WO2010125641A1 - トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ - Google Patents

トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ Download PDF

Info

Publication number
WO2010125641A1
WO2010125641A1 PCT/JP2009/058335 JP2009058335W WO2010125641A1 WO 2010125641 A1 WO2010125641 A1 WO 2010125641A1 JP 2009058335 W JP2009058335 W JP 2009058335W WO 2010125641 A1 WO2010125641 A1 WO 2010125641A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ferromagnetic
tunnel magnetoresistive
insulating layer
insulating
Prior art date
Application number
PCT/JP2009/058335
Other languages
English (en)
French (fr)
Inventor
英男 大野
正二 池田
純 早川
浩之 山本
Original Assignee
国立大学法人 東北大学
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東北大学, 株式会社日立製作所 filed Critical 国立大学法人 東北大学
Priority to PCT/JP2009/058335 priority Critical patent/WO2010125641A1/ja
Priority to JP2011511210A priority patent/JP5562946B2/ja
Priority to TW099113301A priority patent/TWI458087B/zh
Publication of WO2010125641A1 publication Critical patent/WO2010125641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a high-power tunnel magnetoresistive element having high thermal stability and a low power consumption nonvolatile magnetic memory equipped with the same.
  • Tunnel magnetoresistive effect element using Al oxide as an insulator (T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139) , L231 (1995)), tunnel magnetoresistive element using magnesium oxide as the insulating film that can obtain a magnetoresistance ratio several times larger than that (S. Yuasa. Has been.
  • a conventional nonvolatile magnetic memory is constituted by a memory cell in which a tunnel magnetoresistive element is formed on a MOSFET.
  • Switching uses a MOSFET to rotate the magnetization direction of the tunnel magnetoresistive element using the current-induced spatial magnetic field generated by energizing the bit line and the word line, write information, and output the tunnel magnetoresistive element This is a method of reading information by voltage.
  • spin transfer torque magnetization reversal or synonymous spin injection magnetization reversal method in which magnetization is rotated by passing a current directly through the magnetoresistive element, For example, it is disclosed in US Pat. No. 5,695,864 or JP-A-2002-305337.
  • JP 2007-294737 A a recording layer in which two ferromagnetic films are laminated via a nonmagnetic film is applied for the purpose of stably performing spin transfer torque magnetization reversal operation against an intruding magnetic field from the outside.
  • a tunnel magnetoresistive element is disclosed.
  • the present invention applies a compound ferromagnetic film having a body-centered cubic lattice of Co or Fe containing B to the ferromagnetic film of the tunnel magnetoresistive element, and applies (100) -oriented rock salt structure magnesium oxide to the insulating layer.
  • a first diffusion layer and a second diffusion layer provided across the nonmagnetic layer, a first ferromagnetic layer adjacent to the first diffusion layer, and a second ferromagnetic layer adjacent to the second diffusion layer
  • a ferromagnetic recording layer composed of layers, in which the first ferromagnetic layer and the second ferromagnetic layer are ferromagnetically coupled, is applied.
  • the tunnel magnetoresistive element includes an insulating layer, a ferromagnetic recording layer and a ferromagnetic fixed layer provided with the insulating layer interposed therebetween, and the insulating layer is a (100) -oriented rock salt structure MgO.
  • the ferromagnetic recording layer includes a first diffusion layer and a second diffusion layer provided across the nonmagnetic conductive layer, a first ferromagnetic layer adjacent to the first diffusion layer, and a second diffusion layer.
  • the second ferromagnetic layer is adjacent to the diffusion layer, the first ferromagnetic layer is adjacent to the insulating layer, and the second ferromagnetic layer and the first ferromagnetic layer are ferromagnetically coupled.
  • the ferromagnetic pinned layer has a body-centered cubic structure film containing Co, Fe, and B.
  • the tunnel magnetoresistive effect element of the present invention can be applied to a magnetic memory cell or a magnetic random access memory.
  • a tunnel magnetoresistive element having high thermal stability and high withstand voltage can be obtained.
  • the tunnel magnetoresistive element in a magnetic memory, it is possible to realize a nonvolatile memory having high thermal stability, that is, a long magnetic information retention time.
  • the magnetization reversal (switching) of the ferromagnetic recording layer is mainly performed not by a spatial external magnetic field but by spin-polarized current spins flowing in the tunnel magnetoresistive effect element. This is done by applying a torque to the magnetic moment of the layer. This spin-polarized current is generated by passing a current through the tunnel magnetoresistive element itself. Therefore, spin transfer torque magnetization reversal is realized by passing a current from the outside in the stacking direction of each layer of the tunnel magnetoresistive element.
  • the magnetization direction of the magnetic recording layer is controlled by the direction of the current, and the magnetization arrangement of the magnetic recording layer and the magnetic fixed layer is determined.
  • the magnetic pinned layer and the magnetic recording layer are arranged in parallel, and when current is passed from the magnetic pinned layer to the magnetic recording layer, the magnetization arrangement is antiparallel.
  • the threshold value of the current density at which the spin transfer torque magnetization reversal occurs is defined as Jc.
  • FIG. 1 is a schematic cross-sectional view showing an example of a tunnel magnetoresistive effect element according to the present invention.
  • the tunnel magnetoresistive effect element 1 was produced using a sputtering method.
  • the tunnel magnetoresistive element 1 includes an orientation control layer 309, an antiferromagnetic layer 308, a magnetic fixed layer 3051, an insulating layer 304, a first ferromagnetic layer 303, a first diffusion layer 3022, and a first nonmagnetic layer. 302, a second diffusion layer 3021, a second ferromagnetic layer 301, and a protective layer 300.
  • the magnetic recording layer is formed by a laminated structure of the first ferromagnetic layer 303, the first diffusion layer 3022, the first nonmagnetic layer 302, the second diffusion layer 3021 and the second ferromagnetic layer 301.
  • the magnetic pinned layer 3021 may be composed of a fourth ferromagnetic layer 302, a second nonmagnetic film 303, and a third ferromagnetic layer 304.
  • FIG. 3 shows a tunnel magnetoresistive effect element which is formed by sputtering and heat-treated, or which has been heat-treated at 330 ° C. or less, and includes an orientation control layer 309, an antiferromagnetic layer 308, and a magnetic pinned layer.
  • an insulating layer 304, a first ferromagnetic layer 303, a first diffusion layer 3022, a first nonmagnetic layer 302, a second diffusion layer 3021, a second ferromagnetic layer 301, and a protective layer 300 are stacked in this order. Has been.
  • the orientation control layer 309 is made of NiFe, it improves the orientation of the antiferromagnetic layer 308 such as Ta / NiFe bilayer film, Ta / Ru / Ta / NiFe, Ta / NiFeCr, etc.
  • Other materials that can realize magnetic coupling may be used.
  • MnIr (8 nm) was used for the antiferromagnetic layer 308, but the film thickness can be selected in the range of 4 to 15 nm. Further, even when an antiferromagnetic layer made of a Mn compound such as MnPt or MnFe is used, antiferromagnetic coupling can be realized stably.
  • the fourth ferromagnetic layer 307 has CoFe (2 nm), the second nonmagnetic layer 306 has Ru (0.8 nm), and the third ferromagnetic layer 305 has CoFeB (3 nm) having a body-centered cubic lattice. ) Was used.
  • This body-centered cubic CoFeB is an amorphous film during film formation.
  • CoFeB which is amorphous at the time of film formation is crystallized by heat treatment at 330 ° C. or more, thereby forming CoFeB having a body-centered cubic lattice.
  • the CoFe composition ratio of the fourth ferromagnetic layer 307 was such that the Co composition was between 50 and 90 atm%. In this composition range, stable antiferromagnetic coupling with the antiferromagnetic layer can be realized.
  • the fourth ferromagnetic layer 307, the second nonmagnetic layer 306, and the third ferromagnetic layer 305 are such that the magnetizations of the fourth ferromagnetic layer 307 and the third ferromagnetic layer 305 are antiferromagnetically coupled.
  • the materials were selected, and the film thicknesses were selected so that the fourth ferromagnetic layer 307 and the third ferromagnetic layer 305 had the same magnetization.
  • the insulating layer 305 is a magnesium oxide crystal film having a rock salt structure, and is a film having a high degree of orientation in the (100) direction. Alternatively, it may be a single crystal film that is perfectly (100) oriented.
  • the thickness of the insulating layer was in the range of 0.6 nm to 3 nm. By setting the thickness of the insulating layer 305 in the above range, it is possible to select an arbitrary electric resistance in the tunnel magnetoresistive element 1.
  • CoFeB is used for the first ferromagnetic layer 303 and is crystallized by a heat treatment of 330 degrees or more to obtain a body-centered cubic lattice as in the case of the third ferromagnetic layer 305.
  • the Co and Fe compositions of CoFeB in the first ferromagnetic layer 303 and the second ferromagnetic layer 301 are preferably in the range of 25:75 to 75:25. This is because in this composition range, the body-centered cubic structure exists stably, and in the tunnel magnetoresistive element 1 in which MgO is applied to the insulating layer 305, the spin polarizability contributing to the tunnel magnetoresistance ratio can be improved.
  • the first nonmagnetic layer 302 is desirably made of Ru.
  • the material used for the first ferromagnetic layer / first nonmagnetic layer / second ferromagnetic layer at the time of film formation is CoFeB / Ru / CoFeB.
  • CoFeB—Ru in which Ru is diffused is formed as a first diffusion layer and a second diffusion layer.
  • the film thicknesses of the first diffusion layer and the second diffusion layer are smaller than those of the first ferromagnetic layer and the second ferromagnetic layer, and are preferably 0.2 nm or more. At this thickness, the magnetization directions of the first and second ferromagnetic layers are coupled in parallel. Furthermore, as a result of heat treatment at 330 ° C. or more, a parallel state is formed in which the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer are ferromagnetically coupled.
  • the heat treatment time in this example is preferably 1 hour or longer.
  • FIG. 7 shows a tunnel magnetoresistive element laminated in the order of Ta / Ru / Ta / NiFe / MnIr / CoFe / Ru / CoFeB / MgO / CoFeB / Ru / CoFeB / protective film at 300 ° C.
  • FIG. 8 shows changes in the asteroid characteristics measured to investigate the magnetization arrangement of CoFeB, which is the first ferromagnetic layer constituting the magnetic recording layer, and CoFeB, which is the second ferromagnetic layer, depending on the annealing temperature. It is. 8 (a) -1, (b) -1, and (c) -1 show asteroid characteristics. The asteroid characteristics of FIGS. 8 (a) -1 and 8 (b) -1 are shown in FIGS. 8 (a) -2 and 8 (b) -2, respectively. This means that the magnetization of the ferromagnetic layer is in an antiparallel state.
  • the asteroid characteristic is a rhombus shape as shown in FIG.
  • the magnetization directions of the first and second ferromagnetic layers and the second diffusion layer formed by annealing at 350 ° C. This means that they are arranged in parallel through the first nonmagnetic layer remaining without.
  • this means that all of the nonmagnetic layer (Ru) of the magnetic recording layer produced during film formation is diffused to form a single ferromagnetic layer. Therefore, the improvement of E / kBT when Ta 350 ° C. shown in FIG. 7 is that the magnetic recording layer has a structure as shown in FIGS.
  • the composition ratio of B in CoFeB is desirably 10 to 30 atm% for the B composition that stabilizes crystallization.
  • the first ferromagnetic layer 303 and the second ferromagnetic layer 301 include a single layer film of CoFe, a single layer film of NiFe, a CoFe / NiFe or CoFeB / NiFe, and a double layer film of CoFeB / CoFe. May be used.
  • the protective layer 300 was formed of a two-layer film of Ta (5 nm) / Ru (5 nm).
  • FIG. 2 shows that in the tunnel magnetoresistive effect element 1 according to the present invention, the first nonmagnetic layer during film formation is all diffused into the first ferromagnetic layer and the second ferromagnetic layer by heat treatment at 330 ° C. or higher.
  • the tunnel magnetoresistive element 2 is formed of an orientation control layer 309, an antiferromagnetic layer 308, a magnetic pinned layer 3051, an insulating layer 304, a diffusion ferromagnetic layer 3012, and a protective layer 300.
  • the magnetic pinned layer 3021 may be composed of a fourth magnetic layer 302, a second nonmagnetic layer 303, and a third ferromagnetic layer 304.
  • the laminated film shown in FIG. 3 is heat-treated at a temperature of 330 ° C. or higher and 420 ° C. or lower in the same manner as the method for manufacturing the tunnel magnetoresistive element 1 shown in the first embodiment. To form.
  • CoFeB is used for the first and second ferromagnetic layers during film formation
  • Ru is used for the first nonmagnetic layer.
  • the layer is CoFeBRu.
  • FIG. 3 shows a tunnel magnetoresistive element 3 having a configuration in which the stacking order of the magnetic fixed layer and the magnetic recording layer in the tunnel magnetoresistive element 1 of FIG. 1 is opposite.
  • the orientation control film 309, the second ferromagnetic layer 301, the first nonmagnetic layer 302, the first ferromagnetic layer 303, the insulating layer 304, and the third ferromagnetic layer was formed by heat treatment at 330 ° C.
  • the material used for the first ferromagnetic layer / first nonmagnetic layer / second ferromagnetic layer at the time of film formation is CoFeB / Ru / CoFeB.
  • CoFeB—Ru in which Ru is diffused is formed as a first diffusion layer and a second diffusion layer.
  • the film thicknesses of the first diffusion layer and the second diffusion layer are smaller than those of the first ferromagnetic layer and the second ferromagnetic layer, and are preferably 0.2 nm or more. At this thickness, the magnetization directions of the first and second ferromagnetic layers are coupled in parallel. nm is desirable.
  • a parallel state is formed in which the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer are ferromagnetically coupled.
  • the heat treatment time in this example is preferably 1 hour or longer.
  • FIG. 4 shows a tunnel magnetoresistive element 4 having a configuration in which the stacking order of the magnetic fixed layer and the magnetic recording layer is opposite in the tunnel magnetoresistive element 2 of FIG.
  • the tunnel magnetoresistive element 4 is formed of an orientation control layer 309, an antiferromagnetic layer 308, a diffusion ferromagnetic layer 3012, an insulating layer 304, a magnetic pinned layer 3051, and a protective layer 300.
  • the magnetic pinned layer 3021 may be composed of a fourth ferromagnetic layer 302, a second nonmagnetic layer 303, and a third ferromagnetic layer 304.
  • the laminated film shown in FIG. 6 is heat-treated at a temperature of 330 ° C. or higher and 420 ° C. or lower in the same manner as the tunnel magnetoresistive element 1 shown in the second embodiment.
  • CoFeB is used for the first and second ferromagnetic layers during film formation
  • Ru is used for the first nonmagnetic layer.
  • the layer is CoFeBRu.
  • FIG. 9 and 10 are schematic cross-sectional views showing a configuration example of a magnetic memory cell according to the present invention.
  • This magnetic memory cell is equipped with the tunnel magnetoresistive effect element 200 shown in the first to fourth embodiments as a memory cell.
  • FIG. 9 is characterized in that the tunnel magnetoresistive effect element 200 is formed on an electrode rising from the source electrode 102
  • FIG. 10 shows that the tunnel magnetoresistive effect element 200 pulls out the electrode 400 from the stack of the source electrode 102. It is formed on the top.
  • the C-MOS 100 includes two n-type semiconductors 101 and 102 and one p-type semiconductor 103.
  • An electrode 121 serving as a drain is electrically connected to the n-type semiconductor 101, and is connected to the ground via the electrode 141 and the electrode 147.
  • An electrode 122 serving as a source is electrically connected to the n-type semiconductor 102.
  • 123 is a gate electrode, and ON / OFF of the current between the source electrode 122 and the drain electrode 121 is controlled by on / off of the gate electrode 123.
  • An electrode 145, an electrode 144, an electrode 143, and an electrode 142 are stacked on the source electrode 122, and the orientation control film 309 of the tunnel magnetoresistive effect element 20 is connected through the electrode 400.
  • the bit line 401 is connected to the protective film 300 of the tunnel magnetoresistive effect element 200.
  • magnetic information is recorded by rotating the magnetization direction of the ferromagnetic recording layer of the tunnel magnetoresistive effect element 200 by a current flowing through the tunnel magnetoresistive effect element 200, so-called spin transfer torque.
  • Spin transfer torque is not a spatial external magnetic field, but is mainly the principle that spins of spin-polarized current flowing in the tunnel magnetoresistive element give torque to the magnetic moment of the ferromagnetic free layer of the tunnel magnetoresistive element. .
  • This spin-polarized current has a mechanism that is generated by the current flowing through the tunnel magnetoresistive element.
  • spin transfer torque magnetization reversal is realized by providing means for supplying current from the outside to the tunnel magnetoresistive effect element and flowing current from the means.
  • the magnetization direction of the magnetic recording layer is controlled by the direction of the current to determine the magnetization arrangement of the magnetic recording layer and the magnetic fixed layer.
  • the direction of the current flowing through the tunnel magnetoresistive effect element 200 can be set bidirectionally.
  • a spin transfer torque acts on the ferromagnetic recording layer in the tunnel magnetoresistive element 200.
  • the power at the time of writing can be reduced to about one-hundred compared with the case where a current magnetic field is used.
  • the tunnel magnetoresistive effect element 200 having E / kT of 100 or more, a magnetic memory cell capable of constituting a gigabit magnetic memory can be realized.
  • FIG. 11 is a diagram showing a configuration example of a magnetic random access memory in which the magnetic memory cells are arranged.
  • the gate electrode 123 and the bit line 401 are electrically connected to the memory cell 500.
  • Tunnel magnetoresistive effect element 1 Tunnel magnetoresistive effect element 2 Tunnel magnetoresistive effect element 3 Tunnel magnetoresistive effect element 4 Tunnel magnetoresistive effect element 5 Tunnel magnetoresistive effect element 6 Tunnel magnetoresistive effect element 100
  • C-MOS Reference Signs List 101 first n-type semiconductor 102 second n-type semiconductor 103 p-type semiconductor 122 source electrode 401 bit line 121 drain electrode 123 gate electrode 309 orientation control film 308 antiferromagnetic layer 3051 magnetic pinned layer 307 fourth ferromagnetic layer 306 Second nonmagnetic layer 305 Third ferromagnetic layer 304 Insulating layer 303 First ferromagnetic layer 302 First nonmagnetic layer 301 Second ferromagnetic layer 300 Protective layer 3011 Magnetic recording layer 3012 Diffusion ferromagnetic layer 3021 First diffusion layer 3022 Second diffusion layer 141 Electrode wiring 142 Electrode wiring 143 Electrode wiring 144 Electrode wiring 145 Electrode wiring 146 Electrode wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

 不揮発性磁気メモリに、高い熱安定性をもつ記録層を適用した高出力なトンネル磁気抵抗効果素子を装備し、スピントランスファートルクによる書込み方式を適用する。トンネル磁気抵抗効果素子1は、CoとFeとBを含有する体心立方構造の第一の強磁性層303と第二の強磁性層301と第一の非磁性膜302と第一の拡散層3022と第二の拡散層3021で構成される磁気記録層を持ち、磁気記録層に(100)配向した岩塩構造のMgO絶縁膜304を介して磁気固定層3051を積層した構造を有する。

Description

トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
 本発明は、高い熱安定性を有する高出力トンネル磁気抵抗素子及びそれを装備した低消費電力不揮発性磁気メモリに関するものである。
 将来の高集積磁気メモリに適用されるトンネル磁気抵抗効果素子として、Alの酸化物を絶縁体に用いたトンネル磁気抵抗効果素子(T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995))よりも数倍大きい磁気抵抗比が得られる絶縁膜に酸化マグネシウムを用いたトンネル磁気抵抗効果素子(S. Yuasa. et al., Nature Material 3, 868(2004))が開示されている。また、従来の不揮発性磁気メモリは、MOSFET上にトンネル磁気抵抗効果素子を形成したメモリセルにより構成される。スイッチングはMOSFETを利用し、ビット線とワード線に通電させることにより発生する電流誘起の空間磁場を使ってトンネル磁気抵抗効果素子の磁化方向を回転させ、情報を書込み、トンネル磁気抵抗効果素子の出力電圧により情報を読み出す方式である。また、上記電流誘起の空間磁場を使った磁化回転のほかに、直接磁気抵抗効果素子に電流を流すことにより磁化を回転させるいわゆるスピントランスファートルク磁化反転あるいは同義であるスピン注入磁化反転方式があり、例えば米国特許第5,695,864号明細書あるいは特開2002-305337号公報に開示されている。特開2007-294737号広報には、外部からの侵入磁界に対して安定にスピントランスファートルク磁化反転動作させる目的で、非磁性膜を介して2層の強磁性膜を積層した記録層を適用したトンネル磁気抵抗効果素子が開示されている。
J. Magn. Magn. Mater. 139, L231 (1995) Nature Material 3, 868(2004)
米国特許第5,695,864号明細書 特開2002-305337号公報 特開2007-294737号公報
 高い信頼性をもつ低消費電力不揮発性磁気メモリの実現には、高出力トンネル磁気抵抗効果素子の記録層において高い熱安定性と、スピントランスファートルク磁化反転による書込み方式とを同時に満足する技術を開発する必要がある。
 本発明は、このような要請に応えることのできる高い熱安定性を有するトンネル磁気抵抗効果素子及びそれを用いた不揮発性磁気メモリを提供することを目的とする。
 本発明は、トンネル磁気抵抗効果素子の強磁性膜にBを含むCoあるいはFeの体心立方格子をもつ化合物強磁性膜を適用し、絶縁層に(100)配向した岩塩構造酸化マグネシウムを適用し、非磁性層を挟んで設けられた第一の拡散層と第二の拡散層、第一の拡散層に隣接した第一の強磁性層と第二の拡散層に隣接した第二の強磁性層からなり、前記第一の強磁性層と第二の強磁性層が強磁性結合した強磁性記録層を適用する。すなわち、本発明によるトンネル磁気抵抗効果素子は、絶縁層と、絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、絶縁層は(100)配向した岩塩構造のMgO膜であり、強磁性記録層は、非磁性導電層を挟んで設けられた第一の拡散層と第二の拡散層、第一の拡散層に隣接した第一の強磁性層と第二の拡散層に隣接した第二の強磁性層からなり、前記第一の強磁性層は前記絶縁層に隣接し、前記第二の強磁性層と第一の強磁性層は強磁性結合しており、強磁性固定層はCoとFeとBを含有する体心立方構造の膜を有する。
 絶縁層に(100)配向した岩塩構造のMgO膜を用いない場合には、磁気抵抗比は著しく低下し、磁気メモリセルあるいは磁気ランダムアクセスメモリに最低限必要な200mVの読み出し電圧が得られない。
 本発明のトンネル磁気抵抗効果素子は、磁気メモリセルや磁気ランダムアクセスメモリに適用することができる。
 本発明によると、高い熱安定性を有し、絶縁耐圧の高いトンネル磁気抵抗効果素子が得られる。また、そのトンネル磁気抵抗効果素子を磁気メモリに装備することにより、高い熱安定性、すなわち磁気情報の保持時間の長い不揮発性メモリを実現することが可能である。
本発明のトンネル磁気抵抗効果素子の第一の構成例を示した図である。 本発明のトンネル磁気抵抗効果素子の第二の構成例を示した図である。 本発明のトンネル磁気抵抗効果素子の第三の構成例を示した図である。 本発明のトンネル磁気抵抗効果素子の第四の構成例を示した図である。 本発明のトンネル磁気抵抗効果素子の第一、第二の構成の製膜直後の構成例を示した図である。 本発明のトンネル磁気抵抗効果素子の第三、第四の構成の製膜直後の構成例を示した図である。 本発明のトンネル磁気抵抗効果素子における書込み電流(a)、熱安定性(b)の熱処理温度依存性例を示した図である。 本発明のトンネル磁気抵抗効果素子におけるアステロイド特性と磁気記録層の積層状態の熱処理温度依存性を示した図である。 本発明の磁気メモリセルの構成例を示した図である。 本発明の磁気メモリセルの構成例を示した図である。 本発明の磁気ランダムアクセスメモリの構成例を示した図である。
 以下、図面を参照して本発明の実施の形態を説明する。以下に述べるトンネル磁気抵抗効果素子では、その強磁性記録層の磁化反転(スイッチング)を空間的な外部磁界ではなく主として、トンネル磁気抵抗効果素子中を流れるスピン偏極した電流のスピンが強磁性記録層の磁気モーメントにトルクを与えることにより行う。このスピン偏極した電流は、トンネル磁気抵抗効果素子に電流を流すこと自体で発生する。したがって、トンネル磁気抵抗効果素子に外部からトンネル磁気抵抗効果素子の各層の積層方向に電流を流すことによりスピントランスファートルク磁化反転は実現される。また、その電流の方向により磁気記録層の磁化方向を制御し、磁気記録層と磁気固定層の磁化配列を決定する。磁気記録層から磁気固定層に電流を流す場合は、磁気固定層と磁気記録層が平行配列、磁気固定層から磁気記録層に電流を流す場合は、磁化配列は反平行配列になる。以下では、スピントランスファートルク磁化反転の起こる電流密度の閾値をJcと定義した。
 [実施例1]
 図1は、本発明によるトンネル磁気抵抗効果素子の一例を示す断面模式図である。本実施例では、トンネル磁気抵抗効果素子1はスパッタリング法を用いて作製した。このトンネル磁気抵抗効果素子1は、配向制御層309、反強磁性層308、磁気固定層3051、絶縁層304、第一の強磁性層303、第一の拡散層3022、第一の非磁性層302、第二の拡散層3021、第二の強磁性層301、保護層300より形成される。ここで、第一の強磁性層303、第一の拡散層3022、第一の非磁性層302、第二の拡散層3021、第二の強磁性層301の積層構造で磁気記録層が形成される。磁気固定層3021は、第四の強磁性層302、第二の非磁性膜303、第三の強磁性層304で構成される場合もある。
 上記のトンネル磁気抵抗効果素子は、図3に示した積層膜を330度以上~420度以下の温度で熱処理することにより形成する。図3は、スパッタリング法を用いて製膜され熱処理を行う前、あるいは、330度以下の熱処理が施されたトンネル磁気抵抗効果素子を示し、配向制御層309、反強磁性層308、磁気固定層3051、絶縁層304、第一の強磁性層303、第一の拡散層3022、第一の非磁性層302、第二の拡散層3021、第二の強磁性層301、保護層300の順に積層されている。
 配向制御層309はNiFeにより形成したが、Ta/NiFeの2層膜、またTa/Ru/Ta/NiFe、Ta/NiFeCrなど、上記反強磁性層308の配向性を向上させ、安定した反強磁性結合を実現することのできる他の材料を用いてもよい。反強磁性層308にはMnIr(8nm)を用いたが、膜厚は4~15nmの範囲で選択可能である。また、MnPt、MnFeなど、Mn化合物で構成される反強磁性層を用いても安定に反強磁性結合を実現できる。第四の強磁性層307にはCoFe(2nm)を、第二の非磁性層306にはRu(0.8nm)を、第三の強磁性層305には体心立方格子をもつCoFeB(3nm)を用いた。この体心立方格子のCoFeBは、製膜時は非結晶の膜である。絶縁層に(100)のMgO膜を適用している場合、330度以上の熱処理により製膜時は非結晶であったCoFeBが結晶化することによって体心立方格子のCoFeBに形成される。第四の強磁性層307のCoFeの組成比は、Co組成を50~90atm%の間とした。この組成範囲において、上記反強磁性層と安定した反強磁性結合を実現できる。第四の強磁性層307、第二の非磁性層306、第三の強磁性層305は、第四の強磁性層307と第三の強磁性層305の磁化が反強磁性結合するような材料を選択し、それぞれの膜厚は第四の強磁性層307と第三の強磁性層305の磁化の大きさが等しくなるように選択した。
 絶縁層305は、岩塩構造をもつ酸化マグネシウム結晶膜であり、(100)方向に配向度の高い膜である。また、完全に(100)に配向した単結晶膜であってもよい。絶縁層の膜厚は0.6nm~3nmの範囲とした。絶縁層305の膜厚を前記の範囲とすることにより、トンネル磁気抵抗効果素子1において任意の電気抵抗を選択することが可能である。第一の強磁性層303にはCoFeBが用いられ、330度以上の熱処理により結晶化し、第三の強磁性層305の場合と同様に体心立方格子を得る。第一の強磁性層303と第二の強磁性層301のCoFeBのCoとFeの組成は25:75~75:25の範囲とするのが好ましい。この組成範囲では体心立方構造が安定に存在し、かつ絶縁層305にMgOを適用したトンネル磁気抵抗効果素子1では、トンネル磁気抵抗比に寄与するスピン分極率を向上できるためである。第一の非磁性層302は、Ruを用いることが望ましい。製膜時の第一の強磁性層/第一の非磁性層/第二の強磁性層に使用する材料はCoFeB/Ru/CoFeBであり、これを330度以上の熱処理を行うことにより、CoFeB中にRuが拡散したCoFeB-Ruが第一の拡散層と第二の拡散層として形成する。その第一の拡散層と第二の拡散層の膜厚は第一の強磁性層と第二の強磁性層よりも小さく、0.2nm以上であることが望ましい。この膜厚のときに、第一の強磁性層と第二の強磁性層の磁化方向が平行結合する。さらに、330度以上の熱処理を行った結果、第一の強磁性層と第二の強磁性層の磁化方向が強磁性結合した平行状態を形成する。本実施例における熱処理時間は1時間以上が好ましい。
 図7は、上記の例のように、Ta/Ru/Ta/NiFe/MnIr/CoFe/Ru/CoFeB/MgO/CoFeB/Ru/CoFeB/保護膜の順に積層したトンネル磁気抵抗効果素子を300℃、325℃、350℃でアニールした時のスピントランスファートルクによる磁化反転の閾値電流密度と磁気記録層の熱安定性の指標を示すE/kBTの値をアニール温度(Ta)に対してプロットした結果を示す。これによると、Taが350℃において、E/kBTが100以上の値が得られる。一方で、Taが330℃以下である場合のE/kBT(60~80)に比べて飛躍的に大きくなる。
 図8は、磁気記録層を構成する第一の強磁性層であるCoFeBと第二の強磁性層であるCoFeBの磁化配列を調べるために測定したアステロイド特性のアニール温度による変化を示したものである。図8(a)-1、(b)-1、(c)-1がアステロイド特性を示す。図8(a)-1と図8(b)-1のアステロイド特性は、それぞれ図8(a)-2、図8(b)-2の示すように第一の強磁性層と第二の強磁性層の磁化が反平行状態であることを意味している。一方、Ta=350℃の場合、アステロイド特性は図8(c)-1に示すような菱側形状である。これは、図8(c)-2のように第一の強磁性層と第二の強磁性層の磁化方向が350℃アニールにより形成された第一の拡散層と第二の拡散層と拡散せずに残った第一の非磁性層を介して平行配列していることを意味している。あるいは、図8(c)-3のように、製膜時に作製した磁気記録層の非磁性層(Ru)の全てが拡散して一層の強磁性層となっていることを意味している。したがって、図7に示したTa=350℃のときのE/kBTの向上は、磁気記録層が図8(c)-2、図8(c)-3に示したような構造になることで実現されたものと理解される。また、第一の強磁性層と第二の強磁性層に使用するCoFeBはTa=350℃の場合結晶化して体心立方格子の結晶の状態になる。
 CoFeBのBの組成比は、結晶化が安定となるB組成が10~30atm%の間とすることが望ましい。さらに、第一の強磁性層303、第二の強磁性層301にはCoFeB以外に、CoFeの単層膜、NiFeの単層膜、CoFe/NiFeあるいはCoFeB/NiFeさらにCoFeB/CoFeの2層膜を用いてもよい。保護層300は、Ta(5nm)/Ru(5nm)の2層膜で形成した。
 [実施例2]
 図2は、本発明によるトンネル磁気抵抗効果素子1において、製膜時の第一の非磁性層が330℃以上の熱処理により全て第一の強磁性層と第二の強磁性層に拡散し、一層の拡散強磁性層を形成した例を示す断面模式図である。このトンネル磁気抵抗効果素子2は、配向制御層309、反強磁性層308、磁気固定層3051、絶縁層304、拡散強磁性層3012、保護層300より形成される。磁気固定層3021は、第四の磁性層302、第二の非磁性層303、第三の強磁性層304で構成される場合もある。
 上記のトンネル磁気抵抗効果素子2は、実施例1で示したトンネル磁気抵抗効果素子1の作製方法と同様に、図3に示した積層膜を330度以上~420度以下の温度で熱処理することにより形成する。
 トンネル磁気抵抗効果素子2においても、トンネル磁気抵抗効果素子1と同様に図7に示すようにTa=350℃において100以上のE/kTが実現可能である。製膜時の第一の強磁性層と第二の強磁性層にCoFeB、第一の非磁性層にRuを使用した場合がもっとも好ましく、330℃以上のアニールにより結果として形成される拡散強磁性層はCoFeBRuである。
 [実施例3]
 図3は、図1のトンネル磁気抵抗効果素子1において磁気固定層と磁気記録層の積層順が反対の構成をもつトンネル磁気抵抗効果素子3を示す。
 本実施例では図6に示すように、配向制御膜309、第二の強磁性層301、第一の非磁性層302、第一の強磁性層303、絶縁層304、第三の強磁性層305、第二の非磁性層306、第四の強磁性層307、反強磁性層308、保護層300の順に積層した積層膜を、330℃において熱処理を行って形成した。
 本実施例により形成したトンネル磁気抵抗効果素子3においても、トンネル磁気抵抗効果素子1およびトンネル磁気抵抗効果2と同様に、図7に示すようにTa=350℃において100以上のE/kTが実現可能である。
 第一の非磁性層302は、Ruを用いることが望ましい。製膜時の第一の強磁性層/第一の非磁性層/第二の強磁性層に使用する材料はCoFeB/Ru/CoFeBであり、これを330度以上の熱処理を行うことにより、CoFeB中にRuが拡散したCoFeB-Ruが第一の拡散層と第二の拡散層として形成する。その第一の拡散層と第二の拡散層の膜厚は第一の強磁性層と第二の強磁性層よりも小さく、0.2nm以上であることが望ましい。この膜厚のときに、第一の強磁性層と第二の強磁性層の磁化方向が平行結合する。nmが望ましい。さらに、330度以上の熱処理を行った結果、第一の強磁性層と第二の強磁性層の磁化方向が強磁性結合した平行状態を形成する。本実施例における熱処理時間は1時間以上が好ましい。
 [実施例4]
 図4は、図2のトンネル磁気抵抗効果素子2において磁気固定層と磁気記録層の積層順が反対の構成をもつトンネル磁気抵抗効果素子4を示す。このトンネル磁気抵抗効果素子4は、配向制御層309、反強磁性層308、拡散強磁性層3012、絶縁層304、磁気固定層3051、保護層300より形成される。磁気固定層3021は、第四の強磁性層302、第二の非磁性層303、第三の強磁性層304で構成される場合もある。
 上記のトンネル磁気抵抗効果素子4は、実施例2で示したトンネル磁気抵抗効果素子1の作製方法と同様に、図6に示した積層膜を330℃以上~420℃以下の温度で熱処理することにより形成する。トンネル磁気抵抗効果素子2においても、トンネル磁気抵抗効果素子1と同様に図7に示すようにTa=350℃において100以上のE/kTが実現可能である。製膜時の第一の強磁性層と第二の強磁性層にCoFeB、第一の非磁性層にRuを使用した場合がもっとも好ましく、330℃以上のアニールにより結果として形成される拡散強磁性層はCoFeBRuである。
 図9と図10は本発明による磁気メモリセルの構成例を示す断面模式図である。この磁気メモリセルは、メモリセルとして実施例1から4に示したトンネル磁気抵抗効果素子200を搭載している。図9は、トンネル磁気抵抗効果素子200がソース電極102から立ちあがった電極上に形成されることを特徴とし、図10はトンネル磁気抵抗効果素子200がソース電極102の積層上から電極400を引き出した上に形成されることを特徴とする。
 C-MOS100は、2つのn型半導体101、102と一つのp型半導体103からなる。n型半導体101にドレインとなる電極121が電気的に接続され、電極141及び電極147を介してグラウンドに接続されている。n型半導体102には、ソースとなる電極122が電気的に接続されている。さらに123はゲート電極であり、このゲート電極123のon/offによりソース電極122とドレイン電極121の間の電流のON/OFFを制御する。上記ソース電極122に電極145、電極144、電極143、電極142が積層され、電極400を介してトンネル磁気抵抗効果素子20の配向制御膜309が接続されている。
 ビット線401は上記トンネル磁気抵抗効果素子200の保護膜300に接続されている。本実施例の磁気メモリセルでは、トンネル磁気抵抗効果素子200に流れる電流、いわゆるスピントランスファートルクによりトンネル磁気抵抗効果素子200の強磁性記録層の磁化方向を回転し磁気的情報を記録する。スピントランスファートルクは空間的な外部磁界ではなく主として、トンネル磁気抵抗効果素子中を流れるスピン偏極した電流のスピンが前記トンネル磁気抵抗効果素子の強磁性自由層の磁気モーメントにトルクを与える原理である。このスピン偏極した電流はトンネル磁気抵抗効果素子に電流を流すこと自身で発生するメカニズムをもつ。したがって、トンネル磁気抵抗効果素子に外部から電流を供給する手段を備え、その手段から電流を流すことによりスピントランスファートルク磁化反転は実現される。その電流の方向により磁気記録層の磁化方向を制御し、磁気記録層と磁気固定層の磁化配列を決定する。本実施例では、C-MOS100を使用していることにより、トンネル磁気抵抗効果素子200に流れる電流の向きを双方向に設定できる。磁気記録層から磁気固定層に電流を流す場合は、磁気固定層と磁気記録層が平行配列、磁気固定層から磁気記録層に電流を流す場合は、磁化配列は反平行配列になる。本実施例では、ビット線212と電極47の間に電流が流れることによりトンネル磁気抵抗効果素子200中の強磁性記録層にスピントランスファートルクが作用する。スピントランスファートルクにより書込みを行った場合、書込み時の電力は電流磁界を用いた場合に比べ百分の一程度まで低減可能である。また、100以上のE/kTを有するトンネル磁気抵抗効果素子200を装備することにより、ギガビットの磁気メモリを構成可能な磁気メモリセルを実現できる。
 図11は、上記磁気メモリセルを配置した磁気ランダムアクセスメモリの構成例を示す図である。ゲート電極123とビット線401がメモリセル500に電気的に接続されている。前記実施例に記載した磁気メモリセルを配置することにより前記磁気メモリは低消費電力で動作が可能であり、ギガビット級の高密度磁気メモリを実現可能である。
 1 トンネル磁気抵抗効果素子
 2 トンネル磁気抵抗効果素子
 3 トンネル磁気抵抗効果素子
 4 トンネル磁気抵抗効果素子
 5 トンネル磁気抵抗効果素子
 6 トンネル磁気抵抗効果素子
 100 C-MOS
 101 第一のn型半導体
 102 第二のn型半導体
 103 p型半導体
 122 ソース電極
 401 ビット線
 121 ドレイン電極
 123 ゲート電極
 309 配向制御膜
 308 反強磁性層
 3051 磁気固定層
 307 第四の強磁性層
 306 第二の非磁性層
 305 第三の強磁性層
 304 絶縁層
 303 第一の強磁性層
 302 第一の非磁性層
 301 第二の強磁性層
 300 保護層
 3011 磁気記録層
 3012 拡散強磁性層
 3021 第一の拡散層
 3022 第二の拡散層
 141 電極配線
 142 電極配線
 143 電極配線
 144 電極配線
 145 電極配線
 146 電極配線

Claims (15)

  1.  絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
     前記絶縁層は(100)配向した岩塩構造のMgO膜であり、
     前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の拡散層と第二の拡散層と第一の拡散層に隣接した第一の強磁性層と第二の拡散層に隣接した第二の強磁性層からなり、前記第一の強磁性層は前記絶縁層に隣接し、前記第二の強磁性層と第一の強磁性層は強磁性結合しており、
     前記強磁性固定層はCoとFeとBを含有する体心立方構造の膜を有することを特徴とするトンネル磁気抵抗効果素子。
  2.  請求項1記載のトンネル磁気抵抗効果素子において、前記第一の強磁性層と前記第二の強磁性層はCoとFeとBを含有する体心立方構造の膜であり、
     前記第一の拡散層と第二の拡散層はCoとFeとBとRuを含有することを特徴とし、その膜厚は、第一の強磁性層と第二の強磁性層よりも小さく、0.2nm以上であることを特徴とするトンネル磁気抵抗効果素子。
  3.  請求項1記載のトンネル磁気抵抗効果素子は、スパッタリング法により製膜され、製膜時、絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
     前記絶縁層は(100)配向した岩塩構造のMgO膜であり、前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の強磁性層と第二の強磁性層からなる膜を、330度以上、420度以下の温度で熱処理することにより形成されることを特徴とするトンネル磁気抵抗効果素子。
  4.  絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
     前記絶縁層は(100)配向した岩塩構造のMgO膜であり、
     前記強磁性記録層は、CoとFeとBと拡散したRuを含有する体心立方構造の膜を有することを特徴とするトンネル磁気抵抗効果素子。
  5.  請求項1から請求項4のいずれか一項に記載のトンネル磁気抵抗効果素子において、前記強磁性固定層は反強磁製層の上に形成され、前記絶縁層は前記強磁性固定層の上に形成され、前記強磁性記録層は前記絶縁層の上に形成され、前記強磁性固定層は、非磁性層を挟んで反強磁性結合した2層の強磁性層からなることを特徴とするトンネル磁気抵抗効果素子。
  6.  請求項1から請求項4のいずれか一項に記載のトンネル磁気抵抗効果素子において、前記絶縁層は前記強磁性記録層の上に形成され、前記強磁性固定層は前記絶縁層の上に形成され、前記強磁性固定層の上に反強磁性層が形成され、前記強磁性固定層は、非磁性層を挟んで反強磁性結合した2層の強磁性層からなることを特徴とするトンネル磁気抵抗効果素子。
  7.  絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、前記絶縁層は(100)配向した岩塩構造のMgO膜であり、前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の拡散層と第二の拡散層、第一の拡散層に隣接した第一の強磁性層と第二の拡散層に隣接した第二の強磁性層からなり、前記第一の強磁性層は前記絶縁層に隣接し、前記第二の強磁性層と第一の強磁性層は強磁性結合しており、前記強磁性膜固定層はCoとFeとBを含有する体心立方構造の膜を有するトンネル磁気抵抗効果素子と、
     前記強磁性記録層をスピントランスファートルクにより磁化反転させるための電流を前記トンネル磁気抵抗効果素子に流す電極を備え、
     前記電流の方向により強磁性記録層の磁化の方向を制御し、
     前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備えることを特徴とする磁気メモリセル。
  8.  請求項7記載の磁気メモリセルにおいて、前記第一の強磁性層と前記第二の強磁性層はCoとFeとBを含有する体心立方構造の膜であり、前記第一の拡散層と第二の拡散層はCoとFeとBとRuを含有することを特徴とし、その膜厚が第一の強磁性層と第二の強磁性層よりも小さく、0.2nm以上であることを特徴とする磁気メモリセル。
  9.  請求項8記載のトンネル磁気抵抗効果素子は、スパッタリング法により製膜され、製膜時、絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
     前記絶縁層は(100)配向した岩塩構造のMgO膜であり、前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の強磁性層と第二の強磁性層からなる膜を、330度以上、420度以下の温度で熱処理することにより形成されることを特徴とする磁気メモリセル。
  10.  絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
     前記絶縁層は(100)配向した岩塩構造のMgO膜であり、
     前記強磁性記録層は、CoとFeとBと拡散したRuを含有する体心立方構造の膜を有することを特徴とするトンネル磁気抵抗効果素子と
     前記強磁性記録層をスピントランスファートルクにより磁化反転させるための電流を前記トンネル磁気抵抗効果素子に流す電極を備え、
     前記電流の方向により強磁性記録層の磁化の方向を制御し、
     前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備えることを特徴とする磁気メモリセル。
  11.  複数の磁気メモリセルと、所望の磁気メモリセルを選択する手段とを備え、
     前記磁気メモリセルは、
     絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、前記絶縁層は(100)配向した岩塩構造のMgO膜であり、前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の拡散層と第二の拡散層、第一の拡散層に隣接した第一の強磁性層と第二の拡散層に隣接した第二の強磁性層からなり、前記第一の強磁性層は前記絶縁層に隣接し、前記第二の強磁性層と第一の強磁性層は強磁性結合しており、前記強磁性膜固定層はCoとFeとBを含有する体心立方構造の膜を有するトンネル磁気抵抗効果素子と、
     前記強磁性自由層をスピントランスファートルクにより磁化反転させるための電流を前記トンネル磁気抵抗効果素子に流す電極と
     前記電流の方向により強磁性記録層の磁化の方向を制御することを特徴とする磁気ランダムアクセスメモリ。
  12.  請求項10記載の磁気ランダムアクセスメモリにおいて、前記第一の強磁性層と前記第二の強磁性層はCoとFeとBを含有する体心立方構造の膜であり、前記第一の拡散層と第二の拡散層はCoとFeとBとRuを含有することを特徴とし、その膜厚が***であることを特徴とする磁気メモリセル。
  13.  請求項10記載のトンネル磁気抵抗効果素子は、スパッタリング法により製膜され、製膜時、絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
     前記絶縁層は(100)配向した岩塩構造のMgO膜であり、前記強磁性記録層は、非磁性導電層を挟んで設けられた第一の強磁性層と第二の強磁性層からなる膜を、330度以上、420度以下の温度で熱処理することにより形成されることを特徴とする磁気ランダムアクセスメモリ。
  14.  複数の磁気メモリセルと、所望の磁気メモリセルを選択する手段とを備え、
     前記磁気メモリセルは、
     絶縁層と、前記絶縁層を挟んで設けられた強磁性記録層と強磁性固定層とを有し、
    前記絶縁層は(100)配向した岩塩構造のMgO膜であり、
     前記強磁性記録層は、CoとFeとBと拡散したRuを含有する体心立方構造の膜を有することを特徴とするトンネル磁気抵抗効果素子と、
     前記強磁性自由層をスピントランスファートルクにより磁化反転させるための電流を前記トンネル磁気抵抗効果素子に流す電極と
     前記電流の方向により強磁性記録層の磁化の方向を制御することを特徴とする磁気ランダムアクセスメモリ。
  15.  請求項11から請求項14のいずれか一項に記載の磁気ランダムアクセスメモリにおいて、スピントランスファートルクにより磁気情報を記録することを特徴とする磁気ランダムアクセスメモリ。
PCT/JP2009/058335 2009-04-28 2009-04-28 トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ WO2010125641A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/058335 WO2010125641A1 (ja) 2009-04-28 2009-04-28 トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP2011511210A JP5562946B2 (ja) 2009-04-28 2009-04-28 トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
TW099113301A TWI458087B (zh) 2009-04-28 2010-04-27 The magnetoresistive effect element is used to use the magnetic memory cell and the random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058335 WO2010125641A1 (ja) 2009-04-28 2009-04-28 トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ

Publications (1)

Publication Number Publication Date
WO2010125641A1 true WO2010125641A1 (ja) 2010-11-04

Family

ID=43031808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058335 WO2010125641A1 (ja) 2009-04-28 2009-04-28 トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ

Country Status (3)

Country Link
JP (1) JP5562946B2 (ja)
TW (1) TWI458087B (ja)
WO (1) WO2010125641A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209386B2 (en) 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
JP2016046492A (ja) * 2014-08-26 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114868A (ja) * 2004-09-17 2006-04-27 Toshiba Corp 磁気記録素子及びそれを用いた磁気記録装置
JP2008198792A (ja) * 2007-02-13 2008-08-28 Hitachi Ltd 磁気抵抗効果素子、それを用いた磁気メモリセル及び磁気ランダムアクセスメモリ
JP2009004692A (ja) * 2007-06-25 2009-01-08 Fujitsu Ltd 磁気抵抗効果素子及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203701A (ja) * 2004-01-19 2005-07-28 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114868A (ja) * 2004-09-17 2006-04-27 Toshiba Corp 磁気記録素子及びそれを用いた磁気記録装置
JP2008198792A (ja) * 2007-02-13 2008-08-28 Hitachi Ltd 磁気抵抗効果素子、それを用いた磁気メモリセル及び磁気ランダムアクセスメモリ
JP2009004692A (ja) * 2007-06-25 2009-01-08 Fujitsu Ltd 磁気抵抗効果素子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209386B2 (en) 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
JP2016046492A (ja) * 2014-08-26 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
TW201121034A (en) 2011-06-16
TWI458087B (zh) 2014-10-21
JP5562946B2 (ja) 2014-07-30
JPWO2010125641A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5096702B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP5279384B2 (ja) Stt−mtj−mramセルおよびその製造方法
US7894244B2 (en) Tunnel magnetic resistance device, and magnetic memory cell and magnetic random access memory using the same
US8072800B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
US10439133B2 (en) Method and system for providing a magnetic junction having a low damping hybrid free layer
JP5867030B2 (ja) 記憶素子、記憶装置
US20180226113A1 (en) Memory element and memory apparatus
TWI530945B (zh) Memory elements and memory devices
US11776726B2 (en) Dipole-coupled spin-orbit torque structure
KR20140143362A (ko) 자기저항 효과 소자 및 자기 메모리
TWI487155B (zh) Memory elements and memory devices
WO2009110119A1 (ja) 強磁性トンネル接合素子および強磁性トンネル接合素子の駆動方法
JPWO2010032574A1 (ja) 磁気記録素子、磁気メモリセル及び磁気ランダムアクセスメモリ
JP2018093059A (ja) スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ
WO2011036795A1 (ja) 磁気抵抗効果素子および磁気メモリ
CN104662686A (zh) 存储元件、存储装置和磁头
JPWO2012004883A1 (ja) 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP2013115400A (ja) 記憶素子、記憶装置
JP2013115399A (ja) 記憶素子、記憶装置
US20130163315A1 (en) Memory element and memory apparatus
JP5562946B2 (ja) トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP2013016820A (ja) トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP5591888B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP5030888B2 (ja) 共鳴トンネル磁気抵抗効果素子、磁気メモリセル及び磁気ランダムアクセスメモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843985

Country of ref document: EP

Kind code of ref document: A1