WO2010133715A1 - Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas - Google Patents

Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas Download PDF

Info

Publication number
WO2010133715A1
WO2010133715A1 PCT/ES2009/070166 ES2009070166W WO2010133715A1 WO 2010133715 A1 WO2010133715 A1 WO 2010133715A1 ES 2009070166 W ES2009070166 W ES 2009070166W WO 2010133715 A1 WO2010133715 A1 WO 2010133715A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
calcination
solid particles
thermal decomposition
mass
Prior art date
Application number
PCT/ES2009/070166
Other languages
English (en)
French (fr)
Inventor
Miguel A. Delgado Lozano
Enrique Tova Holgado
Mariano Reyes Valle
Francisco Rodriguez Barea
Luis CAÑADAS SERRANO
Vicente Cortes Galeano
Original Assignee
Ingenieria Energetica Y De Contaminacion S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingenieria Energetica Y De Contaminacion S.A. filed Critical Ingenieria Energetica Y De Contaminacion S.A.
Priority to PCT/ES2009/070166 priority Critical patent/WO2010133715A1/es
Priority to PL09784122T priority patent/PL2434271T3/pl
Priority to ES09784122.5T priority patent/ES2555053T3/es
Priority to EP09784122.5A priority patent/EP2434271B1/en
Priority to CN200980159361.8A priority patent/CN102449461B/zh
Priority to US13/321,015 priority patent/US20120128537A1/en
Publication of WO2010133715A1 publication Critical patent/WO2010133715A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0091Powders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the invention relates, as expressed in the statement of the present specification, to an apparatus for the online measurement of mass loss by calcination and thermal decomposition (pyrolysis) of solid particles automatically extracted from a conduit through the which are transported within a gaseous stream.
  • the present invention is applicable in any industry in which it is necessary to determine the loss of mass by calcination and / or thermal decomposition (pyrolysis) of a sample of solid particles with a view to the monitoring and optimization of a process, or for the control of the quality of a certain powdery product.
  • Loss of mass by calcination a term translated in English as Loss On lgnition (LOI), represents the percentage decrease in the mass of a sample of solid particles when calcined through a controlled increase in temperature in an oxidizing environment.
  • This parameter is normally related to the fixed carbon content of the sample of particles.
  • the controlled temperature increase occurs in the absence of oxygen, thermal decomposition or pyrolysis phenomena occur, the loss of mass in these conditions being related to the volatile content of the solid particle sample.
  • the present invention allows to determine automatically, and by the same parameter of mass loss by calcination, the ash content of the fuel fed to the boiler, as well as the volatile contents under certain conditions of temperature increase and absence of oxygen.
  • Said parameters are periodically measured in the laboratory to control the quality of the solid fuel.
  • control parameter is vital to establish trading strategies to optimize fuel consumption and, consequently, the CO 2 emissions.
  • the benefits of the measurement of this parameter are, in addition, to enable an adequate monitoring of the characteristics of the ash for sale as an additive for the cement industry, as well as in order to define limits of application of operational strategies for NOx control
  • the procedure defined in these standards consists of the weighing in the analytical balance of the cold crucible, weighing of the crucible loaded with the ash sample, heating at a certain temperature (815 0 C in the ISO Standard and 75O 0 C in the ASTM or another sufficient to cause thermal decomposition in oxidizing conditions of the solid sample) to constant mass, cooling in a desiccator and weighing the crucible assembly and the calcined sample.
  • US Patent 4,846,292 describes an automatic equipment for the measurement of unburned samples of a number of manually loaded samples on a series of containers that are sequentially analyzed.
  • laboratory equipment that determines the carbon content in the ashes by means of the calcination of a known sample mass and subsequent measurement of the CO2 generated. This measure is very similar quantitatively to the value of the LOI, being the majority of the matter burned in carbon ash.
  • These equipments usually provide an elementary analysis of the sample, mainly carbon, hydrogen and nitrogen, based on ASTM D5373 "Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal"
  • the present invention relates to an apparatus for the in-line measurement of the loss of mass by calcination of solid particles, being of direct application in the determination of the burning in the ashes and in the determination of the ash content and volatile matter of the fuel in boilers and furnaces of solid fuels, such as boilers in coal-fired power plants.
  • Standard UNE 32-019-84 for the determination of volatiles both referred to a manual determination of the parameters, although the processes defined therein adapted to the operating conditions of an automatic equipment installed in the vicinity of the duct. Therefore, it combines the accuracy of the equipment based on a
  • the apparatus in question allows obtaining a measure in a fully automated manner, without requiring the participation of operators, comprising the means necessary for the extraction of a sample of ashes from a conduit in which they are transported within a gaseous stream,
  • a specific program for example at 815 0 C detailed in ISO 1171 standard for the measurement of ash content or burning, or any other temperature or thermal profiles to which it is desired to characterize the thermal
  • the fundamental characteristic of the apparatus is its ability to feed the sample of particles on a container or cylindrical crucible, which is permanently inside a preferably electric oven, with temperature control, as well as eliminating Ia calcined sample to allow the start of a new measurement cycle.
  • the apparatus has a conduit that, through the oven through its upper part, preferably ends in the form of a bell at the height of the upper part of the crucible.
  • the sample enters the oven by gravity through the anterior duct and is deposited on the crucible where it is subjected to heating.
  • Said crucible is supported by a rod which, without making contact with the oven walls, crosses it by its lower part resting on an analytical balance.
  • the evolution of the mass of the analyzed sample is continuously measured from its entrance to the oven until the end of the calcination detected by constant weighing.
  • the assembly constituted by the balance, the support rod and the crucible is provided with a linear movement, in the direction of the furnace axis, so that the circular base of the crucible can be brought closer to the discharge section of the bell of the sample inlet duct.
  • the apparatus produces a suction through the inlet duct for the total elimination of the calcined sample.
  • the air necessary for calcination in the presence of oxygen enters the oven through the Free space between the lower lid of the latter and the support rod of the crucible, circulates inside by natural draft and exits through a hole made in the upper lid of the oven.
  • the equipment has the possibility of placing a lid on the crucible to prevent the entry of air.
  • Said cover preferably has a circular crown shape and is mounted in such a way that it is traversed through its inner circumference by the conduit through which the particles access the interior of the oven.
  • the lid can move freely vertically in such a way that, by its own weight, it rests in the bell-shaped area of the particle inlet duct.
  • the movement capacity of the crucible in the vertical direction allows it to be positioned in such a way that its inlet surface is matched with the lid, thereby avoiding the entry of air.
  • the elevation of the crucible displaces the lid upwards with respect to its support position in the duct, allowing the entry of the cleaning air generated by the suction.
  • the continuous weighing of the sample during its heating process allows to identify the instant of constant weighing (completion of the analysis), which avoids the realization of successive heavy confirmation, thus optimizing the response time of the apparatus .
  • Figure 1 shows an assembly scheme of the apparatus connected to a pipe where the particles are transported within a gaseous stream. Said figure shows the position of the crucible inside the oven during the loading phase of the sample to be analyzed, which coincides with the position during the heating phase in the absence of oxygen in the case of using the equipment for the measurement of volatile content.
  • Figure 2 details the position of the crucible in the oven during the phases of weighing and heating in an oxidizing atmosphere for the measurement of the content in unburned or the content in ashes.
  • Figure 3 shows the position of the crucible in the oven during the phase of elimination of the analyzed sample.
  • Figure 1 shows a diagram of a possible embodiment of the invention object of the patent.
  • the detailed equipment configuration allows both the determination of the loss of mass both in oxidizing and non-oxidizing conditions.
  • the apparatus for the in-line measurement of the mass loss by calcination and thermal decomposition is connected to a pneumatic transport duct of particles (1) through a transport pipe (2), said connection being enabled by means of an automatic shut-off valve (3).
  • the apparatus aspirates by means of an ejector (4), fed by compressed air through the automatic cutting valve (5), a biphasic current composed of a mixture of particles to be analyzed and transport air.
  • the extracted particles are separated by means of a cyclone (6) and collected in the chamber (7), which is isolated from its lower part by an automatic cutting valve (8).
  • Both the cyclone (6) and the chamber (7) and the valve (8) are arranged aligned and vertically on an electric oven (9) whose temperature is controlled according to the analysis to be performed.
  • the oven (9) has inside a cylindrical crucible (10) of sufficient volume for the collection of the particles to be analyzed.
  • Said crucible (10) is supported by means of a rod (11) that passes through the oven through its lower cover (12) through an orifice (13) of a diameter larger than that of the rod itself (11).
  • the main function of the rod (11) is to transmit the mass of the sample to be analyzed to a high precision balance (14) placed under the oven (9).
  • the rod (11) is connected to a refrigerator (15) composed of two parallel flat plates connected by two spacers.
  • the refrigerator (15) is jointly attached to the balance (14) in such a way that the verticality of the assembly formed by the crucible (10), the rod (11) and the refrigerator (15) is guaranteed and does not occur any contact between the load of the balance (14) and the elements that make up the oven (9).
  • the discharge of the sample of particles from the chamber (7) to the crucible (10) is caused by gravity through a vertical conduit (16) which, connected at one of its ends to the isolation valve (8), crosses the oven by its top cover (17) of insulating material, ending in the form of a bell.
  • the fall of the particles is favored by a pneumatic vibrator (18) that acts on the chamber (7) and is activated during the opening of the isolation valve (8).
  • the vertical duct (16) is also arranged vertically and aligned with the axis of the rod (11), the maximum diameter of the bell being between 2 and 4 millimeters smaller than the inner diameter of the crucible (10).
  • the distance of the crucible (10) to the discharge section of the vertical duct (16) is variable depending on the instant of the measurement process.
  • the rod (11) and the crucible (10), are actuated vertically by means of a vertical displacement mechanism (19, 20, 21) comprising at least a linear actuator (19) attached to a platform (20) that serves as a support to the whole previous set.
  • the verticality of the movement, in order to avoid lateral contact of the load of the balance (14) with the oven walls (9), is ensured by guides (21) of this mechanism (19, 20, 21) that cross The platform (20).
  • the crucible (10) is positioned so that its inlet section gave several millimeters with respect to the discharge section of the vertical duct (16), as shown in Figure 2.
  • the vertical displacement mechanism (19, 20, 21) is adapted to vary the vertical distance between the mouth of the vertical duct (16) and the internal base of the crucible (10) between at least three differentiated positions: a first position in which the distance is less than 2 millimeters, a second position in which the distance is equal to or greater than 2 mm and less than the height of the crucible (10) and a third position in which the Ia distance is greater than the height of the crucible (10).
  • the equipment is provided with a lid (23) in the form of a circular crown, its outer diameter being equal to or greater than the outer diameter of the crucible (10) and its inner diameter several millimeters greater than the outer diameter of the vertical conduit (16) for the entry of particles in its non-flared cylindrical part.
  • Said cover (23) is crossed by the vertical conduit (16) and, by its own weight, rests on the flared surface thereof.
  • the crucible (10) rises until its inlet surface coincides with the lower surface of the lid (23), as shown in Figure 1. This fact is detected by the increase in weight suffered by the load of the balance (14) when lightly loaded with the lid (23).
  • the absence of air requires closing during heating of the isolation valve (8).
  • the lid (23), the crucible (10) and the inlet duct (16) are sized in such a way that, in said first position, the lid (23) rests resting on the crucible (10) without making contact with the vertical conduit (16), in said second position the lid (23) establishes contact with the upper section of the crucible (10) and in said third position the lid (23) is supported on the flared surface of the conduit vertical (16).
  • Automatic device control is carried out through a control system (24), usually a PLC, which governs the opening and closing of the valves (3), (5) and (8), the actuation of the linear actuator (19) and the operation of the balance (14). It also manages means for controlling the temperature (25, 26) of the oven (9) comprising a temperature probe (25) and a control module (26) to which it is connected. Additionally, it calculates mass loss by calcination and has the means to send the value remotely or display it through a data display device.
  • a control system usually a PLC, which governs the opening and closing of the valves (3), (5) and (8), the actuation of the linear actuator (19) and the operation of the balance (14). It also manages means for controlling the temperature (25, 26) of the oven (9) comprising a temperature probe (25) and a control module (26) to which it is connected. Additionally, it calculates mass loss by calcination and has the means to send the value remotely or display it through a data display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Las partículas son extraídas de forma automática de un conducto por el que son transportadas en una corriente gaseosa. Es aplicable para la determinación de cenizas y volátiles en combustibles sólidos e inquemados en cenizas. Las partículas son depositadas sobre un crisol (10), que se encuentra permanentemente en el interior de un horno eléctrico (9) con control de la temperatura. El aparato dispone de un conducto (16) que, atravesando el horno (9) termina en forma de campana a la altura de la parte superior del crisol (10). La muestra accede al horno (9) por gravedad a través del conducto (16) y es depositada sobre el crisol (10) donde es calcinada. Dicho crisol (10) es soportado por una varilla (11 ) que atraviesa por la parte inferior del horno descansando sobre una balanza analítica (14). Tras la calcinación, la muestra es aspirada por el conducto vertical (16) para permitir el comienzo de un nuevo ciclo.

Description

APARATO PARA MEDIDA AUTOMÁTICA EN LINEA DE LA PERDIDA DE MASA POR CALCINACIÓN Y DESCOMPOSICIÓN TÉRMICA DE
PARTÍCULAS SÓLIDAS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La invención se refiere, tal y como expresa el enunciado de Ia presente memoria descriptiva, a un aparato para Ia medida en línea de Ia pérdida de masa por calcinación y descomposición térmica (pirólisis) de partículas sólidas extraídas de forma automática de un conducto por el que son transportadas en el seno de una corriente gaseosa.
CAMPO DE APLICACIÓN
La presente invención es de aplicación en cualquier industria en Ia que se precise Ia determinación de Ia pérdida de masa por calcinación y/o descomposición térmica (pirólisis) de una muestra de partículas sólidas con vistas a Ia monitorización y optimización de un proceso, o bien para el control de Ia calidad de un determinado producto pulverulento.
La pérdida de masa por calcinación, término traducido en inglés como Loss On lgnition (LOI), representa Ia disminución porcentual de Ia masa de una muestra de partículas sólidas cuando es calcinada a través de un incremento controlado de temperatura en un ambiente oxidante.
Este parámetro es normalmente relacionado con el contenido en carbono fijo de Ia muestra de partículas. Cuando el incremento de temperaturas controlado se desarrolla en ausencia de oxígeno se producen fenómenos de descomposición térmica o pirólisis, relacionándose Ia pérdida de masa en estas condiciones con el contenido en volátiles de Ia muestra de partículas sólidas.
Dentro del campo de aplicación de Ia invención cabe destacar a las calderas u hornos de combustibles sólidos (carbón, biomasa) pulverizados o en lecho fluidizado, en las que se determina el contenido en inquemados de las cenizas (residuo sólido de Ia combustión del combustible) mediante Ia determinación del LOI.
Igualmente, y dentro de este mismo ámbito, Ia presente invención permite determinar de forma automática, y mediante el mismo parámetro de pérdida de masa por calcinación, el contenido en cenizas del combustible alimentado a Ia caldera, así como los contenidos en volátiles en determinadas condiciones de incremento de temperatura y ausencia de oxígeno.
Dichos parámetros son medidos periódicamente en el laboratorio para el control de Ia calidad del combustible sólido.
ANTECEDENTES DE LA INVENCIÓN
Uno de los parámetros de mayor importancia a Ia hora de definir el rendimiento de una caldera u horno de combustible sólido (carbón, biomasa) es el contenido en inquemados de Ia ceniza generada como residuo de Ia combustión. El control de dicho parámetro es vital para establecer estrategias de operación que permitan optimizar el consumo de combustible y, en consecuencia, las emisiones de CO2. Los beneficios de Ia medida de este parámetro se concretan, adicionalmente, en posibilitar un adecuado seguimiento de las características de Ia ceniza de cara a su venta como aditivo para Ia industria cementera, así como al objeto de definir límites de aplicación de estrategias operativas para el control de NOx.
La determinación de este importante parámetro se ha realizado tradicionalmente mediante Ia extracción manual de muestras diarias de cenizas, normalmente procedentes de los conductos de transporte neumático desde los tolvines del electrofiltro hasta el silo, y su posterior análisis en laboratorio. Dicho análisis se realiza generalmente siguiendo los procedimientos definidos en diversas Normas como Ia ISO 1171 "SoNd mineral fuel-Determination of ash", o su correspondencia en los distintos países, como Ia Norma UNE 32-004-84 "Combustibles minerales sólidos- Determinación de cenizas" en España, o Ia ASTM C311 - 07 "Standard Test Methods for Sampling and Testing FIy Ash or Natural Pozzolans for Use in Portland-Cement Concrete". El procedimiento definido en estas normas, muy similar en todos los casos, consiste en Ia pesada en balanza analítica del crisol en frío, pesada del crisol cargado de Ia muestra de cenizas, calentamiento a una determinada temperatura (815 0C en Ia Norma ISO y 75O0C en Ia ASTM u otra suficiente para provocar Ia descomposición térmica en condiciones oxidantes de Ia muestra sólida) hasta masa constante, enfriamiento en un desecador y pesada del conjunto del crisol y Ia muestra calcinada.
Adicionalmente, esta tipología de determinaciones por incremento controlado de temperatura se aplica a Ia determinación del contenido en cenizas de combustibles sólidos, siguiendo metodologías y normativas de descomposición térmica en condiciones oxidantes similares a las referidas para Ia determinación de inquemados en cenizas, aunque caracterizando, en este caso de medida de cenizas, Ia masa del residuo producido, en lugar de Ia pérdida de peso.
En este mismo contexto, son de aplicación habitual determinaciones de pérdidas de peso por incremento controlado de temperatura, si bien en condiciones no oxidantes, para Ia determinación del contenido en volátiles de combustibles sólidos. Ejemplos de estas determinaciones son las referidas en las normativas ISO 562, Ia UNE 32-
019-84 o Ia ASTM D 3175. El procedimiento establecido en dichas normas es muy similar al definido para Ia determinación del LOI, con Ia variante de
Ia colocación de una tapa sobre el crisol durante el proceso de calentamiento, además de una programación del calentamiento
(temperatura y tiempo) específico para cada combustible.
En Ia actualidad existen equipos automáticos de laboratorio que simplifican el proceso de análisis, minimizando Ia manipulación del operador fundamentalmente en Io referente a los procesos de pesada y calentamiento. La alta implantación de estos equipos ha implicado el desarrollo de normativa específica referente a su diseño y utilización, como es el caso de Ia Norma ASTM D5142 "Standard test method for proximate analysis of coal and coke by instrumental procedures" para Ia realización del análisis inmediato de carbones mediante sistemas automáticos de laboratorio. Ejemplo de estos equipos son los sistemas comerciales Hot Foil Loi Instrument de FERco o el MAC 400 de LECO.
Igualmente, Ia patente US 4,846,292 describe un equipo automático para Ia medida de inquemados de un número de muestras cargadas manualmente sobre una serie de recipientes que, de forma secuencial, son analizadas. Asimismo, existen equipos de laboratorio que determinan el contenido en carbono en las cenizas por medio de Ia calcinación de una masa de muestra conocida y posterior medida del CO2 generado. Esta medida es muy similar cuantitativamente al valor del LOI, al ser Ia mayor parte de Ia materia inquemada en Ia ceniza carbono. Estos equipos suelen proporcionar un análisis elemental de Ia muestra, fundamentalmente carbono, hidrógeno y nitrógeno, en base a Ia Norma ASTM D5373 "Standard Test Methods for Instrumental Determination of Carbón, Hydrogen, and Nitrogen in Laboratory Samples of Coal"
En todos los casos descritos anteriormente se hace necesaria Ia participación de un operador en Ia fase de extracción de Ia muestra y en Ia alimentación posterior de ésta al analizador automático de laboratorio, así como su subsiguiente eliminación tras Ia medida.
Esta forma de operar limita Ia monitorización de estos importantes parámetros a, en Ia mayor parte de los casos, un único valor diario que se obtiene al día siguiente de Ia extracción de Ia muestra, imposibilitándose cualquier ajuste efectivo sobre las condiciones de combustión (en función de Ia variación en inquemados en cenizas o en las propiedades del combustible).
Para el caso particular de Ia medida de inquemados en cenizas, en los últimos años se han desarrollado diversos equipos en línea para Ia medida de este parámetro que presentan tiempos de respuesta adecuados para Ia implementación de actuaciones efectivas de control del proceso. Generalmente están constituidos por un sistema de toma de muestras automático conectado al conducto de transporte y un sistema de análisis de las cenizas extraídas. En todos los casos, estos equipos están basados en métodos indirectos de medida (sensores capacitivos, de infrarrojos y microondas) que presentan una significativa sensibilidad a variaciones en las características de Ia ceniza, Io que arroja incertidumbres significativas sobre los valores por ellos proporcionados en escenarios, cada vez más frecuentes, de cambio de combustible.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un aparato para Ia medida en línea de Ia pérdida de masa por calcinación de partículas sólidas, siendo de aplicación directa en Ia determinación del inquemado en las cenizas y en Ia determinación del contenido en cenizas y materia volátil del combustible en calderas y hornos de combustibles sólidos, como las calderas existentes en las centrales térmicas de carbón.
Los principios básicos de medida del aparato son el de Ia Norma ISO 1171 para Ia determinación de las cenizas (o inquemados) y el de Ia
Norma UNE 32-019-84 para Ia determinación de los volátiles, ambas referidas a una determinación manual de los parámetros, si bien adaptados los procesos en ellas definidos a las condiciones de funcionamiento de un equipo automático instalado en las proximidades del conducto. Por ello combina Ia exactitud de los equipos basados en una
Norma de referencia (por tanto insensible a variaciones en Ia naturaleza y propiedades físico-químicas de Ia ceniza) con Ia rapidez de respuesta de los sistemas en línea conectados al proceso.
El aparato en cuestión permite Ia obtención de una medida de forma totalmente automatizada, sin requerir Ia participación de operarios, comprendiendo los medios necesarios para Ia extracción de una muestra de cenizas de un conducto en el que son transportadas en el seno de una corriente gaseosa, Ia dosificación de una alícuota a un horno, Ia pesada de Ia alícuota a analizar, su calentamiento a temperatura controlada de acuerdo a un programa específico (por ejemplo a los 8150C detallados en normativa ISO 1171 para Ia medida del contenido en cenizas o el inquemado, o a cualquier otra temperatura o perfiles térmicos a los que se desee caracterizar Ia descomposición térmica o calcinación de Ia alícuota) en presencia o ausencia de oxígeno de acuerdo al parámetro a medir, su pesada tras el proceso de calentamiento, el cálculo de Ia pérdida de masa, Ia eliminación de Ia muestra analizada al conducto de procedencia y Ia limpieza y adecuación del sistema para un nuevo ciclo.
La característica fundamental del aparato es su capacidad para, de forma totalmente automática, alimentar Ia muestra de partículas sobre un recipiente o crisol cilindrico, que se encuentra permanentemente en el interior de un horno preferentemente eléctrico, con control de Ia temperatura, así como eliminar Ia muestra calcinada para permitir el comienzo de un nuevo ciclo de medida. Para ello, el aparato dispone de un conducto que, atravesando el horno por su parte superior, termina preferiblemente en forma de campana a Ia altura de Ia parte superior del crisol. La muestra accede al horno por gravedad a través del conducto anterior y es depositada sobre el crisol donde es sometida a calentamiento. Dicho crisol es soportado por una varilla que, sin hacer contacto con las paredes del horno, Io atraviesa por su parte inferior descansando sobre una balanza analítica. De esta forma se mide continuamente Ia evolución de Ia masa de Ia muestra analizada desde su entrada al horno hasta el fin de Ia calcinación detectada por pesada constante. Tras el análisis, al conjunto constituido por Ia balanza, Ia varilla soporte y el crisol se Ie dota de un movimiento lineal, en Ia dirección del eje del horno, de manera que permite acercar Ia base circular del crisol a Ia sección de descarga de Ia campana del conducto de entrada de Ia muestra. Simultáneamente al movimiento de aproximación del crisol a Ia campana, el aparato produce una succión a través del conducto de entrada para Ia total eliminación de Ia muestra calcinada. El aire necesario para Ia calcinación en presencia de oxígeno entra en el horno por el espacio libre entre Ia tapa inferior de éste y Ia varilla de soporte del crisol, circula en el interior por tiro natural y sale por un orificio practicado en Ia tapa superior del horno. Para el calentamiento en ausencia de oxígeno, y por tanto para Ia medida de los volátiles, el equipo dispone Ia posibilidad de colocar una tapa sobre el crisol para evitar Ia entrada de aire. Dicha tapa tiene preferentemente forma de corona circular y se monta de tal forma que es atravesada a través de su circunferencia interior por el conducto por el que acceden las partículas al interior del horno. La tapa puede moverse libremente en vertical de tal manera que, por su propio peso, descansa en Ia zona con forma de campana del conducto de entrada de las partículas. La capacidad de movimiento del crisol en dirección vertical permite posicionarlo de tal forma que se haga coincidir su superficie de entrada con Ia tapa, evitándose con ello Ia entrada de aire. Durante el proceso de eliminación de Ia muestra tras el análisis Ia elevación del crisol desplaza Ia tapa hacia arriba respecto a su posición de apoyo en el conducto, permitiendo Ia entrada del aire de limpieza generado por Ia succión.
La configuración anteriormente descrita confiere a Ia presente invención una cualidad fundamental respecto a Ia exactitud de Ia medida.
El hecho de que el crisol se encuentre en todo momento en el interior del horno a una temperatura constante y se disponga de una medida en continuo de Ia masa de Ia muestra desde su ingreso al crisol, evita el proceso de enfriamiento previo a Ia pesada tras el calentamiento. Este aspecto es sumamente importante ya que las variaciones de humedad que experimenta el crisol en los cambios de temperatura pueden ser del mismo orden o superior a Ia variación de masa de Ia muestra analizada. Por ello en los procedimientos normalizados de laboratorio se establece que los crisoles se mantengan en desecadores durante un tiempo antes y después de Ia calcinación, para que las pesadas se realicen en las mismas condiciones de equilibrio respecto a Ia humedad del crisol (Ia temperatura del laboratorio suele mantenerse constante). Este aspecto es más difícil de controlar en los equipos automáticos, en los que los ciclos de enfriamiento pueden introducir incertidumbre asociada a las distintas condiciones de temperatura y humedad ambiente durante las pesadas.
De otro lado, Ia pesada en continuo de Ia muestra durante su proceso de calentamiento permite identificar el instante de pesada constante (finalización del análisis), Io que evita Ia realización de sucesivas pesadas de confirmación, optimizándose de esta forma el tiempo de respuesta del aparato.
DESCRIPCIÓN DE DIBUJOS
Para complementar Ia descripción, y con objeto de facilitar Ia comprensión de las características de Ia invención, se adjunta una serie de figuras con carácter ilustrativo y no limitativo:
La figura 1 muestra un esquema de conjunto del aparato conectado a una tubería donde las partículas son transportadas en el seno de una corriente gaseosa. En dicha figura se muestra Ia posición del crisol en el interior del horno durante Ia fase de carga de Ia muestra a analizar, Ia cual coincide con Ia posición durante Ia fase de calentamiento en ausencia de oxígeno en el caso de empleo del equipo para Ia medida del contenido en volátiles.
La figura 2 detalla Ia posición del crisol en el horno durante las fases de pesada y calentamiento en atmósfera oxidante para Ia medida del contenido en inquemados o el contenido en cenizas. La figura 3 muestra Ia posición del crisol en el horno durante Ia fase de eliminación de Ia muestra analizada.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En Ia figura 1 se muestra un esquema de una posible realización de Ia invención objeto de patente. La configuración del equipo detallado permite tanto Ia determinación de Ia pérdida de masa tanto en condiciones oxidantes como no oxidantes.
En el caso representado, el aparato para Ia medida en línea de Ia pérdida de masa por calcinación y descomposición térmica está conectado a un conducto de transporte neumático de partículas (1 ) a través de una tubería de transporte (2), estando dicha conexión habilitada por medio de una válvula automática de corte (3). El aparato aspira por medio de un eyector (4), alimentado por aire comprimido a través de Ia válvula automática de corte (5), una corriente bifásica compuesta por una mezcla de partículas a analizar y aire de transporte. Las partículas extraídas son separadas por medio de un ciclón (6) y recogidas en Ia cámara (7), Ia cual está aislada por su parte inferior por una válvula automática de corte (8).
Tanto el ciclón (6) como Ia cámara (7) y Ia válvula (8) se disponen de forma alineada y en vertical sobre un horno eléctrico (9) cuya temperatura es controlada de acuerdo al análisis a realizar. El horno (9) dispone en su interior un crisol cilindrico (10) de volumen suficiente para Ia recogida de las partículas a analizar. Dicho crisol (10) es soportado por medio de una varilla (11 ) que atraviesa el horno por su tapa inferior (12) a través de un orificio (13) de diámetro mayor que el de Ia propia varilla (11 ). Además de soporte, Ia función principal de Ia varilla (11 ) es Ia de transmitir Ia masa de Ia muestra a analizar a una balanza (14) de alta precisión colocada bajo el horno (9). Para evitar Ia transmisión de calor a Ia balanza (14), Ia varilla (11 ) se conecta a un refrigerador (15) compuesto por dos placas planas paralelas conectadas por dos separadores. El refrigerador (15) está unido de forma solidaria a Ia balanza (14) de tal forma que se garantice Ia verticalidad del conjunto formado por el crisol (10), Ia varilla (11 ) y el propio refrigerador (15) y no se produzca contacto alguno entre Ia carga de Ia balanza (14) y los elementos que componen el horno (9).
La descarga de Ia muestra de partículas desde Ia cámara (7) al crisol (10) se produce por gravedad a través de un conducto vertical (16) que, conectado en uno de sus extremos a Ia válvula de aislamiento (8), atraviesa el horno por su tapa superior (17) de material aislante, terminando en forma de campana. La caída de las partículas se favorece mediante un vibrador neumático (18) que actúa sobre Ia cámara (7) y que se acciona durante Ia apertura de Ia válvula de aislamiento (8). El conducto vertical (16) se dispone igualmente de forma vertical y alineada con el eje de Ia varilla (11 ), siendo el diámetro máximo de Ia campana entre 2 y 4 milímetros menor que el diámetro interior del crisol (10).
La distancia del crisol (10) a Ia sección de descarga del conducto vertical (16) es variable en función del instante del proceso de medida.
Para ello, Ia balanza (14) y toda su carga, incluyendo el refrigerador (15),
Ia varilla (11 ) y el crisol (10), son accionadas verticalmente por medio de un mecanismo de desplazamiento vertical (19, 20, 21 ) que comprende al menos actuador lineal (19) unido a una plataforma (20) que sirve de soporte a todo el conjunto anterior. La verticalidad del movimiento, a efectos de evitar el contacto lateral de Ia carga de Ia balanza (14) con las paredes del horno (9), se asegura mediante unas guías (21 ) de este mecanismo (19, 20, 21 ) que atraviesan Ia plataforma (20).
Durante Ia fase de carga de Ia muestra al crisol (10), éste es elevado de tal forma que se introduzca en su interior, hasta Ia mitad de su altura, la sección de descarga del conducto vertical (16), tal y como se refleja en Ia figura 1.
Durante las fases de lectura de Ia masa y calentamiento en atmósfera oxidante, el crisol (10) se posiciona de manera que su sección de entrada diste varios milímetros respecto a Ia sección de descarga del conducto vertical (16), tal y como se muestra en Ia figura 2.
Más concretamente se ha previsto que el mecanismo de desplazamiento vertical (19, 20, 21 ) esté adaptado para variar Ia distancia en vertical entre Ia embocadura del conducto vertical (16) y Ia base interna del crisol (10) entre, al menos, tres posiciones diferenciadas: una primera posición en Ia que Ia distancia es inferior a 2 milímetros, una segunda posición en Ia que Ia distancia es igual o superior a 2 mm e inferior a Ia altura del crisol (10) y una tercera posición en Ia que Ia distancia es superior a Ia altura del crisol (10).
La circulación de aire en el horno (9), necesaria para asegurar Ia presencia de oxígeno para Ia reacción de calcinación, se produce por tiro natural a través de un orificio (22) practicado en Ia tapa superior (17) del horno. La renovación del aire se produce a través del espacio anular entre Ia varilla (11 ) y el orificio (13) de mayor diámetro por el que ésta atraviesa Ia tapa inferior (12) del horno.
Para Ia realización del calentamiento en condiciones no oxidantes el equipo está dotado de una tapa (23) con forma de corona circular, siendo su diámetro exterior igual o mayor que el diámetro exterior del crisol (10) y su diámetro interior varios milímetros mayor que el diámetro exterior del conducto vertical (16) de entrada de partículas en su parte cilindrica no acampanada. Dicha tapa (23) está atravesada por el conducto vertical (16) y, por su propio peso, descansa sobre Ia superficie acampanada de éste. Durante la fase de calentamiento en un análisis de volátiles, el crisol (10) se eleva hasta que su superficie de entrada coincide con Ia superficie inferior de Ia tapa (23), tal y como se muestra en Ia figura 1. Este hecho se detecta por el incremento de peso que sufre Ia carga de Ia balanza (14) al cargar ligeramente con Ia tapa (23). La ausencia de aire requiere el cierre durante el calentamiento de Ia válvula de aislamiento (8).
En este caso Ia tapa (23), el crisol (10) y el conducto de entrada (16) se encuentran dimensionadas de tal modo que, en Ia mencionada primera posición Ia tapa (23) descansa apoyada sobre el crisol (10) sin hacer contacto con el conducto vertical (16), en Ia mencionada segunda posición Ia tapa (23) establece contacto con Ia sección superior del crisol (10) y en Ia mencionada tercera posición Ia tapa (23) se encuentra apoyada sobre Ia superficie acampanada del conducto vertical (16).
La realización del aparato para Ia determinación de Ia pérdida de masa por calcinación en atmósfera oxidante no requiere del uso de Ia tapa (23) del crisol (10), si bien su presencia no afecta al funcionamiento del aparato para tal fin.
Para eliminar Ia muestra, una vez analizada, se produce succión a través del conducto vertical (16) alimentando aire comprimido al eyector (4), manteniéndose Ia válvula (3) cerrada. Simultáneamente a esta succión se produce el movimiento de elevación del crisol (10) hasta que su base interior alcance Ia sección de descarga del conducto vertical (16), tal y como se muestra en Ia figura 3. Una vez eliminada Ia muestra, el crisol (10) es llevado a Ia posición de Ia figura 1 para Ia carga de una nueva muestra y el comienzo de un nuevo ciclo.
El control del aparato en automático se realiza a través de un sistema de control (24), normalmente un PLC, que gobierna Ia apertura y cierre de las válvulas (3), (5) y (8), el accionamiento del actuador lineal (19) y el funcionamiento de Ia balanza (14). Asimismo gestiona unos medios de control de Ia temperatura (25, 26) del horno (9) que comprenden una sonda de temperatura (25) y un módulo de control (26) al que se encuentra conectado. Adicionalmente realiza los cálculos de Ia pérdida de masa por calcinación y dispone de los medios para enviar el valor de forma remota o mostrarlo a través de un dispositivo de visualización de datos.

Claims

REIVINDICACIONES
1.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas procedentes de un conducto (1 ) en el que son transportadas en el seno de una corriente gaseosa, que comprende: un ciclón (6) dotado de una entrada tangencial conectada al conducto (1 ) en el que se introducen las partículas sólidas, que está vinculado inferiormente a una cámara de recogida (7) , un horno (9) dotado de una tapa superior (17) y de una tapa inferior (12), y provisto de orificios (13, 22) para Ia circulación de aire exterior, un crisol (10) para Ia recogida y calcinación de las partículas procedentes de Ia cámara de recogida (7), una balanza analítica (14) destinada a pesar el crisol (10), caracterizado porque comprende adicionalmente: un conducto de entrada (16) vertical que conecta Ia cámara de recogida (7) con el crisol (10), el cual se encuentra permanentemente dispuesto en el interior del horno (9), que atraviesa Ia tapa superior (17) del horno (9), y que está dotado de una embocadura de descarga inferior situada en correspondencia con el crisol (10), una varilla (11 ) rígida unida al crisol (10), cuyo eje está alineado con el eje del conducto (16), que atraviesa Ia tapa inferior (12) del horno y que está asociada a Ia balanza analítica (14), en el que dicha balanza analítica (14) soporta al menos el crisol (10) y Ia varilla (11 ) manteniendo Ia verticalidad del crisol (10), un eyector (4) conectado al ciclón (6) que está adaptado para producir una succión y facilitar Ia extracción de Ia muestra del conducto (1 ) hacia el ciclón (6) o Ia aspiración del residuo del crisol (10) tras Ia calcinación, un mecanismo de desplazamiento vertical (19, 20, 21 ) de Ia balanza (14) y su carga, adaptado para controlar el posicionamiento en altura de Ia base interna del crisol (10) respecto de Ia embocadura de descarga del conducto de entrada (16), y un sistema de control (24) adaptado para gestionar de forma automática Ia entrada de partículas al crisol (10), el posicionamiento del mecanismo de desplazamiento vertical (19, 20, 21 ) de Ia balanza (14), medios de control de Ia temperatura (25, 26) del horno (9), el funcionamiento de Ia balanza (14), el cálculo de Ia pérdida de masa por calcinación y Ia extracción de las partículas calcinadas en el crisol
(10).
2.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque Ia embocadura inferior del conducto de entrada (16) muestra forma acampanada.
3.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 2 caracterizado porque comprende adicionalmente una tapa (23) con forma de corona adaptada para cerrar Ia abertura superior del crisol (10), y su diámetro interior es ligeramente mayor que el diámetro exterior del conducto vertical (16) en su parte cilindrica no acampanada, estando dicha tapa (23) atravesada por el conducto vertical (16) sin ningún tipo de ligadura y adaptada para su apoyo por su peso sobre Ia superficie acampanada del conducto vertical (16).
4.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque el crisol (10) es cilindrico.
5.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con las reivindicaciones 3 y 4 caracterizado porque Ia forma de corona de Ia tapa (23) es circular y su diámetro exterior es igual o mayor que el diámetro exterior del crisol (10).
6.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con las reivindicación 1 caracterizado porque Ia cámara de recogida (7) está provista de una vía inferior conectada a una válvula automática de corte
(8) y un mecanismo de vibración (18).
7.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque uno de los orificios (22) del horno
(9) se encuentra en Ia tapa superior (17).
8.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque uno de los orificios (13) del horno (9) se encuentran en Ia tapa inferior (12).
9.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con las reivindicación 8 caracterizado porque el orificio (13) que se encuentra en Ia tapa inferior (12) del horno (9) es atravesado por Ia varilla (11 ) de tal modo que deja un espacio anular libre a Ia entrada de aire.
10.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque el eyector (4) está alimentado por aire comprimido.
11.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque el mecanismo de desplazamiento vertical (19, 20, 21 ) comprende un actuador lineal (19) unido por su vastago a una plataforma (20), sobre Ia que descansa Ia balanza (14), adaptado para variar Ia distancia en vertical entre Ia embocadura del conducto vertical (16) y Ia base interna del crisol (10) entre, al menos, tres posiciones diferenciadas: una primera posición en Ia que Ia distancia es inferior a 2 milímetros, una segunda posición en Ia que Ia distancia es igual o superior a 2 mm e inferior a Ia altura del crisol (10) y una tercera posición en Ia que Ia distancia es superior a Ia altura del crisol (10).
12- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 11 caracterizado porque el mecanismo de desplazamiento vertical (19, 20, 21 ) comprende adicionalmente al menos una guía (21 ) sobre Ia que desliza Ia plataforma (20).
13.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con las reivindicaciones 3 y 11 caracterizado porque Ia tapa (23), el crisol (10) y el conducto de entrada (16) se encuentran dimensionados de tal modo que, en Ia primera posición Ia tapa (23) descansa apoyada sobre el crisol (10) sin hacer contacto con el conducto vertical (16), en Ia segunda posición Ia tapa (23) establece contacto con Ia sección superior del crisol (10) y en Ia tercera posición Ia tapa (23) se encuentra apoyada sobre Ia superficie acampanada del conducto vertical (16).
14.- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque comprende adicionalmente un refrigerador (15) situado entre Ia balanza (14) y Ia varilla (11 ).
15- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque los medios de control de Ia temperatura (25, 26) del horno (9) comprenden una sonda de temperatura (25) y un módulo controlador de temperatura (26).
16- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque el sistema de control (24) dispone asociado un dispositivo de visualización de datos.
17- Aparato para medida automática en línea de Ia pérdida de masa por calcinación y descomposición térmica de partículas sólidas de acuerdo con Ia reivindicación 1 caracterizado porque el sistema de control (24) dispone asociado de medios de envío de datos de forma remota.
PCT/ES2009/070166 2009-05-18 2009-05-18 Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas WO2010133715A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/ES2009/070166 WO2010133715A1 (es) 2009-05-18 2009-05-18 Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas
PL09784122T PL2434271T3 (pl) 2009-05-18 2009-05-18 Urządzenie do automatycznego bezpośredniego pomiaru straty masy za pomocą kalcynowania i rozkładu termicznego cząstek stałych
ES09784122.5T ES2555053T3 (es) 2009-05-18 2009-05-18 Aparato para medida automática en línea de la pérdida de masa por calcinación y descomposición térmica de partículas sólidas
EP09784122.5A EP2434271B1 (en) 2009-05-18 2009-05-18 Device for automatic in-line measurement of mass loss by calcination and thermal decomposition of solid particles
CN200980159361.8A CN102449461B (zh) 2009-05-18 2009-05-18 自动管线测量固体颗粒的烧失量和热分解反应的装置
US13/321,015 US20120128537A1 (en) 2009-05-18 2009-05-18 Device for automatic in-line measurement of mass loss by calcination and thermal decomposition of solid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070166 WO2010133715A1 (es) 2009-05-18 2009-05-18 Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas

Publications (1)

Publication Number Publication Date
WO2010133715A1 true WO2010133715A1 (es) 2010-11-25

Family

ID=41664874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070166 WO2010133715A1 (es) 2009-05-18 2009-05-18 Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas

Country Status (6)

Country Link
US (1) US20120128537A1 (es)
EP (1) EP2434271B1 (es)
CN (1) CN102449461B (es)
ES (1) ES2555053T3 (es)
PL (1) PL2434271T3 (es)
WO (1) WO2010133715A1 (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066286A1 (en) * 2009-01-26 2011-03-17 Daniel Harjes In-line loss-on-ignition measurement system and method
CN104089477A (zh) * 2014-07-17 2014-10-08 济南大学 热重分析炉
CN109668927A (zh) * 2017-10-17 2019-04-23 国家安全生产监督管理总局化学品登记中心 测定粉尘云最低着火温度的试验装置及方法
CN110108752A (zh) * 2019-06-26 2019-08-09 南京工业大学 一种自反馈时变热流下聚合物热解着火实验系统及测试方法
CN111665162A (zh) * 2020-07-07 2020-09-15 南京大得科技有限公司 一种锅炉飞灰含碳量在线测量装置
CN111795904A (zh) * 2020-07-27 2020-10-20 南京大得科技有限公司 一种提高在线灼烧飞灰含碳量测量精度的方法
CN112432504A (zh) * 2020-11-20 2021-03-02 田立勇 一种自动补取式宠物食品检测装置
CN114544703A (zh) * 2022-01-18 2022-05-27 北京科技大学 多元气氛环境荷载加压煤体氧化升温特性测定装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660917B1 (ko) * 2014-06-05 2016-09-29 주식회사 페스텍 화재물성 산출 올인원 시험장치
CN106766913A (zh) * 2016-12-30 2017-05-31 南京麒麟科学仪器集团有限公司 新型高频炉及红外碳硫分析仪
CN108871928B (zh) * 2018-09-21 2020-11-20 义乌市添诚科技有限公司 飞灰含碳量检测装置
CN110231361B (zh) * 2019-06-29 2020-07-31 郑州航空工业管理学院 机场跑道道面抗冻融能力监测装置
CN111289683B (zh) * 2020-03-05 2022-08-09 内蒙古汇能集团长滩发电有限公司 一种火电煤粉燃烧效率检测系统
CN111257183A (zh) * 2020-03-15 2020-06-09 河北源泷科技有限公司 一种面粉生产安全检测报警装置
CN114199728B (zh) * 2020-09-18 2023-09-01 宝武碳业科技股份有限公司 一种用于针状焦自动分析检测方法和检测装置
CN113447394B (zh) * 2021-07-13 2023-05-05 西北大学 基于热重分析仪的复杂有机混合物模拟蒸馏装置及方法
CN116718511B (zh) * 2023-08-10 2023-10-20 山东省煤田地质局第五勘探队 一种煤炭灰分检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601697A (nl) * 1986-06-27 1988-01-18 Instrumentenfabriek Van Essen Werkwijze en inrichting voor het bepalen van het gehalte aan koolstof in de as van een verbrandingsinrichting.
US4846292A (en) 1987-08-31 1989-07-11 Ngk Insulators, Ltd. Apparatus for automatically measuring ignition loss
EP1413873A1 (en) * 2001-05-22 2004-04-28 Ingenieria Energetica y de Contaminacio, S.A. Automatic system for collecting, weighing and releasing solid particles
CN200950111Y (zh) * 2006-08-25 2007-09-19 南京大陆中电科技股份有限公司 燃煤电站锅炉烟道飞灰含碳量在线检测装置
CN201130130Y (zh) * 2007-11-19 2008-10-08 南京国晟科技有限公司 锅炉飞灰含碳量在线检测装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2292355A (en) * 1938-06-28 1942-08-11 C K Williams & Co Manufacture of amorphous carbon
US2982609A (en) * 1957-12-23 1961-05-02 Transition Metals & Chemicals Process for the removal of tin oxide from minerals
US3780569A (en) * 1971-09-02 1973-12-25 J Graham Tensiometer assembly for substitution type analytical balances
US4670161A (en) * 1984-08-21 1987-06-02 Premiere Casing Services, Inc. Method and apparatus for separating particles fluidly suspended in a slurry
DE3721451C1 (de) * 1987-06-30 1988-12-08 Asea Brown Boveri Verfahren zum Betreiben einer Pyrolyseanlage
JP3950961B2 (ja) * 2002-09-19 2007-08-01 独立行政法人産業技術総合研究所 水分量測定方法
CN100567971C (zh) * 2006-08-24 2009-12-09 中国科学院山西煤炭化学研究所 煤、石油或生物质中汞的热稳定性的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601697A (nl) * 1986-06-27 1988-01-18 Instrumentenfabriek Van Essen Werkwijze en inrichting voor het bepalen van het gehalte aan koolstof in de as van een verbrandingsinrichting.
US4846292A (en) 1987-08-31 1989-07-11 Ngk Insulators, Ltd. Apparatus for automatically measuring ignition loss
EP1413873A1 (en) * 2001-05-22 2004-04-28 Ingenieria Energetica y de Contaminacio, S.A. Automatic system for collecting, weighing and releasing solid particles
CN200950111Y (zh) * 2006-08-25 2007-09-19 南京大陆中电科技股份有限公司 燃煤电站锅炉烟道飞灰含碳量在线检测装置
CN201130130Y (zh) * 2007-11-19 2008-10-08 南京国晟科技有限公司 锅炉飞灰含碳量在线检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE EPODOC EUROPEAN PATENT OFFICE, THE HAGUE, NL; 19 September 2007 (2007-09-19), XP002569201 *
DATABASE EPODOC EUROPEAN PATENT OFFICE, THE HAGUE, NL; 8 October 2008 (2008-10-08), XP002569202 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066286A1 (en) * 2009-01-26 2011-03-17 Daniel Harjes In-line loss-on-ignition measurement system and method
US8388892B2 (en) * 2009-01-26 2013-03-05 The Charles Stark Draper Laboratory, Inc. In-line loss-on-ignition measurement system and method
CN104089477A (zh) * 2014-07-17 2014-10-08 济南大学 热重分析炉
CN109668927A (zh) * 2017-10-17 2019-04-23 国家安全生产监督管理总局化学品登记中心 测定粉尘云最低着火温度的试验装置及方法
CN110108752A (zh) * 2019-06-26 2019-08-09 南京工业大学 一种自反馈时变热流下聚合物热解着火实验系统及测试方法
CN110108752B (zh) * 2019-06-26 2024-04-09 南京工业大学 一种自反馈时变热流下聚合物热解着火实验系统及测试方法
CN111665162A (zh) * 2020-07-07 2020-09-15 南京大得科技有限公司 一种锅炉飞灰含碳量在线测量装置
CN111795904A (zh) * 2020-07-27 2020-10-20 南京大得科技有限公司 一种提高在线灼烧飞灰含碳量测量精度的方法
CN112432504A (zh) * 2020-11-20 2021-03-02 田立勇 一种自动补取式宠物食品检测装置
CN114544703A (zh) * 2022-01-18 2022-05-27 北京科技大学 多元气氛环境荷载加压煤体氧化升温特性测定装置及方法

Also Published As

Publication number Publication date
US20120128537A1 (en) 2012-05-24
CN102449461B (zh) 2014-09-24
CN102449461A (zh) 2012-05-09
EP2434271A1 (en) 2012-03-28
EP2434271B1 (en) 2015-08-26
PL2434271T3 (pl) 2016-06-30
ES2555053T3 (es) 2015-12-28

Similar Documents

Publication Publication Date Title
WO2010133715A1 (es) Aparato para medida automatica en linea de la perdida de masa por calcinación y descomposicion termica de particulas solidas
CN207408261U (zh) 大重量生物质压块成型燃料燃烧特性测试装置
CN103411995B (zh) 一种研究烧结过程气体污染物生消和排放的实验装置及实验方法
CN206235585U (zh) 一种煤样升温氧化测试装置
CN103439212A (zh) 一种快速变温双炉体热天平
US8388892B2 (en) In-line loss-on-ignition measurement system and method
CN103575760A (zh) 一种卷烟燃烧热的测量装置及测量方法
CN108613896B (zh) 燃煤发电锅炉飞灰含碳量检测方法
CN205538534U (zh) 一种基于co2气体灼烧法的飞灰含碳量在线检测系统
US20100198408A1 (en) In-line loss-on-ignition measurement system and method
CN106053531A (zh) 一种生物质打捆燃料燃烧实验台
KR20140102979A (ko) 수은이 함유된 시료가스 채취용 프로브 유니트
CN205844234U (zh) 一种生物质打捆燃料燃烧实验台
CN208818670U (zh) 一种便携式双氧化锆探头烟气湿度监测装置
CN110487666A (zh) 一种测定煤炭/焦炭灰分的方法及其应用的设备
KR100785051B1 (ko) 승강기능을 갖는 전기로
CN107741379B (zh) 大重量生物质压块成型燃料燃烧特性测试装置及测控方法
RU123533U1 (ru) Стенд для исследования свойств твердых сорбентов
RU2755243C2 (ru) Стенд для исследования свойств твердых сорбентов
CN208537256U (zh) 一种焦炉烟气中so2含量检测系统
WO2002095364A1 (es) Sistema automatico para la captacion, pesada y evacuacion de particulas solidas
ES2615504A1 (es) Dispositivo para determinar la concentración de partículas condensables y filtrables por muestreo isocinético en fuentes estacionarias
JP2002139409A (ja) ガス分析装置およびそれを用いる燃焼制御装置
RU2684434C1 (ru) Термоанализатор обжига кирпича
KR101506072B1 (ko) 중량 변화를 이용한 슬래그 점도 측정장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159361.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009784122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2417/MUMNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13321015

Country of ref document: US