WO2010133076A1 - 一种业务接纳控制方法及系统 - Google Patents

一种业务接纳控制方法及系统 Download PDF

Info

Publication number
WO2010133076A1
WO2010133076A1 PCT/CN2009/076187 CN2009076187W WO2010133076A1 WO 2010133076 A1 WO2010133076 A1 WO 2010133076A1 CN 2009076187 W CN2009076187 W CN 2009076187W WO 2010133076 A1 WO2010133076 A1 WO 2010133076A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
terminal
compression
maximum
service
Prior art date
Application number
PCT/CN2009/076187
Other languages
English (en)
French (fr)
Inventor
谷裕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012511121A priority Critical patent/JP5295428B2/ja
Publication of WO2010133076A1 publication Critical patent/WO2010133076A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/38Flow control; Congestion control by adapting coding or compression rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/83Admission control; Resource allocation based on usage prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a wireless communication system, and in particular to a service admission control method and system. Background technique
  • the wireless communication system defined in the 802.16e protocol provides several different service categories according to the characteristics of different services, and different service categories are correspondingly set with different Quality of Service (QoS) guarantees.
  • QoS Quality of Service
  • the purpose of admission control in the existing wireless communication system is to make the wireless communication system accept more services and realize the most efficient use of system resources, specifically bandwidth resources, on the basis of satisfying the QoS of each admitted service.
  • QoS generally includes several parameters.
  • the bandwidth parameter in the QoS parameter generally consists of the minimum reserved bandwidth and the maximum maintenance bandwidth.
  • the minimum reserved bandwidth refers to the minimum that the wireless communication system must reserve for a requested service flow.
  • Bandwidth, Maximum Maintenance Bandwidth refers to the maximum bandwidth that a wireless communication system can provide for a requested service flow, but does not guarantee any bandwidth.
  • the main idea of the experience-based mechanism is: According to the theoretical calculation or the statistical data of the system operation, several parameters that are fixed in the operation of the wireless communication system are obtained, and these parameters are used together with the new ones.
  • the QoS parameter in the obtained service flow cooperates with some operation, and then determines whether the wireless communication system can accept the newly requested service flow according to the operation result.
  • the admission control of the wireless communication system records the remaining amount of current system resources (bandwidth resources); the wireless communication system performs experience-based and/or respectively for new traffic flows according to their types. Estimating the bandwidth usage of the statistical data; comparing the calculated bandwidth with an empirical threshold, and determining whether the remaining system resources in the wireless communication system can meet the accepted QoS requirements according to the result. If admission is selected, the estimated amount of system resources in the wireless communication system is subtracted from the estimated bandwidth usage, and then the wireless communication system continues to perform the admission control mechanism based on the new remaining system resources.
  • the mechanism based on real-time statistics is roughly the same as the idea based on experience. The only difference is that the wireless communication system changes the parameters of the bandwidth estimation of the traffic flow and the threshold parameters from fixed values to real-time calculations.
  • the existing admission control mechanisms in the wireless communication system have the following in common: change the bandwidth estimation of the service that is requested to be received, and certain thresholds to implement as many access services as possible, and allocate the accepted services.
  • the bandwidth is constant, and the remaining bandwidth remains unchanged in the admission control. That is to say, in the admission control, the accepted service has occupied the estimated bandwidth usage for admission, so these bandwidths cannot be used.
  • Acceptance of new business due to the unstable quality of the wireless link, some service flows may only use a part of the estimated bandwidth for it, and if the bandwidth is provided for the service according to the estimated bandwidth when the resource is tight, it is likely to cause resources. Waste, it can be seen that existing admission control methods cannot effectively use system resources. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a service admission control method and system for realizing the rational and efficient use of bandwidth resources in a wireless communication system.
  • a service admission control method of the present invention includes: after receiving a service acceptance request sent by a terminal, the wireless communication system calculates and accepts the terminal. After the business flow, the system's maximum bandwidth usage R n . w , in judging the R n . w is greater than a predetermined saturation threshold, the wireless communication system for non-admitted and / or the terminal unsolicited grant service (UGS) service flow is to maintain the maximum bandwidth compression; compressed, if R n. If the w is smaller than the remaining bandwidth of the system, the non-UGS service flow of the terminal is accepted by using the maximum maintenance bandwidth requested by the terminal or compressed.
  • the wireless communication system calculates and accepts the terminal. After the business flow, the system's maximum bandwidth usage R n . w , in judging the R n . w is greater than a predetermined saturation threshold, the wireless communication system for non-admitted and / or the terminal unsolicited grant service (UGS) service flow is to maintain the maximum bandwidth compression; compressed,
  • the method for compressing the maximum maintenance bandwidth of the non-UGS service flow that has been accepted and/or the terminal is:
  • the compressed maximum maintenance bandwidth is equal to: the maximum maintenance bandwidth before compression, R max — i and the minimum reserved bandwidth R
  • the difference of min — i is multiplied by the maximum maintenance bandwidth retention rate and then added to the minimum reserved bandwidth R min — i .
  • the maximum maintenance bandwidth retention rate is calculated as follows: The maximum maintenance bandwidth retention rate is equal to: The difference between the upper limit of the retention rate and the lower limit of the retention rate is multiplied by PERCENT[i] / PERCENT_SUM, and then added to the lower limit of the retention rate.
  • the R n is calculated. Before w, the method further comprising: maintaining maximum bandwidth of each non-UGS service flow of the terminal for the initial compression, the first compression method:
  • the maximum guaranteed bandwidth after the initial compression is equal to: R rcq _ n .
  • Nugs i and R rcq _ n The difference between nugs i is multiplied by the bandwidth reservation rate of the first compression, and then R rcq _ n . Add nugs i;
  • the bandwidth reservation rate of the first compression when the wireless system is initialized is 1.
  • the saturation threshold includes: a mild saturation threshold. w and severe saturation threshold K alam ; The determination is R n . When w is greater than the saturation threshold, the maximum maintenance bandwidth of the received and/or terminal non-UGS service flows is compressed, specifically:
  • the wireless communication system If the R n is . w w is greater than the less than the K alam, then the wireless communication system, the maximum sustaining a bandwidth of the non-UGS service flow admitted and / or bandwidth of the terminal in compressed mode retains significant; and if the R n . w is greater than the ⁇ 1£ ⁇ , and the wireless communication system performs compression of the bandwidth small-preservation mode for the maximum maintenance bandwidth of the non-UGS traffic that has been received and/or the terminal.
  • the method for compressing the bandwidth large retention mode is: The maximum sustained bandwidth after compression is equal to: R max — i and R m i n — i are multiplied by B—Reservoir- Ratio [i], and then R min — i is added; the method of compressing the small-bandwidth retention mode is: The maximum sustained bandwidth after compression is equal to: R max — the difference between i and Rmin — i is multiplied by S—Reservoir — Ratio [i] Then, add to R min — i; the bandwidth retention rate of the bandwidth large retention mode B— Reserve— Ratio[i] is equal to: a high and (3 ⁇ 4.
  • the bandwidth reservation rate of the initial compression the large average cumulative bandwidth retention rate On. w avg * small amplitude average cumulative bandwidth retention rate p nw — avg ;
  • the method further includes:
  • the wireless communication system uses the minimum reserved bandwidth to accept the service flow of the terminal.
  • the method further includes:
  • the wireless communication system uses the minimum reserved bandwidth to accept the service flow of the terminal.
  • the invention also provides a service admission control system, comprising:
  • the admission control module is configured to calculate, after receiving the service admission request sent by the terminal, the maximum bandwidth usage R n of the system after the service flow of the terminal is accepted. w , judging the R n . Whether w is greater than a preset saturation threshold, and if greater, compresses the maximum maintenance bandwidth of the non-actively granted service UGS service flow of the received and/or the terminal; if compressed, if R n . If the w is smaller than the remaining bandwidth of the system, the non-UGS service flow of the terminal is accepted by using the maximum maintenance bandwidth requested by the terminal or compressed.
  • the method for the admission control module to compress the maximum maintenance bandwidth of the received and/or non-UGS traffic of the terminal is:
  • the compressed maximum maintenance bandwidth is equal to: the maximum maintenance bandwidth before compression, R max — i and minimum
  • the difference of the reserved bandwidth R min — i is multiplied by the maximum guaranteed bandwidth retention rate and then added to the minimum reserved bandwidth R min — i .
  • the method for calculating the maximum maintenance bandwidth retention rate by the admission control module is:
  • the maximum maintenance bandwidth retention rate is equal to: The difference between the upper limit of the retention rate and the lower limit of the retention rate is multiplied by PERCENT[i] / PERCENT_SUM, and then the lower limit of the retention rate. Add together.
  • the present invention considers the admission control mechanism and QoS scheduling and performance statistics as a whole, and directly reflects the actual use of system resources through performance statistics to the admission.
  • the control unit based on the bandwidth usage rate, moderately compresses the bandwidth of the service to meet the QoS, so as to implement more traffic.
  • the present invention can adjust the bandwidth resource of the system in real time, and can use the real-time bandwidth utilization according to the service flow. Adjusting the use of system resources avoids the defect of determining the bandwidth usage of the service, and has greater flexibility in the acceptance of services. Adjusting the bandwidth usage of different service flows and adjusting the bandwidth usage respectively can enable System resources are used more efficiently.
  • FIG. 1 is a flowchart of a service admission control method according to the present invention
  • FIG. 3 is a structural diagram of a service admission control system of the present invention. detailed description
  • the minimum reserved bandwidth of the UGS (Unsolicited Grant Service) service flow defined in the 802.16e protocol is equal to the maximum maintenance bandwidth
  • the maximum maintenance bandwidth of the UGS service flow is compressed to achieve as many access services as possible. If the service flow is still not accepted after the bandwidth is compressed, the terminal uses the minimum reserved bandwidth for the service flow to receive the service, so as to satisfy the service acceptance request of the terminal and meet the basic requirements of the service QoS.
  • FIG. 1 shows a service admission control method according to the present invention, which includes the following steps:
  • Step 101 After receiving the service admission request sent by the terminal, the wireless communication system calculates the minimum reserved total bandwidth required for the service to be admitted according to the QoS parameter of the service flow that is requested to be received.
  • the minimum reserved total bandwidth includes the minimum reserved bandwidth of the UGS service and the non-UGS service.
  • Step 102 The wireless communication system determines whether the minimum reserved total bandwidth of the to-be-accepted service is greater than or equal to the remaining bandwidth of the system, and if yes, rejects the service acceptance request of the terminal; otherwise, step 103 is performed.
  • Step 103 Initially compress the maximum maintenance bandwidth of the non-UGS service flow to be admitted.
  • the bandwidth retention rate of the initial compression is set to 1, that is, no compression.
  • the bandwidth retention rate of the first compression is modified accordingly. That is, if the system does not perform bandwidth compression on the accepted service, the non-UGS service flow to be accepted is not compressed for the first time; otherwise, the non-UGS service flow is subjected to the initial compression according to the modified initial compressed bandwidth retention rate.
  • the bandwidth reservation rate of the first compression when the wireless system is initialized is 1.
  • the purpose of the initial compression is to ensure fairness between the non-UGS service to be admitted and the non-UGS service that has been accepted and compressed in the system.
  • Step 104 If the service flow of the terminal is received, the maximum bandwidth usage of the system is determined, and whether the maximum bandwidth usage is greater than a saturation threshold set in the system, if yes, step 105 is performed; otherwise, step 110 is performed.
  • Step 105 Calculate the average bandwidth usage of each accepted non-UGS service flow in the performance statistics interval, calculate the bandwidth usage rate, and set the bandwidth usage rate of each non-UGS service flow to be admitted to 100%.
  • Step 106 Compress the maximum maintenance bandwidth of each non-UGS service flow that has been admitted and to be admitted according to the bandwidth usage rate.
  • the bandwidth retention rate is proportional to the bandwidth usage rate for any non-UGS service flow.
  • Step 107 After the bandwidth is compressed, if the service flow of the terminal is received, the maximum bandwidth usage of the system is determined, and whether the maximum bandwidth usage after the bandwidth compression is greater than the remaining bandwidth of the system is determined. If yes, step 108 is performed; otherwise, step 109 is performed. .
  • Step 108 Accept the service flow that the terminal requests to accept by using the minimum reserved bandwidth of the to-be-accepted service, and then go to step 111 after the execution.
  • Step 109 Accept the non-UGS service flow by using the compressed maximum maintenance bandwidth, and then go to step 111 after the execution.
  • Step 110 Accept the non-UGS service flow to be accepted by using the maximum sustained bandwidth after the initial compression, and then go to step 111 after the execution.
  • Step 111 The wireless communication system saves the bandwidth parameter of the received non-UGS service flow, uses its bandwidth parameter to schedule it, and updates the remaining bandwidth of the system, and ends.
  • R free represents the remaining bandwidth of the wireless communication system
  • R rcserved represents the occupied bandwidth
  • Rtotal Rreserved + Rfree.
  • the wireless communication system maintains an array SF_DATA[i] for each non-UGS service flow i (SFi),
  • the SF_DATA[i] is composed of five elements ⁇ R avgJ , Rmax — i , Rmin — i, 3 ⁇ 4ow_i , Pnow i ⁇ and 3 ⁇ 4, - ⁇ :
  • R avg _i the average amount of bandwidth used in the performance statistics interval for each admitted non-UGS traffic flow for the wireless communication system
  • R minJ is the minimum reserved bandwidth of the SFi, and this data should be consistent with the corresponding value in the QoS scheduling module in the service admission control system;
  • Onowj a large cumulative bandwidth reservation rate for the SFi
  • P now _i Accumulates the bandwidth reservation rate for this SFi.
  • the global data maintained in the wireless communication system includes:
  • N represents the number of non-UGS service flows accepted in the wireless communication system
  • the saturation state set in the wireless communication system is divided into two levels, slightly saturated and severely saturated.
  • w represents a mild saturation threshold
  • Kalam represents a severe saturation threshold
  • Opara maintains a mode triplet for the bandwidth ⁇ a low , a hi gh , Onow.avg ⁇ ;
  • Ppara is a small-bandwidth reserved mode triplet ⁇ , Phigh , ⁇ now— avg i,
  • a low and a high are the lower limit and upper limit of the large bandwidth retention rate, respectively;
  • Plow and Phigh are the lower limit and upper limit of the small amplitude bandwidth retention rate, respectively;
  • the bandwidth of the UGS type is R req _ ugs ;
  • the minimum reserved bandwidth of each non-UGS service flow i requested by the MS is R req _ n . nU g S — min i and maximum maintenance bandwidth A req_nonugs_max .
  • FIG. 2 is a flow chart showing an application example of the present invention, including the following steps:
  • Step 201 After receiving the service admission request sent by the terminal, the wireless communication system calculates a minimum reserved total bandwidth (R req _ min ) for the requested service flow according to the QoS parameter carried in the service admission request.
  • Step 202 Determine whether R req _ min is greater than or equal to the remaining bandwidth (R free ). If yes, reject the service acceptance request of the terminal; otherwise, perform step 203.
  • Step 203 The maximum maintenance bandwidth of each non-UGS service flow i to be admitted is initially compressed by the current average accumulated bandwidth reservation rate, and R max — i in SF_DATA[i] is updated.
  • the specific method is as follows: the maximum maintenance band width after the initial compression
  • Step 204 Estimate the maximum bandwidth usage R n of the system after the service flow of the terminal is accepted.
  • w the specific method is ⁇ Rnow - Rreserved + ⁇ Rreq_compressed [ ⁇ ] + Rreq_ugs .
  • Step 205 Determine whether it is greater than a slight saturation threshold. w , if greater than, step 206 is performed; otherwise, step 213 is performed.
  • Step 206 Determine whether R is less than the severe saturation threshold K alarm . If it is less, perform step 207; otherwise, perform step 208.
  • Step 207 Set the bandwidth usage rate of each non-UGS service flow to be received to 100%, check whether the maximum maintenance bandwidth of each SFi is equal to the minimum guaranteed bandwidth, and if the ⁇ is not equal, according to the bandwidth usage rate for each
  • the maximum maintenance bandwidth of the non-UGS service flow admitted and to be admitted is compressed in the bandwidth large retention mode, and after execution, the process proceeds to step 210.
  • the specific method of largely retaining mode compression is as follows:
  • B-Reserve- Ratio[i] is used to perform bandwidth compression on the non-UGS service flows that have been accepted and to be accepted.
  • Step 208 Determine R n . Whether w is greater than the remaining bandwidth of the system (R free ), if yes, step 211 is performed; otherwise, step 209 is performed.
  • Step 209 Set the bandwidth usage rate of each non-UGS service flow to be received to 100%, check whether the maximum maintenance bandwidth of each SFi is equal to the minimum guaranteed bandwidth, and if not equal, accept each according to the bandwidth usage rate. And the maximum maintenance bandwidth of the non-UGS service flow to be admitted is subjected to bandwidth small-amplification mode compression, and after execution, the process proceeds to step 210.
  • the S-Reserve- Ratio[i] is used to perform bandwidth compression on the non-UGS service flows that have been accepted and to be accepted.
  • Step 210 Calculate whether the maximum bandwidth usage of the bandwidth is greater than the remaining bandwidth of the system (R free ) if the service flow of the terminal is received after the bandwidth compression is performed, and if yes, step 211 is performed. Otherwise, go to step 212.
  • Step 211 Accept the service flow that the terminal requests to accept by using the minimum reserved bandwidth of the to-be-accepted service, and save the minimum reserved bandwidth to the corresponding array SF_DATA. After the execution, go to step 214.
  • Step 212 Accept the non-UGS service flow to be accepted by using the compressed maximum maintenance bandwidth of the to-be-accepted service, and save the compressed maximum maintenance bandwidth to the corresponding array SF_DATA, and then go to step 214.
  • Step 213 Accept the non-UGS service flow to be accepted by using the maximum sustained bandwidth after the initial compression, and save the maximum sustained bandwidth after the initial compression to the corresponding array SF_DATA, and then go to step 214 after the execution.
  • Step 214 Update and save the remaining bandwidth of the system and the number of non-UGS service flows accepted. N
  • FIG. 3 shows a service admission control system of the present invention, including: an admission control module, a performance statistics module, and a QoS scheduling module.
  • the admission control module is configured to calculate, after receiving the service admission request sent by the terminal, the maximum bandwidth usage R n of the system after accepting the service flow of the terminal. w , judge the R n . Whether w is greater than the saturation threshold. If it is greater, the maximum maintenance bandwidth of the non-UGS service flow of the accepted and/or terminal is compressed. Otherwise, the service acceptance request of the terminal is rejected; after compression, if R n . If w is smaller than the remaining bandwidth of the system, the non-UGS service flow of the terminal is accepted by the terminal with the maximum guaranteed bandwidth requested or compressed.
  • the admission control module is also used to calculate R n .
  • the compressed bandwidth parameter is passed to the QoS scheduling module.
  • R r maximum sustainable bandwidth of the primary compression eq_compressed [i] Rreq_nonugs_min_i + ( Rreq_nonugs- max- i- Rreq_nonugs- min- i) ⁇ 3 ⁇ 4ow_avg Pnow_avg).
  • B-Reserve- Ratio[i] is used to perform bandwidth compression on the non-UGS service flows that have been accepted and to be accepted.
  • R n is judged. Whether w is greater than the remaining bandwidth of the system (R free ). If it is greater than the remaining bandwidth, the minimum reserved bandwidth of the service to be admitted is used to accept the service flow that the terminal requests to accept; if it is less than the remaining bandwidth, each non-UGS service to be accepted is received.
  • the wide usage rate is set to 100%, and it is checked whether the maximum maintenance bandwidth of each SFi is equal to the minimum guaranteed bandwidth. If not equal, the bandwidth is used for the maximum maintenance bandwidth of each non-UGS service flow that is admitted and to be admitted according to the bandwidth usage rate. Small amplitude retention mode compression.
  • the S-Reserve- Ratio[i] is used to perform bandwidth compression on the non-UGS service flows that have been accepted and to be accepted.
  • a performance statistics module configured to provide system runtime statistical parameters required by the admission control module, For example, the average bandwidth usage of each accepted non-UGS service flow in the performance statistics interval is counted; the array SF_DATA[i] is maintained for each non-UGS service flow (SFi).
  • the QoS scheduling module is configured to adopt the admission control module to receive the bandwidth of the data stream, and perform transmission scheduling on the data stream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种业务接纳控制方法及系统 技术领域
本发明涉及无线通信系统, 具体地说, 涉及一种业务接纳控制方法及 系统。 背景技术
随着无线通信技术的发展, 人们对宽带无线 /移动通信领域中的多媒体 通信的需求日益强烈。 但是由于无线传输的不稳定性以及无线链路带宽资 源的有限性, 因此既需要对多媒体业务的质量提出保证, 又要有效的利用 带宽资源来为更多的用户服务。 802.16e协议中定义的无线通信系统根据不 同业务的特征分别提供了几种不同的服务类别, 不同的服务类别又对应设 置了不同的服务质量(QoS, Quality of Service )保证。
现有的无线通信系统中的接纳控制的目的就是在满足每个已接纳业务 的 QoS基础上, 尽量使无线通信系统接纳更多的业务并实现系统资源的最 有效利用, 具体地说就是带宽资源的最有效利用。 QoS —般包括若干个参 数, 对于接纳控制来说, QoS 参数中的带宽参数一般由最小保留带宽和最 大维持带宽组成, 最小保留带宽是指无线通信系统必须要为某请求的业务 流保留的最小带宽, 最大维持带宽是指无线通信系统为某请求的业务流可 以提供的最大带宽, 但并不对此带宽做出任何保证。
目前已有较多的用于无线通信系统的接纳控制机制, 以及专注于 802.16e协议的无线通信系统的接纳控制机制被提出。 这些机制大体上分为 两种: 基于经验的机制和基于实时统计的机制。
基于经验的机制的主要思想为: 根据理论计算或者系统运行的统计数 据得出几个在无线通信系统运行中固定不变的参数, 用这些参数与新来请 求的业务流中的 QoS参数配合进行某种运算, 然后根据运算结果来判断该 无线通信系统是否可以接纳该新来请求的业务流。
具体来说, 至少拥有下列特征之一: 无线通信系统的接纳控制记录当 前系统资源 (带宽资源) 的剩余量; 无线通信系统对新来的业务流根据其 种类的不同分别进行基于经验和 /或统计数据的带宽使用估算; 用计算出来 的带宽与某个经验门限值进行比较, 根据结果来决定无线通信系统中的剩 余系统资源是否可以满足接纳后的 QoS要求。 如果选择接纳, 则将无线通 信系统中的剩余系统资源量减去估算出来的带宽使用量, 然后无线通信系 统以新的剩余系统资源量为基础继续执行接纳控制机制。
基于实时统计的机制与基于经验的机制思想大致相同, 区别仅在于无 线通信系统将业务流的带宽估算的参数以及门限参数由固定值改为实时计 算。
综上所述, 无线通信系统中现有的接纳控制机制的共同点为: 改变请 求接纳的业务的带宽估算以及某些门限值来实现尽量多的接入业务, 而为 已接纳的业务分配的带宽是不变的, 剩余带宽在接纳控制中也是保持不变 的, 也就是说在接纳控制中认为已接纳的业务已占用了接纳时为其估算出 的带宽使用量, 因而这些带宽不能用于新业务的接纳。 而实际上, 由于无 线链路的质量不稳定, 某些业务流可能仅仅使用了为其估算出的带宽的一 部分, 而且, 在资源紧张时如果按照估算带宽为业务提供带宽, 很可能造 成资源的浪费, 由此可见, 现有的接纳控制方法无法有效地使用系统资源。 发明内容
本发明要解决的技术问题是提供一种业务的接纳控制方法及系统, 实 现合理有效地使用无线通信系统中的带宽资源。
为解决上述技术问题, 本发明的一种业务接纳控制方法, 包括: 无线通信系统接收到终端发送的业务接纳请求后, 计算接纳所述终端 的业务流后, 系统的最大带宽使用量 Rnw, 在判断所述 Rnw大于预设的饱 和门限时, 所述无线通信系统对已接纳的和 /或所述终端的非主动授予业务 ( UGS ) 业务流的最大维持带宽进行压缩; 压缩后, 若 Rnw小于系统的剩 余带宽, 则采用终端请求的或压缩后的最大维持带宽接纳所述终端的非 UGS业务流。
所述对已接纳的和 /或所述终端的非 UGS 业务流的最大维持带宽进行 压缩的方法为: 压缩后的最大维持带宽等于: 压缩前的最大维持带宽 Rmax— i 和最小保留带宽 Rmin— i的差值与最大维持带宽保留率相乘后,再与最小保留 带宽 Rmin— i相加。
所述最大维持带宽保留率的计算方法为: 最大维持带宽保留率等于: 保留率上限和保留率下限的差值与 PERCENT[i] /PERCENT— SUM相乘后, 再与保留率下限相加。
所述带宽使用率 PERCENT[i] =带宽平均使用量 Ravg— i I RmaxJ; 其中, Ravg— i为无线通信系统为每个已接纳的非 UGS业务流 SFi统计的在性能统计 间隔内的带宽平均使用量, Rmax— i为非 UGS业务流 SFi的最大维持带宽; 所述带宽总利用率 PERCENT— SUM =∑PERCENT[i]。
在计算所述 Rnw之前, 该方法还包括: 对所述终端的每个非 UGS业务 流的最大维持带宽进行初次压缩, 初次压缩的方法为:
初次压缩后的最大维持带宽等于: Rrcq_nnugs i和 Rrcq_nnugs i的差值 与初次压缩的带宽保留率相乘后, 再与 Rrcq_nnugs i相加;
其中, 初次压缩的带宽保留率= ( 1/已接纳的非 UGS业务流的个数 N ) *∑累计带宽保留率;所述累计带宽保留率在进行最大维持带宽压缩后更新, 更新后的累计带宽保留率 =原累计带宽保留率 *最大维持带宽保留率;
无线系统初始化时初次压缩的带宽保留率为 1。
所述饱和门限包括: 轻度饱和门限 。w和严重饱和门限 Kalam; 所述在判断 Rnw大于饱和门限时, 对已接纳的和 /或终端的非 UGS业 务流的最大维持带宽进行压缩, 具体为:
若所述 Rnw大于所述 w小于所述 Kalam,则所述无线通信系统对已接 纳的和 /或所述终端的非 UGS 业务流的最大维持带宽进行带宽大幅度保留 模式的压缩; 若所述 Rnw大于所述^^, 则所述无线通信系统对已接纳的 和 /或所述终端的非 UGS 业务流的最大维持带宽进行带宽小幅度保留模式 的压缩。
所述带宽大幅度保留模式的压缩的方法为: 压缩后的最大维持带宽等 于: Rmax— i和 Rmin— i的差值与 B— Reserve— Ratio [i]相乘后, 再与 Rmin— i相加; 所述带宽小幅度保留模式的压缩的方法为: 压缩后的最大维持带宽等 于: Rmax— i和 Rmin— i的差值与 S— Reserve— Ratio [i]相乘后, 再与 Rmin— i相加; 所述带宽大幅度保留模式的带宽保留率 B— Reserve— Ratio[i]等于: ahigh 和(¾。w的差值与 PERCENT[i] I PERCENT SUM相乘后, 再与(¾。w相加; 所述带宽小幅度保留模式的带宽保留率 S— Reserve— Ratio[i]等于: phigh 和 plQW的差值与 PERCENT[i] I PERCENT SUM相乘后, 再与 plQW相加; 其中 , Plow <alow < 1 ,
Figure imgf000006_0001
< 1 °
采用所述带宽大幅度保留模式的压缩和带宽小幅度保留模式的压缩 时, 初次压缩的带宽保留率=大幅度平均累计带宽保留率 On。w avg *小幅度平 均累计带宽保留率 pn wavg;
其中, On w— avg = ( 1/已接纳的非 UGS业务流的个数 N ) *∑大幅度累计 带宽保留率 On w— i; 所述 n w—i在进行带宽大幅度保留模式的压缩后更新, 更新的 Onow— i=原 Onow_i * B Reserve Ratio [i];
Pnow_avg = ( 1 N ) *∑小幅度累计带宽保留率 β i; 所述 Pn i在进行带 宽小 幅度保留模式的压缩后更新, 更新的 pn i=原 pn i*
S— Reserve— Ratio [i]; 无线通信系统初始时, On。w avg = Pnow_avg = 1。
该方法进一步包括:
压缩后, 若所述 Rnw大于系统的剩余带宽, 且所述终端的业务流的最 小保留总带宽小于系统的剩余带宽, 则所述无线通信系统采用最小保留带 宽对所述终端的业务流进行接纳。
该方法进一步包括:
压缩后, 若所述 Rnw小于所述轻度饱和门限 。w, 且所述终端的业务 流的最小保留总带宽小于系统的剩余带宽, 则所述无线通信系统采用最小 保留带宽对所述终端的业务流进行接纳。
本发明还提供了一种业务接纳控制系统, 包括:
接纳控制模块, 用于在接收到终端发送的业务接纳请求后, 计算接纳 所述终端的业务流后, 系统的最大带宽使用量 Rnw, 判断所述 Rnw是否大 于预设的饱和门限, 若大于, 则对已接纳的和 /或所述终端的非主动授予业 务 UGS业务流的最大维持带宽进行压缩; 压缩后, 若 Rnw小于系统的剩余 带宽, 则采用终端请求的或压缩后的最大维持带宽接纳所述终端的非 UGS 业务流。
所述接纳控制模块对已接纳的和 /或所述终端的非 UGS 业务流的最大 维持带宽进行压缩的方法为: 压缩后的最大维持带宽等于: 压缩前的最大 维持带宽 Rmax— i和最小保留带宽 Rmin— i的差值与最大维持带宽保留率相乘 后, 再与最小保留带宽 Rmin— i相加。
所述接纳控制模块计算最大维持带宽保留率的方法为: 最大维持带宽 保留率等于: 保留率上限和保留率下限的差值与 PERCENT[i] /PERCENT— SUM相乘后, 再与保留率下限相加。
综上所述, 本发明将接纳控制机制与 QoS调度以及性能统计作为一个 整体进行考虑, 将系统资源的实际使用情况通过性能统计直接反映到接纳 控制处, 基于带宽使用率, 在满足 QoS的情况下对业务的带宽进行适度的 压缩, 以实现接纳更多的业务, 本发明能够实时调整系统的带宽资源, 可 以根据业务流实时的带宽利用率调整系统资源的使用, 避免了将业务的带 宽使用量定死的缺陷, 对业务的接纳具有更大的灵活性, 针对不同业务流 的带宽利用率, 分别对其带宽使用情况进行调整, 能够使系统资源得到更 加有效的利用。 附图说明
图 1为本发明业务接纳控制方法的流程图;
图 2为本发明应用示例的流程图;
图 3为本发明业务接纳控制系统的架构图。 具体实施方式
考虑到在 802.16e协议中定义的主动 4受予业务( UGS, Unsolicited grant service ) 业务流的最小保留带宽与最大维持带宽相等, 而非 UGS业务的最 小保留带宽与最大维持带宽之间存在一定带宽差, 对于非 UGS业务, 在接 纳控制时, 按照最大维持带宽为其分配资源, 而非 UGS业务通常未能完全 使用其所占用的全部带宽, 仅使用其中的一部分, 因此, 本发明通过对非 UGS业务流的最大维持带宽进行压缩, 以实现尽量多的接入业务。 若进行 带宽压缩后, 仍无法接纳业务流, 则使用终端为业务流请求的最小保留带 宽接纳业务, 以尽量满足终端的业务接纳请求, 并满足业务 QoS对带宽的 基本要求。
下面结合附图对本发明的具体实施方式进行说明。
图 1所示为本发明的业务接纳控制方法, 包括如下步骤:
步骤 101 : 无线通信系统接收到终端发送的业务接纳请求后,根据请求 接纳的业务流的 QoS参数, 计算待接纳业务所需的最小保留总带宽。 最小保留总带宽中包含 UGS业务与非 UGS业务的最小保留带宽。
步骤 102:无线通信系统判断待接纳业务的最小保留总带宽是否大于或 等于系统的剩余带宽, 如果是, 则拒绝终端的业务接纳请求; 否则, 执行 步骤 103。
步骤 103: 对待接纳的非 UGS业务流的最大维持带宽进行初次压缩。 系统初始化时, 初次压缩的带宽保留率设置为 1 , 即不压缩, 在对系统 中已接纳业务的最大维持带宽进行压缩后, 相应地修改初次压缩的带宽保 留率。 也就是说, 若系统未对已接纳业务进行过带宽压缩, 则不对待接纳 的非 UGS业务流进行初次压缩; 否则, 按照修改后的初次压缩的带宽保留 率对待接纳非 UGS业务流进行初次压缩。
初次压缩的方法为: 初次压缩后的最大维持带宽 =终端请求的最小保留
^ Rreq_nonugs— min— i+ ( 冬^ 求的取大 ^^留^ ^兔 Rreq_nonugs_max_i Rreq_nonugs_min_i )
*初次压缩的带宽保留率; 其中, 初次压缩的带宽保留率 = ( 1/已接纳的非
UGS业务流的个数 N ) *∑累计带宽保留率, "*" 表示相乘; 所述累计带宽 保留率在进行最大维持带宽压缩后更新, 更新后的累计带宽保留率=原累计 带宽保留率 *最大维持带宽保留率; 无线系统初始化时初次压缩的带宽保留 率为 1。 初次压缩的作用是保证待接纳的非 UGS业务与系统中已接纳并被 压缩带宽的非 UGS业务之间的公平性。
步骤 104: 估算若接纳终端的业务流, 系统的最大带宽使用量, 判断该 最大带宽使用量是否大于系统中设置的饱和状态门限, 如果大于, 则执行 步骤 105; 否则, 执行步骤 110。
步骤 105: 统计每个已接纳的非 UGS业务流在性能统计间隔内的带宽 平均使用量, 计算其带宽使用率, 并将每个待接纳的非 UGS业务流的带宽 使用率设为 100%。
性能统计间隔可根据系统需要进行设定。 步骤 106: 根据带宽使用率对每个已接纳和待接纳的非 UGS业务流的 最大维持带宽进行压缩, 对于任一非 UGS业务流其带宽保留率与带宽使用 率成正比。
压缩的方法为: 压缩后的最大维持带宽=最小保留带宽 Rmin— (压缩前 的最大维持带宽 Rmax— i-Rmm— i ) *最大维持带宽保留率。 最大维持带宽保留率 的计算方法为: 最大维持带宽保留率 =保留率下限 + (保留率上限-保留率下 限) * (带宽使用率 PERCENT[i] / 带宽总利用率 PERCENT— SUM )带宽使 用率 PERCENT[i]=带宽平均使用量 Ravg— i I RmaxJ; 带宽总利用率 PERCENT— SUM=∑PERCENT[i]。
步骤 107: 计算带宽压缩后若接纳终端的业务流, 系统的最大带宽使用 量, 判断带宽压缩后的最大带宽使用量是否大于系统的剩余带宽, 如果是, 则执行步骤 108; 否则, 执行步骤 109。
步骤 108:采用待接纳业务的最小保留带宽对终端请求接纳的业务流进 行接纳, 执行完后转到步骤 111。
步骤 109: 对于非 UGS业务流采用压缩后的最大维持带宽进行接纳, 执行完后转到步骤 111。
步骤 110: 采用初次压缩后的最大维持带宽对待接纳的非 UGS业务流 进行接纳, 执行完后转到步骤 111。
步骤 111 :无线通信系统对接纳的非 UGS业务流的带宽参数进行保存, 采用其带宽参数对其进行调度, 并更新系统的剩余带宽, 结束。
下面结合应用示例对本发明的业务接纳控制方法进一步详细说明。 首 先, 对应用示例中使用的参数进行说明。
1、 Rfree表示无线通信系统的剩余带宽, Rrcserved表示已占用的带宽, 总 带免 Rtotal =Rreserved + Rfree 。
2、 无线通信系统为每个非 UGS业务流 i ( SFi )维护数组 SF— DATA[i] , 该 SF_DATA[i]由五元组{ RavgJ , Rmax— i , Rmin— i, ¾ow_i , Pnow i }且¾, -^ 中:
Ravg_i: 为无线通信系统为每个已接纳的非 UGS 业务流统计的在性能 统计间隔内的带宽平均使用量;
RmaxJ: 为该 SFi的最大维持带宽, 此数据应与业务接纳控制系统中的
QoS调度模块中的对应值保持一致;
RminJ: 为该 SFi的最小保留带宽, 此数据应与业务接纳控制系统中的 QoS调度模块中的对应值保持一致;
Onowj: 为该 SFi大幅度累计带宽保留率;
Pnow_i: 为该 SFi小幅度累计带宽保留率。
3、 无线通信系统中维护的全局数据包括:
( 1 ) N表示无线通信系统中已接纳的非 UGS业务流的个数;
( 2 )无线通信系统中设置的饱和状态分为两个等级, 轻度饱和及严重 饱和, 。w表示轻度饱和门限, Kalam表示严重饱和门限;
( 3 ) 带宽保留率分为大幅度和小幅度两种, 其中:
Opara为带宽大幅度保留模式三元组 { alow , ahigh , Onow.avg };
Ppara为带宽小幅度保留模式三元组 { βΐ , Phigh , β now— avg i,
alow和 ahigh分别为大幅度带宽保留率下限和上限;
Plow和 Phigh分别为小幅度带宽保留率下限和上限;
需要保证 p1()W <aiow < 1 , Phigh<ahigh < 1;
On。w— avg为大幅度平均累计带宽保留率, On。w— avg = ( 1 N )
Pn。w— avg为小幅度平均累计带宽保留率, Pn。w— avg = ( 1/N ) *∑Pnow_i; 无线通信系统初始时 On。w avg = Pnow_avg = 1。
需要说明的是除了 N、 On。w avg和 β — avg外, 上面所述的其他参数都是 无线通信系统预先设定的固定值。 4、 其它符号说明:
MS申请的最小保留总带宽 Rreq_min;
MS申请的最小保留总带宽中, UGS类型的带宽为 Rreq_ugs
MS申请的每个非 UGS服务流 i的最小保留带宽为 Rreq_nnUgSmin i和最 大维持带宽 A req_nonugs_max 。
图 2所示为本发明应用示例的流程图, 包括如下步骤:
步骤 201 : 无线通信系统接收到终端发送的业务接纳请求后,根据业务 接纳请求中携带的 QoS参数为请求的业务流计算最小保留总带宽( Rreq_min )。
步骤 202 : 判断 Rreq_min是否大于或等于剩余带宽 (Rfree ) , 如是, 则拒 绝终端的业务接纳请求; 否则, 执行步骤 203。
步骤 203: 对待接纳的每个非 UGS业务流 i的最大维持带宽采用当前 的平均累计带宽保留率进行初次压缩, 并更新 SF_DATA[i]中的 Rmax— i。
具 体 方 法 如 下 : 初 次 压 缩 后 的 最 大 维 持 带 宽
Rreq_compressed[i]— Rreq_nonugs— min— i + ( Rreq_nonugs— max— i — Rreq_nonugs— min— i ) ( ¾ow_avg
Fnnooww_ aavvgg ,
步骤 204 : 估算接纳终端的业务流后系统的最大带宽使用量 Rnw, 具体 方法为 · Rnow— Rreserved +∑Rreq_compressed [ ί] + Rreq_ugs 。
步骤 205 '. 判断 是否大于轻度饱和门限 。w, 如大于, 则执行步骤 206 ; 否则, 执行步骤 213。
步骤 206 : 判断 R 是否小于严重饱和门限 Kalarm , 如小于, 则执行步 骤 207 ; 否则, 执行步骤 208。
步骤 207 : 将每个待接纳的非 UGS业务流的带宽使用率设为 100% ,检 查每个 SFi的最大维持带宽是否等于最小保证带宽,如杲不相等,则根据带 宽使用率对每个已接纳和待接纳的非 UGS业务流的最大维持带宽进行带宽 大幅度保留模式的压缩, 执行完后转到步骤 210。 大幅度保留模式压缩的具体方法如下:
从性能统计模块获取每个已接纳非 UGS业务流 SFi的带宽平均使用量 Ravg_i , 并更新 SF— DATA[i]中的 Ravg— i , 同时获取已接纳非 UGS业务流 SFi 的 Rmax— i , 计算每个 SFi的带宽使用率 PERCENT[i] =Ravg— i / Rmax— i; 待接纳 的非 UGS业务流的带宽使用率 PERCENT[i]为 100%;
累加已接纳和待接纳的非 UGS业务流的带宽使用率, 计算带宽总利用 率 PERCENT— SUM =∑PERCENT[i] ;
计算带宽大幅度保留模式的带宽保留率 B— Reserve— Ratio[i]=a1()W +( ahigh - aiow ) * ( PERCENT[i] I PERCENT— SUM );
采用 B— Reserve— Ratio[i]对已接纳和待接纳的非 UGS业务流进行带宽压 缩, 压缩后的最大维持带宽 =Rmin— ( Rmax_i-Rmin_i ) * B— Reserve— Ratio[i] ; 更新 SFi的大幅度保留模式的累计带宽保留率,更新的 On^— ;=原 OnowJ *
B— Reserve— Ratio[i] ;计算并更新全局的大幅度平均累计带宽保留率, On。wavg
= ( 1 N ) *∑On0W— i。
步骤 208: 判断 Rnw是否大于系统的剩余带宽 (Rfree ), 如果是, 则执 行步骤 211 ; 否则, 执行步骤 209。
步骤 209: 将每个待接纳的非 UGS业务流的带宽使用率设为 100%,检 查每个 SFi的最大维持带宽是否等于最小保证带宽,如果不相等,则根据带 宽使用率对每个已接纳和待接纳的非 UGS业务流的最大维持带宽进行带宽 小幅度保留模式压缩, 执行完后转到步骤 210。
小幅度保留模式压缩的具体方法如下:
从性能统计模块获取每个已接纳非 UGS业务流 SFi的带宽平均使用量 Ravg_i , 并更新 SF— DATA[i]中的 Ravg— i , 同时获取已接纳非 UGS业务流 SFi 的 Rmax— i , 计算每个 SFi的带宽使用率 PERCENT[i] =Ravg— i / Rmax— i; 待接纳 的非 UGS业务流的带宽使用率 PERCENT[i]为 100%; 累加已接纳和待接纳的非 UGS 业务流的带宽使用率, 计算总利用率 PERCENT— SUM =∑PERCENT[i] ;
计算带宽小幅度保留模式的带宽保留率 S— Reserve— Ratio[i]= p w +( phigh -Plow ) * ( PERCENT[i] I PERCENT— SUM );
采用 S— Reserve— Ratio[i]对已接纳和待接纳的非 UGS业务流进行带宽压 缩, 压缩后的最大维持带宽 =Rmin— ( Rmax_i-Rmin_i ) * S— Reserve— Ratio[i] ; 更新 SF;的小幅度保留模式的累计带宽保留率,更新的 β ;=原 pnowJ * S— Reserve— Ratio[i] ; 计算并更新全局的小幅度平均累计带宽保留率, pn wavg = (1/Ν)*∑β i
步骤 210: 计算在进行带宽压缩后若接纳终端的业务流, 系统的最大带 宽使用量, 判断带宽压缩后的最大带宽使用量是否大于系统的剩余带宽 ( Rfree ), 如果是, 则执行步骤 211 ; 否则, 执行步骤 212
步骤 211 :采用待接纳业务的最小保留带宽对终端请求接纳的业务流进 行接纳, 并将该最小保留带宽保存到对应的数组 SF— DATA中, 执行完后转 到步骤 214
步骤 212:采用待接纳业务的压缩后的最大维持带宽对待接纳的非 UGS 业务流进行接纳, 并将其压缩后的最大维持带宽保存到对应的数组 SF— DATA中, 执行完后转到步骤 214
步骤 213 : 采用初次压缩后的最大维持带宽对待接纳的非 UGS业务流 进行接纳, 并将初次压缩后的最大维持带宽保存到对应的数组 SF— DATA 中, 执行完后转到步骤 214
步骤 214: 更新并保存系统的剩余带宽以及已接纳的非 UGS业务流的 个数 N
图 3 所示为本发明的业务接纳控制系统, 包括: 接纳控制模块、 性能 统计模块和 QoS调度模块。 接纳控制模块, 用于在接收到终端发送的业务接纳请求后, 计算若接 纳终端的业务流后, 系统的最大带宽使用量 Rnw, 判断该 Rnw是否大于饱 和门限, 若大于, 则对已接纳的和 /或终端的非 UGS业务流的最大维持带宽 进行压缩, 否则, 拒绝终端的业务接纳请求; 压缩后, 若 Rnw小于系统的 剩余带宽, 则采用终端请求的或压缩后的最大维持带宽接纳终端的非 UGS 业务流。
接纳控制模块对已接纳的和 /或终端的非 UGS 业务流的最大维持带宽 进行压缩的方法为: 压缩后的最大维持带宽=最小保留带宽 Rmin— i + (压缩前 的最大维持带宽 Rmax— i -
Figure imgf000015_0001
* 最大维持带宽保留率。
其中, 最大维持带宽保留率的计算方法为: 最大维持带宽保留率 =保留 率下限 + (保留率上限-保留率下限) * (带宽使用率 PERCENT[i] I 带宽总 利用率 PERCENT— SUM )。
另外, 接纳控制模块还用于, 在计算 Rnw之前, 根据业务接纳请求中 携带的 QoS参数为请求的业务流计算最小保留总带宽 ( Rreq_min );判断 Rrcq_min 是否大于或等于剩余带宽 (Rfree ), 如是, 则拒绝终端的业务接纳请求; 否 则, 对待接纳的每个非 UGS业务流 i的最大维持带宽采用当前的平均累计 带宽保留率进行初次压缩, 更新 SF— DATA[i]中的 Rmax— i, 并将初次压缩后 的带宽参数传给 QoS调度模块。
初次压缩的具体方法 ¾口下:
初 次压 缩 后 的 最 大 维持 带 宽 Rreq_compressed[i]=Rreq_nonugs_min_i+ ( Rreq_nonugs— max— i― Rreq_nonugs— min— i ) ^ ¾ow_avg Pnow_avg )。
计算接纳终端的业务流后系统的最大带宽使用量 Rnw, 具体方法为:
Figure imgf000015_0002
+ ∑Rreq_compressed[i] + Rreq_Ugs; 判断 Rnw是否大于轻度饱和门限 Klow, 如大于轻度饱和门限 。w, 则判断 Rnw是否小于严重饱和门限 Kalam, 如小于严重饱和门限 Kalam, 则将每个待接纳的非 UGS业务流的带宽使用 率设为 100%, 检查每个 SFi的最大维持带宽是否等于最小保证带宽, 如果 不相等, 则根据带宽使用率对每个已接纳和待接纳的非 UGS业务流的最大 维持带宽进行带宽大幅度保留模式的压缩。
大幅度保留模式压缩的具体方法如下: 从性能统计模块获取每个已接 纳非 UGS 业务流 SFi 的带宽平均使用量 Ravg— i, 并更新 SF— DATA[i]中的 Ravg— i, 同时获取已接纳非 UGS业务流 SFi的 Rmax—i, 计算每个 SFi的带宽 使用率 PERCENT[i] =RavgJ / RmaxJ; 待接纳的非 UGS业务流的带宽使用率 PERCENT[i]为 100%;
累加已接纳和待接纳的非 UGS业务流的带宽使用率, 计算带宽总利用
PERCENT— SUM =∑PERCENT[i] ;
计算带宽大幅度保留模式的带宽保留率 B— Reserve— Ratio[i]=a1()W +( ahigh - aiow ) * ( PERCENT[i] I PERCENT— SUM );
采用 B— Reserve— Ratio[i]对已接纳和待接纳的非 UGS业务流进行带宽压 缩, 压缩后的最大维持带宽 =Rmin— ( Rmax_i-Rmin_i ) * B— Reserve— Ratio[i] ; 更新 SFi的大幅度保留模式的累计带宽保留率,更新的 On^— ;=原 OnowJ *
B— Reserve— Ratio[i] ;计算并更新全局的大幅度平均累计带宽保留率, On。wavg
= ( 1 N ) *∑On0W— i。
计算在进行带宽压缩后若接纳终端的业务流, 系统的最大带宽使用量, 判断带宽压缩后的最大带宽使用量是否大于系统的剩余带宽 (Rfree ), 如果 是, 则采用待接纳业务的最小保留带宽对终端请求接纳的业务流进行接纳; 否则, 采用待接纳业务的压缩后的最大维持带宽对待接纳的非 UGS业务流 进行接纳;
如果大于严重饱和门限, 则判断 Rnw是否大于系统的剩余带宽( Rfree ), 如果大于剩余带宽, 则采用待接纳业务的最小保留带宽对终端请求接纳的 业务流进行接纳; 如果小于剩余带宽, 将每个待接纳的非 UGS业务流的带 宽使用率设为 100%,检查每个 SFi的最大维持带宽是否等于最小保证带宽, 如果不相等, 则根据带宽使用率对每个已接纳和待接纳的非 UGS业务流的 最大维持带宽进行带宽小幅度保留模式压缩。
小幅度保留模式压缩的具体方法如下:
从性能统计模块获取每个已接纳非 UGS业务流 SFi的带宽平均使用量
Ravg_i , 并更新 SF— DATA[i]中的 Ravg— i , 同时获取已接纳非 UGS业务流 SFi 的 Rmax— i , 计算每个 SFi的带宽使用率 PERCENT[i] =Ravg— i / Rmax— i; 待接纳 的非 UGS业务流的带宽使用率 PERCENT[i]为 100%;
累加已接纳和待接纳的非 UGS 业务流的带宽使用率, 计算总利用率 PERCENT— SUM =∑PERCENT[i];
计算带宽小幅度保留模式的带宽保留率 S— Reserve— Ratio[i]= p w +( phigh -Plow ) * ( PERCENT[i] I PERCENT— SUM );
采用 S— Reserve— Ratio[i]对已接纳和待接纳的非 UGS业务流进行带宽压 缩, 压缩后的最大维持带宽 =Rmin— ( Rmax_i-Rmin_i ) * S— Reserve— Ratio[i] ; 更新 SFi的小幅度保留模式的累计带宽保留率,更新的 β ;=原 pnow_i *
S— Reserve— Ratio[i] ; 计算并更新全局的小幅度平均累计带宽保留率, pn wavg = ( 1 N ) *∑β i
计算在进行带宽压缩后若接纳终端的业务流, 系统的最大带宽使用量, 判断带宽压缩后的最大带宽使用量是否大于系统的剩余带宽 (Rfree ), 如果 是, 则采用待接纳业务的最小保留带宽对终端请求接纳的业务流进行接纳; 否则, 采用待接纳业务的压缩后的最大维持带宽对待接纳的非 UGS业务流 进行接纳;
如小于轻度饱和门限 。w, 采用初次压缩后的最大维持带宽对待接纳 的非 UGS业务流进行接纳。
性能统计模块, 用于提供接纳控制模块需要的系统运行时统计参数, 如统计每个已接纳的非 UGS业务流在性能统计间隔内的带宽平均使用量; 为每个非 UGS业务流( SFi ) 维护数组 SF— DATA[i]等。
QoS 调度模块, 用于采用接纳控制模块接纳数据流的带宽, 对数据流 进行传输调度。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1、 一种业务接纳控制方法, 其特征在于, 包括:
无线通信系统接收到终端发送的业务接纳请求后, 计算接纳所述终端 的业务流后, 系统的最大带宽使用量 Rnw, 在判断所述 Rnw大于预设的饱 和门限时, 所述无线通信系统对已接纳的和 /或所述终端的非主动授予业务 ( UGS ) 业务流的最大维持带宽进行压缩; 压缩后, 若 Rnw小于系统的剩 余带宽, 则采用终端请求的或压缩后的最大维持带宽接纳所述终端的非 UGS业务流。
2、 如权利要求 1所述的方法, 其特征在于, 所述对已接纳的和 /或所述 终端的非 UGS业务流的最大维持带宽进行压缩的方法为: 压缩后的最大维 持带宽等于: 压缩前的最大维持带宽 Rmax— i和最小保留带宽 Rmin— i的差值与 最大维持带宽保留率相乘后, 再与最小保留带宽 Rmin— i相加。
3、 如权利要求 2所述的方法, 其特征在于, 所述最大维持带宽保留率 的计算方法为: 最大维持带宽保留率等于: 保留率上限和保留率下限的差 值与 PERCENT[i] /PERCENT SUM相乘后, 再与保留率下限相加。
4、 如权利要求 3所述的方法, 其特征在于,
所述带宽使用率 PERCENT[i] =带宽平均使用量 Ravg— i I RmaxJ; 其中, Ravg— i为无线通信系统为每个已接纳的非 UGS业务流 SFi统计的在性能统计 间隔内的带宽平均使用量, Rmax— i为非 UGS业务流 SFi的最大维持带宽; 所述带宽总利用率 PERCENT— SUM =∑PERCENT[i]。
5、 如权利要求 4所述的方法, 其特征在于, 在计算所述 Rnw之前, 该 方法还包括: 对所述终端的每个非 UGS业务流的最大维持带宽进行初次压 缩, 初次压缩的方法为:
初次压缩后的最大维持带宽等于: Rrcq_nnugs i和 Rrcq_nnugs i的差值 与初次压缩的带宽保留率相乘后, 再与 Rrcq_nnugs i相加; 其中, 初次压缩的带宽保留率= ( 1/已接纳的非 UGS业务流的个数 N ) *∑累计带宽保留率;所述累计带宽保留率在进行最大维持带宽压缩后更新, 更新后的累计带宽保留率 =原累计带宽保留率 *最大维持带宽保留率;
无线系统初始化时初次压缩的带宽保留率为 1。
6、 如权利要求 5所述的方法, 其特征在于, 所述饱和门限包括: 轻度 饱和门限 。w和严重饱和门限 Kalarm;
所述在判断 Rnw大于饱和门限时, 对已接纳的和 /或终端的非 UGS业 务流的最大维持带宽进行压缩, 具体为:
若所述 Rnw大于所述 。w小于所述 Kalam,则所述无线通信系统对已接 纳的和 /或所述终端的非 UGS 业务流的最大维持带宽进行带宽大幅度保留 模式的压缩; 若所述 Rnw大于所述^^, 则所述无线通信系统对已接纳的 和 /或所述终端的非 UGS 业务流的最大维持带宽进行带宽小幅度保留模式 的压缩。
7、 如权利要求 6所述的方法, 其特征在于,
所述带宽大幅度保留模式的压缩的方法为: 压缩后的最大维持带宽等 于: Rmax— i和 Rmin— i的差值与 B— Reserve— Ratio [i]相乘后, 再与 Rmin— i相加; 所述带宽小幅度保留模式的压缩的方法为: 压缩后的最大维持带宽等 于: Rmax— i和 Rmin— i的差值与 S— Reserve— Ratio [i]相乘后, 再与 Rmin— i相加; 所述带宽大幅度保留模式的带宽保留率 B— Reserve— Ratio[i]等于: ahigh 和(¾。w的差值与 PERCENT[i] I PERCENT SUM相乘后, 再与(¾。w相加; 所述带宽小幅度保留模式的带宽保留率 S— Reserve— Ratio[i]等于: phigh 和 plQW的差值与 PERCENT[i] I PERCENT SUM相乘后, 再与 plQW相加; 其中 , Plow <alow < 1 ,
Figure imgf000020_0001
< 1 °
8、 如权利要求 7所述的方法, 其特征在于, 采用所述带宽大幅度保留 模式的压缩和带宽小幅度保留模式的压缩时, 初次压缩的带宽保留率=大幅 度平均累计带宽保留率 On。w avg *小幅度平均累计带宽保留率 Pn。w— avg;
其中, On。w— avg = ( 1/已接纳的非 UGS业务流的个数 N ) *∑大幅度累计 带宽保留率 On。w ^ 所述 Oncw—i在进行带宽大幅度保留模式的压缩后更新, 更新的 α丽尸原 Onowj * B— Reserve— Ratio [i];
Pnow_avg = ( 1 N ) *∑小幅度累计带宽保留率 Pnw i; 所述 β i在进行带 宽小 幅度保留模式的压缩后更新, 更新的 Pnw i=原 Pnw i*
S— Reserve— Ratio[i];
无线通信系统初始时, On。w avg = Pnow_avg = 1。
9、 如权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 压缩后, 若所述 Rnw大于系统的剩余带宽, 且所述终端的业务流的最 小保留总带宽小于系统的剩余带宽, 则所述无线通信系统采用最小保留带 宽对所述终端的业务流进行接纳。
10、 如权利要求 6所述的方法, 其特征在于, 该方法进一步包括: 压缩后, 若所述 Rnw小于所述轻度饱和门限 KlQW, 且所述终端的业务 流的最小保留总带宽小于系统的剩余带宽, 则所述无线通信系统采用最小 保留带宽对所述终端的业务流进行接纳。
11、 一种业务接纳控制系统, 其特征在于, 包括:
接纳控制模块, 用于在接收到终端发送的业务接纳请求后, 计算接纳 所述终端的业务流后, 系统的最大带宽使用量 Rnw, 判断所述 Rnw是否大 于预设的饱和门限, 若大于, 则对已接纳的和 /或所述终端的非主动授予业 务 UGS业务流的最大维持带宽进行压缩; 压缩后, 若 Rnw小于系统的剩余 带宽, 则采用终端请求的或压缩后的最大维持带宽接纳所述终端的非 UGS 业务流。
12、 如权利要求 11所述的系统, 其特征在于,
所述接纳控制模块对已接纳的和 /或所述终端的非 UGS 业务流的最大 维持带宽进行压缩的方法为: 压缩后的最大维持带宽等于: 压缩前的最大 维持带宽 Rmax— i和最小保留带宽 Rmin— i的差值与最大维持带宽保留率相乘 后, 再与最小保留带宽 Rmin— i相加。
13、 如权利要求 12所述的系统, 其特征在于,
所述接纳控制模块计算最大维持带宽保留率的方法为: 最大维持带宽 保留率等于: 保留率上限和保留率下限的差值与 PERCENT[i] /PERCENT SUM相乘后, 再与保留率下限相加。
PCT/CN2009/076187 2009-05-18 2009-12-29 一种业务接纳控制方法及系统 WO2010133076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012511121A JP5295428B2 (ja) 2009-05-18 2009-12-29 業務の受け入れ制御方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910145370.3 2009-05-18
CN200910145370.3A CN101895960B (zh) 2009-05-18 2009-05-18 一种业务接纳控制方法及系统

Publications (1)

Publication Number Publication Date
WO2010133076A1 true WO2010133076A1 (zh) 2010-11-25

Family

ID=43104981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076187 WO2010133076A1 (zh) 2009-05-18 2009-12-29 一种业务接纳控制方法及系统

Country Status (3)

Country Link
JP (1) JP5295428B2 (zh)
CN (1) CN101895960B (zh)
WO (1) WO2010133076A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112291835A (zh) * 2019-07-25 2021-01-29 大唐移动通信设备有限公司 一种系统带宽处理方法、基站及装置、介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974437B (zh) * 2014-04-24 2017-04-19 电子科技大学 基于信道预约的超高速无线局域网的接纳控制方法
WO2017113239A1 (zh) * 2015-12-30 2017-07-06 华为技术有限公司 一种带宽资源核查方法和装置
CN105828219A (zh) * 2016-03-21 2016-08-03 乐视网信息技术(北京)股份有限公司 基于在线播放的多媒体数据流量自动调整的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883627A (en) * 1996-09-25 1999-03-16 Microsoft Corporation Advanced graphics controls
CN1960318A (zh) * 2005-11-02 2007-05-09 中兴通讯股份有限公司 应用于无线通信系统的业务流接纳控制的方法及系统
JP2007306511A (ja) * 2006-05-15 2007-11-22 Sony Ericsson Mobilecommunications Japan Inc 無線通信端末及び無線通信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544511C (zh) * 2003-09-05 2009-09-23 中兴通讯股份有限公司 基于wcdma系统的多用户类型分布式环境下的接纳控制方法
CN100426737C (zh) * 2005-07-22 2008-10-15 上海华为技术有限公司 Iub接口流量控制方案

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883627A (en) * 1996-09-25 1999-03-16 Microsoft Corporation Advanced graphics controls
CN1960318A (zh) * 2005-11-02 2007-05-09 中兴通讯股份有限公司 应用于无线通信系统的业务流接纳控制的方法及系统
JP2007306511A (ja) * 2006-05-15 2007-11-22 Sony Ericsson Mobilecommunications Japan Inc 無線通信端末及び無線通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112291835A (zh) * 2019-07-25 2021-01-29 大唐移动通信设备有限公司 一种系统带宽处理方法、基站及装置、介质

Also Published As

Publication number Publication date
JP2012527201A (ja) 2012-11-01
JP5295428B2 (ja) 2013-09-18
CN101895960A (zh) 2010-11-24
CN101895960B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
EP1513301B1 (en) Method and device for delivering multimedia data using IETF QoS protocols
US8280994B2 (en) Method and apparatus for designing, updating and operating a network based on quality of experience
US9456387B2 (en) Method and apparatus for improving adaptive streaming video quality by optimizing resource allocation
CN107171839B (zh) 一种带宽流量成本控制方法
Cicalò et al. Improving QoE and fairness in HTTP adaptive streaming over LTE network
CN103248965B (zh) 一种基于近似时延的视频传输队列调度方法
CN101707551B (zh) 一种数据的传输方法及装置
WO2010133076A1 (zh) 一种业务接纳控制方法及系统
Navarro-Ortiz et al. Quality of experience based resource sharing in IEEE 802.11 e HCCA
CN111082978A (zh) 面向sdn网络的效用带宽分配方法
US8159946B2 (en) Resource management method in wireless communication system
Pal et al. User-satisfaction based differentiated services for wireless data networks
JP6276206B2 (ja) 帯域割り当て制御装置及び帯域割り当て制御方法
Yeznabad et al. Cross-layer joint optimization algorithm for adaptive video streaming in mec-enabled wireless networks
WO2019161552A1 (zh) 动态调整带宽的方法
Tung et al. Dynamic bandwidth reservation scheme in 802.11 and 802.16 interworking networks
Li et al. Service aware call admission control for mobile vod
Qazzaz et al. Admission control policies for video on demand brokers
Mairh et al. Quality-of-service at data link layer in wireless cellular networks
Qing et al. Adaptive QoS admission control for IEEE 802.11 e network
Das et al. Quality of service based resource management for packet switched data over the WCDMA uplink
Yeh Differentiated QoS adaptation: a new paradigm for network-layer quality-of-service control
Lee et al. Integrated traffic modeling and frame skipping for pre-stored streaming videos over cellular networks
CN112637896A (zh) 最大聚合速率的分配方法、会话管理功能实体及终端
De Angelis et al. QoS filtering in integrated wired/wireless networks using genetic algorithms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511121

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844828

Country of ref document: EP

Kind code of ref document: A1