WO2010125629A1 - Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct - Google Patents

Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct Download PDF

Info

Publication number
WO2010125629A1
WO2010125629A1 PCT/JP2009/058251 JP2009058251W WO2010125629A1 WO 2010125629 A1 WO2010125629 A1 WO 2010125629A1 JP 2009058251 W JP2009058251 W JP 2009058251W WO 2010125629 A1 WO2010125629 A1 WO 2010125629A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
armature
rotating duct
armature cell
rotating
Prior art date
Application number
PCT/JP2009/058251
Other languages
French (fr)
Japanese (ja)
Inventor
快堂 池田
Original Assignee
Ikeda Kaidou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Kaidou filed Critical Ikeda Kaidou
Priority to PCT/JP2009/058251 priority Critical patent/WO2010125629A1/en
Publication of WO2010125629A1 publication Critical patent/WO2010125629A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/524Fastening salient pole windings or connections thereto applicable to stators only for U-shaped, E-shaped or similarly shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention includes a shroud in which two or more individual cell-like armatures (hereinafter referred to as “armature cells”) are arranged on the circumference in a point-symmetric relationship with respect to the center of the rotating duct,
  • armature cells two or more individual cell-like armatures
  • an axial gap type generator or electric motor composed of a combination of two or more rotating magnets arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference of the rotating magnet.
  • the armature cell disposed on the shroud side is inserted into the hollow portion of the U-shape through the opening of the substantially U-shaped or substantially U-shaped hollow portion, and the power generation section of the generator or the drive section of the motor
  • the present invention relates to a technique for reducing the thickness and reducing the thickness of an armature cell and its peripheral devices when forming a battery.
  • the first generator using the principle of Faraday's electromagnetic induction was invented by Hippolyte Pixii in 1832, and Gordon (J.E. H. Gordon) invented a two-phase alternator, and proved its effectiveness by Dobrowolsky at the Frankfurt International Electrotechnical Fair in Frankfurt, Germany in 1891 Power generation and power transmission are now being carried out.
  • the generators and motors generally used are relatively large wind power generators with a diameter of about 1.2 m, and the electric motors used in homes and washing machines have a diameter of about a dozen centimeters.
  • the vibration motor used as a vibrator in a mobile phone has a cylindrical shape with a diameter of a few millimeters, and was created by Davis (Daniel Dadis) in 1839 with the design of Page (Charles Grafton Page). Except for a few cases such as reciprocating motors (used in place of rotating motion with a crank), field magnets and armatures are arranged in a circular shape around a cylindrical rotating shaft. One of the children is fixed, and the other is rotated to generate power or drive.
  • the field magnet includes a permanent magnet and a winding coil.
  • the winding coil includes a magnetic core and an air core without an axis.
  • the armature is formed of a winding coil, there are a case where the armature has a magnetic axis and a case where the armature has no axis.
  • the relative speed between the field magnet and the armature is increased to cut off the magnetic field, and at the same time, at the end of the magnetization direction of the field magnet.
  • the surface that forms part of the field magnet hereinafter referred to as the “acting surface” of the field magnet.
  • the end face of the shaft center is used when the magnetic material has an axial center, and the case of an air core coil that does not have an axial center. The space between the coil ends must be able to maintain a narrow gap between the armature working surface and the armature working surface.
  • the opposing direction of the working surface of the field magnet and the working surface of the electromagnet includes a radial gap type facing in the direction perpendicular to the rotation axis, that is, the diameter direction, and an axial gap type facing in the direction parallel to the rotation axis.
  • the radial gap type increases the power generation efficiency and driving force because the distance that the power generation unit and drive unit separate from the rotating shaft increases, but the rotor
  • the radial direction which is the radial direction, tends to be affected by expansion and contraction due to centrifugal force and temperature change, so there are difficulties in maintaining the gap between the working surface of the field magnet and the working surface of the armature that face each other in the diameter direction.
  • the axial gap type has little influence on the gap due to the centrifugal force of the rotor and the expansion and contraction due to temperature change because the opposing working surfaces of the field magnet and the electromagnet face each other in the direction parallel to the rotation axis. It is easy to maintain the gap and it is advantageous to widen the working surface because the working surface can be created in a relatively wide place, but the place of the working surface between the field magnet and the armature is close to the rotation axis. If the areas of the opposing working surfaces are the same, the power generation efficiency decreases and the torque decreases.
  • Patent Document 13 and Patent Document 19 are radial gap generators / motors and electric motors, and the field magnets and armatures facing each other in the diametrical direction are sandwiched between two field magnets arranged coaxially. The area of the working surface is increased to increase power generation and driving force.
  • the armature disclosed in Patent Document 13 is a wound coil armature having a magnetic axis
  • the armature disclosed in Patent Document 19 is an air core obtained by molding a wire wound in a net shape into an armature. It is a coil.
  • the size of the gap between the working surface of the field magnet and the working surface of the armature (hereinafter sometimes referred to as “gap length”) is inversely proportional to the square of the distance if it can be made closer. It is extremely important because it increases. In particular, in order to improve the power generation efficiency and driving force in radial gap generators and motors where the increase of the opposing working surface between the field magnet and the armature is difficult in addition to extending in the axial direction, the gap length must be reduced. Strategies to keep them narrow are the most important and critical issues.
  • Patent Literature 20 In particular, in the case of a precision electric motor having a gap length of about 10 to several tens of ⁇ m, the occurrence of burrs when working the working surface may cause a fatal failure in maintaining the gap length.
  • Patent Literature 21, Patent Literature 22 describe the working surfaces of field magnets and armatures to prevent the occurrence of burrs during such processing, and to prevent the burrs from standing upside down if they occur. It is the example which covered and processed at least one of these with resin.
  • Patent Document 10 is a radial gap type electric motor, in which a resin film having a low friction coefficient of preferably 5 to 20 ⁇ m is attached to at least one of a field magnet and an armature, or oil is applied together. This is an example in which a sliding surface is formed and a critical gap length is made as small as possible.
  • the gap between the inner peripheral surface of the stator core 4 and the outer peripheral surface of the rotor cores 7a and 7b is the thickness of the fluororesin films 9a and 9b. It is understood that the resin film having a low coefficient of friction keeps the gap constant by using it in a state where it is always in contact with the sliding surface.
  • Patent Document 11 and Patent Document 18 are axial gap type motors in which the working surface of the field magnet and the working surface of the armature face each other in the direction of the rotation axis.
  • Patent Document 11 uses a permanent magnet.
  • the armature is sandwiched from both sides by two field magnets.
  • Patent Document 18 is an example in which the armature is sandwiched from both sides by two field magnets using winding coils.
  • the ones with the largest diameter are those with a generator at a power plant of about 10 m and an electric locomotive with an electric motor of about 2 m.
  • a large number of radial gap types easily obtain high power generation efficiency and large torque.
  • the influence of expansion and contraction due to the centrifugal force in the diameter direction of the rotor and the temperature change becomes so large that it cannot be ignored.
  • the gap length is operated at 30 mm in consideration of sufficient safety that the expansion / contraction rate due to centrifugal force and temperature change is 0.5%, and the safety factor is 0.25% and 0.75%.
  • the rotating shaft for maintaining the accuracy is about 1.2 m in diameter, and the weight is about 75 tons only by the rotating shaft. Therefore, the total of the weight of the stator (about 730 tons), the rotor (about 470 tons) and the rotating shaft (about 75 tons) exceeds 1,000 tons. Maintaining the clearance with the working surface of the rotor only by the accuracy of the rotating shaft is the reason why the driving part of a rotor blade with an air shroud exposed to large stress such as gyroscopic precession and the electromagnetic peripheral speed power generator It is almost impossible in the power generation section, and it is not realistic in terms of weight.
  • Patent Literature 13 Patent Literature 16, Patent Literature 12, and Patent Literature 14 describe a method for adjusting the power generation amount according to the rotational speed of the rotor and changing the torque without changing the rotational speed. It has a mechanism that allows the position of the armature to move with respect to the magnet.
  • Patent Document 13 and Patent Document 16 are radial gap type motors / generators and generators, and the movement direction of the armature is the axial direction.
  • Patent Documents 12 and 14 are both axial gap type motors / generators, and the armatures move in the axial direction.
  • the movement direction of the armature is limited to the axial direction even though the gap type of the electric motor and the generator is different between the radial gap type and the axial gap type. This is because the armature is fixed and the diameter cannot be changed.
  • the rotor expands and contracts in the diameter direction, that is, in the radial direction due to centrifugal force or temperature change. In order to follow the position by moving, it is essential that the armature moves in the radial direction.
  • Patent Document 13 since the armature moving devices of Patent Document 13, Patent Document 16, Patent Document 12, and Patent Document 14 can move the armature on the stator side only in the axial direction, It cannot be used when creating a power generation unit or a drive unit at the tip of a rotor blade.
  • the diameter of a wind turbine generator using electromagnetic peripheral speed is as large as about 100 m, or in order to make an air ferry or an air hollow carrier, The diameter needs to be as large as several hundred meters.
  • the first condition is that the facing direction of the gap between the rotor-side field magnet or armature action surface and the stator-side field magnet or armature action surface is parallel to the rotation axis. Axial gap type.
  • the second condition is that the distance from the rotation axis of the rotor-side field magnet or armature to the rotation axis greatly changes in the radial direction, which is the diameter direction, due to the centrifugal force applied to the rotor and the temperature change.
  • the working surface of the stator side field magnet or armature has a mechanism capable of following the change in the diametrical position of the working surface of the rotor side field magnet or armature.
  • the third condition is that the external stress on the rotating wind turbine or rotor blades becomes the axial stress due to the gyro precession at the outer periphery of the rotating body, and the field magnets arranged at the outer periphery of the rotating body.
  • Patent Document 6 and Patent Document 7 constitute a combination with a rotating duct that rotates by rubbing against the shroud, and an armature is arranged on the shroud side to rotate the shroud.
  • An axial gap type was realized by arranging a field magnet on the duct side.
  • Patent Document 6 and Patent Document 7 employ an armature cell in which each armature is independent.
  • armature cells There are many other examples of armature cells among conventional generators and motors. In these cases, the armature cells are fixed to a yoke / back yoke or the like that circulates around the circumference.
  • Patent Document 6 and Patent Document 7 are slid by sandwiching a gap holding bearing composed of a bearing and a case between the working surface of the field magnet and the working surface of the armature. It constitutes a mechanism to move. With this gap holding bearing, the gap holding bearing resists axial stress acting to narrow the gap between the working surface of the field magnet and the working surface of the armature, so that the gap can be kept constant at all times. The mechanism is realized.
  • Patent Document 6 and Patent Document 7 make it possible to create a power generation unit and a drive unit at the blade tip of any large-diameter windmill or rotor blade.
  • Patent Document 6 and Patent Document 7 can create a power generation unit and a drive unit at the tip of a wind turbine or rotor blade of any large diameter by satisfying the above three conditions.
  • the gap holding bearing has a considerable thickness in the axial direction parallel to the rotation axis, it is extremely difficult to reduce the thickness of the entire apparatus in the axial direction.
  • the bearing for gap maintenance is made of metal or ceramic, the weight of the bearing itself will be as large as that of the armature.
  • a gap holding bearing consisting of a bearing and a case is expensive. Therefore, the price of the gap holding bearing becomes very expensive.
  • the gap holding bearing is used in a magnetic environment, it is desirable to use ceramic that does not cause a magnetic short circuit or sliding resistance due to magnetism in at least one of the case and the bearing. Since the actual price is 100 to 150 times that of a steel bearing, the price of the gap holding bearing becomes very expensive when a ceramic bearing is used. Therefore, the cost effectiveness is greatly reduced.
  • Patent Document 2 and Patent Document 3 in place of the very expensive gap holding bearings in Patent Document 6 and Patent Document 7, the contact surface with the rotating duct is made of a material having a low coefficient of friction, or lubricant / friction.
  • Patent Document 6 and Patent Documents using a gap holder that has a manufacturing cost reduced, which includes a sliding portion that performs at least one of the agent application treatment and a pedestal portion that is an armature pedestal. The effect similar to 7 is contemplated.
  • Patent Document 10 uses a sliding portion made of a resin having a low friction coefficient used for a sliding surface of a radial gap type electric motor.
  • the gap holding bearing connected to the shroud through the holding skeleton in Patent Document 6 and Patent Document 7 always comes into contact with the inner surface of the hollow portion of the rotating duct with the bearing, and the load of the windmill and the rotor blades.
  • Patent Document 10 The resin film having a low friction coefficient disclosed in Patent Document 10 is also described in the drawings and the description in paragraph 0021 of the specification. “The gap between the inner peripheral surface of the stator core 4 and the outer peripheral surfaces of the rotor cores 7a and 7b is the above-mentioned fluorine. Since it is substantially equal to the sum of the thicknesses of the system resin films 9a, 9b, and so on, it is understood that the sliding surfaces are always in contact with each other. Thus, the mechanisms of Patent Document 6, Patent Document 7, and Patent Document 10 are characterized in that the rotor side and the stator side are always in contact with each other and sliding.
  • a low friction coefficient resin for the sliding surface to be performed is a generator or electric motor with a very small diameter, or is fixed in an environment where the number of revolutions is extremely small and there is no temperature change and no stress is generated.
  • Patent Literature 6 and Patent Literature 7 the entire gap length formed by the field magnet working surface and the armature working surface is occupied by the gap holding bearing, and in Patent Literature 2, Patent Literature 3 and Patent Literature 10, the low friction coefficient. Accounted for.
  • Patent Document 1 the gap length is divided into two parts and "play” that can take a zero value, and "sliding part" made of a low friction coefficient material or lubricant / lubricant.
  • the present application can maintain a constant gap by avoiding collisions between the working surfaces by such a structure including “play” and a “sliding portion” made of a material having a low friction coefficient and a lubricant / friction agent.
  • the idea of the unpublished Patent Document 1 is inherited.
  • Patent Document 15 is an electric motor as a vibrator that generates vibration by rotating a shaftless armature repeatedly in a magnetic field of a field magnet of a stator, and can take a zero value. And a portion of the cushioning material that can be regarded as a “sliding portion” made of a material having a low coefficient of friction. In a mechanism in which a shaftless rotor rotates while revolving and rotating repeatedly and colliding with the inner wall of the stator, the rotor is often a permanent magnet.
  • the stator side covering the periphery is an electromagnet, and a permanent magnet is enclosed in a case with a Dharma picture inside as a rotor, and a rotating magnetic field is generated in the stator-side electromagnet, thereby producing a dharma.
  • a toy that rotates with the rotor with the picture of repeating the collision inside the stator side.
  • the resin attached to the stator side or the rotor side is It is not a mechanism for maintaining a gap between the magnet and the armature, but it is advantageous for the initial motion of rotation or for mitigating the impact when the rotor collides with the stator. Therefore, the stuck low friction coefficient material is not an essential element for rotation. In fact, in toys, there are cases where the rotor does not enter the case and is exposed, or the case of the rotor is made of vinyl chloride having a relatively high friction coefficient.
  • Patent Document 15 and the example of toys collisions for generating vibrations and awkward movements of a rotor with a Dharma picture are made for the purpose of exhibiting the functions. Therefore, the problem and the solution of Patent Document 15 are different from those for pursuing a problem and a solution for the conventional motor and generator with a shaft to keep the gap constant for smooth rotation.
  • Patent Document 15 and the example of toys at the time when the rotor is shaftless, a conventional generator and a motor with a shaft for using torque are similar or similar in terms of problems and solutions. It can be said that it has no points.
  • Patent Document 10 in which a resin with a low coefficient of friction that is uneasy about load resistance and heat generation is attached to an armature or a field magnet, the resin part with a low coefficient of friction always contacts and slides. Recognizing that this is a problem of Patent Document 10 and looking at Patent Document 15 in which the rotor rotates while repeating a collision, an invention that contributes to solve the problems of the invention of Patent Document 10 cannot be made. .
  • the conventional generator and motor with a shaft which was the starting point of Patent Document 10, assumes that the gap length between the field magnet and the armature is constant or zero even if fluctuation is expected.
  • Patent Document 6, Patent Document 7, Patent Document 2, and Patent Document 3 each have a shroud and a rotating duct, and have a mechanism of an axial gap type, an armature cell, a holding skeleton, a gap holding bearing, and a gap holder. Also, it has become possible to create a power generation unit and a drive unit at the tip of a huge wind turbine using a peripheral speed or a rotor blade with a shroud.
  • unpublished patent document 1 has a shroud and a rotating duct, and has a mechanism of an axial gap type, an armature cell, a holding skeleton, and a sliding part, and uses a huge peripheral wind turbine or shroud-equipped rotating blade.
  • Patent Document 5 describes a giant winding wheel (giant spinning wheel composition), a metal strip having a thickness of 0.01 mm to 5 mm, a thin strip of ceramic, cermet, fiber, or synthetic resin, or 0.1 mm to 50 mm.
  • Patent Document 4 expands the point of installation on the ground and the like, and wind power generators that can be installed anywhere in a short time, including movement and relocation, by a device combined with a standard device. This is a placement device for a power generation device. With the laying device of Patent Document 4, the wind power generator can be installed on sloped land without the need for foundation work, and can also be used for emergency power generation in disaster areas, greatly expanding the scope of operation. We were able to.
  • Conventional helicopter rotor blades are connected to the rotating shaft via fragile and complex hinges such as flapping hinges, feathering hinges, dragging hinges (lead lug hinges), and the lift generated by the rotor blades Is transmitted via the rotating shaft.
  • hinges such as flapping hinges, feathering hinges, dragging hinges (lead lug hinges), and the lift generated by the rotor blades Is transmitted via the rotating shaft.
  • twisting down if the rotor blade is created by a method called twisting down, is there almost no lift at the blade tip? Or, we had to generate a negative lift to press down the wing tips. For this reason, the conventional helicopter can generate only a small lift for a large turning radius.
  • the rotor blades with shrouds of Patent Document 6, Patent Document 3 and Patent Document 1 make a hinge unnecessary (however, a feathering hinge may be provided) and the generated lift through the shroud. Since it is transmitted to the aircraft, twisting down is unnecessary. This makes it easy to use very light rotor blades and increase the number of blades, or to achieve maximum lift at the blade tip. For this reason, when compared with the same radius, the rotor blades with shrouds of Patent Document 6 and Patent Document 1 can easily generate lift about 12 to 25 times that of a conventional helicopter. This means that the diameter can be reduced to 1/3 to 1/5 when the same lift is obtained.
  • Patent Document 9 focusing on the fact that a large lift can be obtained even with a small diameter is stored in a bottom plate attached to the side surface of a fuselage with a rotor blade with a small diameter that the conventional helicopter system does not have enough lift.
  • the rotating surface of the rotating blade with the shroud is stored in parallel with the inside of the bottom plate by the hydraulic piston device, the electric worm gear device, or the pantograph mechanism, or the rotating surface of the rotating blade with the shroud is set up on the bottom plate. This makes it possible to park as an aerial taxi or a private aircraft because it can be parked even in the absence of facilities such as an airfield hangar.
  • Patent document 8 is one of the outer rotor type in-wheel motors.
  • Various mechanisms have been disclosed for in-wheel motors, but there are few examples of mechanisms for protecting a drive unit installed near the ground where there is a lot of dust and moisture from intrusion of dust and moisture.
  • Patent Document 8 discloses a method for preventing entry of dust and moisture into a drive unit by sealing a field magnet, an armature, or a bearing constituting a drive unit of an in-wheel motor in a high-pressure atmosphere capable of radiating heat. Disclosed. With the mechanism of this Patent Document 8, the in-wheel motor can be used in dust, mud and underwater, thus greatly expanding the range of operation.
  • the attraction force and the repulsive force between magnets are obtained by combining a coil-type armature in which a conducting wire is wound around a conventional shaft center and a field magnet facing the end of the armature.
  • a conventional armature cell coil which is a conventional power generation and drive mechanism using the right-handed screw rule
  • field magnets in different directions are made to face two locations in the axial direction of the same armature at the same time.
  • the armature cell ring push-pull which is a mechanism for generating power and driving using Fleming's right-hand rule and left-hand rule, is also described.
  • the external features of the armature cell ring / push-pull mechanism are that the armature windings have two straight portions in the diametrical direction perpendicular to the rotation axis, and the portion directly above or below the straight portion. Have two field magnets facing each other in the axial direction.
  • the drawing of Patent Document 17 is similar to Patent Document 1 in that the armature has two linear portions extending in the diametrical direction and has pole pieces in the axial direction directly above the linear portion of the armature.
  • the number 15 (15a, 15b, 15c) in the figure which is a pole piece is the number 500 in the figure which is the field magnet of the present application. (502) is a completely different function and role. That is, the pole piece is attached in order to increase the permeation of magnetic flux from the field magnet and improve the magnetic collection efficiency, and is used in a state of being attached to the armature side. Therefore, in Patent Document 17, “the armature enters and passes at the same time” in the number 15 in the figure, so to speak, “the armature enters permanently” in the number 15 in the figure. Even if the shape is almost the same as that of the present application, the structure and the function are completely different.
  • the hollow part having a substantially U-shaped cross section made of the outer peripheral surface of the rotating duct and the outer peripheral hanger, and the inner peripheral surface and inner peripheral hanger of the rotating duct A hollow section having a substantially U-shaped cross-section to be made, or a substantially E-shaped hollow section having two of these approximately U-shaped back to back is inserted into the generator from the opening of the hollow section. It is a problem to reduce the weight while reducing the thickness of the armature constituting the power generation unit and the drive unit of the motor and the peripheral devices.
  • a shroud in which armature cells, each of which is an independent cell, are arranged on the circumference, and a rotating duct in which a field magnet that rotates facing the armature cell on the shroud is arranged.
  • the rotating duct is generally shaped like a bobbin with a thread winding, and it is necessary to have a substantially U-shaped hollow part on the outer peripheral part or the inner peripheral part thereof. Since the shroud only needs to provide a platform for an armature cell to be inserted into the substantially U-shaped hollow portion of the rotating duct, the shroud is relatively free in shape as compared with the rotating duct.
  • the outer side of the rotating duct may be covered with a shroud as shown in FIG. 1, or the inner side of the rotating duct may be covered as shown in FIG. Further, as shown in FIGS. 4, 5, and 64, it may be inside the rotating duct and may occupy a smaller portion in shape than the rotating duct. Further, as shown in FIG. 3, a skeleton having only a skeleton as the shape of the shroud may be used.
  • the other rotating duct has an overhanging portion on the outer peripheral portion as an outer peripheral hanger as shown in FIGS. 6, 7, and 11, and an inner peripheral portion as an inner peripheral hanger as shown in FIGS. 8, 9, and 12.
  • a field magnet is disposed on each of the outer peripheral hanger and the inner peripheral hanger. Permanent magnets are often used as field magnets on the outer peripheral hanger and the inner peripheral hanger. Although the field magnet may be a winding coil, the winding coil is not shown in the drawing.
  • the direction of the magnetic flux of the field magnets arranged on the outer peripheral hanger and the inner peripheral hanger is an axial direction parallel to the rotation axis of the rotating duct, so that it is a substantially U-shaped hollow portion formed by the outer peripheral surface and the outer peripheral hanger.
  • the direction of the magnetic flux of the armature cell on the shroud side inserted into the substantially U-shaped hollow portion formed by the inner peripheral surface and the inner peripheral hanger is also created in the axial direction. Therefore, the relative positions that can be taken by the field magnet and the armature cell formed by the rotating duct and the shroud have an axial gap structure.
  • a winding coil in which a winding is provided on an axis is prepared.
  • the winding coil axis can be made of a magnetic material such as silicon steel or sendust, or it can be a bobbin-shaped air core. good.
  • at least one of the treatments consisting of a material having a low coefficient of friction or a mechanism for applying a lubricant / lubricant is applied to both ends in the direction parallel to the rotation axis of the rotating duct.
  • a sliding part As a sliding surface, an armature cell coil is obtained by combining a wound coil armature cell and a sliding part as one device.
  • the winding of the first method is wound so that the center of the magnetic flux is coaxial, whereas as shown in FIGS. 46, 47, 48, 49, and 50, Wind the winding so that the center of the magnetic flux is slightly different.
  • a bus line may be used as shown in FIG.
  • straight portions (hereinafter referred to as “stretch guides”) extending in the diameter direction perpendicular to the rotation axis of the rotating duct serving as a passage opening through which the conducting wire passes are formed in two portions in the middle of the winding.
  • the configuration of the straight portion of the stretch guide is created by collecting pipe materials or by using a mold material. And, as used in the first method, at least whether it is made of a material having a low friction coefficient or has a mechanism for applying a lubricant / friction agent to both ends in the direction parallel to the rotation axis of the rotating duct.
  • An armature cell coil and an armature cell ring / push pull are connected to the shroud by a skeleton to constitute a power generation unit and a drive unit.
  • Patent Document 6 and Patent Document 7 a gap holding bearing is inserted between the opposing working surfaces of the field magnet of the rotating duct and the armature cell of the shroud, and a sliding surface that is always in contact is provided.
  • Gap bearings have a large load capacity, and lubricants / friction agents used in bearings can reduce the coefficient of friction, such as molybdenum oil, and can withstand use even at high temperatures. is there.
  • the role played by the gap retaining bearing is replaced with a low friction coefficient resin such as fluororesin or high density polyethylene as in Patent Document 10, the low friction coefficient resin has a load resistance.
  • the present invention applies axial stress to the power generation unit and the drive unit when holding the armature cell coil and the armature cell ring / push pull connected to the shroud by the connection unit, the arm unit, and the tether.
  • the spring part provided alongside the connection part supports, so that the armature cell coil or the sliding part of the armature cell ring / push pull does not touch the inner surface of the hollow part of the rotating duct.
  • the thickness in the axial direction of the armature cell coil and the armature cell ring / push pull is set to be slightly smaller than the width in the axial direction inside the hollow portion of the rotating duct.
  • the arm part and the telescopic arm part are supported by a spring part provided in the connection part.
  • the inner surface of the hollow portion of the rotating duct ⁇ (play) ⁇ (sliding portion) ⁇ (leading armature cell) Since the power generation unit and the drive unit are configured, it is possible to configure a mechanism that does not touch the inner surface of the hollow portion of the rotating duct while stress from the axial direction is not applied to the power generation unit and the drive unit.
  • This mechanism usually requires two sets of spring parts, but in the case of the power generation part of the vertical axis wind turbine in FIG. 64 or the power generation part near the top of the horizontal axis wind turbine, the spring part is missing.
  • the armature cell coil and the armature cell ring / push pull can be held on the inner surface of the hollow portion of the rotating duct in a non-contact manner due to the balance with gravity.
  • the thickness of the armature cell can be reliably reduced by that much.
  • the weight can be reduced.
  • Armature cell coils and armature cell rings / push pulls that have a sliding section at one end can be used to reliably reduce the thickness of peripheral devices including armature cells and armature cells, and light weight.
  • the size of the field magnet facing the armature cell can be made very small.
  • the width of the field magnet required in the circumferential direction can be minimized by using at least one pair of field magnets of about the width of the conductive wire laid in the stretch guide.
  • the weight of the field magnet occupying most of the weight on the side can be greatly reduced.
  • the structure of the armature cell coil of the first method and the armature cell ring / push pull of the second method are extremely simple, so that from a very large armature cell to a very small armature cell, Since it can be produced easily and inexpensively, cost effectiveness can be greatly improved.
  • the field magnet (500) is disposed, and the outer peripheral surface (611) and the outer peripheral hanger (613) form a substantially U-shaped hollow portion, or the inner peripheral surface (612) and the inner peripheral surface
  • the hanger (614) forms a substantially U-shaped hollow portion, or the outer hanger (613) and the inner peripheral hanger (614) form a substantially D-shaped hollow portion back to back.
  • the working surface of the field magnet (500) and the working surface of the armature cell (100) It is configured to be an axial gap type that is opposed in the axial direction of the parallel part.
  • the field magnet (500) disposed in the rotating duct (600) at this time may be a permanent magnet or a wound coil, but the shape of the working surface is that of the armature cell (100).
  • the field magnet (for the armature cell coil) (501) is replaced with the armature cell ring push-pull (501) of the second method described above. 400), a field magnet (for armature cell ring / push pull) (502) is used.
  • the field magnet (500) disposed in the rotating duct (600) is either a field magnet (for armature cell coil) (501) or a field magnet (for armature cell ring / push pull) (502).
  • different field magnets (500) may be mixed and formed as shown in FIGS. 11 and 12 to create the rotating duct (600).
  • the shroud (200) serving as the platform of the armature cell (100) may cover the outer periphery of the rotating duct (600) as shown in FIG. 1, or the inner periphery of the rotating duct (600) as shown in FIG. May be covered. Further, if the role of the armature cell (100) can be fulfilled, the shroud is smaller than the rotating duct (600) as shown in FIGS. (Skeleton type) (203) may be used.
  • the armature cell coil (300) is installed on the inner peripheral portion (212) of the shroud by the connecting portion (231), the arm portion (234), and the tether portion (236).
  • the connecting portion (231) is a portion connected to the shroud, and is in a tangential direction of the rotating duct (600) generated in the armature cell coil (300) when the armature cell coil (300) is connected to the shroud and operated.
  • the anchoring portion (236) is a portion that anchors the armature cell coil (300).
  • the arm portion (234) is a portion connecting the connecting portion (231) and the anchoring portion (236).
  • the part using the armature cell coil (300) is the power generation part of the electromagnetic peripheral speed wind power generator (700) having a particularly large diameter or the drive part of the rotor blade (800) with shroud
  • this arm part Using (234) as the extendable arm portion (235) the insertion length when the armature cell coil (300) is inserted into the substantially U-shaped hollow portion of the rotating duct (600) can be adjusted.
  • the holding skeleton (for armature cell coil) (221) used in connection with the shroud (200) has various structures as shown in FIG. Among these, when the telescopic arm part (235) is provided, the hydraulic power is generated by the built-in power unit to expand and contract the telescopic arm part, or the hydraulic cylinder telescopic arm part is moved by the hydraulic pressure from the pipe connected from the outside.
  • the worm screw expands and contracts by rotating the worm screw integrated with the built-in power unit, or the worm screw by rotating the worm screw integrated with the air turbine built in with air pressure from the pipe connected from the outside
  • An electric machine having any one of the structures for extending and retracting the screw expansion and contraction arm, expanding and contracting the expansion and contraction arm (235), and attached to the tether (236) of the holding skeleton (for armature cell coil) (221)
  • the child cell coil (300) can be moved in a radial direction which is a direction perpendicular to the rotation axis of the rotating duct (600). Therefore, the insertion length when inserting the armature cell coil (300) into the substantially U-shaped hollow portion of the rotating duct (600) can be adjusted as needed.
  • the connecting portion (231) for connecting the armature cell coil (300) to the shroud (200) is normally supported by the spring portion (232) and is axially directed to the armature cell coil (300) connected to the anchoring portion (236).
  • the armature cell coil (300) is supported on the inner surface of the substantially U-shaped hollow portion of the rotating duct (600) by the support of the spring portion (232) provided along with the connecting portion (231). Hold it out of touch.
  • Two sets of spring portions (232) are used except for the case of the bottom portion of the vertical axis wind turbine shown in FIGS. 4, 5, and 64 and the top portion of the horizontal axis wind turbine.
  • the spring portion (231) when using two sets is usually made of an L-shaped leaf spring.
  • the leaf spring may be replaced with a mustache spring or a silicon rubber block material (238), or may be used in combination with a leaf spring.
  • the armature cell coil (300) is made by winding a conductive wire (110) around an axis (magnetic body) (331), and the axis (nonferrous metal, nonmetal or cylinder only).
  • the wire (110) may be wound around the air core (332).
  • the winding is wound in order so that the centers of the magnetic fields are the same as A ⁇ B ⁇ ... ⁇ j.
  • both ends in the direction parallel to the rotation axis of the rotating duct are made of a material having a low coefficient of friction or having a mechanism for applying a lubricant / lubricant. It is necessary to have a glide (250) that has been treated.
  • the sliding portion (250) Due to the presence of the sliding portion (250), stress is applied to the armature cell coil (300) from the axial direction, and the armature cell coil (300) is formed on the inner surface of the substantially U-shaped hollow portion of the rotating duct (600). Even in the case of contact, the sliding portion (250) becomes the minimum gap (3) between the working surface of the field magnet (for armature cell coil) (501) and the working surface of the armature cell coil (300). Since it is held, rotation can be maintained without damaging the armature cell coil (300).
  • the sliding portion (250) is set at the axial end portion of the shaft center (330) and the winding coil (320).
  • the shaft center (330) itself is made of a material having a low coefficient of friction such as fluororesin or high density polyethylene, for example, the shaft center (330) itself becomes the sliding portion (250).
  • the mechanism for applying the lubricant / friction agent to the sliding portion (250) is performed by providing a structure having a mechanism for applying the lubricant or the lubricant to the surface with the leak hole (261) in the surface direction. .
  • the leak hole (261) for applying the lubricant or the lubricant to the surface has only a small hole or a fine sphere (262) at the tip, and has a leak hole (261).
  • the sliding part (251) has a hollow part filled with a lubricant / lubricant (263).
  • the hollow portion filled with the lubricant / friction agent (263) may be at normal pressure or pressurized, and these are selected and used as necessary.
  • the maximum clearance (1) is maintained, and the play (2) becomes zero when the axial stress is applied.
  • the armature cell coils (300) subjected to the above-described various treatments are independent one by one, they can be connected in series as shown in FIG. 33 (A) or operated in parallel as shown in FIG. 33 (B). It is possible to operate by connecting to three or three phases as shown in FIG.
  • the armature cell (100) disposed on the shroud is A case of a child cell ring push-pull (400) is shown.
  • the armature cell ring push-pull (400) is installed on the inner peripheral part (212) of the shroud by the connection part (231), the arm part (234), and the tether part (236).
  • the connecting portion (231) is a portion connected to the shroud, and rotation generated in the armature cell ring / push pull (400) when the armature cell ring / push pull (400) is connected to the shroud and operated.
  • the anchoring part (236) is a part that anchors the armature cell ring push-pull (400).
  • the arm portion (234) is a portion connecting the connecting portion (231) and the anchoring portion (236).
  • the part where the armature cell ring push-pull (400) is used is the power generation part of the electromagnetic peripheral speed wind power generator (700) having a particularly large diameter or the driving part of the rotor blade with the shroud (800)
  • this arm part (234) as the telescopic arm part (235)
  • the insertion length when the armature cell ring push-pull (400) is inserted into the substantially U-shaped hollow part of the rotating duct (600) is adjusted. It can be so.
  • the holding skeleton (for armature cell ring / push pull) (222) used in connection with the shroud (200) has various structures as shown in FIG. Among these, when the telescopic arm part (235) is provided, the hydraulic power is generated by the built-in power unit to expand and contract the telescopic arm part, or the hydraulic cylinder telescopic arm part is moved by the hydraulic pressure from the pipe connected from the outside.
  • the worm screw expands and contracts by rotating the worm screw integrated with the built-in power unit, or the worm screw by rotating the worm screw integrated with the air turbine built in with air pressure from the pipe connected from the outside It has any one of the structure to expand and contract the screw expansion and contraction arm, expands and contracts the expansion and contraction arm (235), and the anchoring portion (236) of the holding skeleton (for armature cell ring / push pull) (222)
  • the armature cell ring push-pull (400) attached to can be moved in a radial direction which is a direction orthogonal to the rotation axis of the rotary duct (600). Therefore, the insertion length when the armature cell ring push-pull (400) is inserted into the substantially U-shaped hollow portion of the rotating duct (600) can be adjusted as needed.
  • the connecting portion (231) for connecting the armature cell ring push-pull (400) to the shroud (200) is normally supported by a spring portion (232) and connected to the anchoring portion (236). While no axial stress is applied to the push-pull (400), the armature cell ring / push-pull (400) is abbreviated to the rotating duct (600) by the support of the spring part (232) attached to the connection part (231). Hold the U-shaped hollow part so that it does not touch the inner surface.
  • Two sets of spring portions (232) are used except for the case of the bottom portion of the vertical axis wind turbine shown in FIGS. 4, 5, and 64 and the top portion of the horizontal axis wind turbine.
  • the spring portion (231) when using two sets is usually made of an L-shaped leaf spring.
  • the leaf spring may be replaced with a mustache spring or a silicon rubber block material (238), or may be used in combination with a leaf spring.
  • the armature cell ring push-pull (400) is usually formed by winding a conducting wire (110) around the air core in a ring shape.
  • the winding sequence is (AA) ⁇ (BB) ⁇ ... (XX), and the magnetic field centers are slightly different.
  • two stretch guides (430) are made of a straw-shaped pipe material or a mold material in which the passage opening of the conducting wire (110) is previously drilled, and the conducting wire (110) is formed at the passage opening of the stretching guide (430). Are created in the order of (AA) ⁇ (BB) ⁇ ... (XX).
  • power is generated by an electromotive force according to Fleming's right-hand rule
  • a driving force is generated according to Fleming's left-hand rule to rotate the rotating duct (600).
  • both ends in the direction parallel to the rotation axis of the rotating duct are made of a material having a low coefficient of friction or having a mechanism for applying a lubricant / lubricant. It is necessary to have a glide (250) that has been treated.
  • the sliding portion (250) Due to the presence of the sliding portion (250), the stress in the axial direction is applied to the armature cell ring / push pull (400), and the armature cell ring / push pull (400) is substantially connected to the rotary duct (600). Even when it contacts the inner surface of the letter-shaped hollow portion, it is between the working surface of the field magnet (for armature cell ring / push pull) (502) and the working surface of the armature cell ring / push pull (400). Since the sliding part (250) holds the minimum gap (3), the rotation can be maintained without damaging the armature cell ring push-pull (400).
  • the sliding portion (250) is set at the end portion in the axial direction of the ring-shaped winding (420) as shown in FIGS.
  • the stretch guide (430) is made of a material having a low coefficient of friction such as a fluororesin or high density polyethylene, for example, the stretch guide (430) becomes the sliding portion (250).
  • the mechanism for applying the lubricant / friction agent to the sliding portion (250) is performed by providing a structure having a mechanism for applying the lubricant or the lubricant to the surface with the leak hole (261) in the surface direction. .
  • the leak hole (261) for applying the lubricant or the lubricant to the surface has only a small hole or a fine sphere (262) at the tip, and has a leak hole (261).
  • the sliding part (251) has a hollow part filled with a lubricant / lubricant (263).
  • the hollow portion filled with the lubricant / friction agent (263) may be at normal pressure or pressurized, and these are selected and used as necessary.
  • One of the features of the present invention is that, as shown in an enlarged view in FIG. 52, the working surface of the field magnet (for armature cell ring / push pull) (502) on the rotating duct (600) side and the armature cell. “Play (2)” between the working surface of the ring push-pull (400). Since the play (2) of the present invention is an empty space, it looks like the “gap / gap” of a conventional generator or motor. However, in generators and electric motors, as in Patent Literature 6, Patent Literature 7, and Patent Literature 10, the gap holding bearing or the low friction coefficient resin is always in contact with the gap holding bearing or the low friction coefficient resin.
  • the armature cell ring push-pull (400) receives the stress in the axial direction even if the non-zero value is maintained while the stress is not applied in the normal axial direction. In such a case, a zero value is allowed.
  • the armature cell ring / push-pull (400) does not include a magnetic material such as an iron core unless a magnetic material such as silicon steel is used as a material for the stretch guide (434) to improve the flow of magnetic flux.
  • a magnetic material such as silicon steel
  • the stretch guide (434) to improve the flow of magnetic flux.
  • the armature cell coil (300) wound in the shape of a coil with one continuous wire around the axis of the magnetic material when a voltage is applied to the armature cell coil (300), the coiled There is a time delay from the application of electric power to the generation of an effective magnetic field due to a delay in current due to the reactance of the conducting wire and a time required for the iron molecules constituting the axis of the magnetic material to align in the direction of the magnetic field.
  • the armature cell ring push-pull (400) normally does not have a magnetic axis, so there is no time delay for the iron molecules to align in the direction of the magnetic field, and the bus connection as shown in FIG.
  • the reactance of the wound conductor can be reduced. For this reason, it is most suitable for the structure of the armature of the system which applies an ultrahigh voltage in a very short time.
  • the bus connection type can have a standard structure in the case where an ultrahigh voltage is applied in an extremely short time. Furthermore, since there is little power loss due to reactance, a standard structure for generating large power can be adopted.
  • the armature cell ring push-pull (400) subjected to the above-described various treatments is independent one by one, it can be operated by connecting in series as shown in FIGS. 58 (A) and 59 (A). 58B and 59B can be connected in parallel or operated in three phases as shown in FIGS. 58C and 59C. It is.
  • the structure of the axial center (air core) of the winding coil (320) is as follows. And one or more field magnets (for armature cell coils) (501) having an area approximately equal to the area of the end portion of (including) end portions of the end portions in the axial direction.
  • the direction of magnetic flux needs to be alternately different poles.
  • the law of application when the drive unit is configured is the right-handed screw law that occurs in the winding coil (320).
  • the drive mechanism is based on the magnetic field of the field magnet (for the armature cell coil) (501).
  • the armature cell coil (300) obtains a driving force by generating an attractive force and a repulsive force as the coil.
  • the characteristic of the first method is that the rotational torque when the alternating current is applied is large, and the stop torque can be obtained when the direct current is applied.
  • the rotation direction at the time of startup is unstable, and in order to stabilize it, it is necessary to take a split or multiple winding procedure. In addition, a large amount of power is required at startup.
  • the structure in the case of the combination of the armature cell ring / push pull (400) and the field magnet (for armature cell ring / push pull) (502) of the second method is a rotating duct (600).
  • a rotating duct (600) Of a ring-shaped winding (420) passing through a pair of stretch guides (430) constituting a linear portion in the direction of the rotation axis, and a stretch guide (430) having a length of one normally.
  • a field magnet (for armature cell ring and push-pull) (502), which is about the length of one stretch guide (430) and about the width of one stretch guide (430), is a pair of two, like the stretch guide (430). It is configured in the axial direction.
  • the direction of the magnetic flux in the case where there are a plurality of field magnets (for armature cell ring and push-pull) (502) is required to be alternately different poles.
  • a front stretch guide (433) and a rear stretch guide (434) through which the lead wire (110) is passed, respectively, are a pair of field magnets (for armature cell ring and push-pull) ( The condition is that it can be configured to pass through the opposite magnetic fluxes (120) created by (502) at the same time.
  • the front stretch guide (433) and the rear stretch guide (434) are driven by applying reverse currents at the same time, and in power generation, the front stretch guide (433) and the rear stretch guide (434) are driven.
  • two sets of field magnets (for armature cell ring and push-pull) (502) that pass through mutually opposite magnetic fluxes (120) at the same time electromotive forces in opposite directions are generated. Generates electricity efficiently.
  • the occurrence of electromotive forces in the opposite direction at the same time at two locations on the same ring-shaped winding (420) is pronounced of the push-pull amplifier of the audio amplifier. This is the reason why the name is added.
  • the drive mechanism is a field magnet (armature A driving force is obtained by causing a force in a direction perpendicular to the conductive wire (110) inside the stretch guide (430) with respect to the direction of the magnetic field of the cell ring and push-pull (502). Due to such a mechanism, the characteristic of the second method is that it is easy to determine the rotation direction when an alternating current is applied, and no split or multiple winding treatment is required to determine the rotation direction. In addition, the power consumption at the time of start-up is small and energy is saved. However, the rotational torque is slightly smaller than that of the first method, and even if a direct current is applied, vibration may occur and it is difficult to obtain a stop torque.
  • the field magnet (500) disposed in the rotating duct (600) is replaced with a field magnet (for armature cell coil) (501).
  • field magnets (for armature cell ring / push pull) (502) are mixed, and the armature cell ring / push pull (400) is operated and stopped at start-up and continuous rotation.
  • the armature cell coil (300) is operated only when torque is required, or conversely, by utilizing the characteristics of the armature cell coil (300) with large torque, the armature cell coil (300) is mainly used when large torque is required.
  • the armature cell ring push-pull (400) is partially mixed and operated in order to secure the starting direction. In the case of a generator, there is no remarkable difference as much as that of an electric motor.
  • the power generation unit configured as described above is a type in which the rotating duct (600) with the shroud (200) fixed and the blade tip connected rotates as in the vertical axis wind turbine of FIGS. 63, the shroud (200) is also coaxially inverted with the rotating duct (600) to increase the relative speed between the field magnet (500) and the armature cell (100).
  • FIG. 72 the case where the wind power generator is used in combination with the wind power generator of Patent Document 4 is an example of FIG. 72 or FIG.
  • an outer ring (633) and an inner ring (634) are provided to bridge the outer ring (633) and the inner ring (634) (hereinafter referred to as “bridge blade”) ( 632) can be used to produce a windmill that is stronger than the case where only one side of the blade is fixed by the outer ring (633).
  • bridge blade 632
  • the protruding part can play a role similar to that of tail feathers, and can automatically face the windmill upwind.
  • the present invention is used for a rotor blade with a shroud (800), a rapid wind direction changing device (810), or a rapid wind power generating wind direction changing device (820), the rotor blade with a shroud (800) or the rapid wind direction changing device (810).
  • the drive unit of the rapid wind generating wind direction changing device (820) can be configured.
  • the in-wheel motor (900) is used by using an armature cell coil (300) or an armature cell ring push-pull (400) as shown in FIGS. 93, 94, and 95.
  • the working surface of the armature cell (100) and the field magnet (500) even if the wheel is susceptible to external stress, such as a steering wheel whose traveling direction is frequently changed, which is usually the front wheel. Since it is easy to maintain a constant gap with the working surface of the wheel, the range in which the in-wheel motor (900) can be used is expanded, and it is possible to run on unpaved areas, outdoor rough terrain, rough rugged fields, etc. A practical vehicle can be manufactured.
  • FIG. 70 to FIG. 73 show a shroud in which two or more individual cell-like armature cells are arranged on the circumference in a point-symmetrical relationship as viewed from the center of the rotating duct, and the rotating duct.
  • axial gap generators and motors that are configured by combining two or more rotating ducts arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference of the field magnet, A substantially U-shaped hollow part consisting of the outer peripheral surface of the duct and the outer peripheral hanger around the rotating duct, and the field magnet around the inner peripheral surface of the rotating duct and the rotating duct.
  • the hollow part of the approximately U-shape consisting of the inner peripheral hanger and the outer hanger and the inner Low friction at both ends in the direction parallel to the rotation axis of the rotating duct of the armature cell in which the conductor wire is wound in the coil shape arranged on the shroud side in the hollow part of the substantially E shape with the hanger back to back
  • An armature cell coil comprising a sliding portion which is made of a coefficient material or has a mechanism for applying a lubricant / lubricant and having a sliding surface as a sliding surface.
  • a magnetic field is formed by inserting the armature cell coil from both sides in the axial direction parallel to the rotation axis with field magnets inserted from the mouth and arranged on the outer hanger or inner hanger of the rotating duct.
  • An axial gap type power generation comprising a combination of a shroud and two or more rotating ducts arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference of the rotating duct.
  • a substantially U-shaped hollow portion composed of the outer peripheral surface of the rotating duct and the outer peripheral hanger, a substantially U-shaped hollow portion composed of the inner peripheral surface of the rotating duct and the inner peripheral hanger, and the outer periphery
  • An armature cell coil having a sliding portion that has at least one of the treatments, and a connecting portion for installing the armature cell coil on the shroud and attaching the armature cell coil to the shroud, and the armature cell coil
  • the armature cell coil has a tether part to be tethered, and an arm part that constitutes an arm between the tether part and
  • a holding skeleton that holds without being in contact with the substantially U-shaped or substantially U-shaped hollow portion, and is inserted from the opening of the substantially U-shaped or substantially U-shaped hollow portion, and the outer periphery of the rotating duct.
  • the armature cell coil is configured so that the armature cell coil can pass through a magnetic field formed by sandwiching the armature cell coil from both sides in the axial direction parallel to the rotation axis with a magnet. It is an Example of the drive device of the electric motor which applies an electric current and gives a rotating magnetic field to the field magnet of a rotating duct, and drives a rotating duct.
  • FIG. 70 to FIG. 73 show a shroud in which two or more individual cell-like armature cells are arranged on the circumference at point-symmetrical positions as viewed from the center of the rotating duct, and the rotating duct.
  • the field magnet is formed on the projecting portion of the rotating duct.
  • Winding by using two stretch guides that serve as a guide for forming a linear portion of the winding in a direction perpendicular to the rotation axis of the rotating duct when passing the conducting wire to be wound in any one of the hollow portions A mechanism that consists of a low friction coefficient material or a lubricant / lubricant applied to both ends in the direction parallel to the rotation axis of the rotating duct of the armature cell ring / push pull duct in which the lead wire is wound in a ring shape
  • a connecting portion for installing the armature cell ring / push pull on the shroud and attaching the armature cell ring / push pull to the shroud, and the electric device While having a tether part for tethering the child cell ring push-pull and an arm part constituting the arm between the tether part and the tether part, while receiving no stress from the axial direction parallel to the rotation axis, A holding skeleton that holds the armature cell ring push-pull
  • the stretch guide which is inserted from the opening and is in the direction in which the rotating duct faces when viewed from the center of the armature cell ring / push pull, is used as the front stretch guide
  • the front stretch guide is parallel to the rotation axis.
  • the stretch guide is a rear stretch guide, the outer periphery of the rotating duct is sandwiched from both sides in the axial direction parallel to the rotation axis.
  • the combination of field magnets arranged on the girder or inner peripheral hanger constitutes two magnetic fields so that the magnetic flux directions are opposite to each other, and the front stretch guide and rear stretch of the armature cell ring / push pull
  • the guide is composed of a combination of field magnets on the rotating duct side and armature cell rings and push pulls on the shroud side, and relative positions so that they can pass through the two magnetic fields at the same time.
  • This is an embodiment of a power generator that generates electric power by generating an induced current by cutting a magnetic field of a field magnet by a conducting wire in a stretch guide of the armature cell ring / push pull.
  • An axial gap type electric motor comprising a combination of a shroud and a rotating duct in which two or more field magnets are arranged on the circumference of the rotating duct at point-symmetrical positions as viewed from the center of the rotating duct.
  • a hollow section, or an approximately U-shaped break with the outer hanger and inner hanger back to back Two stretch guides are used to form a straight portion of the winding in a direction perpendicular to the rotation axis of the rotating duct when passing the wire to be wound in any one of the hollow portions formed of
  • the armature cell ring / push-pull rotating duct of the armature cell ring / push-pull in which the winding wire is wound in a ring shape is made of a low friction coefficient material or a lubricant / lubricant at both ends in the direction parallel to the rotation axis.
  • An armature cell ring push-pull having a sliding portion that has at least one of the measures to be applied is installed on the shroud and the armature cell ring push-pull is attached to the shroud;
  • the armature cell ring push-pull has a tether part that anchors the arm part that constitutes an arm between the connection part and the tether part, and does not receive stress from an axial direction parallel to the rotation axis. while , A holding skeleton that holds the armature cell ring / push pull without contacting the substantially U-shaped or substantially U-shaped hollow portion of the rotating duct, and the substantially U-shaped or substantially E-shaped hollow portion.
  • the front stretch guide in the direction of the rotating duct as seen from the center of the armature cell ring and push-pull is rotated between both sides in the axial direction parallel to the rotation axis
  • Two magnetic fields so that the outer magnet hanger of the rotating duct and the combination of field magnets arranged on the inner hanger in the direction sandwiched from both sides in the direction are opposite to each other.
  • the armature cell on the rotating duct and the armature cell on the shroud side so that the front stretch guide and the rear stretch guide of the armature cell ring / push pull can pass through the two magnetic fields at the same time. It is characterized by combining the ring and push-pull with the corresponding position, and the direction of current flowing in the conductor in the front stretch guide of the armature cell ring and push-pull and the conductor in the rear stretch guide The direction of the flowing current is applied to be opposite to each other at the same time, and a driving force is applied to the field magnet of the rotating duct as a reaction of the force generated in the armature cell ring / push pull. It is an Example of the drive device of the electric motor to drive.
  • FIG. 50 and FIG. 51 show a combination of a rotating duct in which field magnets are arranged on the outer peripheral hanger and the inner peripheral hanger and an armature cell arranged on the shroud side to be inserted into a substantially U-shaped hollow portion of the rotating duct.
  • the stretch guide of Example 5 is rotated. Two pieces are used as one set to form a straight portion of the winding in a direction perpendicular to the rotation axis of the duct, and two pieces are rotated from one set of stretch guides as viewed from the center of one set.
  • the structure of the arm part is made as a telescopic arm part that can expand and contract, and the telescopic arm part that generates hydraulic pressure with the built-in power part Extend or retract the hydraulic cylinder telescopic arm with the hydraulic pressure from the pipe connected from the outside, rotate the worm screw integrated with the built-in power unit to expand or contract the worm screw telescopic arm, or external Contact Rotating a worm screw integral with an air turbine built in with the air pressure from the pipe, and expanding or contracting the worm screw telescopic arm part, the outer surface of the rotating duct and the outer peripheral hanger An approximately U-shaped hollow part consisting of the inner circumferential surface of the rotating duct and an inner U-shaped hanger.
  • This is an embodiment of a holding skeleton capable of adjusting the insertion length when inserting an armature cell coil or an armature cell ring / push pull into the hollow portion
  • FIGS. 60, 61, 67, 68, 71 to 73 show a rotating duct that connects the wing tips and rotates together with the blades, and a shroud that is stationary with respect to the ground and water (including on board).
  • the wind turbine that generates electric power by using the peripheral speed of the wind turbine, or the power generator according to the first embodiment having a power generation unit that is a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side.
  • power is generated by the mechanism of at least one of the power generators of the third embodiment having a power generation unit by a combination of the field magnet and the shroud armature cell ring / push pull is there.
  • Example 62, 63, 69, and 70 include two sets of blades that rotate in reverse directions, the blade tips of one blade are connected by a rotating duct, and the blade tips of the other blade are connected by a shroud.
  • the generator of Example 1 having a power generation unit by a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side, or the field on the rotating duct side
  • the Example of the windmill characterized by producing electric power with the structure of at least any one of the electric power generating apparatus of Example 3 which has an electric power generation part by the combination of a magnet magnet and the armature cell ring push-pull of a shroud side.
  • the driving apparatus according to the second embodiment having a driving section in combination with a child cell coil or the driving apparatus according to the fourth embodiment having a driving section in combination with a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side.
  • the rapid wind direction changing devices that can freely change the blowing direction of the wind force of the shroud-equipped rotor blades with a turntable serving as a base for attaching the attached rotor blades, the field magnets on the rotating duct side and the armature cell coils on the shroud side
  • the driving apparatus according to the second embodiment having a driving section by combination
  • the driving apparatus according to the fourth embodiment having a driving section by a combination of a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side.
  • a rapid wind direction changing device that is a turntable for mounting the rotating blade with shroud and can freely change the blowing direction of the wind generated by the rotating duct.
  • Fig. 88 has a built-in device for storing the rotating surface of the rotor blade with the shroud in parallel in the bottom plate and extending the rotating surface of the rotor blade with the shroud upright so that the rotating surface of the rotor blade with the shroud stands on the bottom plate.
  • the field on the rotating duct side At least one mechanism of the drive part by the combination of the magnet magnet and the shroud side armature cell coil or the drive part by the combination of the field magnet on the rotating duct side and the armature cell ring / push pull on the shroud side
  • 89-91 show the rotary duct side of the aircraft that fly by generating lift during cruising by installing the rotor blade with shroud in the horizontal position in the hole that becomes the hollow part that penetrates from the top to the bottom of the fuselage.
  • FIG. 92 is a diagram showing an example of an aircraft that flies with a rapid air volume generating wind direction changing device attached to one or more side surfaces of one side of the aircraft as viewed from the advancing direction during cruising, and two or more sides on both sides of the aircraft.
  • It is an Example of the aircraft provided with the rapid air volume generation
  • FIG. 12 is an Example of the aircraft provided with the rapid air volume generation
  • the driving unit of the second embodiment which is a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side, of the in-wheel motor having a driving device inside the wheel, or the rotating duct side
  • Implementation of an in-wheel motor characterized in that at least one of the mechanisms of the driving unit according to the fourth embodiment is configured by a combination of a field magnet and a shroud-side armature cell ring / push pull. It is an example.
  • the present invention relates to a generator or electric motor in the case where it is advantageous to have a large diameter, for example, a mechanism of a power generation unit or a drive unit at the blade tip of a blade, such as a wind turbine generator using electromagnetic peripheral speed or a rotor blade with a shroud. If it is used, even the gap between the field magnet and the armature cell at the blade tip far away from the rotating shaft can be appropriately maintained, so that efficient power generation and driving can be performed. In addition, even when the diameter is small, an electric motor that is frequently subjected to a large stress from the outside, such as a field magnet and an armature against an external stress when used as a driving unit of an in-wheel motor in a wheel.
  • the armature cell ring / push-pull using a straw-shaped stretch guide has a wide range of applications because it exhibits excellent performance in terms of heat dissipation, and it can also be used as a power generator for all generators and a motor drive. Can do. Also in manufacturing, the structure of the armature cell coil and armature cell ring / push pull constituting the power generation section and drive section of the present invention is simpler than the gap holding bearings of Patent Document 6 and Patent Document 7, It can be easily produced in factories that do not have advanced production facilities and developing countries, and can be produced at a very low cost.
  • FIG. 2A is an example of a plan view of a shroud-equipped rotor blade in which blade tips are connected by a rotating duct and the outer periphery of the rotating duct is covered with a shroud.
  • Fig. (B) is an example of a cross-sectional view when an armature cell coil is used for the drive part of the blade tip of the rotor blade with shroud.
  • Fig. (C) is an example of a cross-sectional view when an armature cell ring push-pull is used for the driving part of the blade tip of the rotor blade with shroud.
  • FIG. 2A is an example of a plan view of a rotating duct that rotates with a rim and a tire attached to the rotating duct, and an in-wheel motor in which the inner periphery of the rotating duct is covered with a shroud.
  • Figure (B) is an example of a cross-sectional view when an armature cell coil is used for the drive part of the in-wheel motor.
  • Fig. (C) is an example of a cross-sectional view when an armature cell ring push-pull is used for the drive part of the in-wheel motor.
  • FIG. (A) is a plan view when the structure of the shroud of the electromagnetic peripheral speed wind power generator and the shroud of the rotor blade with shroud is changed from the normal type covering from the opening side of the rotating duct to the skeleton type only of the skeleton. It is an example.
  • Fig. (B) is an example of a cross-sectional view of a drive unit when an armature cell coil is fixed to a skeleton type shroud and combined with a rotating duct.
  • Fig. (C) is an example of a cross-sectional view of the drive unit when an armature cell ring / push pull is fixed to a skeleton type shroud and combined with a rotating duct.
  • FIG. 2A is an example of a plan view of an electromagnetic peripheral speed wind power generator in which the rotating duct also serves as the bottom of the vertical axis wind power generator.
  • Fig. (B) is an example of a cross-sectional view when an armature cell coil is used in an electromagnetic peripheral speed wind power generator whose rotating duct also serves as the bottom of the vertical axis wind power generator. The shroud on the opening side of the rotating duct simply serves as an armature platform without covering the opening.
  • FIG. 2A is an example of a plan view of an electromagnetic peripheral speed wind power generator in which the rotating duct also serves as the bottom of the vertical axis wind power generator.
  • FIG. B is an example of a cross-sectional view when an armature cell ring push-pull is used for an electromagnetic peripheral speed wind power generator whose rotating duct also serves as the bottom of the vertical axis wind power generator.
  • the shroud on the opening side of the rotating duct simply serves as an armature platform without covering the opening.
  • A The figure is an example of a plan view of a rotating duct having an outer peripheral hanger in which field magnets are arranged in an overhanging portion that circulates in the outer peripheral direction.
  • the field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell coil.
  • (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger.
  • the figure is an example of a plan view of a rotating duct having an outer peripheral hanger in which field magnets are arranged in an overhanging portion that circulates in the outer peripheral direction.
  • the field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell ring / push pull.
  • (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger.
  • the figure is an example of a plan view of a rotating duct having an inner peripheral hanger in which a field magnet is disposed in an overhanging portion that circulates in the inner peripheral direction.
  • the field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell coil.
  • B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger.
  • A) The figure is an example of a plan view of a rotating duct having an inner peripheral hanger in which a field magnet is disposed in an overhanging portion that circulates in the inner peripheral direction.
  • the field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell ring / push pull.
  • B is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger.
  • A The figure shows a rotating duct having both an outer hanger with a field magnet disposed in an overhanging portion that circulates in the outer peripheral direction and an inner peripheral hanger with a field magnet disposed in an overhanging portion that circulates in the inner peripheral direction. It is an example of a top view.
  • the figure shows a substantially U-shaped hollow formed by back-to-back the substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger, and the inner peripheral surface of the rotating duct and the inner peripheral hanger. It is an example of sectional drawing of a part.
  • A The figure is an example of a plan view of a rotating duct having an outer peripheral hanger in which field magnets are arranged in an overhanging portion that circulates in the outer peripheral direction.
  • the figure shows an example in which a field magnet having a shape corresponding to an armature cell coil and a field magnet having a shape corresponding to armature cell ring / push pull are used in combination.
  • FIG. 1 is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger.
  • A The figure is an example of a plan view of a rotating duct having an inner peripheral hanger in which a field magnet is disposed in an overhanging portion that circulates in the inner peripheral direction. The figure shows an example in which a field magnet having a shape corresponding to an armature cell coil and a field magnet having a shape corresponding to armature cell ring / push pull are used in combination.
  • (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger.
  • FIG. 4A is a partial cross-sectional view of the periphery of a connecting portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct.
  • Fig. (B) is a partial cross-sectional view of the periphery of the connection when the shroud is cut horizontally on a plane perpendicular to the rotation axis of the rotating duct.
  • (A) The figure is a partial cross-sectional view around the spring portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct.
  • the spring portion in the figure uses an L-shaped leaf spring, but it may be replaced with a coil spring or a silicon rubber block material, or may be used in combination.
  • FIG. 4A is a side view of a holding skeleton for an armature cell coil connected to a shroud.
  • B is a plan view of a holding skeleton for an armature cell coil attached to a shroud.
  • A The figure is the side view which looked at the coil
  • FIG. 1 is a plan view of a wound coil attached to a shroud with a holding skeleton.
  • A The figure is the side view which looked at the armature cell coil attached to the shroud with the holding
  • B is a plan view of an armature cell coil attached to a shroud with a holding skeleton.
  • A) is the side view which looked at the relationship between the armature cell coil attached to the shroud with the holding skeleton and the field magnet from the direction in which the rotating duct proceeds.
  • B) is a plan view showing the relationship between the armature cell coil and the field magnet attached to the shroud with a holding skeleton.
  • FIG. 4A is a side view of the relationship between the armature cell coil attached to the shroud with a holding skeleton and the field magnet disposed on the outer peripheral hanger as seen from the direction in which the rotating duct travels.
  • FIG. (B) is a plan view showing the relationship between the armature cell coil attached to the shroud with the holding skeleton and the field magnets arranged on the outer peripheral hanger.
  • FIG. 4A is a partial cross-sectional view showing the structure of an armature cell coil.
  • Fig. (B) is a plan view showing the relationship between the armature cell coil and the holding skeleton.
  • FIG. 4A is a partial cross-sectional view of the relationship between the armature cell coil and the field magnet as viewed from a direction orthogonal to the direction in which the rotating duct travels.
  • (B) is a plan view of the relationship between the armature cell coil and the field magnet.
  • FIG. 4A is a partial cross-sectional view of the relationship between the armature cell coil and the field magnet disposed on the outer peripheral hanger as viewed from the direction orthogonal to the direction in which the rotating duct travels.
  • Fig. (B) is a plan view of the relationship between the armature cell coil and the field magnet disposed on the outer hanger.
  • FIG. 4A is a partial cross-sectional view of the relationship between the armature cell coil and the field magnet disposed on the outer peripheral hanger as viewed from the direction orthogonal to the direction in which the rotating duct travels. In this case, the number of armature cell coils is increased.
  • Fig. (B) is a plan view of the relationship between the armature cell coil and the field magnet disposed on the outer hanger. In this case, the number of armature cell coils is increased.
  • FIG. 2A is an enlarged cross-sectional view of an armature cell coil in the case where an axis that is a magnetic material is used. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding portion covers the shaft center and the winding coil, and is made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene.
  • (B) is an enlarged cross-sectional view of the armature cell coil in the case of using the magnetic core.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding portion covers the shaft center and the winding coil, and has a hollow portion and a leak hole that connects the hollow portion and the surface.
  • the hollow portion is filled with a lubricant or an anti-friction agent by normal pressure or pressurization. Filled lubricant / lubricant is applied to the surface in small portions through the leak hole.
  • FIG. 2A is an enlarged cross-sectional view of an armature cell coil in the case where an axis that is a magnetic material is used.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding portion covers only the end portion of the shaft center, and is made of, for example, a low friction coefficient material such as fluororesin or high density polyethylene.
  • (B) is an enlarged cross-sectional view of the armature cell coil in the case of using the magnetic core.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding part covers only the end part of the shaft center and has a hollow part and a leak hole connecting the hollow part and the surface.
  • the hollow portion is filled with a lubricant or an anti-friction agent by normal pressure or pressurization. Filled lubricant / lubricant is applied to the surface in small portions through the leak hole. There are cases where the outlet of the leak hole is straight and there is nothing, and there are cases where a rotatable microsphere is blocked.
  • FIG. 4A is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding portion covers the shaft center and the winding coil, and is made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene.
  • (B) is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding portion covers the shaft center and the winding coil, and has a hollow portion and a leak hole that connects the hollow portion and the surface.
  • FIG. 4A is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding portion covers only the end portion of the shaft center, and is made of, for example, a low friction coefficient material such as fluororesin or high density polyethylene.
  • (B) is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core.
  • the conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j.
  • the sliding part covers only the end part of the shaft center and has a hollow part and a leak hole connecting the hollow part and the surface.
  • the hollow part is filled with a lubricant or an anti-friction agent by normal pressure or pressurization.
  • the figure is an enlarged partial cross-sectional view of a portion around which a conducting wire is wound in the order of field magnets ⁇ play ⁇ sliding portion ⁇ winding coil from the rotating duct side.
  • the figure is a partially enlarged cross-sectional view showing an induced electromotive force when power is generated using an armature cell coil.
  • the figure is a partially enlarged cross-sectional view showing the point when driving the rotating duct side using the armature cell coil.
  • a strong magnetic field is formed at the axial center in the coil in accordance with the right-handed screw law.
  • the figure shows a blade in an electromagnetic circumferential speed wind power generator that generates electricity by rotating only a rotating duct with the shroud side fixed, and a rotor blade with a shroud that rotates the rotating duct with the shroud fixed to the fuselage. It is a partial cross section figure of the wing tip part in the case of producing by connecting the wing tip of this with a rotating duct.
  • Fig. (B) shows that the load transmission bearing attached to the shroud is a free action bearing and is in direct contact with the rotating duct.
  • FIG. (C) shows that the load transmission bearing attached to the shroud is a free action bearing and is in contact with the rotating duct via the track runway.
  • Fig. (D) shows that a thrust bearing is used as a load transmission bearing between the shroud and the rotating duct.
  • Fig. (E) shows that a radial bearing is used as a load transmission bearing between the shroud and the rotating duct, and the radial bearing is attached to the shroud and the rotating duct via a bearing fixing auxiliary tool.
  • A The figure is the side view and top view of the connection part which connect an armature cell coil to a shroud, the anchor part which anchors an armature cell coil, and the arm part which connects a connection part and a anchor part.
  • FIG. 6 is a side view and a plan view when the telescopic arm portion is expanded and contracted by the generated hydraulic pressure.
  • FIG. 6 is a side view and a plan view when the worm screw is rotated to extend and retract the extendable arm part.
  • FIG. 4A is a partial cross-sectional view of the periphery of a connecting portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct.
  • (B) is a partial cross-sectional view of the periphery of the connection when the shroud is cut horizontally on a plane perpendicular to the rotation axis of the rotating duct.
  • (A) The figure is a partial cross-sectional view around the spring portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct.
  • the spring portion in the figure uses an L-shaped leaf spring, but it may be replaced with a coil spring or a silicon rubber block material, or may be used in combination.
  • (B) is a partial cross-sectional view around the spring when the shroud is cut horizontally on a plane perpendicular to the rotational axis of the rotating duct. Fig.
  • FIG. (C) shows an example in which an L-shaped leaf spring and a silicon rubber block material are used in combination.
  • A The figure is a side view of the holding skeleton for armature cell ring push-pull connected to the shroud.
  • Fig. (B) is a plan view of the holding skeleton for armature cell rings and push-pull attached to the shroud.
  • A The figure is the side view which looked at the ring-shaped coil
  • Fig. (B) is a plan view of the ring-shaped winding part attached to the shroud with a holding skeleton.
  • FIG. (A) The figure is the side view which looked at the armature cell ring push-pull attached to the shroud with the holding skeleton from the direction in which the rotating duct proceeds.
  • Fig. (B) is a plan view of the armature cell ring push-pull attached to the shroud with a holding skeleton.
  • (A) is the side view which looked at the relationship between the armature cell ring push-pull attached to the shroud with the holding skeleton and the field magnet from the direction in which the rotating duct proceeds.
  • (B) is a plan view showing the relationship between the armature cell ring / push pull, the holding skeleton, and the field magnet.
  • FIG. 1 is a partial cross-sectional view of the relationship between the armature cell ring / push pull and the field magnet disposed on the outer peripheral hanger as seen from the direction in which the rotating duct travels.
  • FIG. (B) is a plan view showing the relationship between the armature cell ring / push-pull and the field magnets arranged on the outer peripheral hanger.
  • (A) is a partial cross-sectional view of the armature cell ring push-pull structure as viewed from a direction orthogonal to the direction in which the rotating duct travels.
  • (B) is a plan view when armature cell rings and push-pulls are arranged on the inner periphery of the shroud without any gaps.
  • FIG. 1 is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnet, as viewed from the direction perpendicular to the direction in which the rotating duct travels.
  • Fig. (B) is a plan view showing the relationship with the field magnet when the armature cell ring push-pull is disposed in the inner periphery of the shroud without any gap.
  • (A) is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnets arranged on the outer peripheral hanger as seen from the direction perpendicular to the direction in which the rotating duct travels.
  • FIG. (B) is a plan view showing the relationship with the field magnets arranged on the outer peripheral hanger when the armature cell ring push-pull is arranged on the inner peripheral part of the shroud without any gap.
  • (A) is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnets disposed on the outer peripheral hanger as viewed from the direction perpendicular to the direction of travel of the rotating duct. In this case, the number of armature cell rings and push pulls is reduced.
  • FIG. (B) is a plan view showing the relationship with the field magnets arranged on the outer peripheral hanger when the armature cell ring / push pull is arranged a little on the inner peripheral part of the shroud.
  • FIG. 1 is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnets arranged on the outer peripheral hanger as seen from the direction perpendicular to the direction in which the rotating duct travels. In this case, the armature cell rings and push pulls are arranged without interruption, and the number of field magnets is reduced.
  • B The figure shows the relationship between the armature cell ring and push-pull on the inner periphery of the shroud without interruption and the field magnets of the outer hanger when the number of field magnets is reduced.
  • FIG. 2A is an enlarged cross-sectional view of an armature cell ring / push pull in which an armature ring is formed by laying a lead wire in a stretch guide.
  • the sliding portion covers the shaft center and the stretch guide, and is made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene.
  • Fig. (B) is an enlarged cross-sectional view of the armature cell ring push-pull when an armature ring is made by laying a conductor in a stretch guide.
  • the sliding part in this case covers the shaft center and the stretch guide, has a hollow part and a leak hole, and is filled with a lubricant or an anti-friction agent by applying normal pressure or pressurization to the hollow part, and from the leak hole to the surface
  • a lubricant or an anti-friction agent by applying normal pressure or pressurization to the hollow part, and from the leak hole to the surface
  • FIG. 2A is an enlarged cross-sectional view of an armature cell ring / push pull in which an armature ring is formed by laying a lead wire in a stretch guide.
  • Fig. (B) is an enlarged cross-sectional view of the armature cell ring push-pull when an armature ring is made by laying a conductor in a stretch guide.
  • the end of the shaft center has a hollow part and a leak hole.
  • the sliding part has a mechanism in which the hollow part is filled with a lubricant or an anti-friction agent by normal pressure or pressurization and applied to the surface from the leak hole. Part. There are cases where the leak hole is straight and there is nothing, and there are cases where the tip has a rotatable microsphere.
  • FIG. 1 The figure shows a case where the stretch guide is made of a pipe material made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene in the armature cell ring / push pull. In this case, the stretch guide becomes the sliding portion.
  • FIG. (B) shows the case where the stretch guide is made of a mold material of a low friction coefficient material such as fluororesin or high-density polyethylene in the armature cell ring / push pull. In this case, the stretch guide becomes the sliding portion.
  • the figure shows an armature cell ring / push pull where the stretch guide is made of a mixture of pipe material or mold material of a low friction coefficient material such as fluororesin or high-density polyethylene. It is. This is a case where the outside is a mold material and the inside is a pipe material.
  • the figure shows the point of making the lead wire through the stretch guide made of pipe material. Create an armature cell ring and push-pull by winding.
  • the figure shows the point of making the lead wire through the stretch guide made of a mold material. Create an armature cell ring and push-pull by winding.
  • the figure shows the point of passing the lead wire through the stretch guide made of pipe material.
  • (AA) ⁇ (BB) ... It is an example in the case of carrying out bus connection of the conducting wire.
  • B The figure shows the procedure for passing the lead wire through the stretch guide made of mold material.
  • (A) ⁇ (BB) ... It is an example in the case of carrying out bus connection of the conducting wire.
  • the figure is an enlarged view showing the relationship among the armature cell ring push-pull, the field magnet, and the gap.
  • the winding order of the conductors laid in the stretch guide is (AA) ⁇ (BB) ... (XX), but the input and output lines are connected one by one and connected continuously. Alternatively, a common bus may be prepared and bus connections may be made.
  • the figure shows the relationship between the armature cell ring / push pull and the field magnet when power is generated by the armature cell ring / push pull according to Fleming's right hand rule.
  • induced currents in opposite directions are generated at the same time.
  • the figure shows the relationship between the armature cell ring / push pull and the field magnet when the rotating duct side is driven by the armature cell ring / push pull in accordance with Fleming's left-hand rule. It is necessary to apply a current in the opposite direction to the conducting wires in the stretch guide at the same time.
  • FIG. 1 The figure shows a blade in an electromagnetic circumferential speed wind power generator that generates electricity by rotating only a rotating duct with the shroud side fixed, and a rotor blade with a shroud that rotates the rotating duct with the shroud fixed to the fuselage. It is a partial cross section figure of the wing tip part in the case of producing by connecting the wing tip of this with a rotating duct.
  • Fig. (B) shows that the load transmission bearing attached to the shroud is a free action bearing and is in direct contact with the rotating duct.
  • Fig. (C) shows that the load transmission bearing attached to the shroud is a free action bearing and is in contact with the rotating duct via the track runway.
  • FIG. D shows that a thrust bearing is used as a load transmission bearing between the shroud and the rotating duct.
  • Fig. (E) shows that a radial bearing is used as a load transmission bearing between the shroud and the rotating duct, and the radial bearing is attached to the shroud and the rotating duct via a bearing fixing auxiliary tool.
  • A The figure is a side view of a connecting part that connects the armature cell ring / push pull to the shroud, a tether part that anchors the armature cell ring / push pull, and an arm part that connects the connecting part and the tether part. It is a top view.
  • (B) shows the holding skeleton that connects the armature cell ring and push-pull to the shroud and adjusts the amount of insertion into the substantially U-shaped hollow portion of the rotating duct. It is the side view and top view in the case of extending / contracting an expansion-contraction arm part with the hydraulic pressure generated by generating.
  • (C) shows the holding skeleton that connects the armature cell ring / push pull to the shroud and adjusts the insertion amount of the rotating duct into the substantially U-shaped hollow portion. It is a side view and a top view at the time of expanding and contracting an expansion-contraction arm part with the generated hydraulic pressure using hydraulic pressure.
  • FIG. 6 is a side view and a plan view when a worm screw is rotated by a pneumatic turbine to expand and contract an extendable arm portion.
  • (A) The figure shows the armature cell ring / push pull connected to the shroud and the holding skeleton for adjusting the amount of insertion into the substantially U-shaped hollow portion of the rotating duct.
  • (B) The figure shows the connection of the armature cell ring / push pull to the shroud and the holding skeleton for adjusting the amount of insertion into the substantially U-shaped hollow portion of the rotary duct.
  • FIG. 1 A plan view of the holding skeleton when a cushioning material that can be put in a space between two pairs of stretch guides and relax the contact force to the rotating duct of the sliding part is attached around the anchoring part of the holding skeleton. It is.
  • A Since the armature cell rings and push-pulls are independent of each other in a cell shape, a desired effect can be obtained by selecting and configuring the connection.
  • the figure shows an example in which armature cell rings and push pulls are connected in series.
  • Figure (B) is an example of connecting armature cell rings and push pulls in parallel.
  • Fig. (C) is an example of connecting armature cell ring and push-pull in three phases.
  • FIG. 4A is a plan view when the blade is a Savonius type as an example of a drag blade when the present invention is applied to a blade tip portion of a blade of a vertical axis wind turbine.
  • FIG. 4A is a plan view when the blade is a Savonius type as an example of a drag blade when the present invention is applied to a blade tip portion of a blade of a vertical axis wind turbine.
  • FIG. 4A is a plan view when the blade is a gyromill type as an example of a lift blade when the present invention is applied to the blade tip of the blade of a vertical axis wind turbine.
  • Fig. (B) is a side view when the blade is a gyromill type as an example of a lift blade when the present invention is applied to the blade tip of a blade of a vertical axis wind turbine.
  • the figure shows a coaxially-inverted electromagnetic peripheral speed wind power generator in which both the shroud side and the rotating duct side rotate in the reverse direction.
  • the armature is an armature cell coil
  • the blade tip of the blade is used as the shroud and the rotating duct.
  • the figure shows the blade tip of a blade shroud when the armature is an armature cell ring push-pull in a coaxially reversed electromagnetic peripheral speed wind power generator that rotates in the reverse direction on both the shroud side and the rotating duct side. It is a partial sectional view in the case of attaching to a rotating duct.
  • the figure is a partial cross-sectional view of a power generation unit when a shroud is configured as a platform of a rotary duct and an armature cell coil in order to perform power generation electromagnetically utilizing a peripheral speed at the bottom of a vertical axis wind turbine. is there.
  • (A) is an example of a plan view in the case where a shroud as a platform of a rotating duct and an armature cell coil is configured in order to perform electromagnetic power generation using a peripheral speed at the bottom of a Savonius type drag blade vertical axis wind turbine. It is.
  • (B) The figure is an example of a side view in the case where a shroud is configured as a platform of a rotating duct and an armature cell coil in order to perform power generation using electromagnetic peripheral speed electromagnetically at the bottom of a Savonius type drag blade vertical axis wind turbine. It is.
  • (A) is a plan view when a shroud is configured as a platform of a rotating duct and an armature cell coil in order to perform power generation using electromagnetic peripheral speed electromagnetically at the bottom of a gyromill type lifting blade vertical axis wind turbine. It is an example.
  • (B) is a side view of a shroud configured as a platform of a rotating duct and an armature cell coil in order to perform power generation using electromagnetic peripheral speed electromagnetically at the bottom of a gyromill type lift blade vertical axis wind turbine. It is an example.
  • the figure is a front view when a multi-blade type is used as an example when the present invention is applied to a horizontal axis wind turbine using drag blades.
  • the rotating beam in the figure may not be used when the blade core (blade root) is connected to the rotating shaft.
  • the figure is a front view when a propeller type is used as an example when the present invention is applied to a horizontal axis wind turbine using lift blades.
  • the rotating beam in the figure may not be used when the blade core (blade root) is connected to the rotating shaft.
  • (A) The figure shows a coaxially-inverted electromagnetic peripheral speed wind power generator in which both the shroud side and the rotating duct side rotate in the reverse direction.
  • the armature is an armature cell coil
  • the blade tip of the blade is used as the shroud and the rotating duct.
  • It is a partial cross section figure of the horizontal axis windmill blade edge in the case of attaching each.
  • the figure shows the blade tip of a blade shroud when the armature is an armature cell ring push-pull in a coaxially reversed electromagnetic peripheral speed wind power generator that rotates in the reverse direction on both the shroud side and the rotating duct side.
  • It is a partial cross section figure of the horizontal axis windmill blade edge in the case of attaching to a rotary duct.
  • the figure is a front view when the front blade is a lift blade and the rear blade is a drag blade, when the present invention is applied to a horizontal axis wind turbine having two sets of coaxially inverted blades rotating in reverse to each other. It is.
  • the rotating beam in the figure may not be used when the blade core (blade root) is connected to the rotating shaft.
  • the figure shows a huge electromagnetic circumferential speed at a point where the wind direction is gathered in two directions that differ by approximately 180 ° throughout the year on the topography (also called “Kushiroguchi”), which is the gateway to the area where the mountains approach from both sides. It is an example which installed the utilization wind power generator.
  • a huge electromagnetic peripheral speed wind power generator at such a point, if the rotational axis direction of the electromagnetic peripheral speed wind power generator is determined to be parallel to the windward (leeward), The entire windmill is firmly installed on the terrain through the shroud, and the wind direction with a change of about 180 ° is dealt with by changing the pitch of the blades of the electromagnetic peripheral wind power generator. In this way, it is possible to obtain a large amount of power generation.
  • FIG. (A) The figure is an example at the time of installing the electromagnetic peripheral speed use wind power generator at the time of using a skeleton type shroud for a horizontal axis windmill on a flat terrain with a laying device.
  • the blade shape can be selected from (C) to (F) depending on the wind conditions.
  • Fig. (B) is an example of a case where the electromagnetic peripheral speed wind power generator is installed on a sloping ground with a laying device when a skeleton type shroud is used for a horizontal axis wind turbine.
  • the blade shape can be selected from (C) to (F) depending on the wind conditions.
  • Figure (C) is an example of a drag blade with an outer ring prepared and a blade fixed to the outer ring.
  • Figure (D) is an example of a bridging blade when the outer and inner rings are prepared and the blade that bridges the outer and inner rings is a drag blade.
  • Fig. (E) is an example of a lift blade with an outer ring prepared and a blade fixed to the outer ring.
  • Fig. (F) is an example of a bridging blade when an outer ring and an inner ring are prepared and the blade that bridges the outer ring and the inner ring is a lift blade.
  • A is an example of a front view when an electromagnetic peripheral speed wind power generator is installed on a flat terrain with a laying device when a skeleton type shroud is used for a horizontal axis wind turbine.
  • wing has shown the case of the bridge
  • Fig. (B) is an example of a side view when the electromagnetic peripheral speed wind power generator when a skeleton type shroud is used for a horizontal axis wind turbine is installed on a flat terrain with a laying device.
  • wing is the case of a bridge
  • Fig. (C) is a side view in the case where the bridging blade protrudes in one direction with respect to the rotating surface of the outer ring.
  • FIG. 2A is a plan view of a rotor blade with a shroud incorporating the armature cell coil of the present invention.
  • (B) is a plan view showing a rotating part such as a rotating duct or a blade by removing the shroud or the fixed support part, and the field hanger for the armature cell coil is disposed on the outer peripheral hanger.
  • the figure is a horizontal sectional view showing the arrangement of the armature cell coils of the present invention.
  • FIG. 2A is a plan view of a rotor blade with a shroud incorporating the armature cell ring push-pull of the present invention.
  • (B) is a plan view showing rotating parts such as rotating ducts and blades with the shroud and fixed support part removed, and field magnets for armature cell rings and push-pulls are arranged on the outer hangers. .
  • the figure is a horizontal sectional view showing the arrangement of the armature cell ring and push-pull of the present invention.
  • A The figure is a top view of the rapid wind direction change apparatus incorporating the armature cell coil of this invention.
  • FIG. 2A is a plan view of a rapid wind direction changing apparatus incorporating the armature cell ring / push pull of the present invention.
  • (B) is a plan view showing rotating parts such as a rotating duct and a turntable with the shroud and the fixed support part removed, and field magnets for armature cell rings and push-pulls are arranged on the outer hanger. Yes.
  • FIG. 2A is a plan view of a rapid air direction changing device incorporating the armature cell coil and the armature cell ring / push pull of the present invention.
  • (B) is a plan view showing rotating parts such as a rotating duct and a turntable with the shroud and fixed support part removed, and the outer peripheral hanger has a field magnet for armature cell rings and push-pulls and an inner peripheral hanger. Is provided with a field magnet for an armature cell coil.
  • FIG. 2A is a front view of a rapid air volume generation wind direction changing apparatus incorporating the armature cell coil of the present invention.
  • (B) is a front view showing a rotating part such as a rotating duct or a blade by removing a shroud or a fixed support part, and a field magnet for an armature cell coil is arranged.
  • the drawings are a horizontal cross-sectional view of a rotor blade with a shroud and a vertical cross-sectional view of a rapid air direction change device of the rapid air flow generation direction change device incorporating the armature cell coil of the present invention.
  • A is a front view of a rapid air volume generation wind direction changing device incorporating the armature cell ring push-pull of the present invention.
  • B is a front view showing rotating parts such as rotating ducts and blades, and armature cell rings and push-pull field magnets are arranged on the outer peripheral hanger.
  • the figure is a horizontal sectional view of a rotor blade with a shroud of a rapid air flow generation direction change device incorporating an armature cell ring / push pull of the present invention, and a vertical sectional view of a rapid wind direction change device.
  • the figure shows a flight with a shroud rotor blade that incorporates a shroud incorporating the drive device of the present invention attached to the side surface of the fuselage with a bottom plate that enables storage and exhibition. This is an example in which four aircraft are used for generating lift and two are used for generating propulsive force.
  • the figure shows the generation of lift in an aircraft that flies by generating lift during cruising by attaching a rotor blade with a shroud incorporating the driving device of the present invention to a hollow hole that penetrates from the top to the bottom of the fuselage in a horizontal position.
  • a small aerial aircraft carrier was manufactured with two units for use and two units for changing the direction of wind generation for propulsion.
  • the figure shows the generation of lift in an aircraft that flies by generating lift during cruising by attaching a rotor blade with a shroud incorporating the driving device of the present invention to a hollow hole that penetrates from the top to the bottom of the fuselage in a horizontal position.
  • the figure shows the generation of lift in an aircraft that flies by generating lift during cruising by attaching a rotor blade with a shroud incorporating the driving device of the present invention to a hollow hole that penetrates from the top to the bottom of the fuselage in a horizontal position.
  • a huge aerial crane is manufactured with four units for use and four units for changing the direction of wind flow for propulsion.
  • the figure shows a rapid air volume generating wind direction changing device incorporating the driving device of the present invention with one or more units per side of the aircraft as viewed from the forward direction during cruising, two or more units on both sides, and the side of the aircraft with the bottom plate.
  • Is an example of an aircraft flying on The figure is an example of a plan view of an in-wheel motor incorporating the drive device of the present invention as seen from the direction of the rotation axis.
  • the figure is a partial cross-sectional view of the drive unit of the in-wheel motor incorporating the armature cell coil of the present invention as seen from the direction orthogonal to the rotation axis.
  • the figure is a partial cross-sectional view of an in-wheel motor drive unit incorporating the armature cell ring / push pull of the present invention as seen from a direction perpendicular to the rotation axis.

Abstract

When a power generating section of a generator or the drive section of a motor is constituted by inserting an armature cell to be arranged on the shroud side into a substantially U-shaped hollow section of a rotary duct from the opening thereof, the armature cell and its peripheral device are made thin and lightweight.  When the power generating section of a generator or the drive section of a motor is constituted by inserting an armature cell coil having slide portions at the opposite ends of a winding coil formed by winding a conductor and being arranged on the shroud side, or an armature cell ring/push-pull having slide portions at the opposite ends of a stretch guide and being arranged on the shroud side into a substantially U-shaped hollow section of a rotary duct from the opening thereof while supporting by a holding frame, the armature cell and its peripheral device can be made thin and lightweight.

Description

回転ダクトの略コの字型の中空部に挿入する電機子の厚みの低減と軽量化Reducing the thickness and weight of the armature to be inserted into the substantially U-shaped hollow part of the rotating duct
本発明は、一つひとつが独立したセル状の電機子(以下、「電機子セル」という)を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の発電機や電動機において、回転ダクトの外周面と回転ダクトを周回し界磁磁石を配設した外周方向への張り出し部(以下、「外周ハンガー」という)とから成る略コの字型の中空部や、回転ダクトの内周面と回転ダクトを周回し界磁磁石を配設した内周方向への張り出し部(以下、「内周ハンガー」という)とから成る略コの字型の中空部や、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の中空部に、シュラウド側に配設した電機子セルを略コの字型や略エの字型の中空部の開口部から挿入して発電機の発電部や電動機の駆動部を構成する際の電機子セルとその周辺装置の厚みを薄くするとともに軽量化するための技術に関する。
The present invention includes a shroud in which two or more individual cell-like armatures (hereinafter referred to as “armature cells”) are arranged on the circumference in a point-symmetric relationship with respect to the center of the rotating duct, In an axial gap type generator or electric motor composed of a combination of two or more rotating magnets arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference of the rotating magnet. A substantially U-shaped hollow portion composed of an outer peripheral surface of the rotating duct and a protruding portion (hereinafter referred to as an “outer peripheral hanger”) extending around the rotating duct and provided with field magnets; A substantially U-shaped hollow portion consisting of an inner peripheral surface and a projecting portion extending in the inner peripheral direction (hereinafter referred to as “inner peripheral hanger”) that circulates around the rotating duct and has a field magnet disposed therein, Zhou hangers and back to back The armature cell disposed on the shroud side is inserted into the hollow portion of the U-shape through the opening of the substantially U-shaped or substantially U-shaped hollow portion, and the power generation section of the generator or the drive section of the motor The present invention relates to a technique for reducing the thickness and reducing the thickness of an armature cell and its peripheral devices when forming a battery.
1821年にファラディ(Michael Faraday)によって最初の電動機(electric mortor)が発明されたとする電動機は、1834年には、レール上を走行する電気機機関車の実験にダヴェンポート(Thomas Davenpot)が成功し、その後の1830年代から1880年代にかけて、直流電動機、2相交流電動機、3相交流電動機(「かご形誘導電動機」を含む)とほぼ現代で使用される電動機の原型が完成した。また、発電機は、1832年にピクシー(Hippolyte Pixii)によって、ファラディの電磁誘導の原理を使った最初の発電機が発明され、電動機の発明の歴史とほぼ歩を合わせて、ゴードン(J.E.H.Gordon)によって2相交流発電機が発明され、さらにドイツのフランクフルトで1891年に行われたフランクフルト国際電気技術博覧会でドブロウォルスキー(Dolivo Dobrowolsky)によって有効性を実証された3相交流での発電や送電が行われるようになって現在に至る。また、この間、オーストリアのウインで1873年に行われたウイン博覧会で展示したグラム(Zenbe Thepile Gramme)の発電機が、展示の途中で電線の接続を間違えたため停止中の発電機が突然電動機として回転した「事故」のように、電動機と発電機とは、基本的構造を同じとするものなので、本発明の特徴的な構造や作用を説明する際に、電動機で説明すれば発電機でも同様とできる場合や、発電機で説明すれば電動機での説明を不要にできる場合には、省略して説明する。 The electric motor that the first electric motor was invented in 1821 by Faraday (Michael Faraday), Davenport succeeded in an experiment of an electric locomotive running on rails in 1834. From the 1830s to the 1880s, the prototypes of DC motors, two-phase AC motors, three-phase AC motors (including “cage-type induction motors”) and motors used almost today were completed. In 1832, the first generator using the principle of Faraday's electromagnetic induction was invented by Hippolyte Pixii in 1832, and Gordon (J.E. H. Gordon) invented a two-phase alternator, and proved its effectiveness by Dobrowolsky at the Frankfurt International Electrotechnical Fair in Frankfurt, Germany in 1891 Power generation and power transmission are now being carried out. During this time, the generator of Gram (Zenb Theipele Gramme) exhibited at the Win Exposition in 1873 in Win, Austria, suddenly became a stopped motor because the power supply was mistaken during the exhibition. Like the rotating “accident”, the motor and generator have the same basic structure. Therefore, when explaining the characteristic structure and operation of the present invention, the same applies to the generator. In the case where it is possible to do so, or in the case where it is possible to make the explanation in the electric motor unnecessary if explained in terms of the generator, the explanation will be omitted.
現在、一般に使用される発電機や電動機は、比較的大きな風力発電装置の発電機でも、直径は1.2m程度、家庭用で使用される扇風機や洗濯機の電動機の直径は十数cm前後、さらには携帯電話でのバイブレーターとして使用される振動モーターでは、数mm台の直径をもつ円筒形であって、1839年に、ページ(Charles Grafton Page)の設計で、デービス(Daniel Dadis)が作製した往復運動(クランクで回転運動に変えて使用)の電動機等の僅少な事例を除くと、円柱状の回転軸を中心として界磁磁石と電機子とを円形に配置して、界磁磁石か電機子のいずれか一方を固定し、他方を回転して発電を行ったり駆動を行う。また、発電に関してまれに存在するタイプでは、界磁磁石と電機子とを互いに逆回転(以下、「同軸反転」という)させて界磁磁石と電機子との相対速度を増加することによって効率を向上させる風力発電装置もある。また、界磁磁石には永久磁石と巻線コイルとがあって、巻線コイルには磁性体の軸心を有する場合と軸心のない空心コイルとがある。また、電機子が巻線コイルからなる場合には磁性体の軸心を有する場合と軸心のない空心コイルとがある。いずれにしても、発電効率において高効率を追求しようとすれば、界磁磁石と電機子との相対速度を増加して磁界を切るようにすると同時に界磁磁石の磁化方向の端部にあって界磁磁石の一部をなす面(以下、界磁磁石の「作用面」といい、電機子では、磁性体の軸心がある場合は軸心の端面を、軸心がない空心コイルの場合はコイル端を結んだ空間の面を電機子の「作用面」という)と電機子の作用面との間隙を狭く維持できることが必要であり、電動機としての駆動効率を高めるためには、電機子に印加する電流を増大させると同時に界磁磁石の作用面と電機子の作用面との間隙を狭くすることが必要である。界磁磁石の作用面と電磁石の作用面との対向方向は、回転軸に直交する方向、すなわち直径方向で向き合うラジアルギャップ型と、回転軸に平行する方向で向き合うアキシャルギャップ型とがある。これを、ほぼ同様の体積の発電機や電動機で比較すると、ラジアルギャップ型は、発電部や駆動部が回転軸から離れる距離が大きくなることから発電効率や駆動力が増大するが、回転子の直径方向であるラジアル方向に遠心力や温度変化による伸縮の影響が出易いので、直径方向で対向する界磁磁石の作用面と電機子の作用面との間隙の維持に難点があると共に、作用面の大きさにも作成場所から制限がある。逆に、アキシャルギャップ型は、界磁磁石と電磁石との対向する作用面が回転軸と平行する方向で対向していることから回転子の遠心力や温度変化による伸縮が間隙に及ぼす影響は少なく間隙の維持は容易で、かつ作用面の作成場所が比較的広くとれるので作用面を広げることも有利であるが、界磁磁石と電機子との作用面の場所が回転軸に近くなることから、対向する作用面の面積が同じ場合には発電効率は下がりトルクも減少する。 Currently, the generators and motors generally used are relatively large wind power generators with a diameter of about 1.2 m, and the electric motors used in homes and washing machines have a diameter of about a dozen centimeters. Furthermore, the vibration motor used as a vibrator in a mobile phone has a cylindrical shape with a diameter of a few millimeters, and was created by Davis (Daniel Dadis) in 1839 with the design of Page (Charles Grafton Page). Except for a few cases such as reciprocating motors (used in place of rotating motion with a crank), field magnets and armatures are arranged in a circular shape around a cylindrical rotating shaft. One of the children is fixed, and the other is rotated to generate power or drive. In the rare type of power generation, the efficiency is improved by rotating the field magnet and the armature in reverse directions (hereinafter referred to as “coaxial reversal”) to increase the relative speed between the field magnet and the armature. There are also wind power generators to improve. The field magnet includes a permanent magnet and a winding coil. The winding coil includes a magnetic core and an air core without an axis. In addition, when the armature is formed of a winding coil, there are a case where the armature has a magnetic axis and a case where the armature has no axis. In any case, in order to pursue high efficiency in power generation efficiency, the relative speed between the field magnet and the armature is increased to cut off the magnetic field, and at the same time, at the end of the magnetization direction of the field magnet. The surface that forms part of the field magnet (hereinafter referred to as the “acting surface” of the field magnet. In the case of the armature, the end face of the shaft center is used when the magnetic material has an axial center, and the case of an air core coil that does not have an axial center. The space between the coil ends must be able to maintain a narrow gap between the armature working surface and the armature working surface. In order to increase the drive efficiency of the motor, the armature It is necessary to increase the current applied to the magnetic field and to narrow the gap between the field magnet working surface and the armature working surface. The opposing direction of the working surface of the field magnet and the working surface of the electromagnet includes a radial gap type facing in the direction perpendicular to the rotation axis, that is, the diameter direction, and an axial gap type facing in the direction parallel to the rotation axis. Comparing this with generators and motors of almost the same volume, the radial gap type increases the power generation efficiency and driving force because the distance that the power generation unit and drive unit separate from the rotating shaft increases, but the rotor The radial direction, which is the radial direction, tends to be affected by expansion and contraction due to centrifugal force and temperature change, so there are difficulties in maintaining the gap between the working surface of the field magnet and the working surface of the armature that face each other in the diameter direction. There is also a limit on the size of the surface from the creation location. On the other hand, the axial gap type has little influence on the gap due to the centrifugal force of the rotor and the expansion and contraction due to temperature change because the opposing working surfaces of the field magnet and the electromagnet face each other in the direction parallel to the rotation axis. It is easy to maintain the gap and it is advantageous to widen the working surface because the working surface can be created in a relatively wide place, but the place of the working surface between the field magnet and the armature is close to the rotation axis. If the areas of the opposing working surfaces are the same, the power generation efficiency decreases and the torque decreases.
特許文献13と特許文献19とはラジアルギャップ型の発電機・電動機と電動機で、同軸で配置した2枚の界磁磁石で電機子を挟むことによって、直径方向で対向する界磁磁石と電機子との作用面の面積を増加して発電量や駆動力の増加を図っている。このうち、特許文献13の電機子は、磁性体の軸心をもつ巻線コイルの電機子で、特許文献19の電機子は、網状に巻回した導線をモールドして電機子となした空心コイルである。 Patent Document 13 and Patent Document 19 are radial gap generators / motors and electric motors, and the field magnets and armatures facing each other in the diametrical direction are sandwiched between two field magnets arranged coaxially. The area of the working surface is increased to increase power generation and driving force. Among them, the armature disclosed in Patent Document 13 is a wound coil armature having a magnetic axis, and the armature disclosed in Patent Document 19 is an air core obtained by molding a wire wound in a net shape into an armature. It is a coil.
界磁磁石と電機子との対向する作用面の大きさが増大すると、発電量や駆動力は面積にほぼ比例して増大する。これに対して、界磁磁石の作用面と電機子の作用面との間隙の大きさ(以下、「間隙長」ということがある)は、近づけることができれば、距離の2乗に反比例して増加するので極めて重要である。特に、界磁磁石と電機子との対向する作用面の増大が軸方向へ伸ばす以外に困難なラジアルギャップ型の発電機や電動機において発電効率や駆動力の向上を図るためには、間隙長を狭めて維持するための方策は、最も重要でクリティカルな問題である。中でも、間隙長が十数~数十μm前後の精密電動機の場合には、作用面の加工時のバリの発生は、間隙長を維持する上で致命的は障害を発生する恐れがある。特許文献20、特許文献21、特許文献22は、このような加工時のバリの発生を抑えるとともに、万一、発生してもバリが逆立つことがないように界磁磁石や電機子の作用面の少なくとも一方を樹脂で覆って加工した例である。 As the size of the working surface between the field magnet and the armature increases, the amount of power generation and the driving force increase substantially in proportion to the area. On the other hand, the size of the gap between the working surface of the field magnet and the working surface of the armature (hereinafter sometimes referred to as “gap length”) is inversely proportional to the square of the distance if it can be made closer. It is extremely important because it increases. In particular, in order to improve the power generation efficiency and driving force in radial gap generators and motors where the increase of the opposing working surface between the field magnet and the armature is difficult in addition to extending in the axial direction, the gap length must be reduced. Strategies to keep them narrow are the most important and critical issues. In particular, in the case of a precision electric motor having a gap length of about 10 to several tens of μm, the occurrence of burrs when working the working surface may cause a fatal failure in maintaining the gap length. Patent Literature 20, Patent Literature 21, and Patent Literature 22 describe the working surfaces of field magnets and armatures to prevent the occurrence of burrs during such processing, and to prevent the burrs from standing upside down if they occur. It is the example which covered and processed at least one of these with resin.
特許文献10はラジアルギャップ型の電動機であって、界磁磁石か電機子の少なくともいずれか一方に、好ましくは5~20μmの低摩擦係数の樹脂膜を貼り付けるか、併せて油を塗布して摺動面を構成し、クリティカルな間隙長を極限まで小さくした間隙長を実現する例である。この際、特許文献10の明細書の段落0021には、「・・ステータコア4の内周面とロータコア7a、7bの外周面との間のギャップは上記フッ素系樹脂膜9a,9bの厚さの和に略等しくなり、・・」と記載されていて、低摩擦係数の樹脂膜は、摺動面に常時接触する状態において使用することによって、間隙を一定に維持していることが解る。 Patent Document 10 is a radial gap type electric motor, in which a resin film having a low friction coefficient of preferably 5 to 20 μm is attached to at least one of a field magnet and an armature, or oil is applied together. This is an example in which a sliding surface is formed and a critical gap length is made as small as possible. At this time, the paragraph 0021 of the specification of Patent Document 10 states that “. The gap between the inner peripheral surface of the stator core 4 and the outer peripheral surface of the rotor cores 7a and 7b is the thickness of the fluororesin films 9a and 9b. It is understood that the resin film having a low coefficient of friction keeps the gap constant by using it in a state where it is always in contact with the sliding surface.
特許文献11と特許文献18とは、界磁磁石の作用面と電機子の作用面とが回転軸方向に対面して並ぶアキシャルギャップ型の電動機であって、特許文献11は、永久磁石を使用した2枚の界磁磁石で電機子を両側から挟んだ例であり、特許文献18は、巻線コイルを使用した2枚の界磁磁石で電機子を両側から挟んだ例である。 Patent Document 11 and Patent Document 18 are axial gap type motors in which the working surface of the field magnet and the working surface of the armature face each other in the direction of the rotation axis. Patent Document 11 uses a permanent magnet. In this example, the armature is sandwiched from both sides by two field magnets. Patent Document 18 is an example in which the armature is sandwiched from both sides by two field magnets using winding coils.
発電機や電動機の実用例において、最も直径の大きなものは、発電所の発電機が約10m、電気機関車の電動機が約2mのものが存在する。いずれの場合にも、現状では高い発電効率や大きなトルクを得やすいラジアルギャップ型が多数を占める。しかしながら、ラジアルギャップ型の場合には、直径が大きくなるに従って、回転子の直径方向の遠心力や温度変化による伸縮の影響が無視できないほど大きくなる。例えば、東京電力株式会社の新高瀬川水力発電所では、ステーター外径が約10m、ローター外径が約8mの巨大な発電機があるが、ステーターの作用面とローターの作用面とが直径上に対面して並んでいるラジアルギャップ型のためローターの伸縮によってはステーターの作用面とローターの作用面とが衝突する可能性もある。よって、遠心力や温度変化による伸縮率を0.5%とし、安全係数を0.25%加えて0.75%とした十分な安全性を考慮して間隙長を30mmで運用している。この際、このような比較的大きな間隙長の30mmの維持でさえ、その精度を維持するための回転軸は直径が約1.2mであって、重量も回転軸だけで約75トンある。よって、ステーター(約730トン)、ローター(約470トン)及び回転軸の重量(約75トン)の合計は、1,000トンを上回るので、大きな直径になると界磁磁石の作用面と電機子の作用面との間隙を回転軸の精度だけで維持しようとすることは、ジャイロ歳差等の大きな応力に曝される航空用のシュラウド付回転翼の駆動部や電磁的周速利用発電装置の発電部においては不可能に近く、重量的にも現実的ではない。 Among practical examples of generators and electric motors, the ones with the largest diameter are those with a generator at a power plant of about 10 m and an electric locomotive with an electric motor of about 2 m. In any case, at present, a large number of radial gap types easily obtain high power generation efficiency and large torque. However, in the case of the radial gap type, as the diameter increases, the influence of expansion and contraction due to the centrifugal force in the diameter direction of the rotor and the temperature change becomes so large that it cannot be ignored. For example, in the Shin-Takasegawa hydroelectric power plant of Tokyo Electric Power Co., Inc., there is a huge generator with a stator outer diameter of about 10m and a rotor outer diameter of about 8m, but the working surface of the stator and the working surface of the rotor are on the diameter. Because of the radial gap type that faces each other, the working surface of the stator and the working surface of the rotor may collide depending on the expansion and contraction of the rotor. Therefore, the gap length is operated at 30 mm in consideration of sufficient safety that the expansion / contraction rate due to centrifugal force and temperature change is 0.5%, and the safety factor is 0.25% and 0.75%. At this time, even if such a relatively large gap length is maintained at 30 mm, the rotating shaft for maintaining the accuracy is about 1.2 m in diameter, and the weight is about 75 tons only by the rotating shaft. Therefore, the total of the weight of the stator (about 730 tons), the rotor (about 470 tons) and the rotating shaft (about 75 tons) exceeds 1,000 tons. Maintaining the clearance with the working surface of the rotor only by the accuracy of the rotating shaft is the reason why the driving part of a rotor blade with an air shroud exposed to large stress such as gyroscopic precession and the electromagnetic peripheral speed power generator It is almost impossible in the power generation section, and it is not realistic in terms of weight.
発電機や電動機においての界磁磁石や電機子は、回転軸やケースに固定されて製造された後は、通常、その位置を移動することがない。しかしながら、特許文献13、特許文献16、特許文献12、特許文献14は、回転子の回転数に応じた発電量の調整を行うことや回転数を変えないでトルクを変更するために、界磁磁石に対して電機子の位置を移動可能にする仕組みを有している。このうち、特許文献13と特許文献16は、ラジアルギャップ型の電動機・発電機と発電機で、電機子の移動方向は、いずれもアキシャル方向である。また、特許文献12と特許文献14は、アキシャルギャップ型の共に電動機・発電機で、電機子の移動方向は、いずれもアキシャル方向である。このように、電動機や発電機のギャップ形式がラジアルギャップ型とアキシャルギャップ型とに異なるにもかかわらず、電機子の移動方向はアキシャル方向に限定されるのは、周回するバックヨークや継鉄によって電機子が固定されていて直径を変更できないことによる。大きな直径の風車や回転翼の翼端部に発電部や駆動部を作成する際は、回転子が遠心力や温度変化で直径方向、すなわちラジアル方向に伸縮するので、固定子側の電機子の位置を移動して追随するためには、電機子の移動方向がラジアル方向であることが不可欠である。しかしながら、特許文献13、特許文献16、特許文献12、特許文献14の電機子の移動装置は、いずれも固定子側の電機子をアキシャル方向にしか移動することができないので、大きな直径の風車や回転翼の翼端部に発電部や駆動部を作成する際に使用することはできない。 Field magnets and armatures in generators and electric motors usually do not move after being manufactured by being fixed to a rotating shaft or case. However, Patent Literature 13, Patent Literature 16, Patent Literature 12, and Patent Literature 14 describe a method for adjusting the power generation amount according to the rotational speed of the rotor and changing the torque without changing the rotational speed. It has a mechanism that allows the position of the armature to move with respect to the magnet. Among these, Patent Document 13 and Patent Document 16 are radial gap type motors / generators and generators, and the movement direction of the armature is the axial direction. Patent Documents 12 and 14 are both axial gap type motors / generators, and the armatures move in the axial direction. As described above, the movement direction of the armature is limited to the axial direction even though the gap type of the electric motor and the generator is different between the radial gap type and the axial gap type. This is because the armature is fixed and the diameter cannot be changed. When creating a power generation unit or drive unit at the tip of a large-diameter wind turbine or rotor blade, the rotor expands and contracts in the diameter direction, that is, in the radial direction due to centrifugal force or temperature change. In order to follow the position by moving, it is essential that the armature moves in the radial direction. However, since the armature moving devices of Patent Document 13, Patent Document 16, Patent Document 12, and Patent Document 14 can move the armature on the stator side only in the axial direction, It cannot be used when creating a power generation unit or a drive unit at the tip of a rotor blade.
水平軸風車での効率の良い発電を行うためには、電磁的周速利用風力発電装置の直径を100m程度の大きなものとしたり、空中フェリーや空中空母を造るためには、シュラウド付回転翼の直径を数百m程度の大きなものにする必要がある。このような大きな直径のものとなる回転翼の翼端部に発電部や駆動部を設置する際には、回転子の直径方向への伸縮が大きくなるので、そのような場合の翼端部に発電機や電動機を作成する場合は、次のような3つの条件を満足することが必要である。その第1の条件は、回転子側の界磁磁石や電機子の作用面と、固定子側の界磁磁石や電機子の作用面との間隙の対向方向が、回転軸に平行するところのアキシャルギャップ型であること。第2の条件は、回転子側の界磁磁石や電機子の作用面の回転軸からの距離は、回転子にかかる遠心力と温度変化によって直径方向であるところのラジアル方向に大きく変化する。このため、固定子側の界磁磁石や電機子の作用面は、回転子側の界磁磁石や電機子の作用面の直径方向の位置の変化に追随することが可能な仕組みを有すること。第3の条件は、回転体である風車や回転翼に対する外部からの応力は、回転体の外周部においてジャイロ歳差によるアキシャル方向の応力となって、回転体の外周部に配置した界磁磁石と電機子との間隙を狭め、界磁磁石の作用面と電機子の作用面とを衝突させる力となる。このため、回転体にいかなる応力が加わろうとも、界磁磁石の作用面と電機子の作用面とが衝突することにならない仕組みを有すること、の以上3条件が必要である。 In order to perform efficient power generation with a horizontal axis wind turbine, the diameter of a wind turbine generator using electromagnetic peripheral speed is as large as about 100 m, or in order to make an air ferry or an air hollow carrier, The diameter needs to be as large as several hundred meters. When installing a power generation unit or drive unit at the tip of a rotor blade of such a large diameter, the rotor expands and contracts in the diametrical direction. When creating a generator or an electric motor, it is necessary to satisfy the following three conditions. The first condition is that the facing direction of the gap between the rotor-side field magnet or armature action surface and the stator-side field magnet or armature action surface is parallel to the rotation axis. Axial gap type. The second condition is that the distance from the rotation axis of the rotor-side field magnet or armature to the rotation axis greatly changes in the radial direction, which is the diameter direction, due to the centrifugal force applied to the rotor and the temperature change. For this reason, the working surface of the stator side field magnet or armature has a mechanism capable of following the change in the diametrical position of the working surface of the rotor side field magnet or armature. The third condition is that the external stress on the rotating wind turbine or rotor blades becomes the axial stress due to the gyro precession at the outer periphery of the rotating body, and the field magnets arranged at the outer periphery of the rotating body. The gap between the armature and the armature is narrowed, so that the working surface of the field magnet collides with the working surface of the armature. For this reason, the above three conditions of having a mechanism in which the working surface of the field magnet and the working surface of the armature do not collide no matter what stress is applied to the rotating body are necessary.
前記の第1の条件を満足するため、特許文献6と特許文献7は、シュラウドに対して擦動して回転する回転ダクトとの組み合わせを構成し、シュラウド側に電機子を配設し、回転ダクト側に界磁磁石を配設することによって、アキシャルギャップ型を実現した。また、第2の条件を満足するためには、まず、特許文献6と特許文献7は、電機子の一つひとつが独立した電機子セルを採用した。従来からの発電機や電動機の中には、他にも電機子セルである例は多数あるが、それらの場合には、電機子セルが円周を周回する継鉄/バックヨーク等に固定されていたり、全体が一つながりになるようにモールドされていて、直径方向であるラジアル方向への電機子セルの位置変化を不可能にしていたが、特許文献6や特許文献7の電機子セルは、一つひとつが独立したままラジアル方向への位置移動を可能にする保持骨格を介してシュラウドに接続してある。これによって、回転子側の界磁磁石の作用面が遠心力や温度変化によって直径方向であるラジアル方向に位置が変化しても、固定子側の電機子の作用面が追随できる仕組みを実現している。さらに、第3の条件を満足させるために、特許文献6と特許文献7は、界磁磁石の作用面と電機子の作用面との間にベアリングとケースからなる間隙保持用ベアリングを挟んで摺動させる仕組みを構成している。この間隙保持用ベアリングによって、界磁磁石の作用面と電機子の作用面との間隙を狭めるように作用するアキシャル方向の応力に間隙保持用ベアリングが抗するので、その間隙を常に一定に維持できる仕組みを実現している。これら3つの条件を満足することによって、特許文献6と特許文献7は、いかなる大きな直径の風車や回転翼であっても、その翼端部に発電部や駆動部の作成を可能にした。 In order to satisfy the first condition, Patent Document 6 and Patent Document 7 constitute a combination with a rotating duct that rotates by rubbing against the shroud, and an armature is arranged on the shroud side to rotate the shroud. An axial gap type was realized by arranging a field magnet on the duct side. In order to satisfy the second condition, Patent Document 6 and Patent Document 7 employ an armature cell in which each armature is independent. There are many other examples of armature cells among conventional generators and motors. In these cases, the armature cells are fixed to a yoke / back yoke or the like that circulates around the circumference. It is molded so that the whole is connected, and it is impossible to change the position of the armature cell in the radial direction that is the diameter direction. , Each one is connected to the shroud via a holding skeleton that allows the position to move in the radial direction while being independent. This realizes a mechanism that allows the working surface of the armature on the stator side to follow even if the working surface of the field magnet on the rotor side changes its position in the radial direction, which is the radial direction, due to centrifugal force or temperature change. ing. Further, in order to satisfy the third condition, Patent Document 6 and Patent Document 7 are slid by sandwiching a gap holding bearing composed of a bearing and a case between the working surface of the field magnet and the working surface of the armature. It constitutes a mechanism to move. With this gap holding bearing, the gap holding bearing resists axial stress acting to narrow the gap between the working surface of the field magnet and the working surface of the armature, so that the gap can be kept constant at all times. The mechanism is realized. By satisfying these three conditions, Patent Document 6 and Patent Document 7 make it possible to create a power generation unit and a drive unit at the blade tip of any large-diameter windmill or rotor blade.
このように、特許文献6と特許文献7は、前記の3つの条件を満足することによってどのような大きな直径の風車や回転翼の翼端部にも発電部や駆動部を作成することを可能にしたが、実施においては、問題点が多い。まず、間隙保持用ベアリングは、回転軸に平行するアキシャル方向への厚みがかなりあるので、装置全体のアキシャル方向の厚みを減ずることが著しく困難であること。次に、間隙保持用ベアリングを金属やセラミックで作ると、それ自身が電機子の重量に匹敵する程度の大きな重量となること。さらには、ベアリングとケースからなる間隙保持用ベアリングは、ベアリングの価格が高い。よって、間隙保持用ベアリングの価格が大変高価となる。さらには、間隙保持用ベアリングは磁気環境で使用されることから、ケースかベアリングの少なくともいずれか一方を磁気短絡や磁気による摺動抵抗を生じないセラミックが望ましいのであるが、現状ではセラミックベアリングは、鋼製のベアリングに比して実勢価格で100~150倍もするので、セラミックベアリングにした場合には、間隙保持用ベアリングの価格が非常に高価なものとなる。したがって、費用対効果を大幅に減ずることになる。 As described above, Patent Document 6 and Patent Document 7 can create a power generation unit and a drive unit at the tip of a wind turbine or rotor blade of any large diameter by satisfying the above three conditions. However, there are many problems in implementation. First, since the gap holding bearing has a considerable thickness in the axial direction parallel to the rotation axis, it is extremely difficult to reduce the thickness of the entire apparatus in the axial direction. Next, if the bearing for gap maintenance is made of metal or ceramic, the weight of the bearing itself will be as large as that of the armature. Furthermore, a gap holding bearing consisting of a bearing and a case is expensive. Therefore, the price of the gap holding bearing becomes very expensive. Furthermore, since the gap holding bearing is used in a magnetic environment, it is desirable to use ceramic that does not cause a magnetic short circuit or sliding resistance due to magnetism in at least one of the case and the bearing. Since the actual price is 100 to 150 times that of a steel bearing, the price of the gap holding bearing becomes very expensive when a ceramic bearing is used. Therefore, the cost effectiveness is greatly reduced.
特許文献2や特許文献3は、特許文献6や特許文献7の非常に高価な間隙保持用ベアリングに代えて、回転ダクトとの接触面を低摩擦係数の物質から成るか、潤滑剤/減摩剤の塗布処置をするかの少なくともいずれか一方の処置を成した滑走部と、電機子の台座である台座部とから成る製造コストを低減した間隙保持具を用いて、特許文献6や特許文献7とほぼ同様の効果を企図している。 In Patent Document 2 and Patent Document 3, in place of the very expensive gap holding bearings in Patent Document 6 and Patent Document 7, the contact surface with the rotating duct is made of a material having a low coefficient of friction, or lubricant / friction. Patent Document 6 and Patent Documents, using a gap holder that has a manufacturing cost reduced, which includes a sliding portion that performs at least one of the agent application treatment and a pedestal portion that is an armature pedestal. The effect similar to 7 is contemplated.
未公開の特許文献1は、特許文献6や特許文献7の間隙保持用ベアリングや、特許文献2や特許文献3の間隙保持具に代えて、界磁磁石の作用面と電機子の作用面との間隙の維持に、特許文献10がラジアルギャップ型電動機の摺動面に用いた低摩擦係数の樹脂をもって滑走部を作成して用いている。この際、特許文献6や特許文献7におけるシュラウドに
保持骨格を介して接続された間隙保持用ベアリングの方は、回転ダクトの中空部の内面にベアリングで常に接触して、風車や回転翼の荷重の一部を分担していることは明らかである。また、特許文献10の低摩擦係数の樹脂膜も、その図面や明細書の段落0021の記述に「・・ステータコア4の内周面とロータコア7a、7bの外周面との間のギャップは上記フッ素系樹脂膜9a,9bの厚さの和に略等しくなり、・・」と記載されていることから、その摺動面を常に接触していることが解る。このように、特許文献6や特許文献7や特許文献10の仕組みは、いずれも回転子側と固定子側が常に接触して摺動しているのが特徴である。しかしながら、大きな荷重がかかる摺動面に耐荷重の大きなベアリングを挿入して常時接触で使用することは可能であっても、耐荷重が小さな低摩擦係数の樹脂を主体とする場合においては、ラジアルギャップ型では直径方向への伸縮による作用面の部分への圧迫が大なることから、アキシャルギャップ型ではジャイロ歳差によるアキシャル方向への圧迫が極めて大なることから、いずれの場合も常時の接触を行う摺動面に低摩擦係数の樹脂を使用することは、よほどの小さな直径の発電機や電動機であるか、あるいは回転数が著しく少なく温度変化もなく応力の発生もない環境下で固定されているような発電機や電動機でなければ、実施が著しく困難である。したがって、特許文献10で使用された低摩擦係数の樹脂をもって、特許文献6や特許文献7の間隙保持用ベアリングや、特許文献2や特許文献3の間隙保持具に代えるだけでは、大きな直径の風車や回転翼の翼端部に発電部や駆動部を構成することはできない。
In unpublished Patent Document 1, the working surface of the field magnet and the working surface of the armature are replaced with the gap holding bearings of Patent Document 6 and Patent Document 7 and the gap holders of Patent Document 2 and Patent Document 3. In order to maintain this gap, Patent Document 10 uses a sliding portion made of a resin having a low friction coefficient used for a sliding surface of a radial gap type electric motor. At this time, the gap holding bearing connected to the shroud through the holding skeleton in Patent Document 6 and Patent Document 7 always comes into contact with the inner surface of the hollow portion of the rotating duct with the bearing, and the load of the windmill and the rotor blades. It is clear that a part of The resin film having a low friction coefficient disclosed in Patent Document 10 is also described in the drawings and the description in paragraph 0021 of the specification. “The gap between the inner peripheral surface of the stator core 4 and the outer peripheral surfaces of the rotor cores 7a and 7b is the above-mentioned fluorine. Since it is substantially equal to the sum of the thicknesses of the system resin films 9a, 9b, and so on, it is understood that the sliding surfaces are always in contact with each other. Thus, the mechanisms of Patent Document 6, Patent Document 7, and Patent Document 10 are characterized in that the rotor side and the stator side are always in contact with each other and sliding. However, even if it is possible to insert a bearing with a large load resistance on a sliding surface to which a large load is applied and always use it in contact with the sliding surface, in the case of mainly using a low friction coefficient resin with a small load resistance, radial In the gap type, the pressure on the working surface due to expansion and contraction in the diametric direction is large, and in the axial gap type, the pressure in the axial direction due to the gyro precession is extremely large. The use of a low friction coefficient resin for the sliding surface to be performed is a generator or electric motor with a very small diameter, or is fixed in an environment where the number of revolutions is extremely small and there is no temperature change and no stress is generated. Unless it is a generator or motor, it is extremely difficult to implement. Therefore, a windmill having a large diameter can be obtained simply by replacing the low friction coefficient resin used in Patent Document 10 with the gap holding bearings of Patent Document 6 and Patent Document 7 or the gap holders of Patent Document 2 and Patent Document 3. In addition, the power generation unit and the drive unit cannot be configured at the blade tip of the rotor blade.
界磁磁石の作用面と電機子の作用面とが作る間隙長の全域を特許文献6と特許文献7では間隙保持用ベアリングで占め、特許文献2や特許文献3や特許文献10では低摩擦係数の樹脂で占めていた。これに対して特許文献1では、間隙長を2つの部分に分け、零の値をとることが可能な「遊び」と、低摩擦係数の素材や潤滑剤/減摩剤からなる「滑走部」とに区分した。すなわち、界磁磁石の作用面と電機子の作用面とが対面している間隙長は、「遊び」が充分ある場合には、間隙長が最大となって、回転子側の界磁磁石の作用面(回転子側が電機子の場合は、「電機子の作用面」)と、固定子側の電機子の作用面(固定子側が界磁磁石の場合は、「界磁磁石の作用面」)に貼った「滑走部」とは接触することなく回転し、「遊び」が零となった場合には、回転子側の界磁磁石の作用面や電機子の作用面と、固定子側の界磁磁石や電機子の作用面に貼った「滑走部」とは接触するけれども、「滑走部」の厚みが最小間隙となって維持され、作用面同志は一定の間隙を保って、回転が継続できる仕組みを構成した。本願は、このような「遊び」と低摩擦係数の素材や潤滑剤/減摩剤からなる「滑走部」とからなる構造によって、作用面同志の衝突を避けて一定の間隙を保つことのできる未公開の特許文献1の考え方を継承したものである。 In Patent Literature 6 and Patent Literature 7, the entire gap length formed by the field magnet working surface and the armature working surface is occupied by the gap holding bearing, and in Patent Literature 2, Patent Literature 3 and Patent Literature 10, the low friction coefficient. Accounted for. On the other hand, in Patent Document 1, the gap length is divided into two parts and "play" that can take a zero value, and "sliding part" made of a low friction coefficient material or lubricant / lubricant. And was divided into That is, the gap length where the working surface of the field magnet and the working surface of the armature face each other is maximized when there is enough “play”, and the field magnet on the rotor side Working surface ("armature working surface" if the rotor side is an armature) and working surface of the stator armature (if the stator side is a field magnet, "field magnet working surface") When the “sliding part” rotates without contact and the “play” becomes zero, the field magnet working surface or armature working surface on the rotor side and the stator side Although the "sliding part" attached to the working surface of the field magnet and armature of the magnet contacts the "sliding part", the thickness of the "sliding part" is maintained as a minimum gap, and the working surfaces maintain a constant gap and rotate Configured a mechanism that can continue. The present application can maintain a constant gap by avoiding collisions between the working surfaces by such a structure including “play” and a “sliding portion” made of a material having a low friction coefficient and a lubricant / friction agent. The idea of the unpublished Patent Document 1 is inherited.
特許文献15は、固定子の界磁磁石の磁界の中をシャフトレスの電機子が衝突を繰り返しながら回転して、振動を発生するバイブレーターとしての電動機で、零の値をとることが可能な「遊び」と、低摩擦係数の素材の「滑走部」とみなすことも可能な緩衝材の部位とを有する。シャフトレスの回転子が公転と自転とを繰り返して固定子の内壁に衝突しながら回転する仕組みは、回転子が永久磁石であることが多い。例えば、周囲を覆っている固定子側が電磁石で、その内部に回転子としてダルマの絵のついたケースの中に永久磁石を封入し、固定子側の電磁石に回転磁界を発生させることによって、ダルマの絵のついた回転子が固定子側の内側に衝突を繰り返しながら回転するおもちゃが存在する。特許文献15のように回転子が電機子で回転する場合も、おもちゃの例のように回転子が永久磁石で回転する場合も、固定子側や回転子側に貼り付けられた樹脂は、界磁磁石と電機子との間隙を保持するための仕組みではなく、回転の初動を有利にしたり回転子が固定子側に衝突する際の衝撃を緩和するものである。したがって、貼り付けられた低摩擦係数の素材は、回転のために不可欠な要素ではない。現に、おもちゃにおいては、回転子がケースに入らず剥き出しの場合や、回転子のケースが比較的摩擦係数が高い塩化ビニール製で作られている場合がある。また、特許文献15やおもちゃの例では、振動を起こすための衝突やダルマの絵のついた回転子のぎこちない動きそのものが、機能発揮の目的としてなされたものである。したがって、従来のシャフト付の電動機や発電機が、スムースに回るために間隙を一定に保持するための課題とその解決方法を追求するのとは、特許文献15の課題もその解決方法も異なる。特に、特許文献15やおもちゃの例においては、回転子をシャフトレスとした時点において、従来の発電機やトルクを利用するためのシャフト付の電動機とは、課題や解決方法においての共通点や類似点を持たなくなったといえる。よって、電機子や界磁磁石に耐荷重や発熱に不安のある低摩擦係数の樹脂を貼り付けた特許文献10を承知して、低摩擦係数の樹脂の部分が常時接触して摺動することが特許文献10の問題点であると認識した上で、衝突を繰り返しながら回転子が回転する特許文献15を見ても、特許文献10の発明の問題点を解消する方向で貢献する発明はできない。また、特許文献10の出発点であった従来のシャフト付の発電機や電動機は、界磁磁石と電機子との間隙長は一定か、変動を予期したとしても零となることを想定していないので、従来の発電機や電動機を見ても、特許文献10の問題点を解消する方向で貢献する発明はできない。したがって、いずれの場合からも特許文献1が実施したような「間隙長」を零の値をとることが可能な「遊び」と、低摩擦係数の素材や潤滑剤/減摩剤からなる「滑走部」とに区分して、電機子を回転ダクトの略コの字型の中空部に回転ダクトの略コの字型の内部に接することなく保持し、電動機や発電機の界磁磁石と電機子との間隙をアキシャル方向へ狭める応力がかかったときのみ、「滑走部」の厚みをもって間隙を一定に保持する未公開の仕組みは、従来からの発電機や電動機の仕組みが周知であって、シャフト付の電動機である特許文献10の問題点を承知して、シャフトレスの電動機である特許文献15の仕組みの開示があっても、通常の知識を有する当業者にとって発明が容易にできた、とはいえない。 Patent Document 15 is an electric motor as a vibrator that generates vibration by rotating a shaftless armature repeatedly in a magnetic field of a field magnet of a stator, and can take a zero value. And a portion of the cushioning material that can be regarded as a “sliding portion” made of a material having a low coefficient of friction. In a mechanism in which a shaftless rotor rotates while revolving and rotating repeatedly and colliding with the inner wall of the stator, the rotor is often a permanent magnet. For example, the stator side covering the periphery is an electromagnet, and a permanent magnet is enclosed in a case with a Dharma picture inside as a rotor, and a rotating magnetic field is generated in the stator-side electromagnet, thereby producing a dharma. There is a toy that rotates with the rotor with the picture of repeating the collision inside the stator side. Whether the rotor is rotated by an armature as in Patent Document 15 or the rotor is rotated by a permanent magnet as in the example of a toy, the resin attached to the stator side or the rotor side is It is not a mechanism for maintaining a gap between the magnet and the armature, but it is advantageous for the initial motion of rotation or for mitigating the impact when the rotor collides with the stator. Therefore, the stuck low friction coefficient material is not an essential element for rotation. In fact, in toys, there are cases where the rotor does not enter the case and is exposed, or the case of the rotor is made of vinyl chloride having a relatively high friction coefficient. Further, in Patent Document 15 and the example of toys, collisions for generating vibrations and awkward movements of a rotor with a Dharma picture are made for the purpose of exhibiting the functions. Therefore, the problem and the solution of Patent Document 15 are different from those for pursuing a problem and a solution for the conventional motor and generator with a shaft to keep the gap constant for smooth rotation. In particular, in Patent Document 15 and the example of toys, at the time when the rotor is shaftless, a conventional generator and a motor with a shaft for using torque are similar or similar in terms of problems and solutions. It can be said that it has no points. Therefore, knowing Patent Document 10 in which a resin with a low coefficient of friction that is uneasy about load resistance and heat generation is attached to an armature or a field magnet, the resin part with a low coefficient of friction always contacts and slides. Recognizing that this is a problem of Patent Document 10 and looking at Patent Document 15 in which the rotor rotates while repeating a collision, an invention that contributes to solve the problems of the invention of Patent Document 10 cannot be made. . In addition, the conventional generator and motor with a shaft, which was the starting point of Patent Document 10, assumes that the gap length between the field magnet and the armature is constant or zero even if fluctuation is expected. Therefore, even if it sees the conventional generator and electric motor, the invention which contributes in the direction which eliminates the problem of patent document 10 cannot be performed. Therefore, in any case, “play” capable of taking a “gap length” of zero as in Patent Document 1 and “sliding” made of a material having a low friction coefficient and a lubricant / friction agent. The armature is held in the substantially U-shaped hollow portion of the rotating duct without contacting the substantially U-shaped inside of the rotating duct, and the field magnet and the electric An undisclosed mechanism that keeps the gap constant with the thickness of the `` sliding part '' only when stress that narrows the gap with the child in the axial direction is known, and conventional mechanisms of generators and motors are well known, Recognizing the problems of Patent Document 10 that is an electric motor with a shaft, even if there is a disclosure of the mechanism of Patent Document 15 that is an electric motor without a shaft, the invention was easily made for those skilled in the art having ordinary knowledge. That's not true.
特許文献6や特許文献7や特許文献2や特許文献3は、シュラウドと回転ダクトとを有し、アキシャルギャップ型と電機子セルと保持骨格と間隙保持用ベアリングや間隙保持具との仕組みでもって、巨大な周速利用の風車やシュラウド付回転翼の翼端部においても、発電部や駆動部を作成することを可能にした。また、未公開の特許文献1は、シュラウドと回転ダクトとを有し、アキシャルギャップ型と電機子セルと保持骨格と滑走部との仕組みでもって、巨大な周速利用の風車やシュラウド付回転翼の翼端部においても、発電部や駆動部を作成することを可能にした。しかしながら、周速利用の風車やシュラウド付回転翼を実現するための円環や回転ダクトやシュラウドは、直径3m程度までは既存の材料で作成しても充分な強度を維持できるが、それ以上の直径を有する場合には、従来の溶接や圧着や圧延によって作成することは、強度を維持する上で、著しく困難がある。そこで、特許文献5は、巨大な巻車(ジャイアントスピニングホイールコンポジション)と、0.01mmから5mmまでの厚みを有する金属やセラミックやサーメットや繊維や合成樹脂の薄板帯や、0.1mmから50mmまでの厚みを有するゴムやシリコンの薄板帯を、重複を含めて任意に選択して少なくとも2周以上の周回を行うことによって薄板帯の積層にした円環や回転ダクトやシュラウドを作成することによって、充分な強度を有する巨大な周速利用の風車やシュラウド付回転翼の作成を可能にし、特許文献6や特許文献7や特許文献1の巨大な周速利用の風車やシュラウド付回転翼の実現を可能にした。 Patent Document 6, Patent Document 7, Patent Document 2, and Patent Document 3 each have a shroud and a rotating duct, and have a mechanism of an axial gap type, an armature cell, a holding skeleton, a gap holding bearing, and a gap holder. Also, it has become possible to create a power generation unit and a drive unit at the tip of a huge wind turbine using a peripheral speed or a rotor blade with a shroud. Moreover, unpublished patent document 1 has a shroud and a rotating duct, and has a mechanism of an axial gap type, an armature cell, a holding skeleton, and a sliding part, and uses a huge peripheral wind turbine or shroud-equipped rotating blade. It is possible to create a power generation unit and a drive unit at the wing tip. However, a ring, a rotating duct, and a shroud for realizing a wind turbine using a peripheral speed and a rotating blade with a shroud can maintain sufficient strength up to a diameter of about 3 m even if made with existing materials. In the case of having a diameter, it is extremely difficult to maintain the strength by maintaining the strength by conventional welding, pressure bonding, or rolling. Therefore, Patent Document 5 describes a giant winding wheel (giant spinning wheel composition), a metal strip having a thickness of 0.01 mm to 5 mm, a thin strip of ceramic, cermet, fiber, or synthetic resin, or 0.1 mm to 50 mm. By creating a circular ring, rotating duct, or shroud in which thin strips are laminated by arbitrarily selecting a thin strip of rubber or silicon having a thickness of up to 2 and including at least two rounds Enables creation of wind turbines and shroud rotor blades with a sufficient peripheral speed that have sufficient strength, and realization of huge peripheral wind turbines and shroud rotor blades of Patent Document 6, Patent Document 7 and Patent Document 1 Made possible.
従来型のプロペラ型水平軸風車は、その全ての荷重を回転軸の一点で支えるのに対して、特許文献7や特許文献2や特許文献1で提示した電磁的周速利用風力発電装置の風車は回転翼の周囲をシュラウドで覆っているため、シュラウドを支えることによって風車を支えることが可能である。したがって、設置方法も従来からの地面を掘って固定するばかりでなく、シュラウドを両脇から支えて地面に置くように設置することが可能である。さらに、特許文献4は、地面等に設置する要領を拡大して、水準をとる装置と組み合わせた装置によって、移動や移設を含め軽易に短時間でどこにでも風力発電装置を設置できるようにした風力発電装置用の布置装置である。この特許文献4の布置装置によって、風力発電装置は、傾斜地に基礎工事不要で設置することも可能となり、災害地での応急発電に使用することも可能となって、運用の範囲を大幅に拡大することができた。 The conventional propeller type horizontal axis wind turbine supports all the loads at one point of the rotation shaft, whereas the wind turbine of the electromagnetic peripheral speed wind power generator presented in Patent Literature 7, Patent Literature 2, and Patent Literature 1 Since the periphery of the rotor blade is covered with a shroud, it is possible to support the wind turbine by supporting the shroud. Therefore, the installation method can be installed not only by digging and fixing the conventional ground but also by placing the shroud on both sides by supporting it from both sides. Furthermore, Patent Document 4 expands the point of installation on the ground and the like, and wind power generators that can be installed anywhere in a short time, including movement and relocation, by a device combined with a standard device. This is a placement device for a power generation device. With the laying device of Patent Document 4, the wind power generator can be installed on sloped land without the need for foundation work, and can also be used for emergency power generation in disaster areas, greatly expanding the scope of operation. We were able to.
従来型のヘリコプターの回転翼は、フラッピングヒンジ、フェザリングヒンジ、ドラッギングヒンジ(リードラグヒンジ)等の脆弱で複雑なヒンジを介して回転軸に接続されていて、しかも、回転翼で発生した揚力の伝達を回転軸を経由して行う。ヒンジと揚力伝達の仕組みの制約から、大変重い材料で回転翼を作成せざるを得ないことに併せて、回転翼をねじり下げと称する方法で作成して、翼端ではほとんど揚力が発生しないか、あるいは負の揚力を発生させて翼端を押さえつけるようにせざるを得なかった。このため、従来のヘリコプターは、大きな回転半径の割には、小さな揚力しか発生できなかった。これに対して、特許文献6や特許文献3や特許文献1のシュラウド付回転翼は、ヒンジを不要(ただし、フェザリングヒンジは、あっても良い)にするとともに、発生した揚力をシュラウドを経由して機体に伝達することから、ねじり下げも不要にした。これによって、大変軽い回転翼の採用や枚数の増加を容易にしたり、あるいは翼端での最大揚力発揮を可能にした。このため、同一半径で比較すると、特許文献6や特許文献1のシュラウド付回転翼は、従来型ヘリコプターの12~25倍程度の揚力の発生が容易である。このことは、同一の揚力を得る場合に、直径を1/3~1/5にできることを意味する。したがって、小さな直径でも大きな揚力を得られることに着目した特許文献9は、従来のヘリコプターの方式では揚力が不足するような小さな直径の回転翼を、機体の側面に取り付けた底板の中に格納と展帳が可能になるようにした航空機を作成した。すなわち、特許文献9では、油圧ピストン装置や電動ウォームギア装置またはパンタグラフの機構によって、底板の内部にシュラウド付回転翼の回転面を平行に寝かせて格納したり底板にシュラウド付回転翼の回転面を立たせて直交するように展帳したりすることを可能にすることによって、飛行場の格納庫のような設備がないところでも駐機できるので、空中タクシーや自家用機としての運用を可能にした。 Conventional helicopter rotor blades are connected to the rotating shaft via fragile and complex hinges such as flapping hinges, feathering hinges, dragging hinges (lead lug hinges), and the lift generated by the rotor blades Is transmitted via the rotating shaft. In addition to having to create a rotor blade with a very heavy material due to restrictions on the hinge and lift transmission mechanism, if the rotor blade is created by a method called twisting down, is there almost no lift at the blade tip? Or, we had to generate a negative lift to press down the wing tips. For this reason, the conventional helicopter can generate only a small lift for a large turning radius. On the other hand, the rotor blades with shrouds of Patent Document 6, Patent Document 3 and Patent Document 1 make a hinge unnecessary (however, a feathering hinge may be provided) and the generated lift through the shroud. Since it is transmitted to the aircraft, twisting down is unnecessary. This makes it easy to use very light rotor blades and increase the number of blades, or to achieve maximum lift at the blade tip. For this reason, when compared with the same radius, the rotor blades with shrouds of Patent Document 6 and Patent Document 1 can easily generate lift about 12 to 25 times that of a conventional helicopter. This means that the diameter can be reduced to 1/3 to 1/5 when the same lift is obtained. Therefore, Patent Document 9 focusing on the fact that a large lift can be obtained even with a small diameter is stored in a bottom plate attached to the side surface of a fuselage with a rotor blade with a small diameter that the conventional helicopter system does not have enough lift. Created an aircraft that enabled exhibition books. That is, in Patent Document 9, the rotating surface of the rotating blade with the shroud is stored in parallel with the inside of the bottom plate by the hydraulic piston device, the electric worm gear device, or the pantograph mechanism, or the rotating surface of the rotating blade with the shroud is set up on the bottom plate. This makes it possible to park as an aerial taxi or a private aircraft because it can be parked even in the absence of facilities such as an airfield hangar.
特許文献8は、アウターローター型のインホイールモーターの一つである。インホイールモーターは、各種の仕組みが開示されているが、塵埃や水分が多い地上付近に設置された駆動部を、塵埃や水分の侵入から防護する仕組みの開示例は少ない。特許文献8は、インホイールモーターの駆動部を構成する界磁磁石や電機子、あるいはベアリングを、放熱も可能な高気圧雰囲気中に密閉することによって、塵埃や水分の駆動部への侵入を防ぐ方法を開示した。この特許文献8の仕組みによって、インホイールモーターは、砂塵の中や泥濘の中や、あるいは水中においても使用できるようになったので、運用の範囲を大幅に拡大した。 Patent document 8 is one of the outer rotor type in-wheel motors. Various mechanisms have been disclosed for in-wheel motors, but there are few examples of mechanisms for protecting a drive unit installed near the ground where there is a lot of dust and moisture from intrusion of dust and moisture. Patent Document 8 discloses a method for preventing entry of dust and moisture into a drive unit by sealing a field magnet, an armature, or a bearing constituting a drive unit of an in-wheel motor in a high-pressure atmosphere capable of radiating heat. Disclosed. With the mechanism of this Patent Document 8, the in-wheel motor can be used in dust, mud and underwater, thus greatly expanding the range of operation.
未公開の特許文献1には、これまでの軸心に導線を巻回したコイル型の電機子と電機子の端部に対向する界磁磁石との組み合わせによって、磁石間の吸引力と反発力や右ネジの法則を利用して行う従来からの発電や駆動の仕組みである電機子セルコイルの他に、同一の電機子のアキシャル方向の2カ所に異方向の界磁磁石を対向させて同時刻に通過させ、フレミングの右手の法則や左手の法則を利用しての発電や駆動を行う仕組みである電機子セルリング・プッシュプルについても記載されている。電機子セルリング・プッシュプルの仕組みの外形上の特徴は、電機子の巻線の一部が回転軸に直交する直径方向への直線部を2カ所有すると共に、直線部の真上もしくは真下部分にアキシャル方向から対向する2本の界磁磁石を有する。特許文献17の図面は、電機子に直径方向に伸延する直線部を2カ所有することと、その電機子の直線部の真上のアキシャル方向にそれぞれ磁極片を有することにおいて、特許文献1と類似の形状を呈する。しかしながら、特許文献1が電機子セルリング・プッシュプルの特性としてのフレミングの法則を有効に利用するためには、電機子を構成するための導線の巻回において、磁界の中心が回転ダクトの回転方向に円周上で逐次ずれて行くようなリングを形成させる必要があって、そのためには、軸心に従来からの単なる導線の巻回では実現困難で、特許文献1に記載されたストレッチガイドのようなストロー状の器具の装着が不可欠であるが、特許文献17の電機子には、そのような器具の装着は見られない。したがって、特許文献17の電機子は、フレミングの法則を有効に適用する仕組みであるとはいえない。また、特許文献17の明細書や図面を詳細に検討すると、磁極片となっている図中の番号15(15a、15b、15c)は、本願の界磁磁石であるところの図中の番号500(502)とは全く異なる機能と役割である。すなわち、磁極片の方は界磁磁石からの磁束の透過を高めて集磁効率を向上させるために取り付けるもので、電機子側に貼り付ける状態で使用する。よって、特許文献17では、図中の番号15の中に「同時刻に電機子が入り込み通過する」ものではなく、いわば、図中の番号15の中に「永久に電機子が入り込んだまま」のものであって、本願と形状こそ同一に近くても、構造においても機能においても全く異なるものである。よって、形状上は似ている特許文献17の開示がなされていても、特許文献1の電機子セルリング・プッシュプルの導線の巻回方法や、同一の電機子の巻線の2カ所の直線部分で対向する界磁磁石に対し、電機子の巻線の2カ所の直線部分が同時刻に通過する特許文献1の仕組みを、当業者といえども容易に発明できたとはいえない。 In the unpublished Patent Document 1, the attraction force and the repulsive force between magnets are obtained by combining a coil-type armature in which a conducting wire is wound around a conventional shaft center and a field magnet facing the end of the armature. In addition to the conventional armature cell coil, which is a conventional power generation and drive mechanism using the right-handed screw rule, field magnets in different directions are made to face two locations in the axial direction of the same armature at the same time. The armature cell ring push-pull, which is a mechanism for generating power and driving using Fleming's right-hand rule and left-hand rule, is also described. The external features of the armature cell ring / push-pull mechanism are that the armature windings have two straight portions in the diametrical direction perpendicular to the rotation axis, and the portion directly above or below the straight portion. Have two field magnets facing each other in the axial direction. The drawing of Patent Document 17 is similar to Patent Document 1 in that the armature has two linear portions extending in the diametrical direction and has pole pieces in the axial direction directly above the linear portion of the armature. It exhibits the shape of However, in order to make effective use of Fleming's law as a characteristic of armature cell ring and push-pull in Patent Document 1, the center of the magnetic field is the rotation of the rotating duct in the winding of the conductive wire for constituting the armature. It is necessary to form a ring that sequentially shifts on the circumference in the direction, and for that purpose, it is difficult to realize by simply winding a conventional wire around the axis, and the stretch guide described in Patent Document 1 However, the armature disclosed in Patent Document 17 does not show such a device. Therefore, the armature of Patent Document 17 cannot be said to be a mechanism for effectively applying Fleming's law. Further, when the specification and drawings of Patent Document 17 are examined in detail, the number 15 (15a, 15b, 15c) in the figure which is a pole piece is the number 500 in the figure which is the field magnet of the present application. (502) is a completely different function and role. That is, the pole piece is attached in order to increase the permeation of magnetic flux from the field magnet and improve the magnetic collection efficiency, and is used in a state of being attached to the armature side. Therefore, in Patent Document 17, “the armature enters and passes at the same time” in the number 15 in the figure, so to speak, “the armature enters permanently” in the number 15 in the figure. Even if the shape is almost the same as that of the present application, the structure and the function are completely different. Therefore, even if patent document 17 similar in shape is disclosed, the winding method of the armature cell ring and push-pull conductor of patent document 1 and the two straight lines of the same armature winding are disclosed. Even a person skilled in the art cannot easily invent the mechanism of Patent Document 1 in which two linear portions of the armature winding pass at the same time with respect to the field magnets facing each other.
特許第4264961号Japanese Patent No. 4264961 特願2007-185963Japanese Patent Application No. 2007-185963 特願2007-185526Japanese Patent Application No. 2007-185526 特許第4078620号公報Japanese Patent No. 4078620 特許第4053584号公報Japanese Patent No. 4053584 特許第4015175号公報Japanese Patent No. 4015175 特許第3946755号公報Japanese Patent No. 3946755 特許第3816938号公報Japanese Patent No. 3816938 特許第3793545号公報Japanese Patent No. 3793545 特許第3444437号公報Japanese Patent No. 3444437 特開2005-237086号公報Japanese Patent Laying-Open No. 2005-237086 特開2002-325412号公報JP 2002-325412 A 特開2002-300760号公報JP 2002-300760 A 特開2002-247822号公報JP 2002-247822 A 特開2001-353472号公報JP 2001-353472 A 特開2001-161052号公報JP 2001-161052 A 特開2001-054270号公報Japanese Patent Laid-Open No. 2001-054270 特開平11-356017号公報Japanese Patent Laid-Open No. 11-356017 特開平05-122941号公報JP 05-122941 A 特開平05-046185号公報JP 05-046185 A 特開昭55-166475号公報JP-A-55-166475 実開平01-045256号公報Japanese Utility Model Publication No. 01-045256
発電機の発電部や電動機の駆動部において、回転ダクトの外周面と外周ハンガーとで作られる略コの字型の断面を成した中空部や、回転ダクトの内周面と内周ハンガーとで作られる略コの字型の断面を成した中空部や、あるいはそれらの略コの字型を2つ背中合わせにした略エの字型の中空部に、中空部の開口部から差し込んで発電機の発電部や電動機の駆動部を構成する電機子と、その周辺装置の厚みを薄くするとともに軽量化することが課題である。
In the generator part of the generator and the drive part of the motor, the hollow part having a substantially U-shaped cross section made of the outer peripheral surface of the rotating duct and the outer peripheral hanger, and the inner peripheral surface and inner peripheral hanger of the rotating duct A hollow section having a substantially U-shaped cross-section to be made, or a substantially E-shaped hollow section having two of these approximately U-shaped back to back is inserted into the generator from the opening of the hollow section. It is a problem to reduce the weight while reducing the thickness of the armature constituting the power generation unit and the drive unit of the motor and the peripheral devices.
本発明では、3つの段階を追って課題を解決する。まず、第1段階として、一つひとつがセルとして独立した電機子セルを円周上に配設したシュラウドと、シュラウド上の電機子セルと対面して回転する界磁磁石を配設した回転ダクトとを準備する。回転する回転ダクトは、概ね糸巻きのボビンのような形状をしていて、その外周部か内周部に略コの字型の中空部を有することが必要である。シュラウドの方は、前記回転ダクトの略コの字型の中空部に挿入する電機子セルのためのプラットホームを提供できれば良いので、回転ダクトに比べると比較的形状は自由である。回転ダクトを中心に考えると、図1のように回転ダクトの外側をシュラウドで覆うようにしても良いし、図2のように回転ダクトの内側を覆うようにしても良い。また、図4や図5や図64のように回転ダクトの内側にあって、しかも、回転ダクトよりも形状的により小さな部分を占めていても良い。さらに、図3のようにシュラウドの形状も骨格のみとしたスケルトンであっても良い。もう一方の回転ダクトは、図6、図7、図11のように外周ハンガーとして外周部に張り出し部を有する場合と、図8、図9、図12のように内周ハンガーとして内周部に張り出す場合と、図10の場合のように外周ハンガーと内周ハンガーとを背中合わせにしたような略エの字型中空部となる場合とがある。外周ハンガーや内周ハンガーのそれぞれには、界磁磁石が配設してある。外周ハンガーや内周ハンガー上の界磁磁石には、永久磁石を使用することが多い。界磁磁石を巻線コイルとすることもあるが、図面では巻線コイルの図示の方は省略する。外周ハンガーや内周ハンガー上に配設した界磁磁石の磁束の方向は、回転ダクトの回転軸に平行するアキシャル方向であるから、外周面と外周ハンガーとで作る略コの字型の中空部や、内周面と内周ハンガーとで作る略コの字型の中空部に挿入するシュラウド側の電機子セルの磁束の方向もアキシャル方向で作成する。したがって、回転ダクトとシュラウドとによってできる界磁磁石と電機子セルとが取り得る関係位置は、アキシャルギャップ型の構造となる。 In the present invention, the problem is solved in three stages. First, as a first step, a shroud in which armature cells, each of which is an independent cell, are arranged on the circumference, and a rotating duct in which a field magnet that rotates facing the armature cell on the shroud is arranged. prepare. The rotating duct is generally shaped like a bobbin with a thread winding, and it is necessary to have a substantially U-shaped hollow part on the outer peripheral part or the inner peripheral part thereof. Since the shroud only needs to provide a platform for an armature cell to be inserted into the substantially U-shaped hollow portion of the rotating duct, the shroud is relatively free in shape as compared with the rotating duct. Considering the rotating duct as a center, the outer side of the rotating duct may be covered with a shroud as shown in FIG. 1, or the inner side of the rotating duct may be covered as shown in FIG. Further, as shown in FIGS. 4, 5, and 64, it may be inside the rotating duct and may occupy a smaller portion in shape than the rotating duct. Further, as shown in FIG. 3, a skeleton having only a skeleton as the shape of the shroud may be used. The other rotating duct has an overhanging portion on the outer peripheral portion as an outer peripheral hanger as shown in FIGS. 6, 7, and 11, and an inner peripheral portion as an inner peripheral hanger as shown in FIGS. 8, 9, and 12. There are cases where the hangers are overhanging, and there are cases where the outer hanger and the inner hanger are back-to-back like in the case of FIG. A field magnet is disposed on each of the outer peripheral hanger and the inner peripheral hanger. Permanent magnets are often used as field magnets on the outer peripheral hanger and the inner peripheral hanger. Although the field magnet may be a winding coil, the winding coil is not shown in the drawing. The direction of the magnetic flux of the field magnets arranged on the outer peripheral hanger and the inner peripheral hanger is an axial direction parallel to the rotation axis of the rotating duct, so that it is a substantially U-shaped hollow portion formed by the outer peripheral surface and the outer peripheral hanger. Alternatively, the direction of the magnetic flux of the armature cell on the shroud side inserted into the substantially U-shaped hollow portion formed by the inner peripheral surface and the inner peripheral hanger is also created in the axial direction. Therefore, the relative positions that can be taken by the field magnet and the armature cell formed by the rotating duct and the shroud have an axial gap structure.
第2段階では、2つの方法を用いる。第1の方法は、図24、図25、図26、図27のように、軸心に巻線を施した巻線コイルを準備する。巻線コイルの軸心には、ケイ素鋼やセンダスト等の磁性体を用いても、ボビン状の空心であっても、セラミックや低摩擦係数の樹脂を軸として巻回して実質上の空心としても良い。いずれにしても、その回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成して滑走面とした部位(以下、「滑走部」という)を有することが必要であって、巻線コイルの電機子セルと滑走部とを組み合わせて一つの装置としたものを、電機子セルコイルとして使用する。第2の方法は、第1の方法の巻線が、磁束の中心が同軸となるように巻回したのに対して、図46、図47、図48、図49、図50のように、巻線をリング状にして磁束の中心が少しずつ異なるように巻回する。巻回する際には、図51のように、バス回線を用いても良い。いずれの場合でも、巻線の途中の2カ所の部分に、導線を通す通過口となる回転ダクトの回転軸に直交する直径方向に向かう直線部分(以下、「ストレッチガイド」という)を構成する。ストレッチガイドの直線部分の構成には、パイプ材を集合して作成するか、モールド材によって作成する。そして、第1の方法で用いたように、その回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有することが必要であって、リング状の巻線の電機子セルと滑走部とを組み合わせて一つの装置としたものを、電機子セルリング・プッシュプルとして使用する。なお、電機子セルリング・プッシュプルの両端部の滑走部は、図48や図49のようにストレッチガイドが低摩擦係数の素材を使用した場合には、ストレッチガイドが滑走部となる。このようにして作成した電機子セルコイルや電機子セルリング・プッシュプルは、第1の段階で構成したシュラウド側に、図32(A)や図56(A)に記載した接続部や腕部や繋留部で接続されて、電磁的周速利用風力発電装置の発電部やシュラウド付回転翼の駆動部を構成する。そうして、電磁的周速利用風力発電装置やシュラウド付回転翼の直径が大きくて、遠心力や温度変化の影響が回転ダクトの直径方向の伸縮量として無視できない程大きな場合には、図32(B)~(E)や図56(B)~(E)に記載した電機子セルコイルや電機子セルリング・プッシュプルの回転ダクトの中空部に挿入する量を調整できる伸縮腕部を有する保持骨格で電機子セルコイルや電機子セルリング・プッシュプルをシュラウドに接続して作成し、発電部や駆動部を構成する。 In the second stage, two methods are used. In the first method, as shown in FIGS. 24, 25, 26, and 27, a winding coil in which a winding is provided on an axis is prepared. The winding coil axis can be made of a magnetic material such as silicon steel or sendust, or it can be a bobbin-shaped air core. good. In any case, at least one of the treatments consisting of a material having a low coefficient of friction or a mechanism for applying a lubricant / lubricant is applied to both ends in the direction parallel to the rotation axis of the rotating duct. It is necessary to have a part (hereinafter referred to as a “sliding part”) as a sliding surface, and an armature cell coil is obtained by combining a wound coil armature cell and a sliding part as one device. Use as In the second method, the winding of the first method is wound so that the center of the magnetic flux is coaxial, whereas as shown in FIGS. 46, 47, 48, 49, and 50, Wind the winding so that the center of the magnetic flux is slightly different. When winding, a bus line may be used as shown in FIG. In either case, straight portions (hereinafter referred to as “stretch guides”) extending in the diameter direction perpendicular to the rotation axis of the rotating duct serving as a passage opening through which the conducting wire passes are formed in two portions in the middle of the winding. The configuration of the straight portion of the stretch guide is created by collecting pipe materials or by using a mold material. And, as used in the first method, at least whether it is made of a material having a low friction coefficient or has a mechanism for applying a lubricant / friction agent to both ends in the direction parallel to the rotation axis of the rotating duct. It is necessary to have a sliding part that performs either one of the treatments, and an armature cell ring push-pull that combines a ring-shaped winding armature cell and the sliding part into one device Use as In addition, as for the sliding part of the both ends of an armature cell ring push-pull, when a stretch guide uses the material of a low friction coefficient like FIG.48 and FIG.49, a stretch guide becomes a sliding part. The armature cell coil and the armature cell ring push-pull created in this way are connected to the shroud side configured in the first stage, the connection portion, the arm portion, and the like described in FIGS. 32 (A) and 56 (A). Connected by a tether, the power generation unit of the electromagnetic peripheral speed wind power generator and the drive unit of the rotor blade with shroud are configured. Then, when the diameter of the electromagnetic circumferential speed utilizing wind power generator or the rotor blade with the shroud is large and the influence of centrifugal force or temperature change is so large that it cannot be ignored as the expansion / contraction amount in the diameter direction of the rotating duct, FIG. Holding with a telescopic arm that can adjust the amount inserted into the hollow part of the armature cell coil or armature cell ring / push-pull rotating duct described in (B) to (E) and FIGS. 56 (B) to (E) An armature cell coil and an armature cell ring / push pull are connected to the shroud by a skeleton to constitute a power generation unit and a drive unit.
特許文献6や特許文献7では、回転ダクトの界磁磁石とシュラウドの電機子セルとの対向する作用面の間には、間隙保持用ベアリングが挿入してあって、常時接触の摺動面を形成していた。間隙保持用ベアリングは、耐荷重が大きく、またベアリングに使用する潤滑剤/減摩剤には、例えば、油化モリブデンのように摩擦係数を低減でき、しかも高温度下においても使用に耐えるものがある。しかしながら、この間隙保持用ベアリングの果たした役割を、特許文献10と同じようにフッ素樹脂や高密度ポリエチレンの低摩擦係数の樹脂で置き換えて実施しようとすると、低摩擦係数の樹脂は、耐荷重が低いので、耐荷重が大きな間隙保持用ベアリングと同じように使用することは、例え、潤滑剤/減摩剤を併用したとしても著しく困難である。そこで本発明は、第3段階として、シュラウドに接続部や腕部や繋留部で接続する電機子セルコイルや電機子セルリング・プッシュプルの保持に際し、発電部や駆動部にアキシャル方向の応力が加わらない間は、接続部に併設したバネ部が支えることによって、回転ダクトの中空部の内面に電機子セルコイルや電機子セルリング・プッシュプルの滑走部が触れないような仕組みを構成する。そのため、まず、電機子セルコイルや電機子セルリング・プッシュプルのアキシャル方向の厚みを、回転ダクトの中空部内側のアキシャル方向の幅よりも僅かに少ない寸法とする。次に、腕部や伸縮腕部を、接続部に併設したバネ部で支える。これによって、回転ダクトの任意の外周面や内周面のアキシャル方向には、(回転ダクトの中空部の内面)→(遊び)→(滑走部)→(電機子セルの導線)、の順で発電部や駆動部が構成されるので、発電部や駆動部にアキシャル方向からの応力が加わらない間は、回転ダクトの中空部の内面に触れない仕組みを構成することができる。この仕組みは、通常、バネ部を2組必要とするが、図64の垂直軸風車の発電部や、水平軸風車の頂上付近の発電部のような場合では、バネ部を欠いた状態であっても重力とのバランスから、電機子セルコイルや電機子セルリング・プッシュプルを回転ダクトの中空部の内面に非接触で保持できる場合がある。
In Patent Document 6 and Patent Document 7, a gap holding bearing is inserted between the opposing working surfaces of the field magnet of the rotating duct and the armature cell of the shroud, and a sliding surface that is always in contact is provided. Was forming. Gap bearings have a large load capacity, and lubricants / friction agents used in bearings can reduce the coefficient of friction, such as molybdenum oil, and can withstand use even at high temperatures. is there. However, if the role played by the gap retaining bearing is replaced with a low friction coefficient resin such as fluororesin or high density polyethylene as in Patent Document 10, the low friction coefficient resin has a load resistance. Since it is low, it is extremely difficult to use it in the same manner as a bearing for holding a gap having a large load capacity even if a lubricant / friction agent is used in combination. Therefore, as a third step, the present invention applies axial stress to the power generation unit and the drive unit when holding the armature cell coil and the armature cell ring / push pull connected to the shroud by the connection unit, the arm unit, and the tether. As long as there is no contact, the spring part provided alongside the connection part supports, so that the armature cell coil or the sliding part of the armature cell ring / push pull does not touch the inner surface of the hollow part of the rotating duct. Therefore, first, the thickness in the axial direction of the armature cell coil and the armature cell ring / push pull is set to be slightly smaller than the width in the axial direction inside the hollow portion of the rotating duct. Next, the arm part and the telescopic arm part are supported by a spring part provided in the connection part. As a result, in the axial direction of an arbitrary outer peripheral surface or inner peripheral surface of the rotating duct, the inner surface of the hollow portion of the rotating duct → (play) → (sliding portion) → (leading armature cell) Since the power generation unit and the drive unit are configured, it is possible to configure a mechanism that does not touch the inner surface of the hollow portion of the rotating duct while stress from the axial direction is not applied to the power generation unit and the drive unit. This mechanism usually requires two sets of spring parts, but in the case of the power generation part of the vertical axis wind turbine in FIG. 64 or the power generation part near the top of the horizontal axis wind turbine, the spring part is missing. However, there is a case where the armature cell coil and the armature cell ring / push pull can be held on the inner surface of the hollow portion of the rotating duct in a non-contact manner due to the balance with gravity.
本発明では、特許文献6や特許文献7で用いた車輪部(車輪部相当)やフランジ部(フランジ部相当)を用いないので、その分だけ確実に電機子セルの厚みを薄くすることができると共に軽量化することができる。また、ある程度の重量が嵩み、ほぼ車輪部と同等の厚みを有した間隙保持用ベアリングに代えて、低摩擦係数の物質か潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を端部に有する電機子セルコイルや電機子セルリング・プッシュプルにすると、電機子セルや電機子セルを含む周辺装置の厚みを確実に薄くすることができると共に軽量化することができる。中でも、第2の方法の電機子セルリング・プッシュプルの場合においては、電機子セルに対向する界磁磁石の大きさも非常に小さな物とすることができる。特に、円周方向に必要とする界磁磁石の幅は、最小限、ストレッチガイドの中に敷設した導線の幅程度の界磁磁石が2本で1組以上あれば可能なことから、回転ダクト側の重量の多くを占める界磁磁石の重量を大幅に軽減することができる。さらにまた、第1の方法の電機子セルコイルでも、第2の方法の電機子セルリング・プッシュプルでも構造が極めて簡単になることから、非常に大きな電機子セルから非常に小さな電機子セルまで、容易にしかも安価に作製することができるので、費用対効果を大幅に向上することができる。
In the present invention, since the wheel part (equivalent to the wheel part) and the flange part (equivalent to the flange part) used in Patent Document 6 and Patent Document 7 are not used, the thickness of the armature cell can be reliably reduced by that much. In addition, the weight can be reduced. In addition, at least one of a mechanism for applying a substance with a low coefficient of friction or a lubricant / lubricant instead of a gap retaining bearing having a certain amount of weight and substantially the same thickness as the wheel portion. Armature cell coils and armature cell rings / push pulls that have a sliding section at one end can be used to reliably reduce the thickness of peripheral devices including armature cells and armature cells, and light weight. Can be In particular, in the case of the armature cell ring / push pull of the second method, the size of the field magnet facing the armature cell can be made very small. In particular, the width of the field magnet required in the circumferential direction can be minimized by using at least one pair of field magnets of about the width of the conductive wire laid in the stretch guide. The weight of the field magnet occupying most of the weight on the side can be greatly reduced. Furthermore, the structure of the armature cell coil of the first method and the armature cell ring / push pull of the second method are extremely simple, so that from a very large armature cell to a very small armature cell, Since it can be produced easily and inexpensively, cost effectiveness can be greatly improved.
本発明においては、界磁磁石(500)を配設し、外周面(611)と外周ハンガー(613)とで略コの字型の中空部を成すか、内周面(612)と内周ハンガー(614)とで略コの字型の中空部を成すか、外周ハンガー(613)と内周ハンガー(614)とを背中合わせにした略エの字型中空部を成すかのいずれか一つの形態の回転ダクト(600)と、電機子セル(100)のプラットホームとなるシュラウド(200)とで、界磁磁石(500)の作用面と電機子セル(100)の作用面とが回転軸と平行するところのアキシャル方向で対向するアキシャルギャップ型となるように構成する。この際の回転ダクト(600)に配設する界磁磁石(500)は、永久磁石であっても巻線コイルであっても良いが、作用面の形状は、電機子セル(100)が前記載の第1の方法の電機子セルコイル(300)である場合には界磁磁石(電機子セルコイル用)(501)の方を、前記載の第2の方法の電機子セルリング・プッシュプル(400)である場合には、界磁磁石(電機子セルリング・プッシュプル用)(502)の方を使用する。回転ダクト(600)に配設する界磁磁石(500)は、界磁磁石(電機子セルコイル用)(501)か界磁磁石(電機子セルリング・プッシュプル用)(502)かのいずれか一方の単一であることが多いが、電機子セルコイル(300)と界磁磁石(電機子セルコイル用)(501)との組み合わせの場合には、トルクを大きくすることが容易であるとともに停止トルクを得易い長所の反面、起動方向が定まり難く起動時の電力が大きくなる傾向を有する短所がある。電機子セルリング・プッシュプル(400)と界磁磁石(電機子セルリング・プッシュプル用)(502)との組み合わせの場合には、起動や省エネネルギーが容易となる長所を有する反面、トルクが多少低くなって停止トルクも得られない短所がある。よって、そのそれぞれの長所を生かし短所を補うために、図11や図12のように異なる界磁磁石(500)を混合配設して回転ダクト(600)を作成することがある。電機子セル(100)のプラットホームとなるシュラウド(200)は、図1のように回転ダクト(600)の外周を覆うようにしても良いし、図2のように回転ダクト(600)の内周を覆うようにしても良い。また、電機子セル(100)のプラットホームの役割を果たせれば、図4、図5、図64のように回転ダクト(600)よりも小さくて内周にあったり、図3の骨組みだけのシュラウド(スケルトン型)(203)であっても良い。このように、回転ダクト(600)やシュラウド(200)の形状は、各種可能であるが、界磁磁石(500)と電機子セル(100)との間にアキシャルギャップ型を構成できた場合には、機能においてさほど差はない。そこで、細部の構造については、単一の界磁磁石(500)を配設して略コの字型の中空部が外周部にある回転ダクト(600)と、回転ダクト(600)を外周から覆うようにして構成したシュラウド(200)とを組み合わせた場合の形態を例として挙げて説明する。 In the present invention, the field magnet (500) is disposed, and the outer peripheral surface (611) and the outer peripheral hanger (613) form a substantially U-shaped hollow portion, or the inner peripheral surface (612) and the inner peripheral surface The hanger (614) forms a substantially U-shaped hollow portion, or the outer hanger (613) and the inner peripheral hanger (614) form a substantially D-shaped hollow portion back to back. In the rotary duct (600) of the configuration and the shroud (200) as the platform of the armature cell (100), the working surface of the field magnet (500) and the working surface of the armature cell (100) It is configured to be an axial gap type that is opposed in the axial direction of the parallel part. The field magnet (500) disposed in the rotating duct (600) at this time may be a permanent magnet or a wound coil, but the shape of the working surface is that of the armature cell (100). In the case of the armature cell coil (300) of the first method described above, the field magnet (for the armature cell coil) (501) is replaced with the armature cell ring push-pull (501) of the second method described above. 400), a field magnet (for armature cell ring / push pull) (502) is used. The field magnet (500) disposed in the rotating duct (600) is either a field magnet (for armature cell coil) (501) or a field magnet (for armature cell ring / push pull) (502). On the other hand, there is often a single, but in the case of a combination of the armature cell coil (300) and the field magnet (for armature cell coil) (501), it is easy to increase the torque and stop torque. On the other hand, there is an advantage that the starting direction is difficult to determine and the electric power at the time of starting tends to increase. The combination of the armature cell ring / push-pull (400) and the field magnet (for armature cell ring / push-pull) (502) has the advantage of facilitating start-up and energy-saving energy, while the torque is There is a disadvantage that the torque is somewhat lower and the stop torque cannot be obtained. Therefore, in order to make use of the respective advantages and compensate for the disadvantages, different field magnets (500) may be mixed and formed as shown in FIGS. 11 and 12 to create the rotating duct (600). The shroud (200) serving as the platform of the armature cell (100) may cover the outer periphery of the rotating duct (600) as shown in FIG. 1, or the inner periphery of the rotating duct (600) as shown in FIG. May be covered. Further, if the role of the armature cell (100) can be fulfilled, the shroud is smaller than the rotating duct (600) as shown in FIGS. (Skeleton type) (203) may be used. As described above, various shapes of the rotating duct (600) and the shroud (200) are possible, but when an axial gap type can be formed between the field magnet (500) and the armature cell (100). There is not much difference in function. Therefore, with respect to the detailed structure, a single field magnet (500) is disposed, and a rotating duct (600) having a substantially U-shaped hollow portion at the outer peripheral portion, and the rotating duct (600) from the outer periphery. A case where the shroud (200) configured to cover is combined will be described as an example.
図13~図19及び図31については、回転ダクト(600)の外周部にシュラウド(回転ダクトの外側に設置)(201)の場合で、シュラウド(200)に配設した電機子セル(100)が、電機子セルコイル(300)である。この場合の電機子セルコイル(300)は、シュラウドの内周部(212)に、接続部(231)と腕部(234)と繋留部(236)とで設置されている。接続部(231)は、シュラウドに接続する部分であって、電機子セルコイル(300)をシュラウドに接続して運用した際に電機子セルコイル(300)に発生する回転ダクト(600)の接線方向に加えられる応力に対して耐え得る構造と、回転ダクト(600)の回転軸に平行する方向であるアキシャル方向には、多少の移動が可能な構造とを有している。この構造は、シュラウド(200)に固定する部分と、軸の周りに回転する部分とを有する、周知の極くありふれた構造で実現できるので、細部は省略する。繋留部(236)は、電機子セルコイル(300)を繋ぎ留める部分である。腕部(234)は、接続部(231)と繋留部(236)とを繋いだ部分である。電機子セルコイル(300)を使用する部位が、特に大きな直径の電磁的周速利用風力発電装置(700)の発電部やシュラウド付回転翼(800)の駆動部である場合には、この腕部(234)を伸縮腕部(235)として、電機子セルコイル(300)を回転ダクト(600)の略コの字型の中空部に挿入する際の挿入長を調整できるようにする。 13 to 19 and 31, in the case of a shroud (installed outside the rotating duct) (201) on the outer periphery of the rotating duct (600), the armature cell (100) disposed on the shroud (200). Is the armature cell coil (300). In this case, the armature cell coil (300) is installed on the inner peripheral portion (212) of the shroud by the connecting portion (231), the arm portion (234), and the tether portion (236). The connecting portion (231) is a portion connected to the shroud, and is in a tangential direction of the rotating duct (600) generated in the armature cell coil (300) when the armature cell coil (300) is connected to the shroud and operated. It has a structure that can withstand applied stress and a structure that can move a little in the axial direction that is parallel to the rotation axis of the rotating duct (600). Since this structure can be realized by a well-known and common structure having a part fixed to the shroud (200) and a part rotating around an axis, details are omitted. The anchoring portion (236) is a portion that anchors the armature cell coil (300). The arm portion (234) is a portion connecting the connecting portion (231) and the anchoring portion (236). If the part using the armature cell coil (300) is the power generation part of the electromagnetic peripheral speed wind power generator (700) having a particularly large diameter or the drive part of the rotor blade (800) with shroud, this arm part Using (234) as the extendable arm portion (235), the insertion length when the armature cell coil (300) is inserted into the substantially U-shaped hollow portion of the rotating duct (600) can be adjusted.
シュラウド(200)に接続して使用する保持骨格(電機子セルコイル用)(221)は、図32に示した通り各種の構造がある。このうち、伸縮腕部(235)を有する場合は、内蔵した動力部で液圧を発生して伸縮腕部を伸縮するか、外部から接続したパイプからの液圧で液圧シリンダー伸縮腕部を伸縮するか、内蔵した動力部と一体のウォームネジを回転してウォームネジ伸縮腕部を伸縮するか、外部から接続したパイプからの空気圧で内蔵した空気タービンと一体のウォームネジを回転してウォームネジ伸縮腕部を伸縮するかのいずれか一つの構造を有していて伸縮腕部(235)を伸縮し、保持骨格(電機子セルコイル用)(221)の繋留部(236)に取り付けた電機子セルコイル(300)を回転ダクト(600)の回転軸に直交する方向であるラジアル方向に移動できる。よって、回転ダクト(600)の略コの字型の中空部へ電機子セルコイル(300)を挿入する際の挿入長を随時調整することができる。 The holding skeleton (for armature cell coil) (221) used in connection with the shroud (200) has various structures as shown in FIG. Among these, when the telescopic arm part (235) is provided, the hydraulic power is generated by the built-in power unit to expand and contract the telescopic arm part, or the hydraulic cylinder telescopic arm part is moved by the hydraulic pressure from the pipe connected from the outside. The worm screw expands and contracts by rotating the worm screw integrated with the built-in power unit, or the worm screw by rotating the worm screw integrated with the air turbine built in with air pressure from the pipe connected from the outside An electric machine having any one of the structures for extending and retracting the screw expansion and contraction arm, expanding and contracting the expansion and contraction arm (235), and attached to the tether (236) of the holding skeleton (for armature cell coil) (221) The child cell coil (300) can be moved in a radial direction which is a direction perpendicular to the rotation axis of the rotating duct (600). Therefore, the insertion length when inserting the armature cell coil (300) into the substantially U-shaped hollow portion of the rotating duct (600) can be adjusted as needed.
電機子セルコイル(300)をシュラウド(200)に接続する接続部(231)は、通常、バネ部(232)によって支えられていて、繋留部(236)に繋がる電機子セルコイル(300)にアキシャル方向の応力が加わらない間は、接続部(231)に併設したバネ部(232)の支えによって電機子セルコイル(300)を回転ダクト(600)の略コの字型の中空部の内部の面に触れないように保持する。バネ部(232)は、図4、図5、図64の垂直軸風車の底部や、水平軸風車の頂上部である場合を除くと2組使用する。2組使用する際のバネ部(231)は、通常、L字型の板バネからなる。板バネは、ヒゲバネやシリコンゴムブロック材(238)に代えたり、板バネと併用しても良い。 The connecting portion (231) for connecting the armature cell coil (300) to the shroud (200) is normally supported by the spring portion (232) and is axially directed to the armature cell coil (300) connected to the anchoring portion (236). When the stress is not applied, the armature cell coil (300) is supported on the inner surface of the substantially U-shaped hollow portion of the rotating duct (600) by the support of the spring portion (232) provided along with the connecting portion (231). Hold it out of touch. Two sets of spring portions (232) are used except for the case of the bottom portion of the vertical axis wind turbine shown in FIGS. 4, 5, and 64 and the top portion of the horizontal axis wind turbine. The spring portion (231) when using two sets is usually made of an L-shaped leaf spring. The leaf spring may be replaced with a mustache spring or a silicon rubber block material (238), or may be used in combination with a leaf spring.
電機子セルコイル(300)は、図24や図25のように、軸心(磁性体)(331)に導線(110)を巻回して作る場合と、軸心(非鉄金属、非金属または筒のみで実質的に空心)(332)に導線(110)を巻回して作る場合とがある。巻線の順序は、図24~図27にあるようにA→B→・・・→jのように磁界の中心が同一となるように順に巻回する。いずれの場合にも、その回転ダクトの回転軸に平行する方向での両端部には、低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部(250)を有していることが必要である。滑走部(250)があることによって、電機子セルコイル(300)にアキシャル方向からの応力が加わり、電機子セルコイル(300)が、回転ダクト(600)の略コの字型の中空部の内面に接触した場合にも、界磁磁石(電機子セルコイル用)(501)の作用面と電機子セルコイル(300)の作用面との間は、滑走部(250)が最小間隙(3)となって保持するので、電機子セルコイル(300)を損傷することなく回転を維持することができる。 As shown in FIGS. 24 and 25, the armature cell coil (300) is made by winding a conductive wire (110) around an axis (magnetic body) (331), and the axis (nonferrous metal, nonmetal or cylinder only). In this case, the wire (110) may be wound around the air core (332). As shown in FIGS. 24 to 27, the winding is wound in order so that the centers of the magnetic fields are the same as A → B →... → j. In any case, both ends in the direction parallel to the rotation axis of the rotating duct are made of a material having a low coefficient of friction or having a mechanism for applying a lubricant / lubricant. It is necessary to have a glide (250) that has been treated. Due to the presence of the sliding portion (250), stress is applied to the armature cell coil (300) from the axial direction, and the armature cell coil (300) is formed on the inner surface of the substantially U-shaped hollow portion of the rotating duct (600). Even in the case of contact, the sliding portion (250) becomes the minimum gap (3) between the working surface of the field magnet (for armature cell coil) (501) and the working surface of the armature cell coil (300). Since it is held, rotation can be maintained without damaging the armature cell coil (300).
滑走部(250)は、図24~図27のように、軸心(330)や巻線コイル(320)のアキシャル方向の端部に設定する。軸心(330)そのものが、例えば、フッ素樹脂や高密度ポリエチレンのように低摩擦係数の物質からできている場合には、軸心(330)そのものが滑走部(250)となる。滑走部(250)に潤滑剤/減摩剤を塗布する仕組みは、表面方向へ漏穴(261)を有して表面に潤滑剤や減摩剤を塗布する仕組みを有する構造を持たせて行う。潤滑剤や減摩剤を表面に塗布するための漏穴(261)は、細い孔だけの場合と、先端に微細球(262)を有した場合とがあり、漏穴(261)を有した滑走部(251)は、内部に潤滑剤/減摩剤(263)を充填した中空部を有する。潤滑剤/減摩剤(263)を充填した中空部は、常圧の場合と加圧してある場合とがあり、これらを必要に応じて選択し組み合わせて使用する。 As shown in FIGS. 24 to 27, the sliding portion (250) is set at the axial end portion of the shaft center (330) and the winding coil (320). When the shaft center (330) itself is made of a material having a low coefficient of friction such as fluororesin or high density polyethylene, for example, the shaft center (330) itself becomes the sliding portion (250). The mechanism for applying the lubricant / friction agent to the sliding portion (250) is performed by providing a structure having a mechanism for applying the lubricant or the lubricant to the surface with the leak hole (261) in the surface direction. . The leak hole (261) for applying the lubricant or the lubricant to the surface has only a small hole or a fine sphere (262) at the tip, and has a leak hole (261). The sliding part (251) has a hollow part filled with a lubricant / lubricant (263). The hollow portion filled with the lubricant / friction agent (263) may be at normal pressure or pressurized, and these are selected and used as necessary.
本発明の特徴の一つには、図28に拡大して示した通り、回転ダクト(600)側の界磁磁石(電機子セルコイル用)(501)の作用面と電機子セルコイル(300)の作用面との間に「遊び(2)」を有することである。本発明の遊び(2)は、何もない空間であるから、従来の発電機や電動機の「間隙/空隙」と同じように見える。しかしながら、発電機や電動機では、特許文献6、特許文献7、特許文献10のように、間隙保持用ベアリングや低摩擦係数の樹脂で常時接触として間隙保持用ベアリングの厚みや低摩擦係数の樹脂の厚みで維持するか、あるいは従来の多くの発電機や電動機のように、零を取ることができない間隙長/空隙長をもって維持できなければならない。ところが本発明の遊び(2)は、通常のアキシャル方向への応力を受けない間は、零でない値を維持していても、電機子セルコイル(300)がアキシャル方向の応力を受けた場合には、零の値を取ることを許容している。このようにすることによって、界磁磁石(電機子セルコイル用)(501)の作用面と電機子セルコイル(300)の作用面との間隙は、「最大間隙(1)=遊び(2)+最小間隙(3)」となり、電機子セルコイル(300)にアキシャル方向の応力がない場合には、最大間隙(1)を維持し、アキシャル方向の応力を受けた際は遊び(2)は零となって、最小間隙(3)(=滑走部の厚み(270))で維持するので、電機子セルコイル(300)を傷つけることなく回転を継続できる。 As one of the features of the present invention, as shown in an enlarged view in FIG. 28, the working surface of the field magnet (for armature cell coil) (501) on the rotating duct (600) side and the armature cell coil (300) And having “play (2)” between the working surfaces. Since the play (2) of the present invention is an empty space, it looks like the “gap / gap” of a conventional generator or motor. However, in generators and electric motors, as in Patent Literature 6, Patent Literature 7, and Patent Literature 10, the gap holding bearing or the low friction coefficient resin is always in contact with the gap holding bearing or the low friction coefficient resin. It must be maintained in thickness, or it can be maintained with a gap / gap length that cannot be zero, as with many conventional generators and motors. However, in the play (2) of the present invention, when the armature cell coil (300) is subjected to axial stress, even if it is maintained at a non-zero value while not receiving stress in the normal axial direction. It is allowed to take a value of zero. By doing so, the gap between the working surface of the field magnet (for armature cell coil) (501) and the working surface of the armature cell coil (300) is “maximum gap (1) = play (2) + minimum. When the armature cell coil (300) has no axial stress, the maximum clearance (1) is maintained, and the play (2) becomes zero when the axial stress is applied. Thus, the rotation can be continued without damaging the armature cell coil (300) because the minimum gap (3) (= sliding portion thickness (270)) is maintained.
前記の各種処置がなされた電機子セルコイル(300)は、一つひとつが独立しているので、図33(A)のように直列に結線して運用することも、図33(B)のように並列に結線して運用することも、図33(C)のように3相で結線して運用することも可能である。 Since the armature cell coils (300) subjected to the above-described various treatments are independent one by one, they can be connected in series as shown in FIG. 33 (A) or operated in parallel as shown in FIG. 33 (B). It is possible to operate by connecting to three or three phases as shown in FIG.
図34~図39及び図55については、回転ダクト(600)の外周部にシュラウド(回転ダクトの外側に設置)(201)の場合で、シュラウドに配設した電機子セル(100)が、電機子セルリング・プッシュプル(400)である場合を示している。この場合の電機子セルリング・プッシュプル(400)は、シュラウドの内周部(212)に、接続部(231)と腕部(234)と繋留部(236)とで設置されている。接続部(231)は、シュラウドに接続する部分であって、電機子セルリング・プッシュプル(400)をシュラウドに接続して運用した際に電機子セルリング・プッシュプル(400)に発生する回転ダクト(600)の接線方向に加えられる応力に対して耐え得る構造と、回転ダクト(600)の回転軸に平行する方向であるアキシャル方向には、多少の移動が可能な構造とを有している。この構造は、シュラウド(200)に固定する部分と、軸の周りに回転する部分とを有する、周知の極くありふれた構造で実現できるので、細部は省略する。繋留部(236)は、電機子セルリング・プッシュプル(400)を繋ぎ留める部分である。腕部(234)は、接続部(231)と繋留部(236)とを繋いだ部分である。電機子セルリング・プッシュプル(400)を使用する部位が、特に大きな直径の電磁的周速利用風力発電装置(700)の発電部やシュラウド付回転翼(800)の駆動部である場合には、この腕部(234)を伸縮腕部(235)として、電機子セルリング・プッシュプル(400)を回転ダクト(600)の略コの字型の中空部に挿入する際の挿入長を調整できるようにする。 34 to 39 and 55, in the case of the shroud (installed outside the rotating duct) (201) on the outer periphery of the rotating duct (600), the armature cell (100) disposed on the shroud is A case of a child cell ring push-pull (400) is shown. In this case, the armature cell ring push-pull (400) is installed on the inner peripheral part (212) of the shroud by the connection part (231), the arm part (234), and the tether part (236). The connecting portion (231) is a portion connected to the shroud, and rotation generated in the armature cell ring / push pull (400) when the armature cell ring / push pull (400) is connected to the shroud and operated. It has a structure that can withstand the stress applied in the tangential direction of the duct (600) and a structure that can move a little in the axial direction that is parallel to the rotational axis of the rotating duct (600). Yes. Since this structure can be realized by a well-known and common structure having a part fixed to the shroud (200) and a part rotating around an axis, details are omitted. The anchoring part (236) is a part that anchors the armature cell ring push-pull (400). The arm portion (234) is a portion connecting the connecting portion (231) and the anchoring portion (236). When the part where the armature cell ring push-pull (400) is used is the power generation part of the electromagnetic peripheral speed wind power generator (700) having a particularly large diameter or the driving part of the rotor blade with the shroud (800) Using this arm part (234) as the telescopic arm part (235), the insertion length when the armature cell ring push-pull (400) is inserted into the substantially U-shaped hollow part of the rotating duct (600) is adjusted. It can be so.
シュラウド(200)に接続して使用する保持骨格(電機子セルリング・プッシュプル用)(222)は、図56に示した通り各種の構造がある。このうち、伸縮腕部(235)を有する場合は、内蔵した動力部で液圧を発生して伸縮腕部を伸縮するか、外部から接続したパイプからの液圧で液圧シリンダー伸縮腕部を伸縮するか、内蔵した動力部と一体のウォームネジを回転してウォームネジ伸縮腕部を伸縮するか、外部から接続したパイプからの空気圧で内蔵した空気タービンと一体のウォームネジを回転してウォームネジ伸縮腕部を伸縮するかのいずれか一つの構造を有していて伸縮腕部(235)を伸縮し、保持骨格(電機子セルリング・プッシュプル用)(222)の繋留部(236)に取り付けた電機子セルリング・プッシュプル(400)を回転ダクト(600)の回転軸に直交する方向であるラジアル方向に移動できる。よって、回転ダクト(600)の略コの字型の中空部へ電機子セルリング・プッシュプル(400)を挿入する際の挿入長を随時調整することができる。 The holding skeleton (for armature cell ring / push pull) (222) used in connection with the shroud (200) has various structures as shown in FIG. Among these, when the telescopic arm part (235) is provided, the hydraulic power is generated by the built-in power unit to expand and contract the telescopic arm part, or the hydraulic cylinder telescopic arm part is moved by the hydraulic pressure from the pipe connected from the outside. The worm screw expands and contracts by rotating the worm screw integrated with the built-in power unit, or the worm screw by rotating the worm screw integrated with the air turbine built in with air pressure from the pipe connected from the outside It has any one of the structure to expand and contract the screw expansion and contraction arm, expands and contracts the expansion and contraction arm (235), and the anchoring portion (236) of the holding skeleton (for armature cell ring / push pull) (222) The armature cell ring push-pull (400) attached to can be moved in a radial direction which is a direction orthogonal to the rotation axis of the rotary duct (600). Therefore, the insertion length when the armature cell ring push-pull (400) is inserted into the substantially U-shaped hollow portion of the rotating duct (600) can be adjusted as needed.
電機子セルリング・プッシュプル(400)をシュラウド(200)に接続する接続部(231)は、通常、バネ部(232)によって支えられていて、繋留部(236)に繋がる電機子セルリング・プッシュプル(400)にアキシャル方向の応力が加わらない間は、接続部(231)に併設したバネ部(232)の支えによって電機子セルリング・プッシュプル(400)を回転ダクト(600)の略コの字型の中空部の内部の面に触れないように保持する。バネ部(232)は、図4、図5、図64の垂直軸風車の底部や、水平軸風車の頂上部である場合を除くと2組使用する。2組使用する際のバネ部(231)は、通常、L字型の板バネからなる。板バネは、ヒゲバネやシリコンゴムブロック材(238)に代えたり、板バネと併用しても良い。 The connecting portion (231) for connecting the armature cell ring push-pull (400) to the shroud (200) is normally supported by a spring portion (232) and connected to the anchoring portion (236). While no axial stress is applied to the push-pull (400), the armature cell ring / push-pull (400) is abbreviated to the rotating duct (600) by the support of the spring part (232) attached to the connection part (231). Hold the U-shaped hollow part so that it does not touch the inner surface. Two sets of spring portions (232) are used except for the case of the bottom portion of the vertical axis wind turbine shown in FIGS. 4, 5, and 64 and the top portion of the horizontal axis wind turbine. The spring portion (231) when using two sets is usually made of an L-shaped leaf spring. The leaf spring may be replaced with a mustache spring or a silicon rubber block material (238), or may be used in combination with a leaf spring.
電機子セルリング・プッシュプル(400)は、図46~図51のように、通常、空心の周りに導線(110)をリング状に巻回して作成する。巻回の際の順序は、図50の示した通り、(A-A)→(B-B)→・・・(X-X)であって、磁界の中心が少しずつ異なる。このような巻回の方法は、通常の手作業では困難である。よって、ストロー状のパイプ材か、あらかじめ導線(110)の通過口を穿孔したモールド材でストレッチガイド(430)を2個1組で作成し、ストレッチガイド(430)の通過口に導線(110)を(A-A)→(B-B)→・・・(X-X)の順に通して作成する。2個1組のストレッチガイド(430)を回転ダクト(600)の回転軸に直交するところの直径の方向に直線部を成すようにして使用した電機子セルリング・プッシュプル(400)を、発電部に使用した際は、フレミングの右手の法則による起電力で発電し、駆動部に使用した際は、フレミングの左手の法則で駆動力を生じて回転ダクト(600)を回転させる。いずれの場合にも、その回転ダクトの回転軸に平行する方向での両端部には、低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部(250)を有していることが必要である。滑走部(250)があることによって、電機子セルリング・プッシュプル(400)にアキシャル方向からの応力が加わり、電機子セルリング・プッシュプル(400)が、回転ダクト(600)の略コの字型の中空部の内面に接触した場合にも、界磁磁石(電機子セルリング・プッシュプル用)(502)の作用面と電機子セルリング・プッシュプル(400)の作用面との間は、滑走部(250)が最小間隙(3)となって保持するので、電機子セルリング・プッシュプル(400)を損傷することなく回転を維持することができる。 As shown in FIGS. 46 to 51, the armature cell ring push-pull (400) is usually formed by winding a conducting wire (110) around the air core in a ring shape. As shown in FIG. 50, the winding sequence is (AA) → (BB) →... (XX), and the magnetic field centers are slightly different. Such a winding method is difficult by ordinary manual work. Therefore, two stretch guides (430) are made of a straw-shaped pipe material or a mold material in which the passage opening of the conducting wire (110) is previously drilled, and the conducting wire (110) is formed at the passage opening of the stretching guide (430). Are created in the order of (AA) → (BB) →... (XX). An armature cell ring push-pull (400) using a set of two stretch guides (430) so as to form a straight line portion in the diameter direction perpendicular to the rotation axis of the rotating duct (600) When used in a section, power is generated by an electromotive force according to Fleming's right-hand rule, and when used in a drive section, a driving force is generated according to Fleming's left-hand rule to rotate the rotating duct (600). In any case, both ends in the direction parallel to the rotation axis of the rotating duct are made of a material having a low coefficient of friction or having a mechanism for applying a lubricant / lubricant. It is necessary to have a glide (250) that has been treated. Due to the presence of the sliding portion (250), the stress in the axial direction is applied to the armature cell ring / push pull (400), and the armature cell ring / push pull (400) is substantially connected to the rotary duct (600). Even when it contacts the inner surface of the letter-shaped hollow portion, it is between the working surface of the field magnet (for armature cell ring / push pull) (502) and the working surface of the armature cell ring / push pull (400). Since the sliding part (250) holds the minimum gap (3), the rotation can be maintained without damaging the armature cell ring push-pull (400).
滑走部(250)は、図46~図49のように、リング状巻線(420)のアキシャル方向の端部に設定する。ストレッチガイド(430)が、例えば、フッ素樹脂や高密度ポリエチレンのように低摩擦係数の物質からできている場合には、ストレッチガイド(430)が滑走部(250)となる。滑走部(250)に潤滑剤/減摩剤を塗布する仕組みは、表面方向へ漏穴(261)を有して表面に潤滑剤や減摩剤を塗布する仕組みを有する構造を持たせて行う。潤滑剤や減摩剤を表面に塗布するための漏穴(261)は、細い孔だけの場合と、先端に微細球(262)を有した場合とがあり、漏穴(261)を有した滑走部(251)は、内部に潤滑剤/減摩剤(263)を充填した中空部を有する。潤滑剤/減摩剤(263)を充填した中空部は、常圧の場合と加圧してある場合とがあり、これらを必要に応じて選択し組み合わせて使用する。 The sliding portion (250) is set at the end portion in the axial direction of the ring-shaped winding (420) as shown in FIGS. When the stretch guide (430) is made of a material having a low coefficient of friction such as a fluororesin or high density polyethylene, for example, the stretch guide (430) becomes the sliding portion (250). The mechanism for applying the lubricant / friction agent to the sliding portion (250) is performed by providing a structure having a mechanism for applying the lubricant or the lubricant to the surface with the leak hole (261) in the surface direction. . The leak hole (261) for applying the lubricant or the lubricant to the surface has only a small hole or a fine sphere (262) at the tip, and has a leak hole (261). The sliding part (251) has a hollow part filled with a lubricant / lubricant (263). The hollow portion filled with the lubricant / friction agent (263) may be at normal pressure or pressurized, and these are selected and used as necessary.
本発明の特徴の一つには、図52に拡大して示した通り、回転ダクト(600)側の界磁磁石(電機子セルリング・プッシュプル用)(502)の作用面と電機子セルリング・プッシュプル(400)の作用面との間に「遊び(2)」を有することである。本発明の遊び(2)は、何もない空間であるから、従来の発電機や電動機の「間隙/空隙」と同じように見える。しかしながら、発電機や電動機では、特許文献6、特許文献7、特許文献10のように、間隙保持用ベアリングや低摩擦係数の樹脂で常時接触として間隙保持用ベアリングの厚みや低摩擦係数の樹脂の厚みで維持するか、あるいは従来の多くの発電機や電動機のように、零を取ることができない間隙長/空隙長をもって維持できなければならない。ところが本発明の遊び(2)は、通常のアキシャル方向への応力を受けない間は、零でない値を維持していても、電機子セルリング・プッシュプル(400)がアキシャル方向の応力を受けた場合には、零の値を取ることを許容している。このようにすることによって、界磁磁石(電機子セルリング・プッシュプル用)(502)の作用面と電機子セルリング・プッシュプル(400)の作用面との間隙は、「最大間隙(1)=遊び(2)+最小間隙(3)」となり、電機子セルリング・プッシュプル(400)にアキシャル方向の応力がない場合には、最大間隙(1)を維持し、アキシャル方向の応力を受けた際は遊び(2)は零となって、最小間隙(3)(=滑走部の厚み(270))で維持できるので、電機子セルリング・プッシュプル(400)を傷つけることなく回転を継続できる。 One of the features of the present invention is that, as shown in an enlarged view in FIG. 52, the working surface of the field magnet (for armature cell ring / push pull) (502) on the rotating duct (600) side and the armature cell. “Play (2)” between the working surface of the ring push-pull (400). Since the play (2) of the present invention is an empty space, it looks like the “gap / gap” of a conventional generator or motor. However, in generators and electric motors, as in Patent Literature 6, Patent Literature 7, and Patent Literature 10, the gap holding bearing or the low friction coefficient resin is always in contact with the gap holding bearing or the low friction coefficient resin. It must be maintained in thickness, or it can be maintained with a gap / gap length that cannot be zero, as with many conventional generators and motors. However, in the play (2) of the present invention, the armature cell ring push-pull (400) receives the stress in the axial direction even if the non-zero value is maintained while the stress is not applied in the normal axial direction. In such a case, a zero value is allowed. By doing so, the gap between the working surface of the field magnet (for armature cell ring / push pull) (502) and the working surface of the armature cell ring / push pull (400) becomes "maximum gap (1 ) = Play (2) + minimum gap (3) ”, and when there is no axial stress in the armature cell ring push-pull (400), the maximum gap (1) is maintained and the axial stress is increased. When received, the play (2) becomes zero and can be maintained with the minimum gap (3) (= the thickness of the sliding part (270)), so that the armature cell ring push-pull (400) can be rotated without damaging it. Can continue.
電機子セルリング・プッシュプル(400)には、図50で示したような電流の入口から出口までが連続した1本の導線でリングをなす場合と、図51で示したように各リングごとにバス結線をなすものとがある。 In the armature cell ring push-pull (400), there is a case where the ring is formed by one continuous lead from the current inlet to the outlet as shown in FIG. 50, and for each ring as shown in FIG. Some have bus connections.
電機子セルリング・プッシュプル(400)は、ストレッチガイド(434)の素材にケイ素鋼等の磁性体を用いて磁束の通りを良くする場合を除き、鉄芯等の磁性体を含まない。これに対し、磁性体の軸心の回りを連続した1本の導線でコイル状に巻回した電機子セルコイル(300)の場合では、電機子セルコイル(300)に電圧を印加すると、コイル状の導線のリアクタンスによる電流の遅れや磁性体の軸心を構成する鉄分子が磁界の方向へ整列するための時間がかかって、電力を印加してから有効磁界の発生までに時間遅れが存在する。しかしながら、電機子セルリング・プッシュプル(400)は、通常、磁性体の軸心を有しないので鉄分子が磁界の方向へ整列するための時間遅れがない上に、図51のようにバス結線をした電機子セルリング・プッシュプル(400)の場合には、巻回した導線のリアクタンスも軽減できる。このため、超高圧を極短時間で印加する方式の電機子の構成に最も適している。 The armature cell ring / push-pull (400) does not include a magnetic material such as an iron core unless a magnetic material such as silicon steel is used as a material for the stretch guide (434) to improve the flow of magnetic flux. On the other hand, in the case of the armature cell coil (300) wound in the shape of a coil with one continuous wire around the axis of the magnetic material, when a voltage is applied to the armature cell coil (300), the coiled There is a time delay from the application of electric power to the generation of an effective magnetic field due to a delay in current due to the reactance of the conducting wire and a time required for the iron molecules constituting the axis of the magnetic material to align in the direction of the magnetic field. However, the armature cell ring push-pull (400) normally does not have a magnetic axis, so there is no time delay for the iron molecules to align in the direction of the magnetic field, and the bus connection as shown in FIG. In the case of the armature cell ring / push-pull (400), the reactance of the wound conductor can be reduced. For this reason, it is most suitable for the structure of the armature of the system which applies an ultrahigh voltage in a very short time.
電機子セルリング・プッシュプル(400)のうち、図51のバス結線を用いると、例えば、尖頭電力が10MW、印加時間が2μs、繰り返し周期が250msとすると、平均電力は80Wであるが、シュラウド付回転翼やインホイールモーターの作製機材の直径によっても力率は異なるが、トルク換算で5KW程度の非常に高い力率を生み出せる可能性がある。よって、電機子セルリング・プッシュプル(400)うちバス結線タイプは、超高圧を極短時間で印加する場合の標準的な構造とすることができる。更にリアクタンスによる電力ロスも少ないので大電力を発電する場合の標準的な構造とすることもできる。 Of the armature cell ring push-pull (400), when using the bus connection of FIG. Although the power factor varies depending on the diameter of the rotating blades with shrouds and the in-wheel motor production equipment, there is a possibility that a very high power factor of about 5 kW in terms of torque can be generated. Therefore, among the armature cell rings and push-pulls (400), the bus connection type can have a standard structure in the case where an ultrahigh voltage is applied in an extremely short time. Furthermore, since there is little power loss due to reactance, a standard structure for generating large power can be adopted.
前記の各種処置がなされた電機子セルリング・プッシュプル(400)は、一つひとつが独立しているので、図58(A)や図59(A)のように直列に結線して運用することも、図58(B)や図59(B)のように並列に結線して運用することも、図58(C)や図59(C)のように3相で結線して運用することも可能である。 Since the armature cell ring push-pull (400) subjected to the above-described various treatments is independent one by one, it can be operated by connecting in series as shown in FIGS. 58 (A) and 59 (A). 58B and 59B can be connected in parallel or operated in three phases as shown in FIGS. 58C and 59C. It is.
以上で記載した、第1の方法の電機子セルコイル(300)と界磁磁石(電機子セルコイル用)(501)との組み合わせの場合と、第2の方法の電機子セルリング・プッシュプル(400)と界磁磁石(電機子セルリング・プッシュプル用)(502)との組み合わせの場合とでは、異なる特性を示し、電動機の場合には、次のように顕著である。 In the case of the combination of the armature cell coil (300) of the first method and the field magnet (for armature cell coil) (501) described above, and the armature cell ring push-pull (400 of the second method) ) And a field magnet (for armature cell ring / push-pull) (502) show different characteristics. In the case of an electric motor, the characteristic is as follows.
まず、第1の方法の電機子セルコイル(300)と界磁磁石(電機子セルコイル用)(501)との組み合わせの場合の構造は、巻線コイル(320)の軸心(空心である場合を含む)の端部の面積にほぼ匹敵する大きさの面積を有する1個以上の界磁磁石(電機子セルコイル用)(501)とをアキシャル方向で対向するようにして構成する。界磁磁石(電機子セルコイル用)(501)が複数個ある場合の磁束の向きは、交互に異なる極となることが必要である。駆動部を構成した場合の適用法則は、巻線コイル(320)に生ずる右ネジの法則であって、このため駆動の仕組みは、界磁磁石(電機子セルコイル用)(501)の磁界に対して電機子セルコイル(300)が、コイルとしての吸引力と反発力を生じることによって駆動力を得る。このため、第1の方法の特性は、交番電流を印加した場合の回転トルクが大であって、直流を印加した場合には、停止トルクを得ることができる。しかしながら、起動時の回転方向は不安定で、安定させるためには分巻や複巻の処置が必要である。また、起動時には大きな電力を要する。 First, in the case of the combination of the armature cell coil (300) and the field magnet (for armature cell coil) (501) of the first method, the structure of the axial center (air core) of the winding coil (320) is as follows. And one or more field magnets (for armature cell coils) (501) having an area approximately equal to the area of the end portion of (including) end portions of the end portions in the axial direction. When there are a plurality of field magnets (for armature cell coils) (501), the direction of magnetic flux needs to be alternately different poles. The law of application when the drive unit is configured is the right-handed screw law that occurs in the winding coil (320). Therefore, the drive mechanism is based on the magnetic field of the field magnet (for the armature cell coil) (501). The armature cell coil (300) obtains a driving force by generating an attractive force and a repulsive force as the coil. For this reason, the characteristic of the first method is that the rotational torque when the alternating current is applied is large, and the stop torque can be obtained when the direct current is applied. However, the rotation direction at the time of startup is unstable, and in order to stabilize it, it is necessary to take a split or multiple winding procedure. In addition, a large amount of power is required at startup.
これに対して、第2の方法の電機子セルリング・プッシュプル(400)と界磁磁石(電機子セルリング・プッシュプル用)(502)との組み合わせの場合の構造は、回転ダクト(600)の回転軸方向への直線部分を構成する2個1組のストレッチガイド(430)の中を通したリング状巻線(420)と、通常、長さが1個のストレッチガイド(430)の長さ程度で幅が1個のストレッチガイド(430)の幅程度の界磁磁石(電機子セルリング・プッシュプル用)(502)が、ストレッチガイド(430)と同様に2個で1組となってアキシャル方向に構成される。界磁磁石(電機子セルリング・プッシュプル用)(502)が複数個ある場合の磁束の向きは、交互に異なる極となることは、第1の方法と同様で必要であるが、この際、重要なのは、内部に導線(110)をそれぞれ通してある前方ストレッチガイド(433)と後方ストレッチガイド(434)とが、2個1組の界磁磁石(電機子セルリング・プッシュプル用)(502)が作る互いに逆の磁束(120)の中を同時刻に通過するように構成できることが条件となる。このような構成で前方ストレッチガイド(433)と後方ストレッチガイド(434)とに同時刻に逆方向の電流を印加すると駆動するし、発電においては、前方ストレッチガイド(433)と後方ストレッチガイド(434)とが2個で1組の界磁磁石(電機子セルリング・プッシュプル用)(502)が作る互いに逆の磁束(120)の中を同時刻に通過すると、互いに逆向きの起電力が発生して効率よく発電する。同一のリング状巻線(420)上の2カ所で同時刻に反対方向の起電力が発生することは、オーデオアンプのプッシュプル増幅器を想起させることから、本発明の電機子セルリングにプッシュプルという呼称を付加した所以である。駆動部を構成した場合の適用法則は、ストレッチガイド(430)の中に敷設された導線(110)に生ずるフレミングの左手の法則であって、このため駆動の仕組みは、界磁磁石(電機子セルリング・プッシュプル用)(502)の磁界の向きに対してストレッチガイド(430)内部の導線(110)に直角方向の力が生じることによって駆動力を得る。このような仕組みのため、第2の方法の特性は、交番電流を印加した場合の回転方向の決定が容易で、回転方向を決めるための分巻や複巻の処置を必要としない。また、起動時の電力も少なく済んで省エネルギーである。しかしながら、第1の方法に比べて回転トルクがやや小さく、直流を印加しても振動を起こすことがあって停止トルクを得ることが難しい。 On the other hand, the structure in the case of the combination of the armature cell ring / push pull (400) and the field magnet (for armature cell ring / push pull) (502) of the second method is a rotating duct (600). ) Of a ring-shaped winding (420) passing through a pair of stretch guides (430) constituting a linear portion in the direction of the rotation axis, and a stretch guide (430) having a length of one normally. A field magnet (for armature cell ring and push-pull) (502), which is about the length of one stretch guide (430) and about the width of one stretch guide (430), is a pair of two, like the stretch guide (430). It is configured in the axial direction. In the same way as in the first method, the direction of the magnetic flux in the case where there are a plurality of field magnets (for armature cell ring and push-pull) (502) is required to be alternately different poles. What is important is that a front stretch guide (433) and a rear stretch guide (434) through which the lead wire (110) is passed, respectively, are a pair of field magnets (for armature cell ring and push-pull) ( The condition is that it can be configured to pass through the opposite magnetic fluxes (120) created by (502) at the same time. With this configuration, the front stretch guide (433) and the rear stretch guide (434) are driven by applying reverse currents at the same time, and in power generation, the front stretch guide (433) and the rear stretch guide (434) are driven. ) And two sets of field magnets (for armature cell ring and push-pull) (502) that pass through mutually opposite magnetic fluxes (120) at the same time, electromotive forces in opposite directions are generated. Generates electricity efficiently. The occurrence of electromotive forces in the opposite direction at the same time at two locations on the same ring-shaped winding (420) is reminiscent of the push-pull amplifier of the audio amplifier. This is the reason why the name is added. The applicable law when the drive unit is configured is the Fleming's left-hand rule generated in the conductive wire (110) laid in the stretch guide (430). For this reason, the drive mechanism is a field magnet (armature A driving force is obtained by causing a force in a direction perpendicular to the conductive wire (110) inside the stretch guide (430) with respect to the direction of the magnetic field of the cell ring and push-pull (502). Due to such a mechanism, the characteristic of the second method is that it is easy to determine the rotation direction when an alternating current is applied, and no split or multiple winding treatment is required to determine the rotation direction. In addition, the power consumption at the time of start-up is small and energy is saved. However, the rotational torque is slightly smaller than that of the first method, and even if a direct current is applied, vibration may occur and it is difficult to obtain a stop torque.
第1の方法と第2の方法との特性差から、電動機を作成する場合においては、回転ダクト(600)に配置する界磁磁石(500)を、界磁磁石(電機子セルコイル用)(501)と界磁磁石(電機子セルリング・プッシュプル用)(502)とを混在させて、起動時や常続的な回転には電機子セルリング・プッシュプル(400)の方を働かせ、停止トルクの必要な際のみ電機子セルコイル(300)を働かせる場合や、逆に、トルクの大きい電機子セルコイル(300)の特性を生かして、大きなトルクの必要な場合に主として電機子セルコイル(300)の方を用いて、起動の方向を確保するために電機子セルリング・プッシュプル(400)を一部混在させて運用することがある。発電機の場合には、電動機ほどの顕著な差がないので、ほぼ同じように使用できて、混在させることは少ない。 From the characteristic difference between the first method and the second method, when an electric motor is produced, the field magnet (500) disposed in the rotating duct (600) is replaced with a field magnet (for armature cell coil) (501). ) And field magnets (for armature cell ring / push pull) (502) are mixed, and the armature cell ring / push pull (400) is operated and stopped at start-up and continuous rotation. When the armature cell coil (300) is operated only when torque is required, or conversely, by utilizing the characteristics of the armature cell coil (300) with large torque, the armature cell coil (300) is mainly used when large torque is required. In some cases, the armature cell ring push-pull (400) is partially mixed and operated in order to secure the starting direction. In the case of a generator, there is no remarkable difference as much as that of an electric motor.
本発明を風力発電に用いた場合には、電磁的周速利用風力発電装置(700)の発電部を構成することができる。このようにした発電部は、図60や図61の垂直軸風車のように、シュラウド(200)を固定して、翼端を連結した回転ダクト(600)が回転するタイプでも、上下の2段にして作製した図63の垂直軸風車で、シュラウド(200)も回転ダクト(600)と同軸反転させて、界磁磁石(500)と電機子セル(100)との相対速度を上げるタイプでも発電することもできる。また、図67や図68の水平軸風車のように、シュラウド(200)を固定して、翼端を連結した回転ダクト(600)が回転するタイプでも、風上側と風下側に同軸反転の羽根をつけて作製した図70のように、界磁磁石(500)と電機子セル(100)との相対速度を上げるタイプでも発電することもできる。この際に電機子セルリング・プッシュプル(400)を用いる場合には、界磁磁石(電機子セルリング・プッシュプル用)(502)が吸着力を発揮する磁性体の部分はほとんど無い。したがって、この仕組みを電磁的周速利用発電装置(700)に用いた場合には、わずかな風速でも抵抗無く回転を始めることができる風車を作ることが可能となる。 When the present invention is used for wind power generation, it is possible to configure a power generation unit of an electromagnetic peripheral speed wind power generator (700). The power generation unit configured as described above is a type in which the rotating duct (600) with the shroud (200) fixed and the blade tip connected rotates as in the vertical axis wind turbine of FIGS. 63, the shroud (200) is also coaxially inverted with the rotating duct (600) to increase the relative speed between the field magnet (500) and the armature cell (100). You can also 67 and 68, the rotating duct (600) with the shroud (200) fixed and the blade tip connected rotates as in the horizontal axis wind turbine of FIGS. 67 and 68. As shown in FIG. 70 produced by attaching the magnetic field generator, it is possible to generate power even by increasing the relative speed between the field magnet (500) and the armature cell (100). In this case, when the armature cell ring / push pull (400) is used, there is almost no portion of the magnetic body in which the field magnet (for armature cell ring / push pull) (502) exhibits the attractive force. Therefore, when this mechanism is used in the electromagnetic peripheral speed power generation device (700), it is possible to make a windmill that can start rotating without resistance even at a slight wind speed.
本発明を比較的小型の電磁的周速利用風力発電装置(700)に用いる際に、特許文献4の風力発電装置の布置装置と併用した場合が、図72や図73の例である。この場合の羽根の形状では、外環(633)と内環(634)とを設けて、外環(633)と内環(634)とを架橋する羽根(以下、「架橋羽根」という)(632)を用いると、外環(633)のみで羽根の片側を固定する場合よりも丈夫な風車の作製ができる。さらに、図73(B)~(D)のように、風車の外環(633)を結んだ平面よりも架橋羽根(632)の一部をどちらか一方に偏って突出させると、突出した部分が尾羽とほぼ同様の役割をなして、風車の向きを自動的に風上に正対させることができる。 When the present invention is used for a relatively small electromagnetic peripheral speed wind power generator (700), the case where the wind power generator is used in combination with the wind power generator of Patent Document 4 is an example of FIG. 72 or FIG. In the shape of the blade in this case, an outer ring (633) and an inner ring (634) are provided to bridge the outer ring (633) and the inner ring (634) (hereinafter referred to as “bridge blade”) ( 632) can be used to produce a windmill that is stronger than the case where only one side of the blade is fixed by the outer ring (633). Further, as shown in FIGS. 73 (B) to 73 (D), when a part of the bridging blade (632) is protruded so as to be biased toward either one of the plane connecting the outer ring (633) of the windmill, the protruding part Can play a role similar to that of tail feathers, and can automatically face the windmill upwind.
本発明をシュラウド付回転翼(800)や急速風向変更装置(810)や急速風力発生風向変更装置(820)に用いた場合には、シュラウド付回転翼(800)や急速風向変更装置(810)や急速風力発生風向変更装置(820)の駆動部を構成することができる。この際、電機子セルリング・プッシュプル(400)を使用してシュラウドの内周部(212)に均等に配設した駆動部の場合には、起動時の障害となる均衡点での停止や軸心への吸着や軸心重量の慣性抵抗等がなく、ストレッチガイド(430)と界磁磁石(電機子セルリング・プッシュプル用)(502)の相互の関係位置を承知して電機子セルリング・プッシュプル(400)に電流を印加すれば、容易に駆動を開始することができる。しかも、電機子セルリング・プッシュプル(400)は、磁性体でストレッチガイド(430)を作った場合を除くと、界磁磁石(電機子セルリング・プッシュプル用)(502)に吸引される磁性体部分が無いので、コギングの発生が見られず、スムースな駆動を実現できる。しかしながら、電機子セルリング・プッシュプル(400)で、急速風向変更装置(810)を作製した場合には、直流を印加しても停止トルクが得られないので、停止した位置を維持することが困難である。よって、大部分の駆動部を電機子セルリング・プッシュプル(400)で作製した場合にも、一部に電機子セルコイル(300)を混合配置して作製するか、図82や図83のように電機子セルリング・プッシュプル(400)と電機子セルコイル(300)の両方を使用して作製することが望ましい。 When the present invention is used for a rotor blade with a shroud (800), a rapid wind direction changing device (810), or a rapid wind power generating wind direction changing device (820), the rotor blade with a shroud (800) or the rapid wind direction changing device (810). Alternatively, the drive unit of the rapid wind generating wind direction changing device (820) can be configured. At this time, in the case of a drive unit that is arranged evenly on the inner periphery (212) of the shroud using the armature cell ring push-pull (400), There is no attracting to the shaft center or inertia resistance of the weight of the shaft center, and the armature cell is aware of the relative position of the stretch guide (430) and the field magnet (for armature cell ring / push pull) (502). Driving can be easily started by applying a current to the ring push-pull (400). Moreover, the armature cell ring / push pull (400) is attracted to the field magnet (for armature cell ring / push pull) (502) except when the stretch guide (430) is made of a magnetic material. Since there is no magnetic part, cogging does not occur and smooth driving can be realized. However, when the rapid wind direction change device (810) is manufactured with the armature cell ring push-pull (400), since the stop torque cannot be obtained even if the direct current is applied, the stopped position can be maintained. Have difficulty. Therefore, even when most of the drive units are manufactured by the armature cell ring / push-pull (400), the armature cell coils (300) are partially mixed and manufactured, or as shown in FIGS. In addition, it is desirable to fabricate using both the armature cell ring / push-pull (400) and the armature cell coil (300).
本発明をインホイールモーターに用いた場合は、図93、図94、図95のように電機子セルコイル(300)や電機子セルリング・プッシュプル(400)を用いてインホイールモーター(900)を構成すると、通常、前輪であるところの進行方向が頻繁に変わる操舵輪のように外部からの応力を受けやすい車輪であっても、電機子セル(100)の作用面と界磁磁石(500)の作用面との間隙を常に一定に維持することが容易となるのでインホイールモーター(900)の使用できる範囲が拡がって、未舗装地域や野外の不整地や凹凸の激しい荒れ野等を走行できるより実用的な車両の作製が可能となる。
When the present invention is used for an in-wheel motor, the in-wheel motor (900) is used by using an armature cell coil (300) or an armature cell ring push-pull (400) as shown in FIGS. 93, 94, and 95. When configured, the working surface of the armature cell (100) and the field magnet (500), even if the wheel is susceptible to external stress, such as a steering wheel whose traveling direction is frequently changed, which is usually the front wheel. Since it is easy to maintain a constant gap with the working surface of the wheel, the range in which the in-wheel motor (900) can be used is expanded, and it is possible to run on unpaved areas, outdoor rough terrain, rough rugged fields, etc. A practical vehicle can be manufactured.
図3(A)、図4、図13~図29、図31~図33、図60、図61、図62(A)、図63、図64(A)、図65~図68、図69(A)、図70~図73は、一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の発電機や電動機において、回転ダクトの外周面と回転ダクトを周回し界磁磁石を配設した外周ハンガーとから成る略コの字型の中空部や、回転ダクトの内周面と回転ダクトを周回し界磁磁石を配設した内周ハンガーとから成る略コの字型の中空部や、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の中空部に、シュラウド側に配設したコイル状に導線を巻回した電機子セルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成して滑走面とした滑走部を有して一つと成した電機子セルコイルを、シュラウドに設置して当該電機子セルコイルをシュラウドに取り付ける接続部と、当該電機子セルコイルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルコイルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石で電機子セルコイルを回転軸に平行するアキシャル方向での両側から挟む形で磁界を構成した中を当該電機子セルコイルが通過できるように構成したことを特徴とし、界磁磁石の磁界を当該電機子セルコイルの導線で切ることによって誘導電流を発生させて発電する発電装置の実施例である。
3 (A), FIG. 4, FIGS. 13 to 29, FIGS. 31 to 33, FIGS. 60, 61, 62 (A), 63, 64 (A), FIGS. 65 to 68, and 69. (A), FIG. 70 to FIG. 73 show a shroud in which two or more individual cell-like armature cells are arranged on the circumference in a point-symmetrical relationship as viewed from the center of the rotating duct, and the rotating duct. In axial gap generators and motors that are configured by combining two or more rotating ducts arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference of the field magnet, A substantially U-shaped hollow part consisting of the outer peripheral surface of the duct and the outer peripheral hanger around the rotating duct, and the field magnet around the inner peripheral surface of the rotating duct and the rotating duct. The hollow part of the approximately U-shape consisting of the inner peripheral hanger and the outer hanger and the inner Low friction at both ends in the direction parallel to the rotation axis of the rotating duct of the armature cell in which the conductor wire is wound in the coil shape arranged on the shroud side in the hollow part of the substantially E shape with the hanger back to back An armature cell coil comprising a sliding portion which is made of a coefficient material or has a mechanism for applying a lubricant / lubricant and having a sliding surface as a sliding surface. A connecting portion for attaching the armature cell coil to the shroud, a tether portion for anchoring the armature cell coil, and an arm portion constituting an arm between the connecting portion and the tether portion, and a rotating shaft. A holding skeleton that holds the armature cell coil without contacting the substantially U-shaped or substantially U-shaped hollow portion of the rotating duct while receiving no stress from the axial direction parallel to the Of the hollow part A magnetic field is formed by inserting the armature cell coil from both sides in the axial direction parallel to the rotation axis with field magnets inserted from the mouth and arranged on the outer hanger or inner hanger of the rotating duct. This is an embodiment of a power generator that generates electricity by generating an induced current by cutting a magnetic field of a field magnet with a conductor of the armature cell coil, which is configured to allow a child cell coil to pass through.
図1(A)、図2(A)、図3(A)、図13~図28、図30~図33、図74、図75、図78、図79、図82、図83、図84、図85、図88~図92、図93、図94は、一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の発電機や電動機において、回転ダクトの外周面と外周ハンガーとから成る略コの字型の中空部や、回転ダクトの内周面と内周ハンガーとから成る略コの字型の中空部や、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の中空部に、シュラウド側に配設したコイル状に導線を巻回した電機子セルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有して一つと成した電機子セルコイルを、シュラウドに設置して当該電機子セルコイルをシュラウドに取り付ける接続部と、当該電機子セルコイルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルコイルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石で電機子セルコイルを回転軸に平行するアキシャル方向での両側から挟む形で磁界を構成した中を当該電機子セルコイルが通過できるように構成したことを特徴とし、当該電機子セルコイルの導線に電流を印加して、回転ダクトの界磁磁石に回転磁界を与え回転ダクトを駆動する電動機の駆動装置の実施例である。
1A, 2A, 3A, 13 to 28, 30 to 33, 74, 75, 78, 79, 82, 83, and 84. 85, 88 to 92, 93, and 94, two or more individual cell-like armature cells are arranged on the circumference in a point-symmetrical relationship position when viewed from the center of the rotating duct. An axial gap type power generation comprising a combination of a shroud and two or more rotating ducts arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference of the rotating duct. In a machine or electric motor, a substantially U-shaped hollow portion composed of the outer peripheral surface of the rotating duct and the outer peripheral hanger, a substantially U-shaped hollow portion composed of the inner peripheral surface of the rotating duct and the inner peripheral hanger, and the outer periphery In the approximately square-shaped hollow part where the hanger and inner peripheral hanger are back to back, Mechanism of applying a lubricant / lubricant consisting of a low friction coefficient material to both ends in the direction parallel to the rotation axis of the rotating duct of the armature cell in which the conductive wire is wound in a coil shape disposed on the Udo side An armature cell coil having a sliding portion that has at least one of the treatments, and a connecting portion for installing the armature cell coil on the shroud and attaching the armature cell coil to the shroud, and the armature cell coil The armature cell coil has a tether part to be tethered, and an arm part that constitutes an arm between the tether part and the tether part, and is not subjected to stress from an axial direction parallel to the rotation axis. A holding skeleton that holds without being in contact with the substantially U-shaped or substantially U-shaped hollow portion, and is inserted from the opening of the substantially U-shaped or substantially U-shaped hollow portion, and the outer periphery of the rotating duct. Arranged on hangers and inner hangers The armature cell coil is configured so that the armature cell coil can pass through a magnetic field formed by sandwiching the armature cell coil from both sides in the axial direction parallel to the rotation axis with a magnet. It is an Example of the drive device of the electric motor which applies an electric current and gives a rotating magnetic field to the field magnet of a rotating duct, and drives a rotating duct.
図3(B)、図5、図34~図53、図55~図58、図60、図61、図62(B)、図63、図64(B)、図65~図68、図69(B)、図70~図73は、一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の発電機において、回転ダクトの外周面と外周ハンガーとが作る略コの字型の断面を成した中空部か、回転ダクトの内周面と内周ハンガーとが作る略コの字型の断面を成した中空部か、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の断面を成した中空部かのいずれか一つの中空部に、巻線となる導線を通す際に回転ダクトの回転軸に直交する方向に巻線の直線部分を形成するためのガイドとなるストレッチガイドを2個用いて巻線となる導線をリング状に巻回した電機子セルリング・プッシュプルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有した電機子セルリング・プッシュプルを、シュラウドに設置して当該電機子セルリング・プッシュプルをシュラウドに取り付ける接続部と、当該電機子セルリング・プッシュプルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルリング・プッシュプルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが向かってくる方向にあるストレッチガイドを前方ストレッチガイドとした場合に、前方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせと、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが遠ざかる方向にあるストレッチガイドを後方ストレッチガイドとした場合に、後方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせとが、互いに逆方向の磁束の向きとなるように2つの磁界を構成し、当該電機子セルリング・プッシュプルの前方ストレッチガイドと後方ストレッチガイドとが、2つの磁界の中を同時刻に通過できるように回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせと関係位置合わせとをして構成したことを特徴とし、界磁磁石の磁界を当該電機子セルリング・プッシュプルのストレッチガイド中の導線が切ることによって誘導電流を発生させて発電する発電装置の実施例である。
3B, 5, 34 to 53, 55 to 58, 60, 61, 62 (B), 63, 64 (B), 65 to 68, and 69. (B), FIG. 70 to FIG. 73 show a shroud in which two or more individual cell-like armature cells are arranged on the circumference at point-symmetrical positions as viewed from the center of the rotating duct, and the rotating duct. In the axial gap type generator constructed by combining two or more rotating ducts arranged at point-symmetrical positions as seen from the center of the rotating duct on the circumference, the field magnet is formed on the projecting portion of the rotating duct. A hollow part having a substantially U-shaped cross section formed by the outer peripheral surface and the outer peripheral hanger, or a hollow part having a substantially U-shaped cross section formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger, or the outer periphery. A hollow section with a cross-section of a substantially square shape with the hanger and inner hanger back to back. Winding by using two stretch guides that serve as a guide for forming a linear portion of the winding in a direction perpendicular to the rotation axis of the rotating duct when passing the conducting wire to be wound in any one of the hollow portions A mechanism that consists of a low friction coefficient material or a lubricant / lubricant applied to both ends in the direction parallel to the rotation axis of the rotating duct of the armature cell ring / push pull duct in which the lead wire is wound in a ring shape A connecting portion for installing the armature cell ring / push pull on the shroud and attaching the armature cell ring / push pull to the shroud, and the electric device While having a tether part for tethering the child cell ring push-pull and an arm part constituting the arm between the tether part and the tether part, while receiving no stress from the axial direction parallel to the rotation axis, A holding skeleton that holds the armature cell ring push-pull without contacting the substantially U-shaped or substantially U-shaped hollow portion of the rotating duct, and has a substantially U-shaped or substantially E-shaped hollow portion. When the stretch guide, which is inserted from the opening and is in the direction in which the rotating duct faces when viewed from the center of the armature cell ring / push pull, is used as the front stretch guide, the front stretch guide is parallel to the rotation axis. A combination of field magnets arranged on the outer hanger or inner hanger of the rotating duct, sandwiched from both sides in the axial direction, and the rotating duct is away from the center of the armature cell ring / push pull. When the stretch guide is a rear stretch guide, the outer periphery of the rotating duct is sandwiched from both sides in the axial direction parallel to the rotation axis. The combination of field magnets arranged on the girder or inner peripheral hanger constitutes two magnetic fields so that the magnetic flux directions are opposite to each other, and the front stretch guide and rear stretch of the armature cell ring / push pull The guide is composed of a combination of field magnets on the rotating duct side and armature cell rings and push pulls on the shroud side, and relative positions so that they can pass through the two magnetic fields at the same time. This is an embodiment of a power generator that generates electric power by generating an induced current by cutting a magnetic field of a field magnet by a conducting wire in a stretch guide of the armature cell ring / push pull.
図1(B)、図2(B)、図3(B)、図34~図52、図54~図58、図76、図77、図80、図81、図82、図83、図86、図87、図88~図92、図93、図95は、一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の電動機において、回転ダクトの外周面と外周ハンガーとが作る略コの字型の断面を成した中空部か、回転ダクトの内周面と内周ハンガーとが作る略コの字型の断面を成した中空部か、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の断面を成した中空部かのいずれか一つの中空部に、巻線となる導線を通す際に回転ダクトの回転軸に直交する方向に巻線の直線部分を形成するためのストレッチガイドを2個用いて巻線となる導線をリング状に巻回した電機子セルリング・プッシュプルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有した電機子セルリング・プッシュプルを、シュラウドに設置して当該電機子セルリング・プッシュプルをシュラウドに取り付ける接続部と、当該電機子セルリング・プッシュプルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルリング・プッシュプルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが向かってくる方向にある前方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせと、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが遠ざかる方向にある後方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせとが、互いに逆方向の磁束の向きとなるように2つの磁界を構成し、当該電機子セルリング・プッシュプルの前方ストレッチガイドと後方ストレッチガイドとが、2つの磁界の中を同時刻に通過できるように回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせと関係位置合わせとをして構成したことを特徴とし、当該電機子セルリング・プッシュプルの前方ストレッチガイド中の導線に流れる電流の向きと後方ストレッチガイド中の導線に流れる電流の向きとが、同時刻に互いに逆方向になるように印加して、回転ダクトの界磁磁石に当該電機子セルリング・プッシュプルに発生する力の反作用として駆動力を与え回転ダクトを駆動する電動機の駆動装置の実施例である。
FIGS. 1B, 2B, 3B, 34 to 52, 54 to 58, 76, 77, 80, 81, 82, 83, and 86 87, 88 to 92, 93, and 95, two or more individual cell-like armature cells are arranged on the circumference at point-symmetrical positions as viewed from the center of the rotating duct. An axial gap type electric motor comprising a combination of a shroud and a rotating duct in which two or more field magnets are arranged on the circumference of the rotating duct at point-symmetrical positions as viewed from the center of the rotating duct. In, a hollow portion having a substantially U-shaped cross section formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger, or a substantially U-shaped cross section formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger. A hollow section, or an approximately U-shaped break with the outer hanger and inner hanger back to back Two stretch guides are used to form a straight portion of the winding in a direction perpendicular to the rotation axis of the rotating duct when passing the wire to be wound in any one of the hollow portions formed of The armature cell ring / push-pull rotating duct of the armature cell ring / push-pull in which the winding wire is wound in a ring shape is made of a low friction coefficient material or a lubricant / lubricant at both ends in the direction parallel to the rotation axis. An armature cell ring push-pull having a sliding portion that has at least one of the measures to be applied is installed on the shroud and the armature cell ring push-pull is attached to the shroud; The armature cell ring push-pull has a tether part that anchors the arm part that constitutes an arm between the connection part and the tether part, and does not receive stress from an axial direction parallel to the rotation axis. while , A holding skeleton that holds the armature cell ring / push pull without contacting the substantially U-shaped or substantially U-shaped hollow portion of the rotating duct, and the substantially U-shaped or substantially E-shaped hollow portion. Inserted from the opening of the armature cell ring and push-pull, the front stretch guide in the direction of the rotating duct as seen from the center of the armature cell ring and push-pull is rotated between both sides in the axial direction parallel to the rotation axis A combination of field magnets arranged on the outer hanger and inner hanger of the duct and an axial parallel with the rear stretch guide in the direction in which the rotating duct moves away from the center of the armature cell ring / push pull. Two magnetic fields so that the outer magnet hanger of the rotating duct and the combination of field magnets arranged on the inner hanger in the direction sandwiched from both sides in the direction are opposite to each other. And the armature cell on the rotating duct and the armature cell on the shroud side so that the front stretch guide and the rear stretch guide of the armature cell ring / push pull can pass through the two magnetic fields at the same time. It is characterized by combining the ring and push-pull with the corresponding position, and the direction of current flowing in the conductor in the front stretch guide of the armature cell ring and push-pull and the conductor in the rear stretch guide The direction of the flowing current is applied to be opposite to each other at the same time, and a driving force is applied to the field magnet of the rotating duct as a reaction of the force generated in the armature cell ring / push pull. It is an Example of the drive device of the electric motor to drive.
図46~図54は、界磁磁石を外周ハンガーや内周ハンガーに配設した回転ダクトと回転ダクトの略コの字型の中空部に挿入するシュラウド側に配設した電機子セルとの組み合わせから成る実施例3の発電機の発電部の電機子セルの巻線部分や実施例4の電動機の駆動部の電機子セルの巻線部分を構成する際において、巻線となる導線を通すための通過口となって回転ダクトの回転軸に直交する方向に巻線の直線部分を形成することを特徴とするパイプ材かモールド材かの少なくともいずれか一方から作られていて、電機子セルの巻線部分の部品となるストレッチガイドの実施例である。
46 to 54 show a combination of a rotating duct provided with a field magnet on an outer peripheral hanger or an inner peripheral hanger and an armature cell provided on a shroud side inserted into a substantially U-shaped hollow portion of the rotating duct. When the winding part of the armature cell of the power generation part of the generator of Example 3 and the winding part of the armature cell of the driving part of the motor of Example 4 are configured to pass a conducting wire serving as a winding And is formed from at least one of a pipe material and a molding material, characterized by forming a straight portion of the winding in a direction perpendicular to the rotation axis of the rotating duct. It is an Example of the stretch guide used as the components of a coil | winding part.
図50や図51は、界磁磁石を外周ハンガーや内周ハンガーに配設した回転ダクトと回転ダクトの略コの字型の中空部に挿入するシュラウド側に配設した電機子セルとの組み合わせから成る実施例3の発電機の発電部の電機子セルの巻線部分や実施例4の電動機の駆動部の電機子セルの巻線部分を構成する際において、実施例5のストレッチガイドを回転ダクトの回転軸に直交する方向に巻線の直線部分を形成するために2個で1組として用い、2個で1組のストレッチガイドのうち2個で1組の中央部から見て、回転ダクトが向かってくる方向にあるストレッチガイドを前方ストレッチガイド、回転ダクトが遠ざかる方向にあるストレッチガイドを後方ストレッチガイドとした場合に、前方ストレッチガイドの最前方の通過口から後方ストレッチガイドの最前方の通過口へ、前方ストレッチガイドの中間部の通過口から後方ストレッチガイドの中間部の通過口へ、前方ストレッチガイドの最後方の通過口から後方ストレッチガイドの最後方の通過口へと順次巻線となる導線をリング状に巻回して一つの電機子セルと成したことを特徴とする電機子セルリング・プッシュプルの実施例である。
FIG. 50 and FIG. 51 show a combination of a rotating duct in which field magnets are arranged on the outer peripheral hanger and the inner peripheral hanger and an armature cell arranged on the shroud side to be inserted into a substantially U-shaped hollow portion of the rotating duct. When the winding part of the armature cell of the power generation part of the generator of Example 3 and the winding part of the armature cell of the driving part of the motor of Example 4 are configured, the stretch guide of Example 5 is rotated. Two pieces are used as one set to form a straight portion of the winding in a direction perpendicular to the rotation axis of the duct, and two pieces are rotated from one set of stretch guides as viewed from the center of one set. When the stretch guide in the direction in which the duct is facing is the front stretch guide and the stretch guide in the direction in which the rotating duct is away is the rear stretch guide, To the forefront passage of the front guide, from the middle passage of the front stretch guide to the middle passage of the rear stretch guide, from the last passage of the front stretch guide to the last passage of the rear stretch guide This is an embodiment of an armature cell ring push-pull, characterized in that one armature cell is formed by winding a conducting wire that is sequentially wound into a ring shape.
図32、図56、図57は、実施例1、実施例2、実施例3、実施例4のいずれか一項に記載された仕組みで発電や駆動を行う装置において、電機子セルコイルや電機子セルリング・プッシュプルをシュラウドに接続する接続部と、電機子セルコイルや電機子セルリング・プッシュプルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とで電機子セルコイルや電機子セルリング・プッシュプルをシュラウドに接続する保持骨格において、腕部の構造が伸縮自在な伸縮腕部として作られていて、内蔵した動力部で液圧を発生して伸縮腕部を伸縮するか、外部から接続したパイプからの液圧で液圧シリンダー伸縮腕部を伸縮するか、内蔵した動力部と一体のウォームネジを回転してウォームネジ伸縮腕部を伸縮するか、外部から接続したパイプからの空気圧で内蔵した空気タービンと一体のウォームネジを回転してウォームネジ伸縮腕部を伸縮するかの、いずれか一つの構造を有していて、回転ダクトの外周面と外周ハンガーとから成る略コの字型の中空部や、回転ダクトの内周面と内周ハンガーとから成る略コの字型の中空部や、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の中空部に、電機子セルコイルや電機子セルリング・プッシュプルを挿入する際の挿入長を随時調整することができる保持骨格の実施例である。
32, 56, and 57 show an armature cell coil and an armature in an apparatus that generates power and drives with the mechanism described in any one of the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment. The connecting part for connecting the cell ring / push pull to the shroud, the anchoring part for anchoring the armature cell coil or the armature cell ring / push pull, and the arm part constituting the arm between the connecting part and the anchoring part. In the holding skeleton that connects the child cell coil or armature cell ring / push pull to the shroud, the structure of the arm part is made as a telescopic arm part that can expand and contract, and the telescopic arm part that generates hydraulic pressure with the built-in power part Extend or retract the hydraulic cylinder telescopic arm with the hydraulic pressure from the pipe connected from the outside, rotate the worm screw integrated with the built-in power unit to expand or contract the worm screw telescopic arm, or external Contact Rotating a worm screw integral with an air turbine built in with the air pressure from the pipe, and expanding or contracting the worm screw telescopic arm part, the outer surface of the rotating duct and the outer peripheral hanger An approximately U-shaped hollow part consisting of the inner circumferential surface of the rotating duct and an inner U-shaped hanger. This is an embodiment of a holding skeleton capable of adjusting the insertion length when inserting an armature cell coil or an armature cell ring / push pull into the hollow portion of the mold.
図60、図61、図67、図68、図71~図73は、翼端を連結して羽根と共に回転する回転ダクトと、地上や水上(船上を含む)に対して静止しているシュラウドとを備え、風車の周速を利用して発電する風車のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる発電部を有する実施例1の発電装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる発電部を有する実施例3の発電装置かの少なくともいずれか一方の仕組みで発電することを特徴とした風車の実施例である。
FIGS. 60, 61, 67, 68, 71 to 73 show a rotating duct that connects the wing tips and rotates together with the blades, and a shroud that is stationary with respect to the ground and water (including on board). Of the wind turbine that generates electric power by using the peripheral speed of the wind turbine, or the power generator according to the first embodiment having a power generation unit that is a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side. In the embodiment of the wind turbine characterized in that power is generated by the mechanism of at least one of the power generators of the third embodiment having a power generation unit by a combination of the field magnet and the shroud armature cell ring / push pull is there.
図62、図63、図69、図70は、互いに逆回転する羽根を二組備え、一方の羽根の翼端を回転ダクトで連結し、他方の羽根の翼端をシュラウドで連結して羽根の相互間の周速を利用して発電する風車のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる発電部を有する実施例1の発電装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる発電部を有する実施例3の発電装置かの少なくともいずれか一方の仕組みで発電することを特徴とした風車の実施例である。
62, 63, 69, and 70 include two sets of blades that rotate in reverse directions, the blade tips of one blade are connected by a rotating duct, and the blade tips of the other blade are connected by a shroud. Of the wind turbines that generate electric power by utilizing the peripheral speed between them, the generator of Example 1 having a power generation unit by a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side, or the field on the rotating duct side It is the Example of the windmill characterized by producing electric power with the structure of at least any one of the electric power generating apparatus of Example 3 which has an electric power generation part by the combination of a magnet magnet and the armature cell ring push-pull of a shroud side.
図74~図77は、同期電動機や誘導電動機の駆動原理を回転翼の翼端部に適用して航空機の飛行に供するシュラウド付回転翼のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部を有する実施例2の駆動装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部を有する実施例4の駆動装置かの少なくともいずれか一方の仕組みを翼端部に組み込んで作製したことを特徴とするシュラウド付回転翼の実施例である。
74 to 77 show the field magnets on the rotating duct side and the electric motors on the shroud side among the rotor blades with shroud that apply the driving principle of the synchronous motor or the induction motor to the blade tip portion of the rotor blade for flight of the aircraft. The driving apparatus according to the second embodiment having a driving section in combination with a child cell coil or the driving apparatus according to the fourth embodiment having a driving section in combination with a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side. This is an embodiment of a rotor blade with a shroud, which is produced by incorporating at least one of the mechanisms in a blade tip.
図78~図83は、シュラウド付回転翼の回転ダクトの内周部に連接した羽根を取り外してその代わりに円盤状や円筒状のターンテーブルを回転ダクトの内周部に取り付けて作製し、シュラウド付回転翼を取り付けるための台座となるターンテーブルでシュラウド付回転翼の風力の吹き出し方向を自在に変更できる急速風向変更装置のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部を有する実施例2の駆動装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部を有する実施例4の駆動装置かの少なくともいずれか一方の仕組みでシュラウド付回転翼の台座としてのターンテーブルを駆動することを特徴とする急速風向変更装置の実施例である。

78 to 83 are produced by removing the blade connected to the inner peripheral portion of the rotating duct of the rotating blade of the shroud and attaching a disk-like or cylindrical turntable to the inner peripheral portion of the rotating duct instead. Among the rapid wind direction changing devices that can freely change the blowing direction of the wind force of the shroud-equipped rotor blades with a turntable serving as a base for attaching the attached rotor blades, the field magnets on the rotating duct side and the armature cell coils on the shroud side At least one of the driving apparatus according to the second embodiment having a driving section by combination and the driving apparatus according to the fourth embodiment having a driving section by a combination of a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side. Implementation of a rapid wind direction change device characterized by driving a turntable as a pedestal for a rotor blade with a shroud by either mechanism It is.

図84~図87は、風力を発生するシュラウド付回転翼とシュラウド付回転翼を取り付けるためのターンテーブルとなって回転ダクトの発生した風力の吹き出し方向を変更を自在に行う急速風向変更装置とを一体化した急速風量発生風向変更装置のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルか、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルかの少なくともいずれか一方の仕組みで回転翼を駆動する実施例10のシュラウド付回転翼と、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルか、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルかの少なくともいずれか一方の仕組みでターンテーブルを駆動する実施例11の急速風向変更装置とを組合せて作製したことを特徴とする風力の発生と風力の吹き出し方向の変更とを自在に行う急速風量発生風向変更装置の実施例である。
84 to 87 show a rotating blade with shroud that generates wind power and a rapid wind direction changing device that is a turntable for mounting the rotating blade with shroud and can freely change the blowing direction of the wind generated by the rotating duct. Among the integrated rapid airflow generation wind direction changing devices, at least one of the field magnet on the rotating duct side and the armature cell coil on the shroud side, or the field magnet on the rotating duct side and the armature cell ring / push pull on the shroud side A rotor blade with a shroud according to the tenth embodiment that drives the rotor blade by one of the mechanisms, a field magnet on the rotating duct side and an armature cell coil on the shroud side, or a field magnet on the rotating duct side and an armature cell on the shroud side In combination with the rapid wind direction changing device of the eleventh embodiment that drives the turntable by at least one of ring and push-pull mechanism Is an example of a wind power generation and wind blowing directions of changes and rapid airflow generation wind direction changing devices for performing freely, characterized in that the manufacturing.
図88は、底板の内部にシュラウド付回転翼の回転面を平行に寝かせて格納したり底板にシュラウド付回転翼の回転面を立たせて直交するように展帳したりするための装置を内蔵してシュラウド付回転翼の格納と展帳を可能にした底板を伴うところのシュラウド付回転翼を、機体の側面に取り付けて巡航時の揚力を発生して飛行する航空機のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部かの少なくともいずれか一方の仕組みを有する実施例10のシュラウド付回転翼を備えていることを特徴とする航空機の実施例である。
Fig. 88 has a built-in device for storing the rotating surface of the rotor blade with the shroud in parallel in the bottom plate and extending the rotating surface of the rotor blade with the shroud upright so that the rotating surface of the rotor blade with the shroud stands on the bottom plate. Of the aircraft that fly by generating a lift during cruise by attaching a shroud rotor blade with a bottom plate that enables storage and exhibition of the shroud rotor blade to the side of the fuselage, the field on the rotating duct side At least one mechanism of the drive part by the combination of the magnet magnet and the shroud side armature cell coil or the drive part by the combination of the field magnet on the rotating duct side and the armature cell ring / push pull on the shroud side It is an Example of the aircraft characterized by having the rotary blade with a shroud of Example 10 which has.
図89~図91は、機体の上面から底面までを貫く中空部となる穴に、シュラウド付回転翼を水平位置で取り付け巡航時の揚力を発生して飛行する航空機のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部かの少なくともいずれか一方の仕組みを有する実施例10のシュラウド付回転翼を備えていることを特徴とする航空機の実施例である。
89-91 show the rotary duct side of the aircraft that fly by generating lift during cruising by installing the rotor blade with shroud in the horizontal position in the hole that becomes the hollow part that penetrates from the top to the bottom of the fuselage. At least one mechanism of the drive part by the combination of the magnet magnet and the shroud side armature cell coil or the drive part by the combination of the field magnet on the rotating duct side and the armature cell ring / push pull on the shroud side It is an Example of the aircraft characterized by having the rotary blade with a shroud of Example 10 which has.
図92は、急速風量発生風向変更装置を、巡航時の前進方向から見た機体の片方の側面当たり1基以上、両側面で2基以上を、機体の側面に取り付けて飛行する航空機のうち、風力を発生するシュラウド付回転翼と、シュラウド付回転翼を取り付けるための台座となってシュラウド付回転翼の発生した風力の吹き出し方向を自在に変更可能にする急速風向変更装置とを一体化した実施例12の急速風量発生風向変更装置を備えていることを特徴とする航空機の実施例である。
FIG. 92 is a diagram showing an example of an aircraft that flies with a rapid air volume generating wind direction changing device attached to one or more side surfaces of one side of the aircraft as viewed from the advancing direction during cruising, and two or more sides on both sides of the aircraft. Implementation that integrates a rotor blade with shroud that generates wind power and a rapid wind direction change device that can change the blowing direction of the wind generated by the rotor blade with shroud as a base for mounting the rotor blade with shroud. It is an Example of the aircraft provided with the rapid air volume generation | occurrence | production direction change apparatus of Example 12. FIG.
図93~図95は、車輪の内部に駆動装置を有するインホイールモーターのうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる実施例2の駆動部か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる実施例4の駆動部かの少なくともいずれか一方の仕組みを駆動部の構造とすることを特徴とするインホイールモーターの実施例である。
93 to 95 show that the driving unit of the second embodiment, which is a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side, of the in-wheel motor having a driving device inside the wheel, or the rotating duct side Implementation of an in-wheel motor characterized in that at least one of the mechanisms of the driving unit according to the fourth embodiment is configured by a combination of a field magnet and a shroud-side armature cell ring / push pull. It is an example.
本発明は、直径が大きなことが有利である場合の発電機や電動機、例えば、電磁的周速利用風力発電装置やシュラウド付回転翼のように羽根の翼端部の発電部や駆動部の仕組みとして用いると、回転軸から遠く離れた翼端部での界磁磁石と電機子セルとの間隙であっても適切に維持できるので効率の良い発電や駆動を行うことができる。また、直径が小さな場合であっても、外部から頻繁に大きな応力が加えられる電動機、例えば、車輪におけるインホイールモーターの駆動部として用いると、外部からの応力に抗して界磁磁石と電機子との間隙を適切に維持することが容易となるので、実用性の高いインホイールモーターが作れる。特に、ストロー状のストレッチガイドを使用した電機子セルリング・プッシュプルは、放熱性において大変優れた性能を発揮するので応用範囲が広く、あらゆる発電機の発電部や電動機の駆動部としても用いることができる。また、製造においても、本発明の発電部や駆動部を構成する電機子セルコイルや電機子セルリング・プッシュプルの構造は、特許文献6や特許文献7の間隙保持用ベアリングに比べて簡単なので、高度な生産設備を有しない工場や発展途上の国々においても容易に作製が可能であり、かつ非常に安価に作ることができる。
The present invention relates to a generator or electric motor in the case where it is advantageous to have a large diameter, for example, a mechanism of a power generation unit or a drive unit at the blade tip of a blade, such as a wind turbine generator using electromagnetic peripheral speed or a rotor blade with a shroud. If it is used, even the gap between the field magnet and the armature cell at the blade tip far away from the rotating shaft can be appropriately maintained, so that efficient power generation and driving can be performed. In addition, even when the diameter is small, an electric motor that is frequently subjected to a large stress from the outside, such as a field magnet and an armature against an external stress when used as a driving unit of an in-wheel motor in a wheel. Therefore, it is easy to maintain the gap between the motor and the in-wheel motor with high practicality. In particular, the armature cell ring / push-pull using a straw-shaped stretch guide has a wide range of applications because it exhibits excellent performance in terms of heat dissipation, and it can also be used as a power generator for all generators and a motor drive. Can do. Also in manufacturing, the structure of the armature cell coil and armature cell ring / push pull constituting the power generation section and drive section of the present invention is simpler than the gap holding bearings of Patent Document 6 and Patent Document 7, It can be easily produced in factories that do not have advanced production facilities and developing countries, and can be produced at a very low cost.
(A)図は、羽根の翼端を回転ダクトで連結し、回転ダクトの外側の外周をシュラウドで覆ったシュラウド付回転翼の平面図の一例である。   (B)図は、シュラウド付回転翼の翼端部の駆動部に電機子セルコイルを使用した場合の断面図の一例である。   (C)図は、シュラウド付回転翼の翼端部の駆動部に電機子セルリング・プッシュプルを使用した場合の断面図の一例である。FIG. 2A is an example of a plan view of a shroud-equipped rotor blade in which blade tips are connected by a rotating duct and the outer periphery of the rotating duct is covered with a shroud. Fig. (B) is an example of a cross-sectional view when an armature cell coil is used for the drive part of the blade tip of the rotor blade with shroud. Fig. (C) is an example of a cross-sectional view when an armature cell ring push-pull is used for the driving part of the blade tip of the rotor blade with shroud. (A)図は、回転ダクトにリムとタイヤを取り付けて回転する回転ダクトと、その内側の内周をシュラウドで覆ったインホイールモーターの平面図の一例である。   (B)図は、インホイールモーターの駆動部に電機子セルコイルを使用した場合の断面図の一例である。   (C)図は、インホイールモーターの駆動部に電機子セルリング・プッシュプルを使用した場合の断面図の一例である。FIG. 2A is an example of a plan view of a rotating duct that rotates with a rim and a tire attached to the rotating duct, and an in-wheel motor in which the inner periphery of the rotating duct is covered with a shroud. Figure (B) is an example of a cross-sectional view when an armature cell coil is used for the drive part of the in-wheel motor. Fig. (C) is an example of a cross-sectional view when an armature cell ring push-pull is used for the drive part of the in-wheel motor. (A)図は、電磁的周速利用風力発電装置やシュラウド付回転翼のシュラウドの構造を、回転ダクトの開口部側から覆う通常のタイプから、骨組みだけのスケルトン型とした場合の平面図の一例である。   (B)図は、スケルトン型のシュラウドに電機子セルコイルを固定して回転ダクトと組み合わせた場合の駆動部の断面図の一例である。   (C)図は、スケルトン型のシュラウドに電機子セルリング・プッシュプルを固定して回転ダクトと組み合わせた場合の駆動部の断面図の一例である。(A) is a plan view when the structure of the shroud of the electromagnetic peripheral speed wind power generator and the shroud of the rotor blade with shroud is changed from the normal type covering from the opening side of the rotating duct to the skeleton type only of the skeleton. It is an example. Fig. (B) is an example of a cross-sectional view of a drive unit when an armature cell coil is fixed to a skeleton type shroud and combined with a rotating duct. Fig. (C) is an example of a cross-sectional view of the drive unit when an armature cell ring / push pull is fixed to a skeleton type shroud and combined with a rotating duct. (A)図は、回転ダクトが、垂直軸風力発電装置の底部を兼ねている電磁的周速利用風力発電装置の平面図の一例である。   (B)図は、回転ダクトが、垂直軸風力発電装置の底部を兼ねている電磁的周速利用風力発電装置に電機子セルコイルを使用した場合の断面図の一例である。回転ダクトの開口部側のシュラウドは、開口部を覆うことなく単に電機子のプラットホームとしての役割を果たしている。FIG. 2A is an example of a plan view of an electromagnetic peripheral speed wind power generator in which the rotating duct also serves as the bottom of the vertical axis wind power generator. Fig. (B) is an example of a cross-sectional view when an armature cell coil is used in an electromagnetic peripheral speed wind power generator whose rotating duct also serves as the bottom of the vertical axis wind power generator. The shroud on the opening side of the rotating duct simply serves as an armature platform without covering the opening. (A)図は、回転ダクトが、垂直軸風力発電装置の底部を兼ねている電磁的周速利用風力発電装置の平面図の一例である。   (B)図は、回転ダクトが、垂直軸風力発電装置の底部を兼ねている電磁的周速利用風力発電装置に電機子セルリング・プッシュプルを使用した場合の断面図の一例である。回転ダクトの開口部側のシュラウドは、開口部を覆うことなく単に電機子のプラットホームとしての役割を果たしている。FIG. 2A is an example of a plan view of an electromagnetic peripheral speed wind power generator in which the rotating duct also serves as the bottom of the vertical axis wind power generator. Fig. (B) is an example of a cross-sectional view when an armature cell ring push-pull is used for an electromagnetic peripheral speed wind power generator whose rotating duct also serves as the bottom of the vertical axis wind power generator. The shroud on the opening side of the rotating duct simply serves as an armature platform without covering the opening. (A)図は、外周方向に周回する張り出し部分に界磁磁石を配設した外周ハンガーを有する回転ダクトの平面図の一例である。界磁磁石は、永久磁石でも巻線コイルでも良いが、この図は、電機子セルコイルに対応した形状の界磁磁石を表している。   (B)図は、回転ダクトの外周面と外周ハンガーとで形作られた略コの字型の中空部の断面図の一例である。(A) The figure is an example of a plan view of a rotating duct having an outer peripheral hanger in which field magnets are arranged in an overhanging portion that circulates in the outer peripheral direction. The field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell coil. (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger. (A)図は、外周方向に周回する張り出し部分に界磁磁石を配設した外周ハンガーを有する回転ダクトの平面図の一例である。界磁磁石は、永久磁石でも巻線コイルでも良いが、この図は、電機子セルリング・プッシュプルに対応した形状の界磁磁石を表している。   (B)図は、回転ダクトの外周面と外周ハンガーとで形作られた略コの字型の中空部の断面図の一例である。(A) The figure is an example of a plan view of a rotating duct having an outer peripheral hanger in which field magnets are arranged in an overhanging portion that circulates in the outer peripheral direction. The field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell ring / push pull. (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger. (A)図は、内周方向に周回する張り出し部分に界磁磁石を配設した内周ハンガーを有する回転ダクトの平面図の一例である。界磁磁石は、永久磁石でも巻線コイルでも良いが、この図は、電機子セルコイルに対応した形状の界磁磁石を表している。   (B)図は、回転ダクトの内周面と内周ハンガーとで形作られた略コの字型の中空部の断面図の一例である。(A) The figure is an example of a plan view of a rotating duct having an inner peripheral hanger in which a field magnet is disposed in an overhanging portion that circulates in the inner peripheral direction. The field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell coil. (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger. (A)図は、内周方向に周回する張り出し部分に界磁磁石を配設した内周ハンガーを有する回転ダクトの平面図の一例である。界磁磁石は、永久磁石でも巻線コイルでも良いが、この図は、電機子セルリング・プッシュプルに対応した形状の界磁磁石を表している。   (B)図は、回転ダクトの内周面と内周ハンガーとで形作られた略コの字型の中空部の断面図の一例である。(A) The figure is an example of a plan view of a rotating duct having an inner peripheral hanger in which a field magnet is disposed in an overhanging portion that circulates in the inner peripheral direction. The field magnet may be a permanent magnet or a wound coil, but this figure shows a field magnet having a shape corresponding to the armature cell ring / push pull. (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger. (A)図は、外周方向に周回する張り出し部分に界磁磁石を配設した外周ハンガーと内周方向に周回する張り出し部分に界磁磁石を配設した内周ハンガーとを併せ有する回転ダクトの平面図の一例である。   (B)図は、回転ダクトの外周面と外周ハンガーとで形作られた略コの字型の中空部と回転ダクトの内周面と内周ハンガーとを背中合わせにした略エの字型の中空部の断面図の一例である。(A) The figure shows a rotating duct having both an outer hanger with a field magnet disposed in an overhanging portion that circulates in the outer peripheral direction and an inner peripheral hanger with a field magnet disposed in an overhanging portion that circulates in the inner peripheral direction. It is an example of a top view. (B) The figure shows a substantially U-shaped hollow formed by back-to-back the substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger, and the inner peripheral surface of the rotating duct and the inner peripheral hanger. It is an example of sectional drawing of a part. (A)図は、外周方向に周回する張り出し部分に界磁磁石を配設した外周ハンガーを有する回転ダクトの平面図の一例である。図では、電機子セルコイルに対応した形状の界磁磁石と、電機子セルリング・プッシュプルに対応した形状の界磁磁石とを併用した例を示している。   (B)図は、回転ダクトの外周面と外周ハンガーとで形作られた略コの字型の中空部の断面図の一例である。(A) The figure is an example of a plan view of a rotating duct having an outer peripheral hanger in which field magnets are arranged in an overhanging portion that circulates in the outer peripheral direction. The figure shows an example in which a field magnet having a shape corresponding to an armature cell coil and a field magnet having a shape corresponding to armature cell ring / push pull are used in combination. (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger. (A)図は、内周方向に周回する張り出し部分に界磁磁石を配設した内周ハンガーを有する回転ダクトの平面図の一例である。図では、電機子セルコイルに対応した形状の界磁磁石と、電機子セルリング・プッシュプルに対応した形状の界磁磁石とを併用した例を示している。   (B)図は、回転ダクトの内周面と内周ハンガーとで形作られた略コの字型の中空部の断面図の一例である。(A) The figure is an example of a plan view of a rotating duct having an inner peripheral hanger in which a field magnet is disposed in an overhanging portion that circulates in the inner peripheral direction. The figure shows an example in which a field magnet having a shape corresponding to an armature cell coil and a field magnet having a shape corresponding to armature cell ring / push pull are used in combination. (B) is an example of a cross-sectional view of a substantially U-shaped hollow portion formed by the inner peripheral surface of the rotating duct and the inner peripheral hanger. (A)図は、シュラウドを回転ダクトの回転軸に平行する方向で垂直に切った場合の接続部周辺の一部断面図である。   (B)図は、シュラウドを回転ダクトの回転軸に直交する平面上で水平に切った場合の接続部周辺の一部断面図である。FIG. 4A is a partial cross-sectional view of the periphery of a connecting portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct. Fig. (B) is a partial cross-sectional view of the periphery of the connection when the shroud is cut horizontally on a plane perpendicular to the rotation axis of the rotating duct. (A)図は、シュラウドを回転ダクトの回転軸に平行する方向で垂直に切った場合のバネ部周辺の一部断面図である。図中のバネ部は、L字型の板バネを使用しているが、コイルバネやシリコンゴムブロック材に代えたり、併用しても良い。   (B)図は、シュラウドを回転ダクトの回転軸に直交する平面上で水平に切った場合のバネ部周辺の一部断面図である。   (C)図は、L字型の板バネとシリコンゴムブロック材とを併用した例である。(A) The figure is a partial cross-sectional view around the spring portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct. The spring portion in the figure uses an L-shaped leaf spring, but it may be replaced with a coil spring or a silicon rubber block material, or may be used in combination. (B) is a partial cross-sectional view around the spring when the shroud is cut horizontally on a plane perpendicular to the rotational axis of the rotating duct. Fig. (C) shows an example in which an L-shaped leaf spring and a silicon rubber block material are used in combination. (A)図は、シュラウドに接続した電機子セルコイル用の保持骨格の側面図である。   (B)図は、シュラウドに取り付けた電機子セルコイル用の保持骨格の平面図である。FIG. 4A is a side view of a holding skeleton for an armature cell coil connected to a shroud. (B) is a plan view of a holding skeleton for an armature cell coil attached to a shroud. (A)図は、シュラウドに保持骨格で取り付けた巻線コイルを、回転ダクトが進行する方向から見た側面図である。   (B)図は、シュラウドに保持骨格で取り付けた巻線コイルの平面図である。(A) The figure is the side view which looked at the coil | winding coil attached to the shroud with the holding | maintenance frame | skeleton from the direction which a rotation duct advances. (B) is a plan view of a wound coil attached to a shroud with a holding skeleton. (A)図は、シュラウドに保持骨格で取り付けた電機子セルコイルを回転ダクトが進行する方向から見た側面図である。   (B)図は、シュラウドに保持骨格で取り付けた電機子セルコイルの平面図である。(A) The figure is the side view which looked at the armature cell coil attached to the shroud with the holding | maintenance frame | frame from the direction which a rotation duct advances. (B) is a plan view of an armature cell coil attached to a shroud with a holding skeleton. (A)図は、シュラウドに保持骨格で取り付けた電機子セルコイルと界磁磁石との関係を回転ダクトが進行する方向から見た側面図である。   (B)図は、シュラウドに保持骨格で取り付けた電機子セルコイルと界磁磁石との関係を表した平面図である。(A) is the side view which looked at the relationship between the armature cell coil attached to the shroud with the holding skeleton and the field magnet from the direction in which the rotating duct proceeds. (B) is a plan view showing the relationship between the armature cell coil and the field magnet attached to the shroud with a holding skeleton. (A)図は、シュラウドに保持骨格で取り付けた電機子セルコイルと外周ハンガーに配設した界磁磁石との関係を、回転ダクトが進行する方向から見た側面図である。   (B)図は、シュラウドに保持骨格で取り付けた電機子セルコイルと外周ハンガーに配設した界磁磁石との関係を表した平面図である。FIG. 4A is a side view of the relationship between the armature cell coil attached to the shroud with a holding skeleton and the field magnet disposed on the outer peripheral hanger as seen from the direction in which the rotating duct travels. FIG. (B) is a plan view showing the relationship between the armature cell coil attached to the shroud with the holding skeleton and the field magnets arranged on the outer peripheral hanger. (A)図は、電機子セルコイルの構造を表した一部断面図である。   (B)図は、電機子セルコイルと保持骨格との関係を表した平面図である。FIG. 4A is a partial cross-sectional view showing the structure of an armature cell coil. Fig. (B) is a plan view showing the relationship between the armature cell coil and the holding skeleton. (A)図は、電機子セルコイルと界磁磁石との関係を回転ダクトの進行する方向に直交する方向から見た一部断面図である。   (B)図は、電機子セルコイルと界磁磁石との関係の平面図である。FIG. 4A is a partial cross-sectional view of the relationship between the armature cell coil and the field magnet as viewed from a direction orthogonal to the direction in which the rotating duct travels. (B) is a plan view of the relationship between the armature cell coil and the field magnet. (A)図は、電機子セルコイルと外周ハンガーに配設した界磁磁石との関係を回転ダクトの進行する方向に直交する方向から見た一部断面図である。   (B)図は、電機子セルコイルと外周ハンガーに配設した界磁磁石との関係の平面図である。FIG. 4A is a partial cross-sectional view of the relationship between the armature cell coil and the field magnet disposed on the outer peripheral hanger as viewed from the direction orthogonal to the direction in which the rotating duct travels. Fig. (B) is a plan view of the relationship between the armature cell coil and the field magnet disposed on the outer hanger. (A)図は、電機子セルコイルと外周ハンガーに配設した界磁磁石との関係を回転ダクトの進行する方向に直交する方向から見た一部断面図である。この場合は、電機子セルコイルの配設数を増加してある。   (B)図は、電機子セルコイルと外周ハンガーに配設した界磁磁石との関係の平面図である。この場合は、電機子セルコイルの配設数を増加してある。FIG. 4A is a partial cross-sectional view of the relationship between the armature cell coil and the field magnet disposed on the outer peripheral hanger as viewed from the direction orthogonal to the direction in which the rotating duct travels. In this case, the number of armature cell coils is increased. Fig. (B) is a plan view of the relationship between the armature cell coil and the field magnet disposed on the outer hanger. In this case, the number of armature cell coils is increased. (A)図は、磁性体である軸心を用いた場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心と巻線コイルとを覆っていて、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質から作られている。   (B)図は、磁性体である軸心を用いた場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心と巻線コイルとを覆っていて、中空部及び中空部と表面とを繋ぐ漏穴を有している。中空部は、常圧もしくは加圧して潤滑剤や減摩剤を充填してある。充填してある潤滑剤/減摩剤は、漏穴を通じて少しずつ表面に塗布される。漏穴の出口はストレートで何も無い場合と、回転可能な微細球が塞いでいる場合とがある。FIG. 2A is an enlarged cross-sectional view of an armature cell coil in the case where an axis that is a magnetic material is used. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding portion covers the shaft center and the winding coil, and is made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene. (B) is an enlarged cross-sectional view of the armature cell coil in the case of using the magnetic core. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding portion covers the shaft center and the winding coil, and has a hollow portion and a leak hole that connects the hollow portion and the surface. The hollow portion is filled with a lubricant or an anti-friction agent by normal pressure or pressurization. Filled lubricant / lubricant is applied to the surface in small portions through the leak hole. There are cases where the outlet of the leak hole is straight and there is nothing, and there are cases where a rotatable microsphere is blocked. (A)図は、磁性体である軸心を用いた場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心の端部だけを覆っていて、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質から作られている。   (B)図は、磁性体である軸心を用いた場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心の端部だけを覆っていて、中空部及び中空部と表面とを繋ぐ漏穴を有している。中空部は、常圧もしくは加圧して潤滑剤や減摩剤を充填してある。充填してある潤滑剤/減摩剤は、漏穴を通じて少しずつ表面に塗布される。漏穴の出口はストレートで何も無い場合と、回転可能な微細球が塞いでいる場合とがある。FIG. 2A is an enlarged cross-sectional view of an armature cell coil in the case where an axis that is a magnetic material is used. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding portion covers only the end portion of the shaft center, and is made of, for example, a low friction coefficient material such as fluororesin or high density polyethylene. (B) is an enlarged cross-sectional view of the armature cell coil in the case of using the magnetic core. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding part covers only the end part of the shaft center and has a hollow part and a leak hole connecting the hollow part and the surface. The hollow portion is filled with a lubricant or an anti-friction agent by normal pressure or pressurization. Filled lubricant / lubricant is applied to the surface in small portions through the leak hole. There are cases where the outlet of the leak hole is straight and there is nothing, and there are cases where a rotatable microsphere is blocked. (A)図は、磁性体でない軸心を用いた場合や空心である場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心と巻線コイルとを覆っていて、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質から作られている。   (B)図は、磁性体でない軸心を用いた場合や空心である場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心と巻線コイルとを覆っていて、中空部及び中空部と表面とを繋ぐ漏穴を有している。中空部に常圧もしくは加圧して潤滑剤や減摩剤を充填してある。充填してある潤滑剤/減摩剤は、漏穴を通じて少しずつ表面に塗布される。漏穴の出口はストレートで何も無い場合と、回転可能な微細球が塞いでいる場合とがある。FIG. 4A is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding portion covers the shaft center and the winding coil, and is made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene. (B) is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding portion covers the shaft center and the winding coil, and has a hollow portion and a leak hole that connects the hollow portion and the surface. The hollow part is filled with a lubricant or an anti-friction agent by normal pressure or pressurization. Filled lubricant / lubricant is applied to the surface in small portions through the leak hole. There are cases where the outlet of the leak hole is straight and there is nothing, and there are cases where a rotatable microsphere is blocked. (A)図は、磁性体でない軸心を用いた場合や空心である場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心の端部だけを覆っていて、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質から作られている。   (B)図は、磁性体でない軸心を用いた場合や空心である場合の電機子セルコイルの拡大断面図である。導線は、入力線が1本で出力線も1本で連続していて、Aからjの順に軸心の回りを巻回してある。滑走部は軸心の端部だけを覆っていて、中空部及び中空部と表面とを繋ぐ漏穴を有している。中空部に常圧もしくは加圧して潤滑剤や減摩剤を充填してある。充填してある潤滑剤/減摩剤は、漏穴を通じて少しずつ表面に塗布される。漏穴の出口はストレートで何も無い場合と、回転可能な微細球が塞いでいる場合とがある。FIG. 4A is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding portion covers only the end portion of the shaft center, and is made of, for example, a low friction coefficient material such as fluororesin or high density polyethylene. (B) is an enlarged cross-sectional view of an armature cell coil when an axis that is not a magnetic material is used or when it is an air core. The conducting wire is continuous with one input line and one output line, and is wound around the axis in the order of A to j. The sliding part covers only the end part of the shaft center and has a hollow part and a leak hole connecting the hollow part and the surface. The hollow part is filled with a lubricant or an anti-friction agent by normal pressure or pressurization. Filled lubricant / lubricant is applied to the surface in small portions through the leak hole. There are cases where the outlet of the leak hole is straight and there is nothing, and there are cases where a rotatable microsphere is blocked. 図は、回転ダクト側から、界磁磁石→遊び→滑走部→巻線コイルの順に並んでいる場合の導線が巻回された部分を拡大した一部断面図である。The figure is an enlarged partial cross-sectional view of a portion around which a conducting wire is wound in the order of field magnets → play → sliding portion → winding coil from the rotating duct side. 図は、電機子セルコイルを用いて発電する際の誘導起電力を示した一部断面拡大図である。The figure is a partially enlarged cross-sectional view showing an induced electromotive force when power is generated using an armature cell coil. 図は、電機子セルコイルを用いて回転ダクト側を駆動する際の要領を示した一部断面拡大図である。右ネジの法則に則りコイル内の軸心には強力な磁界が形成される。The figure is a partially enlarged cross-sectional view showing the point when driving the rotating duct side using the armature cell coil. A strong magnetic field is formed at the axial center in the coil in accordance with the right-handed screw law. (A)図は、シュラウド側を固定して回転ダクトのみを回転して発電する電磁的周速利用風力発電装置や、シュラウドを機体に固定して回転ダクトを回転するシュラウド付回転翼において、羽根の翼端を回転ダクトで連結して作製する場合の翼端部の一部断面図である。   (B)図は、シュラウド側に取り付けられた荷重伝達ベアリングが、フリーアクションベアリングであって、直接回転ダクトに接触していることを示している。   (C)図は、シュラウド側に取り付けられた荷重伝達ベアリングがフリーアクションベアリングであって、軌道滑走路を介して回転ダクトに接触していることを示している。   (D)図は、シュラウドと回転ダクトの間の荷重伝達ベアリングにスラストベアリングを使用していることを示している。   (E)図は、シュラウドと回転ダクトの間の荷重伝達ベアリングにラジアルベアリングを使用していて、ラジアルベアリングはベアリング固定補助具を介してシュラウドと回転ダクトに取り付けられていることを示している。(A) The figure shows a blade in an electromagnetic circumferential speed wind power generator that generates electricity by rotating only a rotating duct with the shroud side fixed, and a rotor blade with a shroud that rotates the rotating duct with the shroud fixed to the fuselage. It is a partial cross section figure of the wing tip part in the case of producing by connecting the wing tip of this with a rotating duct. Fig. (B) shows that the load transmission bearing attached to the shroud is a free action bearing and is in direct contact with the rotating duct. Fig. (C) shows that the load transmission bearing attached to the shroud is a free action bearing and is in contact with the rotating duct via the track runway. Fig. (D) shows that a thrust bearing is used as a load transmission bearing between the shroud and the rotating duct. Fig. (E) shows that a radial bearing is used as a load transmission bearing between the shroud and the rotating duct, and the radial bearing is attached to the shroud and the rotating duct via a bearing fixing auxiliary tool. (A)図は、電機子セルコイルをシュラウドに接続する接続部と、電機子セルコイルを繋留する繋留部と、接続部と繋留部とを繋ぐ腕部の側面図と平面図である。   (B)図は、電機子セルコイルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に電動機を用いて液圧を発生して発生した液圧で伸縮腕部を伸縮させる場合の側面図と平面図である。   (C)図は、電機子セルコイルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に外部から液圧パイプの液圧を用いて、その発生した液圧で伸縮腕部を伸縮させる場合の側面図と平面図である。   (D)図は、電機子セルコイルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に電動機を用いてウォームネジを回転させて伸縮腕部を伸縮させる場合の側面図と平面図である。   (E)図は、電機子セルコイルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に外部からの空気圧を用いて、空気圧タービンでウォームネジを回転させて伸縮腕部を伸縮させる場合の側面図と平面図である。(A) The figure is the side view and top view of the connection part which connect an armature cell coil to a shroud, the anchor part which anchors an armature cell coil, and the arm part which connects a connection part and a anchor part. (B) The figure shows that the armature cell coil is connected to the shroud, and the holding skeleton that adjusts the amount of insertion of the rotating duct into the substantially U-shaped hollow portion generates hydraulic pressure using an electric motor as power. It is a side view and a top view at the time of expanding and contracting an expansion-contraction arm part with the generated hydraulic pressure. (C) In the figure, the armature cell coil is connected to the shroud, and the holding skeleton that adjusts the amount of insertion of the rotating duct into the substantially U-shaped hollow portion uses the hydraulic pressure of the hydraulic pipe from the outside as power. FIG. 6 is a side view and a plan view when the telescopic arm portion is expanded and contracted by the generated hydraulic pressure. (D) The figure shows that the armature cell coil is connected to the shroud, and the holding skeleton that adjusts the amount of insertion of the rotating duct into the substantially U-shaped hollow portion is rotated by rotating the worm screw using an electric motor. It is the side view and top view in the case of extending / contracting an expansion-contraction arm part. (E) shows a pneumatic turbine using an external air pressure as power in a holding skeleton that connects an armature cell coil to a shroud and adjusts the amount of insertion of the rotating duct into a substantially U-shaped hollow portion. FIG. 6 is a side view and a plan view when the worm screw is rotated to extend and retract the extendable arm part. (A)電機子セルコイルは、一つひとつセル状に独立しているので、結線を選んで構成することによって、所望の効果を得ることができる。図は、電機子セルコイルを直列で結線した例である。   (B)図は、電機子セルコイルを並列で結線した例である。   (C)図は、電機子セルコイルを3相で結線した例である。(A) Since the armature cell coils are independent of each other in a cell shape, a desired effect can be obtained by selecting and configuring the connection. The figure shows an example in which armature cell coils are connected in series. Fig. (B) shows an example in which armature cell coils are connected in parallel. Fig. (C) shows an example in which armature cell coils are connected in three phases. (A)図は、シュラウドを回転ダクトの回転軸に平行する方向で垂直に切った場合の接続部周辺の一部断面図である。   (B)図は、シュラウドを回転ダクトの回転軸に直交する平面上で水平に切った場合の接続部周辺の一部断面図である。FIG. 4A is a partial cross-sectional view of the periphery of a connecting portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct. Fig. (B) is a partial cross-sectional view of the periphery of the connection when the shroud is cut horizontally on a plane perpendicular to the rotation axis of the rotating duct. (A)図は、シュラウドを回転ダクトの回転軸に平行する方向で垂直に切った場合のバネ部周辺の一部断面図である。図中のバネ部は、L字型の板バネを使用しているが、コイルバネやシリコンゴムブロック材に代えたり、併用しても良い。   (B)図は、シュラウドを回転ダクトの回転軸に直交する平面上で水平に切った場合のバネ部周辺の一部断面図である。   (C)図は、L字型の板バネとシリコンゴムブロック材とを併用した例である。(A) The figure is a partial cross-sectional view around the spring portion when the shroud is cut vertically in a direction parallel to the rotation axis of the rotating duct. The spring portion in the figure uses an L-shaped leaf spring, but it may be replaced with a coil spring or a silicon rubber block material, or may be used in combination. (B) is a partial cross-sectional view around the spring when the shroud is cut horizontally on a plane perpendicular to the rotational axis of the rotating duct. Fig. (C) shows an example in which an L-shaped leaf spring and a silicon rubber block material are used in combination. (A)図は、シュラウドに接続した電機子セルリング・プッシュプル用の保持骨格の側面図である。   (B)図は、シュラウドに取り付けた電機子セルリング・プッシュプル用の保持骨格の平面図である。(A) The figure is a side view of the holding skeleton for armature cell ring push-pull connected to the shroud. Fig. (B) is a plan view of the holding skeleton for armature cell rings and push-pull attached to the shroud. (A)図は、シュラウドに保持骨格で取り付けたリング状巻線部分を、回転ダクトが進行する方向から見た側面図である。   (B)図は、シュラウドに保持骨格で取り付けたリング状巻線部分の平面図である。(A) The figure is the side view which looked at the ring-shaped coil | winding part attached to the shroud with the holding | maintenance frame | frame from the direction which a rotation duct advances. Fig. (B) is a plan view of the ring-shaped winding part attached to the shroud with a holding skeleton. (A)図は、シュラウドに保持骨格で取り付けた電機子セルリング・プッシュプルを、回転ダクトが進行する方向から見た側面図である。   (B)図は、シュラウドに保持骨格で取り付けた電機子セルリング・プッシュプルの平面図である。(A) The figure is the side view which looked at the armature cell ring push-pull attached to the shroud with the holding skeleton from the direction in which the rotating duct proceeds. Fig. (B) is a plan view of the armature cell ring push-pull attached to the shroud with a holding skeleton. (A)図は、シュラウドに保持骨格で取り付けた電機子セルリング・プッシュプルと界磁磁石との関係を、回転ダクトが進行する方向から見た側面図である。   (B)図は、電機子セルリング・プッシュプルと保持骨格と界磁磁石との関係を表した平面図である。(A) is the side view which looked at the relationship between the armature cell ring push-pull attached to the shroud with the holding skeleton and the field magnet from the direction in which the rotating duct proceeds. (B) is a plan view showing the relationship between the armature cell ring / push pull, the holding skeleton, and the field magnet. (A)図は、電機子セルリング・プッシュプルと外周ハンガーに配設した界磁磁石との関係を、回転ダクトの進行する方向から見た一部断面図である。   (B)図は、電機子セルリング・プッシュプルと外周ハンガーに配設した界磁磁石との関係を表した平面図である。(A) is a partial cross-sectional view of the relationship between the armature cell ring / push pull and the field magnet disposed on the outer peripheral hanger as seen from the direction in which the rotating duct travels. Fig. (B) is a plan view showing the relationship between the armature cell ring / push-pull and the field magnets arranged on the outer peripheral hanger. (A)図は、電機子セルリング・プッシュプルの構造を回転ダクトの進行する方向と直交する方向から見た一部断面図である。   (B)図は、電機子セルリング・プッシュプルをシュラウドの内周部に隙間なく配設した際の平面図である。(A) is a partial cross-sectional view of the armature cell ring push-pull structure as viewed from a direction orthogonal to the direction in which the rotating duct travels. (B) is a plan view when armature cell rings and push-pulls are arranged on the inner periphery of the shroud without any gaps. (A)図は、電機子セルリング・プッシュプルの構造と界磁磁石との関係を、回転ダクトの進行する方向と直交する方向から見た一部断面図である。   (B)図は、電機子セルリング・プッシュプルをシュラウドの内周部に隙間なく配設した際の界磁磁石との関係を表す平面図である。(A) is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnet, as viewed from the direction perpendicular to the direction in which the rotating duct travels. Fig. (B) is a plan view showing the relationship with the field magnet when the armature cell ring push-pull is disposed in the inner periphery of the shroud without any gap. (A)図は、電機子セルリング・プッシュプルの構造と外周ハンガーに配設した界磁磁石との関係を、回転ダクトの進行する方向と直交する方向から見た一部断面図である。   (B)図は、電機子セルリング・プッシュプルをシュラウドの内周部に隙間なく配設した際の外周ハンガーに配設した界磁磁石との関係を表す平面図である。(A) is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnets arranged on the outer peripheral hanger as seen from the direction perpendicular to the direction in which the rotating duct travels. FIG. (B) is a plan view showing the relationship with the field magnets arranged on the outer peripheral hanger when the armature cell ring push-pull is arranged on the inner peripheral part of the shroud without any gap. (A)図は、電機子セルリング・プッシュプルの構造と外周ハンガーに配設した界磁磁石との関係を回転ダクトの進行する方向と直交する方向から見た一部断面図である。この場合は、電機子セルリング・プッシュプルの配設数を少なめとした場合である。   (B)図は、電機子セルリング・プッシュプルをシュラウドの内周部に少なめに配設した際の外周ハンガーに配設した界磁磁石との関係を表す平面図である。(A) is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnets disposed on the outer peripheral hanger as viewed from the direction perpendicular to the direction of travel of the rotating duct. In this case, the number of armature cell rings and push pulls is reduced. FIG. (B) is a plan view showing the relationship with the field magnets arranged on the outer peripheral hanger when the armature cell ring / push pull is arranged a little on the inner peripheral part of the shroud. (A)図は、電機子セルリング・プッシュプルの構造と外周ハンガーに配設した界磁磁石との関係を、回転ダクトの進行する方向と直交する方向から見た一部断面図である。この場合は、電機子セルリング・プッシュプルを間断なく配置して、界磁磁石の配設数を少なめとした場合である。   (B)図は、電機子セルリング・プッシュプルをシュラウドの内周部に間断なく配置して界磁磁石の配設数を少なめに配設した際の外周ハンガーの界磁磁石との関係を表す平面図である。(A) is a partial cross-sectional view of the relationship between the structure of the armature cell ring / push pull and the field magnets arranged on the outer peripheral hanger as seen from the direction perpendicular to the direction in which the rotating duct travels. In this case, the armature cell rings and push pulls are arranged without interruption, and the number of field magnets is reduced. (B) The figure shows the relationship between the armature cell ring and push-pull on the inner periphery of the shroud without interruption and the field magnets of the outer hanger when the number of field magnets is reduced. FIG. (A)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドの中に導線を敷設して電機子リングを作る際の拡大断面図である。この場合の滑走部は軸心とストレッチガイドとを覆っていて、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質から作製される。   (B)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドの中に導線を敷設して電機子リングを作る際の拡大断面図である。この場合の滑走部は軸心とストレッチガイドとを覆っていて、中空部と漏穴とを有し、中空部に常圧または加圧して潤滑剤や減摩剤を充填し、漏穴から表面に塗布する仕組みを有した場合である。漏穴は、ストレートで何も無い場合と先端に回転可能な微細球を有する場合とがある。FIG. 2A is an enlarged cross-sectional view of an armature cell ring / push pull in which an armature ring is formed by laying a lead wire in a stretch guide. In this case, the sliding portion covers the shaft center and the stretch guide, and is made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene. Fig. (B) is an enlarged cross-sectional view of the armature cell ring push-pull when an armature ring is made by laying a conductor in a stretch guide. The sliding part in this case covers the shaft center and the stretch guide, has a hollow part and a leak hole, and is filled with a lubricant or an anti-friction agent by applying normal pressure or pressurization to the hollow part, and from the leak hole to the surface This is a case of having a mechanism for applying to the surface. There are cases where the leak hole is straight and there is nothing, and there are cases where the tip has a rotatable microsphere. (A)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドの中に導線を敷設して電機子リングを作る際の拡大断面図である。軸心が、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質から作製されている場合には、軸心が滑走部となる。   (B)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドの中に導線を敷設して電機子リングを作る際の拡大断面図である。軸心の端部は、中空部と漏穴とを有していて、中空部に常圧または加圧して潤滑剤や減摩剤を充填し、漏穴から表面に塗布する仕組みを有した滑走部となる。漏穴は、ストレートで何も無い場合と先端に回転可能な微細球を有する場合とがある。FIG. 2A is an enlarged cross-sectional view of an armature cell ring / push pull in which an armature ring is formed by laying a lead wire in a stretch guide. When the shaft center is made of a material having a low friction coefficient such as a fluororesin or high density polyethylene, for example, the shaft center becomes the sliding portion. Fig. (B) is an enlarged cross-sectional view of the armature cell ring push-pull when an armature ring is made by laying a conductor in a stretch guide. The end of the shaft center has a hollow part and a leak hole. The sliding part has a mechanism in which the hollow part is filled with a lubricant or an anti-friction agent by normal pressure or pressurization and applied to the surface from the leak hole. Part. There are cases where the leak hole is straight and there is nothing, and there are cases where the tip has a rotatable microsphere. (A)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドが、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質のパイプ材で作製されている場合である。この場合は、ストレッチガイドが滑走部となる。   (B)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドが、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質のモールド材で作製されている場合である。この場合は、ストレッチガイドが滑走部となる。(A) The figure shows a case where the stretch guide is made of a pipe material made of a material having a low coefficient of friction such as fluororesin or high-density polyethylene in the armature cell ring / push pull. In this case, the stretch guide becomes the sliding portion. Fig. (B) shows the case where the stretch guide is made of a mold material of a low friction coefficient material such as fluororesin or high-density polyethylene in the armature cell ring / push pull. In this case, the stretch guide becomes the sliding portion. (A)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドが、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質のパイプ材やモールド材を混在して作製されている場合である。外側がパイプ材で、内側がモールド材の場合である。   (B)図は、電機子セルリング・プッシュプルにおいて、ストレッチガイドが、例えば、フッ素樹脂や高密度ポリエチレンのような低摩擦係数の物質のパイプ材やモールド材を混在して作製されている場合である。外側がモールド材で、内側がパイプ材の場合である。(A) The figure shows an armature cell ring / push pull where the stretch guide is made of a mixture of pipe material or mold material of a low friction coefficient material such as fluororesin or high density polyethylene. It is. This is a case where the outside is a pipe material and the inside is a mold material. (B) The figure shows an armature cell ring / push pull where the stretch guide is made of a mixture of pipe material or mold material of a low friction coefficient material such as fluororesin or high-density polyethylene. It is. This is a case where the outside is a mold material and the inside is a pipe material. (A)図は、パイプ材で作られてストレッチガイドに導線を通す要領を示したもので、(A-A)→(B-B)・・・(X-X)の順に、リング状で巻回して電機子セルリング・プッシュプルを作成する。   (B)図は、モールド材で作られてストレッチガイドに導線を通す要領を示したもので、(A-A)→(B-B)・・・(X-X)の順に、リング状で巻回して電機子セルリング・プッシュプルを作成する。(A) The figure shows the point of making the lead wire through the stretch guide made of pipe material. Create an armature cell ring and push-pull by winding. (B) The figure shows the point of making the lead wire through the stretch guide made of a mold material. Create an armature cell ring and push-pull by winding. (A)図は、パイプ材で作られてストレッチガイドに導線を通す要領を示したもので、(A-A)→(B-B)・・・(X-X)の順に通すが、通した導線をバス結線する場合の例である。   (B)図は、モールド材で作られてストレッチガイドに導線を通す要領を示したもので、(A-A)→(B-B)・・・(X-X)の順に通すが、通した導線をバス結線する場合の例である。(A) The figure shows the point of passing the lead wire through the stretch guide made of pipe material. (AA) → (BB) ... It is an example in the case of carrying out bus connection of the conducting wire. (B) The figure shows the procedure for passing the lead wire through the stretch guide made of mold material. (A) → (BB) ... It is an example in the case of carrying out bus connection of the conducting wire. 図は、電機子セルリング・プッシュプルと界磁磁石と間隙との関係を表した拡大図である。ストレッチガイドの中に敷設する導線の巻回順序は、(A-A)→(B-B)・・・(X-X)の順に行うが、入力線と出力線を1本ずつとして連続結線しても良いし、共通バスを準備してバス結線をしても良い。The figure is an enlarged view showing the relationship among the armature cell ring push-pull, the field magnet, and the gap. The winding order of the conductors laid in the stretch guide is (AA) → (BB) ... (XX), but the input and output lines are connected one by one and connected continuously. Alternatively, a common bus may be prepared and bus connections may be made. 図は、フレミングの右手の法則に則って電機子セルリング・プッシュプルで発電する際の電機子セルリング・プッシュプルと界磁磁石との関係を示している。ストレッチガイド中の導線には、それぞれに反対方向の誘導電流が同時刻に発生している。The figure shows the relationship between the armature cell ring / push pull and the field magnet when power is generated by the armature cell ring / push pull according to Fleming's right hand rule. In the lead wires in the stretch guide, induced currents in opposite directions are generated at the same time. 図は、フレミングの左手の法則に則って電機子セルリング・プッシュプルで回転ダクト側を駆動する際の電機子セルリング・プッシュプルと界磁磁石との関係を示している。ストレッチガイド中の導線には、それぞれに反対方向の電流を同時刻に印加する必要がある。The figure shows the relationship between the armature cell ring / push pull and the field magnet when the rotating duct side is driven by the armature cell ring / push pull in accordance with Fleming's left-hand rule. It is necessary to apply a current in the opposite direction to the conducting wires in the stretch guide at the same time. (A)図は、シュラウド側を固定して回転ダクトのみを回転して発電する電磁的周速利用風力発電装置や、シュラウドを機体に固定して回転ダクトを回転するシュラウド付回転翼において、羽根の翼端を回転ダクトで連結して作製する場合の翼端部の一部断面図である。   (B)図は、シュラウド側に取り付けられた荷重伝達ベアリングが、フリーアクションベアリングであって、直接回転ダクトに接触していることを示している。   (C)図は、シュラウド側に取り付けられた荷重伝達ベアリングがフリーアクションベアリングであって、軌道滑走路を介して回転ダクトに接触していることを示している。   (D)図は、シュラウドと回転ダクトの間の荷重伝達ベアリングにスラストベアリングを使用していることを示している。   (E)図は、シュラウドと回転ダクトの間の荷重伝達ベアリングにラジアルベアリングを使用していて、ラジアルベアリングはベアリング固定補助具を介してシュラウドと回転ダクトに取り付けられていることを示している。(A) The figure shows a blade in an electromagnetic circumferential speed wind power generator that generates electricity by rotating only a rotating duct with the shroud side fixed, and a rotor blade with a shroud that rotates the rotating duct with the shroud fixed to the fuselage. It is a partial cross section figure of the wing tip part in the case of producing by connecting the wing tip of this with a rotating duct. Fig. (B) shows that the load transmission bearing attached to the shroud is a free action bearing and is in direct contact with the rotating duct. Fig. (C) shows that the load transmission bearing attached to the shroud is a free action bearing and is in contact with the rotating duct via the track runway. Fig. (D) shows that a thrust bearing is used as a load transmission bearing between the shroud and the rotating duct. Fig. (E) shows that a radial bearing is used as a load transmission bearing between the shroud and the rotating duct, and the radial bearing is attached to the shroud and the rotating duct via a bearing fixing auxiliary tool. (A)図は、電機子セルリング・プッシュプルをシュラウドに接続する接続部と、電機子セルリング・プッシュプルを繋留する繋留部と、接続部と繋留部とを繋ぐ腕部の側面図と平面図である。   (B)図は、電機子セルリング・プッシュプルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に電動機を用いて液圧を発生して発生した液圧で伸縮腕部を伸縮させる場合の側面図と平面図である。   (C)図は、電機子セルリング・プッシュプルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に外部から液圧パイプの液圧を用いて、その発生した液圧で伸縮腕部を伸縮させる場合の側面図と平面図である。   (D)図は、電機子セルリング・プッシュプルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に電動機を用いてウォームネジを回転させて伸縮腕部を伸縮させる場合の側面図と平面図である。   (E)図は、電機子セルリング・プッシュプルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、動力に外部からの空気圧を用いて、空気圧タービンでウォームネジを回転させて伸縮腕部を伸縮させる場合の側面図と平面図である。(A) The figure is a side view of a connecting part that connects the armature cell ring / push pull to the shroud, a tether part that anchors the armature cell ring / push pull, and an arm part that connects the connecting part and the tether part. It is a top view. (B) shows the holding skeleton that connects the armature cell ring and push-pull to the shroud and adjusts the amount of insertion into the substantially U-shaped hollow portion of the rotating duct. It is the side view and top view in the case of extending / contracting an expansion-contraction arm part with the hydraulic pressure generated by generating. (C) shows the holding skeleton that connects the armature cell ring / push pull to the shroud and adjusts the insertion amount of the rotating duct into the substantially U-shaped hollow portion. It is a side view and a top view at the time of expanding and contracting an expansion-contraction arm part with the generated hydraulic pressure using hydraulic pressure. (D) The figure shows a worm screw that uses an electric motor for power in the holding skeleton that connects the armature cell ring / push pull to the shroud and adjusts the amount of insertion of the rotary duct into the substantially U-shaped hollow portion. It is a side view and a top view in the case of rotating the telescopic arm part by rotating. (E) The figure shows the holding skeleton that connects the armature cell ring and push-pull to the shroud and adjusts the amount of insertion of the rotating duct into the substantially U-shaped hollow portion. FIG. 6 is a side view and a plan view when a worm screw is rotated by a pneumatic turbine to expand and contract an extendable arm portion. (A)図は、電機子セルリング・プッシュプルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、電機子セルリング・プッシュプルの2個1組のストレッチガイドの間の空間に入れて滑走部の回転ダクトへの接触力を緩和することができる緩衝材を、保持骨格の繋留部の周囲に取り付けた場合の保持骨格の側面図である。   (B)図は、電機子セルリング・プッシュプルをシュラウドに接続することと、回転ダクトの略コの字型中空部への挿入量を調整する保持骨格において、電機子セルリング・プッシュプルの2個1組のストレッチガイドの間の空間に入れて滑走部の回転ダクトへの接触力を緩和することができる緩衝材を、保持骨格の繋留部の周囲に取り付けた場合の保持骨格の平面図である。(A) The figure shows the armature cell ring / push pull connected to the shroud and the holding skeleton for adjusting the amount of insertion into the substantially U-shaped hollow portion of the rotating duct. Side view of the holding skeleton when a cushioning material that can be put in a space between two sets of stretch guides and can relax the contact force to the rotating duct of the sliding part is attached around the holding part of the holding skeleton. It is. (B) The figure shows the connection of the armature cell ring / push pull to the shroud and the holding skeleton for adjusting the amount of insertion into the substantially U-shaped hollow portion of the rotary duct. A plan view of the holding skeleton when a cushioning material that can be put in a space between two pairs of stretch guides and relax the contact force to the rotating duct of the sliding part is attached around the anchoring part of the holding skeleton. It is. (A)電機子セルリング・プッシュプルは、一つひとつセル状に独立しているので、結線を選んで構成することによって、所望の効果を得ることができる。図は、電機子セルリング・プッシュプルを直列で結線した例である。   (B)図は、電機子セルリング・プッシュプルを並列で結線した例である。   (C)図は、電機子セルリング・プッシュプルを3相で結線した例である。(A) Since the armature cell rings and push-pulls are independent of each other in a cell shape, a desired effect can be obtained by selecting and configuring the connection. The figure shows an example in which armature cell rings and push pulls are connected in series. Figure (B) is an example of connecting armature cell rings and push pulls in parallel. Fig. (C) is an example of connecting armature cell ring and push-pull in three phases. (A)電機子セルリング・プッシュプルは、一つひとつセル状に独立しているので、結線を選んで構成することによって、所望の効果を得ることができる。図は、電機子セルリング・プッシュプル(バス結線)を直列で結線した例である。   (B)図は、電機子セルリング・プッシュプル(バス結線)を並列で結線した例である。   (C)図は、電機子セルリング・プッシュプル(バス結線)を3相で結線した例である。(A) Since the armature cell rings and push-pulls are independent of each other in a cell shape, a desired effect can be obtained by selecting and configuring the connection. The figure shows an example in which armature cell rings and push-pulls (bus connections) are connected in series. Fig. (B) shows an example of armature cell ring push-pull (bus connection) connected in parallel. Fig. (C) is an example of armature cell ring push-pull (bus connection) connected in three phases. (A)図は、本発明を垂直軸風車の羽根の翼端部に適用する場合の抗力羽根の一例として、羽根がサボニウス型である際の平面図である。   (B)図は、本発明を垂直軸風車の羽根の翼端部に適用する場合の抗力羽根の一例として、羽根がサボニウス型である際の側面図である。FIG. 4A is a plan view when the blade is a Savonius type as an example of a drag blade when the present invention is applied to a blade tip portion of a blade of a vertical axis wind turbine. FIG. (B) is a side view when the blade is a Savonius type as an example of the drag blade when the present invention is applied to the blade tip of the blade of a vertical axis wind turbine. (A)図は、本発明を垂直軸風車の羽根の翼端部に適用する場合の揚力羽根の一例として、羽根がジャイロミル型である際の平面図である。   (B)図は、本発明を垂直軸風車の羽根の翼端部に適用する場合の揚力羽根の一例として、羽根がジャイロミル型である際の側面図である。FIG. 4A is a plan view when the blade is a gyromill type as an example of a lift blade when the present invention is applied to the blade tip of the blade of a vertical axis wind turbine. Fig. (B) is a side view when the blade is a gyromill type as an example of a lift blade when the present invention is applied to the blade tip of a blade of a vertical axis wind turbine. (A)図は、シュラウド側も回転ダクト側も互いに逆回転する同軸反転の電磁的周速利用風力発電装置において、電機子が電機子セルコイルである場合に羽根の翼端をシュラウドと回転ダクトにそれぞれ取り付ける場合の一部断面図である。   (B)図は、シュラウド側も回転ダクト側も互いに逆回転する同軸反転の電磁的周速利用風力発電装置において、電機子が電機子セルリング・プッシュプルである場合に羽根の翼端をシュラウドと回転ダクトにそれぞれ取り付ける場合の一部断面図である。(A) The figure shows a coaxially-inverted electromagnetic peripheral speed wind power generator in which both the shroud side and the rotating duct side rotate in the reverse direction. When the armature is an armature cell coil, the blade tip of the blade is used as the shroud and the rotating duct. It is a partial cross section figure in the case of attaching each. (B) The figure shows the blade tip of a blade shroud when the armature is an armature cell ring push-pull in a coaxially reversed electromagnetic peripheral speed wind power generator that rotates in the reverse direction on both the shroud side and the rotating duct side. It is a partial sectional view in the case of attaching to a rotating duct. (A)図は、本発明を垂直軸風車の互いに逆回転する二組の羽根の翼端部に適用する場合に、上段が揚力羽根の一例としてジャイロミル型であり、下段が抗力羽根の一例としてサボニウス型である場合の平面図である。   (B)図は、本発明を垂直軸風車の互いに逆回転する二組の羽根の翼端部に適用する場合に、上段が揚力羽根の一例としてジャイロミル型であり、下段が抗力羽根の一例としてサボニウス型である場合の側面図である。(A) The figure shows that when the present invention is applied to the blade ends of two pairs of blades rotating in the reverse direction of a vertical axis wind turbine, the upper stage is a gyromill type as an example of a lift blade, and the lower stage is an example of a drag blade. It is a top view in the case of being a Savonius type. (B) The figure shows that when the present invention is applied to the blade ends of two pairs of blades rotating in the reverse direction of a vertical axis wind turbine, the upper stage is a gyromill type as an example of a lift blade, and the lower stage is an example of a drag blade. It is a side view in the case of being a Savonius type. (A)図は、垂直軸風車の底部において電磁的に周速を利用した発電を行うために、回転ダクトと電機子セルコイルのプラットホームとしてのシュラウドを構成する際の発電部の一部断面図である。   (B)図は、垂直軸風車の底部において電磁的に周速を利用した発電を行うために回転ダクトと電機子セルリング・プッシュプルのプラットホームとしてのシュラウドを構成する際の発電部の一部断面図である。(A) The figure is a partial cross-sectional view of a power generation unit when a shroud is configured as a platform of a rotary duct and an armature cell coil in order to perform power generation electromagnetically utilizing a peripheral speed at the bottom of a vertical axis wind turbine. is there. (B) The figure shows a part of a power generation unit when a shroud is configured as a platform of a rotary duct and an armature cell ring / push pull in order to perform power generation using electromagnetic peripheral speed at the bottom of a vertical axis wind turbine. It is sectional drawing. (A)図は、サボニウス型の抗力羽根垂直軸風車の底部において電磁的に周速を利用した発電を行うために回転ダクトと電機子セルコイルのプラットホームとしてのシュラウドを構成した場合の平面図の一例である。   (B)図は、サボニウス型の抗力羽根垂直軸風車の底部において電磁的に周速を利用した発電を行うために回転ダクトと電機子セルコイルのプラットホームとしてのシュラウドを構成した場合の側面図の一例である。(A) is an example of a plan view in the case where a shroud as a platform of a rotating duct and an armature cell coil is configured in order to perform electromagnetic power generation using a peripheral speed at the bottom of a Savonius type drag blade vertical axis wind turbine. It is. (B) The figure is an example of a side view in the case where a shroud is configured as a platform of a rotating duct and an armature cell coil in order to perform power generation using electromagnetic peripheral speed electromagnetically at the bottom of a Savonius type drag blade vertical axis wind turbine. It is. (A)図は、ジャイロミル型の揚力羽根垂直軸風車の底部において電磁的に周速を利用した発電を行うために回転ダクトと電機子セルコイルのプラットホームとしてのシュラウドを構成した場合の平面図の一例である。   (B)図は、ジャイロミル型の揚力羽根垂直軸風車の底部において電磁的に周速を利用した発電を行うために回転ダクトと電機子セルコイルのプラットホームとしてのシュラウドを構成した場合の側面図の一例である。(A) is a plan view when a shroud is configured as a platform of a rotating duct and an armature cell coil in order to perform power generation using electromagnetic peripheral speed electromagnetically at the bottom of a gyromill type lifting blade vertical axis wind turbine. It is an example. (B) is a side view of a shroud configured as a platform of a rotating duct and an armature cell coil in order to perform power generation using electromagnetic peripheral speed electromagnetically at the bottom of a gyromill type lift blade vertical axis wind turbine. It is an example. 図は、本発明を水平軸風車に抗力羽根を使用して適用した場合の一例として、多翼型を用いた際の正面図である。なお、図中の回転ビームは、羽根の翼心(翼根)を回転軸に連接している場合には使用しなくてもよい。The figure is a front view when a multi-blade type is used as an example when the present invention is applied to a horizontal axis wind turbine using drag blades. The rotating beam in the figure may not be used when the blade core (blade root) is connected to the rotating shaft. 図は、本発明を水平軸風車に揚力羽根を使用して適用した場合の一例として、プロペラ型を用いた際の正面図である。なお、図中の回転ビームは、羽根の翼心(翼根)を回転軸に連接している場合には使用しなくてもよい。The figure is a front view when a propeller type is used as an example when the present invention is applied to a horizontal axis wind turbine using lift blades. The rotating beam in the figure may not be used when the blade core (blade root) is connected to the rotating shaft. (A)図は、シュラウド側も回転ダクト側も互いに逆回転する同軸反転の電磁的周速利用風力発電装置において、電機子が電機子セルコイルである場合に羽根の翼端をシュラウドと回転ダクトにそれぞれ取り付ける場合の水平軸風車翼端部の一部断面図である。   (B)図は、シュラウド側も回転ダクト側も互いに逆回転する同軸反転の電磁的周速利用風力発電装置において、電機子が電機子セルリング・プッシュプルである場合に羽根の翼端をシュラウドと回転ダクトにそれぞれ取り付ける場合の水平軸風車翼端部の一部断面図である。(A) The figure shows a coaxially-inverted electromagnetic peripheral speed wind power generator in which both the shroud side and the rotating duct side rotate in the reverse direction. When the armature is an armature cell coil, the blade tip of the blade is used as the shroud and the rotating duct. It is a partial cross section figure of the horizontal axis windmill blade edge in the case of attaching each. (B) The figure shows the blade tip of a blade shroud when the armature is an armature cell ring push-pull in a coaxially reversed electromagnetic peripheral speed wind power generator that rotates in the reverse direction on both the shroud side and the rotating duct side. It is a partial cross section figure of the horizontal axis windmill blade edge in the case of attaching to a rotary duct. 図は、本発明を互いに逆回転する同軸反転の二組の羽根を有する水平軸風車に適用した場合に、前方の羽根が揚力羽根であって、後方の羽根が抗力羽根である際の正面図である。なお、図中の回転ビームは、羽根の翼心(翼根)を回転軸に連接している場合には使用しなくてもよい。The figure is a front view when the front blade is a lift blade and the rear blade is a drag blade, when the present invention is applied to a horizontal axis wind turbine having two sets of coaxially inverted blades rotating in reverse to each other. It is. The rotating beam in the figure may not be used when the blade core (blade root) is connected to the rotating shaft. 図は、両側から山地が迫った地域への出入り口となる地形(「隘路口」ともいう)において、1年を通して風向が概ね180°異なる2つの方向に集約される地点に巨大な電磁的周速利用風力発電装置を設置した一例である。このような地点に巨大な電磁的周速利用風力発電装置を設置する際は、電磁的周速利用風力発電装置の回転軸方向を風上(風下)に平行になるように決めたならば、風車全体をシュラウドを介して地形に堅固に設置し、概ね180°の変化がある風向には、電磁的周速利用風力発電装置の羽根のピッチの変更で対処する。このようにすると、大きな発電量を得ることが可能となる。The figure shows a huge electromagnetic circumferential speed at a point where the wind direction is gathered in two directions that differ by approximately 180 ° throughout the year on the topography (also called “Kushiroguchi”), which is the gateway to the area where the mountains approach from both sides. It is an example which installed the utilization wind power generator. When installing a huge electromagnetic peripheral speed wind power generator at such a point, if the rotational axis direction of the electromagnetic peripheral speed wind power generator is determined to be parallel to the windward (leeward), The entire windmill is firmly installed on the terrain through the shroud, and the wind direction with a change of about 180 ° is dealt with by changing the pitch of the blades of the electromagnetic peripheral wind power generator. In this way, it is possible to obtain a large amount of power generation. (A)図は、水平軸風車にスケルトン型シュラウドを用いた場合の電磁的周速利用風力発電装置を平坦な地形に布置装置で設置した場合の一例である。羽根の形状は、風況に応じて(C)~(F)の羽根の選択が可能である。   (B)図は、水平軸風車にスケルトン型シュラウドを用いた場合の電磁的周速利用風力発電装置を傾斜地に布置装置で設置した場合の一例である。羽根の形状は、風況に応じて(C)~(F)の羽根の選択が可能である。   (C)図は、外環を準備し、外環に羽根を固定した抗力羽根の一例である。   (D)図は、外環と内環を準備し、外環と内環を架橋する羽根が抗力羽根のときの架橋羽根の一例である。   (E)図は、外環を準備し、外環に羽根を固定した揚力羽根の一例である。   (F)図は、外環と内環を準備し、外環と内環を架橋する羽根が揚力羽根のときの架橋羽根の一例である。(A) The figure is an example at the time of installing the electromagnetic peripheral speed use wind power generator at the time of using a skeleton type shroud for a horizontal axis windmill on a flat terrain with a laying device. The blade shape can be selected from (C) to (F) depending on the wind conditions. Fig. (B) is an example of a case where the electromagnetic peripheral speed wind power generator is installed on a sloping ground with a laying device when a skeleton type shroud is used for a horizontal axis wind turbine. The blade shape can be selected from (C) to (F) depending on the wind conditions. Figure (C) is an example of a drag blade with an outer ring prepared and a blade fixed to the outer ring. Figure (D) is an example of a bridging blade when the outer and inner rings are prepared and the blade that bridges the outer and inner rings is a drag blade. Fig. (E) is an example of a lift blade with an outer ring prepared and a blade fixed to the outer ring. Fig. (F) is an example of a bridging blade when an outer ring and an inner ring are prepared and the blade that bridges the outer ring and the inner ring is a lift blade. (A)図は、水平軸風車にスケルトン型シュラウドを用いた場合の電磁的周速利用風力発電装置を平坦な地形に布置装置で設置した場合の正面図の一例である。羽根は、架橋羽根の場合を示している。   (B)図は、水平軸風車にスケルトン型シュラウドを用いた場合の電磁的周速利用風力発電装置を平坦な地形に布置装置で設置した場合の側面図の一例である。羽根は、架橋羽根の場合で、架橋羽根が外環の回転面から見て一方に偏って突出していることを示している。   (C)図は、架橋羽根が外環の回転面に対して一方に偏って突出している場合の側面図である。   (D)図は、架橋羽根が外環の回転面に対して一方に偏って突出している場合の一部断面図である。(A) is an example of a front view when an electromagnetic peripheral speed wind power generator is installed on a flat terrain with a laying device when a skeleton type shroud is used for a horizontal axis wind turbine. The blade | wing has shown the case of the bridge | crosslinking blade | wing. Fig. (B) is an example of a side view when the electromagnetic peripheral speed wind power generator when a skeleton type shroud is used for a horizontal axis wind turbine is installed on a flat terrain with a laying device. A blade | wing is the case of a bridge | crosslinking blade | wing and has shown that the bridge | crosslinking blade | wing protrudes in one side seeing from the rotating surface of the outer ring. Fig. (C) is a side view in the case where the bridging blade protrudes in one direction with respect to the rotating surface of the outer ring. Fig. (D) is a partial cross-sectional view in the case where the bridging blade protrudes in one direction with respect to the rotating surface of the outer ring. (A)図は、本発明の電機子セルコイルを組み込んだシュラウド付回転翼の平面図である。   (B)図は、シュラウドや固定支持部を外して回転ダクトや羽根等の回転部分を表す平面図で、外周ハンガーには電機子セルコイル用の作用面の界磁磁石が配設されている。FIG. 2A is a plan view of a rotor blade with a shroud incorporating the armature cell coil of the present invention. (B) is a plan view showing a rotating part such as a rotating duct or a blade by removing the shroud or the fixed support part, and the field hanger for the armature cell coil is disposed on the outer peripheral hanger. 図は、本発明の電機子セルコイルの配置を表す水平断面図である。The figure is a horizontal sectional view showing the arrangement of the armature cell coils of the present invention. (A)図は、本発明の電機子セルリング・プッシュプルを組み込んだシュラウド付回転翼の平面図である。   (B)図は、シュラウドや固定支持部を外して回転ダクトや羽根等の回転部分を表す平面図で、外周ハンガーには電機子セルリング・プッシュプル用の界磁磁石が配設されている。FIG. 2A is a plan view of a rotor blade with a shroud incorporating the armature cell ring push-pull of the present invention. (B) is a plan view showing rotating parts such as rotating ducts and blades with the shroud and fixed support part removed, and field magnets for armature cell rings and push-pulls are arranged on the outer hangers. . 図は、本発明の電機子セルリング・プッシュプルの配置を表す水平断面図である。The figure is a horizontal sectional view showing the arrangement of the armature cell ring and push-pull of the present invention. (A)図は、本発明の電機子セルコイルを組み込んだ急速風向変更装置の平面図である。   (B)図は、シュラウドや固定支持部を外して回転ダクトやターンテーブル等の回転部分を表す平面図で電機子セルコイル用の界磁磁石が配設されている。(A) The figure is a top view of the rapid wind direction change apparatus incorporating the armature cell coil of this invention. (B) is a plan view showing a rotating part such as a rotating duct or a turntable with the shroud and the fixed support part removed, and field magnets for armature cell coils are arranged. 図は、本発明の電機子セルコイルを組み込んだ急速風向変更装置の配置を表す水平断面図である。The figure is a horizontal sectional view showing the arrangement of a rapid wind direction changing device incorporating the armature cell coil of the present invention. (A)図は、本発明の電機子セルリング・プッシュプルを組み込んだ急速風向変更装置の平面図である。   (B)図は、シュラウドや固定支持部を外して回転ダクトやターンテーブル等の回転部分を表す平面図で、外周ハンガーには電機子セルリング・プッシュプル用の界磁磁石が配設されている。FIG. 2A is a plan view of a rapid wind direction changing apparatus incorporating the armature cell ring / push pull of the present invention. (B) is a plan view showing rotating parts such as a rotating duct and a turntable with the shroud and the fixed support part removed, and field magnets for armature cell rings and push-pulls are arranged on the outer hanger. Yes. 図は、本発明の電機子セルリング・プッシュプルを組み込んだ急速風向変更装置の配置を表す水平断面図である。The figure is a horizontal sectional view showing the arrangement of the rapid wind direction changing device incorporating the armature cell ring / push pull of the present invention. (A)図は、本発明の電機子セルコイルと電機子セルリング・プッシュプルとを組み込んだ急速風向変更装置の平面図である。   (B)図は、シュラウドや固定支持部を外して回転ダクトやターンテーブル等の回転部分を表す平面図で、外周ハンガーには電機子セルリング・プッシュプル用の界磁磁石が、内周ハンガーには電機子セルコイル用の界磁磁石が、配設されている。FIG. 2A is a plan view of a rapid air direction changing device incorporating the armature cell coil and the armature cell ring / push pull of the present invention. (B) is a plan view showing rotating parts such as a rotating duct and a turntable with the shroud and fixed support part removed, and the outer peripheral hanger has a field magnet for armature cell rings and push-pulls and an inner peripheral hanger. Is provided with a field magnet for an armature cell coil. 図は、本発明の電機子セルコイルと電機子セルリング・プッシュプルとを組み込んだ急速風向変更装置の配置を表す水平断面図である。The figure is a horizontal sectional view showing the arrangement of a rapid wind direction changing device incorporating the armature cell coil and the armature cell ring / push pull of the present invention. (A)図は、本発明の電機子セルコイルを組み込んだ急速風量発生風向変更装置の正面図である。   (B)図は、シュラウドや固定支持部を外して回転ダクトや羽根等の回転部分を表す正面図で、電機子セルコイル用の界磁磁石が配設されている。FIG. 2A is a front view of a rapid air volume generation wind direction changing apparatus incorporating the armature cell coil of the present invention. (B) is a front view showing a rotating part such as a rotating duct or a blade by removing a shroud or a fixed support part, and a field magnet for an armature cell coil is arranged. 図は、本発明の電機子セルコイルを組み込んだ急速風量発生風向変更装置のシュラウド付回転翼については水平断面図で急速風向変更装置については垂直断面図である。The drawings are a horizontal cross-sectional view of a rotor blade with a shroud and a vertical cross-sectional view of a rapid air direction change device of the rapid air flow generation direction change device incorporating the armature cell coil of the present invention. (A)図は、本発明の電機子セルリング・プッシュプルを組み込んだ急速風量発生風向変更装置の正面図である。   (B)図は、回転ダクトや羽根等の回転部分を表す正面図で、外周ハンガーには電機子セルリング・プッシュプル用の界磁磁石が配設されている。(A) is a front view of a rapid air volume generation wind direction changing device incorporating the armature cell ring push-pull of the present invention. (B) is a front view showing rotating parts such as rotating ducts and blades, and armature cell rings and push-pull field magnets are arranged on the outer peripheral hanger. 図は、本発明の電機子セルリング・プッシュプルを組み込んだ急速風量発生風向変更装置のシュラウド付回転翼については水平断面図で急速風向変更装置については垂直断面図である。The figure is a horizontal sectional view of a rotor blade with a shroud of a rapid air flow generation direction change device incorporating an armature cell ring / push pull of the present invention, and a vertical sectional view of a rapid wind direction change device. 図は、本発明の駆動装置を組み込んだシュラウド付回転翼を格納と展帳を可能にした底板を伴うところのシュラウド付回転翼を、機体の側面に取り付けて巡航時の揚力を発生して飛行する航空機において、揚力発生用として4基、推進力発生用として2基を使用して作製した一例である。The figure shows a flight with a shroud rotor blade that incorporates a shroud incorporating the drive device of the present invention attached to the side surface of the fuselage with a bottom plate that enables storage and exhibition. This is an example in which four aircraft are used for generating lift and two are used for generating propulsive force. 図は、本発明の駆動装置を組み込んだシュラウド付回転翼を、機体の上面から底面までを貫く中空部となる穴に水平位置で取り付け巡航時の揚力を発生して飛行する航空機において、揚力発生用として2基、推進用として急速風量発生風向変更装置を2基で小型の空中航空母艦を作製した一例である。The figure shows the generation of lift in an aircraft that flies by generating lift during cruising by attaching a rotor blade with a shroud incorporating the driving device of the present invention to a hollow hole that penetrates from the top to the bottom of the fuselage in a horizontal position. This is an example in which a small aerial aircraft carrier was manufactured with two units for use and two units for changing the direction of wind generation for propulsion. 図は、本発明の駆動装置を組み込んだシュラウド付回転翼を、機体の上面から底面までを貫く中空部となる穴に水平位置で取り付け巡航時の揚力を発生して飛行する航空機において、揚力発生用として8基、推進用として急速風量発生風向変更装置を4基で大型の空中航空母艦(空中空母)を作製した一例である。The figure shows the generation of lift in an aircraft that flies by generating lift during cruising by attaching a rotor blade with a shroud incorporating the driving device of the present invention to a hollow hole that penetrates from the top to the bottom of the fuselage in a horizontal position. This is an example of producing a large aerial aircraft carrier (air hollow carrier) with eight units for propulsion and four rapid airflow generation wind direction changing devices for propulsion. 図は、本発明の駆動装置を組み込んだシュラウド付回転翼を、機体の上面から底面までを貫く中空部となる穴に水平位置で取り付け巡航時の揚力を発生して飛行する航空機において、揚力発生用として4基、推進用として急速風量発生風向変更装置を4基で巨大な空中クレーンを作製した一例である。The figure shows the generation of lift in an aircraft that flies by generating lift during cruising by attaching a rotor blade with a shroud incorporating the driving device of the present invention to a hollow hole that penetrates from the top to the bottom of the fuselage in a horizontal position. This is an example in which a huge aerial crane is manufactured with four units for use and four units for changing the direction of wind flow for propulsion. 図は、本発明の駆動装置を組み込んだ急速風量発生風向変更装置を、巡航時の前進方向から見た機体の片方の側面当たり1基以上、両側面で2基以上を、底板をもって機体の側面に取り付けて飛行する航空機の一例であるThe figure shows a rapid air volume generating wind direction changing device incorporating the driving device of the present invention with one or more units per side of the aircraft as viewed from the forward direction during cruising, two or more units on both sides, and the side of the aircraft with the bottom plate. Is an example of an aircraft flying on 図は、本発明の駆動装置を組み込んだインホイールモーターを回転軸方向から見た平面図の一例である。The figure is an example of a plan view of an in-wheel motor incorporating the drive device of the present invention as seen from the direction of the rotation axis. 図は、本発明の電機子セルコイルを組み込んだインホイールモーターの駆動部を回転軸に直交する方向から見た一部断面図である。The figure is a partial cross-sectional view of the drive unit of the in-wheel motor incorporating the armature cell coil of the present invention as seen from the direction orthogonal to the rotation axis. 図は、本発明の電機子セルリング・プッシュプルを組み込んだインホイールモーターの駆動部を回転軸に直交する方向から見た一部断面図である。The figure is a partial cross-sectional view of an in-wheel motor drive unit incorporating the armature cell ring / push pull of the present invention as seen from a direction perpendicular to the rotation axis.
       1 最大間隙
       2 遊び
       3 最小間隙(=270 滑走部の厚み)
     100 電機子セル
     110 導線
     111 導線の中の電流の向き(手前から向こうへ)
     112 導線の中の電流の向き(向こうから手前へ)
     120 磁束
     131 回転ダクトの進行方向
     132 回転ダクトの駆動方向
     200 シュラウド
     201 シュラウド(回転ダクトの外側に設置)
     202 シュラウド(回転ダクトの内側に設置)
     203 シュラウド(スケルトン型)
     204 周回帯
     211 シュラウドの外周部
     212 シュラウドの内周部
     220 保持骨格
     221 保持骨格(電機子セルコイル用)
     222 保持骨格(電機子セルリング・プッシュプル用)
     231 接続部
     232 バネ部
     233 動力部
     234 腕部
     235 伸縮腕部(ピストンシリンダーやウォームネジを内蔵)
     236 繋留部
     237 緩衝材
     238 シリコンゴムブロック材
     241 動力部(液圧発生)
     242 動力部(ウォームネジ回転)
     243 動力部(空気タービン)
     244 液圧パイプ
     245 空気圧パイプ
     250 滑走部
     251 滑走部(穴無)
     252 滑走部(穴有)
     261 漏穴
     262 微細球
     263 潤滑剤/減摩剤
     270 滑走部の厚み(=3 最小間隙)
     300 電機子セルコイル
     310 電機子セルコイルの厚み
     320 巻線コイル
     330 軸心
     331 軸心(磁性体)
     332 軸心(非鉄金属、非金属または筒のみで実質的に空心)
     400 電機子セルリング・プッシュプル
     410 電機子セルリング・プッシュプルの厚み
     420 リング状巻線
     430 ストレッチガイド
     431 ストレッチガイド(パイプ材)
     432 ストレッチガイド(モールド材)
     433 前方ストレッチガイド
     434 後方ストレッチガイド
     500 界磁磁石
     501 界磁磁石(電機子セルコイル用)
     502 界磁磁石(電機子セルリング・プッシュプル用)
     600 回転ダクト
     611 (回転ダクト)外周面
     612 (回転ダクト)内周面
     613 外周ハンガー
     614 内周ハンガー
     621 翼端/ターンテーブル取付具
     622 翼端取付具(同軸反転用)
     631 羽根
     632 架橋羽根(外環と内環とを架橋する羽根)
     633 外環
     634 内環
     635 ターンテーブル
     700 電磁的周速利用風力発電装置
     711 垂直軸風車の抗力羽根(サボニウス型で代表)
     712 垂直軸風車の揚力羽根(ジャイロミル型で代表)
     721 水平軸風車の抗力羽根(多翼型で代表)
     722 水平軸風車の揚力羽根(プロペラ型で代表)
     731 固定支持部
     732 回転ビーム
     733 回転軸
     734 方向変更装置
     735 俯仰調整装置
     736 支柱
     740 布置装置
     800 シュラウド付回転翼
     810 急速風向変更装置
     820 急速風量発生風向変更装置
     830 格納と展帳を可能にした底板を伴うところのシュラウド付回転翼
     831 格納/展帳装置
     832 底板
     841 航空機(艦載機)
     842 クレーン
     900 インホイールモーター
     910 荷重伝達ベアリング
     911 フリーアクションベアリング
     912 軌道滑走路
     913 ベアリング固定補助板
     914 スラストベアリング
     915 ラジアルベアリング
     920 タイヤ
     930 リム
     940 回転リング
     951 バルブ(タイヤ圧充填用)
     952 バルブ(チッ素タンク充填用)
     960 冷却フィン
1 Maximum gap 2 Play 3 Minimum gap (= 270 thickness of sliding part)
100 Armature cell 110 Conductor 111 Direction of current in the conductor (from the front to the other)
112 Direction of current in the conductor (from the other side to the front)
120 Magnetic flux 131 Traveling direction of rotating duct 132 Driving direction of rotating duct 200 Shroud 201 Shroud (installed outside rotating duct)
202 Shroud (installed inside the rotating duct)
203 Shroud (skeleton type)
204 orbital zone 211 outer periphery of shroud 212 inner periphery of shroud 220 holding skeleton 221 holding skeleton (for armature cell coil)
222 Retaining frame (for armature cell ring and push-pull)
231 Connection portion 232 Spring portion 233 Power portion 234 Arm portion 235 Extendable arm portion (built-in piston cylinder and worm screw)
236 Anchor part 237 Buffer material 238 Silicon rubber block material 241 Power part (hydraulic pressure generation)
242 Power section (worm screw rotation)
243 Power unit (air turbine)
244 Hydraulic pipe 245 Pneumatic pipe 250 Sliding part 251 Sliding part (no hole)
252 Planing part (with holes)
261 Leakage hole 262 Fine sphere 263 Lubricant / lubricant 270 Sliding part thickness (= 3 minimum gap)
300 Armature Cell Coil 310 Armature Cell Coil Thickness 320 Winding Coil 330 Axis Center 331 Axis Center (Magnetic Material)
332 shaft center (non-ferrous metal, non-metal, or tube is essentially empty)
400 Armature Cell Ring / Push Pull 410 Armature Cell Ring / Push Pull Thickness 420 Ring-shaped Winding 430 Stretch Guide 431 Stretch Guide (Pipe Material)
432 Stretch guide (mold material)
433 Front stretch guide 434 Back stretch guide 500 Field magnet 501 Field magnet (for armature cell coil)
502 Field Magnet (for Armature Cell Ring / Push Pull)
600 Rotating duct 611 (Rotating duct) outer peripheral surface 612 (Rotating duct) inner peripheral surface 613 Outer peripheral hanger 614 Inner peripheral hanger 621 Blade tip / turntable fixture 622 Blade tip fixture (for coaxial reversal)
631 blade 632 bridge blade (blade that bridges outer ring and inner ring)
633 Outer ring 634 Inner ring 635 Turntable 700 Wind generator with electromagnetic peripheral speed 711 Drag blade of vertical axis wind turbine (represented by Savonius type)
712 Lifting blades of vertical axis wind turbine (represented by gyromill type)
721 Drag blade of horizontal axis wind turbine (represented by multi-wing type)
722 Lifting blade of horizontal axis wind turbine (represented by propeller type)
731 Fixed support portion 732 Rotating beam 733 Rotating shaft 734 Direction changing device 735 Elevation adjusting device 736 Post 740 Laying device 800 Rotor blade with shroud 810 Rapid air direction changing device 820 Rapid air volume generating air direction changing device 830 Bottom plate enabling storage and extension Rotor blade with shroud 831 Storage / exhibition device 832 Bottom plate 841 Aircraft (ship machine)
842 Crane 900 In-wheel motor 910 Load transmission bearing 911 Free action bearing 912 Track runway 913 Bearing fixing auxiliary plate 914 Thrust bearing 915 Radial bearing 920 Tire 930 Rim 940 Rotating ring 951 Valve (for tire pressure filling)
952 Valve (for filling nitrogen tank)
960 cooling fin

Claims (15)

  1. 一つひとつが独立したセル状の電機子(以下、「電機子セル」という)を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の発電機において、回転ダクトの外周面と回転ダクトを周回し界磁磁石を配設した外周方向への張り出し部(以下、「外周ハンガー」という)とから成る略コの字型の中空部や、回転ダクトの内周面と回転ダクトを周回し界磁磁石を配設した内周方向への張り出し部(以下、「内周ハンガー」という)とから成る略コの字型の中空部や、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の中空部に、シュラウド側に配設したコイル状に導線を巻回した電機子セルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成して滑走面とした部位(以下、「滑走部」という)を有して一つと成した装置(以下、「電機子セルコイル」という)を、シュラウドに設置して当該電機子セルコイルをシュラウドに取り付ける接続部と、当該電機子セルコイルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルコイルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石で電機子セルコイルを回転軸に平行するアキシャル方向での両側から挟む形で磁界を構成した中を当該電機子セルコイルが通過できるように構成したことを特徴とし、界磁磁石の磁界を当該電機子セルコイルの導線で切ることによって誘導電流を発生させて発電する発電装置。 A shroud in which two or more individual cell-like armatures (hereinafter referred to as “armature cells”) are arranged on the circumference in a point-symmetric relationship as viewed from the center of the rotating duct, and the rotating duct extends. An axial gap generator comprising a combination of two or more rotating ducts arranged at a point-symmetrical position as seen from the center of the rotating duct on the circumference, in the axial gap type generator And a substantially U-shaped hollow portion that circulates around the rotating duct and extends in the outer peripheral direction (hereinafter referred to as “outer peripheral hanger”), and the inner peripheral surface of the rotating duct and the rotating duct. A substantially U-shaped hollow part consisting of a part extending in the inner peripheral direction (hereinafter referred to as an “inner peripheral hanger”) around which the field magnet is arranged, and the outer hanger and the inner peripheral hanger are back to back Hollow part The armature cell in which the conductive wire is wound in the shape of a coil disposed on the shroud side is coated with a low friction coefficient material or a lubricant / lubricant at both ends in the direction parallel to the rotation axis of the rotating duct. A device (hereinafter referred to as an “armature cell coil”) having a part (hereinafter referred to as “sliding part”) having a structure (hereinafter referred to as a “sliding part”) by performing at least one of the treatments of the mechanism, It has a connection part that is installed on the shroud and attaches the armature cell coil to the shroud, a tether part that anchors the armature cell coil, and an arm part that constitutes an arm between the connection part and the tether part, and rotates. While not receiving stress from the axial direction parallel to the axis, the holding skeleton that holds the armature cell coil without contacting the substantially U-shaped or substantially U-shaped hollow portion of the rotating duct. Of the hollow part A magnetic field is formed by inserting the armature cell coil from both sides in the axial direction parallel to the rotation axis with field magnets inserted from the mouth and arranged on the outer hanger or inner hanger of the rotating duct. A power generator configured to generate power by generating an induced current by cutting a magnetic field of a field magnet by a conductor of the armature cell coil, which is configured to allow a child cell coil to pass through.
  2. 一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の電動機において、回転ダクトの外周面と外周ハンガーとから成る略コの字型の中空部や、回転ダクトの内周面と内周ハンガーとから成る略コの字型の中空部や、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の中空部に、シュラウド側に配設したコイル状に導線を巻回した電機子セルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有して一つと成した電機子セルコイルを、シュラウドに設置して当該電機子セルコイルをシュラウドに取り付ける接続部と、当該電機子セルコイルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルコイルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石で電機子セルコイルを回転軸に平行するアキシャル方向での両側から挟む形で磁界を構成した中を当該電機子セルコイルが通過できるように構成したことを特徴とし、当該電機子セルコイルの導線に電流を印加して、回転ダクトの界磁磁石に回転磁界を与え回転ダクトを駆動する電動機の駆動装置。 A shroud in which two or more independent cell-like armature cells are arranged on the circumference in a point-symmetrical position as viewed from the center of the rotating duct, and a field magnet is arranged on the circumference of the rotating duct In an axial gap type electric motor constructed by combining two or more rotating ducts arranged at point-symmetrical positions as viewed from the center of the rotating duct, the substantially U-shape consisting of the outer peripheral surface of the rotating duct and the outer peripheral hanger In the hollow part of the mold, the substantially U-shaped hollow part composed of the inner peripheral surface of the rotating duct and the inner peripheral hanger, and the substantially E-shaped hollow part in which the outer peripheral hanger and the inner peripheral hanger are back to back, Mechanism of applying a lubricant / lubricant consisting of a low friction coefficient material to both ends in a direction parallel to the rotation axis of the rotating duct of the armature cell in which the conductive wire is wound in a coil shape disposed on the shroud side At least of having An armature cell coil having a sliding portion that has performed either one of the treatments is installed on the shroud and the armature cell coil is attached to the shroud; and the anchoring portion that anchors the armature cell coil. The armature cell coil has an approximately U-shape of the rotating duct while it has an arm portion that constitutes an arm between the connecting portion and the anchoring portion and is not subjected to stress from an axial direction parallel to the rotation axis. A holding skeleton that holds without contact with the mold or the substantially U-shaped hollow part, and is inserted from the opening of the substantially U-shaped or substantially E-shaped hollow part, and the outer hanger or inner hanger of the rotating duct. The armature cell coil is configured so that the armature cell coil can pass through a magnetic field formed by sandwiching the armature cell coil from both sides in the axial direction parallel to the rotation axis by the field magnet disposed in Child Serco Electric current was applied to the conductor of Le, the motor driving device for driving the rotary duct giving a rotating magnetic field to the field magnet of the rotary duct.
  3. 一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の発電機において、回転ダクトの外周面と外周ハンガーとが作る略コの字型の断面を成した中空部か、回転ダクトの内周面と内周ハンガーとが作る略コの字型の断面を成した中空部か、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の断面を成した中空部かのいずれか一つの中空部に、巻線となる導線を通す際に回転ダクトの回転軸に直交する方向に巻線の直線部分を形成するためのガイド(以下、「ストレッチガイド」という)を2個用いて巻線となる導線をリング状に巻回した電機子セル(以下、「電機子セルリング・プッシュプル」という)の回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有した電機子セルリング・プッシュプルを、シュラウドに設置して当該電機子セルリング・プッシュプルをシュラウドに取り付ける接続部と、当該電機子セルリング・プッシュプルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルリング・プッシュプルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが向かってくる方向にあるストレッチガイドを前方ストレッチガイドとした場合に、前方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせと、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが遠ざかる方向にあるストレッチガイドを後方ストレッチガイドとした場合に、後方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせとが、互いに逆方向の磁束の向きとなるように2つの磁界を構成し、当該電機子セルリング・プッシュプルの前方ストレッチガイドと後方ストレッチガイドとが、2つの磁界の中を同時刻に通過できるように回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせと関係位置合わせとをして構成したことを特徴とし、界磁磁石の磁界を当該電機子セルリング・プッシュプルのストレッチガイド中の導線が切ることによって誘導電流を発生させて発電する発電装置。 A shroud in which two or more independent cell-like armature cells are arranged on the circumference in a point-symmetrical position as viewed from the center of the rotating duct, and a field magnet is arranged on the circumference of the rotating duct In an axial gap type generator constructed by combining two or more rotating ducts arranged at point-symmetrical positions as viewed from the center of the rotating duct, the outer peripheral surface of the rotating duct and the outer hanger are substantially A hollow part with a U-shaped cross section, a hollow part with a substantially U-shaped cross section made by the inner peripheral surface of the rotating duct and the inner peripheral hanger, or an abbreviated back-to-back outer peripheral hanger and inner peripheral hanger For forming a straight portion of the winding in a direction perpendicular to the rotation axis of the rotating duct when passing a conducting wire as a winding through any one of the hollow portions having a cross-section of the D-shape. Guide (“Stretch Guide”) Both ends of the armature cell (hereinafter referred to as “armature cell ring / push-pull”) in which the lead wire is wound in a ring shape using two of the two in the direction parallel to the rotation axis of the rotating duct An armature cell ring push-pull having a sliding portion made of a material having a low coefficient of friction or having a mechanism for applying a lubricant / lubricant is installed on the shroud. A connecting portion for attaching the armature cell ring / push pull to the shroud, a tether portion for anchoring the armature cell ring / push pull, and an arm portion constituting an arm between the connecting portion and the tether portion. While the armature cell ring / push pull is not subjected to stress from the axial direction parallel to the rotation axis, the armature cell ring / push pull is held without contacting the substantially U-shaped or substantially U-shaped hollow portion of the rotating duct. Holding bone Then, insert the stretch guide in the direction in which the rotating duct faces from the center part of the armature cell ring / push pull by inserting it through the opening of the hollow part of the substantially U-shape or substantially E-shape. When a front stretch guide is used, a combination of field magnets arranged on the outer hanger or inner hanger of the rotating duct in such a manner that the front stretch guide is sandwiched from both sides in the axial direction parallel to the rotation axis, and the armature cell When the stretch guide in the direction of moving away from the center of the ring / push pull is a rear stretch guide, the outer periphery of the rotary duct is sandwiched from both sides in the axial direction parallel to the rotation axis. Configures two magnetic fields so that the combination of field magnets on the hanger or inner hanger has the opposite direction of magnetic flux The armature cell ring push-pull front stretch guide and rear stretch guide can pass through the two magnetic fields at the same time, and the rotating duct side field magnet and shroud side armature cell ring It is characterized by combining the push-pull with the corresponding position, and by generating the induced current by cutting the magnetic field of the field magnet by the conductor in the stretch guide of the armature cell ring / push pull. A power generator that generates electricity.
  4. 一つひとつが独立したセル状の電機子セルを円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設したシュラウドと、回転ダクトの張り出し部に界磁磁石を円周上に回転ダクトの中心から見て点対称の関係位置で2個以上配設した回転ダクトとを組み合わせて構成したアキシャルギャップ型の電動機において、回転ダクトの外周面と外周ハンガーとが作る略コの字型の断面を成した中空部か、回転ダクトの内周面と内周ハンガーとが作る略コの字型の断面を成した中空部か、外周ハンガーと内周ハンガーとを背中合わせにした略エの字型の断面を成した中空部かのいずれか一つの中空部に、巻線となる導線を通す際に回転ダクトの回転軸に直交する方向に巻線の直線部分を形成するためのストレッチガイドを2個用いて巻線となる導線をリング状に巻回した電機子セルリング・プッシュプルの回転ダクトの回転軸に平行する方向での両端部に低摩擦係数の物質から成るか潤滑剤/減摩剤を塗布する仕組みを有するかの少なくともいずれか一方の処置を成した滑走部を有した電機子セルリング・プッシュプルを、シュラウドに設置して当該電機子セルリング・プッシュプルをシュラウドに取り付ける接続部と、当該電機子セルリング・プッシュプルを繋留する繋留部と、接続部と繋留部との間の腕を構成する腕部とを有して、回転軸に平行するアキシャル方向からの応力を受けない間は、当該電機子セルリング・プッシュプルを回転ダクトの略コの字型や略エの字型中空部に接することなく保持する保持骨格で、略コの字型や略エの字型の中空部の開口部から挿入して、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが向かってくる方向にある前方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせと、当該電機子セルリング・プッシュプルの中央部から見て回転ダクトが遠ざかる方向にある後方ストレッチガイドを回転軸に平行するアキシャル方向での両側から挟む形で回転ダクトの外周ハンガーや内周ハンガーに配設した界磁磁石の組み合わせとが、互いに逆方向の磁束の向きとなるように2つの磁界を構成し、当該電機子セルリング・プッシュプルの前方ストレッチガイドと後方ストレッチガイドとが、2つの磁界の中を同時刻に通過できるように回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせと関係位置合わせとをして構成したことを特徴とし、当該電機子セルリング・プッシュプルの前方ストレッチガイド中の導線に流れる電流の向きと後方ストレッチガイド中の導線に流れる電流の向きとが、同時刻に互いに逆方向になるように印加して、回転ダクトの界磁磁石に当該電機子セルリング・プッシュプルに発生する力の反作用として駆動力を与え回転ダクトを駆動する電動機の駆動装置。 A shroud in which two or more independent cell-like armature cells are arranged on the circumference in a point-symmetrical position as viewed from the center of the rotating duct, and a field magnet is arranged on the circumference of the rotating duct In an axial gap type electric motor constructed by combining two or more rotating ducts arranged at point-symmetrical positions as viewed from the center of the rotating duct, the substantially U-shape formed by the outer peripheral surface of the rotating duct and the outer peripheral hanger A hollow part with a cross-section of the mold, a hollow part with a substantially U-shaped cross-section made by the inner peripheral surface of the rotating duct and the inner peripheral hanger, or an approximate air with the outer hanger and inner hanger back to back. Stretch to form a straight part of the winding in the direction perpendicular to the rotation axis of the rotating duct when passing the conducting wire to the winding in any one of the hollow parts having a cross-section of Using two guides and winding A mechanism to apply a lubricant / lubricant consisting of a material with a low coefficient of friction to both ends in the direction parallel to the rotation axis of the rotating duct of the armature cell ring / push-pull winding wire wound in a ring shape An armature cell ring push-pull having a sliding portion that has at least one of the treatments installed on the shroud and the armature cell ring push-pull is attached to the shroud; and the armature While having a tether part that anchors the cell ring push-pull, and an arm part that constitutes an arm between the tether part and the tether part, while receiving no stress from the axial direction parallel to the rotation axis, A holding skeleton that holds the armature cell ring and push-pull without contacting the substantially U-shaped or substantially U-shaped hollow part of the rotating duct, and the opening of the substantially U-shaped or substantially E-shaped hollow part. Insert from the part The outer hanger and inner hanger of the rotating duct are sandwiched from both sides in the axial direction parallel to the rotation axis with the front stretch guide in the direction in which the rotating duct faces as viewed from the center of the armature cell ring / push pull. A combination of field magnets arranged on the rear and a rear stretch guide in the direction away from the rotating duct when viewed from the center of the armature cell ring / push pull, sandwiched from both sides in the axial direction parallel to the rotation axis Two magnetic fields are formed so that the outer magnet hanger and the combination of field magnets arranged on the inner hanger of the rotating duct are in opposite directions of the magnetic flux, and the front stretch of the armature cell ring push-pull The field magnet on the rotating duct side and the shroud so that the guide and the rear stretch guide can pass through the two magnetic fields at the same time. The direction of the current flowing through the conductor in the front stretch guide of the armature cell ring / push pull and the rear direction of the armature cell ring / push pull The direction of the current flowing through the conductor in the stretch guide is applied so that they are opposite to each other at the same time, and the field magnet of the rotating duct is driven as a reaction of the force generated in the armature cell ring / push pull. A motor drive device that applies force to drive a rotating duct.
  5. 界磁磁石を外周ハンガーや内周ハンガーに配設した回転ダクトと回転ダクトの略コの字型の中空部に挿入するシュラウド側に配設した電機子セルとの組み合わせから成る請求項3の発電機の発電部の電機子セルの巻線部分や請求項4の電動機の駆動部の電機子セルの巻線部分を構成する際において、巻線となる導線を通すための通過口となって回転ダクトの回転軸に直交する方向に巻線の直線部分を形成することを特徴とするパイプ材かモールド材かの少なくともいずれか一方から作られていて、電機子セルの巻線部分の部品となるストレッチガイド。 4. The power generation according to claim 3, comprising a combination of a rotating duct disposed on the outer peripheral hanger or the inner peripheral hanger and an armature cell disposed on the shroud side inserted into a substantially U-shaped hollow portion of the rotating duct. When forming the winding part of the armature cell of the power generation part of the machine and the winding part of the armature cell of the driving part of the motor according to claim 4, it is rotated as a passage port for passing the conducting wire serving as the winding It is made of at least one of a pipe material and a molding material, and is a part of the winding portion of the armature cell, characterized by forming a linear portion of the winding in a direction perpendicular to the rotation axis of the duct. Stretch guide.
  6. 界磁磁石を外周ハンガーや内周ハンガーに配設した回転ダクトと回転ダクトの略コの字型の中空部に挿入するシュラウド側に配設した電機子セルとの組み合わせから成る請求項3の発電機の発電部の電機子セルの巻線部分や請求項4の電動機の駆動部の電機子セルの巻線部分を構成する際において、請求項5のストレッチガイドを回転ダクトの回転軸に直交する方向に巻線の直線部分を形成するために2個で1組として用い、2個で1組のストレッチガイドのうち2個で1組の中央部から見て、回転ダクトが向かってくる方向にあるストレッチガイドを前方ストレッチガイド、回転ダクトが遠ざかる方向にあるストレッチガイドを後方ストレッチガイドとした場合に、前方ストレッチガイドの最前方の通過口から後方ストレッチガイドの最前方の通過口へ、前方ストレッチガイドの中間部の通過口から後方ストレッチガイドの中間部の通過口へ、前方ストレッチガイドの最後方の通過口から後方ストレッチガイドの最後方の通過口へと順次巻線となる導線をリング状に巻回して一つの電機子セルと成したことを特徴とする電機子セルリング・プッシュプル。 4. The power generation according to claim 3, comprising a combination of a rotating duct disposed on the outer peripheral hanger or the inner peripheral hanger and an armature cell disposed on the shroud side inserted into a substantially U-shaped hollow portion of the rotating duct. When the winding part of the armature cell of the power generation part of the machine and the winding part of the armature cell of the driving part of the motor of claim 4 are configured, the stretch guide of claim 5 is orthogonal to the rotation axis of the rotary duct. In order to form a straight portion of the winding in the direction, two are used as one set, and two of the one set of stretch guides are viewed from the center of one set, in the direction in which the rotating duct comes When one stretch guide is the front stretch guide and the stretch guide in the direction away from the rotating duct is the rear stretch guide, the front stretch guide is located at the forefront of the rear stretch guide. Winding sequentially from the middle passage port of the front stretch guide to the middle passage port of the rear stretch guide, from the last passage port of the front stretch guide to the last passage port of the rear stretch guide An armature cell ring push-pull characterized in that a single armature cell is formed by winding a conducting wire to be a ring.
  7. 翼端を連結して羽根と共に回転する回転ダクトと、地上や水上(船上を含む)に対して静止しているシュラウドとを備え、風車の周速を利用して発電する風車のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる発電部を有する請求項1の発電装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる発電部を有する請求項3の発電装置かの少なくともいずれか一方の仕組みで発電することを特徴とした風車。 Among the wind turbines that have a rotating duct that connects the blade tips and rotates together with the blades, and a shroud that is stationary with respect to the ground and the water (including on the ship), and that generates power using the peripheral speed of the wind turbine, the rotating duct 2. A power generating device according to claim 1 having a power generation unit by a combination of a side field magnet and a shroud side armature cell coil, or a combination of a rotary duct side field magnet and a shroud side armature cell ring / push pull. A wind turbine characterized in that power is generated by at least one of the mechanisms of the power generator according to claim 3 having a power generator.
  8. 互いに逆回転する羽根を二組備え、一方の羽根の翼端を回転ダクトで連結し、他方の羽根の翼端をシュラウドで連結して羽根の相互間の周速を利用して発電する風車のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる発電部を有する請求項1の発電装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる発電部を有する請求項3の発電装置かの少なくともいずれか一方の仕組みで発電することを特徴とした風車。 A wind turbine that has two sets of blades that rotate in reverse to each other, connects the blade tips of one blade with a rotating duct, connects the blade tips of the other blade with a shroud, and uses the peripheral speed between the blades to generate electricity. 2. The power generating device according to claim 1, further comprising a power generation unit comprising a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side, or a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side. A wind turbine characterized in that power is generated by at least one of the mechanisms of the power generation device according to claim 3 having a power generation unit in combination with the power generation unit.
  9. 同期電動機や誘導電動機の駆動原理を回転翼の翼端部に適用して航空機の飛行に供するシュラウド付回転翼のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部を有する請求項2の駆動装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部を有する請求項4の駆動装置かの少なくともいずれか一方の仕組みを翼端部に組み込んで作製したことを特徴とするシュラウド付回転翼。 Among the rotor blades with shrouds that are used for aircraft flight by applying the driving principle of synchronous motors or induction motors to the blade tips of rotor blades, driving by a combination of field magnets on the rotating duct side and armature cell coils on the shroud side 5. The drive device according to claim 2, further comprising: a drive unit comprising a combination of a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side. A rotating blade with a shroud, characterized by incorporating the mechanism into the blade tip.
  10. シュラウド付回転翼の回転ダクトの内周部に連接した羽根を取り外してその代わりに円盤状や円筒状のターンテーブルを回転ダクトの内周部に取り付けて作製し、シュラウド付回
    転翼を取り付けるための台座となるターンテーブルでシュラウド付回転翼の風力の吹き出し方向を自在に変更できる急速風向変更装置のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部を有する請求項2の駆動装置か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部を有する請求項4の駆動装置かの少なくともいずれか一方の仕組みでシュラウド付回転翼の台座としてのターンテーブルを駆動することを特徴とする急速風向変更装置。
    To remove the blade connected to the inner periphery of the rotating duct of the rotor blade with shroud and replace it with a disk-shaped or cylindrical turntable attached to the inner periphery of the rotating duct to install the rotor blade with shroud Among the rapid wind direction changing devices that can freely change the blowing direction of the wind force of the rotating blade with shroud on the turntable serving as a pedestal, it has a drive unit by a combination of a field magnet on the rotating duct side and an armature cell coil on the shroud side A drive unit according to claim 2 or a drive unit comprising a combination of a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side. A rapid wind direction changing device characterized by driving a turntable as a base of a rotary blade.
  11. 風力を発生するシュラウド付回転翼とシュラウド付回転翼を取り付けるためのターンテーブルとなって回転ダクトの発生した風力の吹き出し方向を変更を自在に行う急速風向変更装置とを一体化した急速風量発生風向変更装置のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルか、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルかの少なくともいずれか一方の仕組みで回転翼を駆動する請求項9のシュラウド付回転翼と、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルか、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルかの少なくともいずれか一方の仕組みでターンテーブルを駆動する請求項10の急速風向変更装置とを組合せて作製したことを特徴とする風力の発生と風力の吹き出し方向の変更とを自在に行う急速風量発生風向変更装置。 Wind speed generating wind direction integrated with a rotor blade with shroud that generates wind power and a quick wind direction changing device that freely changes the blowing direction of the wind force generated by the rotating duct as a turntable for mounting the rotor blade with shroud Among the changing devices, the rotor blades are operated by at least one of the field magnet on the rotating duct side and the armature cell coil on the shroud side, or the field magnet on the rotating duct side and the armature cell ring / push pull on the shroud side. At least one of a rotor blade with a shroud and a field magnet on the rotating duct side and an armature cell coil on the shroud side, or a field magnet on the rotating duct side and an armature cell ring push-pull on the shroud side. The turntable is driven by any one of the mechanisms and manufactured in combination with the rapid wind direction changing device according to claim 10. That wind generation and wind blowing directions of changes and rapid airflow generation wind direction changing devices for performing freely.
  12. 底板の内部にシュラウド付回転翼の回転面を平行に寝かせて格納したり底板にシュラウド付回転翼の回転面を立たせて直交するように展帳したりするための装置を内蔵してシュラウド付回転翼の格納と展帳を可能にした底板を伴うところのシュラウド付回転翼を、機体の側面に取り付けて巡航時の揚力を発生して飛行する航空機のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部かの少なくともいずれか一方の仕組みを有する請求項9のシュラウド付回転翼を備えていることを特徴とする航空機。 Rotating with shroud with a built-in device to store the rotating surface of the rotor blade with shroud in parallel in the bottom plate or to stand perpendicularly with the rotating surface of the rotor blade with shroud standing on the bottom plate Of the aircraft that fly by generating a lift during cruise by attaching a shroud-equipped rotor wing with a bottom plate that enables storage and exhibition of wings, field magnets and shrouds on the rotating duct side 10. A mechanism having at least one of a drive unit in combination with a side armature cell coil and a drive unit in combination with a field magnet on a rotating duct side and an armature cell ring / push pull on a shroud side. An aircraft characterized by comprising a rotor blade with a shroud.
  13. 機体の上面から底面までを貫く中空部となる穴に、シュラウド付回転翼を水平位置で取り付け巡航時の揚力を発生して飛行する航空機のうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる駆動部か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる駆動部かの少なくともいずれか一方の仕組みを有する請求項9のシュラウド付回転翼を備えていることを特徴とする航空機。 Of the aircraft that fly by generating lift during cruising by installing a rotor blade with a shroud in a horizontal position in a hollow hole that penetrates from the top surface to the bottom surface of the fuselage, a field magnet on the rotating duct side and an electric device on the shroud side 10. With a shroud mechanism according to claim 9, comprising at least one of a driving unit in combination with a child cell coil and a driving unit in combination with a field magnet on the rotating duct side and an armature cell ring / push pull on the shroud side. An aircraft comprising a rotary wing.
  14. 急速風量発生風向変更装置を、巡航時の前進方向から見た機体の片方の側面当たり1基以上、両側面で2基以上を、機体の側面に取り付けて飛行する航空機のうち、風力を発生するシュラウド付回転翼と、シュラウド付回転翼を取り付けるための台座となってシュラウド付回転翼の発生した風力の吹き出し方向を自在に変更可能にする急速風向変更装置とを一体化した請求項11の急速風量発生風向変更装置を備えていることを特徴とする航空機。 One or more aircraft per side of the aircraft as seen from the forward direction during cruising, and 2 or more aircraft on both sides of the aircraft, which are installed on the side of the aircraft, generate wind power. The rapid blade direction change device according to claim 11, wherein the rotor blade with shroud and the rapid wind direction changing device which is a pedestal for mounting the rotor blade with shroud and can freely change the blowing direction of the wind force generated by the rotor blade with shroud are integrated. An aircraft comprising an air volume generating wind direction changing device.
  15. 車輪の内部に駆動装置を有するインホイールモーターのうち、回転ダクト側の界磁磁石とシュラウド側の電機子セルコイルとの組み合わせによる請求項2の駆動部か、回転ダクト側の界磁磁石とシュラウド側の電機子セルリング・プッシュプルとの組み合わせによる請求項4の駆動部かの少なくともいずれか一方の仕組みを駆動部の構造とすることを特徴とするインホイールモーター。 Of the in-wheel motor having a driving device inside the wheel, the drive unit according to claim 2 or a combination of the field magnet on the rotating duct side and the armature cell coil on the shroud side, or the field magnet and shroud side on the rotating duct side. An in-wheel motor characterized in that at least one of the mechanisms according to claim 4 in combination with the armature cell ring / push-pull has a structure of the drive section.
PCT/JP2009/058251 2009-04-27 2009-04-27 Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct WO2010125629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058251 WO2010125629A1 (en) 2009-04-27 2009-04-27 Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058251 WO2010125629A1 (en) 2009-04-27 2009-04-27 Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct

Publications (1)

Publication Number Publication Date
WO2010125629A1 true WO2010125629A1 (en) 2010-11-04

Family

ID=43031797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058251 WO2010125629A1 (en) 2009-04-27 2009-04-27 Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct

Country Status (1)

Country Link
WO (1) WO2010125629A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167670A3 (en) * 2012-05-09 2014-01-09 Aktiebolaget Skf Device having at least one pancake motor rotor and assembly method
CN113140859A (en) * 2021-04-17 2021-07-20 深圳市驰普科达科技有限公司 Battery pack management device capable of reducing power loss in standby
WO2022122367A1 (en) * 2020-12-11 2022-06-16 Rolls-Royce Deutschland Ltd & Co Kg Electric motor for an aircraft engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284263A (en) * 1994-04-11 1995-10-27 Nippondenso Co Ltd Motor and its manufacture
JP2001054270A (en) * 1999-08-05 2001-02-23 Sankyo Seiki Mfg Co Ltd Counterposed type motor
JP2001353472A (en) * 2000-06-14 2001-12-25 Tokyo Parts Ind Co Ltd Shaftless vibration motor
JP3946755B1 (en) * 2006-09-25 2007-07-18 快堂 池田 Drive unit using clearance holding bearing and aircraft equipped with the drive unit
JP4015175B1 (en) * 2006-12-21 2007-11-28 快堂 池田 Wind power generator that electromagnetically uses the peripheral speed of the blade tip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284263A (en) * 1994-04-11 1995-10-27 Nippondenso Co Ltd Motor and its manufacture
JP2001054270A (en) * 1999-08-05 2001-02-23 Sankyo Seiki Mfg Co Ltd Counterposed type motor
JP2001353472A (en) * 2000-06-14 2001-12-25 Tokyo Parts Ind Co Ltd Shaftless vibration motor
JP3946755B1 (en) * 2006-09-25 2007-07-18 快堂 池田 Drive unit using clearance holding bearing and aircraft equipped with the drive unit
JP4015175B1 (en) * 2006-12-21 2007-11-28 快堂 池田 Wind power generator that electromagnetically uses the peripheral speed of the blade tip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167670A3 (en) * 2012-05-09 2014-01-09 Aktiebolaget Skf Device having at least one pancake motor rotor and assembly method
WO2022122367A1 (en) * 2020-12-11 2022-06-16 Rolls-Royce Deutschland Ltd & Co Kg Electric motor for an aircraft engine
CN113140859A (en) * 2021-04-17 2021-07-20 深圳市驰普科达科技有限公司 Battery pack management device capable of reducing power loss in standby
CN113140859B (en) * 2021-04-17 2022-08-23 深圳市驰普科达科技有限公司 Battery pack management device capable of reducing power loss in standby

Similar Documents

Publication Publication Date Title
US8853881B2 (en) Split venturi ring maglev generator turbine
JP2009503337A (en) Windmill and generator using the same
CN104389741B (en) A kind of vertical axes outer rotor magnetic suspending wind turbine generator
US9543064B2 (en) Electric machine having a low-mass design in magnetically active parts
US20160036310A1 (en) Magnetic Levitation Electrical Generator
CN103986301B (en) High-dynamic moving-magnetic type linear rotation integrated two-degree-of-freedom motor
CN105141069A (en) High-cost-performance magnetic suspension horizontal shaft wind generating set
JP2002247822A (en) Synchronous motor generator with gap adjusting device
CN101951091B (en) Double-rotor multi-pole motor of micro unmanned aerial vehicle
WO2010125629A1 (en) Reduction in thickness and weight of armature inserted into substantially u-shaped hollow section of rotary duct
US20130088103A1 (en) Synchronic Wind Turbine Generator
Severson Bearingless motor technology for industrial and transportation applications
JP2007336777A (en) Wind power generating device
JP2008157041A (en) Wind power generating device electromagnetically utilizing peripheral velocity of blade end part
JP4264961B1 (en) Reducing the thickness and weight of the armature inserted into the approximately U-shaped hollow of the rotating duct
CN203301329U (en) Magnetic suspension bearing disc type hybrid-excitation doubly-salient wind generator
KR20220146603A (en) Friction Limiting Turbine Generator Gyroscope Method and Apparatus
Zhang et al. Large-diameter ironless permanent magnet generator for offshore wind power application
RU2546892C1 (en) Vertical-axial wind unit
CN107528441B (en) A kind of external rotor wind driven electric generator
JP2017002795A (en) Wind power generator
RU2540696C1 (en) High-rate electrical machine with vertical shaft
CN206364681U (en) A kind of electronic commutation brush DC motors
US11626225B2 (en) Magnetic levitation electrical generator
RU196180U1 (en) Wind wheel rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP