WO2010124609A1 - 永磁体屏蔽装置及其应用系统 - Google Patents

永磁体屏蔽装置及其应用系统 Download PDF

Info

Publication number
WO2010124609A1
WO2010124609A1 PCT/CN2010/072203 CN2010072203W WO2010124609A1 WO 2010124609 A1 WO2010124609 A1 WO 2010124609A1 CN 2010072203 W CN2010072203 W CN 2010072203W WO 2010124609 A1 WO2010124609 A1 WO 2010124609A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
shielding
magnetic
shielding surface
rotating
Prior art date
Application number
PCT/CN2010/072203
Other languages
English (en)
French (fr)
Inventor
应德贵
Original Assignee
天地泰科技(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009100829983A external-priority patent/CN101877523A/zh
Priority claimed from CN2009100846762A external-priority patent/CN101895181A/zh
Priority claimed from CN2009100860844A external-priority patent/CN101924443A/zh
Priority claimed from CN2009100860863A external-priority patent/CN101924444A/zh
Priority claimed from CN2009101701008A external-priority patent/CN102005979A/zh
Priority claimed from CN2009101775533A external-priority patent/CN102025246A/zh
Application filed by 天地泰科技(香港)有限公司 filed Critical 天地泰科技(香港)有限公司
Publication of WO2010124609A1 publication Critical patent/WO2010124609A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the application application date is April 28, 2009, application number is 200910082998.3, the invention name is "a ring permanent magnet shielding device", and the application date is May 22, 2009.
  • the application number is 200910084676.2
  • the invention name is "a disk-shaped permanent magnet thin-shell shielding device”
  • the application date is June 9, 2009
  • the application number is 200910086084.4
  • the invention name is "a double-plate shielding of a ring-shaped permanent magnet”.
  • “Application” the application date is June 10, 2009, the application number is 200910086086.3
  • the invention name is "a disk-shaped permanent magnet half-shell shielding device”.
  • the application date is September 3, 2009, and the application number is 200910170100.8.
  • the invention is entitled “Dish-type magnetic drive device for disc-shaped permanent magnets", the application number is September 15, 2009, application number is 200910177553.3, and the invention name is "a disc-shaped permanent magnet rotating shielded power generation device” in China. Priority of the patent application, the entire contents of which is incorporated herein by reference.
  • the invention relates to a permanent magnet shielding device and an application system thereof, which can cover magnetic lines of a permanent magnet and can be combined with other energy conversion devices to perform energy conversion and output energy.
  • a permanent magnet induced power generation system is disclosed on June 11, 2003, having a power generating coil and a permanent magnet.
  • the permanent magnet is a horizontally mounted disc type permanent magnet, the permanent The magnet is fixed to the base through a central column.
  • the outer cover of the permanent magnet is provided with a rotating magnetic shield.
  • the magnetic shield is mounted by a bearing and a central column.
  • the magnetic shield is provided with a plurality of magnetic energy release windows.
  • the bottom of the cover is provided with a driven pulley, and the base is provided with a driving motor, the driving motor is provided with a drag pulley, the drag pulley and the driven pulley belt drive, and the power generating coil is mounted on the side of the permanent magnet .
  • a magnetic shielding device for shielding a strong magnetic field of a multilayer composite structure is disclosed in Chinese Patent Application No. 200610113824.5, which is incorporated herein by reference.
  • a multilayer composite structure comprising a silicon steel component as an intermediate layer, an alloy component as an inner layer, and a solenoid coil as an outer layer, and the magnetic shielding device places the alloy component inside the silicon steel component, in the alloy component
  • the outer part is provided with a solenoid coil.
  • the technical solution disclosed in this patent is limited by the overall structure, and is only applicable to a photomultiplier tube that shields a strong magnetic field, and has a single function and cannot perform energy conversion.
  • Chinese Utility Model Patent No. 00252880.0 discloses a high-induction synchronous capability permanent magnet synchronous motor on October 3, 2001, which includes a base and a stator assembled therein. And a rotor composed of a rotating shaft, a core, a permanent magnet and a squirrel cage, wherein the radially distributed permanent magnet is embedded in the permanent magnet slot of the rotor core, and the permanent magnet slot is located below the rotor slot, and the magnetic flux is separated between the two slots Magnetic bridge.
  • Chinese Patent Application No. 92114781.3 discloses a magnetically permeable differential (transfer) magnetic drive system on June 29, 1994, which is provided with at least one permanent magnet fixed on the support. It has two magnetic poles (N and S) and a magnetic mover made of a magnetic material. It also has or senses two magnetic poles (N and S), which are movable relative to the stator.
  • the object of the present invention is to provide a permanent magnet shielding device with perfect functions, capable of supporting energy replacement with a permanent magnet, and a power generation system with improved energy conversion using the permanent magnet shielding device and less energy loss during conversion. Drive System.
  • a permanent magnet shielding device includes a support frame, a permanent magnet that is relatively stationary with the support frame, a rotating shaft movable relative to the support frame, and a driving shaft rotating relative to the support frame a driving module, a rotating shield connected to the rotating shaft and sleeved on a periphery of the permanent magnet, the rotating shaft can drive the rotating shield to rotate relative to the permanent magnet, and the rotating shield is opposite to the permanent
  • the magnet is kept in a suspended state, and the rotating shield is provided with at least one notch through which the magnetic field lines of the permanent magnet pass, wherein the rotating shield includes a first portion respectively disposed in parallel with the N-pole and S-pole faces of the permanent magnet.
  • the shielding surface and the second shielding surface are the same distance from the permanent magnet N pole surface and the second shielding surface from the permanent magnet S pole surface, and the distance is 0.1 ⁇ 1 mm.
  • the permanent magnet shielding device of the present invention further includes the following features:
  • the permanent magnet is an axially magnetized disk-shaped permanent magnet
  • the permanent magnet shielding device further includes a magnetic conductive module installed in the permanent magnet, and the magnetic conductive module penetrates the permanent magnet N, S
  • the pole shield is magnetically coupled to the magnetic shielding module.
  • the permanent magnet shielding device further includes an electromagnetic generating module, and the magnetic lines of force generated by the electromagnetic generating module in the energized state can enter the rotating shielding body.
  • the magnetic pole of the electromagnetic generating module that generates a magnetic field in an energized state has the same magnetic pole direction as the permanent magnet.
  • the electromagnetic generating module cooperates with the permanent magnet to apply the first shielding surface and the second shielding surface to magnetic saturation.
  • the electromagnetic generating module includes an electromagnetic generating module that loads an input current, and the input current is an intermittent current.
  • the thickness of the first shielding surface and the second shielding surface are between 0.5 and 15 mm.
  • the rotating shield body is formed by laminating a plurality of layers of magnetizers.
  • the first shielding surface and the second shielding surface are connected to form a plurality of magnetic conductive paths.
  • the present invention can also be combined with an induction power generating device or a driving device by the above-described permanent magnet shielding device to constitute a power generating system or a driving system to meet different needs.
  • the advantages of the invention are: simple structure, perfect function, low consumption in the energy conversion process, and high energy conversion efficiency.
  • FIG. 1 is a perspective view showing a power generating apparatus constructed by applying a first embodiment of a permanent magnet shielding device of the present invention.
  • Fig. 2 is a front elevational view showing a power generating apparatus to which the first embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 3 is a longitudinal sectional view showing a power generating apparatus to which the first embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 4 is a perspective view showing the multilayer shield of the first embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 5 is a perspective view showing the permanent magnet shield of the first embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 6 is a longitudinal cross-sectional view showing the first embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention, after the magnetic permeable sleeve is added.
  • Fig. 7 is a view showing the magnetic field distribution of the first embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 8 is a vertical cross-sectional view showing the first embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention after the electromagnetic generating device is incorporated.
  • Fig. 9 is a view showing the distribution of magnetic field after the first embodiment of the permanent magnet shielding device of the present invention is incorporated in an electromagnetic generating device.
  • Fig. 10 is a perspective view showing a power generating apparatus to which the second embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 11 is a front elevational view showing a power generating apparatus to which a second embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 12 is a longitudinal cross-sectional view showing the second embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention, after the magnetic conducting sleeve and the electromagnetic generating module are added.
  • Fig. 13 is a perspective view showing the permanent magnet shield of the second embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 14 is a perspective view showing a power generating apparatus to which the third embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 15 is a longitudinal sectional view showing a power generating apparatus to which the third embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 16 is another perspective view showing the permanent magnet shield of the third embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 17 is another perspective view showing the permanent magnet shield of the third embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 18 is another perspective view showing the permanent magnet shield of the third embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 19 is a view showing the magnetic field distribution of the permanent magnet of the third embodiment of the permanent magnet shielding device of the present invention in a free state.
  • Fig. 20 is a view showing the magnetic field distribution of the third embodiment of the permanent magnet shielding device of the present invention after the cylindrical magnetic core is attached.
  • Fig. 21 is a longitudinal sectional view showing the third embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention after the electromagnetic generating device is incorporated.
  • Fig. 22 is a view showing the distribution of the magnetic field after the third embodiment of the permanent magnet shielding device of the present invention is incorporated in the electromagnetic generating device.
  • Fig. 23 is a longitudinal sectional view showing the third embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention, after the magnetic permeable sleeve is added.
  • Fig. 24 is a perspective view showing the multilayer shield of the third embodiment of the permanent magnet shielding device of the present invention which is further improved.
  • Figure 25 is a perspective view showing a configuration of a power generating apparatus according to a fourth embodiment of the permanent magnet shielding device of the present invention. View.
  • Fig. 26 is a longitudinal sectional view showing the fourth embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention in which a magnetic conducting sleeve and an electromagnetic generating device are added.
  • Figure 27 is a perspective view showing a permanent magnet shield of a fourth embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 28 is a view showing the magnetic field distribution of the fourth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 29 is a perspective view showing a shield plate of a fourth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 30 is a perspective view showing a cylindrical magnetic conductive wall of a fourth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 31 is a schematic view showing the magnetic field distribution of the fourth embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 32 is a view showing the distribution of the magnetic field of the fourth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 33 is a longitudinal sectional view showing a further modification of the fourth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 34 is a perspective view showing a permanent magnet shield of a fourth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 35 is a perspective view showing a power generating apparatus to which the fifth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Figure 36 is a longitudinal sectional view showing a power generating apparatus to which a fifth embodiment of the permanent magnet shielding device of the present invention is applied.
  • Fig. 37 is a perspective view showing the permanent magnet shield of the fifth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 38 is a longitudinal sectional view showing a power generating apparatus which is further modified by the fifth embodiment of the permanent magnet shielding device of the present invention.
  • Fig. 39 is a perspective view showing the further modification of the permanent magnet shield of the fifth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 40 is a perspective view showing a further modification of the permanent magnet shield of the fifth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 41 is a perspective view showing a multilayer shield of a fifth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 42 is a view showing the fifth embodiment of the permanent magnet shielding device of the power generating apparatus of the present invention incorporating electromagnetic generation Longitudinal section view behind the module.
  • Figure 43 is a view showing the magnetic field distribution of the permanent magnet of the fifth embodiment of the permanent magnet shielding device of the present invention in a free state.
  • Fig. 44 is a view showing the distribution of the magnetic field of the fifth embodiment of the permanent magnet shielding device of the present invention in which the magnetically permeable sleeve is attached.
  • Fig. 45 is a view showing the magnetic field distribution of the fifth embodiment of the permanent magnet shielding device of the present invention.
  • Figure 46 is a perspective view showing the first embodiment of the driving apparatus of the present invention.
  • Figure 47 is a front elevational view showing the first embodiment of the drive apparatus of the present invention.
  • Figure 48 is a front elevational view showing a second embodiment of the drive apparatus of the present invention.
  • Figure 49 is a perspective view showing a third embodiment of the driving apparatus of the present invention.
  • Figure 50 is a longitudinal sectional view showing a third embodiment of the driving apparatus of the present invention.
  • Figure 51 is a perspective view showing a rotary shield of a third embodiment of the drive device of the present invention.
  • Figure 52 is a perspective view showing a rotary joint of a third embodiment of the drive apparatus of the present invention.
  • Figure 53 is a perspective view showing a reciprocating magnet linkage of a third embodiment of the driving apparatus of the present invention.
  • Fig. 54 is a perspective view showing the first embodiment of the reciprocating magnet linkage frame and the slide rail according to the third embodiment of the driving apparatus of the present invention.
  • Fig. 55 is a perspective view showing the second embodiment of the reciprocating magnet linkage frame and the slide rail according to the third embodiment of the driving apparatus of the present invention.
  • Figure 56 is a perspective view showing the crank link of the third embodiment of the driving apparatus of the present invention.
  • Figure 57 is a perspective view showing an alternative of the third embodiment of the driving apparatus of the present invention.
  • Figure 58 is a perspective view showing an alternative of the third embodiment of the driving apparatus of the present invention.
  • Figure 59 is a perspective view showing another embodiment of the power generating apparatus of the present invention.
  • Figure 60 is a longitudinal sectional view showing another embodiment of the power generating apparatus of the present invention.
  • Fig. 61 is a perspective view showing the disk-shaped permanent magnet in the embodiment.
  • Fig. 62 is a perspective view showing the rotary shield in the embodiment.
  • Fig. 63 is a perspective view showing the induction power generating apparatus of another embodiment of the power generating apparatus of the present invention.
  • Figure 64 is a perspective view showing a double-segment magnetic conductive plate of another embodiment of the power generating apparatus of the present invention.
  • Figure 65 is a perspective view showing a butterfly support member of another embodiment of the power generating apparatus of the present invention.
  • Figure 66 is a perspective view showing a spoke-shaped support member of another embodiment of the power generating apparatus of the present invention.
  • the annular permanent magnet shielding device of the present embodiment includes a frame 11 on which a central fixed shaft 12 is fixed, and an annular permanent magnet 13 is mounted on the central fixed shaft 12,
  • the annular permanent magnet 13 is installed in an interference manner with the central fixed shaft 12, and a rotating shield 14 is disposed outside the annular permanent magnet 13;
  • the rotating shield 14 has a fan shape, and the sector of the rotating shield 14 is [ Shape, the scallop angle is 180° (semicircular).
  • the rotating shield 14 is mounted on the central fixed shaft 12 via a rotary connecting member 15.
  • the present embodiment is provided with two rotating connecting members 15 respectively disposed on both sides of the rotating shield 14, the rotating connecting member 15 and rotating
  • the two side walls of the shielding body 14 are fixedly connected, and a bearing 16 is disposed in each of the two rotating connecting members 15, thereby realizing the rotational connection of the rotating shielding body 14 and the central fixed shaft 12; and a power input wheel 17 is connected with the rotation
  • the power input wheel 17 is a pulley
  • the annular permanent magnet 13 described in the embodiment is axially magnetized, and the left portion of the annular permanent magnet 13 is set to an N pole.
  • the right portion is the S pole, and the distance between the N pole surface of the annular permanent magnet 13 and the rotating shield 14 is equal to the distance between the S pole surface of the annular permanent magnet 13 and the rotating shield 14, and the distance value is usually 0.1.
  • ⁇ lmm preferably, in the present embodiment, is 1 mm.
  • the annular permanent magnet shielding device of the present embodiment can be applied to a power generating device.
  • the design of the power generating device is: connecting a power input wheel 17 to a driving motor, and driving the rotating shield 14 to rotate by the driving motor.
  • the power generating coil 18 corresponding to the position of the annular permanent magnet 13 is mounted on the frame 11, and by rotating the rotating shield 14, the magnetic field strength at the position where the power generating coil 18 is located can be constantly changed, so that a current can be generated in the power generating coil 18.
  • the rotating connecting member 15 can position the rotating shield 14 to ensure that the distance between the annular permanent magnet 13 and the rotating shield 14 is equal, and the rotating shield 14 is ensured to rotate.
  • the problem of positioning of the rotating shield 14 on the central fixed shaft 12 is solved by two bearings mounted in the rotary joint 15, which is integrally made of stainless steel and is not subjected to permanent magnets. Adsorption, easy to install.
  • the design of the rotating shield 14 is provided outside the annular permanent magnet 13 to realize the rotational movement of the rotating shield 14 around the central fixed shaft 12.
  • the rotating shield 14 and the annular permanent magnet 13 of the present invention The coaxial equidistant mounting has the characteristics of uniform force; when the rotating shield 14 rotates, it is not interfered by the annular permanent magnet 13, and only the power input wheel 17 inputs a small power, so that the rotating shield 14 can be rotated.
  • the rotating magnetic shielding principle is used to continuously input a relatively small power through the power input wheel 17, to drive the rotating shield 14 to continuously rotate, to change the magnetic flux, generate electric energy, and output the electric energy through the power generating coil 18.
  • the ring-shaped permanent magnet 13 described in the present invention uses a permanent magnet made of neodymium iron boron, which has the advantages of long service life and low energy consumption.
  • the rotating shield 14 is laminated with a plurality of layers of silicon steel sheets 116, the thickness of which is between 0.5 and 15 mm, and the number of silicon steel sheets is between 2 and 60.
  • the production process is a piece of silicon steel.
  • the sheet is wound into a multi-layered rectangular frame body, and then processed into a [shaped shield body by a cutting forming process, and the rotating shield body made of the material is light in weight, the material is hooked, and the material is easy to be taken, and the rotating shield body is
  • the silicon steel sheet is characterized by fast magnetic permeability and large magnetic saturation, and one or more magnetic line fast passages are established for the magnetic field, so that the magnetic lines of the ring-shaped permanent magnets from the N pole to the S pole form a magnetic circuit.
  • the rotating shield 14 of the present embodiment is composed of a shield.
  • the rotating shield 14 can also be composed of a plurality of shields 115.
  • the plurality of shields 115 are axially symmetrically disposed, and are disposed in each of the shields.
  • the two rotary joints 15 on the side are connected.
  • the rotating shield may further have two shielding bodies with a fan-shaped surface angle of 90°, and the two shielding bodies are axially symmetrically arranged, and are connected by two rotations disposed on both sides of the shielding body.
  • Piece connection
  • the angle of the shield sector can be set according to the actual working needs, for example 30. , 45°, 90°, 60°, 180°, etc.
  • the center fixing shaft 12 is jacketed with a magnetic sleeve 19 mounted on the central fixed shaft 12 and the annular permanent magnet 13.
  • the magnetic flux sleeve 19 is slidably connected to the rotating shield 14 at both ends of the magnetic pole sleeve 19, and the magnetic conductive sleeve 19 is End and rotating shield 14 corresponding contact surface 110.
  • the magnetic conductive sleeve 19 and the rotating shield 14 form a magnetic circuit; when the rotating shield 14 shields a part of the magnetic field of the annular permanent magnet 13, the partial magnetic field
  • the magnetic line 113 of the N pole cannot penetrate the left side wall of the rotating shield 14 corresponding thereto, and only follows the magnetic conductive path between the layers of the silicon steel sheets in the rotating shield 14, wherein a part of the magnetic lines 113 go upward and rotate along
  • the magnetic conductive circuit formed by the upper part of the left side wall of the shield body 14 and the upper part of the top wall and the right side wall returns the S pole of the magnetic field; a part of the magnetic lines of force go downward, and along the lower part of the left side wall of the rotating shield body 14, the magnetic conductive sleeve 19 and the magnetic circuit formed in the lower part of the right side wall return the S pole of the magnetic field; the magnetic circuit is ensured to be smooth, the rotational resistance of the rotating shield 14 is reduced, the magnetic flux is effectively increased, the magnetic field utilization efficiency is improved,
  • the magnetic conductive sleeve 19 is jacketed with a spiral electromagnetic generating module 111, and the electromagnetic generating module 111 is mounted on the magnetic conductive sleeve 19. It is fixed between the annular permanent magnet 13 and the positioning collar 112 mounted on both sides of the electromagnetic generating module 111.
  • the power generating coil 18 generates an attractive force to the rotating shield 14 to hinder the rotating shield 14 from rotating; therefore, a current can be input to the electromagnetic generating module 111 to cause the electromagnetic generating module 111 to generate A magnetic field in the same direction as the magnetic pole of the annular permanent magnet 13 instantaneously saturates the magnetic flux 114 introduced into the rotating shield 14 and penetrates the rotating shield 14 under the action of the current.
  • a repulsive magnetic field of the same magnetic pole is formed, which reduces the attractive force of a part of the power generating coil 18 to the rotating shield 14, and contributes to the rotational movement of the rotating shield 14.
  • the input current is an intermittent current.
  • the present embodiment is an improved technical solution based on the first embodiment of the permanent magnet shielding device, and the same portions as the first embodiment of the permanent magnet shielding device will not be described in detail.
  • the ring-shaped permanent magnet shielding device of the present embodiment has a frame 21 on which a center fixed shaft 22 is fixed, and a ring-shaped permanent magnet is mounted on the center fixed shaft 22.
  • the annular permanent magnet 23 is installed obliquely with the central fixed shaft 22, and two rotating screens are disposed outside the annular permanent magnet 23.
  • the rotating body 24 has a fan shape, and the fan-shaped cross section of the rotating shield body 24 is [shaped, the fan-shaped surface angle is 90°, and each of the rotating shield bodies 24 passes through the rotating connecting member 25 and the central fixed shaft respectively. 22 installation; the embodiment is provided with four rotating connecting members 25, respectively disposed on both sides of the two rotating shields 24; the rotating connecting members 25 are respectively fixedly connected with the two side walls of the rotating shield body 24, A bearing 26 is disposed in each of the four rotating connecting members.
  • each rotating shield 24 and the central fixed shaft 22 can be realized by the above structure; two power input wheels 27 are respectively mounted on both sides of the rotating shield 24
  • the power input wheel 27 in the embodiment is a transmission gear
  • the annular permanent magnet 23 is axially magnetized, and the left portion of the annular permanent magnet 23 is set to the N pole, and the right portion
  • the S pole, the distance from the N pole face of the ring-shaped permanent magnet 23 to each of the rotating shields 24 is equal to the distance from the S pole face of the ring-shaped permanent magnet 23 to each of the rotating shields 2; the distance value is usually 0.1. ⁇ lmm, preferably, this In the embodiment, it is 1 mm.
  • the ring-shaped permanent magnet shielding device of the present embodiment can be applied to a power generating device, and the principle thereof is the same as that in the first embodiment, and will not be described again; the frame 21 is mounted with power generation corresponding to the position of the ring-shaped permanent magnet 23 Coil 28.
  • the central fixed shaft 22 is jacketed with a magnetically permeable sleeve 29 mounted between the central fixed shaft 22 and the annular permanent magnet 23, that is, the magnetically permeable sleeve 29
  • the two ends of the magnetic conductive sleeve 29 are slidably coupled to the rotating shield body 24, and the two ends of the magnetic conductive sleeve 29 are disposed corresponding to the rotating shield body 24.
  • a contact surface 210; a spiral electromagnetic generating module 211 is mounted on the magnetic conductive sleeve 29, and the electromagnetic generating module 211 is mounted between the magnetic conductive sleeve 29 and the annular permanent magnet 23, and is mounted by electromagnetic generation.
  • the positioning collar 212 on both sides of the module 211 is fixed.
  • the two rotating shields 24 in the present embodiment are each composed of a shielding body.
  • the rotating shielding body 24 may also be composed of a plurality of shielding bodies 213, and the plurality of shielding bodies 213 are axisymmetric.
  • the arrangement is connected by a plurality of rotating connecting members 25 disposed on both sides of each shielding body 213.
  • a plurality of shielding bodies 213 are connected to the four rotating connecting members 25 respectively.
  • the two rotating shields 24 have an angle of 45 from four sectors.
  • the shield body 213 is composed of, and is connected by four rotary joints 25 provided on both sides of each shield body 213. Said The angle of the fan sector can be set according to the actual work requirements, such as 30°, 45°, 60°, 90. Wait.
  • the disk-shaped permanent magnet thin-shell type shielding device of the present invention has a frame 31 including a bottom plate, a left bracket plate 311, and a right bracket plate 312.
  • the frame is provided with a support assembly 34.
  • the support assembly 34 includes a left half shaft 341, a cylindrical magnetic core 342, and a right half shaft 343.
  • the cylindrical magnetic core 342 is mounted with a disk shape forever.
  • a magnet 33, the disc-shaped permanent magnet 33 is provided with a rotating shield 32; as shown in FIG. 16, the rotating shield 32 comprises two layers of upper and lower symmetrical layers cut by a multi-layer silicon steel sheet laminated blank.
  • a butterfly-shaped end face body 323 which is a double-layered silicon steel sheet laminated blank molded into a curved bridging side wall body 325, and the bridging side wall body 325 fastens the two butterfly end faces symmetrically arranged
  • the parts are assembled together, wherein the fastening connecting parts are made of a magnetically permeable material, the disc-shaped permanent magnet 33 comprises two annular end face magnetic poles, an outer cylinder surface and a central circular hole; the rotating shield body 32 passes through the rotating connecting member 321 And 322 are mounted on the left and right half shafts 341 and 343 by bearings; the butterfly end surface body is magnetically connected to the cylindrical magnetic core body 342.
  • a power input wheel 324 is mounted to the rotary joints 321, 322.
  • the power input wheel 324 can be electrically connected to a drive motor through a drive belt to drive the rotary shield 32 to rotate.
  • the distance between the upper and lower butterfly end faces on the rotating shield 32 and the two annular end faces of the disc-shaped permanent magnet 33 is maintained at 0.5 - 1 mm, bridging the side wall body and the outer cylindrical surface of the disc-shaped permanent magnet 33 The distance is kept at 2 - 5 mm.
  • the support assembly 34 is composed of three segments, the middle portion is a cylindrical magnetic core 342, and the magnetic conductive material (carbon steel material) has good magnetic permeability, left.
  • the segment is a left half shaft 341 made of a non-magnetic material (for example, an aluminum alloy), and the right segment is a right half shaft 343 made of a non-magnetic material; the left half shaft 341, the right half shaft 343, and the cylindrical magnetic core
  • the 342 threaded connection, the support assembly 34 is fixed to the frame 31, and the cylindrical magnetic core 342 is fixedly mounted with the disc-shaped permanent magnet 33 in a conventional manner, such as a spline connection.
  • the disc-shaped permanent magnet 33 is made of a neodymium-iron-boron material, which is a disc-shaped permanent magnet, including two circular end face magnetic poles, an outer cylinder surface, and a central circular hole; (or The axial direction is made by a magnetization process, and the two annular end faces of the permanent magnet are N poles and S poles, respectively.
  • the rotating shield 32 is formed of a multi-layer silicon steel sheet laminated structure
  • the laminated silicon steel sheet laminated structure is composed of a silicon steel thin plate continuously extending from a silicon steel metal structure, and the thickness of the silicon steel sheet is In the range of 0.1 to 1.5 mm, the number of layers of the silicon steel sheet is in the range of 4 to 60 layers, the most preferable thickness is 0.3 mm, and the most preferable layer number is 10 layers.
  • a silicon steel thin plate having a sufficient length is wound into a multi-layer rectangular frame blank by using a mold, and then cut into a shape as shown in FIG. 16 by a cutting forming process, because the molding process is processed.
  • another embodiment of the rotating shield 32 includes two butterfly end faces 326, 327 symmetrically disposed above and below, and a bridging sidewall body 328 connecting the butterfly end face body, wherein the butterfly shape
  • the end face body is composed of two scalloped surfaces arranged in an axis symmetry, and the central angle of the scalloped surface is 60° - 90.
  • a butterfly end face having a central angle of 90 is used.
  • the rotating shield 32 can also adopt another embodiment shown in Fig. 18.
  • the rotating shield 32 is molded with a plurality of layers of silicon steel sheet laminated blanks into a curved shape.
  • the butterfly end faces are assembled together using fastening joints of magnetically permeable material.
  • the lower butterfly end face body 329 has an arcuate side 330; the upper butterfly end face body 333 has an arcuate side 332; and the upper and lower butterfly end face bodies are integrally fixed by the curved plate 331.
  • a cylindrical magnetic core 342 is specifically provided to structurally ensure the butterfly end body 323 and the cylindrical magnetic core.
  • the body 342 has a highly efficient magnetically conductive connection, and the cylindrical magnetic core 342 extends through the N, S pole faces of the annular permanent magnet.
  • the magnetically conductive connection in this embodiment means that the two butterfly end faces 323 maintain an optimal magnetic gap (usually 0.01 - 0.) with both end faces of the cylindrical magnetic core 342 during continuous rotation. 1 mm), the butterfly end face 323 and the cylindrical magnetic core 342 constitute a complete magnetic flux path. As shown in FIG.
  • the magnetic field line distribution of the disk-shaped permanent magnet 33 in the free state is as shown in FIG. 20, after the cylindrical magnetic core body 342 is attached to the disk-shaped permanent magnet 33, and the rotating shield body 32 is attached.
  • the distribution of magnetic lines of force at this time, the magnetic lines of force are distributed along the two magnetic paths of the bridging side wall body of the rotating shield body and the cylindrical magnetic core body, and the magnetic field lines on the butterfly end face body are more evenly distributed, thereby reducing the butterfly end face.
  • the thickness of the body The ring-shaped permanent magnet shielding device of the present embodiment can be applied to a power generating device.
  • the design of the power generating device is as follows: as shown in FIG. 14 and FIG. 15, the left bracket plate 311 and the right bracket plate 312 of the rack.
  • a plurality of inductive power generating devices 35 are disposed on the two sides of the disc-shaped permanent magnets 33.
  • the inductive power generating device used in the present embodiment includes a conventional inductive iron core, an induction generating coil, etc., preferably, the sensing
  • the power generating device 35 is a device with an induction coil. When the rotating shield 32 is continuously rotated at a certain rotational speed, the strength of the magnetic field around the induction coil will continuously change, and the induction coil will induce power generation.
  • the technical solution disclosed in the embodiment is a horizontal solution, and the support assembly is disposed in a horizontal direction.
  • the disk-shaped permanent magnet thin-shell type shielding device of the present embodiment further includes an electromagnetic generating device 344 disposed on the cylindrical magnetic core 342.
  • the electromagnetic generating device 344 includes an intermittent current generating circuit and an electromagnetic coil. When the intermittent current generating circuit inputs an intermittent current to the electromagnetic coil, the electromagnetic coil generates a magnetic field.
  • the rotating shield in the present embodiment can change the magnetic field strength around the induction power generating device during the rotation, so that the power generating device generates an induced current, and at the same time, the induction generating coil also generates a companion magnetic field to attract the rotating shield, and rotates the rotating shield. Increase resistance.
  • an electromagnetic coil in the electromagnetic generating device can be provided with an interval.
  • the current is generated to generate a magnetic field opposite to the associated magnetic field of the induction coil, which is conducted through the cylindrical magnetic core 342 to the butterfly end face of the rotating shield, so that the butterfly end body reaches instantaneous magnetic saturation,
  • the accompanying magnetic field weakens the gravitational force of the shield. Helps to rotate the rotating motion of the shield.
  • the present embodiment is a technical solution improved on the basis of the third embodiment of the permanent magnet shielding device.
  • the technical features appearing in the present embodiment are the same as or similar to those of the third embodiment. Please refer to the content or principle disclosed in the third embodiment.
  • the description of the sexual description should also be understood as the disclosure of the present embodiment, and the description thereof will not be repeated.
  • the rotating shield 32 is used.
  • the multi-layer silicon steel sheet lamination structure is composed of a silicon steel thin plate continuously extending from a silicon steel metal structure;
  • the disc-shaped permanent magnet 33 comprises two circular end face magnetic poles, an outer cylinder surface, and a center a circular hole;
  • the rotating shield is mounted on the fixed mandrel by a rotating connecting member;
  • a plurality of induction power generating devices 35 are disposed on the frame, and the inductive power generating device 15 is disposed on both sides of the disc-shaped permanent magnet 33;
  • a magnetic conductive sleeve 346 is disposed between the fixed mandrel and the disc-shaped permanent magnet, and the magnetic conductive sleeve 346 penetrates through the N, S pole faces of the disc-shaped permanent magnet.
  • the butterfly end face body is magnetically connected to the magnetic conductive sleeve 346; an electromagnetic generating device 344 is disposed on the magnetic conductive sleeve 346.
  • the technical solution disclosed in the third embodiment of the above permanent magnet shielding device is a horizontal solution, but an established solution can also be designed.
  • the supporting components are arranged in a vertical direction, and the connection of other parts is The relationship remains the same.
  • the double-plate type shielding device of the ring type permanent magnet of the present embodiment is disposed in a horizontal manner.
  • the shielding device has a frame 41 on which a horizontal center fixing shaft 42 is disposed.
  • An annular permanent magnet 43 is mounted on the central fixed shaft 42.
  • the annular permanent magnet 43 includes two annular magnetic pole faces, an outer cylindrical surface, and a central circular hole; a magnetic pole on the left side of the annular permanent magnet 43 A plate type rotating shield 44 is disposed on the surface, and another plate type rotating shield 45 is disposed on the right side magnetic pole surface of the ring permanent magnet; the two plate type rotating shields 44, 45 pass a non-magnetic
  • the bridge ribs 46 are integrally connected; the two plate-type rotating shields 44, 45 are mounted on the central fixed shaft 42 via a rotary joint 47, and are disposed outside the outer cylindrical surface of the annular permanent magnet 43.
  • the position of the cylindrical magnetic conductive wall 48 is magnetically connected to the cylindrical magnetic conductive wall 48.
  • the bottom end of the cylindrical magnetic conductive wall 48 is mounted on the base of the frame 41 through the support frame 49.
  • the support frame 49 described in the embodiment can be made of a non-magnetic material such as plastic, aluminum alloy, stainless steel or carbon fiber.
  • the plate type rotating shields 44, 45 according to the present embodiment have a fan shape, the sector-shaped cross-sections of the plate-type rotating shields 44, 45 are I-shaped, and the fan-shaped surface angles of the two plate-type rotating shields 44, 45 are all 180. .
  • the materials, sizes, and shapes of the two plate-type rotating shields 44 and 45 described in the present embodiment are the same.
  • the bridging ribs 46 may be one piece or a plurality of even hooks, and the bridging ribs 46 are disposed between the outer arc edges of the two plate type rotating shields 44, 45.
  • the embodiment is further provided with two rotating connecting members, which are respectively disposed on the two plate-type rotating shields 44, 45, and the rotating connecting members are fixedly connected with the plate-type rotating shields 44, 45, in the rotating connecting member A limit bearing 410 is disposed therein, and the rotational connection of the plate type rotating shields 44, 45 and the central fixed shaft 42 can be realized by the above structure.
  • a power input wheel 411 and a rotary connecting member are mounted; the power input wheel 411 in the embodiment is a pulley; the annular permanent magnet 43 in the embodiment is magnetized in the end direction, and the annular permanent magnet is set.
  • 43 is an N pole on the left side and an S pole on the right side, the distance from the N pole surface of the annular permanent magnet 43 to the plate rotation shield 44, 45 and the S pole surface of the ring permanent magnet to the plate rotation shield 44,
  • the distance values of 45 are equal, and the distance value is usually 0.1 to 0.8 mm, preferably 0.8 mm in the present embodiment.
  • the two plate-type rotating shields 44, 45 are integrally connected by a non-magnetic bridge rib 46, and the bridge ribs 46 can be made of plastic, aluminum alloy, stainless steel, carbon fiber or the like.
  • the bridging ribs 46 improve the rigidity and rotational stability of the slab rotating shields 44, 45, and the structure also effectively improves the magnetic field utilization efficiency of the annular permanent magnets 43, thereby improving the magnetic energy conversion efficiency.
  • the present embodiment is designed to provide a cylindrical magnetic conductive wall 48 outside the plate-type rotating shields 44, 45.
  • the cylindrical magnetic conductive wall has a magnetic conductive wall main body 425, and the magnetic conductive wall
  • Two circular magnetic guiding edges 424 are disposed on the left and right circular end faces of the main body 425, and the annular magnetic guiding edges 424 respectively correspond to the positions of the two plate rotating shields 44 and 45, and the plate rotating shield 44,
  • a magnetic gap 412 is disposed between the 45 and the annular magnetic conducting edge 424.
  • the plate-shaped rotating shields 44, 45 and the cylindrical magnetic conductive wall 48 are magnetically connected. The structure ensures the plate-shaped rotating shields 44, 45 and the cylindrical guide.
  • a magnetic circuit is formed between the magnetic walls 48.
  • the magnetic conductive device 413 of the present invention is constructed.
  • the magnetically conductive connection of the present invention refers to the outer arc edge of the plate-type rotating shields 44, 45 and the two annular magnetically conductive sides 424 of the cylindrical magnetically conductive wall 48 during the continuous rotation of the plate-type rotating shields 44, 45. Maintaining an optimal magnetic gap, preferably, the magnetic gap described in this embodiment is between 0.1 and 1 mm, so that the plate-type rotating shields 44, 45 and the cylindrical magnetic conductive wall 48 form a complete magnetic force. Line channel.
  • the magnetic lines 414 of the N-pole of the ring-shaped permanent magnet 43 cannot penetrate the corresponding plate type.
  • the rotating shields 44, 45 are only distributed along the magnetic conductive channels between the layers of the silicon steel sheets in the plate-type rotating shields 44, 45, and the partially upwardly distributed magnetic lines of force pass through the cylindrical guide that is magnetically connected to the plate-type rotating shield 45.
  • the magnetic wall 48 is introduced into another plate-type rotating shield 44, and finally leads back to the S-pole surface of the annular permanent magnet 43. Since the magnetic lines of the downward distribution partially have no magnetic conductive path, the magnetic lines of force are loosely distributed, and finally lead along the center line 426 of the permanent magnet. Return to the pole face of the ring-shaped permanent magnet.
  • the annular permanent magnet shielding device of the present embodiment can be applied to a power generating device.
  • the design of the power generating device is: connecting a power driving input wheel 411 to a driving motor, and driving the plate type rotating shielding body 44, 45 to rotate by the driving motor;
  • An induction power generating device 415 corresponding to the position of the annular permanent magnet 43 is mounted on the frame, and the induction power generating device 415 is a device with an induction coil.
  • the induction power generating device 415 of the present embodiment includes a conventional induction core, an induction coil, and the like.
  • the rotary connecting member 47 can position the plate-type rotating shields 44, 45 to ensure that the distance between the annular permanent magnets 43 and the plate-type rotating shields 44, 45 is equal, and the plate-type rotating shields 44, 45 are smoothly rotated.
  • the positioning problem of the plate-type rotating shields 44, 45 on the central fixed shaft 42 is solved by two limit bearings mounted in the rotary joint 47; the rotary joint is entirely made of stainless steel (or aluminum alloy) Made of material), it is not absorbed by permanent magnets and is easy to install.
  • the present embodiment is designed to provide a plate type rotating shield 44, 45 on each of the two magnetic pole faces of the annular permanent magnet 43 and to provide a bridging rib 46 between the two plate type rotating shields 44, 45.
  • the plate-type rotating shields 44, 45 are rotated around the central fixed shaft 42.
  • the two-plate rotating shields 44, 45 of the present invention are coaxially and equidistantly mounted with the annular permanent magnets 43 and have uniform force characteristics, so that the plate-type rotating shield 44, When the 45 is rotated, the interference of the ring-shaped permanent magnet 43 is small, and only the small force is input through the power input wheel 411, so that the plate-type rotating shields 44 and 45 can be continuously rotated to change the magnetic flux, thereby generating electric energy and generating electricity through induction.
  • the device outputs power.
  • the annular permanent magnet in this embodiment is a circular permanent magnet, and the annular permanent magnet includes two annular magnetic pole faces, an outer cylinder face, and a central circular hole; and the annular cross section is rectangular.
  • the annular permanent magnet is made of a permanent magnet made of neodymium iron boron material, and the end surface is magnetized by the end face. The two end faces after magnetization become the two magnetic poles of the permanent magnet, that is, the N pole and the S pole, respectively.
  • the permanent magnet has the advantages of long service life and low energy consumption.
  • the plate type rotating shields 44, 45" as shown in Fig. 29 are laminated with a plurality of layers of silicon steel sheets 416, the thickness of which is between 0.1 and 1.5 mm, and the number of silicon steel sheets is between 2 and 60. The most preferred thickness is The most preferred number of layers is 0.3 mm.
  • a silicon steel thin plate having a sufficient length is wound into a multi-layered plate-shaped blank by using a mold, and then processed into a fan-shaped shielding plate by a cutting forming process, as shown in FIG.
  • the magnetic conductive wall 48 is also formed by laminating a plurality of layers of silicon steel sheets 416.
  • the specific manufacturing method is to wind a silicon steel thin plate having a sufficient length into a multi-layer cylindrical blank using a die, and then process into a ring shape by using a cutting forming process.
  • the cylindrical magnetic conductive wall because the molding process does not cut the fibrous structure peculiar to the metal material during the processing, and maintains the continuity of the structure, thereby having excellent magnetic permeability and good shielding effect, and using the same
  • the plate-type rotating shield made of material is light in weight, uniform in material, easy to take, and establishes one or more magnetic line fast passages for the magnetic field, so that the magnetic lines of the N-pole to S-pole of the ring-shaped permanent magnet form a magnetic circuit.
  • the plate type rotating shield body in the embodiment is a fan-shaped shielding plate, and the fan-shaped shielding plate fan-shaped surface angle can be set according to actual needs, for example, 30. 45. 90. 60. 180°, etc. In this embodiment, 180° is selected.
  • the present embodiment in order to reduce the magnetic flux leakage, reduce the weight of the rotating shield body, and improve the magnetic shielding effect, the present embodiment is provided with a magnetic conductive sleeve 418 on the central fixed shaft casing, and the magnetic conductive sleeve 418. Installed between the center fixed shaft 42 and the annular permanent magnet 43, and penetrates the N, S pole faces of the annular permanent magnet 43. The two ends of the magnetic conductive sleeve 418 are magnetically connected to the plate-type rotating shields 44 and 45. The two ends of the magnetic conductive sleeve 418 are provided with contact surfaces 419 corresponding to the plate-type rotating shields 44 and 45.
  • the magnetic sleeve 418 and the plate-type rotating shields 44, 45 form a magnetic circuit; when the plate-type rotating shield 44, 45 shields a part of the magnetic field of the annular permanent magnet 43, the magnetic field line 420 of the N-pole of the partial magnetic field cannot penetrate.
  • Corresponding plate-type rotating shields 44, 45 are only distributed along the magnetic conductive channels between the layers of silicon steel sheets in the plate-type rotating shields 44, 45, wherein a part of the magnetic lines of force are oriented upwards and along the plate type
  • the magnetic conductive circuit formed by the rotating shield 45, the cylindrical magnetic conductive wall 48 and the other plate-shaped rotating shield 44 returns the S pole of the magnetic field; a part of the magnetic lines of force go downward, and along the plate rotates the shield 45 and the magnetic sleeve
  • the magnetic circuit formed by the cylinder 418 and the other plate-type rotating shield 44 returns the S pole of the magnetic field; the magnetic circuit is ensured, the rotational resistance of the plate-type rotating shields 44, 45 is reduced, the magnetic flux is effectively increased, and the magnetic field is increased. Use efficiency to reduce magnetic field loss to increase the output power of electrical energy.
  • the magnetic conductive sleeve 418 can be made of a magnetically permeable material such as iron or silicon steel sheet.
  • an electromagnetic generating device 421 is mounted on the magnetic conductive sleeve 418, and the electromagnetic generating device 421 is mounted between the magnetic conductive sleeve 418 and the annular permanent magnet 43 and is mounted.
  • the positioning collar 422 on both sides of the electromagnetic generating device 421 is fixed. Since the induction power generating device 415 generates an attractive force to the plate type rotating shields 44, 45 during power generation, the plate type rotating shields 44, 45 are prevented from rotating; therefore, an intermittent current can be input to the electromagnetic generating means 421.
  • the plate-type rotating shields 44, 45 generate an electromagnetic field whose N-pole corresponds to the N-pole of the ring-shaped permanent magnet 43, and the S-pole of the electromagnetic field corresponds to the S-pole of the ring-shaped permanent magnet 43 so that the ring-shaped permanent magnet 43
  • the magnetic lines 423 in the N-pole introduction plate type rotating shields 44, 45 are instantaneously saturated and penetrate the plate type rotating shields 44, 45. At this time, the repulsive magnetic field of the same magnetic pole is formed between the induction power generating device 415 and the plate type rotating shields 44, 45.
  • the electromagnetic generating device 421 includes an intermittent current generating circuit and an electromagnetic coil.
  • the intermittent current generating circuit inputs an intermittent current to the electromagnetic coil, the electromagnetic coil generates an electromagnetic field. Both the intermittent current generating circuit and the electromagnetic coil can be used in the prior art and will not be described again.
  • the shielding body in this embodiment may also be disposed as two butterfly-shaped rotating shields 405, and are integrally connected by at least two bridging ribs 406.
  • the butterfly-shaped rotating shielding body 405 is composed of two scalloped surfaces arranged symmetrically, the central angle of the scalloped surface is 90°, and the cross-section of the butterfly-shaped rotating shield 405 is I-shaped, and the two butterfly shapes described in this embodiment
  • the material, the size and the shape of the plate-type rotating shield are the same.
  • the bridging ribs 406 may be evenly distributed, and the bridging ribs 406 are disposed between the outer curved edges of the two butterfly-shaped rotating shields.
  • the technical solution disclosed in this embodiment is a horizontal solution, and the center fixed shaft is pressed by water.
  • the flat direction arrangement; the invention can also design an established scheme. In the vertical scheme, the central fixed shaft is arranged in a vertical direction, and the connection relationship of other parts is unchanged except that the support structure needs to be changed.
  • the present embodiment uses a disk-shaped permanent magnet half-shell shielding device, which includes a frame 51, and the frame 51 is provided with a central fixed shaft 52 and a frame.
  • a disk-shaped permanent magnet 53 is mounted on a frame plate of 51.
  • the disk-shaped permanent magnet 53 includes two end-face magnetic poles, and one end face magnetic pole of the disk-shaped permanent magnet 53 is covered with a half-shell fixed shield 54 for disc shape
  • the other end surface of the magnet 53 is covered with a rotating shield 55;
  • the rotating shield 55 is magnetically connected to the half-shell fixed shield 54;
  • the rotating shield 55 includes a butterfly end surface and a curved side wall;
  • a rotating connecting member 56 is provided on the body, and the rotating shield 55 is rotatably mounted to the central fixed shaft 52 via the rotating connecting member 56.
  • the center fixed shaft 52 is disposed at the same axis as the disc-shaped permanent magnet 53.
  • the frame 51 is composed of a plurality of fixing posts 511 and a plurality of bracket plates 512 and 513, and the frame 51 is made of a non-magnetic material (for example, aluminum alloy, stainless steel, or the like).
  • the center fixed shaft 52 is mounted on the bracket plates 512, 513. If the technical solution of the vertical layout is adopted, the center fixed shaft 52 belongs to the hanging type installation. If the horizontal layout technical solution is adopted, the center fixed shaft 52 belongs to the cantilever type installation, and the present embodiment is implemented according to the technical scheme of the vertical layout.
  • a disc-shaped permanent magnet 53 is mounted on the bracket plate 514 at the bottom of the frame 51.
  • a half-shell fixed shield 54 is disposed between the disc-shaped permanent magnet 53 and the bracket plate 514, and the half-shell fixed shield 54 and the bracket plate 514 are fixed by the fastening member 515.
  • the disc-shaped permanent magnet 53 is made of a neodymium-iron-boron material, which is a disc-shaped permanent magnet, including upper and lower circular end face magnetic poles and an outer cylindrical surface; (or in the axial direction), the two circular end faces of the disc-shaped permanent magnet 53 are respectively N-pole and S-pole.
  • the upper end surface of the disk-shaped permanent magnet 53 is covered with a rotating shield 55, and the lower end magnetic pole is covered with a half-shell fixed shield 54.
  • the rotating shield 55 is magnetically connected to the half-shell fixed shield 54.
  • the half-shell fixed shield 54 is formed of a multi-layer silicon steel sheet laminated structure including a circular end surface 541 and a cylindrical side wall 542 having a half-shell structure.
  • the rotating shield 55 is formed of a multi-layer silicon steel sheet laminating structure, including a butterfly end surface 551 and a curved side wall 552.
  • the butterfly end surface 551 in the rotating shield 55 is formed by two scalloped surfaces arranged in an axisymmetric manner. The central angle of the scalloped surface is 90°.
  • the radius of curvature of the curved side wall 552 in the rotating shield 55 is the same as the radius of curvature of the cylindrical side wall 542 in the half-shell fixed shield 54, and the optimal magnetic gap relationship between the sidewalls of the two is maintained.
  • Magnetically conductive connection, the magnetically conductive connection of the present invention means that the rotating shield 55 maintains an optimum magnetic gap (usually 0.01 - 0.1 mm) with the half-shell fixed shield 54 during continuous rotation.
  • the rotating shield 55 is further provided with a rotating connecting member 56.
  • the rotating connecting member 56 is made of a non-magnetic material and has a circular tube shape.
  • the lower portion is fixed to the rotating shield 55, and the upper portion is provided with a power input pulley 57, and the upper bearing and the upper bearing are disposed.
  • the lower bearing is rotatably mounted with the center fixed shaft 52.
  • the technical solution of the vertical layout can be used, or the technical solution of the horizontal layout can be used.
  • the technical solution of the vertical layout is described.
  • the disc-shaped permanent magnet half-shell shielding device in the present embodiment can be applied to a power generating device: a plurality of inductive power generating devices 503 are disposed on the bracket plate 513 of the rack, and the inductive power generating device 503 is disposed. Above the end face magnetic pole of the disc-shaped permanent magnet 53 on the side of the rotating shield 55.
  • the induction power generating device 503 of the present embodiment includes a conventional induction core and an induction power generating coil, which are related to the prior art and will not be described in detail.
  • a power input wheel 57 is mounted to the rotary joint 56.
  • the power input wheel 57 can be mechanically coupled to a motor via a belt drive mechanism, and the rotary shield 55 is continuously rotated by the motor.
  • the butterfly end surface of the rotating shield is formed by two scalloped surfaces 5106 arranged in an axis symmetry
  • the scalloped surface The central angle is 60° - 90.
  • the best central angle of the scallop is 90°.
  • a ring-shaped air bearing 508 is disposed on the rotating shield, and a pneumatic bearing body 509 is disposed on the frame.
  • the pneumatic bearing of the present invention may also be referred to as an air-floating guide rail, the compressed air is introduced into the annular pneumatic bearing body, and a plurality of compressed gas injection holes are formed in the pneumatic bearing body, and the annular pneumatic bearing is arranged corresponding to the pneumatic bearing body.
  • the air float ring has a small gap between the two. Air-floating guide rails belong to the prior art and will not be described here.
  • the rotating shield 55 is formed of a multi-layer silicon steel sheet laminated structure, and the laminated silicon steel sheet laminated structure is composed of a silicon steel thin plate continuously extending from a silicon steel metal structure.
  • the thickness of the silicon steel sheet is in the range of 0.1 to 1.5 mm, the number of layers of the silicon steel sheet is in the range of 4 to 60, the most preferred thickness is 0.3 mm, and the most preferred layer is 10 layers.
  • a silicon steel thin plate having a sufficient length is wound into a multi-layer hollow disc-shaped blank using a disc-shaped mold, and then cut into a shape as shown in FIG. 41 by a cutting forming process, due to the molding. The process does not cut the fibrous structure peculiar to the metal material during the processing, and therefore, has excellent magnetic permeability.
  • the half-shell fixed shield is also manufactured using the same process.
  • the center fixing shaft 52 of the shielding device of the present embodiment and the disk-shaped permanent magnet 53 are provided.
  • a magnetic sleeve 540 is disposed between the coaxial cores, and the magnetic sleeve 540 extends through the N and S pole faces of the disc-shaped permanent magnet 53, and the inner end of the butterfly end face of the rotating shield 55 and the guide
  • the magnetic sleeve 540 is magnetically connected, and an electromagnetic generating device 530 is disposed coaxially between the magnetic conductive sleeve 540 and the disc-shaped permanent magnet.
  • the present embodiment structurally ensures that the butterfly end face of the rotary shield 55 has an efficient magnetically conductive connection with the magnetic conductive sleeve 540.
  • the magnetically conductive connection in the present embodiment means that the two butterfly end faces maintain an optimal magnetic gap with the upper and lower end faces of the magnetic conductive sleeve 540 during continuous rotation (usually 0.01 - 0. 1 mm), the butterfly end face and the magnetically permeable sleeve form a complete magnetic flux path.
  • Figure 43 is a view showing the distribution of magnetic lines of force of the disc-shaped permanent magnet 53 in a free state;
  • Figure 44 is a view showing the distribution of magnetic lines of force after the disc-shaped permanent magnet 53 is attached with the magnetic conductive sleeve 540 and the rotating shield 55.
  • the magnetic lines of force are distributed along the two magnetic paths of the side wall of the rotating shield 55 and the magnetic conductive sleeve 540, and the magnetic lines on the butterfly end face are more evenly distributed, thereby reducing the thickness of the butterfly end face.
  • the dotted line with an arrow in the figure indicates the direction of the magnetic field line.
  • the rotating shield 55 in the present embodiment can continuously change the magnetic field strength around the induction power generating device during the rotation, so that the power generating device generates an induced current, and at the same time, the induction generating coil also generates an accompanying magnetic field to attract the rotating.
  • the shield 55 increases the resistance to the rotation of the rotating shield 55.
  • an electromagnetic current may be supplied to the electromagnetic coil in the electromagnetic generating device 530 to generate a magnetic field opposite to the associated magnetic field of the induction generating coil.
  • the magnetic sleeve 540 is conducted to the butterfly end surface of the rotating shield 55, so that the butterfly end surface is instantaneously magnetically saturated, and the attractive force of the accompanying magnetic field to the shield is weakened. Help to turn The rotational movement of the movable shield 55.
  • the electromagnetic generating device 530 used in the present embodiment includes an intermittent current generating circuit and an electromagnetic coil. When the intermittent current generating circuit inputs an intermittent current to the electromagnetic coil, the electromagnetic coil generates a magnetic field. Both the intermittent current generating circuit and the electromagnetic coil can be disclosed in the prior art and will not be described in detail.
  • the rotating shield can be adjusted according to requirements, for example, the rotating shield can also be composed of a semi-circular end surface and an arc-shaped side wall.
  • the rotating shields in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment of the permanent magnet shielding device are all in a suspended state, and the suspension in the present invention is
  • the second embodiment of the magnet shielding device can be applied to the first embodiment of the driving device: as shown in FIG. 46 and FIG. 47, the design of the first embodiment of the magnetic driving device is: the driving device has a device
  • the rack 1001 is provided with a fixed platform 1002.
  • the fixed platform 1002 is mounted with a linkage frame, and a power output device is mounted under the fixed platform 1002.
  • the linkage frame is composed of a left linkage frame 1003 and
  • the right linkage frame 1004 is composed of two parts, and the left linkage frame 1003 and the right linkage frame 1004 are respectively installed by the two guide pillars 1005 and the device frame 1001.
  • the lower end of the guide pillar 1005 is fixed on the fixed platform 1002, the upper end and the device.
  • the rack top cover 1006 is fixed, and the permanent magnet shielding device is vertically installed at a position intermediate between the left linkage frame 1003 and the right linkage frame 1004.
  • the permanent magnet shielding device central fixed shaft 1008 is provided with a power input wheel 1009 at each of the upper and lower ends, and the power input wheel 1009 is externally connected with a driving motor, and the driving input motor 1009 is driven to rotate, thereby driving the rotating shielding body to reciprocately rotate.
  • a semicircular permanent magnet 1011 is mounted at a position corresponding to the top wall of the left linkage frame 1003 and the right linkage frame 1004 corresponding to the permanent magnet 1010, and magnetic poles and permanent magnets at the lower end of the semicircular permanent magnet 1011 are mounted.
  • the magnetic poles of the upper end of the 1010 have the same polarity, and a semi-circular magnet block 1012 is mounted at a position corresponding to the permanent magnet 1010 at the base of the left linkage frame 1003 and the right linkage frame 1004; the left linkage frame 1003 and the right linkage
  • the lower end of the frame 1004 passes through a crank linkage mechanism 1013 is connected to both ends of the rotating shaft 1014 on the power output device.
  • Both ends of the rotating shaft 1014 are mounted on the frame 1015 of the power output device through a rotary bearing, and a power output wheel is mounted on the rotating shaft 1014. 1016.
  • the flywheel 1017 may be installed in the middle of the rotating shaft 1014.
  • the working principle of the embodiment is: when the power output wheel 1016 drives the two rotating shields to rotate oppositely, and the two rotating shields are completely closed on the right side of the central fixed shaft, the two rotating shields completely shield the right half of the permanent magnet 1010; At this time, the semicircular permanent magnet 1011 on the left linkage frame 1003 is subjected to the repulsive force of the magnetic field in the left half of the permanent magnet 1010, and the semicircular magnet block 1012 on the left linkage frame 1003 is subjected to the magnetic field in the left half of the permanent magnet 1010.
  • the left linkage frame 1003 moves downward, and the right linkage frame 1004 moves upward. Therefore, alternately switching the area of the rotating shield shielding permanent magnet 1010, the left linkage frame 1003 and the right linkage frame 1004 can be continuously staggered up and down, and the rotating shaft 1014 of the power output device is driven to rotate by the crankshaft linkage mechanism 1013, thereby driving the power.
  • the output wheel 1016 is rotated to realize power output.
  • the first embodiment, the third embodiment, and the fourth embodiment of the permanent magnet shielding device can be applied to the second embodiment of the driving device:
  • the driving device has a device rack, and a fixed platform is disposed in the device rack, and a linkage frame is mounted on the fixed platform, and a power output device is installed under the fixed platform,
  • the linkage frame is composed of a left linkage frame 2003 and a right linkage frame 2004.
  • the left linkage frame 2003 and the right linkage frame 2004 are respectively installed by the two guide columns 2005 and the device frame, and the lower end of the guide column is fixed on the fixed platform.
  • the upper end is fixed to the device rack top cover 2006, and the middle portion of the left linkage frame 2003 and the right linkage frame 2004 is vertically mounted with the first embodiment described above.
  • the annular permanent magnet shielding device 2007; the lower end of the shielding device central fixed shaft 2008 is fixed at the central position of the fixed platform, and the upper end is fixed with the device frame top cover 2006; the shielding device central fixed shaft 2008 is provided with a power input wheel 2009, The power input wheel 2009 is externally connected with a driving motor, and the driving motor drives the power input wheel 2009 to rotate, thereby driving the rotating shielding body to rotate; at the positions corresponding to the top wall of the left linkage frame 2003 and the right linkage frame 2004 and the annular permanent magnet Mounted with a semi-circular permanent magnet 2011, the magnetic pole at the lower end of the semi-circular permanent magnet 2011 is the same as the magnetic pole at the upper end of the annular permanent magnet 2010; in the left linkage frame 2003 and the right linkage frame 2004 base and the annular permanent magnet 2010 Each of the corresponding positions is mounted with a semi-circular magnet block 2012; the lower end of the left linkage frame 2003 and the right linkage frame 2004 respectively pass through a crank linkage mechanism 2013 and the two ends of
  • the working principle of the embodiment is as follows: when the power input wheel 2009 drives the rotating shield to rotate, and the right half of the annular permanent magnet 2010 is completely shielded; at this time, the semi-circular permanent magnet 2011 on the left linkage frame 2003 is ring-shaped. The repulsive force of the magnetic field in the left half of the magnet 2010 is upward, and the semi-circular magnet block 2012 on the left linkage frame 2003 is attracted by the magnetic field in the left half of the annular permanent magnet 2010.
  • the rotation switching shield shields the area of the annular permanent magnet, so that the left linkage frame 2003 and the right linkage frame 2004 are continuously staggered up and down, and the rotation shaft of the power output device is driven to rotate by the crankshaft linkage mechanism, thereby driving the power output wheel. Rotate to achieve magnetic power output.
  • a third embodiment of the driving device of the invention relates to a butterfly magnetic driving device for a disc-shaped permanent magnet, which comprises a frame 3001 on which a support frame 3002 is mounted, on which the support frame is mounted.
  • a center fixed shaft 3003 is disposed on the 3002, and a disc-shaped permanent magnet 3004 is mounted on the center fixed shaft 3003.
  • the disc-shaped permanent magnet 3004 includes an N-pole circular end magnetic pole (right end surface) and an S-pole circular end magnetic pole ( a left end face), a rotating shield 3005 is disposed on the disc-shaped permanent magnet 3004; the rotating shield 3005 includes an N-pole butterfly shield disposed in parallel with the N-pole circular end face magnetic pole of the disc-shaped permanent magnet 3004
  • the plate 3006 is an S pole butterfly shielding plate 3007 disposed in parallel with the S pole circular end surface magnetic pole of the disk permanent magnet 3004, and a bridge magnetic conductive plate 3008 connecting the two butterfly shielding plates.
  • the butterfly shielding plate described in the embodiment is composed of two fan-shaped surfaces arranged in an axis symmetry, and the central angle of the fan-shaped surface is 60° to 90°. .
  • a butterfly shield having a sector angle of 90° is used.
  • the rotating shield 3005 is mounted on the central fixed shaft 3003 via a rotating connecting member 3009; a synchronous driving mechanism is mounted on the rotating connecting member 3009, and the synchronous driving mechanism can realize intermittent rotation of the rotating shield 3005;
  • a reciprocating dynamic magnet linkage frame 3010 is disposed on the frame 3001. The distance between the reciprocating dynamic magnet linkage frame 3010 and the frame 3001 is between 1 and 10 cm.
  • the reciprocating dynamic magnet linkage frame 3010 passes through the sliding rail.
  • the mechanism is mounted to the frame 3001.
  • the reciprocating movable magnet linkage frame 3010 is coupled to a power output shaft 3012 via a crank linkage mechanism 3011, and a power output wheel 3013 is mounted to the power output shaft 3012.
  • a flywheel mechanism 3014 for maintaining its rotation stability is disposed on the power output shaft 3012; the reciprocating movable magnet linkage frame 3010 moves along the movement axis of the frame rail mechanism (left and right reciprocating motion) and the disc shape
  • the normal direction of the magnetic pole of the N-pole circular end face of the magnet is parallel to the direction parallel to the central fixed axis; and a fixed parallel with the magnetic pole of the circular end face of the disc-shaped permanent magnet 3004 is disposed at each end of the reciprocating movable magnet linkage frame 3010.
  • the plate 3015 is provided with a moving magnet 3016 on each of the two fixing plates 3015.
  • the moving magnet 3016 includes an N-terminal magnetic pole (left end surface) and an S-terminal magnetic pole (right end surface), and the moving magnet of the present embodiment.
  • the end face is fan-shaped, and the central angle of the fan shape is 60° to 90°.
  • a moving magnet having a sector center angle of 90° is used.
  • the movable magnet of the right end of the reciprocating movable magnet linkage frame 3010 is disposed on the right side of the N-pole circular end face magnetic pole of the disc-shaped permanent magnet 3004, and the N-terminal magnetic pole of the moving magnet and the N of the disc-shaped permanent magnet 3004 a pole-shaped end face magnetic pole is oppositely disposed, and a movable magnet of the left end of the reciprocating movable magnet linkage frame 3010 is disposed at
  • the S-shaped circular end face magnetic pole of the disc-shaped permanent magnet 3004 is disposed on the left side, and the S-extreme magnetic pole of the movable magnet is disposed opposite to the S-pole butterfly shielding plate.
  • the disc-shaped permanent magnet 3004 described in this embodiment is fixed to the central fixed shaft 3003 by bonding, and the movable magnet 3016 is fixed to the fixing plate 3015 by bonding, and the disc-shaped permanent magnet described in this embodiment
  • the material of the magnets 3016 is the same as that of the moving magnets 3016. Both of them are magnetized with end faces.
  • the size of the moving magnets 3016 is 1/4 of the disc-shaped permanent magnets.
  • the left and right moving magnets in the present embodiment are diagonally disposed, and the left moving magnet corresponds to the butterfly shielding plate on the left side of the disc-shaped permanent magnet, and the right moving magnet and the The magnetic pole faces on the right side of the disc-shaped permanent magnet correspond to each other.
  • a magnetic sleeve 3017 is further disposed on the central fixed shaft 3003.
  • the magnetic sleeve 3017 is mounted between the central fixed shaft 3003 and the disc-shaped permanent magnet 3004.
  • the two butterfly shield plates of the disc-shaped permanent magnet 3004 are magnetically coupled.
  • the magnetically conductive connection according to the embodiment means that when the rotating shield is in rotation, between the two ends of the magnetic conductive sleeve 3017 and the two butterfly shielding plates 3006 and 3007 of the disc-shaped permanent magnet 3004.
  • a magnetic gap 3018 is provided, and the two butterfly shielding plates 3006, 3007 and the magnetic guiding sleeve 3017 maintain an optimal magnetic gap.
  • the distance of the magnetic gap is between 0.01 mm and 1 mm, and the rotating shield 3005 and the magnetic guiding sleeve are rotated. 3017 constitutes a complete line of magnetic lines.
  • An electromagnetic generating device 3019 is mounted on the magnetic conducting sleeve 3017, and the electromagnetic generating device 3019 is mounted between the magnetic conducting sleeve 3017 and the disc-shaped permanent magnet 3004.
  • the magnetic field generated by the electromagnetic generating device 3019 can achieve instantaneous magnetic saturation of the two butterfly shielding plates 3006, 3007 of the rotating shield 3005 to reduce the attraction of the moving magnet 3006 on the reciprocating moving magnet linkage 3010 to the rotating shield 3005. Force, reduce input power.
  • the electromagnetic generating device 3019 used in the present embodiment includes an intermittent current generating circuit, an electromagnetic coil carrier, and an electromagnetic coil. When the intermittent current generating circuit inputs an intermittent current to the electromagnetic coil, the electromagnetic coil generates a magnetic field; the intermittent current generating circuit and The electromagnetic coil can be used in the prior art and will not be described here.
  • the distance between the N-pole circular end face magnetic pole of the disc-shaped permanent magnet 3004 and the N-pole butterfly shielding plate in the present embodiment is the same as that of the disc-shaped permanent magnet 3004.
  • the distance between the S-pole circular end magnetic pole and the S-pole butterfly shielding plate is equal, and the value of the distance is 0.5 to 3 mm, which is 1 mm in the present embodiment.
  • the butterfly shielding plate 3006, 3007 is laminated with a multi-layer silicon steel sheet, the butterfly shape
  • the thickness of the body wall of the shielding plates 3006, 3007 is between 0.5 and 20 mm, and the most preferred thickness is 3 mm; the number of silicon steel sheets of the butterfly shielding plates 3006 and 3007 is reasonably selected between 2 and 80, and the most preferred number of layers It is 10 stories.
  • the specific manufacturing method is that a piece of silicon steel sheet is wound into a plurality of layers, and then processed into a sliding shield by using a cutting forming process; since the above forming process does not cut the fibrous structure peculiar to the metal material during the processing, the structure is maintained. Continuity, therefore, has excellent magnetic permeability and good shielding effect.
  • the sliding shield made of this material is light in weight, material is hooked, and material is easy to be taken; a magnetic field fast path is established for the magnetic field.
  • the rotating connecting member 3009 in the embodiment is fixedly connected to the butterfly shielding plate of the rotating shield 3005, and the bearing 3020 is disposed in the rotating connecting member 3009.
  • the rotating shield 3005 and the center can be fixed by the above structure.
  • the slide rail mechanism in the embodiment includes two cylindrical slide rails 3021 on the bottom of the support frame, and the reciprocating dynamic magnet linkage frame 3010 passes through the support sleeve 3022 disposed at the bottom thereof.
  • the rail mounting, as shown in Fig. 53, is mounted with a linear bearing 3023 in the support sleeve 3022.
  • the slide rail mechanism described in the embodiment is made of a non-magnetic material such as plastic, aluminum alloy, stainless steel or carbon fiber; the rotary joint is also made of plastic, aluminum alloy, stainless steel, carbon fiber or the like which is non-magnetic.
  • the material is made; in the embodiment, the disc-shaped permanent magnet and the moving magnet are both made of a neodymium iron boron material, and the permanent magnet has the advantages of long service life and low energy consumption.
  • the slide rail mechanism described in this embodiment may further include two strip-shaped slide rails 3024 that are axially symmetrically mounted on the frame, and the reciprocating dynamic magnet linkage frame 3010 is disposed through A sliding support sleeve 3025 at the bottom is mounted to the strip rail.
  • the rail body linkage of the present embodiment is mounted to the strip chute through a sliding support rail 3027 provided at the bottom thereof.
  • the present embodiment is equipped with a synchronous driving mechanism including a driving motor (stepping motor) and main synchronization.
  • the wheel, the slave synchronous gear 3028, the synchronous toothed belt 3029 and the drive control circuit, the slave synchronous wheel 3028 and the rotary joint 3009 are mounted, and the main synchronous wheel of the drive motor passes through the synchronous toothed belt 3029.
  • the slave synchronous wheel 3028 is connected.
  • the drive motor is coupled to a drive control circuit (known in the art), and the rotation interval of the rotating shield 3005 And the rotation angle can be preset in the driving control circuit, and the rotating shielding body 3005 is controlled in real time by the driving control circuit, and the structure has the characteristics of high displacement precision and good shielding effect.
  • the driving motor drives the rotating shielding body 3005 to intermittently rotate, and the maximum rotating speed of the rotating shielding body 3005 is 3 revolutions/second, and the rotating shielding body rotates by 90°. At least 0.05 seconds intermittent.
  • the drive motor under the control of the drive control circuit, can also drive the rotary shield 3005 to intermittently reciprocate, and the rotational angle of the rotary shield is 90°.
  • the crank link mechanism 3011 (known in the art) in the present embodiment includes a crank 3030 and a link 3031, and the link 3031 is hinged with the reciprocating movable magnet linkage frame 3010.
  • the crank 3030 is fixed to the power output shaft 3012.
  • the reciprocating dynamic magnet linkage 3010 can be reciprocated into a rotational motion, and the power can be output through the power output wheel.
  • the reciprocating movable magnet linkage frame has a mouth-shaped linkage frame main body, and a fixing plate parallel to the circular end surface magnetic pole of the disc-shaped permanent magnet is disposed at each of the left and right ends of the linkage frame main body.
  • a moving magnet is mounted on the fixing plate, and the supporting sleeve is disposed on the front and rear side walls of the main body of the linkage.
  • the frame, the support frame, the central fixed shaft, the rotating connecting member, the sliding rail mechanism, the reciprocating dynamic magnet linkage frame and the like described in the embodiment are all non-magnetically plasticized, such as plastic, aluminum alloy, stainless steel, carbon fiber or the like. Made of materials.
  • the working principle of the embodiment is as follows: When the rotating shield shields a part of the disc-shaped permanent magnet, a part of the magnetic field that is not shielded by the disc-shaped permanent magnet generates a magnetic repulsive force on a corresponding moving magnet, and the other moving magnet A butterfly shield plate for rotating the corresponding shield is caused to move the reciprocating movable magnet linkage frame horizontally to one side; when the rotating shield body needs to continue to rotate, a current is input to the electromagnetic generating device to generate a current
  • the magnetic field in the same direction as the magnetic pole of the disc-shaped permanent magnet, the magnetic field lines of the magnetic field can realize the instantaneous magnetic saturation of the two butterfly shielding plates of the rotating shield, and generate a force repulsing the magnetic field of the moving magnet, thereby reducing the reciprocating dynamic magnet linkage
  • the attraction of the moving magnet on the frame to the rotating shield helps to rotate the shield; when the rotating shield continues to rotate by 90°, the originally repelled moving magnet attracts the corresponding butterfly shielding plate.
  • the moving magnet attracting the butterfly shielding plate is repelled under the action of the disc-shaped permanent magnet, so that the reciprocating movable magnet linkage frame is opposite to the opposite side.
  • Horizontal movement; a drive motor with The intermittent rotation of the rotating rotating shield can realize the output of the reciprocating dynamic magnet linkage frame along the moving axis of the sliding rail mechanism.
  • the synchronous driving mechanism mounted on the rotary joint of the present embodiment can also be replaced by a reciprocating rotary drive mechanism.
  • the reciprocating rotational driving mechanism includes a driving motor (stepping motor), a main synchronizing wheel, a slave synchronous wheel 3032, a synchronous toothed belt 3033, and a drive control circuit, and the slave synchronous wheel and the rotation.
  • the connecting member is mounted, and the main synchronous wheel of the driving motor is connected to the slave synchronous wheel through a synchronous toothed belt.
  • the driving motor is connected with a driving control circuit (known in the art), and the rotation interval and the rotation angle of the rotating shielding body can be preset in the driving control circuit, and the rotating shielding body is controlled in real time by the driving control circuit.
  • the structure has the characteristics of high displacement precision and good shielding effect.
  • the drive motor under the control of the drive control circuit, can also drive the rotary shield to intermittently reciprocate, and the rotational angle of the rotary shield is 90°.
  • the working principle of the embodiment is as follows: When the rotating shield shields a part of the disc-shaped permanent magnet, a part of the magnetic field that is not shielded by the disc-shaped permanent magnet generates a magnetic repulsive force on a corresponding moving magnet, and the other moving magnet A butterfly shield plate for rotating the corresponding shield is attracted to move the reciprocating movable magnet linkage frame horizontally to one side; when the rotating shield body needs to be reversely rotated, a current is input to the electromagnetic generating device to generate a magnetic field in the same direction as the magnetic pole of the disc-shaped permanent magnet, the magnetic field line of the magnetic field can realize the instantaneous magnetic saturation of the two butterfly shielding plates of the rotating shield, and generate a force repulsing the magnetic field of the moving magnet, thereby reducing the reciprocating dynamic magnet
  • the attraction of the moving magnet on the linkage to the rotating shield helps to rotate the shield; when the rotating shield rotates 90° in the reverse direction, the originally repelled moving magnet attracts the butterfly shield corresponding thereto.
  • the moving magnet that originally attracted the butterfly shielding plate is repelled under the action of the disc-shaped permanent magnet, so that the reciprocating dynamic magnet linkage frame is oriented Horizontal movement in the opposite direction; a drive motor with rotation of the movable shield can be rotated intermittently reciprocally movable in reciprocating magnet carrier linkage through the axis of the output wheel power output motion along the slide rail mechanism.
  • the reciprocating dynamic magnet linkage frame of the embodiment can also be replaced by a reciprocating magnetizer linkage, so that the moving magnet mounted to the reciprocating movable magnet linkage can also be replaced by a magnetizer. As shown in FIG.
  • a reciprocating magnetic coupling frame 3034 is disposed on the frame, and the reciprocating magnetic coupling frame 3034 is mounted to the frame through a slide rail mechanism, and the reciprocating magnetism linkage frame 3034 Connected to a power output shaft through a crank-link mechanism, on which a flywheel mechanism is disposed;
  • the reciprocating magnetizer linkage 3034 is along the axis of motion of the frame rail mechanism and the disc-shaped permanent magnet N-pole The normal direction of the circular end face magnetic poles is parallel;
  • a magnetizer 3035 is disposed at each end of the reciprocating magnetizer linkage frame, and the revolving magnetophore linkage frame 3034 is disposed at the end of the disc-shaped permanent magnet a working side of the N-pole circular end face, a working surface 3036 of the magnetizer is disposed opposite to the N-pole circular end face magnetic pole of the disc-shaped permanent magnet, and a magnetizer at the other end of the reciprocating magneto-optical linkage 3034 is disposed at the The S-
  • the working principle of the embodiment is: when the rotating shield shields a part of the disc-shaped permanent magnet, a part of the magnetic field that is not shielded by the disc-shaped permanent magnet generates magnetic attraction to a corresponding magnetizer, and the other magnetizer Between the disc-shaped permanent magnet and the disc-shaped permanent magnet, there is no magnetic field between the magnet and the disc-shaped permanent magnet; under the attraction of the disc-shaped permanent magnet, the reciprocating magneto-linking frame is horizontal to one side.
  • the driving motor drives the rotating shield to rotate intermittently to realize the reciprocating horizontal movement of the reciprocating magnetic coupling frame along the movement axis of the sliding rail mechanism, and the generated power drives the power output shaft to rotate through the crank connecting rod, and finally outputs through the power output wheel.
  • the technical solution disclosed in the embodiment is a horizontal solution, and the central fixed shaft is arranged in a horizontal direction; the invention can also design an established scheme, in which the central fixed shaft is arranged in a vertical direction, The connection relationship of other parts is unchanged except that the support structure needs to be changed.
  • a second embodiment of the power generating apparatus of the present invention is a disk-shaped permanent magnet rotating shield power generating device, which includes a frame 4001, and a center is horizontally fixed on the frame 4001.
  • the fixed shaft 4002 is mounted with a disc-shaped permanent magnet 4003.
  • the disc-shaped permanent magnet 4003 can be mounted to the central fixed shaft 4002 by means of bonding, static fitting, or the like.
  • the disk-shaped permanent magnet 4003 includes a circular disk surface magnetic pole N, a circular disk surface magnetic pole S and a cylindrical surface; a rotating shield 4004 is disposed outside the disk-shaped permanent magnet, and the rotating shield 4004 includes the disk An N-pole butterfly shielding plate 4005 in which the circular disk magnetic poles N of the permanent magnets are arranged in parallel, an S-pole butterfly shielding plate 4006 disposed in parallel with the circular disk magnetic pole S of the disk-shaped permanent magnet, and two butterflies are connected
  • the bridge shielding plate 4007 of the shielding plate; the N-pole butterfly shielding plate 4005 and the S-pole butterfly shielding plate 4006 described in the embodiment are respectively composed of two sector plates arranged in an axis symmetry, and the central angle of the sector plate It is 60° ⁇ 90.
  • an N-pole butterfly shielding plate 4005 and an S-pole butterfly shielding plate 4006 having a sector angle of 90° are used.
  • the rotating shield 4004 is rotatably mounted to the central fixed shaft 4002 by a rotating connecting member 4008; a power input wheel 4009 is mounted with the rotating connecting member 4008, and is equally divided along the circumference of the cylindrical surface of the disc-shaped permanent magnet 4003.
  • Four inductive power generating devices 4010 are provided.
  • the inductive power generating device 4010 is disposed on the rotating shield 4004.
  • the inductive power generating device 4010 includes a double sector magnetic conducting plate 4011.
  • the double fan shaped magnetic conducting plate 4011 passes through a fixed supporting member.
  • the 4012 is mounted with the frame 4001, and the induction coil 4013 is placed on the double-shaped magnetic conductive plate 4011.
  • the longitudinal cross section of the double sector magnetic conductive plate 4011 is U-shaped.
  • the permanent magnet magnetic line can enter the induction power generation equipment vertically, thereby improving the induction power generation efficiency of the induction power generation equipment.
  • the double-segment magnetic conductive plate 4011 includes two sector-shaped magnetic conductive plates 4014 disposed in parallel with two circular disk magnetic poles of the disk-shaped permanent magnet 4003, and two of the fan-shaped magnetic conductive plates are connected.
  • the magnetic conductive plate 4015 is bridged; the central angle of the sector-shaped magnetic conductive plate is 60° to 90°.
  • a double-shaped magnetic conductive plate having a sector angle of a sector-shaped magnetic conductive plate of 90° is used.
  • the induction generating coil 4013 is mounted on the bridged magnetic conductive plate through the electromagnetic coil bracket 4016;
  • the fixed support member in the embodiment is a plate type support member, and the two sector-shaped magnetic conductive plates of the induction power generating device It can be fixed to the fixed support by bonding, fixed by riveting, or fixed by snapping; the plate support can position the induction power generation device to ensure the N pole of the disc permanent magnet
  • the distance between the sector-shaped magnetic plates is equal to the distance between the S-poles of the disc-shaped permanent magnets and the sector-shaped magnetic plates.
  • the fixed support member described in the embodiment may further be a butterfly support member 4017 and a spoke-shaped support member 4018, which can effectively reduce the overall weight of the power generating device; due to the rotation of the rotating shield around the disk-shaped permanent magnet Heat is generated during the process, so the support can also act as a heat sink.
  • the N-pole butterfly shielding plate and the S-pole butterfly shielding plate of the rotating shield are rotatably mounted to the central fixed shaft through a rotating connecting member, and the rotating connecting member is A bearing 4019 is provided, and the above structure can realize the rotational connection of the rotating shield to the central fixed shaft.
  • the material, size and shape of the N-pole butterfly shielding plate and the S-pole butterfly shielding plate described in the embodiment are the same; the materials, sizes and shapes of the two bridging shielding plates are the same.
  • the frame, the center fixed shaft, the rotating joint, the power input wheel and the fixed support described in the embodiment are made of a non-magnetic material such as plastic, aluminum alloy or stainless steel.
  • the disc-shaped permanent magnet is made of a neodymium-iron-boron material, which is a disc-shaped permanent magnet, including a circular disk magnetic pole N, a circular disk magnetic pole S, and a cylindrical surface. 4020;
  • the permanent magnet is made by magnetizing in the direction of the circular disk surface (end magnetization). This kind of permanent magnet has the advantages of long service life and low energy consumption.
  • the circular disk surface on the left side of the disk-shaped permanent magnet has a magnetic pole N pole, and the right circular disk surface magnetic pole S pole; the disk-shaped permanent magnet has a circular disk surface magnetic pole N to N pole butterfly shield
  • the distance between the plates is equal to the distance between the circular disk magnetic pole S of the disc-shaped permanent magnet and the S-pole butterfly shielding plate, and the distance value is 0.5 to 3 mm; in the present embodiment, it is 1 mm.
  • the working principle of the embodiment is: the power input wheel in the embodiment can be externally connected with a driving motor (not shown), and the rotating shield is rotated by the driving motor; the disc-shaped permanent magnet rotating shielding power generating device of the invention Generating electric energy by using a rotating magnetic shielding principle; two sector-shaped magnetic conductive plates of the double-sector magnetic conducting plate are respectively disposed in parallel with two circular disk magnetic poles of the disc-shaped permanent magnet, and the induction generating coil and the disc-shaped permanent The cylindrical surface position of the magnet corresponds.
  • the present embodiment is provided with four inductive power generating devices, each of which has a double-shaped magnetic conductive plate, and the four-shaped magnetic conductive plates of the four inductive power generating devices have the same material, size and shape, and four double-shaped sectors.
  • the disc-shaped permanent magnet After the magnetic conductive plate is assembled, the disc-shaped permanent magnet can be covered, which can be effectively reduced With less magnetic leakage, the magnetic lines of force generated by the N-pole of the disc-shaped permanent magnet can be guided along the double-shaped magnetic conductive plate to the S-pole of the disc-shaped permanent magnet, which increases the magnetic field strength through the induction generating coil and increases the amount of power generation.
  • the N-pole butterfly shielding plate, the S-pole butterfly shielding plate, the sector-shaped magnetic conductive plate, the bridge shielding plate and the bridge magnetic conductive plate described in the embodiment are all laminated with a plurality of layers of silicon steel sheets, and the thickness thereof is Between 0.5 and 20 mm, the most preferred thickness is 3 mm, the number of layers of silicon steel is between 3 and 70, and the most preferred number of layers is 10; the specific method is that a piece of silicon steel sheet is wound into multiple layers, and then The forming process is performed by using a cutting forming process, since the molding process does not cut the fibrous structure peculiar to the metal material during the processing, and the continuity of the structure is maintained, thereby having excellent magnetic permeability and good shielding effect.
  • the N-pole butterfly shielding plate, the S-pole butterfly shielding plate, the fan-shaped magnetic conductive plate, the bridge shielding plate and the bridge magnetic conductive plate made of the material are light in weight, the materials are hooked, and the material is easy to be taken; a magnetic field fast channel is established for the magnetic field. .
  • the technical solution disclosed in the embodiment is a horizontal solution, and the central fixed shaft is arranged in a horizontal direction; the invention can also design an established scheme, in which the central fixed shaft is arranged in a vertical direction, The connection relationship of other parts is unchanged except that the support structure needs to be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

永磁体屏蔽装置及其应用系统 本申请要求了申请日为 2009年 4月 28 日, 申请号为 200910082998.3 , 发 明名称为 "一种环形永磁体屏蔽装置"、 申请日为 2009年 5月 22日, 申请号为 200910084676.2,发明名称为 "一种盘形永磁体薄壳式屏蔽装置"、申请日为 2009 年 6月 9 日, 申请号为 200910086084.4 , 发明名称为 "一种环形永磁体的双板 式屏蔽装置"、 申请日为 2009年 6月 10日, 申请号为 200910086086.3 , 发明名 称为 "一种盘形永磁体半壳式屏蔽装置"、 申请日为 2009年 9月 3 日, 申请号 为 200910170100.8, 发明名称为 "一种盘形永磁体的碟式磁力驱动装置"、 申请 曰为 2009年 9月 15 日, 申请号为 200910177553.3 , 发明名称为 "一种盘形永 磁体转动屏蔽发电装置" 的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。
【技术领域】
本发明涉及一种永磁体屏蔽装置及其应用系统, 该永磁体屏蔽装置能够覆 盖永磁体的磁力线, 并可配合其他能量转换装置进行能量转换后输出能量。
【背景技术】
现有的, 通过屏蔽装置和磁体转换机械能为电能, 或通过屏蔽装置和磁体 转换电能为机械能, 已经普遍的使用在发电机、 驱动系统等技术领域。
其中, 中国专利申请第 01139883.3于 2003年 6月 11 日公开了一种永磁感 生发电系统, 有发电线圈及永久磁体, 所述的永久磁体是一个水平安装的圓盘 式永久磁体, 该永久磁体通过一个中心立柱与底座固定, 该永久磁体的外面罩 装一个转动式磁屏蔽罩, 该磁屏蔽罩通过轴承与中心立柱安装, 该磁屏蔽罩上 设有多个磁能释放窗口, 该磁屏蔽罩底部装有从动皮带轮, 所述的底座上设置 有一个驱动电机, 该驱动电机上装有拖动皮带轮, 该拖动皮带轮与从动皮带轮 皮带传动, 所述的发电线圈安装在永久磁体一侧。 但由于磁屏蔽罩结构和整体 结构的缺陷, 使得要屏蔽较强磁场时, 磁屏蔽罩的厚度需要大幅增加, 使得其 质量大幅增加, 驱动电机带动该磁屏蔽罩转动较为困难; 且该装置无法克服外 部发电线圈发电后产生的电磁场对磁屏蔽罩的反作用力, 使得在发电线圈产生 电流后, 磁屏蔽罩移动较为困难, 能量转换过程中能量损耗较大, 达不到预期 耗能小, 发电效率高的效果。
为解决上述磁屏蔽罩结构的问题, 中国发明专利申请第 200610113824.5号 于 2008年 4月 23日公开了一种用于屏蔽强磁场的多层复合结构的磁屏蔽装置, 其中, 该磁屏蔽装置釆用多层复合结构, 包括一为中间层的硅钢部件、 一为内 层的合金部件、 一为外层的螺线管线圈, 且该磁屏蔽装置将合金部件置于硅钢 部件内部, 在合金部件的外部置有螺线管线圈。 但是该专利所公开的技术方案 受整体结构限制, 只适用于屏蔽强磁场的光电倍增管, 其功能单一, 不能进行 能量转换。
另外, 针对磁体将电能转化为机械能, 中国实用新型专利第 00252880.0号 于 2001年 10月 3 日公开了一种高牵入同步能力永磁同步电动机, 该电动机包 括机座及组装其内的定子, 以及由转轴、 铁心、 永磁体、 一鼠笼导条构成的转 子, 其中, 径向分布的永磁体嵌入转子铁心的永磁体槽中, 永磁体槽位于转子 槽下方, 两槽之间有隔磁磁桥。但电机内部不存在屏蔽套, 不能实现屏蔽效果, 使得整体结构不完善;
为解决上述问题, 中国专利申请第 92114781.3于 1994年 6月 29 日公开了 一种导磁差动 (转)子磁力驱动系统,该装置设置至少一个由永久磁体构成的固定 在支架上的定于. 其有两个磁极 (N 和 S), 还有一个由磁性材料构成的磁力动 子. 其也有或感应有两个磁极 (N和 S), 该磁力动子是与定子可作相对运动地安 置在一个非导磁材料制成的保持机构上的, 定于磁极和磁力动子磁极之间至少 保持一定间隙, 还设置一个片状的导磁差动 (转)子 (非导磁材料), 其片状部分 可在上述间隙中运动, 以使两极间的磁力线发生变化, 从而导致磁力动子作远 离或接近定予的运动。 但是该专利的整体结构不完善, 缺少实现其功能的必要 结构, 在能量转换的过程中损耗较大, 不适应工业生产的需求。 【发明内容】
本发明的目的在于提供一种功能完善, 能够配合永磁体实现能量装换的永 磁体屏蔽装置, 以及利用该永磁体屏蔽装置进行能量转换的结构完善、 转换过 程中能量损耗较小的发电系统及驱动系统。
为了实现上述目的, 本发明的技术方案是:
一种永磁体屏蔽装置, 包括一支承架, 一与所述支承架保持相对静止的永 磁体, 一可相对所述支承架运动的转动轴, 一驱动所述转动轴相对所述支承架 转动的驱动模块, 一连接所述转动轴并套设于所述永磁体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 所述转动屏蔽体相对 所述永磁体保持悬浮状态, 且所述转动屏蔽体设有至少一个使所述永磁体磁力 线穿过的缺口, 其中, 所述转动屏蔽体包括分别与永磁体 N极面与 S极面平行 设置的第一屏蔽面和第二屏蔽面, 所述第一屏蔽面距所述永磁体 N极面和所述 第二屏蔽面距所述永磁体 S极面距离相同, 距离为 0.1~lmm。 另夕卜,
本发明的永磁体屏蔽装置进一步地包括以下特征:
所述永磁体为轴向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安 装在所述永磁体内的导磁模块, 所述导磁模块贯穿所述永磁体 N、 S极面, 所述 转动屏蔽体与所述导磁模块导磁连接。
所述永磁体屏蔽装置还包括一电磁发生模块, 所述电磁发生模块在通电状 态下所产生的磁力线可进入转动屏蔽体内。
所述电磁发生模块在通电状态下产生磁场的磁极与所述永磁体磁极方向相 同。
所述电磁发生模块配合所述永磁体作用所述第一屏蔽面和第二屏蔽面至磁 饱和。
所述电磁发生模块包括一加载输入电流的电磁发生模块, 所述输入电流为 一间歇电流。
所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 15mm之间。
所述转动屏蔽体釆用多层导磁体叠压构成。 所述第一屏蔽面和所述第二屏蔽面连接形成多条导磁通路。
本发明还可通过上述永磁体屏蔽装置与感应发电装置或驱动装置结合, 从 而构成发电系统或驱动系统, 以满足不同需要。
与现有技术相比, 本发明的优势在于: 结构简单、 功能完善、 能量转换过 程中消耗较小, 能量转换效率较高。
【附图说明】
图 1 是表示应用本发明永磁体屏蔽装置第一实施方式构成发电设备的立体 视图。
图 2是表示应用本发明永磁体屏蔽装置第一实施方式构成发电设备的主视 图。
图 3 是表示应用本发明永磁体屏蔽装置第一实施方式构成发电设备的纵剖 视图。
图 4是表示本发明永磁体屏蔽装置第一实施方式多层屏蔽罩的立体示意图。 图 5是表示本发明永磁体屏蔽装置第一实施方式永磁体屏蔽罩的立体示意 图。
图 6是表示本发明发电设备中永磁体屏蔽装置第一实施方式加入导磁套筒 后的纵剖视图。
图 7是表示本发明永磁体屏蔽装置第一实施方式的磁场分布示意图。
图 8是表示本发明发电设备中永磁体屏蔽装置第一实施方式加入电磁发生 装置后的纵剖视图。
图 9是表示本发明永磁体屏蔽装置第一实施方式加入电磁发生装置后的磁 场分布示意图。
图 10是表示应用本发明永磁体屏蔽装置第二实施方式构成发电设备的立体 视图。
图 11是表示应用本发明永磁体屏蔽装置第二实施方式构成发电设备的主视 图。 图 12是表示本发明发电设备中永磁体屏蔽装置第二实施方式加入导磁套筒 和电磁发生模块后的纵剖视图。
图 13是表示本发明永磁体屏蔽装置第二实施方式永磁体屏蔽罩的立体示意 图。
图 14是表示应用本发明永磁体屏蔽装置第三实施方式构成发电设备的立体 视图。
图 15是表示应用本发明永磁体屏蔽装置第三实施方式构成发电设备的纵剖 视图。
图 16是表示本发明永磁体屏蔽装置第三实施方式永磁体屏蔽罩的另一立体 示意图。
图 17是表示本发明永磁体屏蔽装置第三实施方式永磁体屏蔽罩的另一立体 示意图。
图 18是表示本发明永磁体屏蔽装置第三实施方式永磁体屏蔽罩的另一立体 示意图。
图 19是表示本发明永磁体屏蔽装置第三实施方式永磁体在自由状态下的磁 场分布示意图。
图 20是表示本发明永磁体屏蔽装置第三实施方式加装柱形导磁芯体后的磁 场分布示意图。
图 21是表示本发明发电设备中永磁体屏蔽装置第三实施方式加入电磁发生 装置后的纵剖视图。
图 22是表示本发明永磁体屏蔽装置第三实施方式加入电磁发生装置后的磁 场分布示意图。
图 23是表示本发明发电设备中永磁体屏蔽装置第三实施方式加入导磁套筒 后的纵剖视图。
图 24是表示本发明永磁体屏蔽装置第三实施方式进一步改进后多层屏蔽罩 的立体示意图。
图 25是表示应用本发明永磁体屏蔽装置第四实施方式构成发电设备的立体 视图。
图 26是表示本发明发电设备中永磁体屏蔽装置第四实施方式加入导磁套筒 和电磁发生装置后的纵剖视图。
图 27是表示本发明永磁体屏蔽装置第四实施方式永磁体屏蔽罩的立体示意 图。
图 28是表示本发明永磁体屏蔽装置第四实施方式的磁场分布示意图。
图 29是表示本发明永磁体屏蔽装置第四实施方式屏蔽板的立体示意图。 图 30是表示本发明永磁体屏蔽装置第四实施方式筒形导磁壁的立体示意图。 图 31是表示本发明永磁体屏蔽装置第四实施方式的磁场分布示意图。
图 32是表示本发明永磁体屏蔽装置第四实施方式的磁场分布示意图。
图 33是表示本发明永磁体屏蔽装置第四实施方式进一步改进后的纵剖视图。 图 34是表示本发明永磁体屏蔽装置第四实施方式永磁体屏蔽罩的立体示意 图。
图 35是表示应用本发明永磁体屏蔽装置第五实施方式构成发电设备的立体 视图。
图 36是表示应用本发明永磁体屏蔽装置第五实施方式构成发电设备的纵剖 视图。
图 37是表示本发明永磁体屏蔽装置第五实施方式永磁体屏蔽罩的立体示意 图。
图 38是表示应用本发明永磁体屏蔽装置第五实施方式进一步改进后构成发 电设备的纵剖视图。
图 39是表示本发明永磁体屏蔽装置第五实施方式永磁体屏蔽罩进一步改进 后的立体示意图。
图 40是表示本发明永磁体屏蔽装置第五实施方式永磁体屏蔽罩进一步改进 后的立体示意图。
图 41是表示本发明永磁体屏蔽装置第五实施方式多层屏蔽罩的立体示意图。 图 42是表示本发明发电设备中永磁体屏蔽装置第五实施方式加入电磁发生 模块后的纵剖视图。
图 43是表示本发明永磁体屏蔽装置第五实施方式永磁体在自由状态下的磁 场分布示意图。
图 44是表示本发明永磁体屏蔽装置第五实施方式加装导磁套筒的磁场分布 示意图。
图 45是表示本发明永磁体屏蔽装置第五实施方式的磁场分布示意图。
图 46是表示本发明驱动设备第一实施方式的立体示意图。
图 47是表示本发明驱动设备第一实施方式的主视图。
图 48是表示本发明驱动设备第二实施方式的主视图。
图 49是表示本发明驱动设备第三实施方式的立体视图。
图 50是表示本发明驱动设备第三实施方式的纵剖视图。
图 51是表示本发明驱动设备第三实施方式转动屏蔽体的立体示意图。
图 52是表示本发明驱动设备第三实施方式转动连接件的立体视图。
图 53是表示本发明驱动设备第三实施方式往复动磁体联动架的立体视图。 图 54是表示本发明驱动设备第三实施方式往复动磁体联动架和滑轨配合第 一实施方式的立体视图。
图 55是表示本发明驱动设备第三实施方式往复动磁体联动架和滑轨配合第 二实施方式的立体视图。
图 56是表示本发明驱动设备第三实施方式曲柄连杆的立体示意图。
图 57是表示本发明驱动设备第三实施方式替换方案的立体示意图。
图 58是表示本发明驱动设备第三实施方式替换方案的立体示意图。
图 59是表示本发明发电设备另一实施方式的立体视图。
图 60是表示本发明发电设备另一实施方式的纵剖视图。
图 61是表示本实施方式中盘形永磁体的立体示意图。
图 62是表示本实施方式中转动屏蔽体的立体示意图。
图 63是表示本发明发电设备另一实施方式感应发电设备的立体示意图。 图 64是表示本发明发电设备另一实施方式双扇形导磁板的立体示意图。 图 65是表示本发明发电设备另一实施方式蝶形支撑件的立体示意图。
图 66是表示本发明发电设备另一实施方式辐条形支撑件的立体示意图。
【具体实施方式】
现在, 将参考附图来详细地描述本发明的具体实施方式。
永磁体屏蔽装置第一实施方式及应用该永磁体屏蔽装置第一实施方式构成 的发电设备:
如图 1至图 3所示, 本实施方式中环形永磁体屏蔽装置包括一个机架 11 , 在该机架上固定一个中心固定轴 12, 在该中心固定轴 12 上安装有环形永磁体 13 , 该环形永磁体 13与中心固定轴 12呈过盈安装, 在所述环形永磁体 13外设 置有一个转动屏蔽体 14; 该转动屏蔽体 14呈扇形, 且该转动屏蔽体 14的扇形 断面呈 [ 形, 扇形面角度为 180° (半圓形)。 所述转动屏蔽体 14通过转动连 接件 15安装在中心固定轴 12上, 本实施方式设有两个转动连接件 15, 分别设 置在转动屏蔽体 14两侧, 所述的转动连接件 15与转动屏蔽体 14两边侧壁固定 连接, 在两个转动连接件 15内各设有一个轴承 16, 从而实现转动屏蔽体 14与 中心固定轴 12的转动连接; 有一个动力输入轮 17与所述转动连接件 15安装; 在本实施方式中, 所述的动力输入轮 17为皮带轮; 本实施方式中所述的环形永 磁体 13是轴向充磁, 并设定环形永磁体 13左部为 N极, 右部为 S极, 所述环 形永磁体 13的 N极面到转动屏蔽体 14的距离与所述环形永磁体 13的 S极面到 转动屏蔽体 14的距离数值相等, 该距离数值通常为 0.1 ~ lmm, 优选地, 本实 施方式中为 lmm。
本实施方式所述的环形永磁体屏蔽装置可以应用于一个发电设备, 该发电 设备的设计方案是: 将动力输入轮 17外接一个驱动电机, 通过驱动电机带动转 动屏蔽体 14转动, 在所述机架 11上安装有与环形永磁体 13位置对应的发电线 圈 18, 通过转动屏蔽体 14的转动, 可以使发电线圈 18所处位置的磁场强度不 断变化, 即可使得发电线圈 18中产生电流。
在本实施方式中,所述的转动连接件 15可对转动屏蔽体 14起到定位作用, 以保证环形永磁体 13距转动屏蔽体 14之间距离相等, 确保转动屏蔽体 14转动 顺畅, 所述转动屏蔽体 14在中心固定轴 12上的定位问题是通过安装在转动连 接件 15 内的两个轴承解决的, 该转动连接件 15整体釆用不锈钢制成, 不会被 永磁体吸附, 便于安装。
本实施方式中釆用在所述环形永磁体 13外设置有一个转动屏蔽体 14的设 计, 可实现转动屏蔽体 14绕中心固定轴 12转动运动, 本发明的转动屏蔽体 14 与环形永磁体 13 同轴等距安装, 具有受力均匀特点; 在转动屏蔽体 14转动时 不受环形永磁体 13的干扰, 只需通过动力输入轮 17输入较小的功率, 便可实 现转动屏蔽体 14转动。 本实施方式利用转动磁屏蔽原理, 通过动力输入轮 17 持续输入一个相对小的功率, 用以带动转动屏蔽体 14持续转动, 使磁通量产生 变化, 产生电能, 并通过发电线圈 18将电能输出。
本发明中所述的环形永磁体 13釆用由钕铁硼制成的永磁体, 该种永磁体具 有使用年限长能耗低的优点。 参见图 4所示, 所述的转动屏蔽体 14釆用多层硅 钢片 116叠压构成, 其厚度在 0.5 ~ 15mm之间, 硅钢片层数在 2 ~ 60之间; 其 生产工艺是一片硅钢板材卷绕成多层的矩形框架体, 然后使用切裁成形工艺加 工成 [ 形的屏蔽体, 釆用该种材料制成的转动屏蔽体重量轻, 材质均勾, 取材 容易, 该转动屏蔽体利用硅钢片导磁快, 导磁饱和度大的特性, 为磁场建立一 个或多个磁力线快速通道, 使环形永磁体 N极至 S极的磁力线形成导磁回路。
本实施方式中的转动屏蔽体 14由一个屏蔽体组成, 当然, 该转动屏蔽体 14 还可以由多个屏蔽体 115构成, 多个屏蔽体 115呈轴对称设置, 并通过设置在 各屏蔽体两侧的两个转动连接件 15连接。 如图 5所示, 所述的转动屏蔽体还可 有两个扇形面角度均为 90° 的屏蔽体, 两个屏蔽体呈轴对称设置, 并通过设置 在屏蔽体两侧的两个转动连接件连接。 当然所述的屏蔽体扇形面角度可根据实 际工作需要进行设置, 例如 30。 、 45° 、 90° 、 60° 、 180° 等。
参见图 6所示, 为对本实施方式的进一步改进, 在所述中心固定轴 12外套 装有导磁套筒 19,该导磁套筒 19安装在所述中心固定轴 12与环形永磁体 13之 间, 即是该导磁套筒 19贯穿所述环形永磁体 13的 N、 S极面, 所述导磁套筒 19两端与所述转动屏蔽体 14滑动连接, 该导磁套筒 19两端设有与转动屏蔽体 14相对应的接触面 110。 如图 7所示, 釆用这样的设计, 可使导磁套筒 19与所 述转动屏蔽体 14形成导磁回路; 当转动屏蔽体 14屏蔽环形永磁体 13的一部分 磁场后,该部分磁场的 N极的磁力线 113无法穿透与之对应的转动屏蔽体 14左 侧壁, 只得沿转动屏蔽体 14内的各硅钢片层间的导磁通道走向, 其中一部分磁 力线 113的走向向上, 并沿转动屏蔽体 14左侧壁上部、 顶壁和右侧壁上部形成 的导磁回路导回磁场的 S极; 其中一部分磁力线的走向向下, 并沿转动屏蔽体 14左侧壁下部、导磁套筒 19和右侧壁下部形成的导磁回路导回磁场的 S极; 保 证了磁路畅通, 减小了转动屏蔽体 14的转动阻力, 有效增大磁通量, 提高了磁 场利用效率, 减少磁场损耗, 以增大电能的输出功率。 所述的导磁套筒可釆用 铁、 硅钢片等导磁材料制成。
如图 8、 图 9所示, 为对本实施方式的再进一步改进, 在所述导磁套筒 19 外套装有螺旋状电磁发生模块 111 ,该电磁发生模块 111安装在所述导磁套筒 19 与环形永磁体 13之间, 并通过安装在电磁发生模块 111两侧的定位卡圈 112固 定。 由于再发电过程中, 所述的发电线圈 18会对转动屏蔽体 14产生一个吸引 力, 阻碍转动屏蔽体 14转动; 因此, 可在该电磁发生模块 111上输入电流, 使 该电磁发生模块 111产生一个与环形永磁体 13磁极方向相同的磁场, 在电流的 作用下, 使导入转动屏蔽体 14内的磁力线 114瞬间饱和并穿透转动屏蔽体 14 , 此时发电线圈 18与转动屏蔽体 14之间会形成一个同磁极的排斥磁场, 可减小 一部分发电线圈 18对转动屏蔽体 14产生的吸引力, 有助于转动屏蔽体 14的转 动运动。 优选地, 所述的输入电流是间歇电流。
永磁体屏蔽装置第二实施方式及应用该永磁体屏蔽装置第二实施方式构成 的发电设备:
本实施方式是在永磁体屏蔽装置第一实施方式基础上改进的技术方案, 与 永磁体屏蔽装置第一实施方式相同部分不再进行详细描述。 参见图 10 至图 12 所示, 本实施方式的环形永磁体屏蔽装置, 有一个机架 21 , 在该机架 21上固定 一个中心固定轴 22 , 在该中心固定轴 22上安装有环形永磁体 23 , 该环形永磁 体 23与中心固定轴 22呈过盈安装, 在所述环形永磁体 23外设置有两个转动屏 蔽体 24; 该转动屏蔽体 24呈扇形, 且转动屏蔽体 24的扇形断面呈 [ 形, 扇形 面角度均为 90° , 所述的各转动屏蔽体 24分别通过转动连接件 25与中心固定 轴 22安装; 本实施方式设有四个转动连接件 25 , 分别设置在两个转动屏蔽体 24两侧; 所述的转动连接件 25分别与转动屏蔽体 24两侧壁固定连接, 在所述 的四个转动连接件内各设有一个轴承 26 , 通过以上结构可实现各转动屏蔽体 24 与中心固定轴 22的转动连接; 有两个动力输入轮 27分别与安装在转动屏蔽体 24两侧的转动连接件安装; 优选地, 本实施方式中所述的动力输入轮 27为传动 齿轮, 所述的环形永磁体 23是轴向充磁, 设定环形永磁体 23左部为 N极, 右 部为 S极, 所述环形永磁体 23的 N极面到各转动屏蔽体 24的距离与所述环形 永磁体 23的 S极面到各转动屏蔽体 2的距离数值相等;该距离数值通常为 0.1 ~ lmm, 优选地 , 本实施方式中为 lmm。
本实施方式所述的环形永磁体屏蔽装置可以应用于一个发电设备, 其原理 与实施方式一中原理相同, 不再赘述; 在所述机架 21上安装有与环形永磁体 23 位置对应的发电线圈 28。
同样地, 在所述中心固定轴 22外套装有导磁套筒 29, 该导磁套筒 29安装 在所述中心固定轴 22与环形永磁体 23之间, 即是该导磁套筒贯 29穿所述环形 永磁体 23的 N、 S极面,所述导磁套筒 29两端与所述转动屏蔽体 24滑动连接, 该导磁套筒 29两端设有与转动屏蔽体 24相对应的接触面 210;在所述导磁套筒 29外套装有螺旋电磁发生模块 211 , 该电磁发生模块 211安装在所述导磁套筒 29与环形永磁体 23之间, 并通过安装在电磁发生模块 211两侧的定位卡圈 212 固定。
本实施方式中的两个转动屏蔽体 24各由一个屏蔽体组成, 如图 13所示, 所述的转动屏蔽体 24还可以分别由多个屏蔽体 213构成, 多个屏蔽体 213呈轴 对称设置, 并通过设置在各屏蔽体 213两侧的多个转动连接件 25连接, 但是考 虑到实际应用和制作成本, 一般只釆用多个屏蔽体 213 分别与四个转动连接件 25连接的设计。 所述的两个转动屏蔽体 24由四个扇形面角度均为 45。 的屏蔽 体 213组成, 并通过设置在各屏蔽体 213两侧的四个转动连接件 25连接。 所述 的屏蔽体扇形面角度可根据实际工作需要进行设置, 例如 30° 、 45° 、 60° 、 90。 等。
永磁体屏蔽装置第三实施方式及应用该永磁体屏蔽装置第三实施方式构成 的发电设备:
参见图 14、 图 15所示, 本发明的盘形永磁体薄壳式屏蔽装置, 有一个机架 31 , 该机架 31 包括底板、 左支架板 311、 右支架板 312。 所述机架上设有一个 支承组件 34 , 该支承组件 34包括左半轴 341、柱形导磁芯体 342、右半轴 343 ; 所述柱形导磁芯体 342上安装有盘形永磁体 33 ,所述盘形永磁体 33外罩设一个 转动屏蔽体 32; 如图 16所示, 所述的转动屏蔽体 32包括釆用多层硅钢片叠压 坯料切裁成的上下对称设置的两个蝶形端面体 323 ,连接釆用多层硅钢片叠压坯 料模压成弧形的桥接侧壁体 325 ,所述桥接侧壁体 325将上下对称设置的两个蝶 形端面体使用紧固连接零件装配成一起, 其中紧固连接零件选用导磁材料制作, 所述盘形永磁体 33包括两个圓环形端面磁极、 外柱面、 中心圓孔; 所述转动屏 蔽体 32通过转动连接件 321、 322通过轴承安装在所述左、右半轴 341、 343上; 所述蝶形端面体与所述柱形导磁芯体 342导磁连接。 在本实施方式中, 有一个 动力输入轮 324与所述转动连接件 321、 322安装。 该动力输入轮 324可以通过 传动皮带与一个驱动电机动力连接, 带动转动屏蔽体 32转动。 转动屏蔽体 32 上的上、下蝶形端面体与盘形永磁体 33的两个圓环形端面磁极的距离保持在 0.5 - 1毫米, 桥接侧壁体与盘形永磁体 33的外柱面的距离保持在 2 - 5毫米。
值得一提的是: 在本实施方式中, 支承组件 34由三段构成, 中段是柱形导 磁芯体 342 , 釆用导磁材料(碳钢材料), 具有较好的导磁性能, 左段是由不导 磁材料(例如铝合金)制作的左半轴 341 , 右段是由不导磁材料制作的右半轴 343 ; 左半轴 341、 右半轴 343与柱形导磁芯体 342螺紋连接, 支承组件 34与机 架 31固定, 柱形导磁芯体 342上固定安装盘形永磁体 33 , 固定方式是常规的技 术手段, 例如花键连接。
在本实施方式中, 盘形永磁体 33釆用钕铁硼材料, 是一个圓盘形状的永磁 体, 包括两个圓环形端面磁极、 外柱面、 中心圓孔; 永磁体釆用沿端面方向(或 称轴向) 充磁工艺制作, 所述永磁体的两个圓环形端面分别呈 N极、 S极。 在本实施方式中, 所述转动屏蔽体 32釆用多层硅钢片叠压结构, 所述多层 硅钢片叠压结构由一硅钢金属组织连续延伸的硅钢薄板材构成, 所述硅钢片的 厚度在 0.1 ~ 1.5mm 范围内, 硅钢片层数在 4 ~ 60层范围内, 最优选的厚度是 0.3mm, 最优选的层数是 10层。 具体的制作方式是将一具有足够长度的硅钢薄 板材使用模具卷绕成多层的矩形框坯料, 然后使用切裁成形工艺切裁成如图 16 所显示的形状, 由于该成型工艺在加工的过程中没有切断金属材料特有的纤维 状组织, 因此, 具有优异的导磁性能。 如图 17所示, 转动屏蔽体 32的另一实 施方式, 其包括上下对称设置的两个蝶形端面体 326、 327 , 连接所述蝶形端面 体的桥接侧壁体 328 , 其中, 蝶形端面体是呈轴对称设置的两个扇形面构成, 扇 形面的圓心角为 60° - 90。 。 优选地, 本实施方式釆用圓心角为 90° 的蝶形端 面体。
根据实际使用的需要, 转动屏蔽体 32还可以釆用图 18所示的另一实施方 式, 在所述实施方式中, 该转动屏蔽体 32釆用多层硅钢片叠压坯料模压成带弧 形边的蝶形端面体, 使用导磁材料的紧固连接零件装配在一起。 该转动屏蔽体 中, 下蝶形端面体 329带有一个弧形边 330; 上蝶形端面体 333带有一个弧形边 332; 上下蝶形端面体通过弧形板 331固定成一体。
为了减少漏磁, 减轻转动屏蔽体 32的重量, 提高磁屏蔽效果, 本实施方式 中特别设置了柱形导磁芯体 342 ,从结构上保证蝶形端面体 323与所述柱形导磁 芯体 342具有高效的导磁连接,该柱形导磁芯体 342贯穿所述环形永磁体的 N、 S极面。本实施方式所述的导磁连接是指两个蝶形端面体 323在连续的转动过程 中都与柱形导磁芯体 342的两个端面保持最佳的磁隙(通常是 0.01 - 0. 1毫米), 蝶形端面体 323与柱形导磁芯体 342构成完整的磁力线通道。 如图 19所示, 为 盘形永磁体 33在自由状态下的磁力线分布情况, 如图 20所示, 为盘形永磁体 33加装了柱形导磁芯体 342、 转动屏蔽体 32以后的磁力线分布情况, 此时, 磁 力线沿转动屏蔽体的桥接侧壁体和柱形导磁芯体两条磁通路分布, 蝶形端面体 上的磁力线分布也更加均匀, 由此, 可以减少蝶形端面体的厚度。 本实施方式所述的环形永磁体屏蔽装置可以应用于一个发电设备, 该发电 设备的设计方案是: 如图 14、 图 15所示, 在所述机架的左支架板 311、 右支架 板 312上设置多个感应发电设备 35 , 该感应发电设备 35设置在盘形永磁体 33 两侧,本实施方式所釆用感应发电设备包括常规的感应铁芯、感应发电线圈等, 优选地, 该感应发电设备 35是带有感应线圈的装置。 当转动屏蔽体 32以一定 转速连续转动时,感应线圈周围的磁场强度将连续变化,感应线圈将感应发电。 本实施方式公开的技术方案是卧式方案, 支承组件按水平方向设置。
本实施方式是在永磁体屏蔽装置第三实施方式基础上改进的技术方案, 本 实施方式中出现的技术特征与第三实施方式相同或者类似的部分, 请参考第三 实施方式公开的内容或者原理性描述进行理解, 也应当做为本实施方式公开的 内容, 在此不作重复描述。 如图 21所示, 本实施方式的盘形永磁体薄壳式屏蔽 装置还包括设置于所述柱形导磁芯体 342上的电磁发生装置 344。本实施方式所 釆用电磁发生装置 344 包括间歇电流发生电路、 电磁线圈, 当间歇电流发生电 路向电磁线圈输入间歇电流时, 电磁线圈就产生一个磁场。 因间歇电流发生电 路和电磁线圈都可以釆用现有技术中公开的内容, 故在此不再累述。 本实施方 式中的转动屏蔽体在转动中可以改变感应发电设备周围的磁场强度, 使发电设 备产生感应电流, 同时, 感应发电线圈也必然产生一个伴生磁场吸引转动屏蔽 体, 给转动屏蔽体的转动增加阻力。 通过上述在永磁体屏蔽装置第三实施方式 上的改进, 如图 22所示, 为了降低感应发电线圈产生的伴生磁场对屏蔽体的引 力, 此时可以给电磁发生装置中的电磁线圈提供一个间歇电流, 使其产生一个 与感应发电线圈的伴生磁场相反的磁场, 该磁场通过柱形导磁芯体 342传导到 转动屏蔽体的蝶形端面体上, 使蝶形端面体达到瞬间磁饱和, 将伴生磁场对屏 蔽体的引力消弱。 有助于转动屏蔽板的转动运动。
本实施方式是在永磁体屏蔽装置第三实施方式基础上改进的技术方案, 本 实施方式中出现的技术特征与第三实施方式相同或者类似的部分, 请参考第三 实施方式公开的内容或者原理性描述进行理解, 也应当做为本实施方式公开的 内容, 在此不作重复描述。 如图 23所示、 图 24所示, 所述转动屏蔽体 32釆用 多层硅钢片叠压结构, 所述多层硅钢片叠压结构由一硅钢金属组织连续延伸的 硅钢薄板材构成; 所述盘形永磁体 33包括两个圓环形端面磁极、 外柱面、 中心 圓孔; 所述转动屏蔽体通过转动连接件安装在所述固定芯轴上; 在所述机架上 设置多个感应发电设备 35 , 该感应发电设备 15设置在盘形永磁体 33两侧; 有 一个动力输入轮与所述转动连接件安装。 为了有助于转动屏蔽板的转动运动, 固定芯轴与盘形永磁体之间设置一个导磁套筒 346 ,该导磁套筒 346贯穿所述盘 形永磁体的 N、 S极面。 所述蝶形端面体与所述导磁套筒 346导磁连接; 所述导 磁套筒 346上设置电磁发生装置 344。
值得一提的是: 上述永磁体屏蔽装置第三实施方式公开的技术方案是卧式 方案, 但也可设计成立式方案, 在立式方案中, 支承组件按竖直方向设置, 其 它零件的连接关系不变。
永磁体屏蔽装置第四实施方式及应用该永磁体屏蔽装置第四实施方式构成 的发电设备:
如图 25、 图 26所示, 本实施方式的环型永磁体的双板式屏蔽装置呈卧式设 置, 该屏蔽装置有一个机架 41 , 在该机架 41上设有一个水平中心固定轴 42 , 在该中心固定轴 42上安装有环形永磁体 43 , 所述环形永磁体 43包括两个圓环 形磁极端面、 外柱面、 中心圓孔; 在所述环形永磁体 43的左侧磁极端面上设置 有一个板式转动屏蔽体 44 , 在所述环形永磁体的右侧磁极端面上设置有另一个 板式转动屏蔽体 45 ; 所述两个板式转动屏蔽体 44、 45通过一个不导磁的桥接筋 46连接成一体; 所述的两个板式转动屏蔽体 44、 45通过转动连接件 47安装在 所述中心固定轴 42上, 在所述环形永磁体 43的外柱面外设有与之位置对应的 筒形导磁壁 48 , 该板式转动屏蔽体 44、 45与筒形导磁壁 48导磁连接, 该筒形 导磁壁 48底端通过支撑架 49安装在所述机架 41的底座上。 本实施方式中所述 的支撑架 49可釆用塑料、 铝合金、 不锈钢、 炭素纤维等不导磁的材料制成。 本 实施方式中所述的板式转动屏蔽体 44、 45 呈扇形, 该板式转动屏蔽体 44、 45 的扇形断面呈 I形, 两个板式转动屏蔽体 44、 45的扇形面角度均为 180。 。 本 实施方式中所述的两个板式转动屏蔽体 44、 45的材质、 大小、 形状均相同, 所 述的桥接筋 46可以是一条, 也可以是多条均勾分布, 该桥接筋 46设置在两板 式转动屏蔽体 44、 45外弧形边沿之间。 本实施方式还设有两个转动连接件, 分 别设置在两个板式转动屏蔽体 44、 45上, 所述的转动连接件与板式转动屏蔽体 44、 45 固定连接, 在所述的转动连接件内各设有一个限位轴承 410, 通过以上 结构可实现板式转动屏蔽体 44、 45与中心固定轴 42的转动连接。 另外, 有一 个动力输入轮 411与转动连接件安装; 本实施方式中所述的动力输入轮 411为 皮带轮; 本实施方式中所述的环形永磁体 43是端面方向充磁, 设定环形永磁体 43左部为 N极, 右部为 S极, 所述环形永磁体 43的 N极面到板式转动屏蔽体 44、 45的距离与所述环形永磁体的 S极面到板式转动屏蔽体 44、 45的距离数值 相等, 该距离数值通常为 0.1 ~ 0.8mm, 优选地, 本实施方式中为 0.8mm。
本实施方式釆用不导磁的桥接筋 46将两个板式转动屏蔽体 44、 45连接成 一个整体, 所述的桥接筋 46可以釆用塑料、 铝合金、 不锈钢、 炭素纤维等不导 磁的材料制成; 该桥接筋 46提高了板式转动屏蔽体 44、 45的刚性及转动稳定 性, 而且此种结构还有效的提高了环形永磁体 43的磁场利用效率, 从而提高了 磁能转换效率。
如图 27所示, 本实施方式釆用在所述板式转动屏蔽体 44、 45外设置有筒 形导磁壁 48的设计, 所述的筒形导磁壁有一个导磁壁主体 425 , 在该导磁壁主 体 425的左右两圓形端面上设有两个环形导磁边 424 ,所述环形导磁边 424分别 与所述两个板式转动屏蔽体 44、 45位置对应, 在该板式转动屏蔽体 44、 45与 环形导磁边 424之间设有磁隙 412, 该板式转动屏蔽体 44、 45与筒形导磁壁 48 为导磁连接, 该种结构可保证板式转动屏蔽体 44、 45与筒形导磁壁 48之间形 成导磁回路, 当板式转动屏蔽体 44、 45转动时, 环形永磁体 43磁场的磁通量 发生变化, 产生电能输出; 所述的板式转动屏蔽体 44、 45与筒形导磁壁 48构 成本发明的导磁装置 413。 本发明所述的导磁连接是指当板式转动屏蔽体 44、 45在连续转动过程中, 该板式转动屏蔽体 44、 45的外弧边沿与筒形导磁壁 48 的两个环形导磁边 424保持最佳的磁隙, 优选地, 本实施方式中所述的磁隙在 0.1 - lmm之间, 使得板式转动屏蔽体 44、 45与筒形导磁壁 48构成完整的磁力 线通道。 如图 28所示, 当两个板式转动屏蔽体 44、 45将环形永磁体 43N极面 和 S极面部分磁场屏蔽时,环形永磁体 43的 N极的磁力线 414无法穿透与之对 应的板式转动屏蔽体 44、 45 , 只得沿该板式转动屏蔽体 44、 45内的各硅钢片层 间的导磁通道分布, 部分向上分布的磁力线通过与该板式转动屏蔽体 45导磁连 接的筒形导磁壁 48导入另一个板式转动屏蔽体 44, 并最终导回环形永磁体 43 S 极面, 部分向下分布的磁力线由于没有导磁通道, 因此磁力线分布较为松散, 最终沿永磁体的中心线 426导回环形永磁体 S极面。
本实施方式所述的环形永磁体屏蔽装置可以应用于一个发电设备, 该发电 设备的设计方案是: 将动力输入轮 411 外接一个驱动电机, 通过驱动电机带动 板式转动屏蔽体 44、 45转动; 在所述机架上安装有与环形永磁体 43位置对应 的感应发电设备 415 , 该感应发电设备 415是带有感应线圈的装置。 当板式转动 屏蔽体 44、 45 以一定转速连续转动时, 板式转动屏蔽体 44、 45每经过一次感 应发电设备 415 所处位置时, 将使通过感应发电设备的磁场强度发生变化, 使 磁通量变化并产生电能, 通过感应发电设备 415将电能输出。 本实施方式所釆 用感应发电设备 415包括常规的感应铁芯、 感应发电线圈等。
所述的转动连接件 47可对板式转动屏蔽体 44、 45起到定位作用, 以保证 环形永磁体 43距板式转动屏蔽体 44、 45之间距离相等, 确保板式转动屏蔽体 44、 45转动顺畅; 所述板式转动屏蔽体 44、 45在中心固定轴 42上的定位问题 是通过安装在转动连接件 47内的两个限位轴承解决的; 该转动连接件整体釆用 不锈钢材料(或者铝合金材料)制成, 不会被永磁体吸附, 便于安装。
本实施方式釆用在所述环形永磁体 43两磁极端面各设置有一个板式转动屏 蔽体 44、 45 , 并在两板式转动屏蔽体 44、 45间设置桥接筋 46的设计, 可实现 两个板式转动屏蔽体 44、 45绕中心固定轴 42转动运动, 本发明的两板式转动 屏蔽体 44、 45与环形永磁体 43 同轴等距安装, 具有受力均匀特点, 使板式转 动屏蔽体 44、 45转动时受环形永磁体 43 的干扰小, 只需通过动力输入轮 411 输入较小的力,便可实现板式转动屏蔽体 44、 45持续转动,使磁通量产生变化, 从而产生电能并通过感应发电设备将电能输出。 本实施方式中的环形永磁体是圓环形永磁体, 所述环形永磁体包括两个圓 环形磁极端面、 外柱面、 中心圓孔; 其环形断面呈矩形。 所述的环形永磁体釆 用由钕铁硼材料制成永磁体, 釆用端面方向充磁工艺, 充磁后的两个端面成为 永磁体的两个磁极, 即分别呈 N极、 S极。 该种永磁体具有使用年限长能耗低 的优点。如图 29所述的板式转动屏蔽体 44、 45釆用多层硅钢片 416叠压构成, 其厚度在 0.1 ~ 1.5mm之间,硅钢片层数在 2 ~ 60之间,最优选的厚度是 0.3mm, 最优选的层数是 10层。 具体的制作方式是将一具有足够长度的硅钢薄板材使用 模具卷绕成多层的板形坯料, 然后使用切裁成形工艺加工成扇形的屏蔽板, 如 图 30所示, 所述的筒形导磁壁 48也是釆用多层硅钢片 416叠压构成, 具体的 制作方式是将一具有足够长度的硅钢薄板材使用模具卷绕成多层的圓柱形坯料, 然后使用切裁成形工艺加工成环形的筒形导磁壁, 由于该成型工艺在加工的过 程中没有切断金属材料特有的纤维状组织, 保持了该组织的连续性, 因此, 具 有优异的导磁性能,屏蔽效果好,釆用该种材料制成的板式转动屏蔽体重量轻, 材质均匀,取材容易, 为磁场建立一个或多个磁力线快速通道,使环形永磁体 N 极至 S极的磁力线形成导磁回路。
本实施方式中的板式转动屏蔽体是一个扇形屏蔽板, 所述的扇形屏蔽板扇 形面角度可根据实际需要进行设置, 例如 30。 、 45。 、 90。 、 60。 、 180° 等, 本实施方式中选用 180° 。
参见图 26、 图 31所示, 为了减少漏磁, 减轻转动屏蔽体的重量, 提高磁屏 蔽效果, 本实施方式在所述中心固定轴外套装有导磁套筒 418, 该导磁套筒 418 安装在所述中心固定轴 42与环形永磁体 43之间, 并贯穿所述环形永磁体 43的 N、 S极面。 所述导磁套筒 418两端与所述板式转动屏蔽体 44、 45导磁连接, 该导磁套筒 418两端设有与板式转动屏蔽体 44、 45相对应的接触面 419, 可使 导磁套筒 418与所述板式转动屏蔽体 44、 45形成导磁回路; 当板式转动屏蔽体 44、 45屏蔽环形永磁体 43的一部分磁场后, 该部分磁场的 N极的磁力线 420 无法穿透与之对应的板式转动屏蔽体 44、 45 , 只得沿板式转动屏蔽体 44、 45内 的各硅钢片层间的导磁通道分布, 其中一部分磁力线的走向向上, 并沿该板式 转动屏蔽体 45、 筒形导磁壁 48和另一个板式转动屏蔽体 44形成的导磁回路导 回磁场的 S极; 其中一部分磁力线的走向向下, 并沿该板式转动屏蔽体 45、 导 磁套筒 418和另一个板式转动屏蔽体 44形成的导磁回路导回磁场的 S极; 保证 了磁路畅通, 减小了板式转动屏蔽体 44、 45的转动阻力, 有效增大磁通量, 提 高了磁场利用效率, 减少磁场损耗, 以增大电能的输出功率。 所述的导磁套筒 418可釆用铁、 硅钢片等导磁材料制成。
如图 26、 图 32所示, 在所述导磁套筒 418外套装有电磁发生装置 421 , 该 电磁发生装置 421安装在所述导磁套筒 418与环形永磁体 43之间, 并通过安装 在电磁发生装置 421 两侧的定位卡圈 422 固定。 由于在发电过程中, 所述的感 应发电设备 415会对板式转动屏蔽体 44、 45产生一个吸引力, 阻碍板式转动屏 蔽体 44、 45转动; 因此, 可在该电磁发生装置 421上间歇输入电流, 使板式转 动屏蔽体 44、 45产生一个电磁场, 该电磁场的 N极与环形永磁体 43的 N极对 应, 该电磁场的 S极与环形永磁体 43的 S极对应, 使得从环形永磁体 43的 N 极导入板式转动屏蔽体 44、 45内的磁力线 423瞬间饱和并穿透板式转动屏蔽体 44、 45 , 此时感应发电设备 415与板式转动屏蔽体 44、 45之间形成一个同磁极 的排斥磁场, 可减小一部分感应发电设备 415对板式转动屏蔽体 44、 45产生的 吸引力, 有助于板式转动屏蔽体 44、 45的转动运动。 本实施方式所釆用电磁发 生装置 421 包括间歇电流发生电路、 电磁线圈, 当间歇电流发生电路向电磁线 圈输入间歇电流时, 电磁线圈就产生一个电磁场。 间歇电流发生电路和电磁线 圈都可以釆用现有技术中公开的内容, 在此不再累述。
参见如图 33、 图 34所示, 本实施方式中的屏蔽体还可设置为两块蝶形板式 转动屏蔽体 405 , 并通过至少两条桥接筋 406连接成一体, 该蝶形板式转动屏蔽 体 405是由呈轴对称设置的两个扇形面构成, 扇形面的圓心角为 90° , 所述的 蝶形板式转动屏蔽体 405 的断面呈 I形, 本实施方式中所述的两个蝶形板式转 动屏蔽体的材质、 大小、形状均相同, 所述的桥接筋 406可以是多条均匀分布, 该桥接筋 406设置在两个蝶形板式转动屏蔽体的外弧形边沿之间。
值得一提的是: 本实施方式公开的技术方案是卧式方案, 中心固定轴按水 平方向设置; 本发明还可以设计成立式方案, 在立式方案中, 中心固定轴按竖 直方向设置, 除支承结构需要变化外, 其它零件的连接关系不变。
永磁体屏蔽装置第五实施方式及应用该永磁体屏蔽装置第五实施方式构成 的发电设备:
如图 35、 图 36、 图 37所示, 本实施方式釆用盘形永磁体半壳式屏蔽装置, 其包括一个机架 51 , 所述机架 51上设有一个中心固定轴 52 , 机架 51的一个机 架板上安装有盘形永磁体 53 , 盘形永磁体 53 包括两个端面磁极, 盘形永磁体 53的一个端面磁极上罩设一个半壳式固定屏蔽体 54 , 盘形永磁体 53的另一个 端面磁极上罩设一个转动屏蔽体 55 ; 转动屏蔽体 55 与所述半壳式固定屏蔽体 54导磁连接; 转动屏蔽体 55包括蝶形端面和弧形侧壁; 转动屏蔽体上设有转动 连接件 56 , 转动屏蔽体 55通过转动连接件 56与中心固定轴 52转动安装。 中心 固定轴 52与盘形永磁体 53同一个轴心设置。 在本实施方式中, 所述机架 51由 多个固定柱 511和多个支架板 512、 513构成, 机架 51釆用不导磁材料(例如 铝合金、 不锈钢等)。 中心固定轴 52安装在支架板 512、 513上。 如果釆用立式 布局的技术方案, 中心固定轴 52属于悬挂式安装, 如果釆用卧式布局的技术方 案,中心固定轴 52属于悬臂式安装,本实施方式按照立式布局的技术方案实施。 在机架 51底部的支架板 514上安装有盘形永磁体 53。 盘形永磁体 53与支架板 514之间设置半壳式固定屏蔽体 54 , 半壳式固定屏蔽体 54与支架板 514通过紧 固零件 515固定。 在本实施方式中, 盘形永磁体 53釆用钕铁硼材料, 是一个圓 盘形状的永磁体, 包括上、 下两个圓形端面磁极和一外柱面; 永磁体釆用沿端 面方向 (或称轴向)充磁工艺制作, 所述盘形永磁体 53的两个圓形端面分别呈 N极、 S极。 盘形永磁体 53的上端面磁极上罩设一个转动屏蔽体 55 , 下端面磁 极上罩设半壳式固定屏蔽体 54 , 转动屏蔽体 55与所述半壳式固定屏蔽体 54导 磁连接。 在本实施方式中, 半壳式固定屏蔽体 54釆用多层硅钢片叠压结构, 包 括一个圓形端面 541和筒状侧壁 542 , 呈半壳结构。 转动屏蔽体 55釆用多层硅 钢片叠压结构, 包括蝶形端面 551和弧形侧壁 552 , 优选地, 转动屏蔽体 55中 的蝶形端面 551是呈轴对称设置的两个扇形面构成, 扇形面的圓心角为 90° 。 转动屏蔽体 55中的弧形侧壁 552的曲率半径与半壳式固定屏蔽体 54中的筒状 侧壁 542的曲率半径相同,二者的侧壁之间保持最佳的磁隙关系,即导磁连接, 本发明所述的导磁连接是指转动屏蔽体 55在连续的转动过程中都与半壳式固定 屏蔽体 54保持最佳的磁隙 (通常是 0.01 - 0. 1毫米)。 所述转动屏蔽体 55上还 设有转动连接件 56 , 转动连接件 56釆用不导磁材料, 呈圓管形状, 下部与转动 屏蔽体 55固定, 上部设置动力输入皮带轮 57 , 通过上轴承和下轴承与中心固定 轴 52转动安装。
本实施方式既可以釆用立式布局的技术方案, 也可以釆用卧式布局的技术 方案, 为了便于描述和理解, 本文仅描述立式布局的技术方案。
如图 38所示, 本实施方式中的盘形永磁体半壳式屏蔽装置可应用于发电设 备: 在所述机架的支架板 513 上设置多个感应发电设备 503 , 该感应发电设备 503设置于罩有转动屏蔽体 55一侧的盘形永磁体 53的端面磁极上方。本实施方 式的感应发电设备 503 包括常规的感应铁芯、 感应发电线圈, 属于现有技术内 容, 不详细描述。 当转动屏蔽体 55以一定转速连续转动时, 感应线圈周围的磁 场强度将连续变化, 感应线圈将感应发电。 有一个动力输入轮 57与所述转动连 接件 56安装,该动力输入轮 57可以通过皮带传动机构与一个电动机动力连接, 依靠电动机驱动转动屏蔽体 55连续转动。
如图 38、 图 39、 图 40所示, 为在本实施方式基础上的进一步改进, 其中, 转动屏蔽体的蝶形端面是呈轴对称设置的两个扇形面 5106构成, 所述扇形面的 圓心角为 60° - 90。 , 扇形面的最佳圓心角为 90° 。 为了保持最佳的磁隙关系 和减少转动屏蔽体的输入功率, 所述转动屏蔽体上设置圓环式气动轴承 508 , 所 述机架上设置气动轴承体 509。 本发明所述的气动轴承也可以称为气浮导轨, 圓 环形的气动轴承体内通入压缩空气, 气动轴承体上开设多个压缩气体喷孔, 圓 环式气动轴承是与气动轴承体对应设置的气浮环片, 二者之间保持较小间隙。 气浮导轨属于现有技术, 在此不再累述。
如图 41所示, 在本实施方式中, 所述转动屏蔽体 55釆用多层硅钢片叠压 结构, 所述多层硅钢片叠压结构由一硅钢金属组织连续延伸的硅钢薄板材构成, 所述硅钢片的厚度在 0.1 ~ 1.5mm范围内, 硅钢片层数在 4 ~ 60层范围内, 最优 选的厚度是 0.3mm, 最优选的层数是 10层。 具体的制作方式是将一具有足够长 度的硅钢薄板材使用圓盘形模具卷绕成多层的中空盘形坯料, 然后使用切裁成 形工艺切裁成如图 41所显示的形状, 由于该成型工艺在加工的过程中没有切断 金属材料特有的纤维状组织, 因此, 具有优异的导磁性能。 半壳式固定屏蔽体 也釆用相同的工艺制造。
作为本实施方式更进一步地改进, 如图 42所示, 为了减少漏磁, 减轻转动 屏蔽体 55 的重量, 提高磁屏蔽效果, 本实施方式的屏蔽装置的中心固定轴 52 与盘形永磁体 53之间同轴心设置一个导磁套筒 540 , 该导磁套筒 540贯穿所述 盘形永磁体 53的N、 S极面, 所述转动屏蔽体 55的蝶形端面内沿与所述导磁套 筒 540导磁连接, 所述导磁套筒 540与所述盘形永磁体之间同轴心设置一个电 磁发生装置 530。 本实施方式从结构上保证转动屏蔽体 55的蝶形端面与导磁套 筒 540具有高效的导磁连接。 本实施方式中所述的导磁连接是指两个蝶形端面 在连续的转动过程中都与导磁套筒 540 的上、 下两个端面保持最佳的磁隙 (通 常是 0.01 - 0. 1毫米), 蝶形端面与导磁套筒构成完整的磁力线通道。 图 43显示 的是盘形永磁体 53在自由状态下的磁力线分布情况; 图 44显示的是盘形永磁 体 53加装了导磁套筒 540、 转动屏蔽体 55以后的磁力线分布情况, 此时, 磁力 线沿转动屏蔽体 55的侧壁和导磁套筒 540两条磁通路分布, 蝶形端面上的磁力 线分布也更加均匀, 由此, 可以减少蝶形端面的厚度。 图中带箭头的虚线表示 磁力线走向。
如图 45所示, 本实施方式中的转动屏蔽体 55在转动中可以使感应发电设 备周围的磁场强度不断变化, 使发电设备产生感应电流, 同时, 感应发电线圈 也必然产生一个伴生磁场吸引转动屏蔽体 55 ,给转动屏蔽体 55的转动增加阻力。 为了降低感应发电线圈产生的伴生磁场对屏蔽体的引力, 此时可以给电磁发生 装置 530 中的电磁线圈提供一个间歇电流, 使其产生一个与感应发电线圈的伴 生磁场相反的磁场, 该磁场通过导磁套筒 540传导到转动屏蔽体 55的蝶形端面 上, 使蝶形端面达到瞬间磁饱和, 将伴生磁场对屏蔽体的引力消弱。 有助于转 动屏蔽体 55的转动运动。 本实施方式所釆用的电磁发生装置 530包括间歇电流 发生电路、 电磁线圈, 当间歇电流发生电路向电磁线圈输入间歇电流时, 电磁 线圈就产生一个磁场。 间歇电流发生电路和电磁线圈都可以釆用现有技术中公 开的内容, 不详细描述。
值得一提的是:在本实施方式中,所述转动屏蔽体可根据需要调整其结构, 如该转动屏蔽体还可由半圓形端面和弧形侧壁构成。
优选地,在永磁体屏蔽装置第一实施方式、第二实施方式、 第三实施方式、 第四实施方式、 第五实施方式中的转动屏蔽罩均处于悬浮状态, 本发明中的悬 所述永磁体屏蔽装置的第二实施方式可应用于驱动设备第一实施方式中: 如图 46、 图 47所示, 所述的磁驱动设备第一实施方式的设计方案是: 该驱 动设备有一个装置机架 1001 , 在该装置机架 1001 内设有固定平台 1002 , 在该 固定平台 1002上安装有联动框架, 在该固定平台 1002下方安装有动力输出装 置, 所述的联动框架由左联动框架 1003和右联动框架 1004两部分组成, 所述 的左联动框架 1003和右联动框架 1004各通过两根导向立柱 1005与装置机架 1001安装, 所述导向立柱 1005下端固定在固定平台 1002上, 上端与装置机架 顶盖 1006固定, 在所述左联动框架 1003和右联动框架 1004中间位置垂直安装 有上述永磁体屏蔽装置第一实施方式、 第二实施方式、 第三实施方式所揭示的 永磁体屏蔽装置 1007;该永磁体屏蔽装置中心固定轴 1008下端固定在固定平台 1002中心位置上, 上端与装置机架顶盖 1006固定; 该永磁体屏蔽装置中心固定 轴 1008上下两端各设有一个动力输入轮 1009, 将动力输入轮 1009各外接一个 驱动电机, 通过驱动电机带动动力输入轮 1009转动, 从而带动转动屏蔽体往复 转动实现开启和闭合, 在所述左联动框架 1003和右联动框架 1004顶壁与永磁 体 1010相对应的位置各安装有一个半圓形永磁体 1011 , 该半圓形永磁体 1011 下端的磁极与永磁体 1010上端的磁极极性相同, 在所述左联动框架 1003和右 联动框架 1004底座与永磁体 1010相对应的位置各安装有一个半圓形导磁铁块 1012; 所述左联动框架 1003和右联动框架 1004下端各通过一个曲柄连杆机构 1013与所述的动力输出装置上的转动轴 1014两端连接, 该转动轴 1014两端通 过转动轴承安装在动力输出装置的机架 1015上, 在所述的转动轴 1014上安装 有动力输出轮 1016 , 优选地, 为保证转动轴 1014转动稳定, 可在转动轴 1014 中部安装飞轮 1017。
本实施方式工作原理是:当动力输出轮 1016带动两个转动屏蔽体相向转动, 并使两转动屏蔽体在中心固定轴右侧完全闭合时, 两转动屏蔽体将永磁体 1010 右半边完全屏蔽; 此时, 所述的左联动框架 1003上的半圓形永磁体 1011 受永 磁体 1010左半边磁场向上的排斥力,左联动框架 1003上的半圓形导磁铁块 1012 受永磁体 1010左半边磁场向上的吸引力, 在这两个力的同时作用下, 左联动框 架 1003沿导向立柱 1005向上移动,另一方面,由于两转动屏蔽体将永磁体 1010 右半边完全屏蔽, 因此, 所述的右联动框架 1004上的半圓形永磁体 1011会对 转动屏蔽体产生向下的吸引力, 同时, 在转动屏蔽体的作用下永磁体 1010失去 了对右联动框架 1004上的半圓形导磁铁块 1012的吸引力, 从而导致了右联动 框架 1004在永磁体 1010的吸引力和自身重力的作用下, 沿导向立柱 1005向下 移动。同理,当两转动屏蔽体将永磁体 1010左半边完全屏蔽时;左联动框架 1003 向下移动, 右联动框架 1004向上移动。 因此, 交替切换转动屏蔽体屏蔽永磁体 1010的区域, 可使左联动框架 1003和右联动框架 1004不断交错上下运动, 并 通过曲轴连杆机构 1013带动动力输出装置的转动轴 1014转动, 从而带动动力 输出轮 1016转动, 实现动力输出。
所述永磁体屏蔽装置的第一实施方式、 第三实施方式、 第四实施方式均可 应用于驱动设备第二实施方式中:
如图 48所示,该驱动设备有一个装置机架,在该装置机架内设有固定平台, 在该固定平台上安装有联动框架, 在该固定平台下方安装有动力输出装置, 所 述的联动框架由左联动框架 2003和右联动框架 2004两部分组成, 所述的左联 动框架 2003和右联动框架 2004各通过两根导向立柱 2005与装置机架安装, 所 述导向立柱下端固定在固定平台上, 上端与装置机架顶盖 2006固定, 在所述左 联动框架 2003和右联动框架 2004中间位置垂直安装有第一实施方式中描述的 环形永磁体屏蔽装置 2007;该屏蔽装置中心固定轴 2008下端固定在固定平台中 心位置上, 上端与装置机架顶盖 2006 固定; 该屏蔽装置中心固定轴 2008上设 有一个动力输入轮 2009 , 将动力输入轮 2009外接一个驱动电机, 通过驱动电机 带动动力输入轮 2009转动, 从而带动转动屏蔽体转动运动; 在所述左联动框架 2003和右联动框架 2004顶壁与环形永磁体相对应的位置各安装有一个半圓形永 磁体 2011 , 该半圓形永磁体 2011下端的磁极与环形永磁体 2010上端的磁极极 性相同; 在所述左联动框架 2003和右联动框架 2004底座与环形永磁体 2010相 对应的位置各安装有一个半圓形导磁铁块 2012;所述左联动框架 2003和右联动 框架 2004下端各通过一个曲柄连杆机构 2013与所述的动力输出装置上的转动 轴 2014两端连接,该转动轴两端通过转动轴 7 安装在动力输出装置的机架 2015 上, 在所述的转动轴上安装有动力输出轮 2016, 为保证转动轴转动稳定, 可在 转动轴中部安装飞轮。
本实施方式工作原理是: 当动力输入轮 2009带动转动屏蔽体转动, 并使环 形永磁体 2010右半边完全屏蔽; 此时, 所述的左联动框架 2003上的半圓形永 磁体 2011受环形永磁体 2010左半边磁场向上的排斥力, 左联动框架 2003上的 半圓形导磁铁块 2012受环形永磁体 2010左半边磁场向上的吸引力, 在这两个 力的同时作用下, 左联动框架 2003沿导向立柱 2005向上移动; 另一方面, 由 于转动屏蔽体将环形永磁体右半边完全屏蔽; 因此, 所述的右联动框架 2004上 的半圓形永磁体 2011会对转动屏蔽体产生向下的吸引力, 同时, 在转动屏蔽体 的作用下环形永磁体失去了对右联动框架 2004上的半圓形导磁铁块 2012的吸 引力, 从而导致了右联动框架 2004在环形永磁体 2010的吸引力和自身重力的 作用下, 沿导向立柱 2005向下移动。 同理, 当转动屏蔽体将环形永磁体左半边 完全屏蔽时; 左联动框架 2003向下移动, 右联动框架 2004向上移动。 因此, 转动切换转动屏蔽体屏蔽环形永磁体的区域, 可使左联动框架 2003和右联动框 架 2004不断交错上下运动, 并通过曲轴连杆机构带动动力输出装置的转动轴转 动, 从而带动动力输出轮转动, 实现磁动力输出。
本发明驱动设备的第三实施方式: 参见图 49至图 52所示, 该实施方式涉及一种盘形永磁体的蝶式磁力驱动 设备, 其包括一个机架 3001 , 在该机架 3001上安装有一个支撑架 3002, 在该 支撑架 3002上设有一个中心固定轴 3003 , 在该中心固定轴 3003上安装有盘形 永磁体 3004 , 该盘形永磁体 3004包括 N极圓形端面磁极(右端面)、 S极圓形 端面磁极 (左端面 ), 在所述盘形永磁体 3004外罩设一个转动屏蔽体 3005; 所 述转动屏蔽体 3005包括与所述盘形永磁体 3004的 N极圓形端面磁极平行设置 的 N极蝶形屏蔽板 3006、 与所述盘形永磁体 3004的 S极圓形端面磁极平行设 置的 S极蝶形屏蔽板 3007、 连接两个所述蝶形屏蔽板的桥接导磁板 3008。 本实 施方式中所述的蝶形屏蔽板是呈轴对称设置的两个扇形面构成, 扇形面的圓心 角为 60° ~ 90。 。 优选地, 本实施方式釆用扇形面的圓心角为 90° 的蝶形屏蔽 板。所述转动屏蔽体 3005通过转动连接件 3009安装在所述中心固定轴 3003上; 在所述转动连接件 3009上安装有同步驱动机构, 该同步驱动机构可实现转动屏 蔽体 3005的间歇转动;在所述机架 3001上设置一个往复式动磁体联动架 3010, 该往复式动磁体联动架 3010与机架 3001之间的距离在 1 ~ 10cm之间, 该往复 式动磁体联动架 3010通过滑轨机构与所述机架 3001安装, 所述往复式动磁体 联动架 3010通过曲柄连杆机构 3011与一个动力输出轴 3012连接, 有一个动力 输出轮 3013与所述动力输出轴 3012安装。 在该动力输出轴 3012上设置有为保 持其转动稳定的飞轮机构 3014;所述往复式动磁体联动架 3010沿机架滑轨机构 的运动轴线(左、 右往复运动)与所述盘形永磁体 N极圓形端面磁极的法线方 向 (与中心固定轴平行方向)平行; 在所述往复式动磁体联动架 3010两端各设 置一个与盘形永磁体 3004 的圓形端面磁极平行的固定板 3015 , 在两个固定板 3015上各设置一个动磁体 3016 , 该动磁体 3016包括 N极端面磁极 (左端面)、 S极端面磁极(右端面), 本实施方式中所述的动磁体的端面为扇形, 该扇形的 圓心角为 60° ~ 90。 ,优选地,本实施方式釆用扇形的圓心角为 90° 的动磁体。 所述往复式动磁体联动架 3010右端的动磁体设置在所述盘形永磁体 3004的 N 极圓形端面磁极右侧, 该动磁体的 N极端面磁极与所述盘形永磁体 3004的 N 极圓形端面磁极相对设置, 所述往复式动磁体联动架 3010左端的动磁体设置在 所述盘形永磁体 3004的 S极圓形端面磁极左侧, 该动磁体的 S极端面磁极与所 述 S极蝶形屏蔽板相对设置。 本实施方式中所述的盘形永磁体 3004通过粘接与 中心固定轴 3003 固定, 所述的动磁体 3016通过粘接与所述固定板 3015固定, 本实施方式中所述的盘形永磁体 3004与动磁体 3016的材质相同, 均为端面充 磁, 优选地, 所述动磁体 3016的大小为盘形永磁体的 1/4。 本实施方式中所述 的左右两个动磁体呈对角线设置, 所述左侧的动磁体与所述盘形永磁体左侧的 蝶形屏蔽板对应, 所述右侧的动磁体与所述盘形永磁体右侧的磁极面对应。
在所述中心固定轴 3003上还安装有导磁套筒 3017 , 该导磁套筒 3017安装 在所述中心固定轴 3003与盘形永磁体 3004之间, 所述导磁套筒 3017两端分别 与所述盘形永磁体 3004的两个蝶形屏蔽板导磁连接。 本实施方式所述的导磁连 接是指当转动屏蔽体在转动过程中, 在所述导磁套筒 3017两端与所述盘形永磁 体 3004的两个蝶形屏蔽板 3006、3007之间设有磁隙 3018,两个蝶形屏蔽板 3006、 3007与导磁套筒 3017均保持最佳的磁隙, 该磁隙的距离在 0.01 ~ lmm之间, 转动屏蔽体 3005与导磁套筒 3017构成完整的磁力线通道。
在所述导磁套筒 3017上安装有电磁发生装置 3019 , 该电磁发生装置 3019 安装在所述导磁套筒 3017与盘形永磁体 3004之间。 该电磁发生装置 3019生成 的磁场可以使转动屏蔽体 3005的两个蝶形屏蔽板 3006、3007实现瞬间磁饱和, 以降低往复式动磁体联动架 3010上的动磁体 3006对转动屏蔽体 3005的吸引力, 降低输入功率。本实施方式所釆用的电磁发生装置 3019包括间歇电流发生电路、 电磁线圈托架、 电磁线圈, 当间歇电流发生电路向电磁线圈输入间歇电流时, 电磁线圈就产生一个磁场; 间歇电流发生电路和电磁线圈都可以釆用现有技术 中公开的内容, 在此不再累述。
为保证转动屏蔽体 3005受力均勾, 稳定转动, 本实施方式中所述盘形永磁 体 3004的 N极圓形端面磁极到 N极蝶形屏蔽板的距离与所述盘形永磁体 3004 的 S极圓形端面磁极到 S极蝶形屏蔽板的距离数值相等, 该距离的数值为 0.5 ~ 3mm, 本实施方式中为 lmm。
其中, 所述蝶形屏蔽板 3006、 3007釆用多层硅钢片叠压结构, 所述的蝶形 屏蔽板 3006、 3007的体壁厚度在 0.5 ~ 20mm之间, 最优选的厚度是 3mm; 该 蝶形屏蔽板 3006、 3007的硅钢片层数在 2 ~ 80之间合理选择, 最优选的层数是 10层。 具体的制作方式是一片硅钢板材卷绕成多层, 然后使用切裁成形工艺加 工成滑动屏蔽体; 由于上述成形工艺在加工的过程中没有切断金属材料特有的 纤维状组织, 保持了该组织的连续性, 因此, 具有优异的导磁性能, 屏蔽效果 好, 釆用该种材料制成的滑动屏蔽体重量轻, 材质均勾, 取材容易; 为磁场建 立一个磁力线快速通道。
本实施方式中所述的转动连接件 3009与转动屏蔽体 3005的蝶形屏蔽板固 定连接, 在所述的转动连接件 3009内设有轴承 3020 , 通过以上结构可实现转动 屏蔽体 3005与中心固定轴 3003的转动连接。 本实施方式中所述的滑轨机构包 括两个呈轴对称安装支撑架底部上的柱形滑轨 3021 , 所述往复式动磁体联动架 3010通过设置在其底部的支撑套 3022与该柱形滑轨安装, 如图 53所示, 在所 述支撑套 3022内安装有直线轴承 3023。本实施方式中所述的滑轨机构釆用塑料、 铝合金、 不锈钢、 炭素纤维等不导磁的材料制成; 转动连接件也釆用塑料、 铝 合金、 不锈钢、 炭素纤维等不导磁的材料制成; 在本实施方式中, 所述的盘形 永磁体和动磁体均釆用钕铁硼材料, 该种永磁体具有使用年限长能耗低的优点。 如图 54所示, 本实施方式中所述的滑轨机构还可以是包括两个呈轴对称安装在 机架上的条形滑轨 3024 ,所述往复式动磁体联动架 3010通过设置在其底部的滑 动支撑套 3025与该条形滑轨安装。 如图 55所示, 本实施方式中所述的滑轨机 体联动架通过设置在其底部的滑动支撑轨 3027与该条形滑槽安装。
为了实现转动屏蔽体 3005快速间歇转动, 提高转动屏蔽体 3005的转动位 移精度, 增强屏蔽质量, 本实施方式安装有同步驱动机构, 所述的同步驱动机 构包括驱动电机(步进电机)、 主同步轮、 从同步轮 3028、 同步齿形带 3029和 驱动控制电路, 所述的从同步轮 3028与所述转动连接件 3009安装, 所述的驱 动电机的主同步轮通过同步齿形带 3029与所述从同步轮 3028连接。 所述驱动 电机连接有一个驱动控制电路(公知技术), 转动屏蔽体 3005 的转动间隔时间 和转动角度均可预先设置在驱动控制电路内, 并通过该驱动控制电路实时控制 该转动屏蔽体 3005 , 该种结构具有位移精度高, 屏蔽效果好的特点。 优选地, 本实施方式中, 在驱动控制电路的控制下, 所述驱动电机带动转动屏蔽体 3005 作间歇转动,转动屏蔽体 3005的最大转速为 3转 /秒,该转动屏蔽体每转动 90° 至少间歇 0.05秒。 本实施方式中, 在驱动控制电路的控制下, 所述驱动电机还 可以带动转动屏蔽体 3005 作间歇往复转动, 该转动屏蔽体往复转动的转角为 90° 。
如图 56所示, 本实施方式中所述曲柄连杆机构 3011 (公知技术)包括曲柄 3030和连杆 3031 , 所述的连杆 3031与所述往复式动磁体联动架 3010铰接, 所 述的曲柄 3030与动力输出轴 3012 固定。 釆用此结构可实现将往复式动磁体联 动架 3010往复移动转换成转动运动, 并将动力通过动力输出轮输出。
本实施方式中所述的往复式动磁体联动架有一个口字形的联动架主体, 在 该联动架主体左右两端各设置一个与所述盘形永磁体的圓形端面磁极平行的固 定板, 在该固定板上安装有动磁体, 所述的支撑套设置在所述联动架主体的前 后两侧壁上。 本实施方式中所述的机架、 支撑架、 中心固定轴、 转动连接件、 滑轨机构、 往复式动磁体联动架等部件均整体釆用塑料、 铝合金、 不锈钢、 炭 素纤维等不导磁的材料制成。
本实施方式的工作原理是: 当转动屏蔽体将盘形永磁体一部分屏蔽后, 此 时盘形永磁体未被屏蔽的部分磁场对与之对应的一个动磁体产生磁排斥力, 另 一个动磁体吸引与之对应的转动屏蔽体的蝶形屏蔽板, 使的往复式动磁体联动 架向一方水平移动; 当转动屏蔽体需要继续转动时, 对所述电磁发生装置输入 一个电流, 使其生成一个与盘形永磁体磁极方向相同的磁场, 该磁场的磁力线 可以使转动屏蔽体的两个蝶形屏蔽板实现瞬间磁饱和, 产生一个与动磁体磁场 相排斥的力, 可以降低往复式动磁体联动架上的动磁体对转动屏蔽体的吸引力, 有助于转动屏蔽体转动; 当转动屏蔽体继续转动 90° 时, 此时原来被排斥的动 磁体吸引与之对应的蝶形屏蔽板, 原来吸引蝶形屏蔽板的动磁体在盘形永磁体 的作用下被排斥, 使的往复式动磁体联动架向相反方向水平移动; 驱动电机带 动转动屏蔽体间歇转动可实现往复式动磁体联动架沿滑轨机构的运动轴线往复 力输出轮输出。
作为本实施方式的替代方案之一, 本实施方式所述转动连接件上安装同步 驱动机构还可以由往复转动驱动机构替代。 如图 57所示, 所述往复转动驱动机 构包括驱动电机(步进电机)、 主同步轮、 从同步轮 3032、 同步齿形带 3033和 驱动控制电路, 所述的从同步轮与所述转动连接件安装, 所述的驱动电机的主 同步轮通过同步齿形带与所述从同步轮连接。 所述驱动电机连接有一个驱动控 制电路(公知技术), 转动屏蔽体的转动间隔时间和转动角度均可预先设置在驱 动控制电路内, 并通过该驱动控制电路实时控制该转动屏蔽体, 该种结构具有 位移精度高, 屏蔽效果好的特点。 本实施方式中, 在驱动控制电路的控制下, 所述驱动电机还可以带动转动屏蔽体作间歇往复转动, 该转动屏蔽体往复转动 的转角为 90° 。
本实施方式的工作原理是: 当转动屏蔽体将盘形永磁体一部分屏蔽后, 此 时盘形永磁体未被屏蔽的部分磁场对与之对应的一个动磁体产生磁排斥力, 另 一个动磁体吸引与之对应的转动屏蔽体的蝶形屏蔽板, 使的往复式动磁体联动 架向一方水平移动; 当转动屏蔽体需要反向转动时, 对所述电磁发生装置输入 一个电流, 使其生成一个与盘形永磁体磁极方向相同的磁场, 该磁场的磁力线 可以使转动屏蔽体的两个蝶形屏蔽板实现瞬间磁饱和, 产生一个与动磁体磁场 相排斥的力, 可以降低往复式动磁体联动架上的动磁体对转动屏蔽体的吸引力, 有助于转动屏蔽体转动; 当转动屏蔽体反向转动 90° 时, 此时原来被排斥的动 磁体吸引与之对应的蝶形屏蔽板, 原来吸引蝶形屏蔽板的动磁体在盘形永磁体 的作用下被排斥, 使的往复式动磁体联动架向相反方向水平移动; 驱动电机带 动转动屏蔽体间歇往复转动可实现往复式动磁体联动架沿滑轨机构的运动轴线 过动力输出轮输出。
作为本实施方式的替代方案之一, 本实施方式所述的往复式动磁体联动架 还可由往复式导磁体联动架所代替, 从而所述安装于往复式动磁体联动架的动 磁体还可由导磁体所代替。 如图 58所示, 在所述机架上设置一个往复式导磁体 联动架 3034 , 该往复式导磁体联动架 3034通过滑轨机构与所述机架安装, 所述 往复式导磁体联动架 3034通过曲柄连杆机构与一个动力输出轴连接, 在该动力 输出轴上设置有飞轮机构; 所述往复式导磁体联动架 3034沿机架滑轨机构的运 动轴线与所述盘形永磁体 N极圓形端面磁极的法线方向平行; 在所述往复式导 磁体联动架两端各设置一个导磁体 3035 ,所述往复式导磁体联动架 3034—端的 导磁体设置在所述盘形永磁体的 N极圓形端面磁极一侧, 该导磁体的工作面 3036与所述盘形永磁体的 N极圓形端面磁极相对设置, 所述往复式导磁体联动 架 3034另一端的导磁体设置在所述盘形永磁体的 S极圓形端面磁极一侧, 该导 磁体的工作面 3037与所述 S极蝶形屏蔽板相对设置。 本实施方式中所述的瓦形 转动导磁体釆用铁氧体、 碳钢材料等导磁材料制成。
本实施方式的工作原理是: 当转动屏蔽体将盘形永磁体一部分屏蔽后, 此 时盘形永磁体未被屏蔽的部分磁场对与之对应的一个导磁体产生磁吸引力, 另 一个导磁体与盘形永磁体之间由于有蝶形屏蔽板屏蔽阻隔, 因此导磁体与盘形 永磁体之间无磁场作用; 在盘形永磁体的吸引力作用下, 往复式导磁体联动架 向一方水平移动; 当转动屏蔽体继续转动 90° 时, 此时原来被屏蔽的导磁体被 盘形永磁体吸引, 在盘形永磁体的吸引力作用下, 往复式导磁体联动架向相反 方向水平移动; 驱动电机带动转动屏蔽体间歇转动可实现往复式导磁体联动架 沿滑轨机构的运动轴线往复水平移动, 由此产生的动力通过曲柄连杆带动动力 输出轴转动, 并最终通过动力输出轮输出。
值得一提的是: 本实施方式公开的技术方案是卧式方案, 中心固定轴按水 平方向设置; 本发明还可以设计成立式方案, 在立式方案中, 中心固定轴按竖 直方向设置, 除支承结构需要变化外, 其它零件的连接关系不变。
本发明发电设备的第二实施方式:
如图 59至图 65所示, 本发明发电设备第二实施方式为一盘形永磁体转动 屏蔽发电设备, 其包括一个机架 4001 , 在所述机架 4001上水平固定有一个中心 固定轴 4002 , 在该中心固定轴 4002上安装有一个盘形永磁体 4003 , 本实施方 式中盘形永磁体 4003可通过粘接、静配合连接等方式与中心固定轴 4002安装。 所述盘形永磁体 4003包括圓形盘面磁极 N、 圓形盘面磁极 S和圓柱面; 在所述 盘形永磁体外设有一个转动屏蔽体 4004 ,所述转动屏蔽体 4004包括与所述盘形 永磁体的圓形盘面磁极 N平行设置的 N极蝶形屏蔽板 4005、与所述盘形永磁体 的圓形盘面磁极 S平行设置的 S极蝶形屏蔽板 4006、 连接两个所述蝶形屏蔽板 的桥接屏蔽板 4007; 本实施方式中所述的 N极蝶形屏蔽板 4005和 S极蝶形屏 蔽板 4006 均是由呈轴对称设置的两个扇形板构成, 扇形板的圓心角为 60° ~ 90。 ; 优选地, 本实施方式釆用扇形板的圓心角为 90° 的 N极蝶形屏蔽板 4005 和 S极蝶形屏蔽板 4006。 所述转动屏蔽体 4004通过转动连接件 4008与所述中 心固定轴 4002转动安装;有一个动力输入轮 4009与所述转动连接件 4008安装, 沿所述盘形永磁体 4003圓柱面的圓周等分设置四个感应发电设备 4010,该感应 发电设备 4010设置在所述转动屏蔽体 4004夕卜, 所述感应发电设备 4010包括一 个双扇形导磁板 4011 , 该双扇形导磁板 4011通过固定支撑件 4012与机架 4001 安装, 在该双扇形导磁板 4011 上套装感应发电线圈 4013。 所述双扇形导磁板 4011的纵截面呈 U形,
值得一提的是: 所述永磁体磁力线能够垂直进入感应发电设备, 从而提高 了感应发电设备的感应发电效率。
如图 64所示, 该双扇形导磁板 4011包括与所述盘形永磁体 4003的两个圓 形盘面磁极平行设置的两个扇形导磁板 4014、 连接两个所述扇形导磁板的桥接 导磁板 4015; 所述扇形导磁板的圓心角为 60° ~ 90。 , 优选地, 本实施方式釆 用扇形导磁板的圓心角为 90° 的双扇形导磁板。所述的感应发电线圈 4013通过 电磁线圈托架 4016与所述桥接导磁板安装; 本实施方式中所述的固定支撑件为 板式支撑件, 所述的感应发电设备的两个扇形导磁板可以通过粘接与所述固定 支撑件固定, 也可以通过铆接固定, 还可以通过卡装固定; 所述的板式支撑件 可对感应发电设备起到定位作用, 以保证盘形永磁体的 N极距扇形导磁板之间 距离与盘形永磁体的 S极距扇形导磁板之间距离相等。 如图 65、 图 66所示, 本 实施方式中所述的固定支撑件还可以是蝶形支撑件 4017和辐条形支撑件 4018, 这两种支撑件可有效的减轻发电设备整体的重量; 由于在转动屏蔽体绕盘形永 磁体转动过程中会产生热量, 所以该种支撑件还可起到散热作用。
如图 60所示,本实施方式中所述转动屏蔽体的 N极蝶形屏蔽板和 S极蝶形 屏蔽板各通过一个转动连接件与中心固定轴转动安装, 在所述的转动连接件内 设有轴承 4019, 通过以上结构可实现转动屏蔽体与中心固定轴的转动连接。 本 实施方式中所述的 N极蝶形屏蔽板和 S极蝶形屏蔽板的材质、 大小、 形状均相 同; 两个桥接屏蔽板的材质、 大小、 形状均相同。 本实施方式中所述的机架、 中心固定轴、 转动连接件、 动力输入轮和固定支撑件均釆用塑料、 铝合金、 不 锈钢等不导磁的材料制成。
如图 61所示, 在本实施方式中, 所述的盘形永磁体釆用钕铁硼材料, 是一 个圓盘形状的永磁体, 包括圓形盘面磁极 N、 圓形盘面磁极 S、 圓柱面 4020; 永磁体釆用沿圓形盘面方向充磁工艺制作(端面充磁 ), 该种永磁体具有使用年 限长、 能耗低的优点。 设定本实施方式中盘形永磁体左侧的圓形盘面磁极为 N 极、 右侧的圓形盘面磁极为 S极; 所述盘形永磁体的圓形盘面磁极 N到 N极蝶 形屏蔽板的距离与所述盘形永磁体的圓形盘面磁极 S到 S极蝶形屏蔽板的距离 数值相等, 该距离数值为 0.5 ~ 3mm; 本实施方式中为 lmm。
本实施方式的工作原理是: 本实施方式中所述的动力输入轮可以外接一个 驱动电机 (图中未显示), 通过驱动电机带动转动屏蔽体转动; 本发明的盘形永磁 体转动屏蔽发电设备利用转动磁屏蔽原理产生电能; 所述双扇形导磁板的两个 扇形导磁板分别与盘形永磁体的两个圓形盘面磁极平行设置, 所述的感应发电 线圈与所述盘形永磁体的圓柱面位置对应。 当转动屏蔽体以一定转速连续转动 时, 所述的 N极蝶形屏蔽板和 S极蝶形屏蔽板每经过一次感应发电设备所处位 置时,将使通过感应发电设备的磁场强度发生变化,使磁通量变化并产生电能, 通过感应发电线圈将电能输出。 本实施方式设有四个感应发电设备, 所述四个 感应发电设备各有一个双扇形导磁板, 四个感应发电设备的双扇形导磁板材质、 大小、 形状均相同,四个双扇形导磁板组装后可将盘形永磁体覆盖, 可有效地减 少漏磁, 使盘形永磁体 N极发出的磁力线可沿该双扇形导磁板导至盘形永磁体 的 S极, 增大了通过感应发电线圈的磁场强度, 提高了发电量。
其中, 本实施方式中所述的 N极蝶形屏蔽板、 S极蝶形屏蔽板、 扇形导磁 板、 桥接屏蔽板和桥接导磁板均釆用多层硅钢片叠压构成, 其厚度均在 0.5 ~ 20mm之间, 最优选的厚度是 3mm, 硅钢片层数均在 3 ~ 70之间, 最优选的层 数是 10层; 具体的制作方式是一片硅钢板材卷绕成多层, 然后使用切裁成形工 艺加工成形, 由于该成型工艺在加工的过程中没有切断金属材料特有的纤维状 组织, 保持了该组织的连续性, 因此, 具有优异的导磁性能, 屏蔽效果好, 釆 用该种材料制成的 N极蝶形屏蔽板、 S极蝶形屏蔽板、 扇形导磁板、 桥接屏蔽 板和桥接导磁板重量轻, 材质均勾, 取材容易; 为磁场建立一个磁力线快速通 道。
值得一提的是: 本实施方式公开的技术方案是卧式方案, 中心固定轴按水 平方向设置; 本发明还可以设计成立式方案, 在立式方案中, 中心固定轴按竖 直方向设置, 除支承结构需要变化外, 其它零件的连接关系不变。
尽管为示例目的, 已经公开了本发明的优选实施方式, 但是本领域的普通 技术人员将意识到, 在不脱离由所附的权利要求书公开的本发明的范围和精神 的情况下, 各种改进、 增加以及取代是可能的。

Claims

权 利 要求
1、 一种永磁体屏蔽装置, 包括一支承架, 一与所述支承架保持相对静止的 永磁体, 一可相对所述支承架运动的转动轴, 一驱动所述转动轴相对所述支承 架转动的驱动模块, 一连接所述转动轴并套设于所述永磁体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 所述转动屏蔽体相对 所述永磁体保持悬浮状态, 且所述转动屏蔽体设有至少一个使所述永磁体磁力 线穿过的缺口, 其特征在于: 所述转动屏蔽体包括分别与永磁体 N极面与 S极 面平行设置的第一屏蔽面和第二屏蔽面, 所述第一屏蔽面距所述永磁体 N极面 和所述第二屏蔽面距所述永磁体 S极面距离相同, 距离为 0.1~lmm。
2、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述永磁体为轴 向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内的 导磁模块, 所述导磁模块贯穿所述永磁体N、 S极面, 所述转动屏蔽体与所述导 磁模块导磁连接。
3、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏蔽 装置还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力线 可进入转动屏蔽体内。
4、 根据权利要求 3所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生模 块在通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
5、 根据权利要求 3所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生模 块配合所述永磁体作用使得所述第一屏蔽面和第二屏蔽面至磁饱和。
6、 根据权利要求 3所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生模 块包括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
7、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽面 和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
8、 根据权利要求 1所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽面 和所述第二屏蔽面釆用多层导磁体叠压构成。
9、 根据权利要求 8所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽面 和所述第二屏蔽面连接形成多条导磁通路。
10、 一种永磁体屏蔽装置, 包括一支承架, 一与所述支承架保持相对静止 的轴向充磁的圓片形永磁体, 一可相对所述支承架运动的转动轴, 一驱动所述 转动轴相对所述支承架转动的驱动模块, 一连接所述转动轴并套设于所述永磁 体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 且所述转动屏蔽体设有至少一个使所述永磁体磁力线穿过的缺口, 其特征在于: 所述永磁体屏蔽装置还包括一安装在所述永磁体内的导磁模块, 所述导磁模块 贯穿所述永磁体N、 S极面, 所述永磁体屏蔽装置与所述导磁模块导磁连接。
11、 根据权利要求 10所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力 线可进入转动屏蔽体内。
12、 根据权利要求 11所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块在通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
13、 根据权利要求 11所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述电磁发生模块配合所述永磁体作用使得 所述第一屏蔽面和第二屏蔽面至磁饱和。
14、 根据权利要求 11所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块包括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
15、 根据权利要求 10所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
16、 根据权利要求 10所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面釆用多层 导磁体叠压构成。
17、 根据权利要求 16所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面连接形成 多条导磁通路。
18、 根据权利要求 13或 15或 16或 17所述的永磁体屏蔽装置, 其特征在 于:所述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
19、 一种永磁体屏蔽装置, 包括一支承架, 一与所述支承架保持相对静止 的永磁体, 一可相对所述支承架运动的转动轴, 一驱动所述转动轴相对所述支 承架转动的驱动模块, 一连接所述转动轴并套设于所述永磁体外围的转动屏蔽 体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 且所述转动屏蔽 体设有至少一个使所述永磁体磁力线穿过的缺口, 其特征在于: 所述永磁体屏 蔽装置还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力 线可进入转动屏蔽体内。
20、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块在通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
21、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述电磁发生模块配合所述永磁体作用使得 所述第一屏蔽面和第二屏蔽面至磁饱和。
22、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块包括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
23、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述永磁体为 轴向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内 的导磁模块, 所述导磁模块贯穿所述永磁体 N、 S极面, 所述永磁体屏蔽装置与 所述导磁模块导磁连接。
24、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
25、 根据权利要求 19所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面釆用多层 导磁体叠压构成。
26、 根据权利要求 25所述的永磁体屏蔽装置, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面连接形成 多条导磁通路。
27、 根据权利要求 21或 24或 25或 26所述的永磁体屏蔽装置, 其特征在 于:所述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
28、 一种永磁体屏蔽装置, 包括一支承架, 一与所述支承架保持相对静止 的永磁体, 一可相对所述支承架运动的转动轴, 一驱动所述转动轴相对所述支 承架转动的驱动模块, 一连接所述转动轴并套设于所述永磁体外围的转动屏蔽 体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 且所述转动屏蔽 体设有至少一个使所述永磁体磁力线穿过的缺口, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
29、 根据权利要求 28所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 面和所述第二屏蔽面厚度相等。
30、 根据权利要求 28所述的永磁体屏蔽装置, 其特征在于: 所述永磁体为 轴向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内 的导磁模块, 所述导磁模块贯穿所述永磁体 N、 S极面, 所述转动屏蔽体与所述 导磁模块导磁连接。
31、 根据权利要求 28所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力 线可进入转动屏蔽体内。
32、 根据权利要求 31所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块在通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
33、 根据权利要求 31所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块配合所述永磁体作用使得所述第一屏蔽面和第二屏蔽面至磁饱和。
34、 根据权利要求 31所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块包括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
35、 根据权利要求 28所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 面和所述第二屏蔽面釆用多层导磁体叠压构成。
36、 根据权利要求 28所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 面和所述第二屏蔽面连接形成多条导磁通路。
37、 根据权利要求 28至 36中任意一项所述的永磁体屏蔽装置, 其特征在 于:所述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
38、 一种永磁体屏蔽装置, 包括一支承架, 一与所述支承架保持相对静止 的永磁体, 一可相对所述支承架运动的转动轴, 一驱动所述转动轴相对所述支 承架转动的驱动模块, 一连接所述转动轴并套设于所述永磁体外围的转动屏蔽 体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 且所述转动屏蔽 体设有至少一个使所述永磁体磁力线穿过的缺口, 其特征在于: 所述转动屏蔽 体包括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和第二屏蔽面由多层导磁体 叠压构成。
39、 根据权利要求 38所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 面和所述第二屏蔽面连接形成多条导磁通路。
40、 根据权利要求 39所述的永磁体屏蔽装置, 其特征在于: 所述导磁体为 硅钢片或低碳钢。
41、 根据权利要求 38所述的永磁体屏蔽装置, 其特征在于: 所述永磁体为 轴向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内 的导磁模块, 所述导磁模块贯穿所述永磁体 N、 S极面, 所述转动屏蔽体与所述 导磁模块导磁连接。
42、 根据权利要求 38所述的永磁体屏蔽装置, 其特征在于: 所述永磁体屏 蔽装置还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力 线可进入转动屏蔽体内。
43、 根据权利要求 42所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块在通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
44、 根据权利要求 42所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块配合所述永磁体作用使得所述第一屏蔽面和第二屏蔽面至磁饱和。
45、 根据权利要求 42所述的永磁体屏蔽装置, 其特征在于: 所述电磁发生 模块包括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
46、 根据权利要求 38所述的永磁体屏蔽装置, 其特征在于: 所述第一屏蔽 面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
47、 根据权利要求或 38至 46中任意一项所述的永磁体屏蔽装置, 其特征 在于: 所述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设 置。
48、 一种发电系统, 其包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括 一支承架, 一与所述支承架保持相对静止的永磁体, 一可相对所述支承架运动 的转动轴, 一驱动所述转动轴相对所述支承架转动的驱动模块, 一连接所述转 动轴并套设于所述永磁体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽 体相对所述永磁体转动, 所述转动屏蔽体相对所述永磁体保持悬浮状态, 且所 述转动屏蔽体设有至少一个使所述永磁体磁力线穿过的缺口, 其特征在于: 所 述发电系统还包括至少一个配合所述永磁体和所述永磁体屏蔽装置进行发电并 输出电力的感应发电装置, 所述转动屏蔽体包括分别与永磁体 N极面与 S极面 平行设置的第一屏蔽面和第二屏蔽面, 所述第一屏蔽面距所述永磁体 N极面和 所述第二屏蔽面距所述永磁体 S极面距离相同, 距离为 0.1~lmm。
49、 根据权利要求 48所述的发电系统, 其特征在于: 所述永磁体为轴向充 磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内的导磁 模块, 所述导磁模块贯穿所述永磁体N、 S极面, 所述转动屏蔽体与所述导磁模 块导磁连接。
50、 根据权利要求 48所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力线可进 入转动屏蔽体内。
51、 根据权利要求 50所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
52、 根据权利要求 50所述的发电系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述第一屏蔽面和第二屏蔽面至磁饱和。
53、 根据权利要求 50所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
54、 根据权利要求 48所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
55、 根据权利要求 48所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面釆用多层导磁体叠压构成。
56、 根据权利要求 55所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面连接形成多条导磁通路。
57、 根据权利要求 48所述的发电系统, 其特征在于: 所述永磁体磁力线垂 直进入所述感应发电装置。
58、 一种发电系统, 包括一支承架, 一与所述支承架保持相对静止的轴向 充磁的圓片形永磁体, 一可相对所述支承架运动的转动轴, 一驱动所述转动轴 相对所述支承架转动的驱动模块, 一连接所述转动轴并套设于所述永磁体外围 的转动屏蔽体, 所述转动轴可带动所述转动屏蔽体相对所述永磁体转动, 且所 述转动屏蔽体设有至少一个使所述永磁体磁力线穿过的缺口, 其特征在于: 所 述发电系统还包括至少一个配合所述永磁体和所述转动屏蔽体进行发电并输出 电力的感应发电装置, 所述永磁体屏蔽装置还包括一安装在所述永磁体内的导 磁模块, 所述导磁模块贯穿所述永磁体 N、 S极面, 所述永磁体屏蔽装置与所述 导磁模块导磁连接。
59、 根据权利要求 58所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力线可进 入转动屏蔽体内。
60、 根据权利要求 59所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
61、 根据权利要求 59所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述电磁发生模块配合所述永磁体作用使得所述第 一屏蔽面和第二屏蔽面至磁饱和。
62、 根据权利要求 59所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
63、 根据权利要求 58所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
64、 根据权利要求 58所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面釆用多层导磁体 叠压构成。
65、 根据权利要求 64所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面连接形成多条导 磁通路。
66、 根据权利要求 61或 63或 64或 65所述的发电系统, 其特征在于: 所 述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
67、 根据权利要求 58所述的发电系统, 其特征在于: 所述永磁体磁力线垂 直进入所述感应发电装置。
68、 一种发电系统, 其包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括 一支承架, 一与所述支承架保持相对静止的永磁体, 一可相对所述支承架运动 的转动轴, 一驱动所述转动轴相对所述支承架转动的驱动模块, 一连接所述转 动轴并套设于所述永磁体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽 体相对所述永磁体转动, 且所述转动屏蔽体设有至少一个使所述永磁体磁力线 穿过的缺口, 其特征在于: 所述永磁体屏蔽装置还包括一电磁发生模块, 所述 电磁发生模块在通电状态下所产生的磁力线可进入转动屏蔽体内。
69、 根据权利要求 68所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
70、 根据权利要求 68所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述电磁发生模块配合所述永磁体作用使得所述第 一屏蔽面和第二屏蔽面至磁饱和。
71、 根据权利要求 68所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
72、 根据权利要求 68所述的发电系统, 其特征在于: 所述永磁体为轴向充 磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内的导磁 模块, 所述导磁模块贯穿所述永磁体 N、 S极面, 所述永磁体屏蔽装置与所述导 磁模块导磁连接。
73、 根据权利要求 68所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
74、 根据权利要求 68所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面釆用多层导磁体 叠压构成。
75、 根据权利要求 74所述的发电系统, 其特征在于: 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面连接形成多条导 磁通路。
76、 根据权利要求 70或 73或 74或 75所述的发电系统, 其特征在于: 所 述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
77、 根据权利要求 68所述的发电系统, 其特征在于: 所述永磁体磁力线垂 直进入所述感应发电装置。
78、 一种发电系统, 其包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括 一支承架, 一与所述支承架保持相对静止的永磁体, 一可相对所述支承架运动 的转动轴, 一驱动所述转动轴相对所述支承架转动的驱动模块, 一连接所述转 动轴并套设于所述永磁体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽 体相对所述永磁体转动, 且所述转动屏蔽体设有至少一个使所述永磁体磁力线 穿过的缺口, 其特征在于: 所述发电系统还包括至少一个配合所述永磁体和所 述永磁体屏蔽装置进行发电并输出电力的感应发电装置, 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
79、 根据权利要求 78所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面厚度相等。
80、 根据权利要求 78所述的发电系统, 其特征在于: 所述永磁体为轴向充 磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内的导磁 模块, 所述导磁模块贯穿所述永磁体N、 S极面, 所述转动屏蔽体与所述导磁模 块导磁连接。
81、 根据权利要求 78所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力线可进 入转动屏蔽体内。
82、 根据权利要求 81所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
83、 根据权利要求 81所述的发电系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述第一屏蔽面和第二屏蔽面至磁饱和。
84、 根据权利要求 81所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
85、 根据权利要求 78所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面釆用多层导磁体叠压构成。
86、 根据权利要求 85所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面连接形成多条导磁通路。
87、 根据权利要求 78至 86中任意一项所述的发电系统, 其特征在于: 所 述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
88、 根据权利要求 78所述的发电系统, 其特征在于: 所述永磁体磁力线垂 直进入所述感应发电装置。
89、 一种发电系统, 其包括一永磁体屏蔽装置, 所述永磁体屏蔽装置包括 一支承架, 一与所述支承架保持相对静止的永磁体, 一可相对所述支承架运动 的转动轴, 一驱动所述转动轴相对所述支承架转动的驱动模块, 一连接所述转 动轴并套设于所述永磁体外围的转动屏蔽体, 所述转动轴可带动所述转动屏蔽 体相对所述永磁体转动, 且所述转动屏蔽体设有至少一个使所述永磁体磁力线 穿过的缺口, 其特征在于: 所述发电系统还包括至少一个配合所述永磁体和所 述永磁体屏蔽装置进行发电并输出电力的感应发电装置, 所述转动屏蔽体包括 第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面由多层导磁体叠 压构成。
90、 根据权利要求 89所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面连接形成多条导磁通路。
91、 根据权利要求 90所述的发电系统, 其特征在于: 所述导磁体为硅钢片 或低碳钢。
92、 根据权利要求 89所述的发电系统, 其特征在于: 所述永磁体为轴向充 磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述永磁体内的导磁 模块, 所述导磁模块贯穿所述永磁体N、 S极面, 所述转动屏蔽体与所述导磁模 块导磁连接。
93、 根据权利要求 89所述的发电系统, 其特征在于: 所述永磁体屏蔽装置 还包括一电磁发生模块, 所述电磁发生模块在通电状态下所产生的磁力线可进 入转动屏蔽体内。
94、 根据权利要求 93所述的发电系统, 其特征在于: 所述电磁发生模块在 通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
95、 根据权利要求 93所述的发电系统, 其特征在于: 所述电磁发生模块配 合所述永磁体作用使得所述第一屏蔽面和第二屏蔽面至磁饱和。
96、 根据权利要求 93所述的发电系统, 其特征在于: 所述电磁发生模块包 括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
97、 根据权利要求 89所述的发电系统, 其特征在于: 所述第一屏蔽面和所 述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
98、 根据权利要求或 89至 97中任意一项所述的发电系统, 其特征在于: 所述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
99、 根据权利要求 89所述的发电系统, 其特征在于: 所述永磁体磁力线垂 直进入所述感应发电装置。
100、 一种驱动系统, 包括一机架和一永磁体屏蔽装置, 所述永磁体屏蔽装 置包括第一永磁体, 一连接套设于所述第一永磁体外围的转动屏蔽体, 一动力 输入模块, 所述动力输入模块可驱动所述转动屏蔽体相对所述第一永磁体转动, 且所述转动屏蔽体设有至少一个使所述第一永磁体磁力线穿过的缺口, 其特征 在于: 所述驱动系统还包括至少一个相对所述支撑架活动设置的运动件、 一控 制所述转动屏蔽体转动进行转动的驱动控制装置, 以及至少一个输出所述运动 件机械能的动力输出装置, 所述第一永磁体 N极与 S极两侧各设有至少一个与 第一永磁体极性相同的第二永磁体, 且所述第一永磁体和所述第二永磁体其中 之一设置于所述运动件上, 另一设置于所述机架上。
101、 根据权利要求 100所述的驱动系统, 其特征在于: 所述动力输出装置 包括一转动轴, 所述转动轴上设有动力输出轮, 所述转动轴上还设有飞轮。
102、 根据权利要求 100所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括分别与第一永磁体 N极面与 S极面平行设置的第一屏蔽面和第二屏蔽面, 所 述第一屏蔽面距所述第一永磁体 N极面和所述第二屏蔽面距所述第一永磁体 S 极面 巨离相同, 距离为 0.1~lmm。
103、 根据权利要求 100所述的驱动系统, 其特征在于: 所述第一永磁体为 轴向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述第一永磁 体内的导磁模块, 所述导磁模块贯穿所述第一永磁体N、 S极面, 所述转动屏蔽 体与所述导磁模块导磁连接。
104、 根据权利要求 100所述的驱动系统, 其特征在于: 所述永磁体屏蔽装 置还包括一由所述控制装置控制的电磁发生模块, 所述电磁发生模块在通电状 态下所产生的磁力线可进入转动屏蔽体内。
105、 根据权利要求 104所述的驱动系统, 其特征在于: 所述电磁发生模块 在通电状态下产生磁场的磁极与所述永磁体磁极方向相同。
106、 根据权利要求 104所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一屏蔽面和第二屏蔽面, 所述电磁发生模块配合所述永磁体作用使得所述 第一屏蔽面和第二屏蔽面至磁饱和。
107、 根据权利要求 104所述的驱动系统, 其特征在于: 所述电磁发生模块 包括一加载输入电流的电磁发生模块, 所述输入电流为一间歇电流。
108、 根据权利要求 100所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
109、 根据权利要求 100所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面釆用多层导磁 体叠压构成。
110、 根据权利要求 109所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一转动屏蔽体和第二转动屏蔽体, 所述第一屏蔽面和所述第二屏蔽面连接 形成多条导磁通路。
111、根据权利要求 106或 108或 109或 110所述的驱动系统,其特征在于: 所述第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
112、 根据权利要求 100所述的驱动系统, 其特征在于: 所述运动件为一联 动框架, 所述联动框架包括第一联动杆和第二联动杆, 所述第一联动杆和所述 第二联动杆上均设有至少一对所述第二永磁体。
113、 根据权利要求 112所述的驱动系统, 其特征在于: 在所述第一联动杆 上的第二永磁体和所述第二联动杆上的第二永磁体之间设有至少一个第二磁屏 蔽装置。
114、 一种驱动系统, 包括一机架和一永磁体屏蔽装置, 所述永磁体屏蔽装 置包括第一永磁体, 一连接套设于所述第一永磁体外围的转动屏蔽体, 一动力 输入模块, 所述动力输入模块可驱动所述转动屏蔽体相对所述第一永磁体转动, 且所述转动屏蔽体设有至少一个使所述第一永磁体磁力线穿过的缺口, 其特征 在于: 所述驱动系统还包括至少一个相对所述支撑架活动设置的运动件、 一驱 动控制装置, 以及至少一个输出所述运动件机械能的动力输出装置, 所述第一 永磁体 N极与 S极两侧各设有至少一个导磁体, 且所述第一永磁体和所述导磁 体二者之一设置于所述运动件上, 另一设置于所述机架上。
115、 根据权利要求 114所述的驱动系统, 其特征在于: 所述动力输出装置 包括一转动轴, 所述转动轴上设有动力输出轮, 所述转动轴上还设有飞轮。
116、 根据权利要求 114所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括分别与第一永磁体 N极面与 S极面平行设置的第一屏蔽面和第二屏蔽面, 所 述第一屏蔽面距所述第一永磁体 N极面和所述第二屏蔽面距所述第一永磁体 S 极面 巨离相同, 距离为 0.1~lmm。
117、 根据权利要求 114所述的驱动系统, 其特征在于: 所述第一永磁体为 轴向充磁的圓片状永磁体, 所述永磁体屏蔽装置还包括一安装在所述第一永磁 体内的导磁模块, 所述导磁模块贯穿所述第一永磁体N、 S极面, 所述转动屏蔽 体与所述导磁模块导磁连接。
118、 根据权利要求 114所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面厚度均在 0.5 ~ 20mm之间。
119、 根据权利要求 114所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一屏蔽面和第二屏蔽面, 所述第一屏蔽面和所述第二屏蔽面釆用多层导磁 体叠压构成。
120、 根据权利要求 119所述的驱动系统, 其特征在于: 所述转动屏蔽体包 括第一转动屏蔽体和第二转动屏蔽体, 所述第一屏蔽面和所述第二屏蔽面连接 形成多条导磁通路。
121、 根据权利要求 118或 119或 120所述的驱动系统, 其特征在于: 所述 第一屏蔽面和所述第二屏蔽面分别与永磁体 N极面与 S极面平行设置。
PCT/CN2010/072203 2009-04-28 2010-04-26 永磁体屏蔽装置及其应用系统 WO2010124609A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN2009100829983A CN101877523A (zh) 2009-04-28 2009-04-28 一种环形永磁体屏蔽装置
CN200910082998.3 2009-04-28
CN2009100846762A CN101895181A (zh) 2009-05-22 2009-05-22 一种盘形永磁体薄壳式屏蔽装置
CN200910084676.2 2009-05-22
CN2009100860844A CN101924443A (zh) 2009-06-09 2009-06-09 一种环型永磁体的双板式屏蔽装置
CN200910086084.4 2009-06-09
CN200910086086.3 2009-06-10
CN2009100860863A CN101924444A (zh) 2009-06-10 2009-06-10 一种盘形永磁体半壳式屏蔽装置
CN2009101701008A CN102005979A (zh) 2009-09-03 2009-09-03 一种盘形永磁体的蝶式磁力驱动装置
CN200910170100.8 2009-09-03
CN200910177553.3 2009-09-15
CN2009101775533A CN102025246A (zh) 2009-09-15 2009-09-15 一种盘形永磁体转动屏蔽发电装置

Publications (1)

Publication Number Publication Date
WO2010124609A1 true WO2010124609A1 (zh) 2010-11-04

Family

ID=43031725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072203 WO2010124609A1 (zh) 2009-04-28 2010-04-26 永磁体屏蔽装置及其应用系统

Country Status (1)

Country Link
WO (1) WO2010124609A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423407A (zh) * 2001-12-04 2003-06-11 应德贵 往复屏蔽式磁力驱动装置
CN1423395A (zh) * 2001-12-04 2003-06-11 应德贵 永磁感生发电装置
CN1423406A (zh) * 2001-12-04 2003-06-11 陈朝仁 滑动屏蔽式磁力发电装置
US6657348B2 (en) * 2000-11-02 2003-12-02 Capstone Turbine Corporation Rotor shield for magnetic rotary machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657348B2 (en) * 2000-11-02 2003-12-02 Capstone Turbine Corporation Rotor shield for magnetic rotary machine
CN1423407A (zh) * 2001-12-04 2003-06-11 应德贵 往复屏蔽式磁力驱动装置
CN1423395A (zh) * 2001-12-04 2003-06-11 应德贵 永磁感生发电装置
CN1423406A (zh) * 2001-12-04 2003-06-11 陈朝仁 滑动屏蔽式磁力发电装置

Similar Documents

Publication Publication Date Title
CN102305242B (zh) 一种径向-轴向三自由度交直流混合磁轴承
CN106026592A (zh) 一种无框组合式永磁同步电机
JP2016512946A (ja) 分割コイル体を有するコイル板と分割磁石を有する往復動型磁石板を用いた発電兼用電動装置
CN102016452A (zh) 用磁热材料产生热流的设备
CN109039004B (zh) 一种基于Halbach阵列的磁悬浮装置
CN101980433B (zh) 周向移相轴向分段的楔形定子铁芯外永磁转子同步电机
CN102367141A (zh) 外转子开关磁阻曳引驱动装置
CN103925293B (zh) 一种薄片转子径向混合磁轴承
CN201153238Y (zh) 磁铁运动的步进装置
WO2010124609A1 (zh) 永磁体屏蔽装置及其应用系统
TW200812193A (en) Rotating mechanism
WO2022233189A1 (zh) 一种大型永磁电动机
WO2010130216A1 (zh) 永磁体屏蔽装置及其应用系统
CN106374677A (zh) 新型转动永磁体发电机
CN201910723U (zh) 一种伺服永磁同步电机转子冲片
CN101877523A (zh) 一种环形永磁体屏蔽装置
CN204046380U (zh) 一种旋转直线永磁电机
CN202550843U (zh) 高功率密度大功率盘式驱动电机
CN101895181A (zh) 一种盘形永磁体薄壳式屏蔽装置
CN206237278U (zh) 电机
CN111030414A (zh) 一种单相圆筒形直线振荡电机
CN206962680U (zh) 一种圆筒形永磁直线电机
CN201846213U (zh) 周向移相轴向分段的楔形定子铁芯外永磁转子同步电机
TW201203806A (en) Drive system
CN100593896C (zh) 管式直线永磁同步电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769298

Country of ref document: EP

Kind code of ref document: A1