TW201121034A - Tunneling magnetic resistance effect element, and magnetic memory cell and random access memory using the element - Google Patents

Tunneling magnetic resistance effect element, and magnetic memory cell and random access memory using the element Download PDF

Info

Publication number
TW201121034A
TW201121034A TW099113301A TW99113301A TW201121034A TW 201121034 A TW201121034 A TW 201121034A TW 099113301 A TW099113301 A TW 099113301A TW 99113301 A TW99113301 A TW 99113301A TW 201121034 A TW201121034 A TW 201121034A
Authority
TW
Taiwan
Prior art keywords
layer
ferromagnetic
effect element
magnetoresistance effect
magnetic
Prior art date
Application number
TW099113301A
Other languages
Chinese (zh)
Other versions
TWI458087B (en
Inventor
Hideo Ohno
Shoji Ikeda
Jun Hayakawa
Hiroyuki Yamamoto
Original Assignee
Univ Tohoku
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tohoku, Hitachi Ltd filed Critical Univ Tohoku
Publication of TW201121034A publication Critical patent/TW201121034A/en
Application granted granted Critical
Publication of TWI458087B publication Critical patent/TWI458087B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

Provided is a nonvolatile magnetic memory including a tunneling magnetic resistance effect element of a high output, to which a recording layer of a high heat stability is applied, and a writing method of a spin transfer torque is applied to the nonvolatile magnetic memory. The tunneling magnetic resistance effect element (1) is constituted to have a magnetically recording layer made of a body-centered cubic structure containing Co, Fe and B and including a first ferromagnetic layer (303), a second ferromagnetic layer (301), a first non-magnetic film (302), a first diffusion layer (3022) and a second diffusion layer (3021), and to have a magnetically fixed layer (3051) laminated on the magnetically recording layer through a MgO insulating film (304) having a rock salt structure of a (100) orientation.

Description

201121034 六、發明說明: 【發明所屬之技術領域】 本發明係關於具有高的熱安定性之高輸出穿隧磁阻效 果元件及裝備了彼之低耗電非易失性磁記憶體。 【先前技術】 作爲被適用於將來的高集積度磁氣記憶體之穿隧磁阻 Q 效果元件’已被揭示了在可以得到比把鋁之氧化物用於絕 緣體之穿險磁阻效果兀件(T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139,L23 1 ( 1 995))更大數倍磁阻比之把 氧化鎂用於絕緣膜上的穿險磁阻效果元件(S. Yuasa. et al·,Nature Material 3,868(2004))。此外,從前的非易失 性磁氣記億體,係藉由在MO SFET上形成穿隧磁阻效果元 件之記憶胞而被構成的。開關(切換)是利用MOSFET,使 用藉由對位元線(bit line)與字線(word line)通電而產生的 〇 電流誘發之空間磁場而使穿隧磁阻效果元件之磁化方向旋 轉,寫入資訊,藉由穿隧磁阻效果元件之輸出電壓讀出資 訊的方式。此外,除了使用前述電流誘發的空間磁場之磁 化旋轉以外,還有藉由直接使電流流至磁阻效果元件使磁 化旋轉之所謂的自旋轉移力矩(spin transfer torque)磁化反 轉或者是同義之自旋注入磁化反轉方式,例如揭示於美國 專利第5,695,864號說明書或者日本特開2002-3 053 3 7號 公報。於日本特開2007-294737號公報,揭示了對來自外 部的侵入磁場在安定地使自旋轉移力矩(spin transfer -5- 201121034 torque)磁化反轉動作之目的下’適用了中介著非磁性膜而 層積的2層強磁性膜的記錄層之穿隧磁阻效果元件。 [先前技術文獻] [非專利文獻] [非專利文獻 1]J. Magn. Magn. Mater. 139, L23 1 (1 995) [非專利文獻 2]Nature Material 3,868(2004) [專利文獻] [專利文獻1]美國專利第5,695,864號說明書 [專利文獻2]日本專利特開2002-305337號公報 [專利文獻3]日本專利特開2007-294737號公報 【發明內容】 [發明所欲解決之課題] 要實現具有高可信賴性的低耗電量非易失性磁記憶體 ,必須要開發出在高輸出之穿隧磁阻效果元件之記錄層同 時滿足高的熱安定性,與自旋轉移力矩(spin transfer torque)磁化反轉之寫入方式的技術。 本發明之目的在於提供可以因應於這樣的要求之具有 高的熱安定性之穿隧磁阻效果元件及使用該元件之非易失 性磁記憶體。 [供解決課題之手段] 本發明,適用於在穿隧磁阻效果元件之強磁性膜適用 具有含硼的鈷或鐵之體心立方晶格之化合物強磁性膜,於· -6- 201121034 絕緣層適用(100)配向之岩鹽構造的氧化鎂,由挾著非磁性 導電層而設的第一擴散層與第二擴散層、鄰接於第一擴散 層的第一強磁性層與鄰接於第二擴散層的第二強磁性層所 構成,前述第一強磁性層與前述第二強磁性層係適用強磁 性結合的強磁性記錄層。亦即,根據本發明之穿隧磁阻效 果元件,具有絕緣層,及挾著絕緣層而被設置的強磁性記 錄層與強磁性固定層;絕緣層爲(1 0 0)配向之岩鹽構造的氧 0 化鎂膜,強磁性記錄層,係由挾著非磁性導電層而設的第 一擴散層與第二擴散層、鄰接於第一擴散層的第一強磁性 層與鄰接於第二擴散層的第二強磁性層所構成,前述第一 強磁性層鄰接於前述絕緣層,前述第二強磁性層與第一強 磁性層係強磁性結合著,強磁性固定層具有含鈷與鐵與硼 的體心立方構造之膜。 於絕緣層不使用(100)配向的岩鹽構造之氧化鎂膜的場 合,磁阻比顯著降低,磁記憶胞或磁隨機存取記憶體無法 〇 得到最低限度所必要的200mV之讀出電壓。 本發明之穿隧磁阻效果元件,可以適用於磁記憶胞或 磁隨機存取記憶體。 [發明之效果] 根據本發明,可得具有高的熱安定性,絕緣耐壓高的 穿隧磁阻效果元件。此外,藉由將該穿隧磁阻效果元件裝 備於磁記憶體,可以實現具有高的熱安定性,亦即磁氣資 訊的保持時間很長的非易失性記憶體。 201121034 【實施方式】 以下,參照圖面說明本發明之實施型態。在以下所述 之穿隧磁阻效果元件’其強磁性記錄層之磁化反轉(切換) 不是空間上的外部磁場’主要是藉由流動於穿隧磁阻效果 元件中的自旋偏極的電流之自旋對強磁性記錄層的磁矩 (electromagnetic moment)提供扭矩(torque)而進行的。此 自旋偏極的電流,在對穿隧磁阻效果元件流以電流時會自 體產生。亦即,藉由對穿隧磁阻效果元件由外部對穿隧磁 阻效果元件之各層的層積方向流以電流而使自旋轉移力矩 磁化反轉被實現。此外’藉由該電流的方向控制磁氣記錄 層的磁化方向,決定磁氣記錄層與磁氣固定層的磁化排列 。由磁氣記錄層使電流流至磁氣固定層的場合,磁氣固定 層與磁氣記錄層成爲平行排列,由磁氣固定層使電流流至 磁氣記錄層的場合,磁化排列成爲反平行排列。以下,把 自旋轉移力矩磁化反轉之引起的電流密度之閾値定義爲Jc [第1實施例] 圖1係顯示本發明的穿隧磁阻效果元件之一例之剖面 模式圖。在本實施例,穿隧磁阻效果元件1使用濺鍍法來 製作。此穿隧磁阻效果元件1,係由配向控制層3 09、反 強磁性層3 0 8、磁氣固定層3 0 5 1、絕緣層3 0 4、第一強磁 性層3 0 3、第一擴散層3 0 2 2、第一非磁性層3 0 2、第二擴 -8 - 201121034 散層3021、第二強磁性層301、保護層300來形成的。此 處,以第一強磁性層303、第一擴散層3022、第一非磁性 層302、第二擴散層3021、第二強磁性層301之層積構造 型成磁氣記錄層。磁氣固定層3 0 5 1亦有係以第四強磁性 層3 02、第二非磁性膜3 03、第三強磁性層3 04構成的場 合。 前述之穿隧磁阻效果元件’係藉由將圖3所示的層積 0 膜在330度以上〜420度以下的溫度進行熱處理而形成的 。圖3顯示在使用濺鍍法成膜而進行熱處理之前’或者是 被施加在3 3 0度以下之熱處理的穿隧磁阻效果元件,依照 配向控制層3 09、反強磁性層3 08、磁氣固定層305 1、絕 緣層3 04、第一強磁性層3 03、第一擴散層3022、第一非 磁性層302、第二擴散層3 02 1、第二強磁性層301 '保護 層3 00的順序被層積的。 配向控制層309係由NiFe形成的,但使用如Ta/NiFe Q 之2層膜、或者Ta/Ru/Ta/NiFe、Ta/NiFeCr等,可以提高 前述反強磁性層3 08的配向性,實現安定的反強磁性結合 的其他材料亦可。於反強磁性層3 08使用了 Mnlr(8nm) ’ 膜厚可在4〜15nm的範圍來選擇。此外,使用 MnPt、 MnFe等以錳化合物構成的反強磁性層亦可安定地實現反 強磁性結合。於第四強磁性層3 07使用CoFe(2nm),於第 二非磁性層3 06使用Ru(0.8mn),於第三強磁性層3 0 5使 用具有體心立方晶格的CoFeB(3nm)。此體心立方晶格的 CoFeB,在成膜時係非結晶之膜。於絕緣層適用(100)的氧 201121034 化鎂膜的場合,藉由330度以上的熱處理成膜時還是非結 晶的CoFeB進行結晶化而被形成爲體心立方晶格的CoFeB 。第四強磁性層307的CoFe的組成比係使鈷組成在50〜 9 0 a t m %之間。於此組成範圍,可以實現與前述反強磁性層 安定的反強磁性結合。第四強磁性層3 07、第二非磁性層 3 06、第三強磁性層3 05,選擇使第四強磁性層3 07與第三 強磁性層3 0 5之磁化進行反強磁性結合的材料,分別的膜 厚係以等於第四強磁性層3 07與第三強磁性層3 05的磁化 大小的方式選擇。 絕緣層3 04,係具有岩鹽構造的氧化鎂結晶膜,係在 (1〇〇)方向上配向度高的膜。此外,亦可爲完全配向於 (1 0 0)的單結晶膜。絕緣層的厚度爲0 · 6 n m〜3 n m之範圍。 藉由使絕緣層304的膜厚在前述範圍,於穿隧磁阻效果元 件1可以選擇任意的電阻。第一強磁性層3 03使用CoFeB ,藉由3 3 0度以上的熱處理而結晶化,與第三強磁性層 3 05的場合同樣得到體心立方晶格。第一強磁性層3 03與 第二強磁性層301之CoFeB之鈷與鐵的組成以在25 : 75 〜75 : 25之範圍爲佳。因爲在此組成範圍中體心立方構造 可安定地存在,且在適用氧化鎂於絕緣層3 04的穿隧磁阻 效果元件1,且可以提高對於穿隧磁阻比有所貢獻的自旋 分極率。第一非磁性層3 02以使用釕(Ru)爲佳。成膜時之 第一強磁性層/第一非磁性層/第二強磁性層使用的材料爲 CoFeB/Ru/CoFeB,藉由將此進行在3 3 0度以上的熱處理, 可以使在CoFeB中擴散了釕的CoFeB-Ru行成爲第一擴散 -10- 201121034 層與第二擴散層。該第一擴散層與第二擴散層的膜厚比第 一強磁性層與第二強磁性層更小,以在〇_2nm以上較佳。 在此膜厚時,第一強磁性層與第二強磁性層的磁化方向進 行平行結合。進而,進行3 3 0度以上的熱處理的結果,第 一強磁性層與第二強磁性層之磁化方向形成強磁性結合的 平行狀態。本實施例之熱處理時間以1小時以上較佳。 圖 7係如前述之例,顯示依照 Ta/Ru/Ta/NiFe/Mnlr/ Q CoFe/Ru/CoFeB/MgO/CoFeB/Ru/CoFeB/保護膜的順序層積 之穿隧磁阻效果元件在300 °C、325 °C、350 °C退火時之自旋 轉移力矩導致的磁化反轉之閾値電流密度與磁氣記錄層的 熱安定性的指標之E/kBT値對退火溫度(Ta)繪圖的結果》 根據此,Ta於3 50°C,E/kBT可得100以上之値。另一方 面,與Ta在3 3 0 °C以下的場合之E/kBT(60〜80)相比大幅 地提高。 圖8係爲了調查構成磁氣記錄層的第一強磁性層之 〇 C 〇 F eB與第二強磁性層之C 〇 F eB的磁化配列而測定之星狀 (asteroid)特性的退火溫度導致之變化。圖8(a)_i、(b)-l、 (c)-l顯示星狀(asteroid)特性。圖8(a)-l與圖8(b)-l之星 狀(asteroid)特性’分別如圖8(a)-2與圖8(b)-2所示意味 著第一強磁性層與第二強磁性層的磁化爲反平行狀態。另 一方面’ Ta = 3 5 0°C的場合’星狀特性如圖8(c)-l所示爲菱 側形狀。此係如圖8(c)-2所示意味著第一強磁性層與第二 強磁性層的磁化方向係中介著藉由35〇t退火而形成的第 一擴散層與第二擴散層與不擴散地殘留之第一非磁性層而 -11 - 201121034 平行排列的。或者是’意味著如圖8(c)_3所示’成膜時製 作的磁氣記錄層之非磁性層(R u)之全部擴散成爲一層之強 磁性層。亦即,圖7所示之Ta=3 5 0°c時之E/kBT的提高’ 被理解爲藉由磁氣記錄層成爲圖8(c)-2、圖8(c)_3所不的 構造而被實現的。此外’使用於第一強磁性層與第二強磁 性層的CoFeB在Ta = 35〇°C的場合結晶化而成爲體心立方 晶格的結晶的狀態。201121034 VI. Description of the Invention: [Technical Field] The present invention relates to a high output tunneling magnetoresistance effect element having high thermal stability and a low power consumption nonvolatile magnetic memory device equipped with the same. [Prior Art] As a tunneling magnetoresistive Q effect element applied to a high-concentration magnetic memory in the future, it has been revealed that a resistive magnetoresistance effect can be obtained by using an oxide of aluminum as an insulator. (T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L23 1 (1 995)) A magnetoresistance effect element with a larger number of times the magnetoresistance ratio of magnesium oxide used on an insulating film ( S. Yuasa. et al., Nature Material 3, 868 (2004)). Further, the former nonvolatile magnetic gas is constructed by forming a memory cell of a tunneling magnetoresistance effect element on the MO SFET. The switching (switching) is to use a MOSFET to rotate the magnetization direction of the tunneling magnetoresistive effect element by using a 〇 current-induced spatial magnetic field generated by energizing a bit line and a word line. Into the information, by means of the output voltage of the tunneling magnetoresistive effect element to read the information. Further, in addition to the magnetization rotation of the spatial magnetic field induced by the aforementioned current, there is also a so-called spin transfer torque magnetization reversal of magnetization rotation by directly causing a current to flow to the magnetoresistive effect element or is synonymous The spin-injection magnetization reversal method is disclosed, for example, in the specification of U.S. Patent No. 5,695,864 or JP-A-2002-3053. Japanese Laid-Open Patent Publication No. 2007-294737 discloses that an invasive magnetic field from the outside is used for the purpose of reversing the magnetization reversal action of spin transfer (5-201121034 torque). The tunneling magnetoresistance effect element of the recording layer of the laminated two-layer ferromagnetic film. [Prior Art Document] [Non-Patent Document] [Non-Patent Document 1] J. Magn. Magn. Mater. 139, L23 1 (1 995) [Non-Patent Document 2] Nature Material 3, 868 (2004) [Patent Document] [Patent Document 1] US Patent No. 5,695,864 [Patent Document 2] Japanese Patent Laid-Open Publication No. JP-A-2002-305337 (Patent Document No. JP-A-2007-294737) In order to realize a low-power non-volatile magnetic memory with high reliability, it is necessary to develop a recording layer of a high-output tunneling magnetoresistance effect element while satisfying high thermal stability and spin transfer. Spin transfer torque The technique of writing the magnetization reversal. SUMMARY OF THE INVENTION An object of the present invention is to provide a tunneling magnetoresistance effect element having high thermal stability in response to such a demand and a nonvolatile magnetic memory using the same. [Means for Solving the Problem] The present invention is applicable to a ferromagnetic film of a compound having a body-centered cubic lattice of cobalt or iron containing boron in a ferromagnetic film of a tunneling magnetoresistance effect element, and is insulated at -6-201121034 The layer is applied to (100) an oriented rock salt structure of magnesium oxide, a first diffusion layer and a second diffusion layer provided adjacent to the non-magnetic conductive layer, a first ferromagnetic layer adjacent to the first diffusion layer, and adjacent to the second The second ferromagnetic layer of the diffusion layer is configured, and the first ferromagnetic layer and the second ferromagnetic layer are applied to a ferromagnetic recording layer that is strongly magnetically bonded. That is, the tunneling magnetoresistance effect element according to the present invention has an insulating layer and a ferromagnetic recording layer and a ferromagnetic pinned layer provided next to the insulating layer; the insulating layer is a (100) aligned rock salt structure. An oxidized magnesium film, a ferromagnetic recording layer, a first diffusion layer and a second diffusion layer provided adjacent to the non-magnetic conductive layer, a first ferromagnetic layer adjacent to the first diffusion layer, and adjacent to the second diffusion a second ferromagnetic layer of the layer, the first ferromagnetic layer is adjacent to the insulating layer, the second ferromagnetic layer is strongly magnetically coupled to the first ferromagnetic layer, and the ferromagnetic pinned layer has cobalt and iron A membrane of body-centered cubic structure of boron. In the case where the insulating layer does not use the magnesium oxide film of the (100) aligned rock salt structure, the magnetoresistance ratio is remarkably lowered, and the magnetic memory cell or the magnetic random access memory cannot obtain the minimum necessary read voltage of 200 mV. The tunneling magnetoresistance effect element of the present invention can be applied to a magnetic memory cell or a magnetic random access memory. [Effects of the Invention] According to the present invention, a tunneling magnetoresistance effect element having high thermal stability and high insulation withstand voltage can be obtained. Further, by mounting the tunneling magnetoresistance effect element to the magnetic memory, it is possible to realize a nonvolatile memory having high thermal stability, that is, a long retention time of magnetic gas communication. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the tunneling magnetoresistance effect element described below, the magnetization reversal (switching) of the ferromagnetic recording layer is not a spatial external magnetic field' mainly by the spin-polarity flowing in the tunneling magnetoresistance effect element. The spin of the current is supplied to the electromagnetic moment of the ferromagnetic recording layer to provide a torque. This spin-biased current is self-generated when current is applied to the tunneling magnetoresistive element. That is, the magnetization reversal of the spin transfer torque is realized by flowing a current through the stacking direction of the layers of the tunneling magnetoresistance effect elements to the tunneling magnetoresistance effect element. Further, the magnetization alignment of the magnetic recording layer and the magnetic gas fixing layer is determined by controlling the magnetization direction of the magnetic recording layer by the direction of the current. When the current is caused to flow to the magnetic gas fixed layer by the magnetic recording layer, the magnetic gas fixed layer and the magnetic gas recording layer are arranged in parallel, and when the magnetic gas fixed layer causes current to flow to the magnetic recording layer, the magnetization alignment becomes antiparallel. arrangement. In the following, the threshold 电流 of the current density due to the magnetization reversal of the spin transfer torque is defined as Jc. [First Embodiment] Fig. 1 is a cross-sectional view showing an example of the tunneling magnetoresistance effect element of the present invention. In the present embodiment, the tunneling magnetoresistance effect element 1 is fabricated by sputtering. The tunneling magnetoresistance effect element 1 is composed of an alignment control layer 3 09 , an antiferromagnetic layer 3 0 8 , a magnetic gas fixed layer 3 0 5 1 , an insulating layer 3 0 4 , a first ferromagnetic layer 3 0 3 , A diffusion layer 3 0 2 2, a first non-magnetic layer 3 0 2, a second extension -8 - 201121034, a dispersion layer 3021, a second ferromagnetic layer 301, and a protective layer 300 are formed. Here, a magnetic recording layer is formed by a laminated structure of the first ferromagnetic layer 303, the first diffusion layer 3022, the first non-magnetic layer 302, the second diffusion layer 3021, and the second ferromagnetic layer 301. The magnetic gas fixed layer 3 0 5 1 is also composed of a fourth ferromagnetic layer 302, a second non-magnetic film 303, and a third ferromagnetic layer 304. The tunneling magnetoresistance effect element ′ is formed by heat-treating the laminated 0 film shown in Fig. 3 at a temperature of 330 to 420 degrees. 3 shows a tunneling magnetoresistance effect element which is applied to a heat treatment of 340 degrees or less before being subjected to heat treatment by sputtering, according to the alignment control layer 3 09, the antiferromagnetic layer 3 08, and magnetic Gas fixing layer 305 1, insulating layer 304, first ferromagnetic layer 303, first diffusion layer 3022, first non-magnetic layer 302, second diffusion layer 301, second ferromagnetic layer 301 'protective layer 3 The order of 00 is layered. The alignment control layer 309 is formed of NiFe, but a two-layer film such as Ta/NiFe Q or Ta/Ru/Ta/NiFe, Ta/NiFeCr or the like can be used to improve the alignment of the antiferromagnetic layer 308. Other materials that are stable in anti-ferromagnetic bonding are also available. In the antiferromagnetic layer 3 08, Mnlr (8 nm) ’ film thickness can be selected in the range of 4 to 15 nm. Further, an antiferromagnetic layer composed of a manganese compound such as MnPt or MnFe can be stably achieved by antiferromagnetic bonding. CoFe (2 nm) is used for the fourth ferromagnetic layer 307, Ru (0.8 mn) is used for the second non-magnetic layer 306, and CoFeB (3 nm) having the body-centered cubic lattice is used for the third ferromagnetic layer 305. . The body-centered cubic lattice of CoFeB is a non-crystalline film at the time of film formation. When the oxygen layer 201121034 magnesium film is applied to the insulating layer, the film is formed into a body-centered cubic lattice CoFeB by crystallization of uncrystallized CoFeB when it is formed by heat treatment at 330 degrees or more. The composition ratio of CoFe of the fourth ferromagnetic layer 307 is such that the cobalt composition is between 50 and 90 a t m %. In this composition range, antiferromagnetic bonding with the aforementioned antiferromagnetic layer stability can be achieved. The fourth ferromagnetic layer 307, the second non-magnetic layer 306, and the third ferromagnetic layer 305 are selected to be antiferromagnetically combined with the magnetization of the fourth ferromagnetic layer 307 and the third ferromagnetic layer 305. The material, the respective film thicknesses are selected in a manner equal to the magnetization of the fourth ferromagnetic layer 307 and the third ferromagnetic layer 305. The insulating layer 304 is a magnesium oxide crystal film having a rock salt structure and is a film having a high degree of alignment in the (1 〇〇) direction. Further, it may be a single crystal film which is completely aligned with (100). The thickness of the insulating layer is in the range of 0 · 6 n m to 3 n m. By making the film thickness of the insulating layer 304 within the above range, an arbitrary resistance can be selected in the tunneling magnetoresistance effect element 1. The first ferromagnetic layer 303 is crystallized by heat treatment of 340 degrees or more using CoFeB, and a body-centered cubic lattice is obtained in the same manner as in the case of the third ferromagnetic layer 305. The composition of cobalt and iron of CoFeB of the first ferromagnetic layer 303 and the second ferromagnetic layer 301 is preferably in the range of 25:75 to 75:25. Since the body-centered cubic structure can be stably present in this composition range, and the tunneling magnetoresistance effect element 1 of magnesium oxide in the insulating layer 304 is applied, and the spin polarization which contributes to the tunneling magnetoresistance ratio can be improved. rate. The first non-magnetic layer 322 is preferably ruthenium (Ru). The material used for the first ferromagnetic layer/first non-magnetic layer/second ferromagnetic layer at the time of film formation is CoFeB/Ru/CoFeB, which can be made in CoFeB by heat treatment at 340 degrees or higher. The CoFeB-Ru line diffused with yttrium becomes the first diffusion -10- 201121034 layer and the second diffusion layer. The film thickness of the first diffusion layer and the second diffusion layer is smaller than that of the first ferromagnetic layer and the second ferromagnetic layer, and is preferably 〇_2 nm or more. At this film thickness, the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer are parallel-bonded. Further, as a result of the heat treatment of 340 degrees or more, the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer form a parallel state of strong magnetic bonding. The heat treatment time in this embodiment is preferably 1 hour or more. Figure 7 is a diagram showing the tunneling magnetoresistance effect element in accordance with the sequential lamination of Ta/Ru/Ta/NiFe/Mnlr/Q CoFe/Ru/CoFeB/MgO/CoFeB/Ru/CoFeB/protective film as in the foregoing example. The threshold of the magnetization reversal caused by the spin transfer torque at °C, 325 °C, and 350 °C, and the E/kBT値 of the thermal stability of the magnetic recording layer are plotted against the annealing temperature (Ta). Results According to this, Ta at 3 50 ° C, E / kBT can get more than 100. On the other hand, it is greatly improved compared with E/kBT (60 to 80) where Ta is below 330 °C. Figure 8 is a graph showing the annealing temperature of asteroid characteristics measured in order to investigate the magnetization arrangement of 〇C 〇F eB of the first ferromagnetic layer constituting the magnetic recording layer and C 〇F eB of the second ferromagnetic layer. Variety. Figures 8(a)_i, (b)-l, (c)-l show asteroid characteristics. The asteroid characteristics of Fig. 8(a)-1 and Fig. 8(b)-1 are as shown in Figs. 8(a)-2 and 8(b)-2, respectively, indicating the first ferromagnetic layer and The magnetization of the second ferromagnetic layer is in an anti-parallel state. On the other hand, the case where 'Ta = 3 50 ° C' is a rhombic shape as shown in Fig. 8 (c) - l. This is shown in FIG. 8(c)-2, which means that the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer are interposed by the first diffusion layer and the second diffusion layer formed by annealing at 35 〇t. The first non-magnetic layer remaining without diffusion and -11 - 201121034 are arranged in parallel. Alternatively, it means that the non-magnetic layer (R u) of the magnetic recording layer formed at the time of film formation as shown in Fig. 8 (c) - 3 is diffused into a strong magnetic layer of one layer. That is, the improvement of E/kBT at Ta = 3 50 °c shown in Fig. 7 is understood to be that the magnetic recording layer becomes as shown in Figs. 8(c)-2 and 8(c)_3. Constructed and implemented. Further, the CoFeB used in the first ferromagnetic layer and the second strong magnetic layer is crystallized at a Ta = 35 〇 °C to form a crystal of the body center cubic lattice.

CoFeB之硼的組成比,以結晶化變成安定的硼組成在 10〜30atm%之間爲佳。進而,在第一強磁性層303、第二 強磁性層301除了 CoFeB以外,使用CoFe之單層膜、NiFe 之單層膜、CoFe/NiFe 或 CoFeB/NiFe 進而包括 CoFeB/CoFe 之2層膜亦可。保護層3 00係以Ta(5nm)/RU(5nni)之2層膜 形成的。 [第2實施例] 圖2係於根據本發明之穿隧磁阻效果元件2,成膜時 之第一非磁性層藉由3 3 0 °C以上之熱處理而全部擴散至第 一強磁性層與第二強磁性層,形成一層之擴散強磁性層之 例之剖面模式圖。此穿隧磁阻效果元件2,係由配向控制 層309、反強磁性層308、磁氣固定層3051、絕緣層304 、擴散強磁性層3 0 1 2、保護層3 0 0而形成的。磁氣固定層 3 05 1亦有係以第四磁性層3 07、第二非磁性層3 06、第三 強磁性層305構成的場合。 前述之穿隧磁阻效果元件2,與在第1實施例所示之 -12- 201121034 穿隧磁阻效果元件1的製作方法相同,係藉由將圖3所示 的層積膜在3 3 0度以上〜420度以下的溫度進行熱處理而 形成的。 於穿隧磁阻效果元件2,也與穿隧磁阻效果元件1同 樣如圖7所示於Ta = 35(TC可以實現1〇〇以上之E/kT。於 成膜時之第一強磁性層與第二強磁性層使用CoFeB,於第 一非磁性層使用Ru的場合更佳,藉由3 3 0 °C以上之退火最 0 終形成的擴散強磁性層爲C〇FeBRu。 [第3實施例] 圖3顯示於圖1之穿隧磁阻效果元件1具有磁氣固定 層與磁氣記錄層的層積順序相反的構成之穿隧磁阻效果元 件3。 在本實施例如圖6所示,把依照配向控制膜3 09、第 二強磁性層3 0 1、第一非磁性層3 02、第一強磁性層3 0 3、 〇 絶縁層3 〇4、第三強磁性層3 05、第二非磁性層3 06、第四 強磁性層3 07、反強磁性層3 08、保護層3 00之順序層積 的層積膜,於3 3 (TC進行熱處理而形成的。 於藉由本實施例形成的穿隧磁阻效果元件3,也與穿 隧磁阻效果元件1及穿隧磁阻效果元件2同樣,如圖7所 示可以於Ta = 3 50°C實現1〇〇以上之E/kT。 第一非磁性層3 02以使用釕(Ru)爲佳。成膜時之第一 強磁性層/第一非磁性層/第二強磁性層使用的材料爲 CoFeB/Ru/CoFeB,藉由將此進行在330度以上的熱處理, -13- 201121034 可以使在CoFeB中擴散了釕的CoFeB-Ru形成爲第一擴散 層與第二擴散層。該第一擴散層與第二擴散層的膜厚比第 一強磁性層與第二強磁性層更小,以在0.2 nm以上較佳。 在此膜厚時,第一強磁性層與第二強磁性層的磁化方向進 行平行結合。進而,進行330度以上的熱處理的結果,第 一強磁性層與第二強磁性層之磁化方向形成強磁性結合的 平行狀態。本實施例之熱處理時間以1小時以上較佳。 €) [第4實施例]The composition ratio of boron of CoFeB is preferably from 10 to 30 atm% in terms of crystallization to a stable boron composition. Further, in the first ferromagnetic layer 303 and the second ferromagnetic layer 301, in addition to CoFeB, a single layer film of CoFe, a single layer film of NiFe, CoFe/NiFe or CoFeB/NiFe, and a two-layer film of CoFeB/CoFe are also used. can. The protective layer 300 is formed of a two-layer film of Ta (5 nm) / RU (5 nni). [Second Embodiment] Fig. 2 is a tunneling magnetoresistance effect element 2 according to the present invention, in which a first non-magnetic layer is entirely diffused to a first ferromagnetic layer by heat treatment at a temperature of 30 ° C or higher. A cross-sectional pattern diagram of an example of a diffusion ferromagnetic layer formed with a second ferromagnetic layer. The tunneling magnetoresistance effect element 2 is formed by an alignment control layer 309, an antiferromagnetic layer 308, a magnetic gas fixed layer 3051, an insulating layer 304, a diffusion ferromagnetic layer 3 0 1 2, and a protective layer 300. The magnetic gas fixed layer 305 1 is also composed of the fourth magnetic layer 307, the second non-magnetic layer 306, and the third ferromagnetic layer 305. The tunneling magnetoresistance effect element 2 described above is the same as the method of manufacturing the tunneling magnetoresistive effect element 1 of the -12-201121034 shown in the first embodiment, by laminating the laminated film shown in FIG. It is formed by heat treatment at a temperature of 0 degrees or more to 420 degrees or less. The tunneling magnetoresistance effect element 2 is also the same as the tunneling magnetoresistance effect element 1 as shown in Fig. 7 at Ta = 35 (TC can achieve E/kT of 1 〇〇 or more. The first ferromagnetism at the time of film formation) CoFeB is used for the layer and the second ferromagnetic layer, and Ru is preferably used for the first non-magnetic layer, and the diffusion ferromagnetic layer formed by the annealing at 305 ° C or higher is C〇FeBRu. [Embodiment] FIG. 3 shows a tunneling magnetoresistance effect element 1 having a reversed order of lamination of a magnetic gas fixed layer and a magnetic recording layer in the tunneling magnetoresistance effect element 1 of FIG. 1. In this embodiment, for example, FIG. According to the alignment control film 309, the second ferromagnetic layer 301, the first non-magnetic layer 312, the first ferromagnetic layer 030, the 縁3 〇4, and the third ferromagnetic layer 3 05 a laminated film in which the second non-magnetic layer 306, the fourth ferromagnetic layer 307, the antiferromagnetic layer 308, and the protective layer 00 are sequentially laminated is formed by heat treatment at 3 3 (TC). The tunneling magnetoresistance effect element 3 formed by the present embodiment is also the same as the tunneling magnetoresistive effect element 1 and the tunneling magnetoresistance effect element 2, as shown in FIG. 7 at Ta = 3 50°. C realizes E/kT of 1 〇〇 or more. The first non-magnetic layer 312 is preferably ruthenium (Ru). The first ferromagnetic layer/first non-magnetic layer/second strong magnetic layer used in film formation is used. The material is CoFeB/Ru/CoFeB, and by performing heat treatment at 330 degrees or higher, -13-201121034, CoFeB-Ru diffused with ruthenium in CoFeB can be formed into a first diffusion layer and a second diffusion layer. The film thickness of a diffusion layer and the second diffusion layer is smaller than that of the first ferromagnetic layer and the second ferromagnetic layer, and is preferably 0.2 nm or more. In the film thickness, the first ferromagnetic layer and the second ferromagnetic layer The magnetization direction of the layer is parallel-bonded. Further, as a result of heat treatment of 330 degrees or more, the magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer form a parallel state of strong magnetic bonding. The heat treatment time in this embodiment is 1 hour. The above is preferred. €) [Fourth Embodiment]

圖4顯示於圖2之穿隧磁阻效果元件2具有磁氣固定 層與磁氣記錄層的層積順序相反的構成之穿隧磁阻效果元 件4。此穿隧磁阻效果元件4,係由配向控制層3 09、反強 磁性層3 08、擴散強磁性層301、絕緣層3 04、磁氣固定層 3 0 5 1、保護層3 0 0而形成的。磁氣固定層3 0 5 1亦有係以 第四強磁性層307、第二非磁性層3 06、第三強磁性層3〇5 構成的場合。 Q 前述之穿隧磁阻效果元件4,與在第2實施例所示之 穿隧磁阻效果元件1的製作方法相同,係藉由將圖6所示 的層積膜在3 3 0 °C以上〜4 2 0 °C以下的溫度進行熱處理而形 成的。於穿隧磁阻效果元件2,也與穿隧磁阻效果元件1 同樣如圖7所示於Ta = 350°C可以實現1〇〇以上之E/kT。 於成膜時之第一強磁性層與第二強磁性層使用CoFeB,於 第一非磁性層使用Ru的場合更佳,藉由3 3 0°C以上之退火 最終形成的擴散強磁性層爲CoFeBRu。 -14- 201121034 圖9與圖10係顯示根據本發明之磁記憶胞的構成例 之剖面模式圖。此磁記憶胞,作爲記憶胞搭載了第1實施 例至第4實施例所示的穿隧磁阻效果元件200。圖9係特 徵爲穿隧磁阻效果元件200被形成於由源極電極102升起 的電極上,圖1 0係穿隧磁阻效果元件200形成於由源極 電極102之層積上拉出電極400而被形成的。 C-MOS100係由2個η型半導體101、102與一個p型 Q 半導體103所構成。於η型半導體ιοί被導電連接成爲汲 極的電極121,中介著電極141及電極147被接地。於η 型半導體102,被導電連接著成爲源極的電極122。進而 ,123爲閘極電極,藉由此閘極電極123的打開/關閉而控 制源極電極122與汲極電極121間的電流之打開/關閉。 於前述源極電極122被層積電極145、電極144、電極143 、電極M2,中介著電極400被連接著穿隧磁阻效果元件 2 0的配向控制膜3 0 9。 Ο 位元線40 1被連接於前述穿隧磁阻效果元件200的保 護膜3 〇〇。在本實施例之磁記憶胞,流至穿隧磁阻效果元 件200的電流,藉由所謂的自旋轉移力矩(spin transfer torque)而使穿隧磁阻效果元件200之強磁性記錄層的磁化 方向旋轉而記錄磁氣資訊。自旋轉移力矩不是空間上的外 部磁場’主要是流動於穿隧磁阻效果元件中的自旋偏極的 電流之自旋對穿隧磁阻效果元件之強磁性記錄層的磁矩 (electromagnetic moment)提供扭矩(torque)的原理。此自 旋ί扁極的電流具有在對穿隧磁阻效果元件流以電流時在自 -15- 201121034 身產生的機制。亦即,具有對穿隧磁阻效果元件由外部供 給電流的手段,藉由從該手段流以電流而使自旋轉移力矩 磁化反轉被實現。藉由該電流的方向控制磁氣記錄層的磁 化方向,決定磁氣記錄層與磁氣固定層的磁化排列。在本 實施例,藉由使用 C-MOS 100,而把流至穿隧磁阻效果元 件2 0 0的電流的方向設定爲雙方向。由磁氣記錄層使電流 流至磁氣固定層的場合,磁氣固定層與磁氣記錄層成爲平 行排列,由磁氣固定層使電流流至磁氣記錄層的場合,磁 化排列成爲反平行排列。在本實施例,藉由在位元線2 1 2 與電極47之間使電流流過而對穿隧磁阻效果元件200中 的強磁性記錄層作用自旋轉移力矩(spin transfer torque)。 藉由自旋轉移力矩進行寫入的場合,寫入時的電力與使用 電流磁場的場合相比可以減低至百分之一的程度。此外, 藉由裝備具有100以上之E/kT的穿隧磁阻效果元件200, 可以實現可構成十億位元(gigabits)之磁記億體的磁記億胞 〇 圖11係顯示配置前述磁記憶胞的磁隨機存取記憶體 的構成例。閘極電極1 2 3與位元線4 0 1被導電連接於記憶 胞500 °藉由配置記載於前述實施例的磁記憶胞前述磁記 憶體可在低耗電量下動作,可以實現十億位元級的高密度 磁記憶體。 【圖式簡單說明】 圖1係顯示本發明之穿隧磁阻效果元件'之第一構成例。 -16- 201121034 圖2係顯示本發明之穿隧磁阻效果元件之第二構成例。 圖3係顯示本發明之穿隧磁阻效果元件之第三構成例。 圖4係顯示本發明之穿隧磁阻效果元件之第四構成例。 圖5係顯示本發明之穿隧磁阻效果元件之第一、第二 構成之成膜之後的構成例。 圖6係顯示本發明之穿隧磁阻效果元件之第三、第四 構成之成膜之後的構成例。 0 圖7係顯示本發明之穿隧磁阻效果元件之寫入電流(a) 、熱安定性(b)之熱處理溫度依存性例。 圖8係顯示本發明之穿隧磁阻效果元件之星狀 (asteroid)特性與磁氣記錄層之層積狀態的熱處理溫度依存 性。 圖9係顯示本發明之磁記憶胞的構成例。 圖1 0係顯示本發明之磁記憶胞的構成例。 圖1 1係顯示本發明之磁隨機存取記億體的構成例。 【主要元件符號說明】 1 :穿隧磁阻效果元件 2 :穿隧磁阻效果元件 3 :穿隧磁阻效果元件 4 :穿隧磁阻效果元件 5 :穿隧磁阻效果元件Fig. 4 shows the tunneling magnetoresistance effect element 2 of Fig. 2 having a tunneling magnetoresistance effect element 4 having a reversed order of lamination of a magnetic gas fixed layer and a magnetic gas recording layer. The tunneling magnetoresistance effect element 4 is composed of an alignment control layer 309, an antiferromagnetic layer 308, a diffusion ferromagnetic layer 301, an insulating layer 304, a magnetic gas fixed layer 3 0 5 1 , and a protective layer 300. Forming. The magnetic gas fixed layer 3 0 5 1 is also composed of the fourth ferromagnetic layer 307, the second non-magnetic layer 306, and the third ferromagnetic layer 3〇5. Q The tunneling magnetoresistance effect element 4 is the same as the tunneling magnetoresistance effect element 1 shown in the second embodiment, and the laminated film shown in FIG. 6 is at 3 30 ° C. It is formed by heat treatment at a temperature of ~40 ° C or lower. Similarly to the tunneling magnetoresistance effect element 2, as shown in Fig. 7, the tunneling magnetoresistance effect element 2 can achieve E/kT of 1 〇〇 or more at Ta = 350 °C. CoFeB is used for the first ferromagnetic layer and the second ferromagnetic layer during film formation, and Ru is preferably used for the first non-magnetic layer, and the diffusion ferromagnetic layer finally formed by annealing at 340 ° C or higher is CoFeBRu. -14- 201121034 Fig. 9 and Fig. 10 are cross-sectional schematic views showing a configuration example of a magnetic memory cell according to the present invention. In the magnetic memory cell, the tunneling magnetoresistance effect element 200 shown in the first to fourth embodiments is mounted as a memory cell. 9 is characterized in that the tunneling magnetoresistance effect element 200 is formed on an electrode raised by the source electrode 102, and the tunneling magnetoresistive effect element 200 is formed on the layer of the source electrode 102. The electrode 400 is formed. The C-MOS 100 is composed of two n-type semiconductors 101 and 102 and one p-type Q semiconductor 103. The n-type semiconductor ιοί is electrically connected to the electrode 121 of the drain, and the electrode 141 and the electrode 147 are grounded. The n-type semiconductor 102 is electrically connected to the electrode 122 serving as a source. Further, 123 is a gate electrode, and the opening/closing of the current between the source electrode 122 and the drain electrode 121 is controlled by the opening/closing of the gate electrode 123. The source electrode 122 is laminated with the electrode 145, the electrode 144, the electrode 143, and the electrode M2, and the interposing electrode 400 is connected to the alignment control film 309 of the tunneling magnetoresistance effect element 20. The Ο bit line 40 1 is connected to the protective film 3 前述 of the tunneling magnetoresistance effect element 200 described above. In the magnetic memory cell of the present embodiment, the current flowing to the tunneling magnetoresistance effect element 200 causes the magnetization of the ferromagnetic recording layer of the tunneling magnetoresistive effect element 200 by a so-called spin transfer torque. The direction is rotated to record the magnetic gas information. The spin transfer torque is not the external magnetic field in space 'mainly the spin of the current flowing through the spin bias in the tunneling magnetoresistance effect element. The magnetic moment of the ferromagnetic recording layer of the tunneling magnetoresistive effect element (electromagnetic moment) ) Provide the principle of torque. This spin ί flat current has a mechanism generated from the body of -15-201121034 when current is flowing to the tunneling magnetoresistive effect element. That is, a means for supplying a current to the tunneling magnetoresistance effect element from the outside is realized by causing a current from the means to cause magnetization reversal of the spin transfer torque. The magnetization alignment of the magnetic recording layer and the magnetic gas fixed layer is determined by controlling the magnetization direction of the magnetic recording layer by the direction of the current. In the present embodiment, the direction of the current flowing to the tunneling magnetoresistance effect element 200 is set to the two directions by using the C-MOS 100. When the current is caused to flow to the magnetic gas fixed layer by the magnetic recording layer, the magnetic gas fixed layer and the magnetic gas recording layer are arranged in parallel, and when the magnetic gas fixed layer causes current to flow to the magnetic recording layer, the magnetization alignment becomes antiparallel. arrangement. In the present embodiment, a spin transfer torque is applied to the ferromagnetic recording layer in the tunneling magnetoresistive effect element 200 by flowing a current between the bit line 2 1 2 and the electrode 47. When writing is performed by a rotational torque, the electric power at the time of writing can be reduced to one percent as compared with the case of using a current magnetic field. In addition, by equipping the tunneling magnetoresistance effect element 200 having an E/kT of 100 or more, it is possible to realize a magnetic memory cell which can constitute a gigabits. FIG. 11 shows that the magnetic body is arranged. A configuration example of a magnetic random access memory of a memory cell. The gate electrode 1 2 3 and the bit line 4 0 1 are electrically connected to the memory cell 500 °. By arranging the magnetic memory cell described in the foregoing embodiment, the magnetic memory can operate at a low power consumption, and can realize one billion. High-density magnetic memory in the bit level. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a first configuration example of a tunneling magnetoresistance effect element of the present invention. -16- 201121034 Fig. 2 shows a second configuration example of the tunneling magnetoresistive effect element of the present invention. Fig. 3 is a view showing a third configuration example of the tunneling magnetoresistance effect element of the present invention. Fig. 4 is a view showing a fourth configuration example of the tunneling magnetoresistance effect element of the present invention. Fig. 5 is a view showing a configuration example after film formation of the first and second structures of the tunneling magnetoresistance effect element of the present invention. Fig. 6 is a view showing a configuration example after film formation of the third and fourth configurations of the tunneling magnetoresistance effect element of the present invention. Fig. 7 is a view showing an example of the heat treatment temperature dependence of the write current (a) and the thermal stability (b) of the tunneling magnetoresistance effect element of the present invention. Fig. 8 is a graph showing the heat treatment temperature dependence of the asteroid characteristics of the tunneling magnetoresistance effect element of the present invention and the laminated state of the magnetic recording layer. Fig. 9 is a view showing an example of the configuration of a magnetic memory cell of the present invention. Fig. 10 shows a configuration example of a magnetic memory cell of the present invention. Fig. 1 is a view showing an example of the configuration of a magnetic random access memory of the present invention. [Description of main component symbols] 1 : Tunneling magnetoresistance effect element 2 : Tunneling magnetoresistance effect element 3 : Tunneling magnetoresistance effect element 4 : Tunneling magnetoresistance effect element 5 : Tunneling magnetoresistance effect element

6 :穿隧磁阻效果元件 100 : C-M0S -17- 201121034 101 :第一 η型半導體 102:第二η型半導體 103 : ρ型半導體 1 2 2 :源極電極 4 0 1 ·位兀線 1 2 1 :汲極電極 1 2 3 :閘極電極 3 0 9 :配向控制膜 3 0 8 :反強磁性層 3051 :磁氣固定層 3 0 7 :第四強磁性層 3 0 6 :第二非磁性層 3 0 5 :第三強磁性層 3 0 4 :絕緣層 3 0 3 :第一強磁性層 3 0 2 :第一非磁性層 3 0 1 :第二強磁性層 3 00 :保護層 3 0 1 1 :磁氣記錄層 3 0 1 2 :擴散強磁性層 3 0 2 1 :第二擴散層 3 0 2 2 :第一擴散層 1 4 1 :電極配線 1 4 2 :電極配線 -18 201121034 1 4 3 :電極配線 144 :電極配線 1 4 5 :電極配線 1 4 6 :電極配線 〇6: tunneling magnetoresistance effect element 100: C-M0S -17- 201121034 101: first n-type semiconductor 102: second n-type semiconductor 103: p-type semiconductor 1 2 2 : source electrode 4 0 1 · bit line 1 2 1 : drain electrode 1 2 3 : gate electrode 3 0 9 : alignment control film 3 0 8 : antiferromagnetic layer 3051 : magnetic gas fixed layer 3 0 7 : fourth strong magnetic layer 3 0 6 : second Non-magnetic layer 3 0 5 : third ferromagnetic layer 3 0 4 : insulating layer 3 0 3 : first ferromagnetic layer 3 0 2 : first non-magnetic layer 3 0 1 : second ferromagnetic layer 3 00 : protective layer 3 0 1 1 : magnetic gas recording layer 3 0 1 2 : diffusion ferromagnetic layer 3 0 2 1 : second diffusion layer 3 0 2 2 : first diffusion layer 1 4 1 : electrode wiring 1 4 2 : electrode wiring -18 201121034 1 4 3 : Electrode wiring 144 : Electrode wiring 1 4 5 : Electrode wiring 1 4 6 : Electrode wiring 〇

Claims (1)

201121034 七、申請專利範圍: 1· 一種穿隧磁阻效果元件,其特徵爲: 具有絕緣層,及挾著前述絕緣層而被設置的強磁性記 錄層與強磁性固定層; 前述絕緣層爲(100)配向之岩鹽構造的氧化鎂膜, 前述強磁性記錄層,係由挾著非磁性導電層而設的第 一擴散層與第二擴散層與鄰接於第一擴散層的第一強磁性 層與鄰接於第二擴散層的第二強磁性層所構成,前述第一 強磁性層鄰接於前述絕緣層,前述第二強磁性層與第一強 磁性層係強磁性結合著, 前述強磁性固定層具有含鈷與鐵與硼的體心立方構造 之膜。 2.如申請專利範圍第1項之穿隧磁阻效果元件,其中 前述第一強磁性層與前述第二強磁性層係含有鈷、鐵 、硼的體心立方構造之膜, 前述第一擴散層與第二擴散層含有鈷、鐵、硼、釕 (Ru),其膜厚比第一強磁性層與第二強磁性層更小,在 〇.2nm以上。 3 .如申請專利範圍第1項之穿隧磁阻效果元件,其中 前述穿隧磁阻效果元件係藉由濺鍍法成膜,成膜時, 具有絕緣層,與挾著前述絕緣層而被設置的強磁性記錄層 與強磁性固定層’ 前述絕緣層係(100)配向的岩鹽構造之氧化鎂膜,前述 強磁性記錄層’係把由挾著1非磁性導電層而被設置的第一 -20- 201121034 強磁性層與第二強磁性層所構成之膜,以3 3 0度以上, 420度以下的溫度進行熱處理而形成的。 4.一種穿隧磁阻效果元件,其特徵爲: 具有絕緣層,與挾著前述絕緣層而被設置的強磁性記 錄層與強磁性固定層, 前述絕緣層係(100)配向的岩鹽構造之氧化鎂膜, 前述強磁性記錄層,具有含鈷、鐵、硼與擴散了的釕 0 (RU)的體心立方構造之膜。 5 .如申請專利範圍第1至4項之任一項之穿隧磁阻效 果元件,其中 前述強磁性固定層係被形成於反強磁性層之上,前述 絕緣層被形成於前述強磁性固定層之上,前述強磁性記錄 層被形成於前述絕緣層之上,前述強磁性固定層,係由挾 著非磁性層而反強磁性結合的2層之強磁性層所構成的。 6 ·如申請專利範圍第1至4項之任一項之穿隧磁阻效 〇 果元件,其中 前述絕緣層係被形成於前述強磁性記錄層之上,前述 強磁性固定層被形成於前述絕緣層之上,前述強磁性固定 層之上被形成反強磁性層,前述強磁性固定層,係由挾著 非磁性層而反強磁性結合的2層之強磁性層所構成的。 7.—種磁記憶胞,其特徵爲: 具有絕緣層,及挾著前述絕緣層而被設置的強磁性記 錄層與強磁性固定層;前述絕緣層爲(100)配向之岩鹽構造 的氧化鎂膜,前述強磁性記錄層,係由挾著非磁性導電層 -21 - 201121034 而設的第一擴散層與第二擴散層與鄰接於第一擴散層的第 一強磁性層與鄰接於第二擴散層的第二強磁性層所構成, 前述第一強磁性層鄰接於前述絕緣層,前述第二強磁性層 與第一強磁性層係強磁性結合著,前述強磁性固定層具有 含鈷與鐵與硼的體心立方構造之膜之穿隧磁阻效果元件; 及 具備使供作藉由自旋轉移力矩(spin transfer torque)而 使前述強磁性記錄層磁化反轉之用的電流流至前述穿隧磁 阻效果元件之電極; 藉由前述電流的方向控制強磁性記錄層的磁化的方向 具備:開關控制流至前述穿隧磁阻效果元件的電流之 開關元件。 8. 如申請專利範圍第7項之磁記憶胞,其中 前述第一強磁性層與前述第二強磁性層係含有鈷、鐵 、硼的體心立方構造之膜,前述第一擴散層與第二擴散層 含有鈷、鐵、硼、釕(Ru),其膜厚比第一強磁性層與第二 強磁性層更小,在〇 · 2nm以上。 9. 如申請專利範圍第8項之磁記憶胞,其中 前述穿隧磁阻效果元件係藉由濺鍍法成膜,成膜時, 具有絕緣層,與挾著前述絕緣層而被設置的強磁性記錄層 與強磁性固定層, 前述絕緣層係(1 00)配向的岩鹽構造之氧化鎂膜’前述 強磁性記錄層,係把由挾著非磁性導電層而被設置的第一 -22- 201121034 強磁性層與第二強磁性層所構成之膜’以3 3 0度以上, 420度以下的溫度進行熱處理而形成的。 10. —種磁記憶胞,其特徵爲: 具有絕緣層,及挾著前述絕緣層而被設置的強磁性記 錄層與強磁性固定層; 前述絕緣層爲(1〇〇)配向之岩鹽構造的氧化鎂膜; 前述強磁性記錄層,係具有含鈷、鐵、硼、與擴散了 0 的釕(Ru)的體心立方構造之膜爲其特徵的穿隧磁阻效果元 件; 具備使供作藉由自旋轉移力矩(spin transfer torque)而 使前述強磁性記錄層磁化反轉之用的電流流至前述穿隧磁 阻效果元件之電極; 藉由前述電流的方向控制強磁性記錄層的磁化的方向 5 具備:開關控制流至前述穿隧磁阻效果元件的電流之 〇 開關元件。 11. 一種隨機存取記憶體,其特徵爲: 具備複數之磁記憶胞,與選擇所要的磁記億胞之手段 > 前述磁記億胞, 具有絕緣層,及挾著前述絕緣層而被設置的強磁性記 錄層與強磁性固定層;前述絕緣層爲(1 00)配向之岩鹽構造 的氧化鎂膜,前述強磁性記錄層,係由挾著非磁性導電層 而設的第一擴散層與第二擴散層與鄰接於第一擴散層的第 -23- 201121034 一強磁性層與鄰接於第二擴散層的第二強磁性層所構成, 前述第一強磁性層鄰接於前述絕緣層,前述第二強磁性層 與第一強磁性層係強磁性結合著,前述強磁性固定層具有 含鈷與鐵與硼的體心立方構造之膜之穿隧磁阻效果元件, 及 使供作藉由自旋轉移力矩(spin transfer torque)而使前 述強磁性記錄層磁化反轉之用的電流流至前述穿隧磁阻效 果元件之電極; 藉由前述電流的方向控制強磁性記錄層的磁化的方向 〇 1 2 .如申請專利範圍第1 1項之隨機存取記憶體,其中 前述第一強磁性層與前述第二強磁性層係含有鈷、鐵 、硼的體心立方構造之膜,前述第一擴散層與第二擴散層 含有鈷、鐵、硼、釕(Ru),其膜厚比第一強磁性層與第二 強磁性層更小,在〇 . 2 nm以上。 1 3 .如申請專利範圍第1 1項之隨機存取記憶體,其中 前述穿隧磁阻效果元件係藉由濺鍍法成膜,成膜時, 具有絕緣層,與挾著前述絕緣層而被設置的強磁性記錄層 與強磁性固定層, 前述絕緣層係(100)配向的岩鹽構造之氧化鎂膜,前述 強磁性記錄層,係把由挾著非磁性導電層而被設置的第一 強磁性層與第二強磁性層所構成之膜’以3 3 0度以上, 420度以下的溫度進行熱處理而形成的。 14.一種隨機存取記憶體,其特徵爲: -24- 201121034 具有複數之磁記憶胞’及選擇所要的磁記憶胞之手段 > 前述磁記億胞, 具有絕緣層,及挾著前述絕緣層而被設置的強磁性記 錄層與強磁性固定層; 前述絕緣層爲(100)配向之岩鹽構造的氧化鎂膜; 前述強磁性記錄層’係具有含鈷、鐵、硼、與擴散了 0 的釕(Ru)的體心立方構造之膜爲其特徵的穿隧磁阻效果元 件,及 使供作藉由自旋轉移力矩(spin transfer torque)而使前 述強磁性記錄層磁化反轉之用的電流流至前述穿隧磁阻效 果元件之電極; 藉由前述電流的方向控制強磁性記錄層的磁化的方向 〇 1 5 .如申請專利範圍第1 1至1 4項之任一項之隨機存 Q 取記憶體,其中 藉由自旋轉移力矩(spin transfer torque)而記錄磁氣資 訊。 -25-201121034 VII. Patent application scope: 1. A tunneling magnetoresistive effect element, which has the following features: an insulating layer, and a ferromagnetic recording layer and a ferromagnetic fixed layer disposed adjacent to the insulating layer; 100) a magnesium oxide film of an oriented rock salt structure, wherein the ferromagnetic recording layer is a first diffusion layer and a second diffusion layer provided adjacent to the non-magnetic conductive layer, and a first ferromagnetic layer adjacent to the first diffusion layer And the second ferromagnetic layer adjacent to the second diffusion layer, the first ferromagnetic layer is adjacent to the insulating layer, and the second ferromagnetic layer is strongly magnetically coupled to the first ferromagnetic layer, and the ferromagnetic fixing is performed. The layer has a body-centered cubic structure comprising cobalt and iron and boron. 2. The tunneling magnetoresistive effect element of claim 1, wherein the first ferromagnetic layer and the second ferromagnetic layer comprise a body-centered cubic structure of cobalt, iron, and boron, and the first diffusion The layer and the second diffusion layer contain cobalt, iron, boron, and ruthenium (Ru), and the film thickness thereof is smaller than the first ferromagnetic layer and the second ferromagnetic layer, and is more than 2 nm. 3. The tunneling magnetoresistance effect element according to claim 1, wherein the tunneling magnetoresistance effect element is formed by sputtering, and when formed, an insulating layer is formed adjacent to the insulating layer. a ferromagnetic recording layer provided with a ferromagnetic fixed layer 'the magnesium oxide film of a rock salt structure in which the insulating layer (100) is aligned, and the ferromagnetic recording layer' is first provided by a non-magnetic conductive layer -20- 201121034 A film composed of a ferromagnetic layer and a second ferromagnetic layer is formed by heat treatment at a temperature of 340 degrees or more and 420 degrees or less. A tunneling magnetoresistance effect element comprising: an insulating layer, a ferromagnetic recording layer and a ferromagnetic pinned layer provided adjacent to the insulating layer, and a rock salt structure in which the insulating layer (100) is aligned The magnesium oxide film, the ferromagnetic recording layer, has a body-centered cubic structure containing cobalt, iron, boron, and diffused 钌0 (RU). The tunneling magnetoresistive effect element according to any one of claims 1 to 4, wherein the ferromagnetic pinned layer is formed on the antiferromagnetic layer, and the insulating layer is formed on the aforementioned ferromagnetic fixed On the layer, the ferromagnetic recording layer is formed on the insulating layer, and the ferromagnetic pinned layer is composed of two layers of ferromagnetic layers which are antiferromagnetically bonded next to the nonmagnetic layer. The tunneling magnetoresistance effect element according to any one of claims 1 to 4, wherein the insulating layer is formed on the ferromagnetic recording layer, and the ferromagnetic pinned layer is formed in the foregoing On the insulating layer, an antiferromagnetic layer is formed on the ferromagnetic pinned layer, and the ferromagnetic pinned layer is composed of a strong magnetic layer of two layers which are antiferromagnetically bonded next to the nonmagnetic layer. 7. A magnetic memory cell characterized by: an insulating layer, and a ferromagnetic recording layer and a ferromagnetic pinned layer disposed adjacent to the insulating layer; the insulating layer is a magnesium oxide of a (100) aligned rock salt structure a film, the ferromagnetic recording layer, comprising a first diffusion layer and a second diffusion layer disposed adjacent to the non-magnetic conductive layer 21 - 201121034 and a first ferromagnetic layer adjacent to the first diffusion layer and adjacent to the second a second ferromagnetic layer of the diffusion layer, wherein the first ferromagnetic layer is adjacent to the insulating layer, the second ferromagnetic layer is strongly magnetically coupled to the first ferromagnetic layer, and the ferromagnetic pinned layer has cobalt and a tunneling magnetoresistance effect element of a body-centered cubic structure of iron and boron; and a current for supplying a magnetization reversal of the ferromagnetic recording layer by a spin transfer torque The electrode of the tunneling magnetoresistance effect element; the direction of controlling the magnetization of the ferromagnetic recording layer by the direction of the current includes: a switching element that switches a current flowing to the tunneling magnetoresistance effect element. 8. The magnetic memory cell of claim 7, wherein the first ferromagnetic layer and the second ferromagnetic layer comprise a body-centered cubic structure of cobalt, iron, and boron, and the first diffusion layer and the first diffusion layer The second diffusion layer contains cobalt, iron, boron, and ruthenium (Ru), and has a film thickness smaller than that of the first ferromagnetic layer and the second ferromagnetic layer, and is 〇·2 nm or more. 9. The magnetic memory cell according to claim 8, wherein the tunneling magnetoresistance effect element is formed by sputtering, and when formed, an insulating layer is provided, and is disposed adjacent to the insulating layer. The magnetic recording layer and the ferromagnetic pinned layer, the insulating layer is a magnesium oxide film of a rock salt structure in which the (100) is aligned. The ferromagnetic recording layer is a first -22- which is provided by a non-magnetic conductive layer. 201121034 A film composed of a ferromagnetic layer and a second ferromagnetic layer is formed by heat treatment at a temperature of 340 degrees or more and 420 degrees or less. 10. A magnetic memory cell, characterized by: an insulating layer, and a ferromagnetic recording layer and a ferromagnetic pinned layer provided adjacent to the insulating layer; the insulating layer is a (1 〇〇) aligned rock salt structure a magnesium oxide film; the ferromagnetic recording layer is a tunneling magnetoresistance effect element having a body-centered cubic structure containing cobalt, iron, boron, and ruthenium (Ru) diffused with 0; a current for inverting magnetization of the ferromagnetic recording layer is applied to an electrode of the tunneling magnetoresistance effect element by a spin transfer torque; and magnetization of the ferromagnetic recording layer is controlled by a direction of the current The direction 5 has: a switch that controls the current flowing to the tunneling magnetoresistance effect element. 11. A random access memory characterized by: a magnetic memory cell having a plurality of numbers, and a means for selecting a desired magnetic memory cell > the magnetic memory cell having an insulating layer and being surrounded by the insulating layer a ferromagnetic recording layer and a ferromagnetic pinned layer; the insulating layer is a magnesium oxide film of a (100) aligned rock salt structure, and the ferromagnetic recording layer is a first diffusion layer provided by a non-magnetic conductive layer And a second diffusion layer and a second ferromagnetic layer adjacent to the first diffusion layer from -23 to 201121034 and a second ferromagnetic layer adjacent to the second diffusion layer, wherein the first ferromagnetic layer is adjacent to the insulating layer, The second ferromagnetic layer is strongly magnetically coupled to the first ferromagnetic layer, and the ferromagnetic pinned layer has a tunneling magnetoresistance effect element comprising a body-centered cubic structure of cobalt and iron and boron, and is provided for lending a current for inverting the magnetization of the ferromagnetic recording layer by a spin transfer torque to an electrode of the tunneling magnetoresistance effect element; controlling the ferromagnetic recording layer by the direction of the current The random access memory of claim 11, wherein the first ferromagnetic layer and the second ferromagnetic layer comprise a body-centered cubic structure of cobalt, iron, and boron. The first diffusion layer and the second diffusion layer contain cobalt, iron, boron, and ruthenium (Ru), and the film thickness thereof is smaller than the first ferromagnetic layer and the second ferromagnetic layer, and is more than 2 nm. 1 . The random access memory of claim 11, wherein the tunneling magnetoresistance effect element is formed by sputtering, and when formed, an insulating layer is disposed adjacent to the insulating layer. a ferromagnetic recording layer and a ferromagnetic pinned layer, a magnesium oxide film of a rock salt structure in which the insulating layer (100) is aligned, and the ferromagnetic recording layer is first provided by a non-magnetic conductive layer The film formed of the ferromagnetic layer and the second ferromagnetic layer is formed by heat treatment at a temperature of 340 degrees or more and 420 degrees or less. 14. A random access memory characterized by: -24- 201121034 having a plurality of magnetic memory cells and means for selecting a desired magnetic memory cell> a ferromagnetic recording layer and a ferromagnetic pinned layer; the insulating layer is a (100) aligned magnesium salt film of a rock salt structure; the ferromagnetic recording layer 'has a cobalt, iron, boron, and diffused 0 The body-centered cubic structure of ruthenium (Ru) is characterized by a tunneling magnetoresistance effect element, and is used for magnetizing the magnetization of the above-mentioned ferromagnetic recording layer by spin transfer torque The current flows to the electrode of the tunneling magnetoresistance effect element; the direction of the magnetization of the ferromagnetic recording layer is controlled by the direction of the current 〇1 5 as described in any one of claims 1 to 14 The memory is stored in the memory, wherein the magnetic gas information is recorded by a spin transfer torque. -25-
TW099113301A 2009-04-28 2010-04-27 The magnetoresistive effect element is used to use the magnetic memory cell and the random access memory TWI458087B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058335 WO2010125641A1 (en) 2009-04-28 2009-04-28 Tunneling magnetic resistance effect element, and magnetic memory cell and random access memory using the element

Publications (2)

Publication Number Publication Date
TW201121034A true TW201121034A (en) 2011-06-16
TWI458087B TWI458087B (en) 2014-10-21

Family

ID=43031808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113301A TWI458087B (en) 2009-04-28 2010-04-27 The magnetoresistive effect element is used to use the magnetic memory cell and the random access memory

Country Status (3)

Country Link
JP (1) JP5562946B2 (en)
TW (1) TWI458087B (en)
WO (1) WO2010125641A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209386B2 (en) 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
JP6345037B2 (en) * 2014-08-26 2018-06-20 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203701A (en) * 2004-01-19 2005-07-28 Sony Corp Magnetoresistive effect element and magnetic memory device
JP4568152B2 (en) * 2004-09-17 2010-10-27 株式会社東芝 Magnetic recording element and magnetic recording apparatus using the same
JP5143444B2 (en) * 2007-02-13 2013-02-13 株式会社日立製作所 Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same
JP2009004692A (en) * 2007-06-25 2009-01-08 Fujitsu Ltd Magneto-resistance effect element and manufacturing method thereof

Also Published As

Publication number Publication date
TWI458087B (en) 2014-10-21
WO2010125641A1 (en) 2010-11-04
JP5562946B2 (en) 2014-07-30
JPWO2010125641A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5096702B2 (en) Magnetoresistive element and nonvolatile magnetic memory equipped with the same
US7894244B2 (en) Tunnel magnetic resistance device, and magnetic memory cell and magnetic random access memory using the same
US9099641B2 (en) Systems and methods for implementing magnetoelectric junctions having improved read-write characteristics
JP5279384B2 (en) STT-MTJ-MRAM cell and manufacturing method thereof
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP5040105B2 (en) Memory element, memory
US9019758B2 (en) Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
KR101222252B1 (en) Magnetic recording element, magnetic memory cell, and magnetic random access memory
JP6194752B2 (en) Storage element, storage device, magnetic head
KR20090059038A (en) Magnetic element with thermally-assisted writing
KR20140143362A (en) Magneto-resistance effect element and magnetic memory
KR20140037284A (en) High speed low power magnetic devices based on current induced spin-momentum transfer
TW201234361A (en) Storage element and storage device
TW200910348A (en) Storage element and memory
TW201834285A (en) Magnetic junction, method for providing the magnetic junction and magnetic memory
JP2008252036A (en) Magnetoresistive element and magnetic memory
CN104662686A (en) Storage element, storage apparatus, and magnetic head
JPWO2009110119A1 (en) Ferromagnetic tunnel junction device and method for driving ferromagnetic tunnel junction device
JP5166600B2 (en) Tunnel magnetic recording element, magnetic memory cell, and magnetic random access memory
JP2010098259A (en) Memory cell, and magnetic memory element
JP4005832B2 (en) Magnetic memory and magnetic memory device
TWI458087B (en) The magnetoresistive effect element is used to use the magnetic memory cell and the random access memory
JP2013016820A (en) Tunnel magnetoresistance effect element, and magnetic memory cell and random access memory including the same
JP5386637B2 (en) Tunnel magnetoresistive element, magnetic memory cell using the same, and magnetic random access memory
JP2017212464A (en) Storage element, storage device, and magnetic head

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent