도 1은 상온 (25℃)과 임계온도(critical temperature)에서 리간드의 유무에 따른 FRET 바이오센서의 구조 변화와 FRET 효율의 변화, 그로 인한 형광단백질들의 발광량 차이를 나타낸 모식도이다.1 is a schematic diagram showing the structural change and FRET efficiency of the FRET biosensor according to the presence or absence of a ligand at room temperature (25 ℃) and critical temperature, resulting in the difference in the amount of light emission of fluorescent proteins.
도 2는 온도에 의한 말토오스 FRET 바이오센서의 ratio 값과 Δratio의 변화를 나타낸 그래프이다. Figure 2 is a graph showing the change in ratio and Δratio of maltose FRET biosensor by temperature.
도 3은 온도에 의한 글루코스 FRET 바이오센서의 ratio 값과 Δratio의 변화를 나타낸 그래프이다. 3 is a graph showing the change in ratio and Δratio of the glucose FRET biosensor by temperature.
도 4는 온도에 의한 알로오스 FRET 바이오센서의 ratio 값과 Δratio의 변화를 나타낸 그래프이다. Figure 4 is a graph showing the change in ratio and Δratio of the allose FRET biosensor by temperature.
도 5는 온도에 의한 아라비노오스 FRET 바이오센서의 ratio 값과 Δratio의 변화를 나타낸 그래프이다.5 is a graph showing the ratio value and Δratio of the arabinose FRET biosensor with temperature.
도 6은 25℃와 Δratio 값이 가장 큰 임계온도인 54℃에서 리간드의 농도별로 측정한 말토오스 FRET 바이오센서의 적정곡선이고, 상단부의 스펙트럼은 25℃와 54℃에서 각각 측정한 말토오스 FRET 바이오센서의 형광 스펙트럼이다.FIG. 6 is a titration curve of maltose FRET biosensor measured by ligand concentration at a critical temperature of 25 ° C. and 54 ° C., the maximum temperature of Δratio, and a spectrum of the upper end of the maltose FRET biosensor measured at 25 ° C. and 54 ° C., respectively. Fluorescence spectrum.
도 7은 25℃와 Δratio 값이 가장 큰 임계온도인 50℃에서 리간드의 농도별로 측정한 글루코스 FRET 바이오센서의 적정곡선이고, 상단부의 스펙트럼은 25℃와 50℃에서 각각 측정한 글루코스 FRET 바이오센서의 형광 스펙트럼이다.7 is a titration curve of a glucose FRET biosensor measured by ligand concentration at a temperature of 25 ° C. and a critical temperature of 50 ° C. having the largest Δratio value, and a spectrum of the upper end of the glucose FRET biosensor measured at 25 ° C. and 50 ° C., respectively. Fluorescence spectrum.
도 8은 25℃와 Δratio 값이 가장 큰 임계온도인 49℃에서 리간드의 농도별로 측정한 알로오스 FRET 바이오센서의 적정곡선이고, 상단부의 스펙트럼은 25℃와 49℃에서 각각 측정한 알로오스 FRET 바이오센서의 형광 스펙트럼이다.FIG. 8 is a titration curve of an alloose FRET biosensor measured by ligand concentration at a critical temperature of 25 ° C. and a Δratio value of 49 ° C., and the spectrum of the upper part is measured at 25 ° C. and 49 ° C., respectively. The fluorescence spectrum of the sensor.
도 9는 25℃와 Δratio 값이 가장 큰 임계온도인 49℃에서 리간드의 농도별로 측정한 아라비노오스 FRET 바이오센서의 적정곡선이다. 삽입 그림은 25℃와 49℃에서 각각 측정한 아라비노오스 FRET 바이오센서의 형광 스펙트럼이다.FIG. 9 is a titration curve of an arabinose FRET biosensor measured by ligand concentration at 25 ° C. and 49 ° C., the critical temperature of which Δratio is the largest. Inset shows fluorescence spectra of arabinose FRET biosensors measured at 25 ° C and 49 ° C, respectively.
도 10은 다양한 종류의 당류들을 대상으로 말토오스 FRET 바이오센서의 특이성을 조사한 그래프이다.10 is a graph illustrating the specificity of the maltose FRET biosensor for various kinds of sugars.
도 11은 다양한 종류의 당류들을 대상으로 글루코스 FRET 바이오센서의 특이성을 조사한 그래프이다.11 is a graph illustrating the specificity of the glucose FRET biosensor for various kinds of sugars.
도 12는 다양한 종류의 당류들을 대상으로 알로오스 FRET 바이오센서의 특이성을 조사한 그래프이다.12 is a graph illustrating the specificity of the allose FRET biosensor for various types of sugars.
도 13은 다양한 종류의 당류들을 대상으로 아라비노오스 FRET 바이오센서의 특이성을 조사한 그래프이다.FIG. 13 is a graph illustrating the specificity of an arabinose FRET biosensor for various kinds of sugars.
발명의 상세한 설명 및 구체적인 구현예 Detailed Description and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다. Definitions of main terms used in the detailed description of the present invention are as follows.
본원에서 "FRET(fluorescence resonance energy transfer)"이란 서로 다른 발광 파장대의 두 형광물질 사이에서 발생하는 비방사성 (non-radiative) 에너지 전이현상으로, 여기(excitation)된 상태의 형광공여체(donor)의 여기 준위 에너지가 형광수여체(acceptor)로 전달되어 형광수여체로부터 발광 (emission)이 관찰되거나, 형광공여체의 형광감소(quenching)가 관찰되는 현상이다(Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed., New York:Plenum Press, 1999). As used herein, "fluorescence resonance energy transfer" (FRET) refers to a non-radiative energy transfer phenomenon occurring between two fluorescent materials in different emission wavelengths, and excitation of a fluorescent donor in an excited state. Level energy is transferred to the fluorescence receptor (emission), the emission (emission) is observed from the fluorescence receptor, or fluorescence (quenching) of the fluorescence donor is observed (Lakowicz, JR Principles of Fluorescence Spectroscopy, 2nd ed., New York: Plenum Press, 1999).
본원에서 "형광공여체(fluorescence donor)"란 FRET 현상에서 공여체(donor)로 작용하는 형광물질을 의미하고, "형광수여체(fluorescence acceptor)"란 FRET 현상에서 수여체(acceptor)로 작용하는 형광물질을 의미한다. As used herein, "fluorescence donor" refers to a fluorescent material that acts as a donor in the FRET phenomenon, and "fluorescence acceptor" refers to a fluorescent material that acts as an acceptor in the FRET phenomenon. Means.
본원에서 "리간드 결합단백질(ligand-binding protein)"이란 리간드의 결합에 의하여 구조적 변화 (conformational change)를 일으키는 단백질들의 집합체를 의미하며, 대장균 유래의 세포막간 결합단백질 (periplasmic binding protein, PBP)을 포함한다 (de Wolf et al., Pharmacol Rev., 52:207, 2000).As used herein, the term "ligand-binding protein" refers to a collection of proteins that cause a conformational change by binding a ligand, and includes an E. coli-derived interplasmic binding protein (PBP). (De Wolf et al., Pharmacol Rev., 52: 207, 2000).
본원에서 "리간드(ligand)"란 리간드 결합단백질에 결합하여 구조적인 변화를 일으키는 분자로, 당, 아미노산, 단백질, 지질, 유기산, 금속 또는 금속이온, 산화물, 수산화물 또는 그 컨쥬게이트(conjugates), 무기 이온, 아민 또는 폴리아민 및 비타민 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.As used herein, a "ligand" is a molecule that binds to a ligand binding protein and causes structural changes, such as sugars, amino acids, proteins, lipids, organic acids, metals or metal ions, oxides, hydroxides or conjugates thereof, inorganic It may be any one of ions, amines or polyamines and vitamins, but is not limited thereto.
본원에서 "시료(sample)"란, 관심있는 리간드를 함유하거나 함유하고 있는 것으로 추정되어 분석이 행해질 조성물을 의미하며, 세포, 물, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 수집된 것임을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. 이때, 상기 동식물은 인체를 포함한다. "Sample" as used herein means a composition that contains or is believed to contain the ligand of interest and will be assayed, and may be any of cells, water, soil, air, food, waste, flora and fauna and flora and fauna. It may be characterized by being collected above, but is not limited thereto. At this time, the flora and fauna includes a human body.
본원에서 "임계온도(critical temperature)"란, FRET 바이오센서의 리간드 결합단백질의 구조풀림(unfolding)이 리간드의 존재 유·무에 의해 조절되어 FRET 바이오센서의 검출능 및 측정능이 향상되는 온도구간, 즉 리간드 결합단백질에 리간드의 결합 유무에 따른 FRET 비율(ratio)의 변화가 가장 큰 온도구간을 말한다. 본 발명의 실시예 3 및 4에서 확인되듯이 PBP로 구성된 FRET 바이오센서의 경우 49~54℃의 온도구간이 검출능 및 측정능이 향상되는 "임계온도"라 하겠다.As used herein, the term “critical temperature” refers to a temperature range in which unfolding of the ligand binding protein of the FRET biosensor is controlled by the presence or absence of a ligand to improve detection and measurement capability of the FRET biosensor. That is, the temperature range where the change of FRET ratio according to the binding of ligand to ligand binding protein is greatest. As confirmed in Examples 3 and 4 of the present invention, in the case of the FRET biosensor composed of PBP, a temperature section of 49 to 54 ° C. will be referred to as “critical temperature” in which detection and measurement performance are improved.
본 발명은 일 관점에서, 형광공여체 및 형광수여체를 포함하는 신호발생부와 상기 형광공여체 및 형광수여체를 연결하는 리간드 결합단백질을 포함하는 감지부를 포함하는 FRET 바이오센서를 이용한 리간드의 검출방법에 있어서, 가역적 구조풀림이 나타나며 리간드가 상기 리간드 결합단백질에 결합함에 따른 FRET 비율(ratio)의 변화가 가장 큰 온도구간인 임계온도에서 리간드를 함유하는 시료와 접촉시키는 것을 특징으로 하는 리간드의 검출방법에 관한 것이다. In one aspect, the present invention provides a method for detecting a ligand using a FRET biosensor comprising a signal generator including a fluorescent donor and a fluorescent acceptor, and a detector including a ligand binding protein connecting the fluorescent donor and the fluorescent acceptor. In the method for detecting a ligand, the reversible structural loosening occurs, and the ligand is contacted with a sample containing the ligand at a critical temperature at which the change in the FRET ratio as the ligand binds to the ligand binding protein is the greatest. It is about.
시료 중의 리간드의 검출은, 형광공여체 및 형광수여체의 발광량을 형광분석장비 등으로 측정함으로써 수행되며, 형광분석장비로는 필터방식 및 모노크롬 방식의 형광분광기 등을 이용할 수 있다. 이때, 시료 중 리간드가 존재하는 경우 상기 형광공여체와 형광수여체의 발광량 변화가 감지되는바, 이로써 리간드를 검출할 수 있게 된다. Detection of the ligand in the sample is carried out by measuring the amount of luminescence of the fluorescent donor and the fluorescent acceptor with a fluorescence analyzer, etc., a fluorescence spectrometer of a filter method and a monochrome type may be used as the fluorescence analyzer. In this case, when a ligand is present in the sample, a change in the emission amount of the fluorescent donor and the fluorescent acceptor is detected, thereby allowing the ligand to be detected.
본 발명은 다른 관점에서, 다음의 단계를 포함하는, 형광공여체 및 형광수여체를 포함하는 신호발생부와 상기 형광공여체 및 형광수여체를 연결하는 리간드 결합단백질을 포함하는 감지부를 포함하는 FRET 바이오센서를 이용한 리간드 농도의 측정방법에 관한 것이다:In another aspect, the present invention, FRET biosensor comprising a signal generator comprising a fluorescent donor and a fluorescent receptor and a sensing unit comprising a ligand binding protein connecting the fluorescent donor and the fluorescent receptor, including the following steps It relates to a method of measuring ligand concentration using:
(a) 가역적 구조풀림이 나타나며 리간드가 상기 리간드 결합단백질에 결합함에 따른 FRET 비율(ratio)의 변화가 가장 큰 온도구간인 임계온도에서, 상기 FRET 바이오센서를 리간드를 함유하는 시료와 접촉시키는 단계; 및 (a) contacting the FRET biosensor with a sample containing a ligand at a critical temperature at which a reversible disorganization occurs and the change in FRET ratio as the ligand binds to the ligand binding protein is at a temperature interval where the change is greatest; And
(b) 상기 형광 공여체와 형광 수여체의 발광량 비율의 변화를 측정하여 리간드의 농도를 측정하는 단계.(b) measuring the concentration of the ligand by measuring the change in the ratio of the emission amount of the fluorescent donor and the fluorescent acceptor.
상기 형광공여체 및 형광수여체의 발광량은 형광분석장비 등으로 측정되며, 리간드의 농도 변화가 발생하는 경우, 상기 두 형광공여체와 형광수여체의 발광량에 변화가 발생하는바, 이에 본 발명은 리간드의 농도 변화 측정을 위해 이용될 수 있다. The emission amount of the fluorescent donor and the fluorescent acceptor is measured by a fluorescence spectrometer or the like, and when a change in the concentration of the ligand occurs, a change occurs in the emission amounts of the two fluorescent donors and the fluorescent acceptor. It can be used for measuring concentration change.
본 발명에 있어서, FRET 바이오센서를 구성하는 융합단백질은 신호발생부로 형광공여체 및 형광수여체를 포함하고, 감지부로 리간드 결합단백질을 포함하는 형태로서, 상기 형광공여체와 형광수여체는 리간드 결합단백질의 양 말단에 결합될 수 있다. 이때, 형광공여체 또는 형광수여체는 하나 이상의 링커를 이용하여 상기 리간드 결합단백질에 연결될 수 있다. In the present invention, the fusion protein constituting the FRET biosensor comprises a fluorescent donor and a fluorescent acceptor as a signal generating portion, and a ligand binding protein as a sensing portion, wherein the fluorescent donor and the fluorescent acceptor are formed of a ligand binding protein. May be bonded at both ends. In this case, the fluorescent donor or the fluorescent acceptor may be linked to the ligand binding protein using one or more linkers.
상기 리간드 결합단백질은 바람직하게는 본 발명의 실시예에서 사용된 MBP(maltose-binding protein), ALBP(allose-binding protein), ARBP(arabinose-binding protein) 및 GGBP(galactose/glucose-binding protein) 등 대장균 유래의 PBP인 것을 특징으로 할 수 있으나, 리간드의 결합에 의하여 구조적 변화(conformational change)를 일으키는 리간드 결합단백질이라면 이에 한정되지 않고 본 발명에 따른 방법 및 센서로 제공될 수 있음은 자명하다. The ligand binding protein is preferably a maltose-binding protein (MBP), an all-binding protein (ALBP), an arabine-binding protein (ARBP), a galactose / glucose-binding protein (GBP), or the like used in the embodiments of the present invention. It may be characterized in that the E. coli-derived PBP, it is obvious that the ligand binding protein causing a structural change (conformational change) by the binding of the ligand can be provided by the method and sensor according to the present invention.
아울러, 상기 바이오센서의 신호발생부로 사용되는 형광공여체 및 형광수여체의 구성은, 형광공여체의 발광스펙트럼과 형광수여체의 흡광스펙트럼이 서로 중첩되어 FRET 또는 형광감소를 유발할 수 있는 것이라면 어느 것이든 무방하며, 이에 상기 형광공여체로서 다양한 파장의 형광단백질(fluorescent protein)들과 형광 안료(fluorescent dye), 생체발광 단백질(bioluminescent protein) 및 양자점(quantum dot) 등을 이용할 수 있으며, 상기 형광수여체로 상기 형광공여체와 파장이 상이한 형광단백질, 형광 안료 및 양자점 등을 사용할 수 있다. 또는 형광수여체로서 상기 형광공여체의 형광세기를 감소시키는 소광체(quencher)들과 금나노입자(Au-nano particle) 등을 사용할 수 있다. 다만, 이 중에서도 FRET 바이오센서를 구성하는 경우 형광공여체와 형광수여체의 흡광계수(extinction coefficient)와 양자효율(quantum efficiency), 광안정성(photostability)과 이용의 편의성 등을 고려하여 형광 단백질들인 ECFP(enhanced cyan fluorescent protein)와 EYFP(enhanced yellow fluorescent protein)를 사용함이 바람직하다. In addition, the configuration of the fluorescent donor and the fluorescent acceptor used as the signal generator of the biosensor may be any one so long as the emission spectrum of the fluorescent donor and the absorption spectrum of the fluorescent donor overlap each other and cause FRET or fluorescence reduction. As the fluorescent donor, fluorescent proteins, fluorescent pigments, bioluminescent proteins, quantum dots, and the like of various wavelengths may be used as the fluorescent donor, and the fluorescence may be used as the fluorescent acceptor. Fluorescent proteins, fluorescent pigments, quantum dots, etc., which differ in wavelength from the donor, can be used. Alternatively, as fluorescent acceptors, quenchers and Au-nano particles that reduce the fluorescence intensity of the fluorescent donor may be used. However, among the FRET biosensors, ECFP (fluorescent proteins) are considered in consideration of the extinction coefficient, quantum efficiency, photostability and ease of use of the fluorescent donor and the fluorescent acceptor. It is preferable to use enhanced cyan fluorescent protein) and enhanced yellow fluorescent protein (EYFP).
본 발명에 따른 리간드의 검출 및 농도 측정방법은 형광의 광학적 특성인 "FRET"를 이용하며, 그 원리는 도 1에 나타나 있다. FRET은 일반적으로 형광공여체로부터 방출되는 파장이 형광수여체의 흡광스펙트럼과 겹치며, 광자(photon)의 출현 없이 발생하기 때문에 공명에너지전이라 하고, 이는 형광공여체와 형광수여체 사이의 장거리 쌍극자 상호작용에 의한 결과이다. FRET의 에너지전이 효율은 형광공여체의 발광스펙트럼과 형광수여체의 흡광스펙트럼이 겹치는 범위와 형광공여체의 양자효율, 형광공여체와 형광수여체의 전이쌍극자들 (transition dipoles)의 상대적 방향(relative orientation), 그리고 형광공여체와 형광수여체 사이의 거리에 따라 달라진다. 따라서 FRET의 에너지전이 효율은 형광공여체와 형광수여체의 거리와 상대적 방향에 따라 다르게 나타나는데, Forster의 수식에 따르면 다음과 같이 표현된다.Ligand detection and concentration measurement method according to the present invention uses the optical characteristic of fluorescence "FRET", the principle is shown in FIG. FRET is commonly referred to as resonance energy transfer because the wavelength emitted from the fluorescent donor overlaps with the absorption spectrum of the fluorescent acceptor and occurs without the appearance of photons, which is responsible for the long-range dipole interaction between the fluorescent donor and the fluorescent acceptor. Result. The energy transfer efficiency of FRET is defined by the overlap between the emission spectrum of the fluorescent donor and the absorption spectrum of the fluorescent donor, the quantum efficiency of the fluorescent donor, the relative orientation of the transition dipoles of the fluorescent donor and the fluorescent acceptor, And depends on the distance between the fluorescent donor and the fluorescent acceptor. Therefore, the energy transfer efficiency of FRET is different depending on the distance and relative direction of the fluorescent donor and the fluorescent acceptor. According to Forster's equation, it is expressed as follows.
E=R0
6/(R6+R0
6) [수식 1]E = R 0 6 / (R 6 + R 0 6 ) [Equation 1]
상기의 수식에서 E는 FRET 효율을 나타내며, R은 형광공여체와 형광수여체 사이의 거리로서 형광 물질에 따라 차이는 있지만 통상 2-9 nm 이내로 정의된다. 또한 R0는 FRET 효율이 50%가 되는 형광공여체와 형광수여체 사이의 거리를 말하며, 일반적으로 Forster distance 또는 Forster radius로 불려진다. R0는 다음의 수식으로 표현된다.In the above formula, E represents FRET efficiency, and R is a distance between the fluorescent donor and the fluorescent acceptor, which is usually defined to be within 2-9 nm although there are differences depending on the fluorescent material. In addition, R 0 refers to the distance between the fluorescent donor and the fluorescent acceptor for which the FRET efficiency is 50%, commonly referred to as a Forster distance or Forster radius. R 0 is represented by the following formula.
R0=0.211[k
2n-4
Q
D
J(λ)]1/6 (in Å) [수식 2]R 0 = 0.211 [ k 2 n -4 Q D J (λ)] 1/6 (in Å) [Equation 2]
상기의 수식에서 k
2는 방향계수 (orientation factor)로 통상 2/3로 계산하며, 형광공여체 발광과 형광수여체 흡광의 상대적 방향에 따라 0~4 범위의 값을 갖는다. n은 매질의 굴절율로 통상 25℃의 물은 ~1.334이며, Q
D 는 형광공여체의 양자효율이다. J(λ)는 형광공여체의 발광과 형광수여체의 흡광스펙트럼상의 겹침(overlap) 정도로 M-1cm-1nm4의 단위 값을 갖는다 (Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed., New York:Plenum Press, 1999; Patterson et al., Anal. Biochem. 284: 438, 2000; Patterson et al., J. of Cell Sci. 114: 837, 2001).In the above formula, k 2 is usually calculated as 2/3 as an orientation factor, and has a value ranging from 0 to 4 depending on the relative direction of fluorescence donor emission and fluorescence absorption. n is the refractive index of the medium, and water at 25 ° C. is ˜1.334, and Q D is the quantum efficiency of the fluorescent donor. J (λ) has a unit value of M −1 cm −1 nm 4 to the extent of overlap of the luminescence of the fluorescence donor and the absorption spectrum of the fluorescence acceptor (Lakowicz, JR Principles of Fluorescence Spectroscopy, 2nd ed., New York). Plenum Press, 1999; Patterson et al., Anal. Biochem. 284: 438, 2000; Patterson et al., J. of Cell Sci. 114: 837, 2001).
이에 상기에서 설명한 FRET의 원리를 이용하여 본 발명자들은 대한민국 등록특허 10-0739529호(2007. 7. 29)와 미국등록특허 US 7432353호(2008. 10. 7)에서 FRET의 형광공여체와 형광수여체로 작용하는 형광단백질들인 ECFP (enhanced cyan fluorescent protein)와 EYFP (enhanced cyan fluorescent protein)를 리간드 결합단백질인 PBP의 양 말단에 융합시켜 FRET 바이오센서를 구성하였고, 이를 이용하여 각 센서에 결합 가능한 리간드인 알로오스와 아라비노오스, 리보오스, 말토오스를 정량적으로 검출할 수 있음을 보인 바 있다. Therefore, using the above-described principle of FRET, the inventors of the present invention used FRET as a fluorescent donor and a fluorescent acceptor in Korean Patent No. 10-0739529 (July 29, 2007) and US Patent No. 7432353 (October 7, 2008). FRET biosensors were constructed by fusing the fluorescence proteins ECFP (enhanced cyan fluorescent protein) and EYFP (enhanced cyan fluorescent protein) to both ends of ligand-binding protein PBP. It has been shown that quantitatively detects oss, arabinose, ribose, and maltose.
상기 FRET 바이오센서는 ECFP-PBP-EYFP가 하나의 폴리펩티드로 구성되어 거대한 융합단백질로 발현되는바, PBP들의 대략적인 크기가 3×4×6.5 nm (Spurlino et al., J. Biol. Chem., 266: 5202, 1991)인 것을 고려할 때 ECFP와 EYFP 사이의 거리가 대략 5~6 nm정도에 위치하게 되므로 FRET의 발생이 가능한 거리가 된다. 따라서, 436 nm로 ECFP를 여기 시키면 ECFP의 여기 준위 에너지가 EYFP로 전달되어 ECFP와 EYFP의 발광을 동시에 관찰할 수 있다 (도 1참조). 상기 FRET 바이오센서의 리간드 결합부위에 당이 결합하게 되면 PBP의 양 말단에 융합된 ECFP와 EYFP의 거리와 상대적 방향이 변하게 되고, 결과적으로 FRET 효율의 차이가 발생하기 때문에 두 형광단백질들의 발광량 비율이 달라지게 된다. 따라서 두 형광단백질의 발광량 변화를 측정하는 원리로 리간드의 감지가 가능한데, 발광량 비율의 변화는 당 농도에 비례하므로 정량적인 당 농도의 측정이 가능하다. In the FRET biosensor, ECFP-PBP-EYFP is composed of one polypeptide and expressed as a huge fusion protein. The approximate size of PBPs is 3 × 4 × 6.5 nm (Spurlino et al., J. Biol. Chem., 266: 5202, 1991), the distance between the ECFP and the EYFP is approximately 5-6 nm, making it possible to generate FRET. Therefore, when the ECFP is excited at 436 nm, the excitation level energy of the ECFP is transferred to the EYFP so that the emission of the ECFP and the EYFP can be observed simultaneously (see FIG. 1). When the sugar binds to the ligand binding site of the FRET biosensor, the distance and relative direction of ECFP and EYFP fused at both ends of the PBP change, and as a result, a difference in FRET efficiency occurs, so that the ratio of the emission amount of the two fluorescent proteins is increased. Will be different. Therefore, ligands can be detected by measuring the change in the amount of emitted light of two fluorescent proteins. Since the change in the amount of emitted light is proportional to the sugar concentration, quantitative sugar concentration can be measured.
뿐만 아니라, 상기의 [수학식 2]의 계산에 따르면 ECFP와 EYFP는 대략 5 nm정도의 R0값을 가지므로 (Patterson et al., Anal. Biochem., 284: 438, 2000) ECFP와 EYFP 사이의 거리가 대략 5-6 nm정도라고 가정한다면, 거리 또는 상대적 방향의 작은 변화가 FRET 효율에는 큰 차이를 만들어 낼 수 있다. 따라서, 본 발명자들은 리간드 결합 유무에 따른 FRET 효율의 차이를 극대화할 수 있다면 바이오센서의 검출능력이 크게 향상될 것으로 예상하였다. 이에 본 발명에서는 검출능력을 극대화하기 위하여 연구한 결과, 대장균 유래의 PBP들이 온도 상승에 따른 가역적인 구조풀림 현상을 보이며, 이러한 현상은 리간드가 존재하게 되면 보다높은 온도에서 구조풀림 현상이 관찰된다는 연구결과에 착안하여 종래 FRET 원리를 이용한 방법에 비하여 리간드 검출능력이 증가된 리간드의 검출 및 농도 측정방법을 제공하였다.In addition, according to the calculation of Equation 2, ECFP and EYFP have an R 0 value of approximately 5 nm (Patterson et al., Anal. Biochem., 284: 438, 2000) between ECFP and EYFP. Assuming that the distance of is about 5-6 nm, small changes in distance or relative direction can make a big difference in FRET efficiency. Therefore, the present inventors expected that the detection capability of the biosensor would be greatly improved if the difference in FRET efficiency according to the presence or absence of ligand binding could be maximized. Therefore, in the present invention, as a result of the study to maximize the detection capacity, the EBP-derived PBP shows a reversible structural loosening phenomenon according to the temperature rise, this phenomenon is a study that the structural loosening phenomenon is observed at a higher temperature when the ligand is present In light of the results, a method for detecting and measuring a ligand having increased ligand detection capability was provided in comparison with a method using a conventional FRET principle.
즉, 본 발명의 일 실시예에서는 온도 변화에 따른 FRET 바이오센서들의 형광분석을 통하여 45~65℃의 온도 범위에서 리간드 유무에 따른 바이오센서의 형광 비율이 크게 달라지는 것을 확인하였는바, 보다 자세하게는 49℃~54℃의 온도범위에서 센서의 검출 능력인 Δratio값이 증가하는 것을 확인하여 “임계온도”구간이 존재함을 확인 하였다(도 2 ~ 도 5). 아울러, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면, 본 발명의 임계온도가 결합단백질의 종류에 따른 안정성 수준 및 반응액의 조성에 따라 다양한 범위로 변화될 수 있음을 이해할 것이다. 즉, 저온성 또는 호열성 미생물 유래의 리간드 결합단백질 또는 이의 기질특이성을 개량한 결합단백질을 이용한 바이오센서는 본 발명의 임계온도 범위(49℃~54℃)보다 높거나 낮은 온도범위에서 보다 향상된 검출 능력을 보유할 수도 있다. 특히 단백질의 구조적 견고성(rigidity)에 영향을 미치는 물질 즉 산(acid), 염기(base), 환원제(reducing agent), 변성제(denaturant, chaotropic agent), 안정제(stabilizer), 계면활성제(surfactant), 유화제(emulsifier), 또는 불활성화제(detergent)의 유무에 따라서 임계온도 범위를 조절하는 것이 가능함은 본 발명에서 기대하는 통상의 지식범위에 속한다.That is, in one embodiment of the present invention it was confirmed that the fluorescence ratio of the biosensor according to the presence or absence of the ligand in the temperature range of 45 ~ 65 ℃ by fluorescence analysis of the FRET biosensors according to the temperature change, more specifically 49 It was confirmed that the "critical temperature" section exists by confirming that the Δratio value, which is the detection capability of the sensor, increases in the temperature range of ℃ ~ 54 ℃ (Fig. In addition, those skilled in the art will understand that the critical temperature of the present invention may be varied in various ranges depending on the stability level and composition of the reaction solution depending on the type of binding protein. That is, biosensors using ligand-binding proteins derived from low-temperature or thermophilic microorganisms or binding proteins with improved substrate specificity are more improved in the temperature range higher or lower than the critical temperature range (49 ° C to 54 ° C) of the present invention. You may have the ability. In particular, substances that affect the structural rigidity of proteins, such as acids, bases, reducing agents, denaturants, chaotropic agents, stabilizers, surfactants, and emulsifiers It is within the ordinary knowledge range expected in the present invention that it is possible to adjust the critical temperature range depending on the presence of an emulsifier or a detergent.
본 발명의 다른 실시예에서는, FRET 바이오센서들의 검출능력이 25℃에서 측정한 경우보다 임계온도에서 최소 2.5배에서 최대 12배 정도 증가하는 것을 확인하였으며(도 6 ~ 도 9), 각 센서들의 기질에 대한 특이성 또한, 미국등록특허 US 7432353호에서 제시한 결과보다 향상되는 것을 확인할 수 있었다 (도 12, 도 13).In another embodiment of the present invention, it was confirmed that the detection capacity of the FRET biosensors increased by at least 2.5 to 12 times at the critical temperature than when measured at 25 ℃ (Figs. 6 to 9), the substrate of each sensor Specificity was also confirmed to be improved than the results presented in US Patent No. 7432353 (Fig. 12, Fig. 13).
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: FRET 바이오센서의 제조Example 1: Preparation of FRET Biosensor
1-1: FRET 바이오센서를 위한 융합단백질 제조를 위한 발현 벡터의 구축1-1: Construction of Expression Vector for Preparation of Fusion Protein for FRET Biosensor
먼저 다음 구조식 Ⅰ로 표시되는 단백질을 함유하는 바이오센서를 제공하기 위하여 다음과 같이 발현 벡터를 구축하였다:First, to provide a biosensor containing a protein represented by the following structural formula I, an expression vector was constructed as follows:
[구조식 I][Formula I]
여기서, 리간드결합단백질인 PBP는 ALBP, ARBP, MBP 및 GGBP로 구성된 군에서 선택되고; L1 및 L2는 각각 FP1의 C-말단과 PBP의 N-말단 사이, PBP의 C-말단과 FP2의 N-말단 사이를 연결하는 2개의 아미노산으로 구성된 링커 펩티드이며; FP1과 FP2는 FRET의 형광공여체와 형광수여체로 각각 ECFP와 EYFP로 구성된다. Wherein the ligand-binding protein PBP is selected from the group consisting of ALBP, ARBP, MBP and GGBP; L 1 and L 2 are linker peptides consisting of two amino acids each connecting between the C-terminus of FP 1 and the N-terminus of PBP, between the C-terminus of PBP and the N-terminus of FP 2 ; FP 1 and FP 2 are FRET fluorescent donors and fluorescent acceptors, which are composed of ECFP and EYFP, respectively.
본 발명에서 사용된 알로오스와 아라비노오스, 말토오스를 정량적으로 측정할 수 있는 FRET 바이오센서들은 본 발명 출원인들에 의해 선 출원된 한국등록특허 10-0739529호 및 미국등록특허 US 7432353호에서 제시된 센서들과 동일하며, 상세하게는 다음의 방법에 의하여 구축하였다. FRET biosensors capable of quantitatively measuring alloses, arabinose and maltose used in the present invention are sensors disclosed in Korean Patent Nos. 10-0739529 and US Pat. No. 74,32353, previously filed by the present applicants. Same as the above, in detail, it was constructed by the following method.
먼저 말토오스를 정량적으로 측정하기 위한 말토오스 바이오센서인 CMY-BII의 발현벡터는 다음의 방법에 의하여 구축하였다.First, the expression vector of CMY-BII, a maltose biosensor for quantitatively measuring maltose, was constructed by the following method.
서열번호 1: 5’-gatcggatccatggtgagcaagggcgag-3’SEQ ID NO: 5’-gatcggatccatggtgagcaagggcgag-3 ’
서열번호 2: 5’-gatcaagcttgtacagctcgtccatgc-3’SEQ ID NO: 5'-gatcaagcttgtacagctcgtccatgc-3 '
서열번호 3: 5’-gatcatatggtgagcaagggcgag-3’SEQ ID NO: 5'-gatcatatggtgagcaagggcgag-3 '
서열번호 4: 5’-tttaccttcttcgattttcattcgcgacttgtacagctcgtccatgcc-3’SEQ ID NO: 5'-tttaccttcttcgattttcattcgcgacttgtacagctcgtccatgcc-3 '
서열번호 5: 5’-atgaaaatcgaagaaggtaaac-3’SEQ ID NO: 5'-atgaaaatcgaagaaggtaaac-3 '
서열번호 6: 5’-gatcggatcccgagctcgaattagtctg-3’SEQ ID NO: 5'-gatcggatcccgagctcgaattagtctg-3 '
우선 EYFP의 유전자는 pEYFP-N1 벡터(Clontech, Palo Alto, CA)를 주형으로 하고 각각 BamHI과 HindIII 절단 염기서열이 도입된 서열번호 1 과 2 의 프라이머를 사용하여 PCR을 수행하였다. 증폭된 EYFP 유전자는 BamHI과 HindIII 제한효소로 절단한 후 발현벡터인 pET-21a((Novagen, Madison, WI)의 제한효소 인지부위에 삽입하여 EYFP의 C 말단에 6×His-tag이 발현될 수 있는 벡터인 pEYFP-III를 구성하였다. ECFP 유전자는 pECFP 벡터(Clontech, Palo Alto, CA)를 주형으로 하고 NdeI의 제한효소 절단 염기서열이 도입된 서열번호 3과, MBP의 N말단 염기서열이 중첩되게 제작한 서열번호 4의 프라이머를 사용하여 PCR을 수행하였다. 마찬가지로 MBP의 유전자는 pMALc2x(NEB, Beverly, MA, USA)를 주형으로 하고 서열번호 5와, BamHI 제한효소 절단 염기서열이 도입된 서열번호 6의 프라이머를 사용하여 PCR을 수행하였다. 이렇게 증폭된 각각의 ECFP와 MBP의 유전자는 서로 중첩되게 제작된 프라이머에 의해 중복신장 중합효소 연쇄반응(overlap-extension PCR)이 가능하기 때문에 서열번호 3과 서열번호 6의 프라이머를 이용하여 반응액에 동일한 양의 ECFP와 MBP 유전자를 첨가한 후 PCR을 수행하여 ECFP-MBP 형태의 합성유전자를 얻을 수 있었다. 상기 증폭된 합성유전자는 NdeI과 BamHI 제한효소로 절단하였고, MBP-EYFP의 발현벡터인 pEYFP-III의 제한효소 인지부위에 부위에 클로닝하는 방법으로 발현벡터인 pECMY-BII 벡터를 구축하였으며, 상기와 같은 방법으로 구성된 말토오스 측정용 FRET 바이오센서를 CMY-BII라 명명하였다.First, the gene of EYFP was a pEYFP-N1 vector (Clontech, Palo Alto, CA) as a template and PCR was performed using primers of SEQ ID NOs: 1 and 2 into which Bam HI and Hind III cleavage sequences were introduced, respectively. The amplified EYFP gene was digested with Bam HI and Hind III restriction enzymes, and inserted into the restriction enzyme recognition site of pET-21a ((Novagen, Madison, WI), which expresses 6 × His-tag at the C terminus of EYFP. PEYFP-III, a possible vector, was constructed by using the pECFP vector (Clontech, Palo Alto, CA) as a template, the sequence number 3 where the restriction enzyme cleavage sequence of NdeI was introduced, and the N-terminal sequence of MBP. PCR was carried out using the overlapping primers of SEQ ID NO: 4. Similarly, the gene of MBP was pMALc2x (NEB, Beverly, MA, USA) as a template, and SEQ ID NO: 5 and Bam HI restriction enzyme cleavage sequence PCR was performed using the primers of SEQ ID NO: 6. Since the genes of each ECFP and MBP thus amplified are overlap-extension PCR by primers produced to overlap each other. SEQ ID NO: 3 and SEQ ID NO: The same amount of ECFP and MBP genes were added to the reaction solution using the primer of No. 6, followed by PCR to obtain an ECFP-MBP type synthetic gene, which was digested with NdeI and BamHI restriction enzymes. The pECMY-BII vector, which is an expression vector, was constructed by cloning the site of the restriction enzyme recognition site of pEYFP-III, the expression vector of MBP-EYFP, and the CMET- FRET biosensor for maltose measurement was constructed as described above. It was named BII.
또한, 알로오스 측정용 바이오센서인 CalsBY-QV의 발현벡터를 구축하기 위한 ECFP 유전자의 증폭은 염기서열 3 및 7의 프라이머를 사용하였으며, ALBP 유전자는 대장균 MG1655에서 추출한 염색체 유전자(chromosomal DNA)를 주형으로 하여 서열번호 8과 9의 프라이머를 사용하여 증폭하였다. In addition, amplification of the ECFP gene for constructing the expression vector of CalsBY-QV, a biosensor for detecting alloose, was performed using primers of SEQ ID NOs: 3 and 7. The ALBP gene was a chromosomal DNA extracted from Escherichia coli MG1655. Amplification was carried out using primers SEQ ID NOs: 8 and 9.
서열번호 7: 5’-gacagcatattcggcggccattacttgcttgtacagctcgtccatgc-3’SEQ ID NO: 5'-gacagcatattcggcggccattacttgcttgtacagctcgtccatgc-3 '
서열번호 8: 5’-atggccgccgaatatgctgt-3’SEQ ID NO: 5'-atggccgccgaatatgctgt-3 '
서열번호 9: 5’-cgcggatcccgattgagtgaccaggatt-3’SEQ ID NO: 5'-cgcggatcccgattgagtgaccaggatt-3 '
증폭된 ECFP 및 ALBP의 유전자는 서열번호 3과 9의 프라이머를 이용하여 ECFP-ALBP의 합성유전자로 증폭하였다. 상기의 ECFP-ALBP 유전자는 NdeI, BamHI 제한효소 인지부위를 이용하여 pECMY-BII 발현벡터로부터 ECFP-MBP 유전자를 제거하고 삽입하는 방법으로 알로오스 측정용 바이오센서의 발현을 위한 pECalsBY-QV벡터를 구축하였다.The genes of the amplified ECFP and ALBP were amplified by the synthetic gene of ECFP-ALBP using the primers of SEQ ID NO: 3 and 9. The ECFP-ALBP gene is a pECalsBY-QV vector for the expression of a biosensor for the detection of allose by removing and inserting the ECFP-MBP gene from the pECMY-BII expression vector using Nde I and Bam HI restriction enzyme recognition sites. Was built.
마찬가지로, 아라비노오스 측정용 바이오센서인 CaraFY-PR의 발현벡터를 구축하기 위한 ECFP 유전자의 증폭은 염기서열 3과 10의 프라이머를 사용하였으며, ARBP의 유전자는 대장균 MG1655에서 추출한 염색체 유전자를 주형으로 하여 서열번호 11와 12의 프라이머를 사용하여 증폭하였다.Likewise, the amplification of the ECFP gene for constructing the expression vector of CaraFY-PR, a biosensor for arabinose measurement, was performed using primers of SEQ ID NOs: 3 and 10, and the ARBP gene was based on the chromosomal gene extracted from Escherichia coli MG1655. Amplification was carried out using the primers of SEQ ID NOs: 11 and 12.
서열번호 10: 5’-ccgagcttcaggttctccatcctaggcttgtacagctcgtccatgc-3’SEQ ID NO: 10'-ccgagcttcaggttctccatcctaggcttgtacagctcgtccatgc-3 '
서열번호 11: 5’-atggagaacctgaagctcg-3’SEQ ID NO: 5'-atggagaacctgaagctcg-3 '
서열번호 12: 5’-cgcggatcccgacttaccgcctaaacctt-3’SEQ ID NO: 12 '5-cgcggatcccgacttaccgcctaaacctt-3'
증폭된 ECFP와 ARBP의 유전자는 서열번호 3과 12의 프라이머를 이용하여 ECFP-ARBP의 합성유전자로 증폭하였고, pECMY-BII 발현벡터의 ECFP-MBP 유전자 위치에 삽입하는 방법으로 pECaraFY-PR를 구축하였다.The amplified ECFP and ARBP genes were amplified by a synthetic gene of ECFP-ARBP using primers of SEQ ID NOs: 3 and 12, and pECaraFY-PR was constructed by inserting them at the ECFP-MBP gene position of the pECMY-BII expression vector. .
또한 본 발명에서 사용된 글루코스 측정용 바이오센서인 CmglBY-SS의 발현벡터는 아래의 방법으로 구축하였다.In addition, the expression vector of CmglBY-SS, a biosensor for glucose measurement, used in the present invention was constructed by the following method.
서열번호 13: 5’-caccaatgcgagtatcagccatcgaagacttgtacagctcgtccatgcc-3’SEQ ID NO: 13 5′-caccaatgcgagtatcagccatcgaagacttgtacagctcgtccatgcc-3 ’
서열번호 14: 5’-atggctgatactcgcattggtg-3’SEQ ID NO: 14'-atggctgatactcgcattggtg-3 '
서열번호 15: 5’-cgcggatcccgatttcttgctgaattcagc-3’SEQ ID NO: 15'-cgcggatcccgatttcttgctgaattcagc-3 '
우선 ECFP 유전자는 pECFP벡터를 주형으로 하고 서열번호 3과, GGBP의 N말단 염기서열이 중첩되게 제작한 서열번호 13의 역방향 프라이머를 사용하여 PCR을 수행하였다. 마찬가지로 GGBP의 유전자는 대장균 MG1655에서 추출한 염색체 유전자를 주형으로 하고 서열번호 14와, BamHI 제한효소 절단 염기서열이 도입된 서열번호 15의 역방향 프라이머를 사용하여 PCR을 수행하였다. 상기에서 증폭한 ECFP와 GGBP 유전자를 반응액에 함께 첨가한 후, 서열번호 3과 서열번호 15의 프라이머로 PCR을 수행하여 ECFP-GGBP의 합성유전자를 얻을 수 있었다. 상기 증폭된 ECFP-GGBP 합성유전자는 NdeI과 BamHI 제한효소로 절단하였고, 상기 pECMYB-II의 NdeI과 BamHI 제한효소 인지부위를 이용하여 ECFP-MBP유전자를 제거하고 삽입하는 방법으로 pECmglBY-SS 벡터를 구축하였으며, 상기와 같은 방법으로 구성된 글루코스 측정용 FRET 바이오센서를 CmglBY-SS라 명명하였다.First, the ECFP gene was subjected to PCR using a pECFP vector as a template, and a reverse primer of SEQ ID NO: 13 prepared by overlapping SEQ ID NO: 3 with the N-terminal sequence of GGBP. Similarly, the GGBP gene was subjected to PCR using a chromosomal gene extracted from Escherichia coli MG1655 as a template and a reverse primer of SEQ ID NO: 14 and SEQ ID NO: 15 to which Bam HI restriction enzyme cleavage sequence was introduced. After adding the ECFP and GGBP genes amplified above to the reaction solution, PCR was performed using primers of SEQ ID NO: 3 and SEQ ID NO: 15 to obtain a synthetic gene of ECFP-GGBP. The amplified ECFP-GGBP synthetic gene was digested with NdeI and BamHI restriction enzymes, and the pECmglBY-SS vector was used to remove and insert the ECFP-MBP gene using the Nde I and Bam HI restriction enzyme recognition sites of the pECMYB-II. Was constructed, and the FRET biosensor for glucose measurement configured as described above was named CmglBY-SS.
1-2: FRET 바이오센서의 제조, 순수분리1-2: manufacture of FRET biosensor, pure separation
실시예 1-1에서 구축한 pECalsBY-QV, pECaraFY-PR, pECMY-BII 및 pECmglBY-SS가 각각 JM109(DE3)에 형질 전환된 대장균들을 50 μg/ml의 ampicillin이 첨가된 LB 배지 (1% bacto-trypton, 0.5% yeast extract, 1% NaCl)에 접종하여 37℃에서 12시간 동안 진탕 배양하였다. E. coli transformed with pECalsBY-QV, pECaraFY-PR, pECMY-BII and pECmglBY-SS constructed in Example 1-1 to JM109 (DE3), respectively, were treated with LB medium containing 50 μg / ml of ampicillin (1% bacto -trypton, 0.5% yeast extract, 1% NaCl) was incubated for 12 hours at 37 ℃ shaking culture.
상기에서 배양시킨 대장균들은 50 μg/ml의 ampicillin이 첨가된 1 L의 LB 배지에 1%되게 접종하여 37℃에서 약 2 시간 정도 배양시켰으며, O.D. 600 nm에서의 흡광도가 0.5에 도달한 시점에 IPTG (isopropyl β-d-thiogalactopyranoside)를 0.5 mM 되게 첨가하여 25℃에서 24시간 동안 단백질들의 발현을 유도하였다. Escherichia coli cultured above was inoculated at 1% in 1 L of LB medium to which 50 μg / ml of ampicillin was added and incubated at 37 ° C. for about 2 hours. When the absorbance at 600 nm reached 0.5, IPTG (isopropyl β-d-thiogalactopyranoside) was added to 0.5 mM to induce the expression of proteins at 25 ° C. for 24 hours.
배양을 마친 균주들은 6000 rpm의 속도로 원심분리기 (Supra22K, Hanil, Korea)를 이용하여 회수하였고, 20 mM 인산염 완충액 (pH 7.5)에 현탁시켜 초음파 분쇄기로 세포막을 파괴시켰다. 용해된 균주들은 다시 고속 원심분리기로 15000 rpm에서 침전물을 제거하였고, 상층액만을 0.2 μm filter로 여과하여 이후의 정제과정에 사용하였다.The cultured strains were recovered using a centrifuge (Supra22K, Hanil, Korea) at a speed of 6000 rpm, suspended in 20 mM phosphate buffer (pH 7.5) to destroy the cell membrane with an ultrasonic mill. The dissolved strains were removed again at 15000 rpm by high-speed centrifugation, and the supernatant was filtered through a 0.2 μm filter and used for subsequent purification.
단백질의 정제는 FRET 바이오센서들의 C-말단에 발현된 6×His-tag을 이용하여 FPLC (fast-performance liquid chromatography)에 연결된 친화성 크로마토그래피 컬럼 HisTrap™ HP (GE Healthcare, Uppsala, Sweden)를 이용하여 1차로 수행 하였고, 음이온 교환 크로마토그래피 컬럼 HiTrap™ Q HP (GE Healthcare, Uppsala, Sweden)를 이용하여 2차 정제를 하였다. 정제를 마친 FRET 센서들은 20% 글리세롤이 포함된 PBS 완충액 (pH 7.4)에 10 mg/ml의 농도로 농축하여 -70℃에서 보관하면서 하기의 실시예에서 사용하였다.Protein purification was performed using an affinity chromatography column HisTrap ™ HP (GE Healthcare, Uppsala, Sweden) linked to fast-performance liquid chromatography (FPLC) using 6 × His-tag expressed at the C-terminus of FRET biosensors. The first purification was performed, and the second purification was performed using an anion exchange chromatography column HiTrap ™ Q HP (GE Healthcare, Uppsala, Sweden). The purified FRET sensors were used in the examples below, concentrated to a concentration of 10 mg / ml in PBS buffer (pH 7.4) containing 20% glycerol and stored at -70 ℃.
실시예 2: FRET 바이오센서의 형광 분석방법Example 2: Fluorescence analysis method of FRET biosensor
FRET 바이오센서의 형광은 각 센서 단백질들을 0.5 ml의 PBS 완충액 (pH 7.4)에 0.5 μM의 농도로 동일하게 조절한 조건에서 형광분석장비인 Cary Eclipse (Varian Inc., Mulgrave, Australia)를 사용하여 측정하였으며, 436 nm로 여기 시켜 발생되는 발광 스펙트럼을 450 nm에서 600 nm까지 스캔하여 확인하였다. 또한 FRET 효율을 나타내는 지표로는 480 nm에서의 ECFP 발광과 FRET에 의해 발생되는 EYFP의 530 nm에서의 발광량 (emission intensity)의 비율을 아래의 수식 3에 대입한 값인 FRET ratio로 정의했다.Fluorescence of FRET biosensors was measured using a fluorescence analyzer, Cary Eclipse (Varian Inc., Mulgrave, Australia), under the same conditions that each sensor protein was adjusted to 0.5 μM in 0.5 ml PBS buffer (pH 7.4). The emission spectrum generated by excitation at 436 nm was confirmed by scanning from 450 nm to 600 nm. In addition, as an index indicating FRET efficiency, the ratio of emission intensity at 530 nm of EYFP generated by FRET and ECFP emission at 480 nm was defined as FRET ratio, which is a value substituted in Equation 3 below.
ratio = ( 530nm / 480nm ) [수식 3]ratio = (530nm / 480nm) [Equation 3]
ratio : EYFP와 ECFP의 발광량 비율.ratio: The ratio of light emission of EYFP and ECFP.
530 nm : FRET에 의해 측정되어 지는 EYFP의 발광량.530 nm: Luminous intensity of EYFP measured by FRET.
480 nm : 여기광을 436 nm로 하였을 때 측정되는 ECFP의 발광량.480 nm: Emission amount of ECFP measured when the excitation light is 436 nm.
또한 FRET 바이오센서의 검출능력을 정의하는 Δratio는 아래의 수식 4에 따라 결정하였다.In addition, Δratio, which defines the detection capability of FRET biosensor, was determined according to Equation 4 below.
Δratio = ratiomax - ratiomin [수식 4]Δratio = ratio max -ratio min [Equation 4]
Δratio : 리간드의 유무에 따른 ratio의 최대 차이.Δratio: The maximum difference between the ratios of ligands.
ratiomax: 리간드가 존재하는 조건에서 측정되는 ratio의 비율.ratio max : The ratio of the ratio measured under the conditions in which the ligand is present.
ratiomin: 리간드가 없는 조건에서 측정되는 ratio의 비율.ratio min : The ratio of the ratio measured under the absence of ligand.
FRET 바이오센서들의 리간드에 대한 적정곡선은 리간드의 농도를 1 nM~10 mM까지 증가시키면서 측정한 ratio 변화를 Sigmaplot 10.0 (Systat software Inc., USA)의 Hill equation, 4-parameter 방식을 적용하여 S자 형태의 곡선 (Sigmoidal curve)으로 표현하였으며, 각 센서들에 대한 리간드의 해리상수 (dissociation constant)인 K
d는 S자 형태의 곡선에서 Δratio가 1/2 값을 나타내는 리간드의 농도로 정하였다. 또한 각 센서들을 이용하여 정량적으로 측정 가능한 리간드의 농도범위는 Δratio값이 10%에서 90% 포화된 범위 이내의 리간드 농도로 정의하였다.The titration curves of the ligands of FRET biosensors were S-shaped using the Hill equation, 4-parameter method of Sigmaplot 10.0 (Systat software Inc., USA). was represented by a curve (Sigmoidal curve) of the type, the dissociation constant K d (dissociation constant) of the ligand for each of the sensor was set at the concentration of ligand Δratio represents a half value in the curve of the S-shape. In addition, the concentration range of ligand that can be measured quantitatively using each sensor was defined as the ligand concentration within the range of 10% to 90% saturated Δratio.
실시예 3. FRET 바이오센서의 온도 변화에 따른 형광분석Example 3 Fluorescence Analysis According to Temperature Change of FRET Biosensor
온도 변화에 따른 FRET 바이오센서들의 형광분석은 각 센서들을 0.5 ml의 PBS 완충액 (pH 7.4)에 0.5 μM의 농도로 조절하여 리간드가 없는 조건과 포화농도인 1 mM의 리간드가 첨가된 조건에서의 FRET ratio를 측정하여 비교 분석하였다. FRET 바이오센서 0.5 ml에 첨가하는 리간드의 부피는 센서의 과도한 희석을 방지하기 위하여 전체부피의 1/100에 해당하는 5 μl로 제한하였다. 온도 변화는 10~65℃ 구간까지 5℃ 간격으로 측정하였으며, ratio의 변화가 심한 구간인 45~60℃ 사이에서는 1℃ 간격으로 온도를 변화시키며 측정하였다. 모든 실험군은 수분 증발을 방지하기 위해 마개가 닫힌 형광 큐벳 (cuvette)에 들어있는 상태로 실험을 수행하였으며, 큐벳은 온도조절 장치가 연결된 펠티어 소자 (peltier device)에 위치시킨 상태에서 목표 온도에 도달하고 나서 3분이 경과한 후에 형광을 측정하였다.Fluorescence analysis of FRET biosensors at different temperatures was performed by adjusting each sensor to 0.5 μM concentration in 0.5 ml PBS buffer (pH 7.4) and adding FRET under conditions without ligand and 1 mM ligand. The ratio was measured and analyzed. The volume of ligand added to 0.5 ml of FRET biosensor was limited to 5 μl, corresponding to 1/100 of the total volume to prevent excessive dilution of the sensor. The temperature change was measured at intervals of 5 ° C. up to 10 ~ 65 ° C., and at 45 ° C. to 60 ° C., where the ratio was severely changed. All experimental groups performed experiments with the cap closed in a fluorescent cuvette to prevent moisture evaporation. The cuvette reached its target temperature with the thermostat connected to a peltier device. After 3 minutes, the fluorescence was measured.
그 결과, 도 2 내지 5에 나타난 바와 같이, 상기 실시예 1-2에서 정제한 FRET 바이오센서들의 리간드 유무에 따른 FRET ratio의 변화가 가장 큰 임계온도는, 말토오스 센서는 54℃ (도 2)로 글루코스 센서는 50℃ (도 3), 알로오스와 아라비노오스 센서는 49℃ (도 4, 도 5)로 약간의 차이가 있었으며, 임계온도 ±1℃에서는 FRET ratio의 변화가 크지 않아 안정된 결과를 보이는 것으로 확인되었다.As a result, as shown in Figures 2 to 5, the critical temperature of the largest change in the FRET ratio according to the presence or absence of ligands of the FRET biosensors purified in Example 1-2, the maltose sensor is 54 ℃ (Fig. 2) Glucose sensor was 50 ℃ (Fig. 3), allose and arabinose sensor was 49 ℃ (Fig. 4, Fig. 5), and there was a slight difference. It was confirmed to be visible.
또한 상기 임계온도에서의 리간드에 대한 각 FRET 바이오센서들의 적정곡선을 분석한 결과, 도 6 내지 9에 나타난 바와 같이, 말토오스 센서는 1.22 (도 6)로, 글루코스는 센서는 1.6 (도 7), 알로오스 센서는 -0.62 (도 8), 아라비노오스 센서는 0.72 (도 9)의 Δratio값을 보이는 것으로 확인되었다. In addition, as a result of analyzing the titration curves of each FRET biosensor for the ligand at the critical temperature, as shown in Figures 6 to 9, the maltose sensor is 1.22 (Fig. 6), the glucose is 1.6 (Fig. 7), It was confirmed that the alloose sensor exhibits a Δratio value of −0.62 (FIG. 8) and the arabinose sensor of 0.72 (FIG. 9).
상기에서 측정된 각 FRET 바이오센서들의 Δratio값을 기존에 25℃에서 측정한 수치와 비교하게 되면, 말토오스 센서는 7배 (도 6), 글루코스는 센서는 12배 (도 7), 알로오스 센서는 3배 (도 8), 아라비노오스 센서는 2.5배 (도 9) 이상 △ratio값이 증가된 수치이며, 이 결과는 특정 임계온도에서 다양한 종류의 FRET 바이오센서의 검출능력이 크게 개선될 수 있다는 본 출원인들의 주장을 직접적으로 확인시켜 주는 결과이다. When the Δratio values of the FRET biosensors measured above are compared with those measured at 25 ° C., maltose sensor is 7 times (FIG. 6), glucose is 12 times (FIG. 7), and alloose sensor is 3 times (Fig. 8), arabinose sensor is more than 2.5 times (Fig. 9) increased Δratio value, the result is that the detection capability of various types of FRET biosensor can be significantly improved at a certain critical temperature The results directly confirm the claims of the applicants.
상기의 결과들은 아래의 표 1과 같이 정리할 수 있다.The above results can be summarized as shown in Table 1 below.
한편, 각 FRET 바이오센서로 측정 가능한 리간드의 농도범위는 생리적 (physiological)으로 유의미한 농도범위로 확인되었는바, 예를 들면 혈당 농도를 측정하는데 중요한 혈액의 글루코스의 농도는 70 ~ 200 mg/dl로, 이는 대략 400 ~ 1100 μM에 해당한다. 따라서 글루코스 센서를 이용하여 혈당 농도를 측정하는 경우에는 혈액을 센서 부피의 1/100되게 첨가하기 때문에 4 ~ 11 μM의 농도 범위에 해당하게 되며, 상기의 농도범위는 글루코스 센서의 K
d값이 9.2 ± 0.5 μM이기 때문에 가장 정확하게 측정할 수 있는 농도 구간이 된다.On the other hand, the concentration range of ligand that can be measured by each FRET biosensor was confirmed to be a physiologically significant concentration range, for example, the concentration of glucose of blood, which is important for measuring blood glucose concentration, is 70 to 200 mg / dl. This corresponds to approximately 400-1100 μM. Therefore, by using a glucose sensor for measuring blood glucose concentrations and the blood corresponding to the concentration range of 4 ~ 11 μM, because the addition of a sensor to be 1/100 by volume, the concentration range of the glucose sensor has a K d value of 9.2 ± 0.5 μM gives the most accurate concentration range.
실시예 4. FRET 바이오센서의 리간드에 대한 특이성 분석Example 4. Specificity Analysis for Ligand of FRET Biosensor
FRET 바이오센서들의 다양한 리간드에 대한 특이성 분석은 19 종의 단당류와 다당류, 및 당알콜 등 다양한 종류의 당류들을 대상으로 측정하였다. Specificity analysis of various ligands of FRET biosensors was performed on 19 kinds of sugars including polysaccharides and sugar alcohols.
측정 방법은 정제된 FRET 바이오센서들을 0.5 ml의 PBS 완충액 (pH 7.4)에 0.5 μM의 농도로 조절하여 각 리간드의 농도를 100 μM과 1 mM, 10 mM 등이 되도록 첨가하고, 큐벳을 감싼 펠티어 소자가 상기 실시예 3에서 구한 각 임계온도에 도달한 시점에서 3분이 경과한 후에 형광을 측정하였다.The measurement method was adjusted to 0.5 μM concentration of purified FRET biosensors in 0.5 ml PBS buffer (pH 7.4) to add the concentration of each ligand to 100 μM, 1 mM, 10 mM, and the like. Fluorescence was measured after 3 minutes had elapsed from the time point at which the critical temperature obtained in Example 3 was reached.
그 결과, 도 10 및 12에 나타난 바와 같이, 말토오스와 알로오스 측정용 FRET 바이오센서는 다른 종류의 당들과는 특이적인 결합을 하지 않는 것으로 확인되었다. 또한 25℃에서 측정한, 본 발명 출원인들에 의해 선 출원된 미국등록특허 US 7432353호의 결과와 비교해 보면 알로오스 FRET 바이오센서는 고농도의 리보오스에 대한 특이성이 감소됨을 확인할 수 있었다.As a result, as shown in Figure 10 and 12, it was confirmed that the FRET biosensor for measuring maltose and allose do not specifically bind to other types of sugars. In addition, when compared with the results of the US patent US 7432353 previously filed by the present applicants, measured at 25 ℃ it was confirmed that the alloose FRET biosensor is reduced specificity for high concentration of ribose.
한편 아라비노오스와 글루코스 FRET 센서는 기존의 연구 결과들과 마찬가지로 갈락토스에 매우 친화력이 높은 것으로 확인 되었고 (Vyas et al., J. Biol. Chem. 266, 5226-5237, 1991; Fehr et al., J. Biol. Chem. 278, 19127-19133, 2003), 특히 글루코스 센서의 경우에는 갈락토스 이외에도 고농도로 존재하는 다수의 당류들과 낮은 수준의 친화력이 있는 것으로 확인되었다 (도 11). 하지만 혈액에 존재하는 당류들은 글루코스를 제외하고는 미량으로 존재하기 때문에 글루코스 센서를 혈당 측정용으로 사용하더라도 여타 당류들에 의한 오차가 크지 않을 것으로 판단되며, 최근의 연구에 의하면 갈락토스에 대한 친화력이 크게 감소된 GGBP가 보고된 바 있기 때문에 (Sakaguchi-Mikami et al., Biotechnol. Lett. 30: 1453-1460, 2008), 글루코스 측정용 FRET 바이오센서의 특이성을 개선할 수 있는 여지도 충분히 있다.Arabinos and glucose FRET sensors, on the other hand, were found to have a very high affinity for galactose as well as previous studies (Vyas et al., J. Biol. Chem. 266, 5226-5237, 1991; Fehr et al., J. Biol. Chem . 278, 19127-19133, 2003), particularly in the case of glucose sensors, were found to have a low level of affinity with many sugars present at high concentrations in addition to galactose (FIG. 11). However, since the sugars present in the blood are present in trace amounts except for glucose, even if the glucose sensor is used for blood glucose measurement, the error caused by other sugars will not be large. According to a recent study, the affinity for galactose is large. Since reduced GGBP has been reported (Sakaguchi-Mikami et al., Biotechnol. Lett. 30: 1453-1460, 2008), there is ample room to improve the specificity of FRET biosensors for glucose measurement.