a)にはNP103のアミノ酸配列を示す。このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、37~47質量% アセトニトリル/水(0.1質量% TFA)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った。このHPLCで精製したものを、ESI-TOF-MSで同定した結果を図20(c)及び(d)に示す。なお、ESI-TOF MSによるNP103の分析データを以下に示す。
NP103; m/z calcd for C222H377N74O64S [M+H+]: 5138.89, found 5138.68.
(3)テンプレート化合物の設計と合成
 作製の最終的な目的である抗原分子は、gp41のN末端側ヘリックス領域であるN36ペプチドを、共有結合で固定化して3量体構造をとらせたものである。そこで、N36ペプチド誘導体を3量体化する足場となるテンプレート化合物の構造としては、3本の等価なリンカーを持ち、C3対照性を有するものとした(図21)。そのため、窒素原子を中心として対称な結合の手が3本伸びている「化合物5」(図22参照)の化合物を出発原料として、等価なリンカーをさらに伸ばすこととした。3本のリンカー部分には、炭素鎖ではなく、アミド結合及びエステル結合を採用した。アミド結合は、合成が容易なこと、親水性を高められること、N36由来のペプチドとの結合の際にHPLCでペプチドと同じ波長により検出できることといった利点を有している。リンカー部分におけるエステル結合及び末端のアルデヒドは、N36ペプチドとテンプレート化合物との結合の際のチアゾリジンライゲーション環形成に必要である。また、窒素原子を中心とすることにより、ライゲーション反応の条件であるacetate buffer(pH5.2、弱酸性)中において4級アンモニウム塩となり、水溶性が上昇することを期待した。また、リンカーの長さについてはgp41の3量体構造のX線結晶構造解析による情報が得られているため、その情報を参考に適当だと思われる長さに設定した(図21及び23)。テンプレート化合物の合成は、図22に沿って、具体的に以下の方法で行なった。以下、化合物を図22記載の標記にしたがって記載することもある。
(a)化合物2
 20mLアセトン中に1,2,3-プロパントリオール(1.84g、20mmol)を含む溶液に、触媒量のヨウ素を添加し、その溶液を室温で15時間撹拌した。飽和硫酸及び塩水で反応を停止させた。次いで、亜ジチオン酸ナトリウム(Na)を用いて、ヨウ素を除去した。減圧濃縮により、油状の残留物が得られ、トリクロロメタン・メタノール(40:1(体積比))を用いたシリカゲルクロマトグラフィーにより、前述の残留物を精製し、1.88g(14.23mmol)の化合物2を得た(収率71%)。この化合物2の同定データは以下のとおりである。
1H-NMR(400MHz; CD3OD)δ=1.37(3H,s), 1.44(1H,s), 3.58-3.63(1H,m), 3.71-3.82(2H,m), 4.03-4.06(1H,m), 4.22-4.27(1H,m)
(b)化合物4
 150mLのトルエン中に8.91g(100mmol)のβアラニン(化合物3)を懸濁した懸濁液に、50mLのベンジルアルコール及び22.83mg(120mmol;1.2倍等量)のp-トルエンスルホン酸一水和物を添加し、その溶液を125℃で24時間、ディーン・スターク管にて撹拌した。この溶液を室温にまで冷却し、減圧下で濃縮した。残留物に400mLのジエチルエーテルを添加し、その溶液をろ過することによって、析出したものを収集し、その析出物をジエチルエーテルで洗浄した。真空下で乾燥したのち、化合物4を35gの白色固体として得、さらなる精製は行なわずに用いた。
(c)化合物6
 233mg(1mmol)の化合物5を含む20mLの乾燥DMFに、522mg(3.6mmol)のHOBt・HO、688mg(3.6mmol)のEDCI・HCl、1.315g(3.6mmol)の化合物4、2.1mL(15mmol)のトリエチルアミン(NEt)を添加し、その溶液を室温で15時間撹拌した。その溶液を酢酸エチルで希釈し、有機相を飽和炭酸水素ナトリウム及び塩水で洗浄した後、硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残留物を得た。この化合物6の同定データは以下のとおりである。
1H-NMR(400 MHz; CD3OD)δ=2.24(6H,t,J = 6.0Hz), 2.55(6H,t,J = 6.23Hz), 2.59-2.62(6H,m), 3.43-3.48(6H,m), 5.11(6H,s), 6.81(3H,t,J = 5.79Hz), 7.30-7.38(15H,m). FABLRMS, m/z calcd for C39H49N4O9S [M+H+]: 717.83, found: 717.
(d)化合物7
 129mg(0.17mmol)の化合物6を含む2mLのメタノール中に、触媒量の10質量%のPd/Cを水素条件下で室温にて添加した。この溶液を、5時間後にセリット上でろ過した。ろ過した液体を減圧下で濃縮し、残留物を4mLのジクロロメタンで溶解した。その溶液に、101.1mg(0.765mmol)の化合物2、146.7mg(0.765mmol)のEDCI(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)・HCl、及び、触媒量のDMAPを添加し、その溶液を室温で撹拌した。30分後に、その溶液を減圧下で濃縮し残留物を得た。トリクロロメタン・メタノール(17:1(体積比))を用いたシリカゲルクロマトグラフィーにより、前述の残留物を精製し、90.1mg(0.114mmol)の化合物7を得た(収率67%)。この化合物7の同定データは以下のとおりである。
1H-NMR(400MHz; CD3OD)δ=1.36(9H,s), 1.44(9H,s), 2.28-2.31(12H,t,J = 5.94Hz), 2.53-2.60(6H,m), 2.65-2.68(6H,t,J = 5.97Hz), 3.46-3.5(6H,m), 3.7(6H,s), 3.74-3.78(3H,m), 4.07-4.20(6H,m), 4.31-4.35(3H,m). FABLRMS, m/z calcd for C36H61N4O15[M+H+]: 789.89, found: 789.
(e)化合物8(本発明のテンプレート化合物)
 26.3mg(0.033mmol)の化合物7を含む1mLのメタノール:TFA(1:4(体積比))溶液を室温で2時間撹拌した。この溶液を蒸発させて濃縮し、その残留物を1mLの水:メタノール(1:3(体積比))溶液で溶解した。この溶液に、42.78mg(0.2mmol)のNaIOを添加し、その溶液を室温で1時間撹拌した。この溶液を蒸発によって濃縮した後、その残留物をRP-HPLC (column, YMC-Pack ODS-A, 10φ×250 mm)にて精製した。HPLC溶媒としては、0.1質量%のTFAを含む水(溶媒A)と、0.1質量%のTFAを含むアセトニトリル(溶媒B)を用いた。精製した化合物8は、ESI-TOF-MSで同定した。化合物8を、溶媒B中で30分間以上、0~15質量%の直線勾配を用いてさらに精製した。精製した化合物8を凍結乾燥し、7.9mg(0.014mmol)の化合物8(本発明のテンプレート化合物:一般式(1)においてXが1である化合物)を得た(収率42%)。この化合物8の同定データは以下のとおりである。
1H-NMR(400MHz;D2O)δ=2.54-2.54(6H,m), 2.66(6H,m), 3.32-3.36(12H,m), 3.95-3.96(4H,m), 5.10-5.11(2H,m). m/z calcd for C24H43N4O15(M+3H2O+): 627.6, found: 627.8.
(4)NP104(N36ペプチド誘導体の3量体)の合成
 N36ペプチド誘導体であるNP103と、前述のテンプレート化合物とを用いて、N36ペプチドの3量体(トリマー)の合成を試みた。すなわち、実施例1の上記(2)で合成したNP103と、実施例1の上記(3)で合成したテンプレート化合物とを、20%の2,2,2-トリフルオロエタノール(TFE)を含む200mMのacetate buffer(pH5.2)中で攪拌することによって、テンプレート化合物に3分子のNP103が結合したトリマー(以下、「NP104」ともいう)を構築した(図24)。具体的には以下のような方法で合成を行なった。
 窒素条件下で、100μg(0.174μmol)の化合物8、及び、3.4mg(0.574μmol)のNP103を、300μLの200mM acetate buffer(pH5.2)、及び、300μLのTFEに溶解し、次いで、TCEP・HClを添加した。この溶液を室温で72時間撹拌し、生じる反応をHPLCでモニターし、HPLCチャートに変化がなくなったところ(30時間後以降)で反応終了とした。なお、このHPLCでは、カラムとして5C18-AR-II Waters 4.6×250 mmを用い、溶出溶媒として、38~50質量% 水(0.1質量% TFA)(溶媒A)又は38~50質量% アセトニトリル(0.1質量% TFA)(溶媒B)を30分間、流速1.0mL/分で流し、検出波長220nmにて検出を行った。
 前述のHPLCチャートの結果を図25に示す。このHPLCチャートのそれぞれのピークを分取し、分取したその溶液をRP-HPLC (column, YMC-Pack ODS-A, 10φ×250 mm)にて精製した後、ESI-TOF-MSによって解析した。このESI-TOF-MSの結果を図26に示す。このESI-TOF-MSの結果から、HPLCのRT(保持時間)が16.4分のピークはNP103のモノマーを表し、RTが28.1分のピークはテンプレート化合物にNP103が2分子結合したものを表し、RTが34.2分のピークは目的化合物であるNP104であることが確認できた(図27)。これにより、反応は、NP103のN末端システイン残基に特異的に起こっていることも確認された。なお、反応がさらに進むように反応時間を長くすると、エステル部分の加水分解が起こることでできる化合物がESI-TOF-MSにより確認できたことからも、これ以上反応は進まないと判断し、NP104の精製を行った。すなわち、NP104に相当するピークに当たる溶液を分取し、それを溶媒B中で50分間以上、40~50質量%の直線勾配を用いてさらに精製し、NP104を得た(収率16%)。このNP104の同定データは以下のとおりである。
ESI-TOF-MS, m/z calcd for C690H1160N226O201S315933.1, found 15933.8. 
(5)CDスペクトル測定
 N36は、2次構造としてαヘリックスをとることが既に報告されている。今回合成したNP102(モノマー)とNP104(トリマー)がそれぞれαヘリックス構造をとっているかどうか、また、それらの構造の違いを確認するために、円偏光二色性(circular dichroism; CD)スペクトルの測定を行なった。CDスペクトルを測定すると、タンパク質の2次構造の有無や、種類、含量を簡便に推定することができるからである。具体的には、αヘリックスを多く含むタンパク質の場合、190nm付近に正のピーク、並びに、208及び222nmに負のピークを示すことが知られ、β構造を多く含むタンパク質の場合、195~200nmに正のピーク、並びに、215nm付近に負のピークを持つことが多いことが知られ、ランダムコイル構造を含む場合は、200nm付近に負のピークをもつことが知られている。
 CDスペクトルの測定条件としては、生体膜近傍に類似した環境のモデルとして有用であると考えられている40%メタノールの20mMのacetate buffer(pH4.0)中で測定することとした。この測定条件は、生体膜近傍における緩和なpH低下と誘電率減少による協同効果により、タンパク質の変性が惹起されるという考えに基づくものであり、本研究において合成した3量体構造を測定するのに最適であると考えられている(Bychkova, V. E., Dujsekina, A. E., Klenin, S. I., Ptisyn O. B. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35, 6058-6063 (1996); Nishi, N., Komine, Y., Sakai, N., Maruyama, T., Otagiri, M. cooperative effect of hydrophobic and electrostatic forces on alchol-induced α-helix formation of α1-acid glycoprotein. FEBS Lett. 579, 3596-3600 (2005))。本研究において合成したN36ペプチド誘導体には1個だけトリプトファン(T)が含まれており、3量体形成時においてもその位置は溶液側の方向に向いていることがこれまでの研究から知られている。そこで、このトリプトファンの吸光度から、NP102(モノマー)やNP104(トリマー)濃度を計算することとし、そのためにまずこの測定溶液によるトリプトファンのモル吸光係数を測定した。今回合成したNP102(モノマー)やNP104(トリマー)中に含まれるトリプトファンの濃度を、前述のトリプトファンのモル吸光係数の値を用いて算出し、測定サンプル中のNP102やNP104の濃度を補正した。濃度の補正は、N36単量体(モノマー)の濃度を揃えるために、NP104(トリマー)の濃度がNP102(モノマー)の濃度の3分の1になるように行なった。具体的には、NP102の濃度を10μMとしたので、NP104の濃度を10/3μMとした。濃度を補正したNP102測定サンプルとNP104測定サンプルのCDスペクトルを、温度調節機を備えたJ720 spectrolarimeterを利用して、光路長1.0mmの石英セル中で、時定数1s、及び、0.1nmの解像度で100nm/分のスキャニング速度で25℃にてそれぞれ測定した。その結果を図28に示す。図28から分かるように、NP102測定サンプルとNP104測定サンプルは、共に190nm付近に正の極大、並びに、208nm及び222nmに負の極大という、αヘリックスの特徴的なスペクトルを示していることから、両サンプル共にαへリックスが多く含まれていることが示された。
 図28のCDスペクトルに基づいて、NP102及びNP104のヘリックス含量を求めることとした。ヘリックス含量を求める式は、これまでの報告(Chen, Y. -H., Yang, J. T., Chau, K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350-3359 (1974); Gan, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., Kallendach, N. R. The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data. Biopolymers 31, 1605-1614 (1991); Jackson, D. Y., Hing, D. S., Chmieleski, J., Singh, S., Schultz, P. G. General approach to the synthesis of short α-helical peptides. J. Am. Chem. Soc. 113, 9391-9392 (1991))に基づいて、以下の両式を用いた。
[θ]max= [θ](1-k/n)
へリックス含量(%)=[θ]222/[θ]max×100
 上記の両式において、[θ]は無限大へリックスのモル楕円率、-41000を表し、kは経験的に求められた定数、4.3を表し、nはアミノ酸残基数を表す。上記の両式を用いて、NP102とNP104のαヘリックス含量を算出したところ、それぞれ73%及び95%であり、NP104はNP102よりも強いαヘリックス性を示した(図29)。さらに[θ]222/[θ]208の値が1より大きくなる場合は、その構造がコイルドコイル構造をとることがこれまでの研究により知られている。NP104における[θ]222/[θ]208の値は、0.96であり、NP102のその値よりも1に近い。したがって、NP104は、3量体構造をとる際に、コイルドコイル構造をとることが考えられる。このことは、これまでに行われたgp41の実験結果(非特許文献10~12)とも一致する。以上の実験結果からも、合成したNP104は、目的とするN36ペプチド誘導体の3量体であることが示された。
[N36ペプチド誘導体の3量体の免疫と血清の評価]
(1)NP102(モノマー)とNP104(トリマー)の免疫
 マウスを用いた動物実験系及び血清の評価系が機能することが前述の参考例2の実験により確認できた。そこで、実施例1の上記(2)で合成したNP102(モノマー)と、実施例1の上記(4)で合成したNP104(トリマー)について、前述の参考例2の抗体誘導実験を行うこととした。
 まず、NP102とNP104をそれぞれマウスに免疫した。マウスに対する免疫量およびスケジュールは参考例2で行った方法に準じた。具体的には以下のような方法で行なった。免疫用の溶液は、100μgの合成ペプチドを含む1.0μLのDMSO(エンドトキシンフリー)(シグマアルドリッチ社製)、50μLのPBS(和光純薬工業株式会社製)、及び、50μLのフロイトインコンプリートアジュバント(和光純薬工業株式会社製)を混合して作製した。ジエチルエーテルで麻酔した各マウスを、仰臥位に配置し、ポジティブコントロール、ネガティブコントロール、NP102又はNP104を含む免疫用の溶液を皮下注射により免疫した。免疫は、すべてのマウスについて1週間間隔で5回繰り返した。
 採血の時期については、参考例2で抗体価を評価した際には免疫後3週目から採血をしたが、今回の実験では免疫後3週目にはすでに十分な抗体価の上昇がみられたことから、免疫後1週間経過後から1週間間隔で採血を行った。今回の免疫及び採血のスケジュールを図30に示す。免疫するマウスの頭数はそれぞれのサンプルにつき3匹ずつとし、それぞれのマウスにはナンバリングを施して区別できるようにした。右耳を切除したマウスをright、左耳を切除したマウスをleft、両耳ともになにもしていないマウスはbothとし、3匹を区別して免疫を行った。なお、採血は眼窩底から行なった。収集した血液を4℃、15000rpmで15分間遠心分離して血清と血餅に分離し、得られた血清を56℃で非働化した後に再度遠心分離したものを血清サンプルとして用いた。この血清を-80℃で保存しておき、以下の実験に使用する際に解凍して用いた。
(2)ELISAによる血清の評価
 参考例2において構築したELISA法を用いて、NP102又はNP104を免疫したマウスの血清中に含まれる抗体を評価した。まず初めに、ネガティブコントロールのマウスの血清中に含まれる抗体が、NP102とNP104を認識しないことの確認を行った。その結果を図31に示す。図31に示されるように、ネガティブコントロールを投与したマウスの血清は、NP102(図31(a))やNP104(図31(b))を認識しないことが分かった。次いで、ポジティブコントロール、NP102又はNP104を免疫したマウスの血清中の抗体がそれぞれの抗原分子を認識することの確認を行なった。その結果を図32に示す。図32に示されるように、日数の経過に伴い、抗体価が徐々に上昇していく様子がそれぞれ確認された。すなわち、NP102を免疫したマウスの血清中には、NP102を認識する抗体が誘導され(図32(a))、NP104を免疫したマウスの血清中には、NP104を認識する抗体が誘導され(図32(b))、ポジティブコントロールを免疫したマウスの血清中には、ポジティブコントロールを認識する抗体が誘導された(図32(c))。
(3)抗体の特異性の確認
 NP102(N36ペプチド誘導体の単量体)やNP104(N36ペプチド誘導体の3量体)を免疫したマウスの血清中に含まれる抗体が、それぞれの抗原分子を特異的に認識していることを確認するために、免疫した抗原分子とは異なる抗原分子をマイクロプレート上に固定化して、血清中の抗体の抗体価を評価した。具体的には以下のような方法で実験を行なった。
 NP102、又は、NP104をそれぞれ1週間間隔で各マウスに免疫した。そして、免疫1週目から1週間間隔で採血を行なって得られた血清について、ELISAによる評価を行なった。NP104をマイクロプレート上に固定化して、NP102を免疫したマウスの血清中の抗体を評価した結果を図33(a)に示し、NP102をマイクロプレート上に固定化して、NP104を免疫したマウスの血清中の抗体を評価した結果を図33(b)に示す。図33に示されるように、血清の希釈率が10-2くらいでようやく、採血時期によっては抗体価が検出された。血清の希釈率が10-4から10-3くらいでも、抗体価が検出された図32の場合と比較すると、図33で確認された抗体価はかなり低いといえる。したがって、NP102やNP104を免疫して得られた血清中に含まれる抗体は、免疫した抗原分子(NP102やNP104)に十分に特異的であることが示唆された。また、NP102及びNP104のいずれもN36ペプチドの誘導体であり、アミノ酸の配列が同じであることから、NP104を免疫して得られた血清中に含まれる抗体は、NP104の立体構造を特異的に認識して結合していることが強く示唆された。
[N36ペプチド誘導体の3量体(NP104)の抗HIV活性の評価1(p24アッセイ)]
(1)HIV-1ウイルス溶液の調製
 NP104が抗HIV活性を有しているかどうかを確認するために、p24アッセイを行なうこととした。p24はHIV-1のコアを構成するカプシドタンパク質であり、HIVに感染した生物中でHIVが増殖すると、その生物の血清中のp24濃度が上昇することが知られている。p24アッセイを行なうに際し、まずHIV-1ウイルスの調製を行なった。具体的には以下のような方法を用いた。
 HIV-1 molecular cloneであるpNL4-3(clade B; X4-tropic virus)を用意した。次に、10%FBS/DMEM(WAKO社)を入れた直径10cmのシャーレに293T細胞を添加し、60%コンフルエントになるまで培養した。培養したこの293T細胞に、Lipofectamine LTX (invitrogen社製)を用いて、10μgのpNL4-3をトランスフェクションした。トランスフェクションから6~12時間後に、培養液を10%FBS/RPMI1640(WAKO社製)に交換した。その後、37℃、二酸化炭素濃度5質量%の条件下で24~48時間培養した。得られた培養液の上清を回収し、その上清を直径0.45μmのフィルターでろ過したものをウイルス溶液とした。このウイルス溶液を液体窒素で急冷した後、使用するまで-80℃以下にて保存した。
(2)ウイルス溶液の感染価の測定
 実施例3の上記(1)で調製したウイルス溶液の感染価の測定を行なった。具体的には以下の方法により行なった。まず、実施例3の上記(1)で調製したウイルス溶液を、10%FBS/RPMI1640で10倍希釈した。希釈したウイルス溶液を96ウェルプレートのウェルに添加し、さらに2倍又は3倍の段階希釈系列(横向き11ウェル分、12ウェル目はブランク)を作製した。なお、この希釈系列の体積はすべて100μLになるように調整した。一方、10%FBS/RPMI1640で培養したMT-4細胞(T細胞系列)を、前述の希釈系列の各ウェルに、10cells/100μLとなるように添加し、培養を行なった。培養から3日目に、各ウェル中の細胞数を変化させないようにゆっくりと培養溶液(100μL)を交換した。交換後4日間培養した後に培養液の培養上清を回収し、HIV-1 p24量を測定し、p24値が0になる希釈倍率からウイルス価(ウイルス数/mL)を求めた。なお、その際、バックグラウンドとして、MT-4細胞を添加せずに、前述のウイルス液の希釈系列をそのまま培養して得られた培養溶液のHIV-1 p24量の測定値を用いて、数値を補正した。
(3)抗HIV効果(HIV感染抑制効果)の確認
 NP104抗原特異的なIgGが誘導された血清が、HIV感染抑制効果を持つかどうか確認を行うために、以下の操作をいった。まず、実施例2で得られた各血清を、各24ウェルプレートのウェルに一定量添加した。それらのウェルに、MT-4細胞を5x10cells/ウェル(体積比では血清の4倍量又は9倍量)播種して、1時間前処理した。前処理後に、参考例2の上記(1)及び(2)で調製したpNL4-3ウイルス溶液を、M.O.I.=0.05~0.01で添加しウイルスを感染させた。なお、バックグラウンドとして、血清を添加せずに、MT-4細胞とpNL4-3ウイルス溶液のみとしたウェルも作製した。ウイルス感染から3日経過後、5日経過後及び7日経過後にウェルの上清を回収し、HIV-1 p24に関するELISAにて、p24の発現量を測定したところ、NP104を免疫して得られた血清にHIV感染抑制効果があることが確認された。また、ウイルス感染から3日経過後の前述のウェルの溶液を遠心して細胞を回収し、p24に関するウエスタンブロット解析を行なった。また、ネガティブコントロール(nega)として、血清を添加せずに、MT-4細胞とpNL4-3ウイルス溶液のみとしたウェルから採取したものについても、同様にウエスタンブロット解析を行なった。これらのウエスタンブロット解析の結果を図34に示す。図34から分かるように、N36単量体であるNP102を免疫して得られた血清を用いた場合は、いずれもp24量の低下は見られず、HIV感染抑制効果は示されなかった(「M-3」及び「M-2」参照)。それに対し、N36ペプチドの3量体であるNP104を免疫して得られた血清を用いた場合、NP104に対する抗体価がより低かった「T-3」については、p24量の低下は見られなかったが、NP104に対する抗体価がより高かった「T-2」については、p24量が著しく低下しており、HIV感染抑制効果を示すことが判明した。
[N36ペプチドの3量体(NP104)の抗HIV活性の評価2(MTTアッセイ)]
 NP102(単量体)、NP104(3量体)、公知のHIV薬であるAZT(3'-azido-3'-deoxythymidine)について、公知の方法であるMTTアッセイ(Org. Biomol. Chem., 2008, 6, 4374-4377)を用いて抗HIV活性の評価を行なった。その結果を図35の左パネルに示す。また、前述の3種類のサンプルについて、細胞毒性を評価した。その結果を図35の右パネルに示す。これらの結果に基づいて、抗HIV活性のEC50(μM)及びCC50(μM)を算出した結果を、図35の下パネルに示す。この結果から分かるように、NP104(3量体)はNP102(単量体)の3分の1程度の濃度で同等の抗HIV活性を発揮すること、及び、NP104の細胞毒性はNP102の10分の1程度であることが示された。このことから、本発明のテンプレート化合物を用いて3量体化したNP104が、天然のgp41タンパク質におけるN36の3量体の構造に類似した構造を有していること、NP104を認識する抗体が実際に抗HIV活性を有していることが示された。
 本発明のHIV立体構造認識抗体誘導ペプチド抗原の合成方法によれば、目的単量体ペプチドであるN36単量体ペプチドやテンプレート化合物を用いて、天然の立体構造を模倣した「N36ペプチド誘導体の3量体」を得ることができるため、様々な分野への応用が期待される。例えば、HIVのN36ペプチドなどの、ウイルスのI型融合タンパク質を構成するペプチド(単量体)の誘導体をテンプレート化合物と結合させたペプチドの3量体は、ウイルス(特にHIV)の細胞への侵入を阻害する活性を有しているため、ウイルス(特にHIV)感染予防・治療剤の分野に特に有用である。

Claims (14)

  1. 抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程、及び、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合することにより、N36ペプチドの誘導体の3量体を合成する工程からなることを特徴とするN36の3量体領域を認識するHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
  2. N36ペプチドの誘導体を、9-fluorenylmethoxycarbonyl(Fmoc)基の選択的脱保護と縮合反応による固相合成法により合成することを特徴とする請求項1記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
  3. 抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程におけるN36ペプチドの誘導体が、N36の天然の配列であるN36ペプチドのN末端側に、テンプレート化合物と結合するために必要なCysを導入し、該N36ペプチドの配列と該Cysの間には立体障害による反応性の軽減を防ぐためにスペーサーとしてGlyを1残基導入したものであることを特徴とする請求項1~2のいずれか記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
  4. 3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物として、下記一般式(1)で表される化合物又はその塩を用いることを特徴とする請求項1~3のいずれか記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
    Figure JPOXMLDOC01-appb-C000006

    (式中、Xは正の整数を示す)。
  5. 3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物として、下記一般式(2)で表される化合物又はその塩を用いることを特徴とする請求項4記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
  6. 抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程におけるN36ペプチドの誘導体が、N36ペプチドのN末端側に親水性アミノ酸Arg及びGluを計6残基付与し、更に、そのN末端側にCysを配置し、CysとArgとの間にスペーサーとしてGlyを配置したものであることを特徴とする請求項1記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
  7. 抗原ペプチドとして、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36ペプチドの誘導体を合成する工程におけるN36ペプチドの誘導体が、下記一般式(3)で表される化合物であることを特徴とする請求項6記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
    Figure JPOXMLDOC01-appb-C000008
  8. 3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合することにより、N36ペプチドの誘導体の3量体を合成する工程が、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、N36ペプチドの誘導体とを、acetate buffer中で攪拌することにより、3本の等価なリンカー構造を持つC3対称性を有するテンプレート化合物と、前述のN36ペプチドの誘導体とを結合させて、N36ペプチドの誘導体の3量体を合成することを特徴とする請求項1~7のいずれか記載のHIV立体構造認識抗体誘導ペプチド抗原の合成方法。
  9. 下記一般式(1)で表される化合物又はその塩からなるテンプレート化合物。
    Figure JPOXMLDOC01-appb-C000009

    (式中、Xは正の整数を示す)。
  10. 請求項1~8のいずれか記載の合成方法によって合成されることを特徴とするHIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36の3量体領域を認識するHIV立体構造認識抗体誘導ペプチド抗原。
  11. 請求項10記載のN36の3量体領域を認識するHIV立体構造認識抗体誘導ペプチド抗原を用いて宿主動物を感作し、該抗原に対する抗体を誘導することを特徴とするN36の3量体領域を認識するHIV立体構造認識抗体の誘導方法。
  12. 請求項10記載のN36の3量体領域を認識するHIV立体構造認識抗体誘導ペプチド抗原を用いることを特徴とするHIVワクチンの製造方法。
  13. 請求項10記載のペプチド抗原、又は、請求項10記載のペプチド抗原のN36の3量体領域を認識するHIV立体構造認識抗体を有効成分とする、HIV感染予防及び/又は治療剤。
  14. HIV感染予防及び/又は治療が、HIV立体構造認識抗体の、HIV粒子の膜貫通タンパク質gp41のN末端側のヘリックス領域N36の3量体領域への作用により、gp41のN36とC34による6量体形成を阻害して、HIVの標的細胞への侵入を阻止するものであることを特徴とする請求項13記載のHIV感染予防及び/又は治療剤。
PCT/JP2010/003280 2009-05-18 2010-05-14 Hiv立体構造認識抗体誘導ペプチド抗原、及びその合成方法 WO2010134305A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10777543.9A EP2444414A4 (en) 2009-05-18 2010-05-14 PEPTIDANTES FOR INDUCING ANTIBODIES FOR THE DETECTION OF THREE-DIMENSIONAL HIV STRUCTURES AND METHOD FOR THEIR SYNTHETIZATION
US13/319,813 US9066983B2 (en) 2009-05-18 2010-05-14 Peptidic antigen that induces antibody recognizing three-dimensional structure of HIV and method for synthesizing same
JP2011514322A JPWO2010134305A1 (ja) 2009-05-18 2010-05-14 Hiv立体構造認識抗体誘導ペプチド抗原、及びその合成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009120352 2009-05-18
JP2009-120352 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134305A1 true WO2010134305A1 (ja) 2010-11-25

Family

ID=43125998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003280 WO2010134305A1 (ja) 2009-05-18 2010-05-14 Hiv立体構造認識抗体誘導ペプチド抗原、及びその合成方法

Country Status (4)

Country Link
US (1) US9066983B2 (ja)
EP (1) EP2444414A4 (ja)
JP (1) JPWO2010134305A1 (ja)
WO (1) WO2010134305A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137479A1 (ja) 2011-04-04 2012-10-11 国立大学法人東京医科歯科大学 Hiv立体構造認識抗体誘導ペプチド
JP2014509838A (ja) * 2011-01-06 2014-04-24 ビオノール イミュノ エーエス 多量体ペプチド

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104069504B (zh) * 2014-05-11 2019-09-24 江苏康泰生物医学技术有限公司 一种增强多糖蛋白结合物免疫原性的方法
CN106146624B (zh) * 2015-04-28 2020-03-31 中国人民解放军军事医学科学院毒物药物研究所 定点共价交联的天然n肽类的hiv-1抑制剂
US11318197B2 (en) 2016-03-03 2022-05-03 Duke University Compositions and methods for inducing HIV-1 antibodies
CA3016352A1 (en) * 2016-03-03 2017-09-08 Duke University Compositions and methods for inducing hiv-1 antibodies
CA3039089A1 (en) 2016-10-03 2018-04-12 Duke University Methods to identify immunogens by targeting improbable mutations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118886A2 (en) * 2004-06-01 2005-12-15 Merck & Co., Inc. Stable peptide mimetic of hiv gp41 fusion intermediate
WO2006105993A2 (en) * 2005-04-05 2006-10-12 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Method for shielding functional sites or epitopes on proteins
JP2009080118A (ja) 1996-10-10 2009-04-16 Probe Internatl ウイルス感染を処置するための組成物および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150088A (en) * 1997-04-17 2000-11-21 Whitehead Institute For Biomedical Research Core structure of gp41 from the HIV envelope glycoprotein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080118A (ja) 1996-10-10 2009-04-16 Probe Internatl ウイルス感染を処置するための組成物および方法
WO2005118886A2 (en) * 2004-06-01 2005-12-15 Merck & Co., Inc. Stable peptide mimetic of hiv gp41 fusion intermediate
WO2006105993A2 (en) * 2005-04-05 2006-10-12 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Method for shielding functional sites or epitopes on proteins

Non-Patent Citations (81)

* Cited by examiner, † Cited by third party
Title
"Hito Retorovirusu Kenkyu no Saizensen (Frontiers of Human Retrovirus Research in English", 22 February 2002, SPRINGER-VERLAG TOKYO, INC.
"WHO, World Health Statistics 2008 Non-Patent Document 3: The report of the AIDS Surveillance Committee, the Ministry of Health, Labour and Welfare Japan", REPORT ON TREND OF AIDS INCIDENCE, 2008
ALAM, M. S., MCADAMS, M., BOREN, D., HAYNES, B. F.: "The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes", J. IMMUN., vol. 178, 2007, pages 4442 - 4435
ALBU, D. I., TROWER, A. J., WORON, A. M., STELLRECHT, K., BRODER, C. C., METZGER, D. W.: "Intranasal vaccination using interleukin-12 and cholera toxin subunit B as adjuvants to enhance mucosal and systemic immunity to human immunodeficiency virus type 1 glycoproteins", J. VIROL, vol. 77, 2003, pages 5589 - 5597
BABA M.: "Advances in antiviral chemotherapy", VIRUS, vol. 55, 2005, pages 69 - 76
BABA, M.: "Recent progress of anti-HIV-1 reseach", VIRUS, vol. 54, 2004, pages 59 - 66
BELYAKOV, I. M., BERZOFSKY, J. A.: "Immunobiology of mucosal HIV infection review and the basis for development of a new generation of mucosal AIDS vaccines", IMMUNITY, 2004, pages 247 - 253
BEWLEY, C. A., LOUIS, J. M., GHIRLANDO, R., CLORE, G. M.: "Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41", J. BIOL. CHEM., vol. 277, 2002, pages 14238 - 14245
BIANCHI, E., FINOTTO, M., INGALLINELLA, P., RENEE, H., PESSI, P.: "Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection", PROC. NATL. ACAD. SCI. U. S. A., vol. 102, 2005, pages 12903 - 12905
BIOLOGICALS, vol. 29, 2001, pages 189 - 196
BIOPOLYMERS, vol. 60, 2001, pages 194 - 205
BIOPOLYMERS, vol. 90, 2008, pages 320 - 329
BURTON, D. R., DESROSIERS, R. C., DOMS, R. W., KOFF, W. C., KWONG, P. D., MOORE, J. P., NABEL, G. J., SODROSKI, J., WILSON, 1. A.,: "HIV vaccine design and the neutralizing antibody problem", NAT. IMMUNOL., vol. 5, 2004, pages 233 - 236
BYCHKOVA, V. E., DUJSEKINA, A. E., KLENIN, S. I., PTISYN 0. B.: "Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface", BIOCHEMISTRY, vol. 35, 1996, pages 6058 - 6063
CARDOSO, R. M. F., ZWICK, M. B., STANFIELD, R. L., IAN A. WILSON, I. A.: "Broadly Neutralizing Anti-HIV Antibody 4E10 Recognizes a Helical Conformation of a Highly Conserved Fusion-Associated Motif in gp41", IMMUNITY, vol. 22, 2004, pages 247 - 253
CARTER, C. A., EHRLICH, L. S.: "Cell biology of HIV-1 infection of macrophages", ANNU. REV. MACROBIOL., vol. 62, 2008, pages 425 - 443
CHAN, D. C., FASS, D., KIM, P. S.: "Core structure of gp41 from the HIV envelope glycoprotein", CELL, vol. 89, 1997, pages 263 - 273
CHEN, Y. -H., YANG, J. T., CHAU, K. H.: "Determination of the helix and beta form of proteins in aqueous solution by circular dichroism", BIOCHEMISTRY, vol. 13, 1974, pages 3350 - 3359
CONLEY, A. J., KESSLER, I. I., BOOTS, J. L., TUNG, S. J., ARNOLD, B. A., KELLER, P. M., SHAW, A. R., EMINI, E. A.: "Neutralization of divergenthuman immunodeficiency virus type 1 variants and primary isolates by IAM- 41-2F5, an anti-gp41 human monoclonal antibody", PROC. NATL. ACAD. SCI. U. S. A., vol. 91, 1994, pages 3348 - 3352
D.J. KING: "Applications and Engineering of Monoclonal Antibodies", 1998, T.J. INTERNATIONAL LTD
E ATHERTON, R C SHEPPARD: "Solid phase peptide synthesis - a practical approach", IPI PRESS
ECKERT, D. M., KIM, P. S.: "Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region", PROC. NATL. ACAD. SCI. U. S. A., vol. 98, 2001, pages 11187 - 11192
ECKERT, D. M., KIM, P. S.: "Mechanisms of viral membrane fusion and its inhibition", ANNU. REV. BIOCHEM., vol. 70, 2001, pages 777 - 810
ECKERT, D. M., MALASHKEVICH, V. N., HONG, L. H., CARR, P. A., KIM, P. S.: "Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket", CELL, vol. 99, 1999, pages 103 - 115
EOM, K. D., MIAO, Z., YANG, J. -L., TAM, J. P.: "Tandem ligation multipartite peptide with cell-permeable activity", J. AM. CHEM. SOC., vol. 125, 2002, pages 73 - 82
GAN, P. J., LYU, P. C., MANNING, M. C., WOODY, R. W., KALLENDACH, N. R.: "The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data", BIOPOLYMERS, vol. 31, 1991, pages 1605 - 1614
GODEFROY, S., PEYRE, M., GARCIA, N., MULLER, S., SESARDIC, D., PARTIDOS, C. D.: "Effect of skin barrier disruption on immune responses to topically applied cross-reacting material, CRM197, of diphtheria toxin", INFECT. IMMIN., vol. 73, 2005, pages 4803 - 4809
HEWER, R., MEYER, D.: "Peptide Immunogens based on the envelope region of HIV-1 are recognized by HIV/AIDS patient polyclonal antibodies are induce strong humoral immune responses in mice and rabbits", MOL. IMMUNE., vol. 40, 2003, pages 327 - 335
HIROKAZU TAMAMURA ET AL., BIOORGANIC & MEDICINAL CHEMISTRY, vol. 6, 1998, pages 1033 - 1041
HIROKAZU TAMAMURA: "HIV Shinnyu no Doteki Cho Bunshi Kiko o Ninshiki suru Tokuiteki Kotai Sakusei ni Kansuru Kenkyu", HEISEI 18 NENDO HIV NO KANSEN YOBO NI KANSURU KENKYU SOKATSU-BUNTAN KENKYU HOKOKUSHO, 2007, pages 37 - 43, XP008150965 *
J. AM. CHEM. SOC., vol. 121, 1999, pages 9013 - 9022
J. AM. CHEM. SOC., vol. 123, 2001, pages 2487 - 3494
J. AM. CHEM. SOC., vol. 125, 2002, pages 73 - 82
J. W. GODING: "Monoclonal Antibodies: principles and practice", 1993, ACADEMIC PRESS
JACKSON, D. Y., HING, D. S., CHMIELESKI, J., SINGH, S., SCHULTZ, P. G.: "General approach to the synthesis of short a-helical peptides", J. AM. CHEM. SOC., vol. 113, 1991, pages 9391 - 9392
JIANG, S., LIN, K., LU, M.: "A conformation-specific monoclonal antibody reacting with fusion-active gp41 from the human immunodeficiency virus type 1 envelope glycoprotein", J. VIROL., vol. 72, 2007, pages 10213 - 10217
JOYCE, J. G., HURNI, W. M., KELLER,P, M.: "Enhancement of a-Helicity in the HIV-1 inhibitory peptide DP178 lead to an increseed affinity for human monoclonal antibody 2F5 but does elicit neutralizing responses in Vitro", J. BIOL. CHEM., vol. 277, 2002, pages 45811 - 45820
KILBY, M. J., HOPKINS, S., SAAG, M. S.: "Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry", NAT. MED., vol. 4, 1998, pages 1303 - 1307
KILDY, M. J., ERON, J. J.: "Novel therapies based on mechanisms of HIV-1 cell entry", N. ENGL. J. MED., vol. 348, 2003, pages 2228 - 2238
KOHLER, MILSTEIN ET AL., NATURE, vol. 256, 1975, pages 495 - 497
KOYANAGI, Y.: "Outline of the HIV replication and its celluiar: the track of an invader in cell", VIRUS, vol. 55, 2005, pages 251 - 258
KUTZLER, M. K., CAO, C., BAI, Y., DONG, H. Q., CHOE, P. Y., SAULINO, V., MCLAUGHLIN, L., WHELAN, A., CHOOA, A. Y., DAVID, B.: "Mapping of immune responses following wild-type and mutant ABeta42 plasmid or peptide vaccination in different mouse haplotypes and HLA Class II transgenic mice", VACCINE, vol. 24, 2006, pages 4630 - 4639
KWONG, P. D., WYATT, R., ROBINSON, J.: "Sructure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a newtralizing human antibody", NATURE, vol. 393, 1997, pages 648 - 659
LALEZARI, J. P., HENRY, K., O'HEARN, M., SALGO, M.: "Enfuvirtide, an HIV-1 Fusion Inhibitor, for Drug-Resistant HIV Infection in North and South America", N. ENGL. J. MED., vol. 348, 2003, pages 2175 - 2185
LIDQVIST, M., NILSSON, 0., HOLMGREN, J., HALL, C., FERMER, C. P: "hage display for site-specific immunization and characterization of high- risk human papillomavirus specific E7 monoclonal antibodies", J. IMMUNE. METH., vol. 337, 2008, pages 88 - 96
LIU, C.-A., TAM, J. P.: "Peptide segment ligation strategy without use of protecting groups", PROC. NATL. ACAD. SCI. U. S. A., vol. 91, 1994, pages 6584 - 6588
LIU, S., LU, H., NIU, J., JIANG, S.: "Different from the HIV fusion inhibitor C34, The anti-HIV drug Fuzeon (T-20) inhibits entry by targeting multiple sites in gp41 and gp120", J. BIOL. CHEM., vol. 280, 2005, pages 11259 - 11273
LOUIS, J. M., NESHEIWAT, I., CHANG, L., CLORE, G. M., BEWLEY, C. A.: "Covalent trimers of the internal N-terminal trimeric coiled-coil of gp41 and antibodies directed against them are potent inhibitors of HIV envelope-mediated cell fusion", J. BIOL. CHEM., vol. 278, 2003, pages 20278 - 20285
LU, M., BLACKLOW, S. C., KIM, P. S.: "A trimeric structural domain of the HIV-1 transmembrane glycoprotein", NAT. STRUCT. BIOL., vol. 12, 1995, pages 1075 - 82
MALASHKEVICH, V. N., CHAN, D. C., CHUTKOWSKI, C. T., KIM, P. S.: "Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: Conserved helical interactions underlie the broad inhibitory activity of gp41 peptides", PROC. NATL. ACAD. SCI.U. S. A., vol. 95, 1998, pages 9134 - 9139
MASUDA, T.: "Host factors that regulate the intercellular dynamics of HIV-1 genome during the early phase of infection.", VIRUS, vol. 1, 2006, pages 41 - 50
MIAO, Z., TAM, J. P.: "Bidirectional tandem pseudoproline ligations of proline- rich helical peptides", J. AM. CHEM. SOC., vol. 122, 2000, pages 4253 - 4260
MUNCH, J., STANDKER, L., ADERMANN, K., SCHULZ, A., KIRCHHOFF, F.: "Dascovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide", CELL, vol. 129, 2007, pages 263 - 275
NAT BIOTECHNOL., vol. 14, 1996, pages 845
NELSON, J. D., BRUNEL, F. M., JENSEN, R., MICHAEL B., ZWICK, M. B.: "An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41recognizes an epitope between those of 2F5 and 4E10", J. VIROL., vol. 81, 2007, pages 4033 - 4043
NISHI, N., KOMINE, Y., SAKAI, N., MARUYAMA, T., OTAGIRI, M.: "cooperative effect of hydrophobic and electrostatic forces on alchol-induced a-helix formation of ai-acid glycoprotein", FEBS LETT., vol. 579, 2005, pages 3596 - 3600
OFEK, G., TANG, M., SAMBOR, A., KWONG, P. D.: "Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with Its gp41 epitope", J. VIROL., vol. 78, 2004, pages 10724 - 10737
ORG. BIOMOL. CHEM., vol. 6, 2008, pages 4374 - 4377
OTAKA, A., NAKAMURA, M., NAMEKI, D., TAMAMURA, H., KOBAYASHI, Y., MATSUOKA, M., HUJII, N.: "Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 eith target cells", ANGEW. CHEM. INT. ED., vol. 16, 2002, pages 2937 - 2940
P. J. DELVES: "ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES", 1997, WILEY
PANTOPHLET, R., SAPHIRE, E. 0., POIGNARD, P., BURTON, P. D.: "Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120", J. VIROL., vol. 77, 2003, pages 642 - 658
PROC. NATL. ACAD. SCI. U. S. A., vol. 91, 1994, pages 6584 - 6588
QIAO, S., KIM, M., REINHOLD, B., MONTEFIORI, D., WANG, J., REINHERZ, E, L.: "Design, expression, and immunogenicity of a soluble HIV trimeric envelope fragment adopting a prefusion gp41 configuration", J. BIOL. CHEM., vol. 280, 2005, pages 23138 - 23146
ROBERTS, W. K., LIVINGSTON, P. 0., AGUS, D. B., IBARZ, J. P., SCHEINBERG, Z. A.: "Vaccination with CD20 peptides induces a biologically active, specific immune response in mice", BLOOD, vol. 99, 2002, pages 3748 - 3755
ROOT, M. J., KAY, M. S., KIM, P. S.: "Protein design of an HIV-1 entry inhibitor", SCIENCE, vol. 291, 2001, pages 884 - 888
SADLER, K., ZHANG, Y., XU, J., YU, Q., TAM, J. P.: "Quaternary protein mimetics of gp41 elicit newtralizing antibodies against HIV fusion-active intermediate state.", BIOPOLYMERS, vol. 90, 2008, pages 320 - 329
SATO, H., YOKOYAMA, M.: "RNA viruses and mutation", VIRUS, vol. 55, 2005, pages 221 - 230
See also references of EP2444414A4
SHEPHERD, C. DEAN: "Monoclonal Antibodies", 2000, OXFORD UNIVERSITY PRESS
SINOUSSI, B. F., MONTAGNIER, L.: "Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS", SCIENCE, vol. 20, 1983, pages 868 - 871
TAM, J. P., MIAO, Z.: "Stereospecific pseudoproline ligation of N-terminal serine, threonine, or cysteine-containing unprotected peptides", J. AM. CHEM. SOC., vol. 121, 1999, pages 9013 - 9022
TAM, J. P., XU, J., EOM, K. D.: "Methods and strategies of peptide ligation", BIOPOLYMERS, vol. 60, 2001, pages 194 - 205
TAM, J. P., YU, Q., LU, Y-A.: "Tandem peptide ligation for synthetic and natural biological", BIOLOGICALS, vol. 29, 2001, pages 189 - 196
TAM, J. P., YU, Q., YANG, J. -L.: "Tandem ligation of unprotected peptides through thiaprolyl and cysteinyl bonds in water", J. AM. CHEM. SOC., vol. 123, 2001, pages 2487 - 2494
TAN, K. J., LIU, J., WANG, S., SHEN, S., LU, M.: "Atomic structure of a thermostablesubdomain HIV-1 gp41", PROC. NATL. ACAD. SCI.U. S. A., vol. 94, 1997, pages 12303 - 12308
TOMIZUKA. ET AL., PROC NATL ACAD SCI USA., vol. 97, 2000, pages 722
TRKOLA, A., PURTSCHER, T. M., MUSTER, C., BALLAUN, A. BUCHACHER, N. SULLIVAN, K. SRINIVASAN, J. SODROSKI, MOORE, J. P., KATINGER,: "Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1.", J. VIROL., vol. 70, 1996, pages 1100 - 1108
VANCOTT, T. C., MASCOLA, J. R., KAMINSKI, R. W, BIRX, D. L.: "Antibodyes with specificity to native gp120 and neutralization activity against primary human immunodeficiency virus type 1 isolates elicited by immunization with oligomerric gp160", J. VIROL., vol. 71, 1997, pages 4319 - 4330
WEISSENHORN, W., DESSEN, A., HARRISON, S. C., SKEHEL, J. J., WILEY, D. C.: "Atomic structure of the ectodomain HIV-1 gp41", NATURE, vol. 387, 1997, pages 426 - 430
WELCH, B. D, VANDEMARK, A. P., HEROUX, A., HILL, C. P., KAY, M. S.: "Potent D-peptide inhibitors of HIV-1 entry", PROC. NATL. ACAD. SCI. U. S. A., vol. 104, 2007, pages 16828 - 16833
YUKIA Y, NOCHIA T, KIYONOA H.: "Progress towards an AIDS mucosal vaccine: An overview", TUBERCULOSIS, vol. 87, 2007, pages 35 - 44

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509838A (ja) * 2011-01-06 2014-04-24 ビオノール イミュノ エーエス 多量体ペプチド
JP2017048232A (ja) * 2011-01-06 2017-03-09 ビオノール イミュノ エーエスBionor Immuno As 多量体ペプチド
WO2012137479A1 (ja) 2011-04-04 2012-10-11 国立大学法人東京医科歯科大学 Hiv立体構造認識抗体誘導ペプチド
CN103502264A (zh) * 2011-04-04 2014-01-08 国立大学法人东京医科齿科大学 Hiv立体结构识别抗体诱导肽
JPWO2012137479A1 (ja) * 2011-04-04 2014-07-28 国立大学法人 東京医科歯科大学 Hiv立体構造認識抗体誘導ペプチド

Also Published As

Publication number Publication date
JPWO2010134305A1 (ja) 2012-11-08
EP2444414A4 (en) 2013-06-12
EP2444414A1 (en) 2012-04-25
US9066983B2 (en) 2015-06-30
US20120052090A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2010134305A1 (ja) Hiv立体構造認識抗体誘導ペプチド抗原、及びその合成方法
US6258599B1 (en) Compositions and methods for treating viral infections
US5166050A (en) Monoclonal antibodies and peptides useful in treating and diagnosing HIV infections
JP2003529319A (ja) HIV−1gp41を標的化する広範に中和する抗体を誘発する方法
US5869624A (en) HIV-1 vaccines, antibody compositions related thereto, and therapeutic and prophylactic uses thereof
KR920008744B1 (ko) Hiv 감염의 치료 및 진단용 모노클로날항체 및 펩티드
US20100092505A1 (en) Method for Shielding Functional Sites or Epitopes on Proteins
McGaughey et al. Progress towards the development of a HIV-1 gp41-directed vaccine
WO2012137479A1 (ja) Hiv立体構造認識抗体誘導ペプチド
AP502A (en) Multiple branch peptide constructions for use against HIV.
US20200353069A1 (en) Improved hiv envelope glycoprotein immunogens
US9796773B2 (en) Neutralizing antibodies that bind to the HIV-1 Env V2 critical neutralization domain
JP2010509340A (ja) バイナリエピトープ抗体およびb細胞スーパー抗原免疫刺激物質
US20070122429A1 (en) Designed antigens to elicit neutralizing antibodies against sterically restricted antigen and method of using same
Garsky et al. Progress Towards the Development of a HIV-1 gp41-Directed Vaccine
AU2004201321A1 (en) Compositions and methods for treating viral infections
ZA200106535B (en) Methods of eliciting broadly neutralizing antibodies targeting HIV-1 GP41.
AU2006200455A1 (en) Compositions and methods for treating viral infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514322

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13319813

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010777543

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE