WO2010124650A1 - 上行同步方法、基站、终端与通信系统 - Google Patents

上行同步方法、基站、终端与通信系统 Download PDF

Info

Publication number
WO2010124650A1
WO2010124650A1 PCT/CN2010/072356 CN2010072356W WO2010124650A1 WO 2010124650 A1 WO2010124650 A1 WO 2010124650A1 CN 2010072356 W CN2010072356 W CN 2010072356W WO 2010124650 A1 WO2010124650 A1 WO 2010124650A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
reference signal
sounding reference
module
mac pdu
Prior art date
Application number
PCT/CN2010/072356
Other languages
English (en)
French (fr)
Inventor
张余生
吴松峻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010124650A1 publication Critical patent/WO2010124650A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to communication technologies, and more particularly to an uplink synchronization method, a base station, a terminal, and a communication system. Background technique
  • Orthogonal Frequency Division Multiplexing is the core technology of the 4th Generation (4G) mobile communication. It uses frequency selective multipath fading channels in the frequency domain. Converted to a flat channel, reducing the effects of multipath fading while improving spectrum utilization.
  • OFDM systems are extremely sensitive to synchronization errors and require high time synchronization.
  • the frequency offset (referred to as: frequency offset) introduces interference between channels (Internal Channel Interference, ICI), that is, inter-carrier interference, which deteriorates the signal-to-noise ratio of each subcarrier, thereby deteriorating the entire communication system. Transmission performance.
  • ICI Internal Channel Interference
  • ISI Inter Symbol Interference
  • the OFDM modulation technique is a multi-carrier technique, and the symbol synchronization of one OFDM signal is quite different from the symbol synchronization of a single carrier signal. Since each OFDM symbol is composed of many subcarriers, the multicarrier system does not have an "eye diagram" like a single carrier signal, and therefore, the "eye diagram" cannot be analyzed to find the optimal sampling timing. Multi-carrier systems are more sensitive to timing deviation than single-carrier systems.
  • FIG. 1 it is a data structure diagram of an OFDM symbol selected in a Fast Fourier Transform (FFT) window.
  • FFT Fast Fourier Transform
  • a user equipment (User Equipment, hereinafter referred to as UE) transmits a sounding reference to an Evolved NodeB (hereinafter referred to as eNB) on a Physical Uplink Shared Channel (hereinafter referred to as PUSCH).
  • eNB Evolved NodeB
  • PUSCH Physical Uplink Shared Channel
  • the baseband digital signal processing (DSP) in the eNB calculates the timing advance of the sounding reference signal (Timing Advance, hereinafter referred to as TA), and passes a sounding reference function and a random access channel (Random Access).
  • Channel hereinafter referred to as: RACH
  • the TA is also biased immediately.
  • the MAC module sends the TA value to the UE through a MAC protocol data unit (PDU), and performs a corresponding time offset adjustment by the UE ⁇ 3 ⁇ 4TA value, thereby implementing uplink synchronization of the OFDM signal.
  • PDU MAC protocol data unit
  • the eNB is used as an example.
  • the baseband DSP not only reports the TA value detected by the sounding reference to the MAC module through the shared message, but also reports the preamble (Preamble) based on the RACH to the MAC module through the message.
  • the detected TA value that is, the baseband DSP pass
  • the two TA values detected based on the sounding reference signal and the sounding preamble are respectively reported by the MAC module, and the MAC module cannot distinguish the received TA value from the TA value detected by the sounding reference signal.
  • the value of the TA detected by the synchronization code is not differentiated when the TA value is sent to the UE through the MAC PDU.
  • the UE When the UE receives the TA value sent by the MAC module, the UE cannot distinguish the type.
  • the probability of the TA value detected based on the preamble is relatively high. If the TA value is detected based on the preamble, the uplink synchronization is performed.
  • the time offset adjustment based on the TA value detected by the preamble may reduce the performance of the time offset adjustment, that is, the uplink synchronization performance of the OFDM system may be degraded.
  • the UE may have a false alarm when detecting the TA value through the preamble, and in this case, the performance of the time offset adjustment is further affected. Summary of the invention
  • the embodiment of the invention provides an uplink synchronization method, a base station, a terminal, and a communication system, so as to correctly adjust the time offset according to the TA value of the sounding reference signal, thereby ensuring the uplink synchronization performance of the communication system.
  • An embodiment of the present invention provides an uplink synchronization method, including:
  • a media access control MAC protocol data unit PDU where the MAC PDU includes the TA value and the TA value identifier information, where the TA value identifier information is used to identify the TA value as a TA value of the sounding reference signal.
  • the base station Receiving a MAC PDU sent by the base station, where the MAC PDU includes a TA value and a TA value identifier information;
  • a base station provided by an embodiment of the present invention includes: a first receiving module, configured to receive a sounding reference signal reported by the terminal;
  • a calculation module configured to acquire a TA value according to the sounding reference signal
  • a sending module configured to send a MAC PDU to the terminal, where the MAC PDU includes the
  • the TA value and the TA value identify information, and the TA value identifier information is used to identify the TA value of the TA value of the probe reference signal.
  • a second receiving module configured to receive a MAC PDU sent by the base station, where the MAC PDU includes a TA value and a TA value identifier information;
  • An identification module configured to identify, according to the TA value identification information, whether the TA value is a TA value of the detection reference signal
  • An adjustment module configured to perform time offset adjustment on the terminal according to the TA value, according to the identification result of the identification module, when the TA value is a TA value of the sounding reference signal, so that the terminal is according to the time As a result of the offset adjustment, communication with the base station.
  • a communication system includes a terminal and a base station, where the base station is configured to receive a sounding reference signal reported by the terminal, obtain a TA value according to the sounding reference signal, and send a MAC PDU to the terminal.
  • the MAC PDU includes the TA value and the TA value identifier information used to identify the TA value of the TA value of the sounding reference signal;
  • the terminal is configured to receive a MAC PDU that is sent by the base station, and determine, according to the TA value identification information in the MAC PDU, whether the TA value is a TA value of a sounding reference signal, and the TA value is a sounding reference signal.
  • the time offset is adjusted based on the TA value.
  • the base station when the base station sends the TA value of the sounding reference signal to the terminal, the base station may set the TA value for identifying the reference signal in the MAC PDU.
  • the TA value of the TA value identifies the information.
  • the terminal After receiving the MAC PDU sent by the base station, the terminal can identify whether the TA value is the TA value of the sounding reference signal or the preamble of the RACH detection according to the TA value identification information in the MAC PDU.
  • the TA value when the TA value in the MAC PDU is the TA value of the sounding reference signal, the corresponding time offset is performed.
  • the uplink synchronization performance of the OFDM system is ensured, and the uplink synchronization performance of the OFDM system is reduced due to the time offset adjustment of the TA value of the terminal based on the synchronization code detection in the prior art.
  • FIG. 1 is a schematic diagram of a data structure of an OFDM symbol selected in an FFT window
  • FIG. 2 is a flowchart of an embodiment of an uplink synchronization method according to the present invention
  • FIG. 3 is a schematic diagram of the time offset adjustment amount in the embodiment shown in FIG. 2;
  • FIG. 4 is a flowchart of another embodiment of an uplink synchronization method according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of a base station according to the present invention.
  • FIG. 7 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a UE according to the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication system according to the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of a communication system according to the present invention. detailed description
  • the MAC PDU when the base station sends the TA value of the sounding reference signal to the UE through the MAC PDU, the MAC PDU carries the TA value identifier information for identifying the TA value of the TA value as the sounding reference signal, and the UE according to the MAC PDU
  • the TA value identification information can determine that the TA value is the TA value of the sounding reference signal, thereby distinguishing the TA value of the sounding reference signal from the preamble, and correctly adjusting the time value according to the TA value of the sounding reference signal, thereby ensuring the communication system.
  • the embodiments of the present invention may be applied to a Long Term Evolve (LTE) system.
  • LTE Long Term Evolve
  • a base station is specifically an eNB.
  • embodiments of the present invention can also be applied to other communication systems, such as: Wideband Code Division Multiple Access (WCDMA) system, third generation (3rd) Generation, hereinafter referred to as: 3G) Digital communication system, etc.
  • WCDMA Wideband Code Division Multiple Access
  • 3G third generation Digital communication system
  • FIG. 2 it is a flowchart of an embodiment of an uplink synchronization method according to the present invention.
  • the process of this embodiment may be specifically implemented by a base station, and includes the following steps:
  • Step 201 Receive a sounding reference signal reported by the UE.
  • the UE when the sounding reference function is activated, the UE does not transmit user data on the first symbol of each subframe, and separately transmits the sounding reference signal.
  • Step 202 Acquire a TA value according to the sounding reference signal.
  • the UE may continuously send the sounding reference signal through 32 subframes.
  • the received sounding reference signal may be demodulated and translated.
  • a series of processing such as code, to get an array of 128 points in length.
  • search for the first path in the range of the array for example to find the point where the first energy exceeds the preset threshold. If no point is found where the energy exceeds the preset threshold, the energy maximum is considered to be the first diameter. Calculate the distance from the first path to the 64th point in the array, and get how many points are advanced or delayed.
  • TA k'Ts
  • Ts represents the minimum interval between sampling points.
  • Fig. 3 it is a schematic diagram of the amount of time offset adjustment in the embodiment shown in Fig. 2.
  • Step 203 The MAC PDU is sent to the UE, where the MAC PDU includes the TA value and the TA value identifier information, where the TA value identifier information is used to identify the TA value as the TA value of the sounding reference signal.
  • the operation procedure of the foregoing step 203 may be specifically implemented by using a MAC module in the base station.
  • the uplink synchronization message may be reported to the MAC module, where the uplink synchronization message includes the TA value identification information of the TA value and the TA value.
  • the MAC module sends a MAC PDU to the UE.
  • the TA value identification information may be set according to a rule set in advance. As long as the sounding reference signal is different from the TA value identification information of the TA value of the preamble, the information is identified according to the TA value. It can be distinguished that the TA value is the TA value of the sounding reference signal or the TA value of the preamble. If the TA value is added to the TA value of the sounding reference signal in advance, the TA value identification information is set in the uplink synchronization message only when the TA value is the TA value of the sounding reference signal, that is, the TA value identification information is set to Non-empty; As an alternative, the TA value can be set to null for the TA value of the sounding reference signal.
  • the TA value set in the uplink synchronization message is null. If the TA value for the sounding reference signal and the TA value for the preamble detection are set in advance, different TA value identification information is set, for example: for the TA value of the sounding reference signal, the TA value identification information is set to 1, and the preamble detection is performed.
  • the TA value if the TA value identification information is set to 0, the pre-set TA value identifies the correspondence relationship information with the identified object, acquires the TA value identification information of the TA value of the sounding reference signal, and is in the uplink synchronization message. Set the corresponding TA value identifier.
  • the foregoing steps 201-202 and the operation procedure for reporting the uplink synchronization message to the MAC module may be implemented by using a baseband DSP in the base station.
  • the uplink synchronization message may be a BESA-DSP-GBL-STRU-RachRpt message, where the TA value identification information may be set before the TA value in the BESA-DSP-GBL-STRU-RachRpt message.
  • a reserved bit whose number of bits can be equal to or less than eight bits.
  • Table 1 Another specific structural example of the BESA-DSP-GBL-STRU-RachRpt message is shown in Table 1.
  • the BESA-DSP-GBL-STRU-RachRpt message has eight reserved bits before the TA value.
  • the variable uwTAid is set to record the TA value identification information.
  • each subsystem uwSendPID 32 There are several PIDs under each CPUID, each subsystem uwSendPID 32
  • RRM SSM, DSP0, DSP1
  • the TA value identifier is set on the 8-bit bit reserved before the usTimeAdjust variable for recording the TA value, to distinguish the reported reference signal from being reported.
  • the TA value is also the TA value of the preamble. Without adding a new message or changing the existing message format, the MAC module can distinguish the corresponding TA value from the UE, making full use of the existing communication resources and not increasing the network. In the case of traffic load, the uplink synchronization performance is pushed up.
  • the TA value identifier can also be set by adding a number of bits to the BESA-DSP-GBL-STRU-RachRpt message.
  • Step 301 Receive a MAC PDU sent by a base station, where the MAC PDU includes a TA value and a TA value identifier information.
  • Step 302 Determine, according to the TA value identification information in the MAC PDU, whether the TA value is a TA value of the sounding reference signal. If it is the TA value of the sounding reference signal, step 303 is performed. Otherwise, if it is the TA value of the RACH detection, the subsequent uplink synchronization process is not performed.
  • Step 303 Perform time offset adjustment according to the TA value.
  • the UE can distinguish whether the TA value is the TA value of the sounding reference signal or the TA value of the preamble, thereby ensuring that the UE according to the sounding reference signal
  • the TA value is correctly adjusted and adjusted to ensure the uplink synchronization performance of the OFDM system. After the time offset adjustment is completed, the uplink synchronization of the OFDM system can be realized.
  • step 302 whether the TA value is detected according to whether the MAC value includes the TA value identification information is detected.
  • the TA value of the reference signal If the base station sets different TA value identification information for the TA value of the sounding reference signal and the TA value of the preamble, for example: for the TA value of the sounding reference signal, set the TA value identification information to 1, for the TA value of the RACH detection, The setting of the TA value identification information is 0.
  • the identifier information of the TA value identification information in the MAC PDU is identified as a sounding reference signal according to the correspondence relationship between the TA value and the identified object.
  • FIG. 5 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the base station of the embodiment can be used to implement the process of the embodiment shown in FIG. 2 of the present invention.
  • the base station of this embodiment includes a first receiving module 401, a calculating module 402, and a sending module 403.
  • the first receiving module 401 is configured to receive the sounding reference signal reported by the UE.
  • the calculation module 402 is configured to perform processing, for example, demodulation and decoding processing according to the sounding reference signal received by the first receiving module 401, and calculate how many points are advanced or delayed, and further acquire the TA value.
  • the sending module 403 is configured to send a MAC PDU to the UE, where the MAC PDU includes the TA value and the TA value identifier information calculated by the calculating module 402, where the TA value identifier information is used to identify the TA value as the sounding reference signal. TA value.
  • the sending module 403 can be implemented by using a MAC module.
  • FIG. 6 is a schematic structural diagram of another embodiment of a base station according to the present invention.
  • the base station of the embodiment further includes a reporting module 404, configured to report the uplink to the downlink module 403.
  • the synchronization message includes the TA value and the TA value identification information calculated by the calculation module 402.
  • the uplink synchronization message may be a BESA-DSP-GBL-STRU-RachRpt message.
  • the first receiving module 401, the calculating module 402, and the reporting module 404 may be integrally configured, specifically implemented by a baseband DSP in the base station.
  • the reporting module 404 specifically includes a generating unit 501, an obtaining unit 502, a writing unit 503, and a reporting unit 504.
  • the generating unit 501 is configured to generate an uplink synchronization message.
  • the obtaining unit 502 is configured to obtain TA value identification information that identifies the TA value as the TA value of the sounding reference signal. Specifically, the TA value identifier of the pre-stored TA value and the identified object may be obtained, and the TA value identifier corresponding to the sounding reference signal may be obtained, where the TA value identifier may be empty, as long as the TA value identifier of the preamble code is different. Just fine.
  • the writing unit 503 is configured to write the TA value calculated by the calculation module 402 to the uplink synchronization message generated by the generating unit 501, and set the TA value identification information acquired by the obtaining unit 502 in the uplink synchronization message, for example: to the BESA - DSP - GBL - STRU -
  • the TA value obtained by the calculation module 402 is written in the variable usTimeAdjust in the RachRpt message, and the TA value identifier acquired by the acquisition unit 502 is written into the variable uwTAid set on the reserved bit before the usTimeAdjust information.
  • the reporting unit 504 is configured to report the uplink synchronization message written by the writing unit 503 with the TA value and the TA value identification information by the sending module 403.
  • FIG. 7 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE in this embodiment may be used to implement the process of the embodiment shown in FIG. 4 of the present invention.
  • the UE of this embodiment includes a second receiving module 601, an identifying module 602, and an adjusting module 603.
  • the second receiving module 601 is configured to receive a MAC PDU sent by the base station, where the MAC PDU includes a TA value and a TA value identifier information.
  • the identification module 602 is configured to identify, according to the TA value identification information in the MAC PDU received by the second receiving module 601, whether the TA value is a TA of the sounding reference signal. Value, and output the recognition result.
  • the adjusting module 603 is configured to perform time offset adjustment on the terminal according to the TA value when the TA value is the TA value of the sounding reference signal according to the identification result of the identification module 602, so that the terminal adjusts the result according to the time offset, and the base station Communicate.
  • the terminal of the embodiment of the present invention may further include a communication module 600 for processing communication services with other communication devices, for example, processing communication services between the UE and the base station.
  • the adjusting module 603 is configured to perform time offset adjustment on the communication module 600 according to the TA value, according to the recognition result of the identification module 602, when the TA value is the TA value of the sounding reference signal, so that the communication module 600 is based on the time offset.
  • the adjusted result communicates with the base station.
  • the communication module 600 may be implemented by a Layer 3 module (L3), a Layer 2 module (L2), and a layer module (L1). When the UE accesses the network, the Layer 3 module is triggered.
  • the Layer 2 module generates a sounding reference signal, and the layered module encodes, modulates, and transmits the sounding reference signal to the base station.
  • the three layers may be the network layer, and the second layer may be the link layer.
  • the second receiving module 601 can also be disposed in the communication module 600, and implemented in the body of the communication module 600.
  • the identification module 602 identifies whether the TA value is the sounding reference signal according to whether the MAC value includes the TA value identification information. TA value. If the base station sets different TA value identification information for the TA value of the sounding reference signal and the TA value of the preamble detection, the identification module 602 specifically determines the correspondence relationship between the TA value and the identified object. The identified object that identifies the TA value identification information in the MAC PDU is a sounding reference signal.
  • FIG. 8 is a schematic structural diagram of another embodiment of the UE according to the present invention.
  • the UE of the embodiment further includes a storage module 604, configured to store a preset TA value identifier. Correspondence information with the identified object.
  • the identification module 602 identifies, according to the correspondence value between the TA value stored in the storage module 604 and the identified object, whether the identified object of the TA value identification information in the MAC PDU is the TA of the sounding reference signal. value.
  • a communication system provided by an embodiment of the present invention includes a UE1 and a base station 2.
  • the base station 2 is configured to receive the sounding reference signal reported by the UE1, obtain the TA value according to the sounding reference signal, and send a MAC PDU to the UE1, where the MAC PDU includes a TA value and a TA value for identifying the TA value as the sounding reference signal.
  • the TA value identifies the information.
  • the UE1 is configured to receive the MAC PDU sent by the base station 2, and determine whether the TA value is the TA value of the sounding reference signal according to the TA value identification information in the MAC PDU, and when the TA value is the TA value of the sounding reference signal, according to the TA The value is adjusted in time.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication system according to the present invention.
  • the UE1 adopts the UE in the embodiment shown in FIG. 7, and the base station 2 adopts the base station in the embodiment shown in FIG.
  • the first receiving module 401 in the base station 2 receives the sounding reference signal reported by the communication module 600 in the UE1, and the sending module 403 sends the MAC PDU to the second receiving module 601 in the UE1.
  • FIG. 10 it is a schematic structural diagram of another embodiment of the communication system according to the present invention.
  • UE1 adopts the UE in the embodiment shown in FIG. 8
  • base station 2 adopts the base station in the embodiment shown in FIG.
  • the TA value identifier information for identifying the TA value of the sounding reference signal in the MAC PDU may be set in the MAC PDU, and the UE may identify that the TA value is the sounding reference signal according to the TA value identification information in the MAC PDU.
  • the TA value is also the TA value of the preamble. Only when the TA value in the MAC PDU is the TA value of the sounding reference signal, the corresponding time offset adjustment is performed according to this, thereby ensuring the uplink synchronization performance of the OFDM system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了上行同步方法、基站、终端与通信系统。其中一种上行同步方法包括:接收基站下发的MAC PDU,该MAC PDU中包括TA值;根据所述MAC PDU中的TA值标识信息识别所述TA值是否为探测参考信号的TA值;在所述TA值为探测参考信号的TA值时,根据该TA值进行时偏调 整。本发明实施例可以根据MAC PDU中的TA值标识信息识别其中的TA值 是探测参考信号的TA值还是RACH检测的TA值,只有在MAC PDU中的TA值是探测参考信号的TA值时,才据此进行相应的时偏调整,从而保证OFDM系统的上行同步性能。

Description

上行同步方法、 基站、 终端与通信系统 本申请要求于 2009年 04月 30日提交中国专利局、 申请号为
200910083326.4, 发明名称为 "上行同步方法、 基站、 终端与通信系统" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术, 尤其是上行同步方法、 基站、 终端与通信系统。 背景技术
正交频分复用 ( Orthogonal Frequency Division Multiplexing, 以下简称: OFDM )是第四代(the 4th Generation, 以下简称: 4G )移动通信的核心技术, 它通过将频率选择性多径衰落信道在频域内转换为平坦信道, 从而减少多径 衰落的影响, 同时提高频谱利用率。 但是 OFDM系统对同步误差极为敏感, 对时间同步的要求很高。 频率同步方面, 频率偏移 (简称: 频偏)会引入信 道之间的干扰( Internal Channel Interference, 以下简称: ICI ) , 即载波间干 扰, 恶化每个子载波的信噪比, 从而恶化整个通信系统的传输性能。 帧同步 的误差会引入符号间干扰(Inter Symbol Interference, 以下简称: ISI ), 即码 间干扰, 同时还会对信道估计带来严重的影响。 现有的 OFDM系统中, 主要 采用以下三类同步方式: 符号定时同步、 载波同步与采样钟同步。
要实现 OFDM信号的同步, 就需要找到 OFDM符号的起始位置与载波偏 移。 OFDM调制技术是一种多载波技术, 一个 OFDM信号的符号同步与一个 单载波信号的符号同步存在着很大的区别。 由于每个 OFDM符号都由很多子 载波组成, 多载波系统不存在像单载波信号那样的 "眼图 ", 因此, 无法通 过分析 "眼图 "来找到最佳的采样时刻。 多载波系统对于定时偏差比单载波 系统较为敏感。在有循环前缀(Cyclic Prefix, 以下简称: CP )的时候, OFDM 信号对符号的定时同步也只能允许存在有限的误差, 允许定时落在 CP的长度 范围内,残留的小偏差所带来的不利影响可以通过后继的信道估计给予消除。 由于 OFDM系统采用了 CP, 当 CP的长度大于信道的附加时延扩展 Tmax时, 在 CP中将存在一个非干扰区, 即: 无 ISI区, 在非干扰区中可以采用频域估计的 方法校正有用信号的相位旋转。 因此, 在该非干扰区范围内, OFDM符号不 会受到多径信道引起的来自上一个 OFDM符号的 ISI影响。 在该非干扰区外, 定时误差将会对 OFDM系统造成 ISI和 ICI。 与此同时, 还会造成有用信号的衰 减和相位旋转。 更严重的是, 它会严重影响信道估计器的性能, 从而增加信 道估计误差。 如图 1所示, 为在快速傅立叶变换 ( Fast Fourier Transform。 以 下简称: FFT ) 窗口选取的 OFDM符号的一个数据结构示意图。 图 1中, 101 表示 ISI干扰区, 102表示非干扰区。
现有技术中, 通过用户终端 (User Equipment, 以下简称: UE )在物理 上行共享信道( Physical Uplink Shared Channel, 以下简称: PUSCH ) 向演进 基站(Evolved NodeB, 以下简称: eNB )发送探测参考 ( Sounding )信号来 实现符号定时同步。
eNB中的基带数字信号处理( Digital Signal Processing, 以下简称: DSP ) 计算出探测参考信号的时间提前量(Timing Advance, 以下简称: TA )后, 通过一个探测参考功能与随机接入信道( Random Access Channel, 以下简称: RACH )检测功能共用的消息, 将基于探测参考检测出的 TA值上报给基站中 的媒体接入控制 (Medium Access control, 以下简称: MAC )模块。 其中的 TA也即时偏调整量。 MAC模块通过 MAC协议数据单元( Protocol Data Unit, 以下简称: PDU )将该 TA值下发给 UE, 由 UE ^¾TA值进行相应的时偏调 整, 从而实现 OFDM信号的上行同步。
现有技术中,以 eNB为例,由于基带 DSP不仅通过上述共用的消息向 MAC 模块上报基于探测参考检测出的 TA值, 还通过该消息向 MAC模块上报基于 RACH发送的前同步码(Preamble )检测出的 TA值, 也就是说, 基带 DSP通 过同一个消息, 向 MAC模块上报分别基于探测参考信号与探测前同步码检测 出的两种 TA值, MAC模块无法区分接收到的 TA值^^于探测参考信号检测 出的 TA值还是基于前同步码检测出的 TA值, 从而通过 MAC PDU向 UE下发 TA值时也未进行区分。 UE在接收到 MAC模块下发的 TA值时, 无法分辨其类 型, 由于基于前同步码检测出的 TA值出错的概率相对较高, 如果基于前同步 码检测出的 TA值进行上行同步, 即基于前同步码检测出的 TA值进行时偏调 整, 可能会降低时偏调整的性能, 也就是说会导致 OFDM系统上行同步性能 的下降。 另外, 由于噪声的影响, UE在通过前同步码检测 TA值时存在虚警的 可能, 在这种情况下, 会进一步影响时偏调整的性能。 发明内容
本发明实施例提供上行同步方法、 基站、 终端与通信系统, 以正确根据 探测参考信号的 TA值进行时偏调整, 从而保证通信系统的上行同步性能。
本发明实施例提供一种上行同步方法, 包括:
接收终端上报的探测参考信号;
根据所述探测参考信号获取时间提前量 TA值;
向所述终端下发媒体接入控制 MAC协议数据单元 PDU,该 MAC PDU 中包括所述 TA值与 TA值标识信息, 该 TA值标识信息用于标识所述 TA 值为探测参考信号的 TA值。
本发明实施例提供的另一种上行同步方法, 包括:
接收基站下发的 MAC PDU, 该 MAC PDU中包括 TA值与 TA值标识 信息;
根据所述 TA值标识信息识别所述 TA值是否为探测参考信号的 TA 值;
在所述 T A值为探测参考信号的 T A值时,根据该 T A值进行时偏调整。 本发明实施例提供的一种基站, 包括: 第一接收模块, 用于接收终端上报的探测参考信号;
计算模块, 用于根据所述探测参考信号获取 TA值;
下发模块, 用于向所述终端下发 MAC PDU, 该 MAC PDU中包括所述
TA值与 TA值标识信息, 该 TA值标识信息用于标识所述 TA值为探测参 考信号的 TA值。
本发明实施例提供的一种终端, 包括:
第二接收模块, 用于接收基站下发的 MAC PDU, 该 MAC PDU中包括 TA值与 TA值标识信息;
识别模块, 用于根据所述 TA值标识信息, 识别所述 TA值是否为探 测参考信号的 TA值;
调整模块, 用于根据所述识别模块的识别结果, 在所述 TA值为探测 参考信号的 TA值时, 根据该 TA值, 对所述终端进行时偏调整, 以便所 述终端根据所述时偏调整后的结果, 与所述基站进行通信。
本发明实施例提供的一种通信系统, 包括终端与基站, 所述基站用于 接收所述终端上报的探测参考信号, 根据所述探测参考信号获取 TA值, 并向所述终端下发 MAC PDU,该 MAC PDU中包括所述 TA值与用于标识 所述 TA值为探测参考信号的 TA值的 TA值标识信息;
所述终端用于接收所述基站下发的 MAC PDU,根据该 MAC PDU中的 TA值标识信息识别所述 TA值是否为探测参考信号的 TA值, 并在所述 TA值为探测参考信号的 TA值时, 根据该 TA值进行时偏调整。
基于本发明上述实施例提供的上行同步方法、基站、终端与通信系统, 基站在向终端下发探测参考信号的 TA值时, 可以在 MAC PDU中设置用 于标识其中的 TA值为探测参考信号的 TA值的 TA值标识信息,终端接收 到基站下发的 MAC PDU后,可以根据 MAC PDU中的 TA值标识信息识别 其中的 TA值是探测参考信号的 TA值还是 RACH检测的前同步码的 TA 值, 在 MAC PDU中的 TA值是探测参考信号的 TA值时, 进行相应的时偏 调整, 从而保证 OFDM 系统的上行同步性能, 避免现有技术中终端基于 同步码检测的 TA值进行时偏调整而导致的 OFDM 系统上行同步性能下 降。 附图说明
图 1为在 FFT窗口选取的 OFDM符号的一个数据结构示意图; 图 2为本发明上行同步方法一个实施例的流程图;
图 3为本图 2所示实施例中时偏调整量的一个示意图;
图 4为本发明上行同步方法另一个实施例的流程图;
图 5为本发明基站一个实施例的结构示意图;
图 6为本发明基站另一个实施例的结构示意图;
图 7为本发明 UE—个实施例的结构示意图;
图 8为本发明 UE另一个实施例的结构示意图;
图 9为本发明通信系统一个实施例的结构示意图;
图 10为本发明通信系统另一个实施例的结构示意图。 具体实施方式
本发明实施例基站通过 MAC PDU向 UE下发探测参考信号的 TA值 时,在 MAC PDU中携带用于标识该 TA值为探测参考信号的 TA值的 TA 值标识信息, UE根据 MAC PDU中的 TA值标识信息即可确定其中的 TA 值是探测参考信号的 TA值,从而区分探测参考信号与前同步码的 TA值, 正确根据探测参考信号的 TA值进行时偏调整, 从而保证通信系统的上行 同步性能。 本发明各实施例可以应用于长期演进(Long Term Evolve, 以下 简称: LTE ) 系统, 在 LTE系统中, 基站具体为 eNB。 另外, 本发明的各实 施例也可用于其它的通信系统, 例如: 宽带码分多址 (Wideband Code Division Multiple Access, 以下简称: WCDMA ) 系统、 第三代 ( 3rd Generation, 以下简称: 3G )数字通信系统等, 以 WCDMA系统为例, 基 站具体为 NodeB。
如图 2所示,为本发明上行同步方法一个实施例的流程图,该实施例的 流程具体可以通过基站实现, 其包括以下步骤:
步骤 201, 接收 UE上报的探测参考信号。
作为本发明的一个具体实施例, 启动探测参考功能时, UE在每个子帧的 第 1个符号上不发送用户数据, 单独发送探测参考信号。
步骤 202, 根据探测参考信号获取 TA值。
具体地,作为本发明的一个具体实施例, UE可以连续通过 32个子帧发 送探测参考信号, 基站中的基带 DSP模块正确接收探测参考信号后, 可以对 接收到的探测参考信号进行解调、 译码等一系列处理, 得到一个长度为 128 个点的数组。 然后在该数组范围内搜索首径, 例如寻找第一个能量超过预设 门限值的点。 如果没有找到能量超过预设门限值的点, 则认为能量最大值为 首径。 计算首径到数组中第 64点的距离, 得到时偏提前或者滞后多少个点。 通过对 Ts进行线性相关运算, 例如: TA=k'Ts, 获得 TA值, 其中 k为经验 系数, 跟提前或者滞后的点的个数有关, Ts表示采样点之间的最小间隔。 如 图 3所示, 为本图 2所示实施例中时偏调整量的一个示意图。
步骤 203, 向 UE下发 MAC PDU, 该 MAC PDU中包括 TA值与 TA 值标识信息,该 TA值标识信息用于标识该 TA值为探测参考信号的 TA值。
具体地, 上述步骤 203的操作流程具体可以通过基站中的 MAC模块 实现。
作为本发明的另一个实施例, 在步骤 202与步骤 203之间, 还可以向 MAC模块上报上行同步消息, 该上行同步消息中包括 TA值与 TA值的 TA值标识信息。相应的,步骤 203中,由 MAC模块向 UE下发 MAC PDU。
具体地, 可以根据预先设置的规则设置 TA值标识信息。 只要探测参 考信号与前同步码的 TA值的 TA值标识信息不同, 根据 TA值标识信息 可以区分 TA值是探测参考信号的 TA值或前同步码的 TA值即可。若预先 设置只针对探测参考信号的 TA值增加 TA值标识信息,则只在 TA值为探 测参考信号的 TA值时, 才在上行同步消息中设置 TA值标识信息, 即 TA 值标识信息置为非空; 作为一种可选的方式, 对探测参考信号的 TA值, 可以将 TA值标识置空。若预先设置只针对前同步码的 TA值增加 TA值标 识信息, 不对探测参考信号的 TA值增加 TA值标识信息, 则在上行同步 消息中设置的 TA值标识为空。 若预先设置针对探测参考信号的 TA值与 前同步码检测的 TA值分别设置不同的 TA值标识信息, 例如: 针对探测 参考信号的 TA值,设置 TA值标识信息为 1,针对前同步码检测的 TA值, 设置 TA值标识信息为 0, 则 居预先设定的 TA值标识与被标识对象之 间的对应关系信息, 获取探测参考信号的 TA值的 TA值标识信息, 并在 上行同步消息中设置相应的 TA值标识。 上述步骤 201-202以及向 MAC 模块上报上行同步消息的操作流程, 具体可以通过基站中的基带 DSP 实 现。
作为本发明的一个具体实施例, 上行同步消息具体可以为 BESA— DSP— GBL— STRU— RachRpt消息, 其中的 TA值标识信息可以设置 在 BESA— DSP— GBL— STRU— RachRpt消息中 TA值前的保留位, 其位数可 以等于或小于八位。 如下表 1所示, 为 BESA— DSP—GBL— STRU— RachRpt 消 息 的 另 一 个 具 体 结 构 实 例 , 由 表 1 可 知 , 该 BESA— DSP—GBL— STRU— RachRpt消息中 TA值前的八位保留位上设置了 变量 uwTAid, 来记录 TA值标识信息。
BESA— DSP—GBL— STRU— RachRpt消息实例
位数
标识 ( Syntax ) ( Size 注释 (Notes )
bits )
uwSendCPUID 32 单板上 CPU的统一编号值
每一个 CPUID下面带有几个 PID, 每个子系统 uwSendPID 32
( RRM、 SSM、 DSP0、 DSP1 )对应一个 PID,
Figure imgf000010_0001
在现有的基带 DSP向 MAC模块上报的 BESA— DSP— GBL— STRU— RachRpt 消息中, 记录 TA值的 usTimeAdjust变量前保留的 8bit位上设置 TA值标识, 来 区分其上报的是探测参考信号的 TA值还是前同步码的 TA值,没有增加新的消 息, 也不需要改变已有的消息格式, 就可以使 MAC模块与 UE区分相应的 TA 值, 在充分利用已有通信资源和未增加网络流量负荷的情况下, 推高了上行 同步性能。
不难明 白 , 在一个可选的 实施方式中 , 也可以通过在 BESA— DSP—GBL—STRU— RachRpt消息中增加若干比特来设置 TA值标识。
如图 4所示, 为本发明上行同步方法另一个实施例的流程图, 该实施 例的流程具体可以通过 UE实现, 其包括以下步骤: 步骤 301, 接收基站下发的 MAC PDU, 该 MAC PDU中包括 TA值与 TA值标识信息。
步骤 302,根据 MAC PDU中的 TA值标识信息识别其中的 TA值是否 为探测参考信号的 TA值。 若为探测参考信号的 TA值, 执行步骤 303。 否 则, 若为 RACH检测的 TA值, 不执行后续的上行同步流程。
步骤 303, 根据该 TA值进行时偏调整。
本发明实施例中, 根据基站下发的 MAC PDU中携带的 TA值标识信息, UE可以区分其中的 TA值是探测参考信号的 TA值还是前同步码的 TA值, 从而 确保 UE根据探测参考信号的 TA值正确进行时偏调整,保证 OFDM系统的上行 同步性能。 在时偏调整完成后, 就可以实现 OFDM系统的上行同步。
具体地,根据预先设置,若基站只针对探测参考信号或前同步码的 TA 值才增加 TA值标识信息, 则步骤 302中, 可根据 MAC PDU中是否包括 TA值标识信息识别 TA值是否为探测参考信号的 TA值。 若基站针对探测 参考信号的 TA值与前同步码的 TA值分别设置不同的 TA值标识信息, 例如: 针对探测参考信号的 TA值, 设置 TA值标识信息为 1, 针对 RACH 检测的 TA值, 设置 TA值标识信息为 0, 则步骤 302中, 根据预先设定 的 TA值标识与被标识对象之间的对应关系信息, 识别 MAC PDU中 TA 值标识信息的被标识对象是否为探测参考信号。
如图 5所示, 本发明基站一个实施例的结构示意图, 该实施例的基站 可用于实现本发明图 2所示实施例的流程。 如图 5所示, 该实施例的基站 包括第一接收模块 401、 计算模块 402与下发模块 403。 其中, 第一接收 模块 401用于接收 UE上报的探测参考信号。 计算模块 402用于根据第一 接收模块 401接收到的探测参考信号进行处理例如解调、 译码处理, 并计 算时偏提前或者滞后多少个点, 进一步获取 TA值。 下发模块 403 用于向 UE下发 MAC PDU, 该 MAC PDU中包括计算模块 402计算得到的 TA值 与 TA值标识信息, 该 TA值标识信息用于标识 TA值为探测参考信号的 TA值。 具体地, 该下发模块 403可以通过 MAC模块实现。
如图 6所示, 为本发明基站另一个实施例的结构示意图, 与图 5所示 的实施例相比, 该实施例的基站中还包括上报模块 404, 用于向下发模块 403上报上行同步消息, 该上行同步消息中包括计算模块 402计算得到的 TA 值与 TA 值标识信息。 具体地, 上述上行同步消息可以是 BESA— DSP— GBL— STRU— RachRpt 消息。 作为本发明的一个实施例, 第一 接收模块 401、 计算模块 402与上报模块 404可以一体设置, 具体通过基 站中的基带 DSP实现。上报模块 404具体包括生成单元 501、获取单元 502、 写入单元 503与上报单元 504。 其中, 生成单元 501用于生成上行同步消 息。获取单元 502用于获取标识 TA值为探测参考信号的 TA值的 TA值标 识信息。 具体地, 可以 居预先存储的 TA值标识与被标识对象之间的对 应关系信息, 获取探测参考信号对应的 TA值标识, 该 TA值标识可以为 空, 只要与前同步码的 TA值标识不同即可。 写入单元 503用于向生成单 元 501生成的上行同步消息中写入计算模块 402计算得到的 TA值, 并在 该上行同步消息中设置获取单元 502获取到的 TA值标识信息, 例如: 向 BESA—DSP—GBL—STRU— RachRpt消息中的变量 usTimeAdjust中写入由计 算模块 402获取的 TA值, 并向 usTimeAdjust前的保留位上设置的变量 uwTAid中写入由获取单元 502获取到的 TA值标识信息。 上报单元 504 用于向下发模块 403上报由写入单元 503写入 TA值与 TA值标识信息的 上行同步消息。
如图 7所示,为本发明 UE—个实施例的结构示意图,该实施例的 UE 可用于实现本发明图 4所示实施例的流程。 如图 7所示, 该实施例的 UE 包括第二接收模块 601、 识别模块 602与调整模块 603。 其中, 第二接收 模块 601用于接收基站下发的 MAC PDU, 该 MAC PDU中包括 TA值与 TA值标识信息。 识别模块 602用于根据第二接收模块 601接收到的 MAC PDU中的 TA值标识信息, 识别其中的 TA值是否为探测参考信号的 TA 值, 并输出识别结果。 调整模块 603用于根据识别模块 602的识别结果, 在 TA值为探测参考信号的 TA值时,根据该 TA值,对终端进行时偏调整, 以便终端根据该时偏调整后的结果, 与基站进行通信。
再参见图 7, 本发明实施例的终端还可以包括一个通信模块 600, 用 于处理与其它通信设备之间的通信业务, 例如: 处理该 UE与基站之间的 通信业务。 相应的, 调整模块 603用于根据识别模块 602的识别结果, 在 TA值为探测参考信号的 TA值时, 根据该 TA值, 对通信模块 600进行时 偏调整, 以便通信模块 600根据该时偏调整后的结果, 与基站进行通信。 作为本发明的一个实施例, 其中的通信模块 600 具体可以通过三层模块 ( L3 ) 、 二层模块(L2 ) 与一层模块(L1 ) 实现, 在 UE接入网络时, 由 三层模块触发二层模块生成探测参考信号, 并由一层模块对该探测参考信 号进行编码、 调制后发送给基站。 其中的三层可以是网络层, 二层可以是 链路层。 具体实现时, 第二接收模块 601也可以设置在通信模块 600中, 与通信模块 600—体实现。
根据预先设定, 若基站只针对探测参考信号或前同步码的 TA值才增 加 TA值标识信息,则识别模块 602具体根据 MAC PDU中是否包括 TA值 标识信息识别 TA值是否为探测参考信号的 TA值。若基站针对探测参考信 号的 TA值与前同步码检测的 TA值分别设置不同的 TA值标识信息, 则 识别模块 602具体 ^预先设定的 TA值标识与被标识对象之间的对应关 系信息, 识别 MAC PDU中 TA值标识信息的被标识对象是否为探测参考 信号。
如图 8所示, 为本发明 UE另一个实施例的结构示意图, 与图 7所示 的实施例相比, 该实施例的 UE还包括存储模块 604, 用于存储预先设定 的 TA值标识与被标识对象之间的对应关系信息。 相应的, 识别模块 602 根据存储模块 604中存储的 TA值标识与被标识对象之间的对应关系信息, 识别 MAC PDU中 TA值标识信息的被标识对象是否为探测参考信号的 TA 值。
本发明实施例提供的一种通信系统, 包括 UE1与基站 2。 其中, 基站 2用于接收 UE1上报的探测参考信号, 根据探测参考信号获取 TA值, 并 向 UE1下发 MAC PDU,该 MAC PDU中包括 TA值与用于标识 TA值为探 测参考信号的 TA值的 TA值标识信息。 UE1用于接收基站 2下发的 MAC PDU,根据该 MAC PDU中的 TA值标识信息识别 TA值是否为探测参考信 号的 TA值, 并在 TA值为探测参考信号的 TA值时, 根据该 TA值进行时 偏调整。 具体地, 该实施例中的基站 2可以采用图 5或图 6所示的实施例 实现, 该实施例中的 UE1可以采用图 7或图 8所示的实施例实现。 如图 9 所示, 为本发明通信系统一个实施例的结构示意图, 该实施例中的 UE1 采用图 7所示实施例的 UE, 基站 2采用图 5所示实施例的基站。 其中, 基站 2中的第一接收模块 401接收 UE1中的通信模块 600上报的探测参考 信号, 下发模块 403向 UE1中的第二接收模块 601下发 MAC PDU。
如图 10所示, 为本发明通信系统另一个实施例的结构示意图, 该实 施例中的 UE1采用图 8所示实施例的 UE, 基站 2采用图 6所示实施例的 基站。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
本发明实施例可以在 MAC PDU中设置用于标识其中的 TA值为探测参 考信号的 TA值的 TA值标识信息, UE可以根据 MAC PDU中的 TA值标 识信息识别其中的 TA值是探测参考信号的 TA值还是前同步码的 TA值, 只有在 MAC PDU中的 TA值是探测参考信号的 TA值时,才据此进行相应 的时偏调整, 从而保证 OFDM系统的上行同步性能。 最后所应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 本发明作限制性理解。 尽管参照上述较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解: 其依然可以对本发明的技术方案进行修改 或者等同替换, 而这种修改或者等同替换并不脱离本发明技术方案的精神和 范围。

Claims

权利要求
1、 一种上行同步方法, 其特征在于, 包括:
接收终端上报的探测参考信号;
根据所述探测参考信号获取时间提前量 TA值;
向所述终端下发媒体接入控制 MAC协议数据单元 PDU,该 MAC PDU 中包括所述 TA值, 以及所述 TA值的 TA值标识信息, 所述 TA值标识信 息用于标识所述 TA值为探测参考信号的 TA值。
2、 根据权利要求 1所述的方法, 其特征在于, 探测参考信号的 TA值 的 TA值标识信息, 与前同步码的 TA值的 TA值标识信息不同。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 向所述终端下发 MAC PDU之前, 还包括:
向 MAC模块上 上行同步消息, 该上行同步消息中包括所述 TA值 与所述 TA值标识信息。
4、 根据权利要求 1或 2或 3所述的方法, 其特征在于, 所述上行同 步消息为 BESA— DSP— GBL— STRU— RachRpt消息;
所述 TA值标识信息设置在所述 BESA—DSP—GBL—STRU— RachRpt消 息中 TA值前的保留位上或新增比特上。
5、 一种上行同步方法, 其特征在于, 包括:
接收基站下发的 MAC PDU, 该 MAC PDU中包括 TA值与 TA值标识 信息;
根据所述 TA值标识信息识别所述 TA值是否为探测参考信号的 TA 值;
在所述 T A值为探测参考信号的 T A值时,根据该 T A值进行时偏调整。
6、根据权利要求 5所述的方法, 其特征在于, 根据所述 TA值标识信 息识别所述 TA值是否为探测参考信号的 TA值具体为: 根据所述 TA值标识信息为空, 识别所述 TA值为探测参考信号的 TA 值; 或者,
根据所述 TA值标识信息为非空, 识别所述 TA值为探测参考信号的 TA值; 或者,
才艮据预先设定的 TA值标识与被标识对象之间的对应关系信息, 识别 所述 TA值标识信息的被标识对象是否为探测参考信号。
7、 一种基站, 其特征在于, 包括:
第一接收模块, 用于接收终端上报的探测参考信号;
计算模块, 用于根据所述探测参考信号获取 TA值;
下发模块, 用于向所述终端下发 MAC PDU, 该 MAC PDU中包括所述
TA值与 TA值标识信息, 该 TA值标识信息用于标识所述 TA值为探测参 考信号的 TA值。
8、 根据权利要求 7所述的基站, 其特征在于, 还包括:
上报模块, 用于向所述下发模块上报上行同步消息, 该上行同步消息 中包括所述计算模块获取的所述 TA值与所述 TA值标识信息。
9、 根据权利要求 8所述的基站, 其特征在于, 所述上报模块包括: 生成单元, 用于生成所述上行同步消息;
获取单元,用于获取标识 TA值为探测参考信号的 TA值的 TA值标识 信息;
写入单元, 用于向所述上行同步消息中写入 TA值, 并在所述上行同 步消息中设置所述 TA值标识信息;
上报单元, 用于向所述下发模块上报写入所述 TA值与所述 TA值标 识信息的上行同步消息。
10、 一种终端, 其特征在于, 包括:
第二接收模块, 用于接收基站下发的 MAC PDU, 该 MAC PDU中包括 TA值与 TA值标识信息; 识别模块, 用于根据所述 TA值标识信息, 识别所述 TA值是否为探 测参考信号的 TA值;
调整模块, 用于根据所述识别模块的识别结果, 在所述 TA值为探测 参考信号的 TA值时, 根据该 TA值, 对所述终端进行时偏调整。
11、 根据权利要求 10所述的终端, 其特征在于, 还包括:
存储模块, 用于存储预先设定的 TA值标识与被标识对象之间的对应 关系信息;
所述识别模块根据所述 TA值标识与被标识对象之间的对应关系信 息, 识别所述 TA值标识信息的被标识对象是否为探测参考信号。
12、 一种通信系统, 包括终端与基站, 其特征在于, 所述基站用于接 收所述终端上报的探测参考信号, 根据所述探测参考信号获取 TA值, 并 向所述终端下发 MAC PDU,该 MAC PDU中包括所述 TA值与用于标识所 述 TA值为探测参考信号的 TA值的 TA值标识信息;
所述终端用于接收所述基站下发的 MAC PDU,根据该 MAC PDU中的 TA值标识信息识别所述 TA值是否为探测参考信号的 TA值, 并在所述 TA值为探测参考信号的 TA值时, 根据该 TA值进行时偏调整。
PCT/CN2010/072356 2009-04-30 2010-04-30 上行同步方法、基站、终端与通信系统 WO2010124650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910083326.4 2009-04-30
CN 200910083326 CN101540634B (zh) 2009-04-30 2009-04-30 上行同步方法、基站、终端与通信系统

Publications (1)

Publication Number Publication Date
WO2010124650A1 true WO2010124650A1 (zh) 2010-11-04

Family

ID=41123642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072356 WO2010124650A1 (zh) 2009-04-30 2010-04-30 上行同步方法、基站、终端与通信系统

Country Status (2)

Country Link
CN (1) CN101540634B (zh)
WO (1) WO2010124650A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006608A3 (en) * 2010-07-09 2012-05-03 Qualcomm Incorporated Time tracking loop (ttl) for small resource block (rb) assignments
CN108024387A (zh) * 2016-11-01 2018-05-11 华硕电脑股份有限公司 在无线通讯系统中识别上行链路时序前移的方法与装置
CN108811154A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 数据包传输方法和设备
CN111757453A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 一种定时同步方法、装置、设备及介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540634B (zh) * 2009-04-30 2013-01-02 华为技术有限公司 上行同步方法、基站、终端与通信系统
CN102014476B (zh) * 2009-10-10 2013-09-04 电信科学技术研究院 上行同步方法、系统和设备
CN102014477B (zh) * 2009-10-30 2013-11-06 电信科学技术研究院 一种上行同步的方法、装置和系统
CN102076077B (zh) * 2009-11-24 2015-01-28 中兴通讯股份有限公司 一种上行同步控制方法、系统和基站
WO2015089738A1 (zh) 2013-12-17 2015-06-25 华为技术有限公司 一种上行同步方法和终端
CN104968044B (zh) * 2015-05-15 2019-03-05 四川大学 基于信道探测信号的lte终端间直通的同步方法和终端
WO2017206031A1 (zh) * 2016-05-30 2017-12-07 华为技术有限公司 信息传输方法及装置
CN109983811B (zh) * 2016-11-30 2021-01-29 华为技术有限公司 一种同步时间误差修正方法及设备
US11265896B2 (en) 2017-01-18 2022-03-01 Huawei Technologies Co., Ltd. Systems and methods for asynchronous grant-free access
CN107347208B (zh) * 2017-06-27 2020-02-07 阳光凯讯(北京)科技有限公司 基于人工智能技术的基站对终端高效定时调整方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154984A (zh) * 2006-09-25 2008-04-02 大唐移动通信设备有限公司 一种保持上行同步的方法及系统
US20080084849A1 (en) * 2006-10-06 2008-04-10 Interdigital Technology Corporation Autonomous timing advance adjustment during handover
CN101267419A (zh) * 2007-03-16 2008-09-17 富士通株式会社 一种用于ofdm符号定时的时间提前量调节方法及装置
CN101394223A (zh) * 2007-09-21 2009-03-25 大唐移动通信设备有限公司 保持上行同步的方法、基站和终端
CN101540634A (zh) * 2009-04-30 2009-09-23 华为技术有限公司 上行同步方法、基站、终端与通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154984A (zh) * 2006-09-25 2008-04-02 大唐移动通信设备有限公司 一种保持上行同步的方法及系统
US20080084849A1 (en) * 2006-10-06 2008-04-10 Interdigital Technology Corporation Autonomous timing advance adjustment during handover
CN101267419A (zh) * 2007-03-16 2008-09-17 富士通株式会社 一种用于ofdm符号定时的时间提前量调节方法及装置
CN101394223A (zh) * 2007-09-21 2009-03-25 大唐移动通信设备有限公司 保持上行同步的方法、基站和终端
CN101540634A (zh) * 2009-04-30 2009-09-23 华为技术有限公司 上行同步方法、基站、终端与通信系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006608A3 (en) * 2010-07-09 2012-05-03 Qualcomm Incorporated Time tracking loop (ttl) for small resource block (rb) assignments
US8861389B2 (en) 2010-07-09 2014-10-14 Qualcomm Incorporated TTL operations for small RB assignments
CN108024387A (zh) * 2016-11-01 2018-05-11 华硕电脑股份有限公司 在无线通讯系统中识别上行链路时序前移的方法与装置
CN108024387B (zh) * 2016-11-01 2020-07-14 华硕电脑股份有限公司 在无线通讯系统中识别上行链路时序前移的方法与装置
CN108811154A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 数据包传输方法和设备
CN108811154B (zh) * 2017-05-05 2021-02-12 华为技术有限公司 数据包传输方法和设备
CN111757453A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 一种定时同步方法、装置、设备及介质
CN111757453B (zh) * 2019-03-26 2021-10-15 华为技术有限公司 一种定时同步方法、装置、设备及介质

Also Published As

Publication number Publication date
CN101540634B (zh) 2013-01-02
CN101540634A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2010124650A1 (zh) 上行同步方法、基站、终端与通信系统
US8730854B2 (en) Timing adjustments in a communication system
US8165026B2 (en) Method and apparatus to report and manage cells in a multi carrier system
US10312962B2 (en) Method and apparatus for frequency assignment in a frequency hopping mode of a wireless communication system
RU2461993C2 (ru) Механизм запуска, подходящий для управления идентификацией новой ячейки в ue в режиме drx
JP5345710B2 (ja) 測位基準信号を配列および相関するための方法および装置
KR101266240B1 (ko) 무선 통신 네트워크에서 ofdm-기반 전송을 위한 자동 이득 제어〔agc〕
WO2018116788A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
CN108924943B (zh) 基于窄带物联网随机接入信道的最大相关估计检测方法
WO2018198822A1 (ja) 端末装置、基地局装置、および、通信方法
JP2012105355A (ja) 適応型チャンネル推定が可能なパイロットパターン生成方法、該パイロットパターンを利用した送受信方法及びその装置
EP2145497A2 (en) Handover in wireless communications
WO2018016619A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JPWO2018116817A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2010075758A1 (zh) Lte上行链路检测方法、上行同步方法、装置和系统
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2013060296A1 (zh) 用户筛选方法及用于用户筛选的基站
JP5475136B2 (ja) 周波数直交ofdm干渉体の存在下においてofdm信号を検出するための方法および装置
WO2010130170A1 (zh) 一种随机接入信号的发射方法和装置及相关方法和系统
WO2018186137A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
CN114727329A (zh) 一种NR5G PUCCH Format0处理优化方法
US11375495B2 (en) Method and device in UE and base station used for wireless communication
WO2018040056A1 (zh) 一种频偏校正方法及相关设备
CN115176446B (zh) 用于基于循环前缀的时间和/或频率校正的装置和方法
WO2006050635A1 (fr) Procede pour mesurer la qualite d'une voie sans fil dans un systeme d'acces multiple ofdm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769339

Country of ref document: EP

Kind code of ref document: A1