WO2010130137A1 - 报文处理的方法和装置 - Google Patents

报文处理的方法和装置 Download PDF

Info

Publication number
WO2010130137A1
WO2010130137A1 PCT/CN2009/075890 CN2009075890W WO2010130137A1 WO 2010130137 A1 WO2010130137 A1 WO 2010130137A1 CN 2009075890 W CN2009075890 W CN 2009075890W WO 2010130137 A1 WO2010130137 A1 WO 2010130137A1
Authority
WO
WIPO (PCT)
Prior art keywords
service data
speed service
fec
low
encoded
Prior art date
Application number
PCT/CN2009/075890
Other languages
English (en)
French (fr)
Inventor
向俊凌
向晖
青华平
谷云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010130137A1 publication Critical patent/WO2010130137A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0096Channel splitting in point-to-point links

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a coding method and apparatus, a decoding method and apparatus, and a communication system. Background technique
  • the Optical Transport Network is the core technology of the next-generation transport network, including the technical specifications of the electrical layer and the optical layer. It has rich functions of operation, management, and maintenance (0AM: Operation, Administration, Maintenance).
  • the TCM Tudem Connection Monitoring
  • the FEC Forward Error Correction
  • ITU-T SG15 is discussing the definition of a new rate class optical channel data unit 4 (0DU4: Optical Channel Data Unit-4) / optical channel transport unit 4 (0TU4: completely standardized Optical Channel Transport Unit-4) to carry 100GE services.
  • the OTN system uses Forward Error Correction (FEC) to correct the data errors occurring in the transmission network to achieve farther optical transmission and to construct a more efficient optical transmission network.
  • FEC Forward Error Correction
  • the existing method of FEC encoding and decoding 1 OG 0TU2 data is as follows: Encoding method: Send 10G 0TU2 data to FEC through parallel data bus Coding module pair 0TU2 The data is FEC-encoded, and the FEC-encoded 0TU2 data is scrambled, and the scrambled 0TU2 service data is transmitted.
  • the line chip first descrambles the 10G 0TU2 data, performs FEC decoding error correction processing on the descrambled 0TU2 data, and then sends the decoded error corrected data to the frame processing unit for further processing.
  • the inventors found that: since the existing line chips (such as field programmable gate array devices, ASIC devices) still have less than 100G in capacity and speed, if the above code is used, The method and the decoding method process the high-speed service data of 100G, which cannot be realized by using the existing line chip.
  • the existing line chips such as field programmable gate array devices, ASIC devices
  • the embodiment of the present invention provides an encoding method and device, a decoding method and device, and a communication system.
  • FEC encoding/decoding of high-speed service data can be performed by using an existing line chip.
  • An embodiment of the present invention provides an encoding method, including:
  • the embodiment of the invention provides a decoding method, including:
  • the embodiment of the invention provides a decoding method, including: Receiving FEC encoded high speed service data;
  • the FEC-decoded low-speed service data is combined to obtain high-speed FEC-decoded service data.
  • An embodiment of the present invention provides an encoding apparatus, including:
  • a receiving unit configured to receive high speed service data
  • a distribution unit configured to distribute high-speed service data received by the receiving unit into at least two low-speed service data
  • a coding unit configured to perform respectively on each low-speed service data distributed by the distribution unit
  • An embodiment of the present invention provides a decoding apparatus, including:
  • a receiving unit configured to receive at least two FEC-encoded low-speed service data
  • a decoding unit configured to perform FEC decoding on each of the FEC-encoded low-speed service data received by the receiving unit, to obtain a FEC-decoded low-speed service.
  • a combination unit configured to combine the FEC-decoded low-speed service data obtained by the decoding unit to obtain high-speed service data.
  • An embodiment of the present invention provides a decoding apparatus, including:
  • a receiving unit configured to receive FEC-encoded high-speed service data
  • a distribution unit configured to distribute the FEC-encoded high-speed service data received by the receiving unit into at least two FEC-encoded low-speed service data
  • the service data is subjected to FEC decoding to obtain low-speed service data that has been decoded by FEC;
  • a combining unit configured to combine the FEC-decoded low-speed service data obtained by the decoding unit to obtain the FEC-decoded high-speed service data.
  • the embodiment of the present invention provides a communication system, including the encoding device provided by the embodiment of the present invention; and/or the decoding device provided by the embodiment of the present invention.
  • high-speed service data can be distributed into at least two low-traffic service data, so that FEC encoding is performed on each low-speed service data, which can be existing.
  • the device cannot directly perform FEC encoding on high-speed service data when performing FEC encoding on high-speed service data. It can also perform FEC decoding on at least two low-speed service data that has undergone FEC encoding, and can not directly encode FEC in existing devices.
  • FEC decoding is performed on high-speed service data, FEC decoding of FEC-encoded high-speed service data is realized.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of an embodiment of the present invention.
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of an embodiment of the present invention.
  • Embodiment 3 is a schematic flowchart of Embodiment 3 of an embodiment of the present invention.
  • Embodiment 4 is a schematic flowchart of Embodiment 4 of an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of Embodiment 5 of an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of Embodiment 6 of an embodiment of the present invention
  • Embodiment 7 is a schematic flowchart of Embodiment 7 in an embodiment of the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 8 of an embodiment of the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 9 in an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 10 of the embodiment of the present invention.
  • Figure 11 is a schematic structural view of Embodiment 11 of the embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 12 according to an embodiment of the present invention. detailed description
  • Embodiment 1 describes the coding method in Embodiment 1, and FIG. 1 describes the flow of Embodiment 1, including:
  • the received high-speed service data may be 100G OTU4 service data, or other service data, such as 100GE Ethernet data, and the 100GE Ethernet data. It can be the service data carried by the fifth type of twisted pair.
  • the high-speed service data is composed of a high-speed service data frame.
  • the receiving the high-speed service data into the at least two low-speed service data may include: high-speed service data in the received high-speed service data.
  • the frame is distributed into at least two low-speed service data in units of high-speed service data frames, and the low-speed service data is composed of high-speed service data frames.
  • the distributing the received high-speed service data into the at least two low-speed service data may include: splitting the high-speed service data frame into at least two high-speed service data frame slices and distributing the data into at least two Low-speed service data, where low-speed service data is composed of slices of high-speed service data frames; specifically, high-speed service data needs to be distributed to several low-speed service data, and high-speed service data frames are split into several high-speed service data frames.
  • the slice that is, the number of slices split into each high-speed service data frame is the same as the number of low-speed service data.
  • the received high speed service data may be distributed into at least two low speed service data by the framing module of the OTU4.
  • high-speed service data and low-speed service data do not have rate requirements, but are relatively speaking; taking OTN network as an example, 10G OTU2 is compared with 2.5G OTU1, and Bay' J 10G OTU2 is high-speed service data.
  • 2.5G OTU1 is low-speed service data; however, 10G OTU2 is lower-speed service data than 10G OTU4, and 100G OTU4 is high-speed service data.
  • the low-speed service data may be performed by using the RS (255, 239) coding method described in G.709 Annex A, or the coding method described in G.975.1 Appendix I, or using the remaining enhanced FEC coding modes. FEC coding.
  • each of the FEC-encoded low-speed service data can be directly scrambled and outputted directly, and at least two FEC-encoded low-speed service data are output.
  • the FEC-encoded low-speed service data may be merged first, the FEC-encoded high-speed service data is obtained, and the FEC-encoded high-speed service data is scrambled and output, and the output is output. It is all the way to high-speed business data.
  • the high-speed service data can be distributed into at least two low-speed service data, so that the low-speed service data can be separately FEC-encoded, so that the existing The device cannot implement FEC encoding of high-speed service data when FEC encoding is directly performed on high-speed service data.
  • Embodiment 2 the second embodiment describes the decoding method
  • FIG. 2 describes the flow of the second embodiment, including:
  • the decoding method used for FEC decoding of low-speed service data corresponds to the encoding method for performing FEC encoding on low-speed service data.
  • the FEC-encoded low-speed service data is FEC-decoded using the RS (255, 239) decoding method described in G.709 Annex A.
  • the FEC-encoded low-speed service data is FEC-decoded by the decoding method described in G.975.1 Appendix I.
  • the FEC-decoded low-speed service data is FEC-decoded by the enhanced FEC decoding method.
  • the embodiment can receive at least two low-speed service data, so as to perform FEC decoding on each low-speed service data, so that high-speed service data can be realized when the existing device cannot directly perform FEC decoding on the high-speed service data. FEC decoding.
  • Embodiment 3 describes a decoding method
  • FIG. 3 describes a flow of Embodiment 3, including:
  • the FEC-encoded high-speed service data into at least two FEC-encoded low-speed service data.
  • the high-speed service data may be distributed into several low-speed service data according to the encoding end to perform FEC encoding, and the FEC-encoded high-speed service data is distributed into several low-speed service data for FEC decoding.
  • the FEC-encoded high-speed service data can be distributed into 10 FEC-encoded low-speed service data for FEC decoding respectively;
  • the FEC-encoded high-speed service data can be distributed into 20 FEC-encoded low-speed service data for FEC decoding.
  • the received high-speed service data can be distributed into at least two low-speed service data, so that FEC decoding is performed on each low-speed service data, so that FEC can be directly performed on the high-speed service data in the existing device.
  • FEC decoding of high speed service data is realized at the time of decoding.
  • Embodiment 4 describes an encoding method and a decoding method, and Embodiment 4 describes a process of encoding 100G OTU4 high-speed service data.
  • 100G OTU4 high-speed service data is composed of OTU4 frames, and FIG. 4 depicts The process of the fourth embodiment includes:
  • the encoding apparatus distributes high-speed service data composed of OTU4 frames to the N-channel, and each channel transmits low-speed service data composed of slices of OTU4/N.
  • N is an integer greater than 1, for example, in one embodiment of the invention, N has a value of 10.
  • the OTU4 frame is distributed, the FEC overhead byte of the OTU4 frame is empty at this time, that is, the OTU4 frame has only the structure of the OTU4 frame at this time.
  • the FEC coding unit in each channel of the coding device is in the channel by OTU4/N
  • the low-speed service data composed of slices is FEC-encoded to obtain low-speed service data composed of slices of the FEC-encoded OTU4/N.
  • the FEC coding unit may adopt the RS (255, 239) coding method described in G.709 Annex A.
  • the FEC overhead byte in the OTU4/N slice will be filled with the FEC overhead byte.
  • the encoding device combines low-speed service data composed of FEC-encoded OTU4/N slices for each channel, and obtains high-speed service data composed of FEC-encoded OTU4 frames.
  • the encoding apparatus scrambles and outputs high-speed service data consisting of FEC-encoded OTU4 frames.
  • high-speed service data consisting of FEC-encoded OTU4 frames can be scrambled by a multichannel unit of the encoding device and distributed to 20 virtual channels for output.
  • the decoding apparatus receives the high speed service data consisting of the FEC encoded OTU4 frame. 406. The decoding apparatus performs descrambling processing on the high speed service data consisting of the FEC encoded OTU4 frame.
  • the high-speed service data composed of the FEC-encoded OTU4 frame may be received by the multichannel unit of the decoding device, or the high-speed service data composed of the FEC-encoded OTU4 frame may be descrambled by the multichannel unit of the decoding device.
  • the decoding apparatus distributes the high-speed service data consisting of the FEC-encoded OTU4 frame processed by the descrambling code to the N channel, and each channel transmits the low-speed service data composed of the FEC-encoded OTU4/N slice.
  • the FEC decoding unit of the N channel in the decoding apparatus performs FEC decoding on the low-speed service data consisting of the TEC-encoded OTU4/N slice, and obtains low-speed service data composed of the TEC-decoded OTU4/N slice.
  • the FEC decoding unit may adopt the RS (255, 239) decoding mode described by G.709 Annex A.
  • the low-speed service data composed of the FEC-decoded OTU4/N slices in the N-channels obtains high-speed service data composed of FEC-decoded OTU4 frames.
  • the encoding apparatus in this embodiment can distribute the high-speed service data to the N-channels, thereby performing FEC encoding on the N-channels for the low-speed service data, so that the existing equipment cannot directly perform FEC encoding on the high-speed service data.
  • the FEC encoding of the high-speed service data is implemented; at the same time, the decoding device can distribute the received FEC-encoded high-speed service data to at least two channels, thereby performing FEC decoding on the FEC-encoded low-speed service data in at least two channels respectively. Therefore, FEC decoding of the FEC-encoded high-speed service data can be realized when the existing device cannot directly perform FEC decoding on the FEC-encoded high-speed service data.
  • Embodiment 5 describes an encoding method and a decoding method.
  • Embodiment 5 describes a process of encoding 100G ODU4 high-speed service data.
  • 100G ODU4 high-speed service data is composed of ODU4 frames
  • FIG. 5 describes The process of the fifth embodiment includes:
  • the encoding device distributes high-speed service data composed of ODU4 frames to N channels, and each channel transmits low-speed service data composed of slices of ODU4/N.
  • N is an integer greater than 1, for example, in one embodiment of the invention, N has a value of 10.
  • the FEC coding unit in each channel of the coding apparatus performs FEC coding on the low-speed service data consisting of the ODU4/N slice in the channel, and obtains low-speed service data composed of the FEC-encoded OTU4/N slice.
  • the FEC coding unit may adopt the RS (255, 239) coding method described in G.709 Annex A.
  • the ODU4/N slice adds a slice of the FEC overhead byte to form OTU4/N. 503.
  • the encoding device combines low-speed service data composed of FEC-encoded OTU4/N slices for each channel, and obtains high-speed service data composed of FEC-encoded OTU4 frames.
  • the encoding apparatus scrambles and outputs high-speed service data consisting of FEC-encoded OTU4 frames.
  • the FEC-encoded OTU4 frame may be scrambled by the multichannel unit of the encoding device, and then distributed to 20 virtual channels for output.
  • the decoding apparatus receives high-speed service data consisting of FEC-encoded OTU4 frames.
  • the decoding apparatus performs descrambling processing on the high speed service data consisting of the FEC encoded OTU4 frame.
  • the FEC-encoded multichannel unit of the decoding device can be received by the FEC-encoded multichannel unit of the decoding device.
  • the high-speed service data composed of OTU4 frames can also be descrambled by the multichannel unit of the decoding device for high-speed service data composed of FEC-encoded OTU4 frames.
  • the decoding apparatus distributes the high-speed service data consisting of the FEC-encoded OTU4 frame subjected to the descrambling code processing to the N-channel, and each channel transmits the low-speed service data composed of the FEC-encoded OTU4/N slice.
  • the FEC decoding unit of the N channel in the decoding device performs FEC decoding on the low-speed service data consisting of the FEC-encoded OTU4/N slice, and obtains low-speed service data composed of the FEC-decoded ODU4/N slice.
  • the FEC decoding unit may adopt the RS (255, 239) decoding mode described in G.709 Annex A.
  • Decoding device combination The low-speed service data composed of the FEC-decoded ODU4/N slices in the N-channels obtains high-speed service data composed of FEC-decoded ODU4 frames.
  • the encoding apparatus can distribute the high-speed service data to the N-channel, so that the low-speed service data is FEC-encoded in the N-channel respectively, so that it can be present.
  • Some devices cannot directly perform FEC encoding on high-speed service data when performing FEC encoding on high-speed service data.
  • the decoding device can distribute the received FEC-encoded high-speed service data to at least two channels, thereby respectively at least two channels.
  • FEC decoding is performed on the FEC-encoded low-speed service data, so that FEC decoding of the FEC-encoded high-speed service data can be realized when the existing device cannot directly perform FEC decoding on the FEC-encoded high-speed service data.
  • the sixth embodiment describes the encoding method and the decoding method.
  • the sixth embodiment describes the process of encoding the 100G OTU4 high-speed service data.
  • the high-speed service data of the 100G OTU4 is composed of OTU4 frames, and
  • FIG. 6 describes The process of the sixth embodiment includes:
  • the multichannel unit of the encoding device distributes high-speed service data composed of OTU4 frames to 20 virtual channels, and each virtual channel transmits low-speed service data composed of OTU4/20 slices.
  • the OTU4 frame structure in one embodiment of the present invention is as shown in Table 1.
  • distributing an OTU4 frame to 20 virtual channels may be as follows: dividing the OTU4 frame into 16 bytes, pressing the slave Left to right, from top to bottom, the block is cyclically distributed to 20 virtual channels.
  • the structure of one OTU4 frame after distribution on the 20 virtual channels is shown in Table 2.
  • the OTU4 frame is distributed, the FEC overhead byte of the OTU4 frame is empty at this time, that is, the OTU4 frame has only the structure of the OTU4 frame at this time.
  • the FEC encoding unit in the 20 virtual channels in the encoding device performs FEC encoding on the low-speed service data consisting of the OTU4/20 slices in the channel, and obtains low-speed service data composed of the FEC-encoded OTU4/20 slices. In this step, the empty FEC overhead bytes in the OTU 4/20 slice will be filled with the FEC overhead bytes.
  • the 20 virtual channels of the encoding device output low-speed service data composed of FEC-encoded OTU4/20 slices.
  • the 20 virtual channels of the decoding device receive the low speed service data consisting of the FEC encoded OTU4/20 slices.
  • the decoding apparatus performs descrambling processing on the low-speed service data composed of the slice of the OEC4/20 encoded by the FEC.
  • the low-speed service data composed of the FEC-encoded OTU4/20 slice may be received by the multichannel unit of the decoding device, or the low-speed service data composed of the FEC-encoded OTU4/20 slice may be performed by the multichannel unit of the decoding device. Des scrambling code processing.
  • the decoding unit in the 20 channels of the decoding device performs FEC decoding on the low-speed service data consisting of the FEC-encoded OTU4/20 slice processed by the descrambling code to obtain the slice of the OTU4/20 decoded by the FEC.
  • the composition of low-speed business data consisting of the FEC-encoded OTU4/20 slice processed by the descrambling code to obtain the slice of the OTU4/20 decoded by the FEC.
  • the decoding device combines the low-speed service data composed of the FEC-decoded OTU4/20 slice in the 20 channels, and obtains the high-speed service data composed of the FEC-decoded OTU4 frame.
  • the encoding device can distribute the high-speed service data to the N-channel, so that the low-speed service data is FEC-encoded in the N-channel, respectively, so that the existing device cannot directly perform FEC on the high-speed service data.
  • FEC encoding for high-speed service data is implemented at the time of encoding; at the same time, the decoding device can receive FEC-encoded low-speed service data on at least two channels, thereby performing FEC decoding on the FEC-encoded low-speed service data of at least two channels, respectively
  • FEC for FEC-encoded high-speed service data can be realized when existing equipment cannot directly perform FEC decoding on FEC-encoded high-speed service data. decoding.
  • the seventh embodiment describes the encoding method and the decoding method.
  • the seventh embodiment describes the process of encoding the high-speed service data of the 100G ODU4.
  • the high-speed service data of the 100G ODU4 is composed of the ODU4 frame.
  • the flow of the seventh embodiment includes: 701.
  • the encoding device distributes the 100G ODU4 service data to the N channel in units of frames, and the low speed service data transmitted by each channel is composed of the ODU4 frame.
  • N is an integer greater than 1, for example, in one embodiment of the invention, N has a value of two.
  • the FEC coding unit in each channel of the coding apparatus performs FEC coding on the low-speed service data composed of the ODU4 frame in the channel, and obtains low-speed service data composed of the FEC-encoded OTU4 frame.
  • the FEC coding unit may adopt the RS (255, 239) coding method described in G.709 Annex A. After FEC encoding the ODU4 frame, the ODU4 frame adds the FEC overhead byte to form the OTU4 frame.
  • the encoding device combines low-speed service data consisting of FEC-encoded OTU4 frames, and obtains high-speed service data consisting of FEC-encoded OTU4 frames.
  • the encoding apparatus scrambles and outputs high-speed service data consisting of FEC-encoded OTU4 frames.
  • the high-speed service data consisting of the FEC-encoded OTU4 frame may be scrambled by the multichannel unit of the encoding device, and then distributed to 20 virtual channels for output.
  • the decoding apparatus receives high-speed service data consisting of FEC-encoded OTU4 frames.
  • the decoding apparatus performs descrambling processing on the high speed service data consisting of the FEC encoded OTU4 frame.
  • the high-speed service data composed of the FEC-encoded OTU4 frame may be received by the multichannel unit of the decoding device, or the high-speed service data composed of the FEC-encoded OTU4 frame may be descrambled by the multichannel unit of the decoding device. 707.
  • the decoding apparatus distributes, by using the descrambling code, the fast service data consisting of the FEC-encoded OTU4 frame to the N channel in units of OTU4 frames, and the low-speed service data transmitted by each channel is encoded by the FEC-encoded OTU4 frame.
  • the composition of low-speed business data is described by the FEC-encoded business data.
  • the FEC decoding unit of the N channel in the decoding device performs FEC decoding on the low-speed service data composed of the FEC-encoded OTU4 frame, and obtains low-speed service data composed of the FEC-decoded ODU4 frame.
  • the FEC decoding unit may adopt the RS (255, 239) decoding mode described in G.709 Annex A.
  • the decoding device combines the low-speed service data composed of the FEC-decoded ODU4 frame in the N-channel, and obtains the high-speed service data composed of the FEC-decoded ODU4 frame.
  • the encoding device can distribute the high-speed service data to the N-channel, so that the low-speed service data is FEC-encoded in the N-channel, respectively, so that the existing device cannot directly perform FEC encoding on the high-speed service data.
  • the decoding device can distribute the received FEC-encoded high-speed service data to at least two channels, thereby performing FEC decoding on the low-speed service data in at least two channels respectively, so that it can be present
  • Some devices cannot directly perform FEC decoding on FEC-encoded high-speed service data when performing FEC decoding on FEC-encoded high-speed service data.
  • Embodiment 8 describes an encoding apparatus in Embodiment 8, and FIG. 8 describes the structure of Embodiment 8, which includes:
  • the receiving unit 801 is configured to receive high speed service data.
  • a distribution unit 802 configured to distribute the high-speed service data received by the receiving unit 801 into at least two low-speed service data
  • the encoding unit 803 is configured to perform FEC encoding on each low-speed service data distributed by the distribution unit 802;
  • the output unit 804 is configured to output the service data that is FEC-encoded by the encoding unit 803.
  • the encoding device can distribute the high-speed service data into at least two low-speed service data, so as to perform FEC encoding on each channel for the low-speed service data, so that the existing device cannot directly directly access the high-speed service data.
  • FEC encoding for high speed service data is implemented when FEC encoding is performed.
  • Embodiment 9 is a coding apparatus described in Embodiment 9, and FIG. 9 is a structure of Embodiment 9, which includes:
  • the receiving unit 901 is configured to receive high speed service data.
  • a distribution unit 902 configured to distribute the high-speed service data received by the receiving unit 901 into at least two low-speed service data
  • the encoding unit 903 is configured to perform FEC encoding on each low-speed service data distributed by the distribution unit 902;
  • the output unit 904 is configured to output each low-speed service data that is FEC-encoded by the encoding unit 903.
  • the output unit 904 may specifically include: a merging unit 9041, configured to combine the low-speed service data of the FEC encoding by the encoding unit 903, and obtain the FEC-encoded high-speed service data; the scrambling code output unit 9042.
  • the FEC-encoded high-speed service data obtained by the merging unit 9041 is scrambled and output.
  • the encoding device can distribute the high-speed service data to at least two channels, so that the low-speed service data is FEC-encoded in at least two channels, so that the existing device cannot perform FEC on the high-speed service data.
  • FEC encoding for high speed service data is implemented at the time of encoding.
  • Embodiment 10 describes an encoding apparatus, and FIG. 10 depicts the structure of Embodiment 10, including:
  • the receiving unit 1001 is configured to receive high speed service data.
  • the distribution unit 1002 is configured to distribute the high-speed service data received by the receiving unit 1001 into Less than two low-speed business data;
  • the encoding unit 1003 is configured to perform FEC encoding on each low-speed service data distributed by the distribution unit 1002, respectively.
  • the output unit 1004 is configured to output each low-speed service data that is FEC-encoded by the encoding unit 1003.
  • the output unit 1004 may specifically include: a scrambling code output unit 10041, configured to perform scrambling on each low-speed service data that is FEC-encoded by the encoding unit 1003, and directly output the data.
  • the encoding device can distribute the high-speed service data into at least two low-speed service data, so as to perform FEC encoding on each low-speed service data, so that the existing device cannot directly perform high-speed service data.
  • FEC encoding for high speed service data is achieved when FEC encoding.
  • Embodiment 11 describes a decoding apparatus, and FIG. 11 describes the structure of the eleventh embodiment, including:
  • the receiving unit 1101 is configured to receive at least two FEC-encoded low-speed service data
  • the decoding unit 1102 is configured to perform FEC decoding on each of the FEC-encoded low-speed service data received by the receiving unit 1101, to obtain a FEC-decoded low-speed.
  • the service unit 1 is configured to combine the FEC-decoded low-speed service data obtained by the decoding unit 1102 to obtain high-speed service data.
  • the decoding apparatus can receive at least two low-speed service data, so as to perform FEC decoding on each of the FEC-encoded low-speed service data, so that the existing device cannot directly encode the FEC.
  • FEC decoding is performed on high-speed service data, FEC decoding of FEC-encoded high-speed service data is realized.
  • Embodiment 12 describes a decoding apparatus
  • FIG. 12 depicts a structure of Embodiment 12, including:
  • the receiving unit 1201 is configured to receive the FEC-encoded high-speed service data
  • the distribution unit 1202 is configured to distribute the FEC-encoded high-speed service data received by the receiving unit 1201 into at least two FEC-encoded low-speed service data;
  • the decoding unit 1203 is configured to perform FEC decoding on each of the FEC-encoded low-speed service data distributed by the distribution unit 1202 to obtain the FEC-decoded low-speed service data, and the combining unit 1204 is configured to obtain the path obtained by the combined decoding unit 1203. FEC decoded low-speed service data, obtaining high-speed service data after FEC decoding.
  • the decoding apparatus in the embodiment can distribute the received high-speed service data into at least two low-speed service data, thereby performing FEC decoding on each of the FEC-encoded low-speed service data, so that the existing device cannot FEC decoding of FEC-encoded high-speed service data is realized when FEC decoding is performed directly on FEC-encoded high-speed service data.
  • Embodiment 13 describes a communication system including at least one of an encoding device and a decoding device provided by an embodiment of the present invention.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

■ ^艮文处理的方法和装置 本申请要求于 2009 年 4 月 11 日提交中国专利局、 申请号为 200910137559.8, 发明名称为 "编码方法及装置、 解码方法及装置、 通信系 统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 具体涉及编码方法及装置、解码方法及装置、 通信系统。 背景技术
光传送网 (OTN: Optical Transport Network )作为下一代传送网的核 心技术, 包括电层和光层的技术规范, 具备丰富的操作、 管理、 维护 (0AM: Operation, Administration、 Maintenance )功能,强大的串联连接监视(TCM: Tandem Connection Monitoring ) 能力和带夕卜前向误码纠错 ( FEC: Forward Error Correction) 能力, 能够实现大容量业务的灵活调度和管理, 日益成 为骨干传送网的主流技术。 同时随着百吉比特以太网 (100GE: 100 gigabit Ethernet )标准化进程的加快, 100GE通过 0TN 网络传送正成为业界讨论的 热点。 ITU- T SG15 正在讨论定义新的速率等级光通道数据单元 4 (0DU4: Optical Channel Data Unit- 4 ) /光通道传输单元 4 ( 0TU4: completely standardized Optical Channel Transport Unit- 4)来承载 100GE业务。
OTN体系采用了前向误码纠错(FEC: Forward Error Correction)对传 送网络中出现的数据误码进行纠正, 以实现更远的光传^巨离, 构建更高效 率的光传送网络。 现在并没有 0TN线路芯片能够实现 100G 0TU4数据的 FEC 编码和解码, 现有的一种对 1 OG 0TU2数据进行 FEC编码和解码的方法如下: 编码方法:通过并行数据总线将 10G 0TU2数据送到 FEC编码模块对 0TU2 数据进行 FEC编码, 再将经过 FEC编码的 0TU2数据进行扰码, 发送扰码后的 0TU2业务数据。
解码方法: 线路芯片先将 10G 0TU2数据进行解扰, 再对解扰后的 0TU2 数据进行 FEC解码纠错处理, 然后将解码纠错后的数据送到帧处理单元进行 进一步处理。
在对现有技术的研究中, 发明人发现: 由于现有的线路芯片 (如现场可 编程门阵列器件、 专用集成电路器件)在容量及速率上还达不到 100G , 因此 如果使用上述的编码方法和解码方法对 100G的高速业务数据进行处理,使用 现有的线路芯片不能实现。
发明内容
本发明实施例提供了编码方法及装置、 解码方法及装置、 通信系统, 使 用本发明实施例提供的技术方案, 可以使用现有的线路芯片对高速业务数据 进行 FEC编 /解码。
本发明实施例提供了一种编码方法, 包括:
将接收的高速业务数据分发成至少两路低速业务数据;
分别对各路所述低速业务数据进行前向误码纠错 FEC编码;
输出经 FEC编码的业务数据。
本发明实施例提供了一种解码方法, 包括:
接收至少两路经过 FEC编码的低速业务数据;
对各路所述经过 FEC编码的低速业务数据分别进行 FEC解码, 获得 经过 FEC解码的低速业务数据;
组合所述各路经过 FEC解码的低速业务数据, 获得高速业务数据。 本发明实施例提供了一种解码方法, 包括: 接收经过 FEC编码的高速业务数据;
将所述经过 FEC编码的高速业务数据分发成至少两路经过 FEC编码 的低速业务数据;
分别对各路所述经过 FEC编码的低速业务数据进行 FEC解码, 获得 经过 FEC解码的低速业务数据;
组合各路所述经过 FEC解码的低速业务数据获得经过 FEC解码的高 速业务数据。
本发明实施例提供了一种编码装置, 包括:
接收单元, 用于接收高速业务数据;
分发单元, 用于将所述接收单元接收的高速业务数据分发成至少两路 低速业务数据;
编码单元, 用于分别对所述分发单元分发的各路低速业务数据进行
FEC编码;
输出单元, 用于输出经所述编码单元进行 FEC编码的业务数据。 本发明实施例提供了一种解码装置, 包括:
接收单元, 用于接收至少两路经过 FEC编码的低速业务数据; 解码单元,用于分别对所述接收单元接收的各路经过 FEC编码的低速 业务数据进行 FEC解码, 获得经过 FEC解码的低速业务数据;
组合单元,用于组合所述解码单元获得的各路经过 FEC解码的低速业 务数据, 获得高速业务数据。
本发明实施例提供了一种解码装置, 包括:
接收单元, 用于接收经过 FEC编码的高速业务数据;
分发单元,用于将所述接收单元接收的经过 FEC编码的高速业务数据 分发成至少两路经过 FEC编码的低速业务数据; 解码单元,
业务数据进行 FEC解码, 获得经过 FEC解码的低速业务数据;
组合单元,用于组合所述解码单元获得的各路经过 FEC解码的低速业 务数据, 获得经过 FEC解码的高速业务数据。
本发明实施例提供了一种通信系统, 包括本发明实施例提供的编码装 置; 和 /或包括发明实施例提供的解码装置。
从本发明实施例提供的以上技术方案可以看出, 由于本发明实施例可 以将高速业务数据分发成至少两路低俗业务数据, 从而分别对各路低速业 务数据进行 FEC编码, 可以在现有的设备不能直接对高速业务数据进行 FEC编码时实现对高速业务数据的 FEC编码; 也可以分别至少两路经过 FEC编码的低速业务数据进行 FEC解码, 可以在现有的设备不能直接对 经过 FEC编码的高速业务数据进行 FEC解码时, 实现对经过 FEC编码的 高速业务数据的 FEC解码。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例中实施例一的流程示意图;
图 2为本发明实施例中实施例二的流程示意图;
图 3为本发明实施例中实施例三的流程示意图;
图 4为本发明实施例中实施例四的流程示意图;
图 5为本发明实施例中实施例五的流程示意图; 图 6为本发明实施例中实施例六的流程示意图;
图 7为本发明实施例中实施例七的流程示意图;
图 8为本发明实施例中实施例八的结构示意图;
图 9为本发明实施例中实施例九的结构示意图;
图 10为本发明实施例中实施例十的结构示意图;
图 11为本发明实施例中实施例十一的结构示意图;
图 12为本发明实施例中实施例十二的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
先介绍本发明实施例提供的编码方法实施例和解码方法实施例。
实施例一,实施例一描述的是编码方法,图 1描述了实施例一的流程, 包括:
101、 将接收的高速业务数据分发成至少两路低速业务数据; 接收的高速业务数据可以是 100G OTU4业务数据, 也可以是其他业 务数据, 如 100GE的以太网数据等, 该 100GE的以太网数据可以是通过 第五类双绞线承载的业务数据。
其中, 高速业务数据由高速业务数据帧组成, 在本发明的一个实施例 中, 将接收的高速业务数据分发成至少两路低速业务数据具体可以包括: 将接收的高速业务数据中的高速业务数据帧以高速业务数据帧为单位分 发成至少两路低速业务数据, 此时低速业务数据由高速业务数据帧组成。 在本发明的另一个实施例中, 将接收的高速业务数据分发成至少两路低速 业务数据具体可以包括: 将高速业务数据帧拆分成至少两个高速业务数据 帧的切片后分发成至少两路低速业务数据, 此时低速业务数据由高速业务 数据帧的切片组成; 具体地, 需要将高速业务数据分发到几路低速业务数 据, 就将高速业务数据帧拆分成几个高速业务数据帧的切片, 即每个高速 业务数据帧拆分成的切片的数量与低速业务数据的数量相同。 具体地, 在 高速业务数据是 100G OTU4数据时, 可以由 OTU4的成帧模块将接收的 高速业务数据分发成至少两路低速业务数据。
需要说明的是, 高速业务数据和低速业务数据并没有速率上的要求, 而是相对而言的; 以 OTN网络为例, 10G OTU2与 2.5G OTU1相比, 贝' J 10G OTU2是高速业务数据, 2.5G OTU1是低速业务数据;但是, 10G OTU2 与 100G OTU4相比, 则 10G OTU2是低速业务数据, 100G OTU4是高速 业务数据。
102、 分别对各路低速业务数据进行 FEC编码;
具体地, 可以采用 G.709 Annex A所述的 RS(255,239)编码方式、或也 可以采用 G.975.1 Appendix I所述的编码方式、 或采用其余的增强 FEC编 码方式对各路低速业务数据进行 FEC编码。
103、 输出经 FEC编码的业务数据。
在本发明的一个实施例中,可以分别各路经过 FEC编码的低速业务数 据进行扰码后直接输出,此时输出的是至少两路经过 FEC编码的低速业务 数据。在本发明的另一个实施例中,可以先合并各路经过 FEC编码的低速 业务数据, 获得经过 FEC编码的高速业务数据, 再对经过 FEC编码的高 速业务数据进行扰码后输出, 此时输出的是一路高速业务数据。
从上可知, 本实施例可以将高速业务数据分发成至少两路低速业务数 据,从而可以分别对各路低速业务数据进行 FEC编码, 因此可以在现有的 设备不能对高速业务数据直接进行 FEC编码时实现对高速业务数据的 FEC编码。
实施例二,实施例二描述的是解码方法,图 2描述了实施例二的流程, 包括:
201、 接收至少两路经过 FEC编码的低速业务数据;
202、 对各路经过 FEC编码的低速业务数据分别进行 FEC解码, 获得 经过 FEC解码的低速业务数据;
对低速业务数据进行 FEC解码采用的解码方式与对低速业务数据进 行 FEC编码的编码方式对应, 例如在低速业务数据是采用 G.709 Annex A 所述的 RS(255,239) 编码方式进行 FEC编码时,采用 G.709 Annex A所述 的 RS(255,239)解码方式对经过 FEC编码的低速业务数据进行 FEC解码。 在低速业务数据是采用 G.975.1 Appendix I所述的编码方式进行 FEC编码 时, 采用 G.975.1 Appendix I所述的解码方式对经过 FEC编码的低速业务 数据进行 FEC解码。 在低速业务数据是采用增强 FEC编码方式进行 FEC 编码时,采用增强 FEC解码方式对经过 FEC编码的低速业务数据进行 FEC 解码。
203、 组合各路经过 FEC解码的低速业务数据获得高速业务数据。 从上可知, 本实施例可以接收至少两路低速业务数据, 从而分别对各 路低速业务数据进行 FEC解码,因此可以在现有的设备不能直接对高速业 务数据进行 FEC解码时实现对高速业务数据的 FEC解码。
实施例三,实施例三描述的是解码方法,图 3描述了实施例三的流程, 包括:
301、 接收经过 FEC编码的高速业务数据;
302、 将经过 FEC编码的高速业务数据解扰后分发成至少两路经过 FEC编码的低速业务数据; 具体地, 可以根据编码端将高速业务数据分发成几路低速业务数据分 别进行 FEC编码, 确定将经过 FEC编码的高速业务数据分发成几路低速 业务数据分别进行 FEC解码。 例如, 在编码端将高速业务数据分发成 10 路低速业务数据进行 FEC编码时, 可以将经过 FEC编码的高速业务数据 分发成 10路经过 FEC编码的低速业务数据分别进行 FEC解码;在编码端 将高速业务数据分发成 20路低速业务数据分别进行 FEC编码时, 可以将 经过 FEC编码的高速业务数据分发成 20路经过 FEC编码低速业务数据分 别进行 FEC解码。
303、 分别对各路经过 FEC编码的低速业务数据进行 FEC解码, 获得 经过 FEC解码的低速业务数据;
304、组合各路经过 FEC解码的低速业务数据获得经过 FEC解码的高 速业务数据。
从上可知, 本实施例可以将接收的高速业务数据分发成至少两路低速 业务数据,从而分别对各路低速业务数据进行 FEC解码, 因此可以在现有 的设备不能直接对高速业务数据进行 FEC解码时实现对高速业务数据的 FEC解码。
实施例四, 实施例四描述了编码方法与解码方法, 实施例四描述的是 对 100G OTU4高速业务数据进行编码的流程, 本实施例中 100G OTU4高 速业务数据由 OTU4帧组成, 图 4描述了实施例四的流程, 包括:
401、 编码装置将由 OTU4帧组成的高速业务数据分发到 N路通道, 每个通道传送由 OTU4/N的切片组成的低速业务数据。 其中, N为大于 1 的整数, 例如在本发明的一个实施例中, N的取值为 10。
需要说明的是, 分发的虽然是 OTU4帧, 但是此时 OTU4帧的 FEC 开销字节为空, 即此时 OTU4帧仅具有 OTU4帧的结构。
402、 编码装置中各路通道中的 FEC编码单元对通道中由 OTU4/N的 切片组成的低速业务数据进行 FEC编码,获得由经过 FEC编码的 OTU4/N 的切片组成的低速业务数据。
本实施例中, FEC编码单元可以采用 G.709 Annex A描述的 RS ( 255, 239 ) 编码方式。
在该步骤中, OTU4/N的切片中为空的 FEC开销字节将填充上 FEC 开销字节。
403、 编码装置组合各路通道由经过 FEC编码的 OTU4/N的切片组成 的低速业务数据, 获得由经过 FEC编码的 OTU4帧组成的高速业务数据。
404、 编码装置对由经过 FEC编码的 OTU4帧组成的高速业务数据进 行扰码后输出。
具体可以由编码装置的多路虚通道( multichannel )单元对由经过 FEC 编码的 OTU4帧组成的高速业务数据进行扰码, 分发到 20路虚通道上输 出。
405、解码装置接收由经过 FEC编码的 OTU4帧组成的高速业务数据。 406、 解码装置对由经过 FEC编码的 OTU4帧组成的高速业务数据进 行解扰码处理。
具体可以由解码装置的 multichannel单元接收由经过 FEC编码的 OTU4帧组成的高速业务数据, 也可以由解码装置的 multichannel单元对 由经过 FEC编码的 OTU4帧组成的高速业务数据进行解扰码处理。
407、 解码装置将经过解扰码处理的由经过 FEC编码的 OTU4帧组成 的高速业务数据分发到 N路通道, 每个通道传送由经过 FEC编码的 OTU4/N的切片组成的低速业务数据。
408、 解码装置中 N路通道的 FEC解码单元对由经过 FEC编码的 OTU4/N的切片组成的低速业务数据进行 FEC解码, 获得由经过 FEC解 码的 OTU4/N的切片组成的低速业务数据。 本实施例中, FEC解码单元可以采用 G.709 Annex A描述的 RS ( 255, 239 ) 解码方式。
409、解码装置组合 N路通道中由经过 FEC解码的 OTU4/N的切片组 成的低速业务数据, 获得由经过 FEC解码的 OTU4帧组成的高速业务数 据。
从上可知, 本实施例编码装置可以将高速业务数据分发到 N路通道, 从而分别在 N路通道对低速业务数据进行 FEC编码, 因此可以在现有的 设备不能直接对高速业务数据进行 FEC编码时实现对高速业务数据的 FEC编码; 同时解码装置可以将接收的经过 FEC编码的高速业务数据分 发到至少两路通道,从而分别在至少两路通道对经过 FEC编码的低速业务 数据进行 FEC解码, 因此可以在现有的设备不能直接对经过 FEC编码的 高速业务数据进行 FEC解码时, 实现对经过 FEC编码的高速业务数据的 FEC解码。
实施例五, 实施例五描述了编码方法与解码方法, 实施例五描述的是 对 100G ODU4高速业务数据进行编码的流程, 本实施例中 100G ODU4 高速业务数据由 ODU4帧组成, 图 5描述了实施例五的流程, 包括:
501、 编码装置将由 ODU4帧组成的高速业务数据分发到 N路通道, 每个通道传送由 ODU4/N的切片组成的低速业务数据。 其中, N为大于 1 的整数, 例如在本发明的一个实施例中, N的取值为 10。
502、 编码装置中各路通道中的 FEC编码单元对通道中由 ODU4/N的 切片组成的低速业务数据进行 FEC编码,获得由经过 FEC编码的 OTU4/N 的切片组成的低速业务数据。
本实施例中, FEC编码单元可以采用 G.709 Annex A描述的 RS ( 255, 239 ) 编码方式。 对 ODU4/N的切片进行 FEC编码后, ODU4/N的切片增 加了 FEC开销字节构成 OTU4/N的切片。 503、 编码装置组合各路通道由经过 FEC编码的 OTU4/N的切片组成 的低速业务数据, 获得由经过 FEC编码的 OTU4帧组成的高速业务数据。
504、 编码装置对由经过 FEC编码的 OTU4帧组成的高速业务数据进 行扰码后输出。
具体可以由编码装置的 multichannel单元对经过 FEC编码的 OTU4帧 进行扰码后, 分发到 20路虚通道上输出。
505、解码装置接收由经过 FEC编码的 OTU4帧组成的高速业务数据。
506、 解码装置对由经过 FEC编码的 OTU4帧组成的高速业务数据进 行解扰码处理。
具体可以由解码装置的 multichannel单元接收由经过 FEC编码的
OTU4帧组成的高速业务数据, 也可以由解码装置的 multichannel单元对 由经过 FEC编码的 OTU4帧组成的高速业务数据进行解扰码处理。
507、 解码装置将经过解扰码处理的由经过 FEC编码的 OTU4帧组成 的高速业务数据分发到 N路通道, 每个通道传送由经过 FEC编码的 OTU4/N的切片组成的低速业务数据。
508、 解码装置中 N路通道的 FEC解码单元对由经过 FEC编码的 OTU4/N的切片组成的低速业务数据进行 FEC解码, 获得由经过 FEC解 码的 ODU4/N的切片组成的低速业务数据。
本实施例中, FEC解码单元可以采用 G.709 Annex A描述的 RS ( 255, 239 ) 解码方式。
509、解码装置组合 N路通道中由经过 FEC解码的 ODU4/N的切片组 成的低速业务数据, 获得由经过 FEC解码的 ODU4帧组成的高速业务数 据。
从上可知, 本实施例中编码装置可以将高速业务数据分发到 N路通 道, 从而分别在 N路通道对低速业务数据进行 FEC编码, 因此可以在现 有的设备不能直接对高速业务数据进行 FEC编码时实现对高速业务数据 的 FEC编码; 同时解码装置可以将接收的经过 FEC编码的高速业务数据 分发到至少两路通道,从而分别在至少两路通道对经过 FEC编码的低速业 务数据进行 FEC解码, 因此可以在现有的设备不能直接对经过 FEC编码 的高速业务数据进行 FEC解码时, 实现对经过 FEC编码的高速业务数据 的 FEC解码。
实施例六, 实施例六描述了编码方法与解码方法, 实施例六描述的是 对 100G OTU4高速业务数据进行编码的流程, 本实施例中 100G OTU4的 高速业务数据由 OTU4帧组成, 图 6描述了实施例六的流程, 包括:
601、编码装置的 multichannel单元将由 OTU4帧组成高速业务数据分 发到 20路虚通道, 每个虚通道传送由 OTU4/20的切片组成的低速业务数 据。
本发明的一个实施例中 OTU4帧结构如表 1所示。
表 1
Figure imgf000014_0001
具体地, 在本发明的一个实施例中, 按照 G.709 Amend3 Annex C所 述的方法将一个 OTU4帧分发到 20路虚通道可以按照如下流程:将 OTU4 帧按 16字节分块, 按从左到右, 从上到下的顺序, 将块循环分发到 20路 虚通道上, 分发后的一个 OTU4帧在 20路虚通道上的结构如表 2所示。
表 2
Figure imgf000014_0002
虚通道 1 17:32 16017: 16032 虚通道 18 289:304 16289: 16304 虚通道 19 305:320 16305: 16320 在本发明的一个实施例中, 在将一个 0TU4帧分发到 20路虚通道后, 紧接着对另一个 OTU4帧进行相应地分发时, 循环分发的起始通道顺序下 移一个通道, 例如在前一个 OTU4帧的 1至 16字节被分发到了虚通道 0, 将当前的 OTU4帧的 1至 16字节可以分发到虚通道 1, 具体可以如表 3 所示。 从而在将所有的 OTU4帧分发完成后, 在每个通道上看到的也是完 整的 OTU帧结构。
表 3
Figure imgf000015_0001
Figure imgf000015_0002
需要说明的是, 分发的虽然是 OTU4帧, 但是此时 OTU4帧的 FEC 开销字节为空, 即此时 OTU4帧仅具有 OTU4帧的结构。
602、编码装置中 20路虚通道中的 FEC编码单元对通道中由 OTU4/20 的切片组成的低速业务数据进行 FEC编码, 获得由经过 FEC编码的 OTU4/20的切片组成的低速业务数据。 在该步骤中, OTU4/20的切片中为空的 FEC开销字节将填充上 FEC 开销字节。
603、 编码装置的 20路虚通道输出由经过 FEC编码的 OTU4/20的切 片组成的低速业务数据。
604、 解码装置的 20路虚通道接收由经过 FEC编码的 OTU4/20的切 片组成的低速业务数据。
605、解码装置对由经过 FEC编码的 OTU4/20的切片组成的低速业务 数据进行解扰码处理。
具体可以由解码装置的 multichannel单元接收由经过 FEC编码的 OTU4/20的切片组成的低速业务数据, 也可以由解码装置的 multichannel 单元对由经过 FEC编码的 OTU4/20的切片组成的低速业务数据进行解扰 码处理。
606、 解码装置的 20路通道中的解码单元将经过解扰码处理的、 由经 过 FEC编码的 OTU4/20的切片组成的低速业务数据进行 FEC解码, 获得 由经过 FEC解码的 OTU4/20的切片组成的低速业务数据。
607、 解码装置组合 20路通道中由经过 FEC解码的 OTU4/20的切片 组成的低速业务数据, 获得由经过 FEC解码 OTU4帧组成的高速业务数 据。
从上可知, 本实施例中编码装置可以将高速业务数据分发到 N路通 道, 从而分别在 N路通道对低速业务数据进行 FEC编码, 因此可以在现 有的设备不能直接对高速业务数据进行 FEC编码时实现对高速业务数据 的 FEC编码; 同时解码装置可以接收至少两个通道上的经过 FEC编码的 低速业务数据,从而分别对至少两路通道的经过 FEC编码的低速业务数据 进行 FEC解码, 因此可以在现有的设备不能直接对经过 FEC编码的高速 业务数据进行 FEC解码时, 实现对经过 FEC编码的高速业务数据的 FEC 解码。
实施例七, 实施例七描述了编码方法与解码方法, 实施例七描述的是 对 100G ODU4高速业务数据进行编码的流程, 本实施例中 100G ODU4 的高速业务数据由 ODU4帧组成, 图 7描述了实施例七的流程, 包括: 701、 编码装置将 100G ODU4业务数据以帧为单位分发到 N路通道, 每个通道传送的低速业务数据由 ODU4帧组成。其中, N为大于 1的整数, 例如在本发明的一个实施例中, N的取值为 2。
702、 编码装置中各路通道中的 FEC编码单元对通道中由 ODU4帧组 成的低速业务数据的进行 FEC编码, 获得由经过 FEC编码的 OTU4帧组 成的低速业务数据。
本实施例中, FEC编码单元可以采用 G.709 Annex A描述的 RS ( 255, 239 )编码方式。 对 ODU4帧进行 FEC编码后, ODU4帧增加了 FEC开销 字节构成 OTU4帧。
703、 编码装置组合各路通道由经过 FEC编码的 OTU4帧组成的低速 业务数据, 获得由经过 FEC编码的 OTU4帧组成的高速业务数据。
704、 编码装置对由经过 FEC编码的 OTU4帧组成的高速业务数据进 行扰码后输出。
具体可以由编码装置的 multichannel单元对由经过 FEC编码的 OTU4 帧组成的高速业务数据进行扰码后, 分发到 20路虚通道上输出。
705、解码装置接收由经过 FEC编码的 OTU4帧组成的高速业务数据。
706、 解码装置对由经过 FEC编码的 OTU4帧组成的高速业务数据进 行解扰码处理。
具体可以由解码装置的 multichannel单元接收由经过 FEC编码的 OTU4帧组成的高速业务数据, 也可以由解码装置的 multichannel单元对 由经过 FEC编码的 OTU4帧组成的高速业务数据进行解扰码处理。 707、 解码装置将经过解扰码处理的、 由经过 FEC编码的 OTU4帧组 成的速业务数据以 OTU4帧为单位分发到 N路通道,每个通道传送的低速 业务数据由经过 FEC编码的 OTU4帧组成的低速业务数据。
708、解码装置中 N路通道的 FEC解码单元对由经过 FEC编码的 OTU4 帧组成的低速业务数据进行 FEC解码, 获得由经过 FEC解码的 ODU4帧 组成的低速业务数据。
本实施例中, FEC解码单元可以采用 G.709 Annex A描述的 RS ( 255, 239 ) 解码方式。
709、解码装置组合 N路通道中由经过 FEC解码的 ODU4帧组成的低 速业务数据, 获得由经过 FEC解码的 ODU4帧组成的高速业务数据。
从上可知, 本实施例可以编码装置将高速业务数据分发到 N路通道, 从而分别在 N路通道对低速业务数据进行 FEC编码, 因此可以在现有的 设备不能直接对高速业务数据进行 FEC编码时实现对高速业务数据的 FEC编码; 同时解码装置可以将接收的经过 FEC编码的高速业务数据分 发到至少两路通道, 从而分别在至少两路通道对低速业务数据进行 FEC 解码,因此可以在现有的设备不能直接对经过 FEC编码的高速业务数据进 行 FEC解码时, 实现对经过 FEC编码的高速业务数据的 FEC解码。
实施例八,实施例八描述的是编码装置,图 8描述了实施例八的结构, 包括:
接收单元 801, 用于接收高速业务数据;
分发单元 802, 用于将接收单元 801接收的高速业务数据分发成至少 两路低速业务数据;
编码单元 803, 用于分别对分发单元 802分发的各路低速业务数据进 行 FEC编码;
输出单元 804,用于输出经过编码单元 803进行 FEC编码的业务数据。 从上可知, 本实施例中编码装置可以将高速业务数据分发成至少两路 低速业务数据,从而分别对各路对低速业务数据进行 FEC编码, 因此可以 在现有的设备不能直接对高速业务数据进行 FEC编码时实现对高速业务 数据的 FEC编码。
实施例九,实施例九描述的是编码装置,图 9描述了实施例九的结构, 包括:
接收单元 901, 用于接收高速业务数据;
分发单元 902, 用于将接收单元 901接收的高速业务数据分发成至少 两路低速业务数据;
编码单元 903, 用于分别对分发单元 902分发的各路低速业务数据进 行 FEC编码;
输出单元 904, 用于输出经过编码单元 903进行 FEC编码的各路低速 业务数据。
在本发明的一个实施例中, 输出单元 904具体可以包括: 合并单元 9041,用于合并经过编码单元 903进行 FEC编码的各路低速业务数据,获 得经过 FEC编码的高速业务数据; 扰码输出单元 9042, 用于对合并单元 9041获得的经过 FEC编码的高速业务数据进行扰码后输出。
从上可知, 本实施例中编码装置可以将高速业务数据分发到至少两路 通道,从而在至少两路通道对低速业务数据进行 FEC编码, 因此可以在现 有的设备不能对高速业务数据进行 FEC编码时实现对高速业务数据的 FEC编码。
实施例十, 实施例十描述的是编码装置, 图 10描述了实施例十的结 构, 包括:
接收单元 1001, 用于接收高速业务数据;
分发单元 1002, 用于将接收单元 1001接收的高速业务数据分发成至 少两路低速业务数据;
编码单元 1003, 用于分别对分发单元 1002分发的各路低速业务数据 进行 FEC编码;
输出单元 1004, 用于输出经过编码单元 1003进行 FEC编码的各路低 速业务数据。
在本发明的一个实施例中, 输出单元 1004具体可以包括: 扰码输出 单元 10041, 用于分别对经过编码单元 1003进行 FEC编码的各路低速业 务数据进行扰码后直接输出。
从上可知, 本实施例中编码装置可以将高速业务数据分发成至少两路 低速业务数据,从而分别对各路低速业务数据进行 FEC编码, 因此可以在 现有的设备不能直接对高速业务数据进行 FEC编码时实现对高速业务数 据的 FEC编码。
实施例十一, 实施例十一描述的是解码装置, 图 11描述了实施例十 一的结构, 包括:
接收单元 1101, 用于接收至少两路经过 FEC编码的低速业务数据; 解码单元 1102, 用于分别对接收单元 1101接收的各路经过 FEC编码 的低速业务数据进行 FEC解码, 获得经过 FEC解码的低速业务数据; 组合单元 1103, 用于组合解码单元 1102获得的各路经过 FEC解码的 低速业务数据, 获得高速业务数据。
从上可知, 本实施例中解码装置可以接收至少两个路低速业务数据, 从而分别对各路经过 FEC编码的低速业务数据进行 FEC解码, 因此可以 在现有的设备不能直接对经过 FEC编码的高速业务数据进行 FEC解码时, 实现对经过 FEC编码的高速业务数据的 FEC解码。
实施例十二, 实施例十二描述的是解码装置, 图 12描述了实施例十 二的结构, 包括: 接收单元 1201, 用于接收经过 FEC编码的高速业务数据; 分发单元 1202, 用于将接收单元 1201接收的经过 FEC编码的高速业 务数据分发成至少两路经过 FEC编码的低速业务数据;
解码单元 1203, 用于分别对分发单元 1202分发的各路经过 FEC编码 的低速业务数据进行 FEC解码, 获得经过 FEC解码的低速业务数据; 组合单元 1204, 用于组合解码单元 1203获得的各路经过 FEC解码的 低速业务数据, 获得 FEC解码后的高速业务数据。
从上可知, 本实施例中解码装置可以将接收的高速业务数据分发成至 少两路低速业务数据,从而分别对各路经过 FEC编码的低速业务数据进行 FEC解码, 因此可以在现有的设备不能直接对经过 FEC编码的高速业务 数据进行 FEC解码时,实现对经过 FEC编码的高速业务数据的 FEC解码。
实施例十三, 实施例十三描述的是通信系统, 该通信系统包括本发明 实施例提供的编码装置和解码装置中的至少一个。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分 流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存 储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法 的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆 体( Read-Only Memory, ROM ) 或随机存储记忆体( Random Access Memory, RAM ) 等。
以上对本发明实施例所提供的编码方法及装置、 解码方法及装置、 通 信系统进行了详细介绍, 以上实施例的说明只是用于帮助理解本发明的方 法及其思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在 具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不 应理解为对本发明的限制。

Claims

权 利 要 求 书
1、 一种编码方法, 其特征在于, 包括:
将接收的高速业务数据分发成至少两路低速业务数据;
分别对各路所述低速业务数据进行前向误码纠错 FEC编码;
输出经 FEC编码的业务数据。
2、 如权利要求 1所述的编码方法, 其特征在于, 所述将接收的高速 业务数据分发成至少两路低速业务数据的步骤包括:
将接收的高速业务数据中的高速业务数据帧以高速业务数据帧为单 位分发成至少两路低速业务数据, 所述低速业务数据由高速业务数据帧组 成 或
将所述高速业务数据帧拆分成至少两个高速业务数据帧的切片后分 发成至少两路低速业务数据, 所述低速业务数据由高速业务数据帧的切片 组成。
3、如权利要求 1或 2所述的编码方法,其特征在于, 所述输出经 FEC 编码的业务数据的步骤包括:
合并各路所述经过 FEC编码的低速业务数据, 获得经过 FEC编码的 高速业务数据;
对所述经过 FEC编码的高速业务数据进行扰码后输出;
或所述输出经 FEC编码的业务数据的步骤包括:
分别对所述各路经过 FEC编码的低速业务数据进行扰码后直接输出。
4、 如权利要求 1或 2所述的编码方法, 其特征在于, 所述接收的高 速业务数据由 OTU4帧组成, 所述 OTU4帧的 FEC开销字节为空;
或所述接收的高速业务数据由 ODU4帧组成。
5、 如权利要求 4所述的编码方法, 其特征在于, 所述接收的高速业 务数据由 OTU4帧组成;
所述将接收的高速业务数据分发成至少两路低速业务数据的步骤包 括:
将所述 OTU4帧分发到 20路虚通道, 所述虚通道传输低速业务数据。
6、 如权利要求 4所述的编码方法, 其特征在于, 接收的所述高速业 务数据由 ODU4帧组成;
所述将接收的高速业务数据分发成至少两路低速业务数据的步骤包 括:
将接收的高速业务数据以巾贞为单位分发到两路通道, 所述通道传输低 速业务数据。
7、 一种解码方法, 其特征在于, 包括:
接收至少两路经过 FEC编码的低速业务数据;
对各路所述经过 FEC编码的低速业务数据分别进行 FEC解码, 获得 经过 FEC解码的低速业务数据;
组合所述各路经过 FEC解码的低速业务数据, 获得高速业务数据。
8、 一种解码方法, 其特征在于, 包括:
接收经过 FEC编码的高速业务数据;
将所述经过 FEC编码的高速业务数据分发成至少两路经过 FEC编码 的低速业务数据;
分别对各路所述经过 FEC编码的低速业务数据进行 FEC解码, 获得 经过 FEC解码的低速业务数据;
组合各路所述经过 FEC解码的低速业务数据获得经过 FEC解码的高 速业务数据。
9、 一种编码装置, 其特征在于, 包括: 接收单元, 用于接收高速业务数据;
分发单元, 用于将所述接收单元接收的高速业务数据分发成至少两路 低速业务数据;
编码单元, 用于分别对所述分发单元分发的各路低速业务数据进行 FEC编码;
输出单元, 用于输出经所述编码单元进行 FEC编码的业务数据。
10、如权利要求 9所述的编码装置,其特征在于, 所述输出单元包括: 合并单元,用于合并经所述编码单元进行 FEC编码的各路低速业务数 据, 获得经过 FEC编码的高速业务数据;
扰码输出单元,用于对所述合并单元获得的经过 FEC编码的高速业务 数据进行扰码后输出。
11、如权利要求 9所述的编码装置,其特征在于, 所述输出单元包括: 扰码输出单元,用于分别对经过所述编码单元进行 FEC编码的各路低 速业务数据进行扰码后直接输出。
12、 一种解码装置, 其特征在于, 包括:
接收单元, 用于接收至少两路经过 FEC编码的低速业务数据; 解码单元,用于分别对所述接收单元接收的各路经过 FEC编码的低速 业务数据进行 FEC解码, 获得经过 FEC解码的低速业务数据;
组合单元,用于组合所述解码单元获得的各路经过 FEC解码的低速业 务数据, 获得高速业务数据。
13、 一种解码装置, 其特征在于, 包括:
接收单元, 用于接收经过 FEC编码的高速业务数据;
分发单元,用于将所述接收单元接收的经过 FEC编码的高速业务数据 分发成至少两路经过 FEC编码的低速业务数据; 解码单元,
业务数据进行 FEC解码, 获得经过 FEC解码的低速业务数据;
组合单元,用于组合所述解码单元获得的各路经过 FEC解码的低速业 务数据, 获得经过 FEC解码的高速业务数据。
14、 一种通信系统, 其特征在于, 包括如权利要求 9至 11任一所述 的编码装置; 和 /或
包括如权利要求 12或 13所述的解码装置。
PCT/CN2009/075890 2009-05-11 2009-12-23 报文处理的方法和装置 WO2010130137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101375598A CN101888281A (zh) 2009-05-11 2009-05-11 编码方法及装置、解码方法及装置、通信系统
CN200910137559.8 2009-05-11

Publications (1)

Publication Number Publication Date
WO2010130137A1 true WO2010130137A1 (zh) 2010-11-18

Family

ID=43074020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075890 WO2010130137A1 (zh) 2009-05-11 2009-12-23 报文处理的方法和装置

Country Status (2)

Country Link
CN (1) CN101888281A (zh)
WO (1) WO2010130137A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071640A1 (zh) * 2012-11-12 2014-05-15 华为技术有限公司 以太数据处理的方法和装置
WO2014106319A1 (zh) * 2013-01-04 2014-07-10 华为技术有限公司 以太网中处理数据的方法、物理层芯片和以太网设备
WO2014183299A1 (zh) * 2013-05-17 2014-11-20 华为技术有限公司 一种fec编解码的数据处理方法和相关装置
ES2669250T3 (es) * 2014-02-17 2018-05-24 Huawei Technologies Co., Ltd. Método, aparato y sistema para transmitir señales en una red de transmisión óptima

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147893A (zh) * 1994-05-11 1997-04-16 诺基亚电信公司 在tdma移动通信系统中进行高速数据传输的方法和装置
CN1479979A (zh) * 2000-11-01 2004-03-03 阿克泰利斯网络有限公司 铜缆设备上的高速接入系统
CN1946054A (zh) * 2006-09-30 2007-04-11 华为技术有限公司 一种高速数据流的传输方法、装置及数据交换设备
CN101035143A (zh) * 2006-03-09 2007-09-12 杭州华为三康技术有限公司 一种物理层芯片、传输信号的方法及交换机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162676B2 (en) * 2003-09-22 2007-01-09 Adtran, Inc. Data communication system and method for selectively implementing forward error correction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147893A (zh) * 1994-05-11 1997-04-16 诺基亚电信公司 在tdma移动通信系统中进行高速数据传输的方法和装置
CN1479979A (zh) * 2000-11-01 2004-03-03 阿克泰利斯网络有限公司 铜缆设备上的高速接入系统
CN101035143A (zh) * 2006-03-09 2007-09-12 杭州华为三康技术有限公司 一种物理层芯片、传输信号的方法及交换机
CN1946054A (zh) * 2006-09-30 2007-04-11 华为技术有限公司 一种高速数据流的传输方法、装置及数据交换设备

Also Published As

Publication number Publication date
CN101888281A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
US10567352B2 (en) Flexible ethernet encryption systems and methods
US10425177B2 (en) Flexible ethernet switching systems and methods
JP7122455B2 (ja) トラフィック伝送方法、装置及びコンピュータ記憶媒体
US10193688B2 (en) Flexible Ethernet encryption systems and methods
EP2975858B1 (en) Method for processing data in the ethernet, physical layer chip and ethernet device
EP3787208A1 (en) Data transmission method, transmitter, and receiver
US9461941B2 (en) 128 Gigabit fibre channel physical architecture
CN108631908B (zh) 使用FlexE承载信号帧的方法、FlexE信号帧还原的方法及装置
US11277217B2 (en) Flexible Ethernet switching systems and methods
US11477549B2 (en) Transmission network system, data switching and transmission method, apparatus and equipment
EP3909209B1 (en) Ethernet signal format using 256b/257b block encoding
WO2010091604A1 (zh) 客户信号映射和解映射的实现方法及装置
WO2019090696A1 (zh) 光传输单元信号的传输方法和装置
CN100568841C (zh) 一种以太网业务的汇聚装置及方法
WO2010130137A1 (zh) 报文处理的方法和装置
CN109698728A (zh) Interlaken接口与FlexE IMP的对接方法、对接设备及存储介质
US10833710B2 (en) Bandwidth efficient FEC scheme supporting uneven levels of protection
US8239738B2 (en) Transparent in-band forward error correction for signal conditioning-encoded signals
EP2077637B1 (en) System and method for protecting payload information in radio transmission
WO2016101555A1 (zh) 一种交叉调度方法及其装置、存储介质
US8279891B2 (en) Techniques for ethernet optical reach improvement
CN113853014A (zh) 信息传输方法、装置、相关设备及存储介质
WO2019100725A1 (zh) 传送、接收子速率信号方法及装置、设备
KR20110127077A (ko) 광 전달 망에서 패킷 전송 방법 및 장치
WO2019061406A1 (zh) 一种业务数据发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844548

Country of ref document: EP

Kind code of ref document: A1