WO2010130216A1 - 永磁体屏蔽装置及其应用系统 - Google Patents

永磁体屏蔽装置及其应用系统 Download PDF

Info

Publication number
WO2010130216A1
WO2010130216A1 PCT/CN2010/072721 CN2010072721W WO2010130216A1 WO 2010130216 A1 WO2010130216 A1 WO 2010130216A1 CN 2010072721 W CN2010072721 W CN 2010072721W WO 2010130216 A1 WO2010130216 A1 WO 2010130216A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
pole
shielding
module
shield
Prior art date
Application number
PCT/CN2010/072721
Other languages
English (en)
French (fr)
Inventor
应德贵
Original Assignee
天地泰科技(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009100842102A external-priority patent/CN101888158A/zh
Priority claimed from CN200910172136XA external-priority patent/CN102025206A/zh
Priority claimed from CN2009101765194A external-priority patent/CN102025294A/zh
Priority claimed from CN2010101670939A external-priority patent/CN102244484A/zh
Application filed by 天地泰科技(香港)有限公司 filed Critical 天地泰科技(香港)有限公司
Publication of WO2010130216A1 publication Critical patent/WO2010130216A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the invention relates to a permanent magnet shielding device and an application system thereof.
  • the permanent magnet shielding device can selectively cover a magnetic field line of a permanent magnet by rotating a shielding module to form a staggered change of a magnetic field, and the permanent magnet shielding device can also cooperate with other energy conversion.
  • the device outputs energy after energy conversion.
  • a permanent magnet induced power generation system is disclosed on June 11, 2003, having a power generating coil and a permanent magnet.
  • the permanent magnet is a horizontally mounted disc type permanent magnet, the permanent The magnet is fixed to the base through a central column.
  • the outer cover of the permanent magnet is provided with a rotating magnetic shield.
  • the magnetic shield is mounted by a bearing and a central column.
  • the magnetic shield is provided with a plurality of magnetic energy release windows.
  • the bottom of the cover is provided with a driven pulley, and the base is provided with a driving motor, the driving motor is provided with a drag pulley, the drag pulley and the driven pulley belt drive, and the power generating coil is mounted on the side of the permanent magnet .
  • the thickness of the magnetic shield needs to be greatly increased, so that the mass thereof is greatly increased, and it is difficult to drive the magnetic shield to rotate the motor.
  • the device cannot overcome the reaction force of the electromagnetic field generated by the external power generating coil after generating electricity, so that the magnetic shield is difficult to move after the current is generated by the power generating coil, and the energy loss during the energy conversion process is large, failing to meet the expected consumption. Can be small, high efficiency of power generation.
  • a magnetic shielding device for shielding a strong magnetic field of a multilayer composite structure is disclosed in Chinese Patent Application No. 200610113824.5, which is incorporated herein by reference.
  • a multilayer composite structure comprising a silicon steel component as an intermediate layer, an alloy component as an inner layer, and a solenoid coil as an outer layer, and the magnetic shielding device places the alloy component inside the silicon steel component, in the alloy component
  • the outer part is provided with a solenoid coil.
  • the technical solution disclosed in this patent is limited by the overall structure, and is only applicable to a photomultiplier tube that shields a strong magnetic field, and its function is single, and energy conversion cannot be performed.
  • Chinese Utility Model Patent No. 00252880.0 discloses a high-induction synchronous capability permanent magnet synchronous motor on October 3, 2001, which includes a base and a stator assembled therein. And a rotor composed of a rotating shaft, a core, a permanent magnet and a squirrel cage, wherein the radially distributed permanent magnet is embedded in the permanent magnet slot of the rotor core, and the permanent magnet slot is located below the rotor slot, and the magnetic flux is separated between the two slots Magnetic bridge.
  • Chinese Patent Application No. 92114781.3 discloses a magnetically permeable differential (transfer) magnetic drive system on June 29, 1994, which is provided with at least one permanent magnet fixed on the support. It has two magnetic poles (N and S) and a magnetic mover made of a magnetic material. It also has or induces two magnetic poles (N and S), which are movable relative to the stator.
  • An object of the present invention is to provide a fully functional permanent magnet shielding device, and a power generation system and a driving system which are improved in energy conversion by the permanent magnet shielding device and have low energy loss during conversion.
  • a permanent magnet shielding device includes a support frame, a first permanent magnet and a second permanent magnet that are relatively stationary with the support frame, and a rotating shielding module for covering the first permanent magnet and the second permanent magnet And a driving module for driving the rotating shielding module to rotate relative to the first permanent magnet and the second permanent magnet, the rotating shielding module is provided with at least one magnetic flux passing through the first permanent magnet and the second permanent magnet The notch, wherein the rotating shielding module comprises at least one shielding member, the shielding member partially covering an N pole surface of the first permanent magnet and an S pole surface of the second permanent magnet.
  • the permanent magnet shielding device of the present invention further includes the following features:
  • the shield partially covers the N pole face of the first permanent magnet and the S pole face of the second permanent magnet on the same plane.
  • the permanent magnet shielding device further includes a central shaft fixed to the support frame, and the first permanent magnet and the second permanent magnet are coaxial with the central axis and disposed on the support frame.
  • the shield partially covers the N pole face of the first permanent magnet and the S pole face of the second permanent magnet in an axial upper portion of the central axis.
  • the permanent magnet shielding device further includes a rotary connecting member, the rotating shielding module is movably mounted on the central shaft by the rotating connecting member, and the driving module is connected to the rotating connecting member.
  • An electromagnetic generating device is disposed on the shielding member.
  • the N-pole generating the magnetic field in the energized state is the same as the N-pole magnetic pole direction of the first permanent magnet, and the electromagnetic generating module generates the S-pole of the magnetic field and the S of the second permanent magnet in the energized state.
  • the polar poles have the same direction.
  • the electromagnetic generating module cooperates with the permanent magnet to cause the shield to be magnetically saturated.
  • the electromagnetic generating module includes an electromagnetic coil that loads an input current, and the input current is one Intermittent current.
  • the first permanent magnet is an inner ring permanent magnet magnetized in an end direction
  • the second permanent magnet is an outer ring permanent magnet magnetized in an end direction
  • an outer diameter of the inner ring permanent magnet is smaller than the outer ring The inner diameter of the permanent magnet.
  • the inner ring permanent magnet and the outer ring permanent magnet are concentrically disposed on the support frame.
  • the shield has a thickness of between 0.5 and 15 mm.
  • the present invention can also be combined with an induction power generating device or a driving device by the above-described permanent magnet shielding device to constitute a power generating system or a driving system to meet different needs.
  • the advantages of the invention are: simple structure, perfect function, low consumption in the energy conversion process, and high energy conversion efficiency.
  • FIG. 1 is a perspective view showing a power generating system constructed by applying a first embodiment of a permanent magnet shielding device of the present invention.
  • Fig. 2 is a front elevational view showing a configuration of a power generating system to which the first embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 3 is a longitudinal sectional view showing a power generating system to which the first embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 4 is a schematic view showing a rotary shield plate constituting a power generating system according to a first embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 5 is a view showing a magnetic field distribution of a rotary shield plate constituting a power generating system according to a first embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 6 is a view showing the distribution of a magnetic field after the electromagnetic coil is mounted on the rotary shield in the power generating system according to the first embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 7 is a perspective view showing a power generating system constituting a second embodiment of the permanent magnet shielding device of the present invention.
  • Figure 8 is a view showing the longitudinal configuration of a power generating system to which the second embodiment of the permanent magnet shielding device of the present invention is applied Cutaway view.
  • Fig. 9 is a schematic view showing a rotary shield plate constituting a power generating system to which a second embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 10 is a front elevational view showing a power generating system to which the third embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 11 is a longitudinal sectional view showing a power generating system to which a third embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 12 is a schematic view showing a rotary shield plate constituting a power generating system to which the third embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 13 is a perspective view showing a configuration of a power generating system to which the fourth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 14 is a longitudinal sectional view showing a power generating system to which the fourth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 15 is a view showing the configuration of a rotary shield unit in a power generating system to which the fourth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 16 is a perspective view showing a configuration of a power generating system to which a fifth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 17 is a vertical sectional view showing a configuration of a power generating system to which a fifth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Figure 18 is a schematic view showing a swinging shield assembly constructed in a power generating system according to a fifth embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 19 is a view showing the first embodiment of the drive system to which the permanent magnet shielding device of the present invention is applied.
  • Fig. 20 is a front elevational view showing a first embodiment of a drive system constituting the permanent magnet shielding device of the present invention.
  • Figure 21 is a view showing a second embodiment of a drive system constituting the permanent magnet shielding device of the present invention. Body map.
  • Fig. 22 is a front elevational view showing a second embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Figure 23 is a view showing the structure of a shield plate in the permanent magnet shielding device of the present invention.
  • Fig. 24 is a perspective view showing a third embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Fig. 25 is a view showing the operation of the third embodiment of the drive system constituting the permanent magnet shield device of the present invention.
  • Fig. 26 is a view showing another operational state of the third embodiment in which the permanent magnet shielding device of the present invention is constructed to constitute a drive system.
  • Fig. 27 is a perspective view showing a fourth embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Fig. 28 is a front elevational view showing a fourth embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Fig. 29 is a perspective view showing a fifth embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Figure 30 is a front elevational view showing a fifth embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Figure 31 is a schematic view showing a rotary shield assembly in a fifth embodiment in which the permanent magnet shielding device of the present invention is constructed.
  • Fig. 32 is a view showing the first or second shutter in the fifth embodiment of the drive system to which the permanent magnet shield device of the present invention is applied.
  • Fig. 33 is a perspective view showing a sixth embodiment of a drive system constituting the permanent magnet shield device of the present invention.
  • Figure 34 is a longitudinal sectional view showing a sixth embodiment of a drive system to which the permanent magnet shielding device of the present invention is applied.
  • Fig. 35 is a structural schematic view showing the configuration of the annular shaft 7 of the sixth embodiment of the drive system to which the permanent magnet shielding device of the present invention is applied.
  • Fig. 36 is a view showing the structure of a bridge shield of a sixth embodiment in which the permanent magnet shield device of the present invention is constructed.
  • Fig. 37 is a view showing the structure of a movable magnet mounting frame of a sixth embodiment of the drive system to which the permanent magnet shielding device of the present invention is applied (Fig. 34 is a cross-sectional view taken along the line ⁇ - ⁇ ).
  • Figure 38 is a view showing the layout of a double-ring permanent magnet of a sixth embodiment in which the permanent magnet shielding device of the present invention is constructed.
  • Figure 39 is a partial cross-sectional view showing an annular bearing mechanism of a sixth embodiment of a drive system to which the permanent magnet shielding device of the present invention is applied (an enlarged view of a portion C of Figure 2).
  • Fig. 40 is a view showing the magnetic circuit of the bridge shield of the sixth embodiment of the drive system to which the permanent magnet shield device of the present invention is applied.
  • Fig. 41 is a perspective view showing another embodiment of a power generating system in which the permanent magnet shielding device of the present invention is applied.
  • Fig. 42 is a longitudinal sectional view showing another embodiment of a power generating system to which the permanent magnet shielding device of the present invention is applied.
  • Fig. 43 is a view showing the structure of a permanent magnet of another embodiment in which the permanent magnet shielding device of the present invention is constructed.
  • Fig. 44 is a view showing the ring-shaped bearing mechanism of another embodiment in which the permanent magnet shielding device of the present invention is constructed to constitute a power generating system.
  • Fig. 45 is a view showing the structure of a fan-shaped shield plate according to another embodiment of the power generating system to which the permanent magnet shielding device of the present invention is applied.
  • Fig. 46 is a view showing the structure of a butterfly shield plate which is another embodiment of a power generating system to which the permanent magnet shielding device of the present invention is applied.
  • Fig. 47 is a view showing the configuration of an induction power generating apparatus according to another embodiment of a power generating system to which the permanent magnet shielding device of the present invention is applied. detailed description
  • the embodiment is a plate type shielding device for a double-ring type permanent magnet, which comprises a frame 11 on which a central axis 12 is vertically disposed, which is the same as the central axis 12
  • An inner ring permanent magnet 13 and an outer ring permanent magnet 14 are disposed at a center of the inner ring, and an outer diameter of the inner ring permanent magnet 13 is smaller than an inner diameter of the outer ring permanent magnet 14, and the inner ring permanent magnet 13 and the outer ring permanent magnet 14 are fixed.
  • the shielding device further includes a first rotating shielding module, and the first rotating shielding module includes a shielding member 16 disposed on an end surface of the inner ring permanent magnet 13 and the outer ring permanent magnet 14
  • the shielding member 16 has a fan shape, and the shielding member 16 has a fan-shaped cross section, and the shielding member 16 has a sector angle of 180. (Semicircular;), the shield 16 is mounted on the central shaft 12 by a rotary joint 17.
  • the present embodiment is provided with a rotary connecting member 17 disposed at the upper end of the shielding member 16, and the rotating connecting member 17 is fixedly connected to the upper wall surface of the shielding member 16, and a limiting bearing 18 is disposed in the rotating connecting member 17, thereby A rotary connection between the shield member 16 and the central shaft 12 is realized.
  • a power input wheel 19 is mounted to the rotary link member 17.
  • the power input wheel 19 in the present embodiment is a pulley, and the outer ring is described in this embodiment.
  • the permanent magnet 14 and the inner ring permanent magnet 13 are both formed by an end face direction magnetization process, and the two end faces of the outer ring permanent magnet 14 and the inner ring permanent magnet 13 respectively have N poles and S poles, and the outer ring permanent magnets 14 and the inner ring permanent magnet 13 have the same thickness.
  • the outer diameter of the inner ring permanent magnet 13 is smaller than the inner diameter of the outer ring permanent magnet 14 to form a loop-shaped structure, and an annular channel 110 is formed between the inner ring permanent magnet 13 and the outer ring permanent magnet 14.
  • the design is mainly for
  • the upper end surface of the outer ring permanent magnet 14 is set to the N pole
  • the lower end surface is the S pole
  • the upper end surface of the inner ring permanent magnet 13 is set to the S pole.
  • the end face is an N pole
  • the distance between the N pole face of the outer ring permanent magnet 14 and the shield member 16 is equal to the distance between the S pole face of the inner ring permanent magnet 13 and the shield member 16, and the distance value is usually 0.1 ⁇ .
  • Lmm in the present embodiment, is 1 mm.
  • the plate type shielding device of the double-ring type permanent magnet according to the embodiment can be applied to a power generating device.
  • the design of the power generating device is as follows: the power input wheel 19 is externally connected to a driving motor, and the driving device drives the shielding member 16 to rotate.
  • a plurality of U-shaped magnetic cores 112 are disposed on the gantry 11, and a power generating coil bracket 111 is disposed on the magnetic conductive core 112, and a power generating coil (not shown) is disposed on the power generating coil bracket 111. Both ends of the magnetic conductive core 112 correspond to the upper end faces of the outer ring permanent magnets 14 and the upper end faces of the inner ring permanent magnets 13 respectively.
  • the shield member 16 When the shield member 16 is continuously rotated, each time the shield member 16 passes the position of the conductive core 112, the strength of the magnetic field passing through the core 112 is changed, the magnetic flux is changed and electric energy is generated, and the electric energy is output through the power generating coil.
  • the rotating connecting member 17 can position the shielding member 16 to ensure that the distance between the outer ring permanent magnet 14 and the inner ring permanent magnet 13 from the shielding member 16 is equal, and the shielding member 16 is ensured to rotate smoothly.
  • the positioning problem on the central shaft 12 is solved by a limit bearing 18 mounted in the rotary joint 17, which is made entirely of stainless steel (or aluminum alloy) and will not be permanently The magnet is adsorbed.
  • the present embodiment is designed to provide a shield member 16 above the outer ring permanent magnet 14 and the inner ring permanent magnet 13 to realize the rotational movement of the shield member 16 about the central axis 12, and the shield member 16 and the outer ring of the present invention.
  • Both the permanent magnet 14 and the inner ring permanent magnet 13 are coaxially and equidistantly mounted, and have a uniform force-carrying characteristic.
  • the shield member 16 rotates, the interference of the ring-shaped permanent magnet is small, and only a small power is input through the power input wheel 19, The shielding member 16 can be rotated.
  • the rotating magnetic shielding principle is used to continuously input a relatively small power through the power input wheel 19, so as to drive the shielding member 16 to continuously rotate, to change the magnetic flux, generate electric energy, and pass the power generating coil. Output power.
  • the outer ring permanent magnet 14 and the inner ring permanent magnet 13 in the present invention are both circular annular permanent magnets, and include an upper end surface, a lower end surface, an inner cylindrical surface, and an outer cylindrical surface, and the annular cross section is rectangular.
  • the outer ring permanent magnet 14 and the inner ring permanent magnet 13 are both made of a neodymium magnet made of neodymium iron boron material, and the end face direction magnetization process is used, and the two end faces after magnetization become the two magnetic poles of the permanent magnet. That is, they are N poles and S poles respectively.
  • This kind of permanent magnet has the advantages of long service life and low energy consumption.
  • the shield member 16 is laminated with a plurality of layers of silicon steel sheet 113, and has a thickness of 0.5 to 15 mm, and silicon steel.
  • the number of layers is between 2 and 60.
  • the production process is a piece of silicon steel sheet wound into a plurality of layers, and then processed into a shape by using a cutting forming process, and the shielding member 16 made of the material is light in weight. The material is uniform and easy to obtain.
  • the shielding member 16 utilizes the silicon steel sheet 113 to conduct magnetic fast and has high magnetic saturation.
  • the magnetic field establishes a fast line of magnetic field lines for the magnetic field, and the magnetic flux of the outer ring permanent magnet 14N pole to the inner ring permanent magnet 13S pole.
  • a magnetic circuit is formed.
  • the shielding member in this embodiment is a fan-shaped shielding member
  • the fan-shaped shielding member fan-shaped surface angle can be set according to actual needs, for example, 30°, 45°, 90°, 60°, 180°. Or, preferably, 180 is selected in the embodiment. .
  • the present embodiment can mount an electromagnetic coil 115 on the shielding member 16 , and an annular groove formed between the electromagnetic coil 115 and the inner ring permanent magnet 13 and the outer ring permanent magnet 14 .
  • Road 110 corresponds to installation. Since the power generating coil generates an attractive force to the shield member 16 during the power generation process, the shield member 16 is prevented from rotating. Therefore, a current can be intermittently input to the electromagnetic coil 115 to cause the shield member 16 to generate a magnetic field.
  • the N pole corresponds to the N pole of the outer ring permanent magnet 14, and the S pole of the magnetic field corresponds to the S pole of the inner ring permanent magnet 13 so that the magnetic field line 116 introduced from the N pole of the outer ring permanent magnet 14 into the shield 16 is instantaneously saturated. And the shielding member 16 is penetrated. At this time, a repulsive magnetic field of the same magnetic pole is formed between the power generating coil and the shielding member 16, which can reduce the attraction force of a part of the power generating coil to the shielding member 16, and contribute to the rotational movement of the shielding member 16.
  • a ring-shaped air bearing 117 is disposed on the frame base 15 corresponding to the shielding member 16.
  • the annular air bearing 117 is a circular rectangular pipe, and is disposed on the pipe. a compressed air interface, a micro air injection hole is densely disposed on the working surface, and the annular air bearing 117 is set on the outer ring permanent magnet 14 and is disposed at the same center as the central shaft 12, and is disposed on the outer edge of the shielding member 16
  • annular air bearing 117 When the annular air bearing 117 starts to work, the compressed air is continuously sprayed in the micro air injection hole on the upper surface thereof, and an annular air film is generated in the pneumatic gap 119, and the shielding member 16 is suspended on the annular air film, thereby The axial attractive force of the permanent magnet to the shield 16 is offset, and the rotational resistance of the shield 16 is eliminated.
  • Annular pneumatic bearings 117 are well known in the art and are not described in detail.
  • the present embodiment is a technical solution that is improved on the basis of the first embodiment of the permanent magnet shielding device, and the same portions as those of the first embodiment will not be described in detail.
  • the plate type shielding device of the double-ring type permanent magnet of the present embodiment includes a frame 21, and a horizontal central axis 22 is disposed on the frame 21, and the central axis 22 is provided.
  • a permanent magnet fixing plate 25 on which two inner ring permanent magnets 23 and two outer ring permanent magnets 24 are mounted, the inner ring permanent magnet 23 and the outer ring permanent magnet 24 and the center.
  • the shaft 22 is disposed at a center, the outer diameter of the inner ring permanent magnet 23 is smaller than the inner diameter of the outer ring permanent magnet 24, and the left end faces of the inner ring permanent magnet 23 and the outer ring permanent magnet 24 are mutually opposite magnetic poles, the inner The right end faces of the ring permanent magnet 23 and the outer ring permanent magnet 24 are mutually opposite magnetic poles, the shielding device comprises a first rotating shielding module, and the first rotating shielding module is included in the inner ring permanent magnet 23 and the outer ring a first shield member 27 disposed on the left side of the permanent magnet 24, a second shield member 26 disposed on the right side of the inner ring permanent magnet 23 and the outer ring permanent magnet 24, and the two shield members 26, 27 is an integrated non-magnetic curved bridge 28.
  • the two shielding members 26 and 27 are mounted on the central shaft 22 by the rotating connecting member 29, and the fan-shaped sections of the first shielding member 27 and the second shielding member 26 in the embodiment are I-shaped, two The flank angles of the shields 26, 27 are all 180 degrees.
  • a limiting bearing 210 is disposed in the rotating connecting member 29, and the first shielding member 27 and the second shielding member 26 are connected to the central shaft 22 by the above structure, and a power input wheel 211 and a rotating connecting member 29 are provided.
  • the power input wheel 211 is a pulley.
  • the outer ring permanent magnet 24 and the inner ring permanent magnet 23 described in the embodiment are magnetized in the end direction, and the left outer ring permanent magnet is set.
  • the left end face is N pole
  • the right end of the right outer ring permanent magnet is S pole, corresponding to it, the left inner ring permanent magnet
  • the left end of the body is the S pole
  • the right end of the right inner ring permanent magnet is the N pole.
  • the two shield members 26, 27 are integrally connected by the non-magnetic curved bridge 28, which improves the rigidity and rotational stability of the shields 26, 27, and the structure is effectively improved.
  • the magnetic field utilization efficiency of the ring-shaped permanent magnet is improved.
  • the curved bridging plate 28 described in the present embodiment can be made of a non-magnetic material such as plastic, aluminum alloy, stainless steel or carbon fiber.
  • an electromagnetic coil 212 may be mounted on the first shield 27 and the second shield 26, the electromagnetic coil 212 and the annular channel 214 between the inner ring permanent magnet 23 and the outer ring permanent magnet 24. Corresponding installation.
  • the power input wheel 211 is externally connected to a driving motor, and the first shielding member 27 and the second shielding member 26 are rotated by the driving motor.
  • the permanent magnet shielding device in the embodiment can also convert the mechanical energy into electric energy in cooperation with the electromagnetic generating device: a plurality of U-shaped magnetic cores 215 are disposed on the frame 21, and the magnetic conductive core A power generating coil carrier 213 and a power generating coil are disposed on the 215, and both ends of the magnetic conductive core 215 correspond to positions of the outer ring permanent magnet 24 and the inner ring permanent magnet 23, respectively.
  • the present embodiment is a technical solution that is improved on the basis of the first embodiment, and the same portions as those of the first embodiment will not be described in detail.
  • the plate type shielding device of the double-ring type permanent magnet has a frame 31, and a center axis 32 is vertically disposed on the frame 31, and the center
  • the shaft 32 is provided with an inner ring permanent magnet 33 and an outer ring permanent magnet 34.
  • the outer diameter of the inner ring permanent magnet 33 is smaller than the inner diameter of the outer ring permanent magnet 34, and the inner ring permanent magnet 33 and the outer ring.
  • the ring permanent magnet 34 is fixed on the base 35 of the frame 31, and the upper end faces of the inner ring permanent magnet 33 and the outer ring permanent magnet 34 are disposed with mutually opposite magnetic poles, and the inner ring permanent magnet 33 and the outer ring permanent magnet The lower end faces of the 34 are mutually opposite magnetic poles, and the shielding device further includes a first rotating shielding module, and the first rotating shielding module is disposed on the end faces of the inner ring permanent magnet 33 and the outer ring permanent magnet 34.
  • Two a shield member 36, the shield member 36 has a fan shape, and the two shield members 36 have a scallop angle of 90°.
  • the two shield members 36 are axially symmetrically disposed, and the shield member 36 is mounted on the rotary joint member 37. On the central shaft 32.
  • the present embodiment is provided with a rotary connecting member 37 disposed at the upper end of the shielding member 36.
  • the rotating connecting member 37 is fixedly connected to the upper wall of the shielding member 36, and a limiting bearing 38 is disposed in the rotating connecting member 37, thereby A rotary connection between the shield member 36 and the central shaft 32 is realized, and a power input wheel 39 is mounted to the rotary link member 37.
  • the power input wheel 39 in the present embodiment is a pulley, and the outer ring is described in this embodiment.
  • the permanent magnet 34 and the inner ring permanent magnet 33 are magnetized by the end face direction, and the two end faces after magnetization become the two magnetic poles of the permanent magnet.
  • the upper end surface of the outer ring permanent magnet 34 is set to an N pole, and the lower end surface is an S pole.
  • the upper end surface of the inner ring permanent magnet 33 is an S pole
  • the lower end surface is an N pole
  • the outer ring permanent magnet 34 is N.
  • the distance from the pole face to the shield 36 is equal to the distance from the S pole face of the inner ring permanent magnet 33 to the shield 36, and the distance value is usually 0.1 to 1 mm, which is 1 mm in the present embodiment.
  • the design of the two shield members 36 symmetrically arranged can effectively improve the magnetic field utilization efficiency of the ring-shaped permanent magnets, increase the magnetic flux variation, and thereby improve the magnetic energy conversion efficiency.
  • an electromagnetic coil 310 is further mounted on the shield member 36, and the electromagnetic coil 310 is mounted corresponding to the annular channel 311 between the inner ring permanent magnet 33 and the outer ring permanent magnet 34.
  • a ring-type pneumatic shaft 7 312 can be mounted on the frame base 35.
  • the pneumatic shaft 312 is mounted outside the outer ring permanent magnet 34 and is disposed at the same center as the central shaft 32.
  • a pneumatic support plate 313 corresponding to the annular air bearing 312 is disposed on an outer edge of the shielding member 36.
  • the two shielding members 36 are connected to each other through the pneumatic support plate, and the annular air bearing 312 is connected to each other.
  • a pneumatic gap 314 is provided between the pneumatic support plate and the pneumatic support plate.
  • the power input wheel 39 is externally connected to a driving motor, and the driving member 36 drives the shielding member 36 to rotate.
  • the permanent magnet shielding device in the embodiment can also convert the mechanical energy into electric energy in cooperation with the electromagnetic generating device: a plurality of U-shaped magnetic cores 316 are disposed on the frame 31, and the magnetic conductive core A power generating coil bracket 315 is disposed on the 316, and a power generating coil is disposed on the bracket.
  • the two ends of the magnetic conductive core 316 respectively correspond to the positions of the outer ring permanent magnet 34 and the inner ring permanent magnet 33.
  • the fourth embodiment of the permanent magnet shielding device of the present invention :
  • the present embodiment is a technical solution that is improved on the basis of the second embodiment, and the same portions as those of the second embodiment will not be described in detail.
  • the plate type shielding device for the double-ring type permanent magnet includes a frame 41, and a horizontal central axis 42 is disposed on the frame 41, and the central axis
  • the permanent magnet fixing plate 45 is disposed on the permanent magnet fixing plate 45, and two inner ring permanent magnets 43, two outer ring permanent magnets 44, the inner ring permanent magnets 43, and the outer ring permanent magnets 44 are disposed on the permanent magnet fixing plate 45.
  • the central axis 42 is disposed at the same center, the outer diameter of the inner ring permanent magnet 43 is smaller than the inner diameter of the outer ring permanent magnet 44, and the left end faces of the inner ring permanent magnet 43 and the outer ring permanent magnet 44 are opposite magnetic poles.
  • the right end faces of the inner ring permanent magnet 43 and the outer ring permanent magnet 44 are opposite magnetic poles.
  • the shielding device includes a first rotating shielding module, and the first rotating shielding module includes two first shielding members 47 disposed on the left side of the inner ring permanent magnet 43 and the outer ring permanent magnet 44, the first The shielding member 47 has a fan shape, the two first shielding members 47 are disposed in an axisymmetric manner, and the first rotating shielding module further includes two second sides on the right side of the inner ring permanent magnet 43 and the outer ring permanent magnet 44.
  • the second shielding member 46 is in a fan shape, the two second shielding members 46 are disposed in an axisymmetric manner, and the first rotating shielding module further includes respectively connecting the corresponding first shielding member 47 and The second shield 46 is an integral two non-magnetic curved bridge plates 48.
  • the first rotating shielding module is mounted on the central shaft 42 by the rotating connecting member 49.
  • the fan-shaped cross-section of the shielding members 46 and 47 in the embodiment is I-shaped, and the fan-shaped surface angle of the shielding member is 90°.
  • two rotating connecting members 49 are provided, and the rotating connecting members 49 are respectively fixedly connected to the two side walls of the first rotating shielding module, and one of the two rotating connecting members 49 is disposed in each of the two rotating connecting members 49.
  • the limit bearing 410 can realize the rotational connection between the first rotating shielding module and the central shaft 42 through the above structure, and the power input wheel 411 and the rotating connecting member 49 are installed.
  • the power input wheel 411 in the embodiment is a pulley.
  • Each of the outer ring permanent magnets 44 and the inner ring permanent magnets 43 described in this embodiment is magnetized in the end face direction, and the left end face of the left outer ring permanent magnet is set to N pole, and the right end face of the right outer ring permanent magnet is S.
  • the left end of the left inner ring permanent magnet is the S pole
  • the right inner ring permanent magnet has the N end.
  • Outer ring permanent magnet located on the left side of the permanent magnet fixing plate 45 The distance between the N-pole face of the body and the outer ring of the outer ring permanent magnet S to the shield and the inner ring permanent magnet N-plane of the inner ring permanent magnet S and the right side of the permanent magnet fixed disk to the shield The distance values are equal, and the distance value is usually 0.1 to 1 mm, which is 1 mm in the present embodiment.
  • two non-magnetic curved bridge plates 48 are used to connect the two first shields 47 and the two second shields 46 on both sides of the inner ring permanent magnet 43 and the outer ring permanent magnet 44 into one body.
  • the rotational stability of the shield is better than that of the permanent magnet shield of the second embodiment, and the structure effectively improves the magnetic field utilization efficiency of the annular permanent magnet and increases the magnetic flux change.
  • the curved bridging plate 48 described in the present embodiment is made of a non-magnetic material such as plastic, aluminum alloy, plastic or carbon fiber.
  • an electromagnetic coil 412 is mounted on the shields 46, 47, the electromagnetic coil 412 being mounted corresponding to the annular channel 413 between the inner ring permanent magnet 43 and the outer ring permanent magnet 44.
  • the power input wheel 411 is externally connected to a drive motor, and the shield motor 46, 47 is rotated by the drive motor.
  • the permanent magnet shielding device in the embodiment can also convert the mechanical energy into electric energy in conjunction with the electromagnetic generating device: a plurality of U-shaped magnetic cores 415 are disposed on the frame 41, and the magnetic conductive core A power generating coil bracket 414 is disposed on the 415, and a power generating coil is disposed on the bracket.
  • the two ends of the magnetic conductive core 415 respectively correspond to the positions of the outer ring permanent magnet 44 and the inner ring permanent magnet 43.
  • the present embodiment is a technical solution that is improved on the basis of the second embodiment, and the same portions as those of the second embodiment will not be described in detail.
  • the plate type shielding device of the double-ring type permanent magnet includes a frame 51, and a horizontal central axis 52 is disposed on the frame 51, and the central axis
  • the permanent magnet fixing plate 55 is disposed on the permanent magnet fixing plate 55, and two inner ring permanent magnets 53, two outer ring permanent magnets 54, and the inner ring permanent magnets 53 and the outer ring permanent magnets 54 are disposed on the permanent magnet fixing plate 55.
  • the central axis 52 is disposed at the same center, the outer diameter of the inner ring permanent magnet 53 is smaller than the inner diameter of the outer ring permanent magnet 54, and the left end faces of the inner ring permanent magnet 53 and the outer ring permanent magnet 54 are opposite magnetic poles.
  • the shielding device further includes a first rotating shielding module, and the first rotating shielding module includes two first shielding bodies 57 disposed on a left side surface of the inner ring permanent magnet 53 and the outer ring permanent magnet 54.
  • the first shielding body 57 is in the shape of a fan.
  • the first rotating shielding module further includes two second shielding bodies 56 disposed on the right side of the inner ring permanent magnet 53 and the outer ring permanent magnet 54.
  • the first rotating shielding module further includes an arc-shaped bridging plate 58 corresponding to the two first shielding bodies 57 connected to the left side surface and the two second shielding bodies 56 of the right side surface, respectively.
  • the shields 56, 57 are arranged in pairs.
  • the four shields are mounted on the central shaft 52 by means of a rotary joint 59, respectively.
  • the shields 56 and 57 described in the present embodiment have an I-shaped cross section, and the four shields 56 and 57 have a sector angle of 90.
  • the present embodiment is provided with four rotating connecting members 59, which are respectively disposed on four shielding bodies, and the four rotating connecting members 59 are respectively fixedly connected with the side walls of the shielding bodies, in the four rotating connections.
  • Each of the members 59 is provided with a limiting bearing 510.
  • the above structure can realize the swing connection between the shielding body and the central shaft 52.
  • Two power input wheels 511 are respectively mounted with the rotating connecting member 59, which is in the embodiment.
  • the power input wheel 511 is a transmission gear, and each of the outer ring permanent magnet 54 and the inner ring permanent magnet 53 described in the embodiment is magnetized in the end direction, and the left outer ring permanent magnet 54 is set to the N pole. , the right part is the S pole, then the corresponding two inner ring permanent magnets 53 are set to the S pole on the left side and the N pole on the right side, and the outer ring permanent magnet N pole on the left side of the permanent magnet fixed plate
  • the distance between the face and the right outer ring permanent magnet S pole to the shield and the inner ring permanent magnet S pole face on the left side of the permanent magnet fixed disk and the inner ring permanent magnet N pole face on the right side to the shield The distance values are equal, and the distance value is usually 0.1 ⁇ lmm, which is lmm in this embodiment. .
  • the curved bridging plate 58 described in the present embodiment is made of a non-magnetic material such as plastic, aluminum alloy, plastic, or carbon fiber.
  • an electromagnetic coil 512 is mounted on the shields 56, 57, and the electromagnetic coil 512 is mounted corresponding to the annular channel 513 between the inner ring permanent magnet 53 and the outer ring permanent magnet 54.
  • the power input wheel 511 is externally connected to a drive motor, and the drive body drives the shields 56, 57 to rotate.
  • the permanent magnet shielding device in the embodiment can also convert the mechanical energy into electric energy in cooperation with the electromagnetic generating device: a plurality of U-shaped magnetic cores 515 are disposed on the frame, and the magnetic conductive core 515 A power generating coil bracket 514 is disposed on the bracket, and a power generating coil is disposed on the bracket.
  • the two ends of the magnet core 515 respectively correspond to the positions of the outer ring permanent magnet 54 and the inner ring permanent magnet 53.
  • the permanent magnet shielding device described above can be applied to various driving systems or power generation systems, and several representative embodiments thereof will be further described in detail below.
  • the embodiment of the driving system can apply the first embodiment or the third embodiment of the above permanent magnet shielding device, and the same as the first embodiment or the third embodiment of the permanent magnet shielding device. Carry out a detailed description.
  • the drive system has a device rack 1001.
  • a fixed platform 1002 is disposed at a bottom end of the device rack 1001.
  • a linkage frame is mounted on the fixed platform 1002, and a power output device is installed at a front end of the device rack 1001.
  • the output device includes a rotating shaft 1003 and two transmission gears 1004 mounted on the rotating shaft 1003.
  • a power output wheel 1005 is mounted at the end of the rotating shaft 1003, and a flywheel 1006 is mounted at the other end of the rotating shaft 1003.
  • the left linkage frame 1007 and the right linkage frame 1008 are respectively assembled by the two-way guide column 1009 and the device frame 1001.
  • the lower end of the guide column 1009 is fixed at a fixed position.
  • the upper end is fixed to the top cover of the apparatus frame 1001, and the permanent magnet shielding device is vertically mounted at an intermediate position between the left linkage frame 1007 and the right linkage frame 1008.
  • the double ring type described in the first embodiment or the third embodiment a plate shielding device 1010 of the magnet, the lower end of the central axis of the shielding device 1010 is fixed at the center of the fixed platform 1002, and the upper end and the top of the device frame 1001 Fixedly, the shielding device 1010 is provided with a power input wheel, and the power input wheel is externally connected to a driving motor, and the driving input motor drives the power input wheel to rotate, thereby driving the shielding member to rotate, in the left linkage frame 1007 and the right linkage frame.
  • the top wall of the 1008 is respectively mounted with a semicircular outer ring permanent magnet 1011 and a semicircular inner ring permanent magnet 1012 at positions corresponding to the outer ring permanent magnet and the inner ring permanent magnet, and the semicircular outer ring permanent magnet 1011
  • the magnetic pole at the lower end is the same as the magnetic pole at the upper end of the permanent magnet of the outer ring
  • the magnetic poles at the lower end of the semicircular inner ring permanent magnet 1012 are the same as the magnetic poles at the upper end of the inner ring permanent magnet
  • the left side of the left interlocking frame 1007 and the right side of the right interlocking frame 1008 are respectively passed through a crank linkage 1013.
  • the transmission gears are meshed and connected, and the two ends of the rotating shaft are mounted on the apparatus frame 1001 by the rotation limit bearing 1014.
  • the working principle of the embodiment is as follows: when the power input wheel drives the shielding member to rotate, and the outer ring permanent magnet and the right half of the inner ring permanent magnet are completely shielded, at this time, the semi-circular outer ring on the left linkage frame 1007 is forever
  • the magnet 1011 and the semicircular inner ring permanent magnet 1012 are respectively biased upward by the magnetic field of the left half of the outer ring permanent magnet and the inner ring permanent magnet, and the left linkage frame 1007 moves upward along the guiding column 1009.
  • the shield will be external
  • the right permanent magnet and the right half of the inner ring permanent magnet are completely shielded, so that the semicircular outer ring permanent magnet 1011 and the semicircular inner ring permanent magnet 1012 on the right linkage frame 1008 will attract downwardly to the shield.
  • the force causes the right linkage frame 1008 to move down the guide post 1009.
  • the shield completely shields the outer ring permanent magnet and the left half of the inner ring permanent magnet, the left linkage frame 1007 moves downward, and the right linkage frame 1008 moves upward.
  • the rotating switching shield shields the outer ring permanent magnet and the inner ring permanent magnet region, so that the left linkage frame 1007 and the right linkage frame 1008 are continuously staggered up and down, and the rotating shaft of the power output device is driven by the crank link mechanism 1013. , thereby driving the power output wheel to rotate, and realizing the magnetic power output.
  • the embodiment of the driving system can apply the second embodiment or the fourth embodiment or the fifth embodiment of the above permanent magnet shielding device, and the second embodiment or the fourth permanent magnet shielding device.
  • the same portions of the embodiment or the fifth embodiment will not be described in detail.
  • the drive system has a device rack 2001, and a fixed platform 2002 is disposed in the device rack 2001, and a linkage frame is mounted on the fixed platform 2002.
  • a power output device is installed under the fixed platform, and the linkage frame is composed of a left linkage frame 2003 and a right linkage frame 2004.
  • the left linkage frame 2003 and the right linkage frame 2004 pass through the two guide columns 2005 and the device.
  • the rack 2001 is installed, the lower end of the guiding pillar 2005 is fixed on the fixed platform 2002, and the upper end is fixed to the top cover of the device rack 2001.
  • the plate-shielding device 2006 of the double-ring type permanent magnet described in the above permanent magnet embodiment is vertically mounted at an intermediate position of the left linkage frame 2003 and the right linkage frame 2004, and the lower end of the central axis of the shielding device 2006 is fixed at a central position of the fixed platform 2002.
  • the upper end is fixed to the top cover of the device frame 2001.
  • the shielding device 2006 is provided with two power input wheels, and the power input wheel is externally connected with a driving motor, and the driving input motor drives the power input wheel to rotate, thereby driving the swinging shield to reciprocate.
  • a semicircular outer ring permanent magnet and a semicircular inner ring permanent magnet are respectively mounted at positions corresponding to the top wall of the left linkage frame 2003 and the right linkage frame 2004 corresponding to the outer ring permanent magnet and the inner ring permanent magnet,
  • the magnetic pole at the lower end of the semicircular outer ring permanent magnet has the same polarity as the magnetic pole at the upper end of the outer ring permanent magnet, and the magnetic pole at the lower end of the semicircular inner ring permanent magnet has the same polarity as the magnetic pole at the upper end of the inner ring permanent magnet.
  • Each of the left linkage frame 2003 and the right linkage frame 2004 is mounted with a semi-circular magnet block 20 at a position corresponding to the outer ring permanent magnet and the inner ring permanent magnet. 07.
  • the lower end of the left linkage frame 2003 and the right linkage 2004 frame are respectively connected to the two ends of the rotating shaft 2009 on the power output device through a crank linkage mechanism 2008. Both ends of the rotating shaft 2009 are installed by rotating limit bearings.
  • a power take-off wheel 2010 is mounted on the rotating shaft 2009, and in order to ensure stable rotation of the rotating shaft 2009, the flywheel 2011 can be installed in the middle of the rotating shaft 2009.
  • the working principle of the embodiment is as follows: when the power input wheel drives the two swinging shields to rotate in opposite directions, and the two swinging shields are completely closed on the right side of the central axis, at this time, the semi-circular shape on the left linkage frame 2003
  • the outer ring permanent magnet and the semicircular inner ring permanent magnet are repulsive upward by the outer ring permanent magnet and the inner ring permanent magnet left half magnetic field, and the semicircular magnet block 2007 on the left linkage frame 2003 is subjected to the outer ring permanent magnet and the inner ring
  • the attraction force of the magnetic field in the left half of the ring permanent magnet is upward. Under the simultaneous action of these two forces, the left linkage frame 2003 moves upward along the guiding column 2005.
  • the outer ring permanent magnet and the inner ring permanent magnet are moved by the oscillating shield.
  • the right half is completely shielded, so that the semi-circular outer ring permanent magnet and the semi-circular inner ring permanent magnet on the right linkage frame exert a downward attraction to the swinging shield and, at the same time, function as a swinging shield.
  • the lower outer ring permanent magnet and the inner ring permanent magnet lose their attraction to the semi-circular magnet block 2007 on the right linkage frame 2004, resulting in the right link frame 2004 in the outer ring permanent magnet and the inner ring permanent magnet Under the attractive force and its own weight, moves downward along the guide post 2005.
  • the swinging shield completely shields the outer ring permanent magnet and the left half of the inner ring permanent magnet
  • the left linkage frame 2003 moves downward
  • the right linkage frame 2004 moves upward. Therefore, alternately switching the oscillating shield to shield the outer ring permanent magnet and the inner ring permanent magnet region, the left linkage frame 2003 and the right linkage frame 2004 can be continuously staggered up and down, and the rotating shaft of the power output device is driven by the crankshaft linkage mechanism 2008. 2009 turns, which drives the power output wheel 2010 to rotate, realizing the magnetic power output.
  • a third embodiment of the double-ring permanent magnet magnetic drive system of the present invention includes the second implementation of the double-ring permanent magnet shielding device described above.
  • the fourth embodiment or the fifth embodiment, wherein the structure of the double-ring permanent magnet shielding device can be referred to any of the above embodiments, and will not be described herein.
  • the design of the drive system in the embodiment is: the drive system has a device frame 3001, and a fixed platform 3002 is disposed in the device frame 3001, and a linkage frame is mounted on the fixed platform 3002.
  • a power output device is disposed under the fixed platform 3002.
  • the linkage frame is composed of a left linkage frame 3003 and a right linkage frame 3004.
  • the left linkage frame 3003 and the right linkage frame 3004 respectively pass through two guide columns 3005 and a device.
  • the frame 3001 is mounted, the lower end of the guiding column 3005 is fixed on the fixed platform 3002, the upper end is fixed to the top cover of the device frame 3001, and any one of the above embodiments is vertically installed at an intermediate position between the left linkage frame 3003 and the right linkage frame 3004.
  • the double annular permanent magnet shielding device described in the center of the shielding device is fixed at a central position of the fixed platform 3002, and the upper end is fixed to the top cover of the device frame 3001.
  • the shielding device is provided with a power input wheel 3013 for inputting power.
  • a drive motor 3014 is externally connected to the wheel, and the power input wheel 3013 is driven to rotate by the drive motor 3014, thereby driving the motor
  • the rotating shield 3015 of the annular permanent magnet shielding device rotates, and a first left curved shape is respectively installed at a position corresponding to the top wall of the left interlocking frame 3003 and the right interlocking frame 3004 and the outer ring permanent magnet and the inner ring permanent magnet.
  • a guiding magnet 3016 and a first right curved magnetic guiding body 3017 respectively, a second left curved magnetic conductive body is mounted at a position corresponding to the outer ring frame 3003 and the right interlocking frame 3004 base corresponding to the outer ring permanent magnet and the inner ring permanent magnet 3018 and a second right curved magnetizer 3019, wherein the first left arcuate magnet 3016 and the first The right curved magnets 3017 are staggered, the first left arc magnets 3016 and the second left arc magnets 3018 are staggered, the first right arc magnets 3017 and the second right arc guides
  • the magnets 3019 are arranged in a staggered manner, and the first left arcuate magnetizer 3016 and the second right arcuate magnetizer 3019 are oppositely disposed, and the first right arcuate magnetizer 3017 and the second left arcuate magnetizer 3018 are opposite to each other.
  • the lower ends of the left linkage frame 3003 and the right linkage frame 3004 are respectively connected to the two ends of the rotating shaft 3009 on the power output device through a crank linkage mechanism 3008, and the two ends of the rotating shaft 3009 are mounted on the power through the rotation limit bearing.
  • a power output wheel 3010 is mounted on the rotating shaft 3009.
  • a flywheel 3011 can be installed in the middle of the rotating shaft.
  • the working principle of the embodiment is as follows: as shown in FIG. 25, when the rotating shield 3015 of the permanent magnet shielding device is located at the first position, the first left arcuate magnet 3016 and the second right arc magnetizer 3019 is attracted by the inner and outer annular permanent magnets N and S, respectively, and the second left arcuate magnet 3018 and the second right arcuate magnet 3017 are shielded from the inner ring by the rotating shield 3015.
  • the N and S poles of the magnet and the outer annular permanent magnet are unaffected, close to the inner annular permanent magnet and the outer annular permanent magnet, so that the left linkage frame 3003 can be moved downward, the right linkage frame 3004 moves upward, the drive system linkage frame is in the first position, and similarly, as shown in FIG.
  • the alternating rotation frame 3015 can be alternated.
  • the switching shield shields the outer ring permanent magnet and the inner ring permanent magnet region, so that the left linkage frame 3003 and the right linkage frame 3004 are continuously staggered up and down, and the rotating shaft of the power output device is driven by the crankshaft linkage mechanism.
  • the 3009 rotates, thereby driving the power output wheel 3010 to rotate, and realizing the magnetic power output.
  • a fourth embodiment of the double annular permanent magnet magnetic drive system of the present invention includes one of the above-mentioned double annular permanent magnet shielding devices, wherein the structure of the double annular permanent magnet shielding device can be referred to. Any of the above embodiments will not be described here.
  • the double-ring permanent magnet magnetic drive system further includes a second rotating shielding module that is jacketed by the first rotating shielding module of any one of the above embodiments of the double-ring permanent magnet shielding device, wherein the first rotating shielding module includes at least one a first shield 4006, at least one second shield 4007, and at least one curved bridge plate 4008, the second rotary shield module including at least one first outer shield 4016, at least one second outer shield 4017, and At least one outer arcuate bridge plate 4018, the outer arcuate bridge plate 4018 is connected between the first outer shield member 4016 and the second outer shield member 4017, so that the first outer shield member 4016 and the second outer shield can be
  • the piece 4017, and the outer curved bridge plate 4018 form a unitary body.
  • the second rotating shielding module covers the first rotating shielding module, and the first outer shielding member 4016 is disposed on the same side as the first shielding member 4006, and the second outer shielding member 4017 and the The second shielding member 4007 is disposed on the same side, and the outer curved bridging plate 4018 is disposed on the same side as the arc-shaped bridging plate 4008.
  • the second rotating shielding module and the first rotating shielding module are Set with the center axis 4002.
  • the dual annular permanent magnet magnetic drive system further includes a power output assembly, wherein the power output assembly includes a power output wheel 4012 that cooperates with the second rotary shield module, preferably, the power output wheel 4012 and the The second rotating shielding module is relatively fixedly disposed.
  • the first rotating shielding module and the second rotating shielding module are coaxially disposed.
  • the first outer shield member 4016 and the second outer shield member 4017 of the second rotating shielding module are fan-shaped, and the fan-shaped section is I-shaped, and the fan-shaped surface angle matches the first shielding member 4006.
  • the second shielding member 4007 is disposed to shield the double annular permanent magnet magnetic lines of force.
  • the first rotating shielding module When working with the double-ring permanent magnet magnetic drive system of the present invention, first, the first rotating shielding module is rotated by the power input wheel 4011, when the first rotating shielding module is When the permanent magnet rotates outside the body, the magnetic lines of the permanent magnet in the shield can be shielded, and at the same time, the magnetic lines of the permanent magnet outside the shield are opened, and secondly, when the magnetic line of the permanent magnet is not shielded by the first rotating shield module, the second rotating shield module The compensation will be performed to shield the permanent magnet body line from the unshielded portion of the first rotating shield module, that is, the permanent magnet can attract the outer shield 4016, 4017 to move into the magnetic field line of the permanent magnet, and the permanent magnet is rotated with the rotation of the first rotating shield module.
  • the magnetic lines of force are continuously staggered open and shielded such that the second rotating shield module rotates about the permanent magnet on the central axis 4002 to cooperate with the power output wheel 4012 of the power output assembly to output the mechanical energy.
  • the power input wheel 4011 can be driven by a driving motor, and a control device can control the rotation speed and the rotation direction of the driving motor to control the rotation speed and the rotation direction of the first rotation shielding module, so that the second rotation shielding module It can rotate continuously.
  • the rotation described in the present invention may be a rotation about the central axis 4002 or a reciprocating oscillation about the central axis 4002.
  • the outer curved bridging plate in the double-ring permanent magnet magnetic drive system of the present invention can also be made of a non-magnetic material such as plastic, aluminum alloy, plastic or carbon fiber.
  • a fifth embodiment of the double-ring permanent magnet magnetic drive system includes one of the above-mentioned double-ring permanent magnet shielding devices, wherein the structure of the double-ring permanent magnet shielding device can be referred to. Any of the above embodiments will not be described here.
  • the double-ring permanent magnet magnetic drive system further includes a second rotating shielding module that is jacketed by the first rotating shielding module of any one of the above embodiments of the double-ring permanent magnet shielding device, wherein the first rotating shielding module includes at least one a first shield member 5006, at least one second shield member 5007, and at least one curved bridge plate 5008, the second rotary shield module including at least one first outer shield member 5016, at least one second outer shield member 5017, and At least one outer arcuate bridge plate 5018, the outer arcuate bridge plate 5018 is connected between the first outer shield member 5016 and the second outer shield member 5017, so that the first outer shield member 5016 and the second outer shield can be shielded.
  • the first rotating shielding module includes at least one a first shield member 5006, at least one second shield member 5007, and at least one curved bridge plate 5008, the second rotary shield module including at least one first outer shield member 5016, at least one second outer shield member 5017, and At least one outer arcuate bridge plate 5018, the
  • the piece 5017, and the outer curved bridge plate 5018 form a unitary body.
  • the second rotating shielding module covers the first rotating shielding mode a block is disposed, and the first outer shield member 5016 is disposed on the same side as the first shield member 5006, and the second outer shield member 5017 is disposed on the same side as the second shield member 5007.
  • the bridging plate 5018 is disposed on the same side as the arcuate bridging plate 5008.
  • the second rotating shielding module and the first rotating shielding module are disposed on the same axis 5002.
  • the dual annular permanent magnet magnetic drive system further includes a power output assembly, wherein the power output assembly includes a power output wheel 5012 that cooperates with the second rotary shield module, preferably, the power output wheel 5012 and the The second rotating shielding module is relatively fixedly disposed.
  • the outer shield 5016 and the outer shield 5017 in the second rotating shielding module are fan-shaped, and the fan-shaped section is I-shaped, and the fan-shaped surface angle matches the first shielding member 5006 and the second shielding member.
  • the 5007 setting can shield the magnetic field of the double-ring permanent magnet.
  • the permanent magnet driving system further includes a first shutter 5018 and a second shutter 5019 fixedly mounted on the left and right sides of the second rotating shield module, respectively, wherein the first shutter 5018 and the second cover In the plate 5019, an inner curved permanent magnet 5020 disposed opposite to the same end of the annular permanent magnet 5003 in the permanent magnet shielding device and an outer curved permanent magnet 5020 disposed opposite to the outer permanent magnet 5004 of the permanent magnet shielding device are disposed.
  • the first shutter 5018 and the second shutter 5019 are relatively fixedly disposed with the power output wheel.
  • the fan-shaped section of the first shield member 5007 and the second shield member 5006 in the embodiment is I-shaped, and the fan-shaped surface angles of the two shield members 5006 and 5007 are both 45°, and the first rotating shielding module includes multiple a first shielding member and a second shielding member, the plurality of first shielding members and the second shielding member are axially symmetrically designed with respect to the central shaft 5002, and are disposed on the first shielding member and the second shielding member There is an electromagnetic coil 5022 which is mounted corresponding to the annular channel between the inner ring permanent magnet 5003 and the outer ring permanent magnet 5004.
  • the electromagnetic coil 5022 When operating with the double annular permanent magnet magnetic drive system of the present invention, first, by applying an intermittent current to the electromagnetic coil 5022, the electromagnetic coil 5022 is caused to generate an inner ring permanent magnet 5003 and the outer ring.
  • the magnetic field of the permanent magnet 5004 has the same magnetic pole direction, so that the first shielding member and the second shielding member of the first rotating shielding module are magnetically saturated, and then driven by the power input wheel 5011.
  • the first rotating shielding module rotates, and when the first rotating shielding module rotates outside the permanent magnet, the magnetic lines of the permanent magnets in the shielding member can be shielded, and at the same time, the magnetic lines of the permanent magnets of the shielding member are opened, and secondly, when the permanent magnets are When the magnetic lines of force are not shielded by the first rotating shield module, the inner annular permanent magnet 5003 and the outer annular permanent magnet 5004 and the inner curved permanent magnet 5020 and the outer curved permanent magnet 5021 repel each other, being the first shutter 5018 and The second shutter 5019 provides a repulsive force such that the inner curved permanent magnet 5020 and the outer curved permanent magnet 5021 are pushed and the first shutter 5018 and the second shutter 5019 are rotated about the central axis 5002.
  • the first shutter 5018 and the second shutter 5019 are each connected to the central shaft 5002 by a single bearing, so that the first shutter 5018 and the second shutter 5019 can only rotate in one direction, and at the same time, the second
  • the rotating shielding module also complements the magnetic line portion of the permanent magnet that is not shielded by the first rotating shielding module, that is, moves into the magnetic field line of the permanent magnet, so that, for the first shutter 5018 and the second shutter 5019 Providing the rotation of the suction annular permanent magnet and an outer annular permanent magnet.
  • the power input wheel 5011 can be driven by a driving motor, and a control device can control the rotation speed and the rotation direction of the driving motor to control the rotation speed and the rotation direction of the first rotation shielding module, so that the second rotation shielding module It can rotate continuously.
  • the second rotating shielding module may include only the first shielding plate 5018 and the second shielding plate 5019 or the second rotating shielding module, and passes through the first shielding plate 5018 and the second shielding plate 5019.
  • the repulsive force of the arcuate permanent magnet 5020 and the outer arc permanent magnet 5021 and the inner annular permanent magnet 5003 and the outer annular permanent magnet 5004 or the suction force of the second rotating shielding module and the inner annular permanent magnet 5003 and the outer annular permanent magnet 5004 can be driven
  • the power output wheel 5012 rotates and outputs.
  • the rotation described in the present invention may be a rotation about the central axis 5002 or a reciprocating oscillation about the central axis 5002.
  • outer curved bridging plate in the double-ring permanent magnet magnetic drive system of the present invention can also be made of a non-magnetic material such as plastic, aluminum alloy, plastic or carbon fiber.
  • Drive system sixth embodiment :
  • the sixth embodiment of the magnetic drive system for the double-ring permanent magnet bridge shield includes the above-described permanent magnet shielding device.
  • the inner ring permanent magnet 6003 includes an inner ring upper toroidal pole, an inner ring lower toroidal magnetic pole;
  • the outer ring permanent magnet 6004 includes an outer ring upper toroidal magnetic pole, a The outer ring lower ring magnetic pole;
  • the inner ring permanent magnet 6003 and the outer ring permanent magnet 6004 are fixed on the base plate 6005 of the frame, the inner ring upper ring magnetic pole and the outer ring upper ring surface
  • the magnetic poles are mutually opposite magnetic poles;
  • Axis 6002 rotation There is a power input wheel 6008 fixedly mounted with the rotating connecting member 6007; two moving magnet mounting brackets 6009 are arranged axially symmetrically on both sides of the vertical fixed shaft 6002, and the moving magnets are mounted by 6009 vertically.
  • the rail mechanism 6010 is mounted on the frame; an inner ring segment permanent magnet 6011, an outer ring segment permanent magnet 6012, and a lower end magnetic pole of the inner ring segment permanent magnet 6011 are disposed on the bottom surface of the movable magnet mounting bracket.
  • a ring-shaped magnetic pole of the inner ring is repulsively disposed correspondingly, and a magnetic pole of the lower end of the outer ring permanent magnet 6012 is opposite to the magnetic pole of the outer ring of the outer ring;
  • a power output shaft 6013 is disposed at an upper portion of the frame,
  • the two moving magnet mounts are respectively coupled to the power output shaft 6013 via a crank link mechanism 6014, and the power take-off shaft 6013 is provided with a flywheel mechanism 6015 and a power output wheel 6016.
  • the frame 6001 is a rectangular frame structure made of a non-magnetic material (for example, aluminum alloy, stainless steel, etc.), and includes a base plate 6005 and a bracket plate in the middle. 6017, top plate 6018 and side frame plates fixed on both sides.
  • the base plate 6005 and the top plate 6018 are rectangular plates placed horizontally of the same size, and the middle support plate 6017 is in the shape of an I-shape, and may also be processed into an X-shaped plate surface.
  • the base plate 6005 and the bracket plate 6017 are provided with a circular hole in the center thereof, and the vertical fixing shaft 6002 is cylindrical, and the upper end thereof is installed into the mounting hole of the bracket plate 6017. Fixed, the lower end is fixed into the mounting hole of the base plate 6005.
  • an inner ring permanent magnet 6003 and an outer ring permanent magnet 6004 are disposed at the same center as the vertical fixed shaft 6002.
  • the annular permanent magnet is made of a neodymium iron boron material, and the outer diameter of the inner ring permanent magnet 6003 is smaller than the inner diameter of the outer ring permanent magnet 6004.
  • the preferred structure is that the inner diameter of the outer ring permanent magnet 6004 is the inner ring permanent magnet 6003.
  • the outer diameter is 1.4 times.
  • the inner ring permanent magnet 6003 includes an inner ring upper toroidal pole 6028, an inner ring lower toroidal magnetic pole, that is, an N pole and an S pole;
  • the outer ring permanent magnet 6004 includes an outer ring upper toroidal magnetic pole 6029, one The outer ring lower toroidal magnetic poles, that is, the N pole and the S pole;
  • the inner ring upper toroidal magnetic pole 6028 and the outer ring upper toroidal magnetic pole 6029 are mutually opposite magnetic poles; if the inner ring upper toroidal magnetic pole 6028 is set to N In the pole, the toroidal magnetic pole 6029 on the outer ring is set to the S pole.
  • the toroidal magnetic pole 6028 of the inner ring is set to the S pole
  • the toroidal magnetic pole 6029 of the outer ring is set to the N pole.
  • the width of the toroidal pole 6028 on the inner ring is 0.7 times the inner diameter of the inner ring permanent magnet 6003
  • the width of the toroidal pole 6029 on the outer ring is 0.7 times the inner diameter of the outer ring permanent magnet 6004.
  • the inner ring upper toroidal pole 6028 and the outer ring upper toroidal pole 6029 are provided with a bridging shield 6006.
  • the bridging shield 6006 has a semicircular shape and a semicircular end surface having a larger diameter than the outer diameter of the outer ring permanent magnet 6004.
  • the bridge shield 6006 is rotatably mounted to the vertical fixed shaft 6002 by a rotary joint 6007; a power input wheel 6008 is fixedly mounted to the rotary joint 6007.
  • the rotating connecting member 6007 is made of a non-magnetic material and has a circular tube shape.
  • the lower part is fixed to the bridge shield 6006, and the upper part is fixedly mounted with a power input wheel 6008, and is rotated and mounted by the upper and lower bearings and the vertical fixed shaft 6002.
  • the bridge shield 6006 has a rotational speed of at least 1000 rpm and a maximum rotational speed of 3000 rpm.
  • the bridge shield 6006 is at least 0.05 seconds after each 180° rotation.
  • the power input wheel 6008 uses a timing pulley.
  • a driving motor and a synchronous pulley can be connected to each other, and the control circuit of the peripheral device is connected with the driving motor.
  • the control circuit belongs to the prior art. The function of the control circuit is to control the intermittent rotation of the driving motor, and the bridge is driven by the driving motor.
  • the shield rotates continuously.
  • the bridging shield 6006 uses a multi-layer silicon steel sheet laminated structure,
  • the multilayer silicon steel sheet laminated structure is composed of a silicon steel thin plate continuously extending from a silicon steel metal structure; the bridging shield 6006 has a thickness of 0.5 - 20 mm, and the most preferred thickness is 3 mm.
  • the silicon steel sheet laminated structure has a silicon steel sheet layer of 3 - 80 layers.
  • the silicon steel sheet has a thickness in the range of 0.1 to 1.5 mm, the most preferred thickness is 0.3 mm, and the most preferred layer number is 10 layers.
  • the gap between the bridging shield 6006 and the toroidal magnetic pole on the inner ring and the toroidal magnetic pole on the outer ring is 0.5 - 3 mm. In the present embodiment, it is arbitrarily selectable in the range of 0.5 - 3 mm, and the most preferable gap is 1 mm.
  • the outer edge of the bridging shield 6006 is provided with an annular support ring, and the bridging shield is integrally formed with the support ring.
  • the specific manufacturing method is that a silicon steel thin plate blank is cut into a shape as shown in Fig. 36 by a cutting forming process, and the overall processing makes the bridging shield structure more stable, and is more stable in high-speed continuous rotation.
  • annular bearing mechanism is mounted to the bottom of the bridge shield 6006, and the annular bearing mechanism is fixed to the base plate 6005.
  • the annular bearing mechanism is a ring-shaped mechanical bearing, and the ring-shaped mechanical bearing comprises a stationary ring 6019 fixed on the base plate, a retainer 6020 on the stationary ring, and an upper moving ring 6021; the upper moving ring 6021 and The annular support ring of the bridge shield 6006 is machined into one body.
  • the annular bearing mechanism can be disclosed in the prior art and will not be described in detail herein.
  • an electromagnetic generating device is disposed on the bridge shield.
  • the electromagnetic generating device comprises an electromagnetic coil set on the bridge shield, a pulse generator for supplying a pulse current to the electromagnetic coil, and a control circuit.
  • the pulse generator inputs a pulse current to the electromagnetic coil, the electromagnetic coil generates a magnetic field.
  • the bridge shield is subjected to instantaneous magnetic saturation, which weakens the resistance of the magnetic field to the bridge shield and reduces the input power.
  • Electromagnetic generating devices are within the scope of the prior art, and the contents disclosed in the prior art can be used.
  • two movable magnet mounting brackets 6022 are axially symmetrically disposed on both sides of the vertical fixed shaft 6002, that is, the left moving magnet mounting bracket and the right moving body.
  • a magnet mounting bracket a vertical rail mechanism 6023 is disposed on each side of the vertical fixing shaft 6002, and the moving magnet mounting bracket 6022 is installed with the rack through a vertical rail mechanism;
  • the vertical rail mechanism Including a cylindrical guide rail 6024 disposed in parallel with the vertical fixed shaft, and a sleeve 6025 slidingly fitted with the cylindrical guide rail 6024; the upper end of the cylindrical guide rail 6024 is fixed on the bracket plate 6017 in the middle of the rack, and the lower end is fixed at the bottom On the base plate 6002.
  • the support sleeve is fixed to the moving magnet mounting frame 6022.
  • the bearing sleeve is slidably mounted to the cylindrical rail by a linear bearing.
  • an inner ring segment permanent magnet 6026 and an outer ring segment permanent magnet 6027 are disposed on the bottom surface of the movable magnet mounting frame 6022, and the inner ring segment permanent magnet 6026 is used for ⁇ In the iron-boron material, the central end of the inner ring segment permanent magnet 6027 has a central angle corresponding to a central angle of 100° - 140°, and the central angle selected in the present embodiment is 140°.
  • the inner (half) diameter of the inner ring segment permanent magnet 6026 is 0.5 times the inner (right) diameter of the inner ring permanent magnet 6003, and the inner ring segment permanent magnet 6026 has the same width as the inner ring permanent magnet 6003. .
  • the outer ring segment permanent magnet 6027 is made of neodymium iron boron material, and the outer end magnetic pole of the outer ring segment permanent magnet 6027 has a central angle corresponding to 100° - 140°, and the central angle selected in the embodiment is 140°.
  • the inner (half) diameter of the outer ring segment permanent magnet 6027 is 0.5 times the inner (straight) diameter of the outer ring permanent magnet 6004, and the outer ring segment permanent magnet 6027 has the same width as the outer ring permanent magnet 6004. .
  • the lower end magnetic pole of the inner ring segment permanent magnet 6026 is opposite to the toroidal magnetic pole of the inner ring
  • the outer ring segment permanent magnet 6027 is The lower end magnetic pole is opposite to the toroidal magnetic pole on the outer ring; if the inner ring upper magnetic pole is set to the N pole, the lower end magnetic pole of the inner ring permanent magnet is also set to the N pole; if the outer ring upper ring When the surface magnetic pole is set to the S pole, the magnetic pole of the lower end surface of the permanent magnet of the outer ring segment is also set to the S pole.
  • a power output shaft 6013 is disposed on an upper portion of the frame 6001, and the power output shaft 6013 is mounted on a top plate 6018 of the frame through a support, and the power output shaft The 6013 is mounted by rotation of the bearing and the support.
  • the two moving magnet mounting brackets 6022 are respectively coupled to the power output shaft 6013 through a crank link mechanism 6014 to convert the vertical direction motion into the rotational motion of the power output shaft 6013.
  • the two movable magnet mounting brackets 6022 are mounted in such a manner that the crank-link mechanism at the end of the power output shaft 6013 is at the top dead center position, and the crank-link mechanism at the other end is at the bottom dead center position.
  • a flywheel mechanism 6015 is disposed on the power output shaft 6013 and Power take-off wheel 6016.
  • the bridge shield 6006 when the bridge shield 6006 is rotated between the annular permanent magnet and the left moving magnet mounting bracket, the inner ring upper ring magnetic pole and The left magnetic field between the toroidal magnetic poles on the outer ring is shielded, the left moving magnet mounting frame moves down the vertical sliding rail mechanism to the bottom dead center, and the moving magnet on the right moving magnet mounting frame receives the toroidal magnetic pole on the inner ring And the right magnetic field repulsion between the toroidal magnetic pole on the outer ring, the right moving magnet mounting frame moves up to the top dead center along the vertical sliding rail mechanism.
  • the right moving magnet mounting frame moves downward along the vertical sliding rail mechanism to the bottom dead center, and the moving magnet on the left moving magnet mounting frame is subjected to the left magnetic field repulsion between the inner ring magnetic pole on the inner ring and the upper ring magnetic pole on the outer ring.
  • the left moving magnet mounting frame moves up the top rail to the top dead center along the vertical rail mechanism.
  • the moving magnet mount reciprocates in a vertical direction by a vertical rail mechanism. The power is output through the power output wheel.
  • the present invention utilizes a continuously rotating bridging shield to vary the magnetic field strength between the toroidal magnetic poles on the inner ring and the toroidal magnetic poles on the outer ring to achieve continuous magnetic power output.
  • the annular bearing mechanism is different from the structure disclosed in the first embodiment, and the annular bearing mechanism is a toroidal pneumatic bearing.
  • the pneumatic bearing described in this embodiment may also be referred to as an air-floating guide rail, a compressed air is introduced into the annular pneumatic bearing body, a plurality of compressed gas injection holes are formed in the pneumatic bearing body, and the annular pneumatic bearing is a pneumatic bearing body.
  • the air-floating guide rail belongs to the prior art, and the technical content of the air-floating guide rail disclosed by Beijing Mufeng Technology Co., Ltd. is mentioned.
  • the present invention is a permanent magnet shielding device that can also be applied to a power generation system.
  • the present specification also includes another power generation system to which the permanent magnet shielding device of the present invention is applied: See FIG. 41, FIG. 42, FIG. 44 (FIG.
  • the double-ring permanent magnet butterfly-shielded bridge power generating device of the present invention has a frame 7001, and the frame is provided with a rack 7001
  • a vertical fixed shaft 7002 is disposed at the same center as the vertical fixed shaft 7002
  • the inner ring permanent magnet 7003 includes an inner ring upper magnetic pole surface 7012 and an inner ring lower magnetic pole surface;
  • the outer ring permanent magnet 7004 includes an outer ring upper magnetic pole surface 7013, an outer ring lower pole surface;
  • the inner ring permanent magnet 7003 and the outer ring permanent magnet 7004 are fixed on the base plate 7011 of the frame 7001, the inner ring upper magnetic pole surface 7012 and the outer ring
  • the upper magnetic pole faces 7013 are mutually opposite magnetic poles;
  • the inner ring upper pole face 7012 and the outer ring upper pole face 7013 are provided with at least one butterfly shield 7005, and the butterfly shield 7005 passes the rotating connector 7006.
  • the vertical fixing shaft 7002 is rotatably mounted; the frame 7001 is provided with an inductive power generating device 7007, and the inductive power generating device 7007 is disposed corresponding to the magnetic pole surface 7012 on the inner ring and the magnetic pole surface 7013 on the outer ring;
  • the input wheel is fixedly mounted with the rotating connector.
  • the frame is composed of a plurality of fixing posts and a plurality of bracket plates, and the frame 7001 is made of a non-magnetic material (for example, aluminum alloy, stainless steel, or the like).
  • the vertical fixed shaft 7002 is mounted on the top plate 7009 and the base plate 7011 of the frame.
  • An inner ring permanent magnet 7003 and an outer ring permanent magnet 7004 are disposed at the same center as the vertical fixed shaft 7002.
  • the outer diameter of the inner ring permanent magnet 7003 is smaller than the inner diameter of the outer ring permanent magnet 7004.
  • the inner ring permanent magnet 7003 and the outer ring permanent magnet 7004 are fixed to the base plate 7011.
  • the preferred configuration is that the inner diameter of the outer ring permanent magnet 7004 is 1.4 times the outer diameter of the inner ring permanent magnet 7003.
  • the inner ring permanent magnet 7003 includes an inner ring upper magnetic pole surface 7012, an inner ring lower magnetic pole surface, that is, an N pole surface and an S pole surface;
  • the outer ring permanent magnet 7004 includes An outer ring upper magnetic pole surface 7013, an outer ring lower magnetic pole surface, that is, an N pole surface and an S pole surface;
  • the inner ring upper magnetic pole surface 7012 and the outer ring upper magnetic pole surface 7013 are mutually opposite magnetic poles; if the inner ring When the upper magnetic pole surface 7012 is N pole, the outer pole upper magnetic pole surface 7013 is set to the S pole.
  • the magnetic pole face 7012 on the inner ring is set to the S pole
  • the magnetic pole face 7013 on the outer ring is set to the N pole.
  • the inner ring permanent magnet 7003 and the outer ring permanent magnet 7004 are fixed to the base plate 7011.
  • the fixing method can use the installation method in the prior art, and will not be described in detail here.
  • the inner ring upper magnetic pole surface 7012 and the outer ring upper magnetic pole surface 7013 are provided with at least one butterfly shield 7005, the butterfly shield 7005 is rotatably mounted by the rotating connecting member 7006 and the vertical fixing shaft 7002; the butterfly shielding body 7005 is provided with a rotating connecting member, and the rotating connecting member is made of a non-magnetic material, and has a circular tube shape, a lower portion and a butterfly shape.
  • the shield is fixed, and the power input wheel 7016 is disposed at the upper portion, and is rotated and mounted by the upper and lower bearings and the vertical fixed shaft.
  • the power input rim is used with a pulley.
  • a driving motor and a pulley are externally connected to each other to drive the butterfly shield 7005 to continuously rotate.
  • the butterfly shield 7005 includes a pair of sector shields 7014 disposed symmetrically with respect to one another, and a central angle a of the sector faces of the sector shields 7014 may be 60. - 90. Selected within the scope. In the present embodiment, the optimum central angle of the sector of the sector shield 7014 is 90°.
  • the butterfly shield 7005 is formed of a multi-layer silicon steel sheet laminated structure, and the laminated silicon steel sheet laminated structure is composed of a silicon steel thin plate continuously extending from a silicon steel metal structure;
  • the thickness is 0.5 - 20 mm, and the number of layers of the silicon steel sheet of the silicon steel sheet laminated structure is 3 - 80 layers.
  • the thickness of the silicon steel sheet is in the range of 0.1 to 1.5 mm, the most preferred thickness is 0.3 mm, and the most preferred layer number is 10 layers.
  • a gap between the sector shield plate and the magnetic pole face on the inner ring and the magnetic pole face on the outer ring is 0.5 - 3 mm. In the present embodiment, it is arbitrarily selectable in the range of 0.5 - 3 mm, and the most preferable gap is 1 mm.
  • the outer edge of the butterfly shield 7005 is provided with an annular support ring 7015, and the annular support ring 7015 is fixed with the butterfly shield 7005; the butterfly shield 7005 and The support ring 7015 can also be machined in one piece.
  • the specific manufacturing method is to cut a silicon steel sheet blank into a shape as shown in Fig. 46 by using a cutting forming process, and the overall processing makes the butterfly screen structure more stable, and is more stable in high-speed continuous rotation.
  • the annular bearing mechanism is a ring-shaped mechanical bearing
  • the ring-shaped mechanical bearing includes a stationary ring 7021 fixed on the base plate 7011, and a retaining member 7022 on the stationary ring.
  • a moving ring; the upper moving ring is integrally machined with the annular support ring 7015 of the butterfly shield.
  • Ring-type mechanical bearings can be disclosed in the prior art and will not be described in detail herein.
  • the induction power generating device 7007 is fixed to the rack 7001.
  • the inductive power generating device 7007 includes a pair of magnetic core plates 7017 disposed in an axisymmetric manner, the magnetic core plate includes an inner sector working surface 7018, an outer sector working surface 7019, and two A magnetically permeable plate 7020 is bridged between the fan shaped working faces.
  • the inner fan-shaped working surface 7018 is disposed corresponding to the inner pole upper magnetic pole surface 7012
  • the outer fan-shaped working surface 7019 is disposed corresponding to the outer ring upper magnetic pole surface 7013.
  • a power generating coil (not shown) is disposed on the magnetic core plate 7017.
  • the present invention utilizes a continuously rotating shield to change the magnetic field strength between the magnetic pole faces on the inner ring and the magnetic pole faces on the outer ring, and the induction power generating device induces power generation.
  • the pneumatic bearing described in this embodiment may also be referred to as an air-floating guide rail
  • a compressed air is introduced into the annular pneumatic bearing body, and a plurality of compressed gas injection holes are formed in the pneumatic bearing body, and the annular pneumatic type is provided.
  • the bearing is an air floating ring piece corresponding to the pneumatic bearing body, and the floating ring piece is fixedly connected with the bottom of the butterfly shielding body, and a small gap is maintained between the two.
  • the air floating guide rail belongs to the prior art.
  • the present invention utilizes a continuously rotating shield to change the magnetic field strength between the magnetic pole surface on the inner ring and the magnetic pole surface on the outer ring, and the induction power generating device induces power generation.
  • the present invention utilizes a continuously rotating bridging shield to vary the magnetic field strength between the toroidal magnetic poles on the inner ring and the toroidal magnetic poles on the outer ring to achieve continuous magnetic power output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

永磁体屏蔽装置及其应用系统
本申请要求了申请日为 2009年 5月 14 日, 申请号为 200910084210.2, 发明名称为"一种双环型永磁体的板式屏蔽装置"、 申请日为 2009年 9月 10 日, 申请号为 200910172136.X, 发明名称为"一种双环永磁体蝶形屏蔽的桥式 发电装置"、 申请日为 2009年 9月 21 日, 申请号为 200910176519.4, 发明名 称为"一种双环永磁体桥式屏蔽的磁力驱动系统"、 申请日为 2010年 5 月 10 日, 申请号为 201010167093.9,发明名称为"双环形永磁体磁力驱动系统 "的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种永磁体屏蔽装置及其应用系统, 该永磁体屏蔽装置通过 转动屏蔽模块可选择的覆盖永磁体磁力线, 形成磁场的交错变化, 同时, 该 永磁体屏蔽装置还可配合其他能量转换装置进行能量转换后输出能量。
背景技术
现有的, 通过屏蔽装置和磁体转换机械能为电能, 或通过屏蔽装置和磁 体转换电能为机械能, 已经普遍的使用在发电机、 驱动系统等技术领域。
其中, 中国专利申请第 01139883.3于 2003年 6月 11 日公开了一种永磁 感生发电系统, 有发电线圈及永久磁体, 所述的永久磁体是一个水平安装的 圓盘式永久磁体, 该永久磁体通过一个中心立柱与底座固定, 该永久磁体的 外面罩装一个转动式磁屏蔽罩, 该磁屏蔽罩通过轴承与中心立柱安装, 该磁 屏蔽罩上设有多个磁能释放窗口, 该磁屏蔽罩底部装有从动皮带轮, 所述的 底座上设置有一个驱动电机, 该驱动电机上装有拖动皮带轮, 该拖动皮带轮 与从动皮带轮皮带传动, 所述的发电线圈安装在永久磁体一侧。 但由于磁屏 蔽罩结构和整体结构的缺陷, 使得要屏蔽较强磁场时, 磁屏蔽罩的厚度需要 大幅增加, 使得其质量大幅增加, 驱动电机带动该磁屏蔽罩转动较为困难, 且该装置无法克服外部发电线圈发电后产生的电磁场对磁屏蔽罩的反作用 力, 使得在发电线圈产生电流后, 磁屏蔽罩移动较为困难, 能量转换过程中 能量损耗较大, 达不到预期耗能小, 发电效率高的效果。
为解决上述磁屏蔽罩结构的问题, 中国发明专利申请第 200610113824.5 号于 2008年 4月 23 日公开了一种用于屏蔽强磁场的多层复合结构的磁屏蔽 装置, 其中, 该磁屏蔽装置釆用多层复合结构, 包括一为中间层的硅钢部件、 一为内层的合金部件、 一为外层的螺线管线圈, 且该磁屏蔽装置将合金部件 置于硅钢部件内部, 在合金部件的外部置有螺线管线圈。 但是该专利所公开 的技术方案受整体结构限制, 只适用于屏蔽强磁场的光电倍增管, 其功能单 一, 不能进行能量转换。
另外, 针对磁体将电能转化为机械能, 中国实用新型专利第 00252880.0 号于 2001年 10月 3 日公开了一种高牵入同步能力永磁同步电动机, 该电动 机包括机座及组装其内的定子, 以及由转轴、 铁心、 永磁体、 一鼠笼导条构 成的转子, 其中, 径向分布的永磁体嵌入转子铁心的永磁体槽中, 永磁体槽 位于转子槽下方, 两槽之间有隔磁磁桥。 但电机内部不存在屏蔽套, 不能实 现屏蔽效果, 使得整体结构不完善,
为解决上述问题, 中国专利申请第 92114781.3于 1994年 6月 29日公开 了一种导磁差动 (转)子磁力驱动系统,该装置设置至少一个由永久磁体构成的 固定在支架上的定于. 其有两个磁极 (N和 S), 还有一个由磁性材料构成的磁 力动子. 其也有或感应有两个磁极 (N和 S), 该磁力动子是与定子可作相对运 动地安置在一个非导磁材料制成的保持机构上的, 定于磁极和磁力动子磁极 之间至少保持一定间隙, 还设置一个片状的导磁差动 (转)子 (非导磁材料), 其片状部分可在上述间隙中运动, 以使两极间的磁力线发生变化, 从而导致 磁力动子作远离或接近定予的运动。 但是该专利的整体结构不完善, 缺少实 现其功能的必要结构, 在能量转换的过程中损耗较大, 不适应工业生产的需 求。 发明内容
本发明的目的在于提供一种功能完善的永磁体屏蔽装置, 以及利用该永 磁体屏蔽装置进行能量转换的结构完善、 转换过程中能量损耗较小的发电系 统及驱动系统。
为了实现上述目的, 本发明的技术方案是:
一种永磁体屏蔽装置, 包括一支承架、 与所述支承架保持相对静止的第 一永磁体和第二永磁体、 一用于覆盖所述第一永磁体和第二永磁体的转动屏 蔽模块、 以及一驱动所述转动屏蔽模块相对所述第一永磁体和第二永磁体转 动的驱动模块, 所述转动屏蔽模块设有至少一个使所述第一永磁体和第二永 磁体磁力线穿过的缺口, 其中, 所述转动屏蔽模块包括至少一个屏蔽件, 所 述屏蔽件可部分覆盖第一永磁体的 N极面和第二永磁体的 S极面。
另外, 本发明的永磁体屏蔽装置进一步地包括以下特征:
所述屏蔽件在同一平面上部分覆盖所述第一永磁体的 N极面和所述第二 永磁体的 S极面。
所述永磁体屏蔽装置还包括一固设于所述支承架上中心轴, 所述第一永 磁体和所述第二永磁体与所述中心轴同轴并设置于所述支承架上。
所述屏蔽件在所述中心轴轴向上部分覆盖所述第一永磁体的 N极面和所 述第二永磁体的 S极面。
所述永磁体屏蔽装置还包括一转动连接件, 所述转动屏蔽模块通过所述 转动连接件活动安装在所述中心轴上, 所驱动模块连接所述转动连接件。
所述屏蔽件上设有电磁发生装置。
所述电磁发生模块在通电状态下产生磁场的 N极与所述第一永磁体 N极 磁极方向相同, 所述电磁发生模块在通电状态下产生磁场的 S极与所述第二 永磁体的 S极磁极方向相同。
所述电磁发生模块配合所述永磁体作用使得所述屏蔽件至磁饱和。
所述电磁发生模块包括一加载输入电流的电磁线圈, 所述输入电流为一 间歇电流。
所述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一 端面方向充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的 内径。
所述内环永磁体和所述外环永磁体同心设置于所述支承架上。
所述屏蔽件厚度在 0.5~15mm之间。
本发明还可通过上述永磁体屏蔽装置与感应发电装置或驱动装置结合, 从而构成发电系统或驱动系统, 以满足不同需要。
与现有技术相比, 本发明的优势在于: 结构简单、 功能完善、 能量转换 过程中消耗较小, 能量转换效率较高。
附图说明
图 1 是表示应用本发明永磁体屏蔽装置第一实施方式构成发电系统的立 体视图。
图 2是表示应用本发明永磁体屏蔽装置第一实施方式构成发电系统的主 视图。
图 3 是表示应用本发明永磁体屏蔽装置第一实施方式构成发电系统的纵 剖视图。
图 4是表示应用本发明永磁体屏蔽装置第一实施方式构成发电系统中转 动屏蔽板的示意图。
图 5是表示应用本发明永磁体屏蔽装置第一实施方式构成发电系统中转 动屏蔽板的磁场分布示意图。
图 6是表示应用本发明永磁体屏蔽装置第一实施方式构成发电系统中转 动屏蔽板上安装电磁线圈后的磁场分布示意图。
图 7是表示应用本发明永磁体屏蔽装置第二实施方式构成发电系统的立 体视图。
图 8是表示应用本发明永磁体屏蔽装置第二实施方式构成发电系统的纵 剖视图。
图 9是表示应用本发明永磁体屏蔽装置第二实施方式构成发电系统中转 动屏蔽板的示意图。
图 10是表示应用本发明永磁体屏蔽装置第三实施方式构成发电系统的主 视图。
图 11是表示应用本发明永磁体屏蔽装置第三实施方式构成发电系统的纵 剖视图。
图 12是表示应用本发明永磁体屏蔽装置第三实施方式构成发电系统中转 动屏蔽板的示意图。
图 13是表示应用本发明永磁体屏蔽装置第四实施方式构成发电系统的立 体图。
图 14是表示应用本发明永磁体屏蔽装置第四实施方式构成发电系统的纵 剖视图。
图 15是表示应用本发明永磁体屏蔽装置第四实施方式构成发电系统中转 动屏蔽组件的示意图。
图 16是表示应用本发明永磁体屏蔽装置第五实施方式构成发电系统的立 体图。
图 17是表示应用本发明永磁体屏蔽装置第五实施方式构成发电系统的纵 剖视图。
图 18是表示应用本发明永磁体屏蔽装置第五实施方式构成发电系统中摆 动屏蔽组件的示意图。
图 19是表示应用本发明永磁体屏蔽装置构成驱动系统第一实施方式的分 解图。
图 20是表示应用本发明永磁体屏蔽装置构成驱动系统第一实施方式的主 视图。
图 21是表示应用本发明永磁体屏蔽装置构成驱动系统第二实施方式的立 体图。
图 22是表示应用本发明永磁体屏蔽装置构成驱动系统第二实施方式的主 视图。
图 23是表示本发明永磁屏蔽装置中屏蔽板的结构示意图。
图 24是表示应用本发明永磁体屏蔽装置构成驱动系统第三实施方式的立 体图。
图 25是表示应用本发明永磁体屏蔽装置构成驱动系统第三实施方式工作 状态的示意图。
图 26是表示应用本发明永磁体屏蔽装置构成驱动系统第三实施方式另一 工作状态的示意图。
图 27是表示应用本发明永磁体屏蔽装置构成驱动系统第四实施方式的立 体图。
图 28是表示应用本发明永磁体屏蔽装置构成驱动系统第四实施方式的主 视图。
图 29是表示应用本发明永磁体屏蔽装置构成驱动系统第五实施方式的立 体图。
图 30是表示应用本发明永磁体屏蔽装置构成驱动系统第五实施方式的主 视图。
图 31是表示应用本发明永磁体屏蔽装置构成驱动系统第五实施方式中转 动屏蔽组件的示意图。
图 32是表示应用本发明永磁体屏蔽装置构成驱动系统第五实施方式中第 一或第二遮板的示意图。
图 33是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式的立 体图。
图 34是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式的纵 剖视图。 图 35是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式环形 轴 7? 几构的结构示意图。
图 36是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式桥接 屏蔽体的结构示意图。
图 37是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式动磁 体安装架的结构示意图 (图 34的 Α-Α剖视图)。
图 38是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式双环 形永磁体布局结构示意图。
图 39是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式环形 轴承机构局部剖视图 (图 2的 C部放大图)。
图 40是表示应用本发明永磁体屏蔽装置构成驱动系统第六实施方式桥式 屏蔽的磁路示意图。
图 41是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式的立 体图。
图 42是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式的纵 剖视图。
图 43是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式的永 磁体结构示意图。
图 44是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式环形 轴承机构的示意图。
图 45是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式扇形 屏蔽板的结构示意图。
图 46是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式蝶形 屏蔽板的结构示意图。
图 47是表示应用本发明永磁体屏蔽装置构成发电系统另一实施方式感应 发电装置的结构示意图。 具体实施方式
现在, 将参考附图来详细地描述本发明的具体实施方式。
本发明永磁体屏蔽装置第一实施方式:
参见图 1至图 4所示, 本实施方式为双环型永磁体的板式屏蔽装置, 其 包括一机架 11 , 所述机架 11上垂直设有一个中心轴 12, 与所述中心轴 12同 圓心设置一个内环永磁体 13、 一个外环永磁体 14, 所述内环永磁体 13的外 径小于外环永磁体 14的内径, 所述的内环永磁体 13和外环永磁体 14固定在 所述机架 11的底座 15上, 所述内环永磁体 13和外环永磁体 14的上端面互 为异性磁极设置, 所述内环永磁体 13和外环永磁体 14的下端面互为异性磁 极设置, 所述屏蔽装置还包括一第一转动屏蔽模块, 所述第一转动屏蔽模块 包括在所述内环永磁体 13和外环永磁体 14的端面上设置的一个屏蔽件 16, 该屏蔽件 16呈扇形, 该屏蔽件 16的扇形断面呈一形, 该屏蔽件 16扇形面角 度为 180。(半圓形;), 该屏蔽件 16通过转动连接件 17安装在中心轴 12上。 本实施方式设有一个转动连接件 17 ,设置在屏蔽件 16上端, 所述的转动连接 件 17与屏蔽件 16上壁面固定连接, 在该转动连接件 17内设有一个限位轴承 18, 从而实现屏蔽件 16与中心轴 12的转动连接, 有一个动力输入轮 19与所 述转动连接件 17安装, 本实施方式中所述的动力输入轮 19为皮带轮, 本实 施方式中所述的外环永磁体 14和内环永磁体 13均釆用端面方向充磁工艺制 作, 所述外环永磁体 14和内环永磁体 13的两个端面分别呈 N极、 S极, 所 述外环永磁体 14和内环永磁体 13厚度相同。 所述内环永磁体 13的外径小于 外环永磁体 14的内径, 形成环套式结构, 内环永磁体 13和外环永磁体 14之 间形成一个环形槽道 110, 这样设计主要是为了保证屏蔽件 16转动平稳, 磁 场变化稳定, 在本实施方式中, 设定外环永磁体 14上端面为 N极, 下端面为 S极, 设定内环永磁体 13上端面为 S极, 下端面为 N极, 所述外环永磁体 14 的 N极面到屏蔽件 16的距离与所述内环永磁体 13的 S极面到屏蔽件 16的距 离数值相等, 该距离数值通常为 0.1 ~ lmm, 本实施方式中为 lmm。 本实施方式所述的双环型永磁体的板式屏蔽装置可以应用于一个发电装 置, 该发电装置的设计方案是: 将动力输入轮 19外接一个驱动电机, 通过驱 动电机带动屏蔽件 16转动,在所述机架 11上设置多个 U型导磁铁芯 112,所 述导磁铁芯 112上设置发电线圈托架 111 , 该发电线圈托架 111上设置发电线 圈 (图中没有显示)。 所述导磁铁芯 112两端分别与所述外环永磁体 14上端 面和内环永磁体 13上端面位置对应。 当屏蔽件 16连续转动时, 屏蔽件 16每 经过一次导磁铁芯 112所处位置时, 将使通过导磁铁芯 112的磁场强度发生 变化, 使磁通量变化并产生电能, 通过发电线圈将电能输出。
所述的转动连接件 17可对屏蔽件 16起到定位作用, 以保证外环永磁体 14和内环永磁体 13距屏蔽件 16之间距离相等, 确保屏蔽件 16转动顺畅, 所 述屏蔽件 16在中心轴 12上的定位问题是通过安装在转动连接件 17内的一个 限位轴承 18解决的, 该转动连接件 17整体釆用不锈钢材料(或者铝合金材 料)制成, 不会被永磁体吸附。
本实施方式釆用在所述外环永磁体 14和内环永磁体 13上方设置有一个 屏蔽件 16的设计, 可实现屏蔽件 16绕中心轴 12旋转运动, 本发明的屏蔽件 16与外环永磁体 14和内环永磁体 13均同轴等距安装, 具有受力均匀特点, 在屏蔽件 16转动时受环形永磁体的干扰小, 只需通过动力输入轮 19输入较 小的功率, 便可实现屏蔽件 16转动, 本实施方式利用旋转磁屏蔽原理, 通过 动力输入轮 19持续输入一个相对小的功率, 用以带动屏蔽件 16持续旋转, 使磁通量产生变化, 产生电能, 并通过发电线圈将电能输出。
本发明中的外环永磁体 14和内环永磁体 13都是圓环形永磁体, 包括一 个上端面、 一个下端面、 一个内圓柱面、 一个外圓柱面, 其环形断面呈矩形。 所述的外环永磁体 14和内环永磁体 13均釆用由钕铁硼材料制成永磁铁, 釆 用端面方向充磁工艺,充磁后的两个端面成为永磁铁的两个磁极,即分别呈 N 极、 S极。 该种永磁铁具有使用年限长能耗低的优点。 参见图 23所示, 所述 的屏蔽件 16釆用多层硅钢片 113叠压构成, 其厚度在 0.5 ~ 15mm之间,硅钢 片层数在 2 ~ 60之间, 其生产工艺是一片硅钢板材卷绕成多层, 然后使用切 裁成形工艺加工成一形的屏蔽件, 釆用该种材料制成的屏蔽件 16重量轻, 材 质均匀, 取材容易, 该屏蔽件 16利用硅钢片 113导磁快, 导磁饱和度大的特 性,为磁场建立一个磁力线快速通道,使外环永磁体 14N极至内环永磁体 13S 极的磁力线形成导磁回路。
值得一提的是: 本实施方式中的屏蔽件是一个扇形屏蔽件, 所述的扇形 屏蔽件扇形面角度可根据实际需要进行设置, 例如 30°、 45°、 90°、 60°、 180° 等, 优选地, 本实施方式中选用 180。。
参见图 3、 图 5所示, 当屏蔽件 16位于外环永磁体 14和内环永磁体 13 上面时, 外环永磁体 14的 N极的磁力线 114无法穿透与之对应的屏蔽件 16, 只得沿屏蔽件 16内的各硅钢片层间的导磁通道分布。
参见图 3、图 6所示,本实施方式可在所述屏蔽件 16上安装电磁线圈 115 , 该电磁线圈 115与所述的内环永磁体 13和外环永磁体 14之间形成的环形槽 道 110对应安装。 由于在发电过程中, 所述的发电线圈会对屏蔽件 16产生一 个吸引力, 阻碍屏蔽件 16转动, 因此, 可在该电磁线圈 115上间歇输入电流, 使屏蔽件 16产生一个磁场, 该磁场的 N极与外环永磁体 14的 N极对应, 该 磁场的 S极与内环永磁体 13的 S极对应, 使得从外环永磁体 14的 N极导入 屏蔽件 16内的磁力线 116瞬间饱和并穿透屏蔽件 16 ,此时发电线圈与屏蔽件 16之间形成一个同磁极的排斥磁场,可减小一部分发电线圈对屏蔽件 16产生 的吸引力, 有助于屏蔽件 16的旋转运动。
参见图 3所示, 本实施方式可在所述机架底座 15上与所述屏蔽件 16对 应设置一个环型气动轴承 117 , 该环型气动轴承 117是一个圓环状矩形管道, 管道上设置压缩空气接口, 工作表面上密布微型空气喷孔, 环型气动轴承 117 套装在外环永磁体 14夕卜, 并与所述中心轴 12同圓心设置, 在所述的屏蔽件 16 的外边沿设有与所述环型气动轴承相对应的气动支撑板 118, 该气动支撑 板 118与屏蔽件 16左右两边连接成一体, 构成一个环状支承面, 所述的环型 气动轴承 117与气动支撑板 118 (环状支承面)之间设有气动间隙 119。 当环 型气动轴承 117开始工作后, 其上表面的微型空气喷孔中连续喷出压缩空气, 在气动间隙 119内产生一个环形气膜, 所述屏蔽件 16悬浮在该环形气膜上, 从而抵消永磁体对屏蔽件 16的轴向吸引力, 消除屏蔽件 16的转动阻力。 环 型气动轴承 117属于公知技术, 不详细描述。
本发明永磁体屏蔽装置第二实施方式:
本实施方式是在永磁体屏蔽装置第一实施方式基础上改进的技术方案, 与第一实施方式相同部分不进行详细描述。
参见图 7至图 9所示, 本实施方式的双环型永磁体的板式屏蔽装置, 包 括一个机架 21 , 在所述机架 21上设有一个水平中心轴 22 , 所述中心轴 22上 设有永磁体固定盘 25 , 所述永磁体固定盘 25上安装有两个内环永磁体 23、 两个外环永磁体 24 , 所述内环永磁体 23、 外环永磁体 24与所述中心轴 22同 圓心设置, 所述内环永磁体 23的外径小于外环永磁体 24的内径, 所述内环 永磁体 23和外环永磁体 24的左端面互为异性磁极设置, 所述内环永磁体 23 和外环永磁体 24的右端面互为异性磁极设置, 所述屏蔽装置包括一第一转动 屏蔽模块,所述第一转动屏蔽模块包括在所述内环永磁体 23和外环永磁体 24 的左侧面设置的一个第一屏蔽件 27 , 在所述内环永磁体 23和外环永磁体 24 的右侧面设置的第二屏蔽件 26, 以及将所述两个屏蔽件 26、 27连接为一体的 不导磁的弧形桥接板 28。 所述的两个屏蔽件 26、 27通过转动连接件 29安装 在所述中心轴 22上, 本实施方式中所述的第一屏蔽件 27和第二屏蔽件 26的 扇形断面呈 I形, 两个屏蔽件 26、 27的扇形面角度均为 180°。 在所述的转动 连接件 29内设有限位轴承 210,通过以上结构可实现第一屏蔽件 27和第二屏 蔽件 26与中心轴 22的转动连接, 有一个动力输入轮 211与转动连接件 29安 装, 本实施方式中所述的动力输入轮 211 为皮带轮, 本实施方式中所述的各 外环永磁体 24和内环永磁体 23均是端面方向充磁, 设定左侧外环永磁体左 端面为 N极, 则右侧外环永磁体右端面为 S极 , 与之相对应, 左侧内环永磁 体左端面为 S极, 右侧内环永磁体右端面为 N极。 本实施方式釆用不导磁的 弧形桥接板 28将两个屏蔽件 26、 27连接成一个整体, 提高了屏蔽件 26、 27 的刚性及转动稳定性, 而且此种结构还有效的提高了环形永磁体的磁场利用 效率。
本实施方式中所述的弧形桥接板 28可以釆用塑料、 铝合金、 不锈钢、 炭 素纤维等不导磁的材料制成。
优选地, 可在所述第一屏蔽件 27和第二屏蔽件 26上安装电磁线圈 212, 该电磁线圈 212与所述的内环永磁体 23和外环永磁体 24之间的环形槽道 214 对应安装。
将动力输入轮 211外接一个驱动电机, 通过驱动电机带动第一屏蔽件 27 和第二屏蔽件 26转动。
值得一提的是, 在本实施方式中的永磁体屏蔽装置还可配合电磁发生装 置将机械能转换为电能: 在所述机架 21上设置多个 U型导磁铁芯 215 , 所述 导磁铁芯 215上设置发电线圈托架 213及发电线圈, 所述导磁铁芯 215两端 分别与所述外环永磁体 24和内环永磁体 23位置对应。
本发明永磁体屏蔽装置第三实施方式:
本实施方式是在第一实施方式基础上改进的技术方案, 与第一实施方式 相同部分不进行详细描述。
参见图 10至图 12所示, 本实施方式中所述的双环型永磁体的板式屏蔽 装置, 有一个机架 31 , 在所述机架 31上垂直设有一个中心轴 32, 与所述中 心轴 32同圓心设置一个内环永磁体 33、 一个外环永磁体 34 , 所述内环永磁 体 33的外径小于所述外环永磁体 34的内径, 所述的内环永磁体 33和外环永 磁体 34固定在所述机架 31的底座 35上, 所述内环永磁体 33和外环永磁体 34的上端面互为异性磁极设置, 所述内环永磁体 33和外环永磁体 34的下端 面互为异性磁极设置, 所述屏蔽装置还包括一第一转动屏蔽模块, 所述第一 转动屏蔽模块包括在所述内环永磁体 33和外环永磁体 34的端面上设置的两 个屏蔽件 36 , 该屏蔽件 36呈扇形, 两个屏蔽件 36的扇形面角度均为 90° , 所 述两个屏蔽件 36呈轴对称设置, 所述屏蔽件 36通过转动连接件 37安装在所 述中心轴 32上。 本实施方式设有一个转动连接件 37 ,设置在屏蔽件 36上端, 所述的转动连接件 37与屏蔽件 36上壁固定连接, 在该转动连接件 37内设有 一个限位轴承 38, 从而实现屏蔽件 36与中心轴 32的转动连接, 有一个动力 输入轮 39与所述转动连接件 37安装, 本实施方式中所述的动力输入轮 39为 皮带轮, 本实施方式中所述的外环永磁体 34和内环永磁体 33釆用端面方向 充磁工艺, 充磁后的两个端面成为永磁铁的两个磁极。 设定外环永磁体 34上 端面为 N极, 下端面为 S极, 与之相对应, 内环永磁体 33上端面为 S极, 下 端面为 N极, 所述外环永磁体 34的 N极面到屏蔽件 36的距离与所述内环永 磁体 33的 S极面到屏蔽件 36的距离数值相等,该距离数值通常为 0.1 ~ lmm, 本实施方式中为 lmm。本实施方式釆用两个屏蔽件 36对称设置的设计,可有 效的提高了环形永磁体的磁场利用效率, 加大磁通量变化, 从而提高了磁能 转换效率。
优选地, 在所述屏蔽件 36上还可以安装电磁线圈 310, 该电磁线圈 310 与所述的内环永磁体 33和外环永磁体 34之间的环形槽道 311对应安装。
参见图 10所示, 本实施方式可在所述机架底座 35上安装一个环型气动 轴 7 312, 该气动轴 312安装在外环永磁体 34外, 并与所述中心轴 32同圓 心设置, 在所述的屏蔽件 36的外边沿设有与所述环型气动轴承 312相对应的 气动支撑板 313 , 两个屏蔽件 36通过该气动支撑板互相连接, 所述的环型气 动轴承 312与气动支撑板之间设有气动间隙 314。
将动力输入轮 39外接一个驱动电机, 通过驱动电机带动屏蔽件 36转动。 值得一提的是, 在本实施方式中的永磁体屏蔽装置还可配合电磁发生装 置将机械能转换为电能: 在所述机架 31上设置多个 U型导磁铁芯 316, 所述 导磁铁芯 316上设置发电线圈托架 315 ,托架上设置发电线圈, 所述导磁铁芯 316两端分别与所述外环永磁体 34和内环永磁体 33位置对应。 本发明永磁体屏蔽装置第四实施方式:
本实施方式是在第二实施方式基础上改进的技术方案, 与第二实施方式 相同部分不进行详细描述。
参见图 13至图 15所示, 本实施方式中所述的双环型永磁体的板式屏蔽 装置, 包括一个机架 41 , 在所述机架 41上设有一个水平中心轴 42, 所述中 心轴 42上设有永磁体固定盘 45 , 所述永磁体固定盘 45上安装两个内环永磁 体 43、 两个外环永磁体 44 , 所述内环永磁体 43、 外环永磁体 44与所述中心 轴 42同圓心设置, 所述内环永磁体 43的外径小于外环永磁体 44的内径, 所 述内环永磁体 43和外环永磁体 44的左端面互为异性磁极设置, 所述内环永 磁体 43和外环永磁体 44的右端面互为异性磁极设置。 所述屏蔽装置包括一 第一转动屏蔽模块, 所述第一转动屏蔽模块包括在所述内环永磁体 43和外环 永磁体 44的左侧面设置两个第一屏蔽件 47 , 该第一屏蔽件 47呈扇形, 所述 两个第一屏蔽件 47呈轴对称设置, 所述第一转动屏蔽模块还包括在所述内环 永磁体 43和外环永磁体 44的右侧面设置两个第二屏蔽件 46 , 该第二屏蔽件 46呈扇形, 所述两个第二屏蔽件 46呈轴对称设置, 所述第一转动屏蔽模块还 包括分别连接对应的所述第一屏蔽件 47和第二屏蔽件 46为一体的两个不导 磁的弧形桥接板 48。所述第一转动屏蔽模块通过转动连接件 49安装在所述中 心轴 42上, 本实施方式中所述的屏蔽件 46、 47的扇形断面呈 I形, 屏蔽件 的扇形面角度均为 90°,本实施方式中设有两个转动连接件 49 ,所述的转动连 接件 49分别与第一转动屏蔽模块的两侧壁固定连接, 在所述的两个转动连接 件 49内各设有一个限位轴承 410 , 通过以上结构可实现第一转动屏蔽模块与 中心轴 42的转动连接, 有一个动力输入轮 411与转动连接件 49安装, 本实 施方式中所述的动力输入轮 411 为皮带轮, 本实施方式中所述的各外环永磁 体 44和内环永磁体 43均是端面方向充磁, 设定左侧外环永磁体左端面为 N 极, 右侧外环永磁体右端面为 S极 , 与之相对应, 左侧内环永磁体左端面为 S极, 右侧内环永磁体右端面为 N极。 位于永磁体固定盘 45左侧的外环永磁 体 N极面和右侧的外环永磁体 S极面到屏蔽件的距离与位于永磁体固定盘左 侧的内环永磁体 S极面和右侧的内环永磁体 N极面到屏蔽件的距离数值均相 等, 该距离数值通常为 0.1 ~ lmm, 本实施方式中为 lmm。 本实施方式釆用两 个不导磁的弧形桥接板 48将位于内环永磁体 43和外环永磁体 44两侧的两个 第一屏蔽体 47和两个第二屏蔽体 46连接成一体一起转动, 其屏蔽件的转动 稳定性比第二实施方式中的永磁体屏蔽装置的转动稳定性更好, 而且此种结 构还有效的提高了环形永磁体的磁场利用效率, 加大磁通量变化。
本实施方式中所述的弧形桥接板 48釆用塑料、 铝合金、 塑料、 炭素纤维 等不导磁的材料制成。
优选地, 可在所述屏蔽件 46、 47上安装电磁线圈 412, 该电磁线圈 412 与所述的内环永磁体 43和外环永磁体 44之间的环形槽道 413对应安装。
将动力输入轮 411外接一个驱动电机, 通过驱动电机带动屏蔽件 46、 47 转动。
值得一提的是, 在本实施方式中的永磁体屏蔽装置还可配合电磁发生装 置将机械能转换为电能: 在所述机架 41上设置多个 U型导磁铁芯 415 , 所述 导磁铁芯 415上设置发电线圈托架 414 ,托架上设置发电线圈, 所述导磁铁芯 415两端分别与所述外环永磁体 44和内环永磁体 43位置对应。
本发明永磁体屏蔽装置第五实施方式:
本实施方式是在第二实施方式基础上改进的技术方案, 与第二实施方式 相同部分不进行详细描述。
参见图 16至图 18所示, 本实施方式中所述的双环型永磁体的板式屏蔽 装置, 包括一个机架 51 , 在所述机架 51上设有一个水平中心轴 52, 所述中 心轴 52上设有永磁体固定盘 55 , 所述永磁体固定盘 55上安装两个内环永磁 体 53、 两个外环永磁体 54 , 所述内环永磁体 53、 外环永磁体 54与所述中心 轴 52同圓心设置, 所述内环永磁体 53的外径小于外环永磁体 54的内径, 所 述内环永磁体 53和外环永磁体 54的左端面互为异性磁极设置, 所述内环永 磁体 53和外环永磁体 54的右端面互为异性磁极设置。 所述屏蔽装置还包括 一第一转动屏蔽模块, 所述第一转动屏蔽模块包括在所述内环永磁体 53和外 环永磁体 54的左侧面设置的两个第一屏蔽体 57 , 该第一屏蔽体 57呈扇形, 所述第一转动屏蔽模块还包括在所述内环永磁体 53和外环永磁体 54的右侧 面设置的两个第二屏蔽体 56 , 该第二屏蔽体 56呈扇形, 所述第一转动屏蔽模 块还包括对应连接所述左侧面两个第一屏蔽体 57和所述右侧面两个第二屏蔽 体 56为一体的弧形桥接板 58, 各屏蔽体 56、 57左右成对设置。 所述的四个 屏蔽体分别通过转动连接件 59安装在所述中心轴 52上。 本实施方式中所述 的屏蔽体 56、 57的扇形断面呈 I形,四个屏蔽体 56、 57扇形面角度均为 90。, 本实施方式设有四个转动连接件 59, 分别设置在四个屏蔽体上, 所述的四个 转动连接件 59分别与各屏蔽体的侧壁固定连接,在所述的四个转动连接件 59 内各设有一个限位轴承 510 , 通过以上结构可实现各屏蔽体与中心轴 52的摆 动连接, 有两个动力输入轮 511分别与所述转动连接件 59安装, 本实施方式 中所述的动力输入轮 511为传动齿轮, 本实施方式中所述的各外环永磁体 54 和内环永磁体 53均是端面方向充磁, 设定两个外环永磁体 54左部为 N极, 右部为 S极 , 那么与之相对应的设定两个内环永磁体 53左部为 S极, 右部 为 N极, 所述位于永磁体固定盘左侧的外环永磁体 N极面和右侧的外环永磁 体 S极面到屏蔽体的距离与所述位于永磁体固定盘左侧的内环永磁体 S极面 和右侧的内环永磁体 N极面到屏蔽体的距离数值均相等, 该距离数值通常为 0.1 ~ lmm, 本实施方式中为 lmm。
本实施方式中所述的弧形桥接板 58釆用塑料、 铝合金、 塑料、 炭素纤 维等不导磁的材料制成。
优选地, 可在所述屏蔽体 56、 57上安装电磁线圈 512, 该电磁线圈 512 与所述的内环永磁体 53和外环永磁体 54之间的环形槽道 513对应安装。
将动力输入轮 511外接一个驱动电机, 通过驱动电机带动屏蔽体 56、 57 转动。 值得一提的是, 在本实施方式中的永磁体屏蔽装置还可配合电磁发生装 置将机械能转换为电能: 在所述机架上设置多个 U型导磁铁芯 515 , 所述导 磁铁芯 515 上设置发电线圈托架 514, 托架上设置发电线圈, 所述导磁铁芯 515两端分别与所述外环永磁体 54和内环永磁体 53位置对应。
通过上述的永磁体屏蔽装置, 可将其应用于各种驱动系统或发电系统, 以下将对其几种具有代表性的实施方式进一步地详细说明。
驱动系统第一实施方式:
参见图 19、 图 20所示, 该驱动系统的实施方式可应用以上永磁体屏蔽装 置的第一实施方式或第三实施方式, 与永磁体屏蔽装置第一实施方式或第三 实施方式相同部分不进行详细描述。
该驱动系统有一个装置机架 1001 ,在该装置机架 1001底端设有固定平台 1002, 在该固定平台 1002上安装有联动框架, 在该装置机架 1001前端安装 有动力输出装置, 该动力输出装置包括旋转轴 1003和安装在旋转轴 1003上 的两个传动齿轮 1004 , 在该旋转轴 1003—端安装有动力输出轮 1005 , 在旋 转轴 1003另一端安装有飞轮 1006, 所述的联动框架由左联动框架 1007和右 联动框架 1008两部分组成, 所述的左联动框架 1007和右联动框架 1008各通 过两才艮导向立柱 1009与装置机架 1001安装, 所述导向立柱 1009下端固定在 固定平台 1002上, 上端与装置机架 1001顶盖固定, 在所述左联动框架 1007 和右联动框架 1008中间位置垂直安装有永磁体屏蔽装置第一实施方式或第三 实施方式中描述的双环型永磁体的板式屏蔽装置 1010,该屏蔽装置 1010中心 轴下端固定在固定平台 1002中心位置上, 上端与装置机架 1001顶盖固定, 该屏蔽装置 1010上设有一个动力输入轮, 将动力输入轮外接一个驱动电机, 通过驱动电机带动动力输入轮转动, 从而带动屏蔽件旋转运动, 在所述左联 动框架 1007和右联动框架 1008顶壁与外环永磁体和内环永磁体相对应的位 置各安装有一个半圓形外环永磁体 1011和半圓形内环永磁体 1012 ,所述的半 圓形外环永磁体 1011下端的磁极与外环永磁铁上端的磁极极性相同, 所述的 半圓形内环永磁体 1012下端的磁极与内环永磁铁上端的磁极极性相同, 所述 左联动框架 1007左侧和右联动框架 1008右侧各通过一个曲柄连杆机构 1013 分别与所述的传动齿轮啮合连接, 所述的旋转轴两端通过转动限位轴承 1014 安装在装置机架 1001上。
本实施方式工作原理是: 当动力输入轮带动屏蔽件转动, 并使外环永磁 体和内环永磁体右半边完全屏蔽, 此时, 所述的左联动框架 1007上的半圓形 外环永磁体 1011和半圓形内环永磁体 1012分别受外环永磁体和内环永磁体 左半边磁场向上的排斥力, 左联动框架 1007沿导向立柱 1009向上移动, 另 一方面, 由于屏蔽件将外环永磁体和内环永磁体右半边完全屏蔽, 因此, 所 述的右联动框架 1008上的半圓形外环永磁体 1011和半圓形内环永磁体 1012 会对屏蔽件产生向下的吸引力,从而导致了右联动框架 1008沿导向立柱 1009 向下移动。 同理, 当屏蔽件将外环永磁体和内环永磁体左半边完全屏蔽时, 左联动框架 1007向下移动, 右联动框架 1008向上移动。 因此, 旋转切换屏 蔽件屏蔽外环永磁体和内环永磁体的区域, 可使左联动框架 1007和右联动框 架 1008不断交错上下运动, 并通过曲轴连杆机构 1013带动动力输出装置的 旋转轴转动, 从而带动动力输出轮转动, 实现磁动力输出。
驱动系统第二实施方式:
参见图 21、 图 22所示, 该驱动系统的实施方式可应用以上永磁体屏蔽装 置的第二实施方式或第四实施方式或第五实施方式, 与永磁体屏蔽装置第二 实施方式或第四实施方式或第五实施方式相同部分不进行详细描述。
本实施方式中所述的驱动系统的设计方案是: 该驱动系统有一个装置机 架 2001 , 在该装置机架 2001内设有固定平台 2002 , 在该固定平台 2002上安 装有联动框架, 在该固定平台下方安装有动力输出装置, 所述的联动框架由 左联动框架 2003和右联动框架 2004两部分组成, 所述的左联动框架 2003和 右联动框 2004架各通过两根导向立柱 2005与装置机架 2001安装, 所述导向 立柱 2005下端固定在固定平台 2002上, 上端与装置机架 2001顶盖固定, 在 所述左联动框架 2003和右联动框架 2004中间位置垂直安装有上述永磁体实 施方式中描述的双环型永磁体的板式屏蔽装置 2006 ,该屏蔽装置 2006中心轴 下端固定在固定平台 2002中心位置上, 上端与装置机架 2001顶盖固定, 该 屏蔽装置 2006上设有两个动力输入轮, 将动力输入轮各外接一个驱动电机, 通过驱动电机带动动力输入轮转动, 从而带动摆动屏蔽件往复运动, 在所述 左联动框架 2003和右联动框架 2004顶壁与外环永磁体和内环永磁体相对应 的位置各安装有一个半圓形外环永磁体和半圓形内环永磁体, 所述的半圓形 外环永磁体下端的磁极与外环永磁铁上端的磁极极性相同, 所述的半圓形内 环永磁体下端的磁极与内环永磁铁上端的磁极极性相同, 在所述左联动框架 2003和右联动框架 2004底座与外环永磁体和内环永磁体相对应的位置各安装 有一个半圓形导磁铁块 2007 , 所述左联动框架 2003和右联动 2004框架下端 各通过一个曲柄连杆机构 2008与所述的动力输出装置上的旋转轴 2009两端 连接, 该旋转轴 2009两端通过转动限位轴承安装在动力输出装置的机架上, 在所述的旋转轴 2009上安装有动力输出轮 2010, 为保证旋转轴 2009转动稳 定, 可在旋转轴 2009中部安装飞轮 2011。
本实施方式工作原理是: 当动力输入轮带动两个摆动屏蔽件相向转动, 并使两摆动屏蔽件在中心轴右侧完全闭合时, 此时, 所述的左联动框架 2003 上的半圓形外环永磁体和半圓形内环永磁体受外环永磁体和内环永磁体左半 边磁场向上的排斥力, 左联动框架 2003上的半圓形导磁铁块 2007受外环永 磁体和内环永磁体左半边磁场向上的吸引力, 在这两个力的同时作用下, 左 联动框架 2003沿导向立柱 2005向上移动, 另一方面, 由于摆动屏蔽件将外 环永磁体和内环永磁体右半边完全屏蔽, 因此, 所述的右联动框架上的半圓 形外环永磁体和半圓形内环永磁体会对摆动屏蔽件产生向下的吸引力, 同时, 在摆动屏蔽件的作用下外环永磁体和内环永磁体失去了对右联动框架 2004上 的半圓形导磁铁块 2007的吸引力, 从而导致了右联动框架 2004在外环永磁 体和内环永磁体的吸引力和自身重力的作用下, 沿导向立柱 2005向下移动。 同理, 当摆动屏蔽件将外环永磁体和内环永磁体左半边完全屏蔽时, 左联动 框架 2003向下移动, 右联动框架 2004向上移动。 因此, 交替切换摆动屏蔽 件屏蔽外环永磁体和内环永磁体的区域, 可使左联动框架 2003和右联动框架 2004不断交错上下运动,并通过曲轴连杆机构 2008带动动力输出装置的旋转 轴 2009转动, 从而带动动力输出轮 2010转动, 实现磁动力输出。
驱动系统第三实施方式:
如图 24所示, 为本发明双环形永磁体磁力驱动系统第三实施方式: 本发 明所述的双环形永磁体磁力驱动系统第三实施方式包括上述之双环形永磁体 屏蔽装置的第二实施方式或第四实施方式或第五实施方式, 其中所关于双环 形永磁体屏蔽装置的结构可参上述任何一个实施方式, 在此不再累述。
本实施方式中所述的驱动系统的设计方案是: 该驱动系统有一个装置机 架 3001 , 在该装置机架 3001内设有固定平台 3002 , 在该固定平台 3002上安 装有联动框架, 在该固定平台 3002下方安装有动力输出装置, 所述的联动框 架由左联动框架 3003和右联动框架 3004两部分组成,所述的左联动框架 3003 和右联动框架 3004各通过两根导向立柱 3005与装置机架 3001安装, 所述导 向立柱 3005下端固定在固定平台 3002上, 上端与装置机架 3001顶盖固定, 在所述左联动框架 3003和右联动框架 3004中间位置垂直安装有上述任何一 实施方式中描述的双环形永磁体屏蔽装置, 该屏蔽装置中心轴下端固定在固 定平台 3002中心位置上, 上端与装置机架 3001顶盖固定, 该屏蔽装置上设 有一个动力输入轮 3013 , 将动力输入轮外接一个驱动电机 3014 , 通过驱动电 机 3014带动动力输入轮 3013转动, 从而带动所述双环形永磁体屏蔽装置的 转动屏蔽体 3015转动, 另外, 在所述左联动框架 3003和右联动框架 3004顶 壁与外环永磁体和内环永磁体相对应的位置分别安装有第一左弧形导磁体 3016和第一右弧形导磁体 3017 , 在所述左联动框架 3003和右联动框架 3004 底座与外环永磁体和内环永磁体相对应的位置分别安装有第二左弧形导磁体 3018和第二右弧形导磁体 3019 , 其中, 所述第一左弧形导磁体 3016和第一 右弧形导磁体 3017呈交错设置, 所述第一左弧形导磁体 3016和第二左弧形 导磁体 3018呈交错设置, 所述第一右弧形导磁体 3017和第二右弧形导磁体 3019呈交错设置, 所述第一左弧形导磁体 3016和第二右弧形导磁体 3019相 对设置, 所述第一右弧形导磁体 3017和所述第二左弧形导磁体 3018相对设 置。 所述左联动框架 3003和右联动框架 3004下端各通过一个曲柄连杆机构 3008与所述的动力输出装置上的旋转轴 3009两端连接, 该旋转轴 3009两端 通过转动限位轴承安装在动力输出装置的机架上, 在所述的旋转轴 3009上安 装有动力输出轮 3010 , 为保证旋转轴转动稳定, 可在旋转轴中部安装飞轮 3011。
本实施方式工作原理是: 如图 25所示, 当所述永磁体屏蔽装置的转动屏 蔽体 3015位于第一位置, 所述第一左弧形导磁体 3016和所述第二右弧形导 磁体 3019分别受到内环形永磁体和外环形永磁体 N极和 S极吸引,所述第二 左弧形导磁体 3018和第二右弧形导磁体 3017因转动屏蔽体 3015遮蔽与其相 对的内环形永磁体和外环形永磁体的 N极和 S极而不受吸引, 靠近所述内环 形永磁体和所述外环形永磁体, 这样, 即可使得左联动框架 3003向下运动, 所述右联动框架 3004向上运动,所述驱动系统联动框架位于第一位置, 同理, 如图 26所示, 当所述永磁体屏蔽装置的转动屏蔽体 3015受动力输入轮 3013 带动转动到第二位置时, 所述第一右弧形导磁体 3017和所述第二左弧形导磁 体 3018分别受到内环形永磁体和外环形永磁体 N极和 S极吸引,靠近所述内 环形永磁体和外环形永磁体, 所述第一左弧形导磁体 3016和第二右弧形导磁 体 3019因转动屏蔽体 3015遮蔽与其相对的内环形永磁体和外环形永磁体的 N 极和 S极而不受吸引, 这样, 即可使得左联动框架 3003向上运动, 所述右联 动框架 3004向下运动, 所述驱动系统联动框架位于第二位置, 因此, 当动力 输入轮 3013不断带动所述转动屏蔽体 3015转动时, 即可不断交替切换屏蔽 件屏蔽外环永磁体和内环永磁体的区域, 可使左联动框架 3003和右联动框架 3004 不断交错上下运动, 并通过曲轴连杆机构带动动力输出装置的旋转轴 3009转动, 从而带动动力输出轮 3010转动, 实现磁动力输出。
驱动系统第四实施方式:
参见图 27至图 28所示, 本发明所述的双环形永磁体磁力驱动系统第四 实施方式包括上述之双环形永磁体屏蔽装置之一, 其中所关于双环形永磁体 屏蔽装置的结构可参上述任何一个实施方式, 在此不再累述。
所述双环形永磁体磁力驱动系统还进一步地包括在上述双环形永磁体屏 蔽装置任意一个实施方式的第一转动屏蔽模块外套设的第二转动屏蔽模块, 所述第一转动屏蔽模块包括至少一个第一屏蔽件 4006、 至少一个第二屏蔽件 4007 , 以及至少一个弧形桥接板 4008, 所述第二转动屏蔽模块包括至少一个 第一外屏蔽件 4016、 至少一个第二外屏蔽件 4017 , 以及至少一个外弧形桥接 板 4018 , 所述外弧形桥接板 4018连接所述第一外屏蔽件 4016和第二外屏蔽 件 4017之间, 可使该第一外屏蔽件 4016、 第二外屏蔽件 4017 , 以及外弧形 桥接板 4018构成一个整体。 所述第二转动屏蔽模块包覆所述第一转动屏蔽模 块设置, 且所述第一外屏蔽件 4016与所述第一屏蔽件 4006同边配合设置, 所述第二外屏蔽件 4017与所述第二屏蔽件 4007 同边配合设置, 所述外弧形 桥接板 4018与所述弧形桥接板 4008同边配合设置, 优选地, 所述第二转动 屏蔽模块与所述第一转动屏蔽模块同中心轴 4002设置。 所述双环形永磁体磁 力驱动系统还包括一动力输出组件, 其中, 该动力输出组件包括一与所述第 二转动屏蔽模块配合之动力输出轮 4012 ,优选地, 该动力输出轮 4012与所述 第二转动屏蔽模块相对固定设置。 所述第一转动屏蔽模块和所述第二转动屏 蔽模块同轴设置。
值得一提的是: 所述第二转动屏蔽模块中的第一外屏蔽件 4016和第二外 屏蔽件 4017 为扇形, 其扇形断面呈 I形, 扇形面角度配合所述第一屏蔽件 4006、 第二屏蔽件 4007设置, 可遮蔽双环形永磁体磁力线。
在使用本发明所述的双环形永磁体磁力驱动系统进行工作时, 首先, 通 过动力输入轮 4011带动所述第一转动屏蔽模块转动, 当第一转动屏蔽模块在 永磁体外转动时, 可遮蔽屏蔽件内永磁体的磁力线, 同时, 开放屏蔽件外永 磁体的磁力线, 其次, 当所述永磁体磁力线未被第一转动屏蔽模块屏蔽部分, 第二转动屏蔽模块将进行补位, 屏蔽永磁体磁力线第一转动屏蔽模块未屏蔽 部分, 即永磁体可吸引外屏蔽件 4016、 4017移动到永磁体磁力线中, 随着第 一转动屏蔽模块的不断转动, 使永磁体磁力线不断交错的开放和遮蔽, 从而 使得第二转动屏蔽模块围绕该永磁体在中心轴 4002上转动, 从而配合动力输 出组件的动力输出轮 4012 , 将该机械能输出。 其中, 该动力输入轮 4011可被 一驱动电机带动, 一控制装置可对该驱动电机的转速及转动方向进行控制, 从而控制第一转动屏蔽模块的转速及转动方向, 以使第二转动屏蔽模块可连 续的转动。
优选地, 在本发明中所述的转动, 可以为绕中心轴 4002的旋转, 也可为 绕中心轴 4002的往复摆动。
同样, 在本发明双环形永磁体磁力驱动系统中的外弧形桥接板也可釆用 塑料、 铝合金、 塑料、 炭素纤维等不导磁的材料制成。
驱动系统第五实施方式:
参见图 29至图 32所示, 本发明所述的双环形永磁体磁力驱动系统第五 实施方式包括上述之双环形永磁体屏蔽装置之一, 其中所关于双环形永磁体 屏蔽装置的结构可参上述任何一个实施方式, 在此不再累述。
所述双环形永磁体磁力驱动系统还进一步地包括在上述双环形永磁体屏 蔽装置任意一个实施方式的第一转动屏蔽模块外套设的第二转动屏蔽模块, 所述第一转动屏蔽模块包括至少一个第一屏蔽件 5006、 至少一个第二屏蔽件 5007 , 以及至少一个弧形桥接板 5008, 所述第二转动屏蔽模块包括至少一个 第一外屏蔽件 5016、 至少一个第二外屏蔽件 5017 , 以及至少一个外弧形桥接 板 5018 , 所述外弧形桥接板 5018连接所述第一外屏蔽件 5016和第二外屏蔽 件 5017之间, 可使该第一外屏蔽件 5016、 第二外屏蔽件 5017 , 以及外弧形 桥接板 5018构成一个整体。 所述第二转动屏蔽模块包覆所述第一转动屏蔽模 块设置, 且所述第一外屏蔽件 5016与所述第一屏蔽件 5006同边配合设置, 所述第二外屏蔽件 5017与所述第二屏蔽件 5007 同边配合设置, 所述外弧形 桥接板 5018与所述弧形桥接板 5008同边配合设置, 优选地, 所述第二转动 屏蔽模块与所述第一转动屏蔽模块同中心轴 5002设置。 所述双环形永磁体磁 力驱动系统还包括一动力输出组件, 其中, 该动力输出组件包括一与所述第 二转动屏蔽模块配合之动力输出轮 5012 ,优选地, 该动力输出轮 5012与所述 第二转动屏蔽模块相对固定设置。
值得一提的是: 所述第二转动屏蔽模块中的外屏蔽件 5016 和外屏蔽件 5017为扇形, 其扇形断面呈 I形, 扇形面角度配合所述第一屏蔽件 5006、 第 二屏蔽件 5007设置, 可遮蔽双环形永磁体磁力线。
同时, 所述永磁体驱动系统还包括分别固定安装于所述第二转动屏蔽模 块左右两面的第一遮板 5018和第二遮板 5019 , 其中, 在所述第一遮板 5018 和第二遮板 5019中, 安设有与永磁体屏蔽装置内环形永磁体 5003 同极相对 设置的内弧形永磁体 5020和与永磁体屏蔽装置外环形永磁体 5004同极相对 设置的外弧形永磁体 5020 , 所述第一遮板 5018和第二遮板 5019与所述动力 输出轮相对固定设置。
本实施方式中所述的第一屏蔽件 5007 和第二屏蔽件 5006 的扇形断面 呈 I形, 两个屏蔽件 5006、 5007的扇形面角度均为 45° , 所述第一转动屏蔽 模块包括多个第一屏蔽件和第二屏蔽件, 所述多个第一屏蔽件和第二屏蔽件 相对所述中心轴 5002呈轴对称设计, 且在所述第一屏蔽件和第二屏蔽件上设 有电磁线圈 5022 , 该电磁线圈 5022与所述的内环永磁体 5003和外环永磁体 5004之间的环形槽道对应安装。
在使用本发明所述的双环形永磁体磁力驱动系统进行工作时, 首先, 通 过向电磁线圈 5022通入一个间歇电流, 让电磁线圈 5022产生一个与所述内 环永磁体 5003和所述外环永磁体 5004磁极方向相同的磁场, 以使得第一转 动屏蔽模块的第一屏蔽件和第二屏蔽件磁饱和, 再通过动力输入轮 5011带动 所述第一转动屏蔽模块转动, 当第一转动屏蔽模块在永磁体外转动时, 可遮 蔽屏蔽件内永磁体的磁力线, 同时, 开放屏蔽件外永磁体的磁力线, 其次, 当所述永磁体磁力线未被第一转动屏蔽模块屏蔽时, 所述内环形永磁体 5003 和外环形永磁体 5004与所述内弧形永磁体 5020和外弧形永磁体 5021相互排 斥, 为第一遮板 5018和第二遮板 5019提供了一个斥力, 使得内弧形永磁体 5020和外弧形永磁体 5021被推动并带动第一遮板 5018和第二遮板 5019绕所 述中心轴 5002转动, 其中, 所述第一遮板 5018和第二遮板 5019均通过单项 轴承连接所述中心轴 5002, 以便于所述第一遮板 5018和第二遮板 5019只能 朝一方向转动, 与此同时, 第二转动屏蔽模块还将对第一转动屏蔽模块未屏 蔽的永磁体磁力线部分进行补位, 即是移动到永磁体磁力线中, 这样, 即为 了第一遮板 5018和第二遮板 5019的转动提供了所述内环形永磁体和外环形 永磁体的吸力。 随着第一转动屏蔽模块的不断转动, 使永磁体磁力线不断交 错的开放和遮蔽, 从而使得第二转动屏蔽模块围绕该永磁体在中心轴 5002上 转动, 从而配合动力输出组件的动力输出轮 5012 , 将该机械能输出。 其中, 该动力输入轮 5011可被一驱动电机带动, 一控制装置可对该驱动电机的转速 及转动方向进行控制, 从而控制第一转动屏蔽模块的转速及转动方向, 以使 第二转动屏蔽模块可连续的转动。
值得一提的是: 所述第二转动屏蔽模块中可只包括第一遮板 5018和第二 遮板 5019或第二转动屏蔽模块, 通过第一遮板 5018和第二遮板 5019中的内 弧形永磁体 5020和外弧形永磁体 5021与内环形永磁体 5003和外环形永磁体 5004的斥力或第二转动屏蔽模块与内环形永磁体 5003和外环形永磁体 5004 的吸力, 即可带动所述动力输出轮 5012转动输出。
优选地, 在本发明中所述的转动, 可以为绕中心轴 5002的旋转, 也可为 绕中心轴 5002的往复摆动。
同样, 在本发明双环形永磁体磁力驱动系统中的外弧形桥接板也可釆用 塑料、 铝合金、 塑料、 炭素纤维等不导磁的材料制成。 驱动系统第六实施方式:
参见图 33 (图 33取掉了顶板和一侧架板)、 图 34、 图 36, 本发明所述的 双环永磁体桥式屏蔽的磁力驱动系统第六实施方式包括上述的永磁体屏蔽装 置的第一实施方式或第三实施方式之一 ,其包括一个机架 6001 ,所述机架 6001 上设有一个竖直固定轴 6002 ,与所述竖直固定轴 6002同圓心设置一个内环永 磁体 6003、 一个外环永磁体 6004; 所述内环永磁体 6003 包括一个内环上环 面磁极、 一个内环下环面磁极; 所述外环永磁体 6004包括一个外环上环面磁 极、 一个外环下环面磁极; 所述内环永磁体 6003和所述外环永磁体 6004 固 定在所述机架的底座板 6005上, 所述内环上环面磁极和所述外环上环面磁极 互为异性磁极设置; 所述内环上环面磁极和所述外环上环面磁极上设有一个 桥接屏蔽体 6006, 所述桥接屏蔽体 6006通过转动连接件 6007与所述竖直固 定轴 6002转动安装; 有一个动力输入轮 6008与所述转动连接件 6007固定安 装; 在所述竖直固定轴 6002两侧呈轴对称设置两个动磁体安装架 6009, 所述 动磁体安装 6009架通过竖直滑轨机构 6010与所述机架安装; 所述动磁体安 装架底面上设置一内环段永磁体 6011 , 一外环段永磁体 6012 , 所述内环段永 磁体 6011的下端面磁极与所述内环上环面磁极相斥对应设置, 所述外环段永 磁体 6012的下端面磁极与所述外环上环面磁极相斥对应设置; 所述机架上部 设置动力输出轴 6013 , 所述两个动磁体安装架分别通过一个曲柄连杆机构 6014与所述动力输出轴 6013连接,所述动力输出轴 6013上设置飞轮机构 6015 和动力输出轮 6016。
参见图 33、 图 34所示, 在本实施方式中, 所述机架 6001是一个矩形框 架结构, 由不导磁材料制作(例如铝合金、 不锈钢等), 包括底座板 6005、 中 部的支架板 6017、 顶板 6018和固定在两边的侧架板。 所述底座板 6005和顶 板 6018为相同大小水平放置的长方形板, 中部的支架板 6017板面为工字形, 也可以加工成板面为 X形。 所述底座板 6005与支架板 6017的中心设置安装 圓孔, 竖直固定轴 6002为圓柱形, 其上端安装入支架板 6017的安装圓孔内 固定, 其下端安装入底座板 6005的安装圓孔内固定。
参见图 33、 图 34、 图 38所示,在本实施方式中, 与所述竖直固定轴 6002 同圓心设置一个内环永磁体 6003、 一个外环永磁体 6004。 所述环形永磁体釆 用钕铁硼材料, 所述内环永磁体 6003的外径小于所述外环永磁体 6004的内 径,优选的结构是外环永磁体 6004的内径是内环永磁体 6003的外径的 1.4倍。 所述内环永磁体 6003包括一个内环上环面磁极 6028、 一个内环下环面磁极, 即 N极和 S极; 所述外环永磁体 6004包括一个外环上环面磁极 6029、 一个 外环下环面磁极, 即 N极和 S极; 所述内环上环面磁极 6028和所述外环上环 面磁极 6029互为异性磁极设置; 如果内环上环面磁极 6028设为 N极, 则外 环上环面磁极 6029设为 S极。 如果内环上环面磁极 6028设为 S极, 则外环 上环面磁极 6029设为 N极。 所述内环上环面磁极 6028的宽度是所述内环永 磁体 6003内径的 0.7倍,所述外环上环面磁极 6029的宽度是所述外环永磁体 6004内径的 0.7倍。
参见图 34、 图 36、 图 38, 在本实施方式中, 所述内环上环面磁极 6028 和所述外环上环面磁极 6029设有一个桥接屏蔽体 6006。所述桥接屏蔽体 6006 外形为半圓形, 其半圓形端面直径大于所述外环永磁体 6004的外径。 所述桥 接屏蔽体 6006通过转动连接件 6007与所述竖直固定轴 6002转动安装; 有一 个动力输入轮 6008与所述转动连接件 6007固定安装。 转动连接件 6007釆用 不导磁材料, 呈圓管形状, 下部与桥接屏蔽体 6006固定, 上部固定安装动力 输入轮 6008 , 通过上轴承和下轴承与竖直固定轴 6002转动安装。 所述桥接屏 蔽体 6006的转速最少达到 1000转 /分钟, 最高转速能达到 3000转 /分钟。 所 述桥接屏蔽体 6006每转动 180°后至少间歇 0.05秒。本实施方式中,动力输入 轮 6008釆用同步带轮。 本实施方式可以外设一个驱动电机与同步带轮动力连 接, 外设的控制电路与驱动电机控制连接, 控制电路属于现有技术, 控制电 路的作用是控制驱动电机间歇转动, 由驱动电机带动桥接屏蔽体连续转动。
在本实施方式中, 所述桥接屏蔽体 6006釆用多层硅钢片叠压结构, 所述 多层硅钢片叠压结构由一硅钢金属组织连续延伸的硅钢薄板材构成; 所述桥 接屏蔽体 6006的厚度为 0.5 - 20毫米, 最优选的厚度是 3毫米。 所述硅钢片 叠压结构的硅钢片层数为 3 - 80层。所述硅钢片的厚度在 0.1 ~ 1.5mm范围内, 最优选的厚度是 0.3mm, 最优选的层数是 10层。 所述桥接屏蔽体 6006与所 述内环上环面磁极和外环上环面磁极之间的间隙为 0.5 - 3毫米。 在本实施方 式中可以在 0.5 - 3毫米范围内任意选择, 最优选的间隙是 1毫米。
在本实施方式中, 所述桥接屏蔽体 6006的外沿设有一个圓环形支承环, 桥接屏蔽体与支承环加工成一体。 具体的制作方式是将一硅钢薄板材坯料使 用切裁成形工艺切裁成如图 36所显示的形状, 整体加工使桥接屏蔽体结构更 加稳固, 在高速连续转动中也更加平稳。
参见图 35、 图 39 , 在本实施方式中, 有一个环形轴承机构与所述桥接屏 蔽体 6006底部安装, 所述环形轴承机构固定在所述底座板 6005上。 所述环 形轴承机构为圓环式机械轴承, 圓环式机械轴承包括固定在所述底座板上的 静环 6019、 静环上的保持架 6020 , 上动环 6021 ; 所述上动环 6021与所述桥 接屏蔽体 6006的圓环形支承环加工成一体。 环形轴承机构可以釆用现有技术 公开的内容, 此处不作详述。
在本实施方式中, 为了降低桥接屏蔽体 6006的转动阻力, 所述桥接屏蔽 体上设置电磁发生装置。 所述的电磁发生装置包括套装在桥接屏蔽体上的电 磁线圈、 向电磁线圈提供脉冲电流的脉冲发生器、 控制电路, 当脉冲发生器 向电磁线圈输入脉冲电流时, 电磁线圈就产生一个磁场。 使桥接屏蔽体达到 瞬间磁饱和, 将磁场对桥接屏蔽体的运动阻力消弱, 降低输入功率。 电磁发 生装置属于现有技术的范畴, 可以釆用现有技术中公开的内容。
参见图 33、 图 34、 图 35、 图 37所示, 在本实施方式中, 在竖直固定轴 6002两侧呈轴对称设置两个动磁体安装架 6022 , 即左动磁体安装架和右动磁 体安装架; 在竖直固定轴 6002两侧各设置一套竖直滑轨机构 6023 , 所述动磁 体安装架 6022通过竖直滑轨机构与所述机架安装; 所述竖直滑轨机构包括与 所述竖直固定轴平行设置的圓柱形导轨 6024、与圓柱形导轨 6024滑动套装的 支 套 6025; 所述圓柱形导轨 6024上端固定在所述机架中部的支架板 6017 上, 下端固定在所述底座板 6002 上。 所述支承套与所述动磁体安装架 6022 固定。 所述支承套通过直线轴承与所述圓柱形导轨滑动安装。
参见图 34、 图 37 , 在本实施方式中, 所述动磁体安装架 6022底面上设 置一内环段永磁体 6026、 一外环段永磁体 6027 , 所述内环段永磁体 6026釆 用钕铁硼材料,内环段永磁体 6027的下端面磁极对应的圓心角为 100° - 140° , 本实施方式中选取的圓心角为 140°。 所述内环段永磁体 6026的内 (半)径是 所述内环永磁体 6003内 (直)径的 0.5倍, 所述内环段永磁体 6026的宽度和 内环永磁体 6003的宽度相同。 所述外环段永磁体 6027釆用钕铁硼材料, 外 环段永磁体 6027的下端面磁极对应的圓心角为 100° - 140°, 本实施方式中选 取的圓心角为 140°。 所述外环段永磁体 6027的内 (半)径是所述外环永磁体 6004内 (直)径的 0.5倍, 所述外环段永磁体 6027的宽度和外环永磁体 6004 的宽度相同。
参见图 37、 图 38所示, 在本实施方式中, 所述内环段永磁体 6026的下 端面磁极与所述内环上环面磁极相斥对应设置, 所述外环段永磁体 6027的下 端面磁极与所述外环上环面磁极相斥对应设置; 如果内环上环面磁极设为 N 极, 则内环段永磁体的下端面磁极也设为 N极; 如果外环上环面磁极设为 S 极, 则外环段永磁体的下端面磁极也设为 S极。
参见图 33、 图 34所示, 在本实施方式中, 所述机架 6001上部设置动力 输出轴 6013 ,所述动力输出轴 6013通过支座安装在所述机架的顶板 6018上, 动力输出轴 6013通过轴承与支座转动安装。 所述两个动磁体安装架 6022分 别通过一个曲柄连杆机构 6014与所述动力输出轴 6013连接, 将竖直方向运 动转化为动力输出轴 6013的旋转运动。 两个动磁体安装架 6022的安装关系 是, 所述动力输出轴 6013—端的曲柄连杆机构处于上止点位置, 另一端的曲 柄连杆机构处于下止点位置。 所述动力输出轴 6013上设置飞轮机构 6015和 动力输出轮 6016。
参见图 33、 图 34、 图 40所示, 在本实施方式中, 当桥接屏蔽体 6006转 动到位于所述环形永磁体和左动磁体安装架之间时, 所述内环上环面磁极和 外环上环面磁极之间的左部磁场被屏蔽, 左动磁体安装架沿竖直滑轨机构向 下运动至下止点, 右动磁体安装架上的动磁体受到内环上环面磁极和外环上 环面磁极之间的右部磁场斥力作用, 右动磁体安装架沿竖直滑轨机构向上运 动至上止点。 当桥接屏蔽体转动到位于所述环形永磁体和右动磁体安装架之 间时, 所述内环上环面磁极和外环上环面磁极之间的右部磁场被屏蔽, 如图 40所示。 右动磁体安装架沿竖直滑轨机构向下运动至下止点, 左动磁体安装 架上的动磁体受到内环上环面磁极和外环上环面磁极之间的左部磁场斥力作 用, 左动磁体安装架沿竖直滑轨机构向上运动至上止点。 动磁体安装架通过 竖直滑轨机构沿竖直方向往复运动。 通过动力输出轮将动力输出。
本发明利用连续转动的桥接屏蔽体改变内环上环面磁极和外环上环面磁 极之间的磁场强度, 实现持续不断的磁动力输出。
值得一提的是: 在本实施方式中, 所述环形轴承机构釆用不同于实施方 式一公开的结构, 所述环形轴承机构为圓环式气动轴承。 本实施方式中所述 的气动轴承也可以称为气浮导轨, 圓环形的气动轴承体内通入压缩空气, 气 动轴承体上开设多个压缩气体喷孔, 圓环式气动轴承是与气动轴承体对应设 置的气浮环片, 所述浮环片与所述的蝶形屏蔽体底部固定连接, 二者之间保 持较小间隙。 气浮导轨属于现有技术, 参见北京牧风科技有限公司公开的气 浮导轨技术内容。
本发明是永磁体屏蔽装置还可应用于发电系统, 除上述揭露的发电系统 实施方式外, 本说明书还包括应用本发明永磁体屏蔽装置的另一发电系统: 参见图 41、 图 42、 图 43、 图 44 (图 41是取掉机架的顶板和中支架板的 情况), 本发明的双环永磁体蝶形屏蔽的桥式发电装置, 有一个机架 7001 , 所 述机架上设有一个竖直固定轴 7002 ,与所述竖直固定轴 7002同圓心设置一个 内环永磁体 7003、 一个外环永磁体 7004; 所述内环永磁体 7003 包括一个内 环上磁极面 7012、 一个内环下磁极面; 所述外环永磁体 7004包括一个外环上 磁极面 7013、 一个外环下磁极面; 所述内环永磁体 7003 和所述外环永磁体 7004固定在所述机架 7001的底座板 7011上,所述内环上磁极面 7012和所述 外环上磁极面 7013互为异性磁极设置; 所述内环上磁极面 7012和所述外环 上磁极面 7013上设有至少一个蝶形屏蔽体 7005 , 所述蝶形屏蔽体 7005通过 转动连接件 7006与所述竖直固定轴 7002转动安装; 所述机架 7001上设有感 应发电装置 7007 , 该感应发电装置 7007与内环上磁极面 7012和外环上磁极 面 7013上对应设置; 有一个动力输入轮与所述转动连接件固定安装。
在本实施方式中, 所述机架由多个固定柱和多个支架板构成, 机架 7001 釆用不导磁材料(例如铝合金、 不锈钢等)。 竖直固定轴 7002 两端安装在机 架的顶板 7009和底座板 7011上。 与所述竖直固定轴 7002同圓心设置一个内 环永磁体 7003、 一个外环永磁体 7004。 所述内环永磁体 7003的外径小于所 述外环永磁体 7004的内径。 所述内环永磁体 7003和所述外环永磁体 7004固 定在底座板 7011上。优选的结构是外环永磁体 7004的内径是内环永磁体 7003 的外径的 1.4倍。
参见图 43 , 在本实施方式中, 所述内环永磁体 7003包括一个内环上磁极 面 7012、 一个内环下磁极面, 即 N极面和 S极面; 所述外环永磁体 7004包 括一个外环上磁极面 7013、 一个外环下磁极面, 即 N极面和 S极面; 所述内 环上磁极面 7012和所述外环上磁极面 7013互为异性磁极设置; 如果内环上 磁极面 7012设为 N极, 则外环上磁极面 7013设为 S极。 如果内环上磁极面 7012设为 S极, 则外环上磁极面 7013设为 N极。 内环永磁体 7003和外环永 磁体 7004固定在底座板 7011上。 固定方式可以釆用现有技术中的安装方式, 此处不作详述。
参见图 41、 图 43、 图 46, 在本实施方式中, 所述内环上磁极面 7012和 所述外环上磁极面 7013 上设有至少一个蝶形屏蔽体 7005 , 所述蝶形屏蔽体 7005通过转动连接件 7006与所述竖直固定轴 7002转动安装; 所述蝶形屏蔽 体 7005上设有转动连接件, 转动连接件釆用不导磁材料, 呈圓管形状, 下部 与蝶形屏蔽体固定, 上部设置动力输入轮 7016 , 通过上轴承和下轴承与竖直 固定轴转动安装。 本实施方式中, 动力输入轮釆用皮带轮。 本实施方式可以 外设一个驱动电机与皮带轮动力连接, 驱动蝶形屏蔽体 7005连续转动。
参见图 45、 图 46 , 在本实施方式中, 所述蝶形屏蔽体 7005 包括呈轴对 称设置的一对扇形屏蔽板 7014 ,所述扇形屏蔽板 7014的扇形面的圓心角 a可 以在 60。 - 90。的范围内选取。 在本实施方式中, 扇形屏蔽板 7014的扇形面的 最佳圓心角为 90°
在本实施方式中, 所述蝶形屏蔽体 7005釆用多层硅钢片叠压结构, 所述 多层硅钢片叠压结构由一硅钢金属组织连续延伸的硅钢薄板材构成; 所述屏 蔽体的厚度为 0.5 - 20毫米, 所述硅钢片叠压结构的硅钢片层数为 3 - 80层。 所述硅钢片的厚度在 0.1 ~ 1.5mm范围内, 最优选的厚度是 0.3mm, 最优选的 层数是 10层。。 所述扇形屏蔽板与所述的内环上磁极面和所述外环上磁极面 之间的间隙为 0.5 - 3毫米。 在本实施方式中可以在 0.5 - 3毫米范围内任意选 择, 最优选的间隙是 1毫米。
在本实施方式中, 所述蝶形屏蔽体 7005 的外沿设有一个圓环形支承环 7015 , 所述圓环形支承环 7015与所述蝶形屏蔽体 7005 固定在一起; 蝶形屏 蔽体 7005与支承环 7015也可以加工成一体。 具体的制作方式是将一硅钢薄 板材坯料使用切裁成形工艺切裁成如图 46所显示的形状, 整体加工使蝶形屏 蔽体结构更加稳固, 在高速连续转动中也更加平稳。
参见图 44 , 在本实施方式中, 所述环形轴承机构为圓环式机械轴承, 圓 环式机械轴承包括固定在所述底座板 7011 上的静环 7021、 静环上的保持件 7022 ,上动环;所述上动环与所述蝶形屏蔽体的圓环形支承环 7015—体加工。 圓环式机械轴承可以釆用现有技术公开的内容, 此处不作详述。
参见图 42、图 47 ,在本实施方式中,感应发电装置 7007固定在机架 7001 中部的中支架板 7010上, 所述感应发电装置 7007 包括呈轴对称设置的一对 导磁芯板 7017 , 所述导磁芯板包括一个内扇形工作面 7018、 一个外扇形工作 面 7019、 两扇形工作面之间的桥接导磁板 7020。 所述内扇形工作面 7018与 所述内环上磁极面 7012对应设置, 所述外扇形工作面 7019与所述外环上磁 极面 7013对应设置。 所述导磁芯板 7017上设置发电线圈 (图中未显示)。
本发明利用连续转动的屏蔽体改变内环上磁极面和外环上磁极面之间的 磁场强度, 感应发电装置感应发电。
值得一提的是: 本实施方式中所述的气动轴承也可以称为气浮导轨, 圓 环形的气动轴承体内通入压缩空气, 气动轴承体上开设多个压缩气体喷孔, 圓环式气动轴承是与气动轴承体对应设置的气浮环片, 所述浮环片与所述的 蝶形屏蔽体底部固定连接, 二者之间保持较小间隙。 气浮导轨属于现有技术, 本发明利用连续转动的屏蔽体改变内环上磁极面和外环上磁极面之间的 磁场强度, 感应发电装置感应发电。
本发明利用连续转动的桥接屏蔽体改变内环上环面磁极和外环上环面磁 极之间的磁场强度, 实现持续不断的磁动力输出。
尽管为示例目的, 已经公开了本发明的优选实施方式, 但是本领域的普 通技术人员将意识到, 在不脱离由所附的权利要求书公开的本发明的范围和 精神的情况下, 各种改进、 增加以及取代是可能的。

Claims

权 利 要求
1、 一种永磁体屏蔽装置, 包括一支承架、 与所述支承架保持相对静止的第 一永磁体和第二永磁体、 一用于覆盖所述第一永磁体和第二永磁体的转动屏蔽 模块、 以及一驱动所述转动屏蔽模块相对所述第一永磁体和第二永磁体转动的 驱动模块, 所述转动屏蔽模块设有至少一个使所述第一永磁体和第二永磁体磁 力线穿过的缺口, 其特征在于: 所述转动屏蔽模块包括至少一个屏蔽件, 所述 屏蔽件可部分覆盖第一永磁体的 N极面和第二永磁体的 S极面。
2、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件在同 一平面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
3、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏蔽 装置还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁体 与所述中心轴同轴并设置于所述支承架上。
4、 根据权利要求 3所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件在所 述中心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
5、 根据权利要求 3所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏蔽 装置还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在 所述中心轴上, 所驱动模块连接所述转动连接件。
6、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件上设 有电磁发生装置。
7、 根据权利要求 6所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生模 块在通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述电 磁发生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向相 同。
8、 根据权利要求 7所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生模 块配合所述永磁体作用使得所述屏蔽件至磁饱和。 9、 根据权利要求 8所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生模 块包括一加载输入电流的电磁线圈 , 所述输入电流为一间歇电流。
10、 根据权利要求 1至 9中任意一项所述的永磁体屏蔽装置, 其特征在于: 所述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方 向充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
11、 根据权利要求 10所述的永磁体屏蔽装置, 其特征在于: 所述内环永磁 体和所述外环永磁体同心设置于所述支承架上。
12、 根据权利要求 1 所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件厚 度在 0.5~15mm之间。
13、 一种永磁体屏蔽装置, 包括一支承架、 与所述支承架保持相对静止的 第一永磁体和第二永磁体、 一用于覆盖所述第一永磁体和第二永磁体的转动屏 蔽模块、 以及一驱动所述转动屏蔽模块相对所述第一永磁体和第二永磁体转动 的驱动模块, 所述转动屏蔽模块设有至少一个使所述第一永磁体和第二永磁体 磁力线穿过的缺口, 其特征在于: 所述转动屏蔽模块至少包括一第一屏蔽件和 一第二屏蔽件, 所述第一屏蔽件可部分覆盖第一永磁体的 N极面和第二永磁体 的 S极面; 所述第二屏蔽件可部分覆盖第一永磁体的 S极面和第二永磁体的 N 极面, 所述第一屏蔽件受所述第一永磁体 N极面和第二永磁体 S极面的吸力与 所述第二屏蔽件受所述第一永磁体的 S极面和第二永磁体的 N极面吸力相等。
14、 根据权利要求 13所述的永磁体屏蔽装置, 其特征在于: 所述第一永磁 体 N极面和所述第二永磁体 S极面位于同一平面, 所述第一永磁体 S极面和所 述第二永磁体 N极面位于同一平面。
15、 根据权利要求 14所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 件距所述第一永磁体 N极面和所述第二永磁体 S极面所处平面距离和所述第二 屏蔽件距所述第一永磁体 S 极面和所述第二永磁体 N极面所处平面距离均为 0.1~3mm。
16、 根据权利要求 13所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁 体与所述中心轴同轴并设置于所述支承架上。
17、 根据权利要求 16所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 件在所述中心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面;所述第二屏蔽件在所述中心轴轴向上部分覆盖所述第一永磁体的 S极面 和所述第二永磁体的 N极面。
18、 根据权利要求 16所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装 在所述中心轴上, 所驱动模块连接所述转动连接件。
19、 根据权利要求 13所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 件和所述第二屏蔽件上设有电磁发生装置。
20、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块在通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述 电磁发生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向 相同。
21、 根据权利要求 20所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块配合所述永磁体作用使得所述屏蔽件至磁饱和。
22、 根据权利要求 21所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块包括一加载输入电流的电磁线圈, 所述输入电流为一间歇电流。
23、 根据权利要求 13至 22中任意一项所述的永磁体屏蔽装置, 其特征在 于: 所述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端 面方向充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
24、 根据权利要求 23所述的永磁体屏蔽装置, 其特征在于: 所述内环永磁 体和所述外环永磁体同心设置于所述支承架上。
25、 根据权利要求 13所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件厚 度在 0.5~15mm之间。 26、 一种永磁体屏蔽装置, 包括一支承架、 与所述支承架保持相对静止的 第一永磁体和第二永磁体、 一用于覆盖所述第一永磁体和第二永磁体的转动屏 蔽模块、 以及一驱动所述转动屏蔽模块相对所述第一永磁体和第二永磁体转动 的驱动模块, 所述转动屏蔽模块设有至少一个使所述第一永磁体和第二永磁体 磁力线穿过的缺口, 其特征在于: 所述转动屏蔽模块包括至少一个屏蔽件, 所 述屏蔽件由多层导磁体堆叠构成。
27、 根据权利要求 26所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件可 部分覆盖第一永磁体的 N极面和第二永磁体的 S极面。
28、 根据权利要求 27所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件在 同一平面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
29、 根据权利要求 27所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁 体与所述中心轴同轴并设置于所述支承架上。
30、 根据权利要求 29所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件在 所述中心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极 面。
31、 根据权利要求 29所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装 在所述中心轴上, 所驱动模块连接所述转动连接件。
32、 根据权利要求 26所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件上 设有电磁发生装置。
33、 根据权利要求 32所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块在通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述 电磁发生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向 相同。
34、 根据权利要求 33所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块配合所述永磁体作用使得所述屏蔽件至磁饱和。
35、 根据权利要求 34所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块包括一加载输入电流的电磁线圈, 所述输入电流为一间歇电流。
36、 根据权利要求 26至 35 中任意一项所述的永磁体屏蔽装置, 其特征在 于: 所述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端 面方向充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
37、 根据权利要求 26所述的永磁体屏蔽装置, 其特征在于: 所述内环永磁 体和所述外环永磁体同心设置于所述支承架上。
38、 根据权利要求 26所述的永磁体屏蔽装置, 其特征在于: 所述屏蔽件厚 度在 0.5~15mm之间。
39、 一种发电系统, 包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括一 支承架、 与所述支承架保持相对静止的第一永磁体和第二永磁体、 一用于覆盖 所述第一永磁体和第二永磁体的转动屏蔽模块、 以及一驱动所述转动屏蔽模块 相对所述第一永磁体和第二永磁体转动的驱动模块, 所述转动屏蔽模块设有至 少一个使所述第一永磁体和第二永磁体磁力线穿过的缺口; 所述发电系统还包 括至少一个配合所述永磁体屏蔽装置进行发电并输出电力的感应发电装置, 其 特征在于: 所述转动屏蔽模块包括至少一个屏蔽件, 所述屏蔽件可部分覆盖第 一永磁体的 N极面和第二永磁体的 S极面。
40、 根据权利要求 39所述的发电系统, 其特征在于: 所述屏蔽件在同一平 面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
41、 根据权利要求 39所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁体与所 述中心轴同轴并设置于所述支承架上。
42、 根据权利要求 41所述的发电系统, 其特征在于: 所述屏蔽件在所述中 心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
43、 根据权利要求 41所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所述 中心轴上, 所驱动模块连接所述转动连接件。
44、 根据权利要求 39所述的发电系统, 其特征在于: 所述屏蔽件上设有电 磁发生装置。
45、 根据权利要求 44所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述电磁发 生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向相同。
46、 根据权利要求 45所述的发电系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述屏蔽件至磁饱和。
47、 根据权利要求 46所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁线圈, 所述输入电流为一间歇电流。
48、 根据权利要求 39至 47 中任意一项所述的发电系统, 其特征在于: 所 述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方向 充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
49、 根据权利要求 48所述的发电系统, 其特征在于: 所述内环永磁体和所 述外环永磁体同心设置于所述支承架上。
50、 根据权利要求 39 所述的发电系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
51、 一种发电系统, 包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括一 支承架、 与所述支承架保持相对静止的第一永磁体和第二永磁体、 一用于覆盖 所述第一永磁体和第二永磁体的转动屏蔽模块、 以及一驱动所述转动屏蔽模块 相对所述第一永磁体和第二永磁体转动的驱动模块, 所述转动屏蔽模块设有至 少一个使所述第一永磁体和第二永磁体磁力线穿过的缺口; 所述发电系统还包 括至少一个配合所述永磁体屏蔽装置进行发电并输出电力的感应发电装置, 其 特征在于: 所述转动屏蔽模块至少包括一第一屏蔽件和一第二屏蔽件, 所述第 一屏蔽件可部分覆盖第一永磁体的 N极面和第二永磁体的 S极面; 所述第二屏 蔽件可部分覆盖第一永磁体的 S极面和第二永磁体的 N极面, 所述第一屏蔽件 受所述第一永磁体 N极面和第二永磁体 S极面的吸力与所述第二屏蔽件受所述 第一永磁体的 S极面和第二永磁体的 N极面吸力相等。
52、 根据权利要求 51所述的发电系统, 其特征在于: 所述第一永磁体 N极 面和所述第二永磁体 S极面位于同一平面, 所述第一永磁体 S极面和所述第二 永磁体 N极面位于同一平面。
53、 根据权利要求 52所述的发电系统, 其特征在于: 所述第一屏蔽件距所 述第一永磁体 N极面和所述第二永磁体 S极面所处平面距离和所述第二屏蔽件 距所述第一永磁体 S极面和所述第二永磁体 N极面所处平面距离均为 0. l~3mm。
54、 根据权利要求 51所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁体与所 述中心轴同轴并设置于所述支承架上。
55、 根据权利要求 54所述的发电系统, 其特征在于: 所述第一屏蔽件在所 述中心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面; 所述第二屏蔽件在所述中心轴轴向上部分覆盖所述第一永磁体的 S极面和所述 第二永磁体的 N极面。
56、 根据权利要求 54所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所述 中心轴上, 所驱动模块连接所述转动连接件。
57、 根据权利要求 51所述的发电系统, 其特征在于: 所述第一屏蔽件和所 述第二屏蔽件上设有电磁发生装置。
58、 根据权利要求 57所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述电磁发 生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向相同。
59、 根据权利要求 58所述的发电系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述屏蔽件至磁饱和。 60、 根据权利要求 59所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁线圈, 所述输入电流为一间歇电流。
61、 根据权利要求 51至 60中任意一项所述的发电系统, 其特征在于: 所 述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方向 充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
62、 根据权利要求 61所述的发电系统, 其特征在于: 所述内环永磁体和所 述外环永磁体同心设置于所述支承架上。
63、 根据权利要求 51 所述的发电系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
64、 一种发电系统, 包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括一 支承架、 与所述支承架保持相对静止的第一永磁体和第二永磁体、 一用于覆盖 所述第一永磁体和第二永磁体的转动屏蔽模块、 以及一驱动所述转动屏蔽模块 相对所述第一永磁体和第二永磁体转动的驱动模块, 所述转动屏蔽模块设有至 少一个使所述第一永磁体和第二永磁体磁力线穿过的缺口; 所述发电系统还包 括至少一个配合所述永磁体屏蔽装置进行发电并输出电力的感应发电装置, 其 特征在于: 所述转动屏蔽模块包括至少一个屏蔽件, 所述屏蔽件由多层导磁体 堆叠构成。
65、 根据权利要求 64所述的发电系统, 其特征在于: 所述屏蔽件可部分覆 盖第一永磁体的 N极面和第二永磁体的 S极面。
66、 根据权利要求 65所述的发电系统, 其特征在于: 所述屏蔽件在同一平 面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
67、 根据权利要求 65所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁体与所 述中心轴同轴并设置于所述支承架上。
68、 根据权利要求 67所述的发电系统, 其特征在于: 所述屏蔽件在所述中 心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。 69、 根据权利要求 67所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所述 中心轴上, 所驱动模块连接所述转动连接件。
70、 根据权利要求 64所述的发电系统, 其特征在于: 所述屏蔽件上设有电 磁发生装置。
71、 根据权利要求 70所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述电磁发 生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向相同。
72、 根据权利要求 71所述的发电系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述屏蔽件至磁饱和。
73、 根据权利要求 72所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁线圈, 所述输入电流为一间歇电流。
74、 根据权利要求 64至 73 中任意一项所述的发电系统, 其特征在于: 所 述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方向 充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
75、 根据权利要求 74所述的发电系统, 其特征在于: 所述内环永磁体和所 述外环永磁体同心设置于所述支承架上。
76、 根据权利要求 64 所述的发电系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
77、 一种驱动系统, 包括一机架和一永磁体屏蔽装置, 所述永磁体屏蔽装 置包括第一永磁体和第二永磁体、 一用于覆盖所述第一永磁体和所述第二永磁 体的转动屏蔽模块、 以及一驱动所述转动屏蔽模块相对所述第一永磁体和第二 永磁体转动的动力输入模块, 所述转动屏蔽模块设有至少一个使所述第一永磁 体和第二永磁体磁力线穿过的缺口; 其特征在于: 所述驱动系统还包括一运动 件, 以及一输出所述运动件机械能的动力输出装置, 所述第一永磁体 N极面与 S极面至少其中一侧设有一与所述第一永磁体同极相对的第一动磁体 ,且所述第 一永磁体和所述第一动磁体其中之一设置于所述运动件上, 另一设置于所述机 架上。
78、 根据权利要求 77所述的驱动系统, 其特征在于: 所述运动件上设有与 所述第一永磁体位置相配合的至少一个第一动磁体, 所述第一动磁体与位置相 配合的第一永磁体两极面同极相对设置, 且所述第一动磁体相对所述第一永磁 体活动设置。
79、 根据权利要求 77或 78所述的驱动系统, 其特征在于: 所述转动屏蔽 模块包括至少一个屏蔽件, 所述屏蔽件可部分覆盖第一永磁体的 N极面和第二 永磁体的 S极面。
80、 根据权利要求 79所述的驱动系统, 其特征在于: 所述屏蔽件在同一平 面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
81、 根据权利要求 79所述的驱动系统, 其特征在于: 所述永磁体屏蔽装置 还包括一固设于所述机架上中心轴, 所述第一永磁体和所述第二永磁体与所述 中心轴同轴并设置于所述机架上。
82、 根据权利要求 81所述的驱动系统, 其特征在于: 所述屏蔽件在所述中 心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
83、 根据权利要求 81所述的驱动系统, 其特征在于: 所述永磁体屏蔽装置 还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所述 中心轴上, 所驱动模块连接所述转动连接件。
84、 根据权利要求 77所述的驱动系统, 其特征在于: 所述屏蔽件上设有电 磁发生装置。
85、 根据权利要求 84所述的驱动系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述电磁发 生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向相同。
86、 根据权利要求 85所述的驱动系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述屏蔽件至磁饱和。 87、 根据权利要求 86所述的驱动系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁线圈, 所述输入电流为一间歇电流。
88、 根据权利要求 77至 87 中任意一项所述的驱动系统, 其特征在于: 所 述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方向 充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
89、 根据权利要求 88所述的驱动系统, 其特征在于: 所述内环永磁体和所 述外环永磁体同心设置于所述支承架上。
90、 根据权利要求 77 所述的驱动系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
91、 一种驱动系统, 包括一机架和一永磁体屏蔽装置, 所述永磁体屏蔽装 置包括第一永磁体和第二永磁体、 一用于覆盖所述第一永磁体和所述第二永磁 体的转动屏蔽模块、 以及一驱动所述转动屏蔽模块相对所述第一永磁体和第二 永磁体转动的动力输入模块, 所述转动屏蔽模块设有至少一个使所述第一永磁 体和第二永磁体磁力线穿过的缺口; 其特征在于: 所述驱动系统还包括一运动 件, 以及一输出所述运动件机械能的动力输出装置, 所述第一永磁体 N极面与 S极面至少其中一侧设有一与所述第一永磁体位置相配合的第一导磁体体,且所 述第一永磁体和所述第一导磁体其中之一设置于所述运动件上, 另一设置于所 述机架上。
92、 根据权利要求 91所述的驱动系统, 其特征在于: 所述运动件上设有与 所述第一永磁体位置相配合的至少一个第一导磁体, 所述第一导磁体相对所述 第一永磁体活动设置。
93、 根据权利要求 91或 92所述的驱动系统, 其特征在于: 所述转动屏蔽 模块包括至少一个屏蔽件, 所述屏蔽件可部分覆盖第一永磁体的 N极面和第二 永磁体的 S极面。
94、 根据权利要求 93所述的驱动系统, 其特征在于: 所述屏蔽件在同一平 面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。 95、 根据权利要求 93所述的驱动系统, 其特征在于: 所述永磁体屏蔽装置 还包括一固设于所述机架上中心轴, 所述第一永磁体和所述第二永磁体与所述 中心轴同轴并设置于所述机架上。
96、 根据权利要求 95所述的驱动系统, 其特征在于: 所述屏蔽件在所述中 心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
97、 根据权利要求 95所述的驱动系统, 其特征在于: 所述永磁体屏蔽装置 还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所述 中心轴上, 所驱动模块连接所述转动连接件。
98、 根据权利要求 91至 97 中任意一项所述的驱动系统, 其特征在于: 所 述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方向 充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
99、 根据权利要求 98所述的驱动系统, 其特征在于: 所述内环永磁体和所 述外环永磁体同心设置于所述支承架上。
100、 根据权利要求 91 所述的驱动系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
101、 一种驱动系统, 包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括一 支承架、 与所述支承架保持相对静止的第一永磁体和第二永磁体、 一用于覆盖 所述第一永磁体和第二永磁体的第一转动屏蔽模块、 以及一驱动所述第一转动 屏蔽模块相对所述第一永磁体和第二永磁体转动的动力输入模块, 所述第一转 动屏蔽模块设有至少一个使所述第一永磁体和所述第二永磁体磁力线穿过的缺 口; 其特征在于: 所述驱动系统还包括一第二转动屏蔽模块, 以及一连接所述 第二转动屏蔽模块的动力输出装置, 所述第二转动屏蔽模块套设于所述第一转 动屏蔽模块外围, 且所述第二转动屏蔽模块设有至少一个使所述第一永磁体和 所述第二永磁体磁力线穿过的缺口。
102、 根据权利要求 101所述的驱动系统, 其特征在于: 所述第一转动屏蔽 模块和所述第二转动屏蔽模块同轴设置。 104、 根据权利要求 103所述的驱动系统, 其特征在于: 所述第一转动屏蔽 模块包括至少一个屏蔽件, 所述屏蔽件可部分覆盖第一永磁体的 N极面和第二 永磁体的 S极面。
105、 根据权利要求 104所述的驱动系统, 其特征在于: 所述屏蔽件在同一 平面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
106、 根据权利要求 104所述的驱动系统, 其特征在于: 所述永磁体屏蔽装 置还包括一固设于所述支承架上中心轴, 所述第一永磁体和所述第二永磁体与 所述中心轴同轴并设置于所述支承架上。
107、 根据权利要求 106所述的驱动系统, 其特征在于: 所述屏蔽件在所述 中心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
108、 根据权利要求 106所述的驱动系统, 其特征在于: 所述永磁体屏蔽装 置还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所 述中心轴上, 所驱动模块连接所述转动连接件。
109、 根据权利要求 101至 108中任意一项所述的驱动系统, 其特征在于: 所述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方 向充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
110、 根据权利要求 109所述的驱动系统, 其特征在于: 所述内环永磁体和 所述外环永磁体同心设置于所述支承架上。
111、 根据权利要求 101所述的驱动系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
112、 一种驱动系统, 包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括一 支承架、 与所述支承架保持相对静止的第一永磁体和第二永磁体、 一用于覆盖 所述第一永磁体和第二永磁体的第一转动屏蔽模块、 以及一驱动所述第一转动 屏蔽模块相对所述第一永磁体和第二永磁体转动的动力输入模块, 所述第一转 动屏蔽模块设有至少一个使所述第一永磁体和所述第二永磁体磁力线穿过的缺 口; 其特征在于: 所述驱动系统还包括一设于所述第一永磁体和第二永磁体端 面一侧遮板, 以及一连接所述遮板的动力输出装置, 所述遮板在靠近所述第一 永磁体和第二永磁体一面上设有一个与所述第一永磁体位置对应且同极相对的 第三永磁体。
113、 根据权利要求 112所述的驱动系统, 其特征在于: 所述驱动系统还包 括一第二转动屏蔽模块 , 以及一连接所述第二转动屏蔽模块的动力输入装置 , 所述第二转动屏蔽模块套设于所述第一转动屏蔽模块外围, 且所述第二转动屏 蔽模块设有至少一个使所述第一永磁体和所述第二永磁体磁力线穿过的缺口。
114、 根据权利要求 113所述的驱动系统, 其特征在于: 所述遮板设置于所 述第二转动屏蔽模块轴向。
115、 根据权利要求 112所述的驱动系统, 其特征在于: 所述转动屏蔽模块 包括至少一个屏蔽件, 所述屏蔽件可部分覆盖第一永磁体的 N极面和第二永磁 体的 S极面。
116、 根据权利要求 115所述的驱动系统, 其特征在于: 所述屏蔽件在同一 平面上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
117、 根据权利要求 115所述的驱动系统, 其特征在于: 所述永磁体屏蔽装 置还包括一固设于所述机架上中心轴, 所述第一永磁体和所述第二永磁体与所 述中心轴同轴并设置于所述机架上。
118、 根据权利要求 117所述的驱动系统, 其特征在于: 所述屏蔽件在所述 中心轴轴向上部分覆盖所述第一永磁体的 N极面和所述第二永磁体的 S极面。
119、 根据权利要求 117所述的驱动系统, 其特征在于: 所述永磁体屏蔽装 置还包括一转动连接件, 所述转动屏蔽模块通过所述转动连接件活动安装在所 述中心轴上, 所驱动模块连接所述转动连接件。
120、 根据权利要求 77 所述的驱动系统, 其特征在于: 所述屏蔽件上设有 电磁发生装置。
121、 根据权利要求 120所述的驱动系统, 其特征在于: 所述电磁发生模块 在通电状态下产生磁场的 N极与所述第一永磁体 N极磁极方向相同, 所述电磁 发生模块在通电状态下产生磁场的 S极与所述第二永磁体的 S极磁极方向相同。
122、 根据权利要求 121所述的驱动系统, 其特征在于: 所述电磁发生模块 配合所述永磁体作用使得所述屏蔽件至磁饱和。
123、 根据权利要求 122所述的驱动系统, 其特征在于: 所述电磁发生模块 包括一加载输入电流的电磁线圈 , 所述输入电流为一间歇电流。
124、 根据权利要求 112至 123中任意一项所述的驱动系统, 其特征在于: 所述第一永磁体为一端面方向充磁的内环永磁体, 所述第二永磁体为一端面方 向充磁的外环永磁体, 所述内环永磁体的外径小于所述外环永磁体的内径。
125、 根据权利要求 124所述的驱动系统, 其特征在于: 所述内环永磁体和 所述外环永磁体同心设置于所述支承架上。
126、 根据权利要求 115所述的驱动系统, 其特征在于: 所述屏蔽件厚度在 0.5~15mm之间。
PCT/CN2010/072721 2009-05-14 2010-05-13 永磁体屏蔽装置及其应用系统 WO2010130216A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200910084210.2 2009-05-14
CN2009100842102A CN101888158A (zh) 2009-05-14 2009-05-14 一种双环型永磁体的板式屏蔽装置
CN200910172136.X 2009-09-10
CN200910172136XA CN102025206A (zh) 2009-09-10 2009-09-10 一种双环永磁体蝶形屏蔽的桥式发电装置
CN200910176519.4 2009-09-21
CN2009101765194A CN102025294A (zh) 2009-09-21 2009-09-21 一种双环永磁体桥式屏蔽的磁力驱动装置
CN2010101670939A CN102244484A (zh) 2010-05-10 2010-05-10 双环形永磁体磁力驱动系统
CN201010167093.9 2010-05-10

Publications (1)

Publication Number Publication Date
WO2010130216A1 true WO2010130216A1 (zh) 2010-11-18

Family

ID=43084637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072721 WO2010130216A1 (zh) 2009-05-14 2010-05-13 永磁体屏蔽装置及其应用系统

Country Status (1)

Country Link
WO (1) WO2010130216A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106375915A (zh) * 2016-10-31 2017-02-01 深圳市冠旭电子股份有限公司 一种扬声器及耳机
CN118139402A (zh) * 2024-05-07 2024-06-04 上海隐冠半导体技术有限公司 一种磁屏蔽结构及运动平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422764A (zh) * 2001-12-04 2003-06-11 陈朝仁 摆动屏蔽式磁力驱动装置
CN1423395A (zh) * 2001-12-04 2003-06-11 应德贵 永磁感生发电装置
JP2004282855A (ja) * 2003-03-13 2004-10-07 Hisami Ono 発電機
JP2004343999A (ja) * 2004-08-03 2004-12-02 Katsuichiro Nakajima 回転プレートによる発電装置。
CN1937093A (zh) * 2006-09-26 2007-03-28 大连理工大学 一种旋转式的动态磁屏蔽方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422764A (zh) * 2001-12-04 2003-06-11 陈朝仁 摆动屏蔽式磁力驱动装置
CN1423395A (zh) * 2001-12-04 2003-06-11 应德贵 永磁感生发电装置
JP2004282855A (ja) * 2003-03-13 2004-10-07 Hisami Ono 発電機
JP2004343999A (ja) * 2004-08-03 2004-12-02 Katsuichiro Nakajima 回転プレートによる発電装置。
CN1937093A (zh) * 2006-09-26 2007-03-28 大连理工大学 一种旋转式的动态磁屏蔽方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106375915A (zh) * 2016-10-31 2017-02-01 深圳市冠旭电子股份有限公司 一种扬声器及耳机
CN106375915B (zh) * 2016-10-31 2024-04-16 深圳市冠旭电子股份有限公司 一种扬声器及耳机
CN118139402A (zh) * 2024-05-07 2024-06-04 上海隐冠半导体技术有限公司 一种磁屏蔽结构及运动平台

Similar Documents

Publication Publication Date Title
US10892672B2 (en) Dual-rotor synchronous electrical machines
JP2021100376A (ja) 磁束機械
CN106340368B (zh) 交变复合励磁组件及其在电机和变压器中应用
JP2017526324A (ja) 巻線型の永久磁石結合伝動装置
AU2011316872A1 (en) An improved magnetic motor
CN105471212B (zh) 一种旋转直线永磁电机
CN206164246U (zh) 一种双定子混合励磁涡流阻尼装置
CN106787562A (zh) 交替极混合励磁直驱游标电机
CN106787607A (zh) 可变传动比的磁场调制型磁齿轮
KR102054088B1 (ko) 교류 하이브리드 여자 부재 및 이의 모터와 변압기에서의 응용
CN104578635A (zh) 一种不对称双定子圆筒型永磁直线电机
CN107959367A (zh) 一种双定子混合励磁涡流阻尼装置
WO2010130216A1 (zh) 永磁体屏蔽装置及其应用系统
CN103925293B (zh) 一种薄片转子径向混合磁轴承
CN106787302A (zh) 一种无轴承永磁薄片电机
CN106374677A (zh) 新型转动永磁体发电机
CN101877523A (zh) 一种环形永磁体屏蔽装置
JP2013223417A (ja) 固定式永久磁石発電機
CN206353728U (zh) 全载发电装置
CN201393164Y (zh) 一种开关磁阻电机
CN204046380U (zh) 一种旋转直线永磁电机
WO2010124609A1 (zh) 永磁体屏蔽装置及其应用系统
CN203151352U (zh) 直线电机
CN104901508B (zh) 一种采用中间磁极结构的直线旋转永磁作动器及控制方法
TW201203806A (en) Drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774557

Country of ref document: EP

Kind code of ref document: A1