WO2010124637A1 - 单相无桥功率因数校正电路 - Google Patents

单相无桥功率因数校正电路 Download PDF

Info

Publication number
WO2010124637A1
WO2010124637A1 PCT/CN2010/072293 CN2010072293W WO2010124637A1 WO 2010124637 A1 WO2010124637 A1 WO 2010124637A1 CN 2010072293 W CN2010072293 W CN 2010072293W WO 2010124637 A1 WO2010124637 A1 WO 2010124637A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
factor correction
power factor
power
inductor line
Prior art date
Application number
PCT/CN2010/072293
Other languages
English (en)
French (fr)
Inventor
赵红强
曹成
唐政清
冯宇杰
谭泽汉
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2010124637A1 publication Critical patent/WO2010124637A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the utility model relates to a single-phase bridgeless power factor correction circuit. Background technique
  • the power factor correction circuit simultaneously generates high frequency electromagnetic interference, which affects the normal operation of other devices.
  • the second power supply output terminal N2 of the power factor correction circuit or the second power supply output terminal N2 of the power factor correction module is generally connected to the ground.
  • Simply using a filter results in a larger filter, a higher cost, and the filter cannot filter out the interference signal at all frequency segments.
  • the power factor is correcter than the voltage and current on the lower diode of the module and the sudden change of the voltage and current on the switch tube. Due to the limited switching speed of the switch tube, the voltage and current of the entire lower arm are not changed rapidly. Diode, and the switching speed of this diode is generally much faster than the following two switching tubes (to prevent high voltage on the lower switching tube), so the diode on the upper arm and the N2 end of the second power supply output will be produced.
  • the high current varies in speed, resulting in a strong interference signal. Therefore, the high-frequency signal cannot be transmitted through the resonant signal loop formed by the second circuit, and the high-frequency electromagnetic interference is not ideal, and the electromagnetic interference signal on the loop is not effectively consumed. Summary of the invention
  • the utility model aims to provide a single-phase bridgeless power factor correction circuit.
  • the single-phase bridgeless power factor correction circuit of the utility model improves the power factor while reducing the electromagnetic interference, so that the circuit can be effective. Meet the standards of relevant national regulations.
  • a single-phase bridgeless power factor correction circuit includes a bridgeless power factor correction module, an inductor line ⁇ L1, and an inductor line ⁇ L2.
  • the two input terminals of the bridgeless power factor correction module are respectively R end and S end.
  • the front end of the correcting circuit The first power input terminal PI end and the second power input end N1 end, the first power input end P1 end is connected to the R end through the inductor line ⁇ L1, and the second power input end N1 end is connected to the S end through the inductor line ⁇ L2
  • the back end of the bridgeless power factor correction module is a first power output terminal P2 end and a second power output end N2 end; the correction circuit further includes a first end of a capacitor C1, a capacitor C2, a capacitor C1, and a capacitor C2.
  • the first power input terminal PI end and the second power input end N1 end are respectively connected, and the second ends of the capacitor C1 and the capacitor C2 are connected to each other and then connected to the first power output
  • the utility model is provided with a capacitor C1 and a capacitor C2 in the power factor correction circuit, so that the first The interference signal outputted by the P2 end of the power supply terminal and the N2 terminal of the second power supply output passes through the capacitor C1, the capacitor C2, the inductor wire ⁇ L1, the inductor wire ⁇ L2, the bridgeless power factor correction module, and the first power output terminal.
  • the inner loop of the P2 terminal and the second power supply output terminal N2 absorbs the interference, avoiding the conduction and radiation of the interference signal through the first power output terminal P2 and the second power output terminal N2, thereby reducing the electromagnetic thousand of the circuit.
  • the further structure of the utility model is:
  • the correcting circuit further includes a common mode inductor line ⁇ L3 and an inductor line ⁇ L4.
  • the inductor line ⁇ L3 is disposed between the inductor line ⁇ L1 and the R terminal, and the inductor line ⁇ L4 is disposed at the inductor line ⁇ L2 and Between the S ends.
  • the common mode inductor line ⁇ L3 and the inductor line ⁇ L4 play a two-fold role: on the one hand, it suppresses the sudden change of the disturbance signal current to generate new interference, and on the other hand, it absorbs the energy generated by the power supply in the loop.
  • a capacitor C3 is disposed between the first power output terminal P2 and the second power output terminal N2.
  • the capacitor C3 filters between the first power output terminal P2 and the second power output terminal N2 to further reduce the interference.
  • the bridgeless power factor correction module includes an insulated gate bipolar transistor M1, an insulated gate bipolar transistor M2, a diode D1, a diode D2, a diode D3, a diode D4, a resistor R1, a diode D1, a diode D2, a diode D3, and a diode D4.
  • the two input ends of the bridge rectifier circuit are respectively the R terminal and the S terminal, one of the output terminals is the first power output terminal P2 end, and the other output terminal is through the resistor R1 and
  • the second power supply output terminal N2 is connected;
  • the gates of the insulated gate bipolar transistor M1 and the insulated gate bipolar transistor M2 are respectively a switch signal input end, an insulated gate bipolar transistor M1, and a collector of the insulated gate bipolar transistor M2 Connected to the R terminal and the S terminal respectively, the insulated gate bipolar transistor M1 and the insulated gate bipolar transistor M2 are connected in parallel with the second power output terminal N2.
  • the capacitor C1 and the capacitor C2 are both high voltage ceramic capacitors. ⁇ Using high-voltage ceramic capacitors, on the one hand, it can withstand higher voltages at both ends, and the high-frequency characteristics of the ceramic capacitors are better, which is beneficial to the passage of high-frequency interference signals.
  • the core of the common mode inductor line 3L3 and the inductor line ⁇ L4 is a ferrite core or an amorphous core to improve its high frequency performance.
  • the utility model has the advantages that: the single-phase bridgeless power factor correcting circuit of the utility model improves the power factor, and the electromagnetic interference is reduced, so that the circuit can effectively meet the relevant national standards. . DRAWINGS
  • 1 is a first structural diagram of a conventional single-phase bridgeless power factor correction circuit
  • FIG. 2 is a second structural diagram of a conventional single-phase bridgeless power factor correction circuit
  • FIG. 3 is a structural diagram of a single-phase bridgeless power factor correction circuit according to the present invention.
  • a single-phase bridgeless power factor correction circuit includes a bridgeless power factor correction module, an inductor line ⁇ L1, an inductor line ⁇ L2, and two input ends of the bridgeless power factor correction module respectively.
  • the front end of the correcting circuit is the first power input end P1 end and the second power input end N1 end, and the first power input end P1 end is connected to the R end through the inductor line ⁇ L1, the second power source
  • the input terminal N1 is connected to the S terminal through the inductor line ⁇ L2, and the rear end of the bridgeless power factor correction module is the first power output terminal P2 end and the second power output terminal N2 end;
  • the correction circuit further includes a capacitor C1.
  • the first ends of the capacitor C2, the capacitor C1, and the capacitor C2 are respectively connected to the first power input terminal PI end and the second power input end N1 end, and the capacitor C1 and the second end of the capacitor C2 are connected together and then output with the first power source. Terminal P2 is connected.
  • the capacitor C1 and the capacitor C2 are both high-voltage ceramic capacitors, and the core of the common-mode inductor line 3L3 and the inductor line 4L4 is a ferrite core or an amorphous core.
  • the bridgeless power factor correction module includes an insulated gate bipolar transistor M1, an insulated gate bipolar transistor M2, a diode D1, a diode D2, a diode D3, a diode D4, a resistor R1, a diode D1, a diode D2, a diode D3, and a diode D4.
  • the two input ends of the bridge rectifier circuit are respectively the R terminal and the S terminal, one of the output terminals is the first power output terminal P2 end, and the other output terminal is through the resistor R1 and
  • the second power supply output terminal N2 is connected;
  • the gates of the insulated gate bipolar transistor M1 and the insulated gate bipolar transistor M2 are respectively a switch signal input end, an insulated gate bipolar transistor M1, and a collector of the insulated gate bipolar transistor M2 Connected to the R terminal and the S terminal respectively, the insulated gate bipolar transistor M1 and the insulated gate bipolar transistor M2 are connected in parallel with the second power output terminal N2.
  • the correcting circuit further includes a common mode inductor line ⁇ L3 and an inductor line ⁇ L4.
  • the inductor line ⁇ L3 is disposed between the inductor line ⁇ L1 and the R terminal, and the inductor line ⁇ L4 is disposed on the inductor line ⁇ L2 and Between the S ends; at the first power output terminal P2 end and the second power output terminal N2 A capacitor C3 is provided between the terminals.
  • the first power input terminal P1 end and the second power input terminal N1 terminal are respectively connected to the two output ends of the power source; in this embodiment, since the capacitor C1 and the capacitor C2 are disposed in the power factor correction circuit, The interference signal outputted by the P2 end of the power supply terminal and the N2 terminal of the second power supply output passes through the capacitor C1, the capacitor C2, the inductor wire ⁇ L1, the inductor wire ⁇ L2, the bridgeless power factor correction module, and the first power output terminal.
  • the inner loop of the P2 terminal and the second power supply output terminal N2 absorbs the interference to avoid transmitting and radiating the interference signal through the first power output terminal P2 end and the second power output terminal N2 end, thereby reducing the electromagnetic thousand of the circuit. Disturb.
  • the common mode inductor line ⁇ L3 and the inductor line ⁇ L4 play a two-fold role: on the one hand, it suppresses the sudden change of the jamming signal current and generates new interference, on the other hand, it absorbs the energy generated by the power supply in the loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Description

单相无桥功率因数校正电路
技术领域
本实用新型涉及一种单相无桥功率因数较正电路。 背景技术
随着世界各国对电器设备的功率因数和谐波电流作出标准限制, 很多设备釆用功 率因数校正电路来提升整机的功率因数, 降低电流谐波, 以符合规定之要求。
但是功率因数校正电路同时产生高频电磁千扰, 影响其它设备的正常工作。 为了抑 制此高频电磁千扰,一般除了釆用电磁千扰滤波器外, 还有釆取在功率因数校正电路的 交流输入端或功率因数较正模块的第二电源输出端 N2端对大地接 Y电容的方法(如图 1 所示), 或在功率因数较正模块输出的第二电源输出端 N2 端对功率因数校正电路交流 输入端接电容的方法(如图 2所示)。 单纯釆用滤波器会导致滤波器体积较大, 成本很 高, 而且滤波器无法在所有频率段滤除千扰信号。 釆用图 1的电路会使整机漏电流大, 且需要安规电容, 导致成本升高。 功率因数较正模块下部二极管上的电压和电流和开关 管上的电压电流突变情况一致, 由于开关管的开关速度有限, 所以整个下桥臂的电压 和电流的突变并不快. 而上桥臂只有二极管, 而且此二极管开关速度一般都比下面的 两个开关管的速度快很多(以防止下面的开关管上产生高压), 所以在上桥臂的二极管 及第二电源输出端 N2端会产生较高的电流变化速度, 从而产生较强的千扰信号。 故图 二电路其形成的千扰信号环路上无法通过高频信号, 其抑制高频电磁千扰效果不是很 理想, 而且其没有将此环路上的电磁千扰千扰信号有效消耗掉。 发明内容
本实用新型的目的在于提供一种单相无桥功率因数较正电路,本实用新型所述单相 无桥功率因数较正电路在提升功率因数的同时, 电磁千扰得到降低,使电路能有效的满 足国家相关规定的标准。
其技术方案如下:
一种单相无桥功率因数较正电路, 包括无桥功率因数较正模块、 电感线圏 Ll、 电 感线圏 L2 , 无桥功率因数较正模块的两个输入端分别为 R端、 S端, 该较正电路的前端 为第一电源输入端 PI端、 第二电源输入端 N1端, 第一电源输入端 P1端通过电感线圏 L1与 R端连接, 第二电源输入端 N1端通过电感线圏 L2与 S端连接, 无桥功率因数较 正模块的后端为第一电源输出端 P2端、 第二电源输出端 N2端; 该较正电路还包括有电 容 Cl、 电容 C2 , 电容 Cl、 电容 C2的第一端分别与第一电源输入端 PI端、 第二电源输 入端 N1端连接, 电容 Cl、 电容 C2的第二端并接后再与第一电源输出端 P2端连接。
在使用时, 第一电源输入端 P1端、 第二电源输入端 N1端分别与电源的两个输出端 连接; 本实用新型由于在功率因数较正电路中设置有电容 Cl、 电容 C2 , 使得第一电源 输出端 P2端、 第二电源输出端 N2端所输出的千扰信号通过电容 Cl、 电容 C2—电感线 圏 Ll、 电感线圏 L2—无桥功率因数较正模块一第一电源输出端 P2端、 第二电源输出端 N2端这个内循环将千扰吸收, 避免通过第一电源输出端 P2端、 第二电源输出端 N2端 向外传导和辐射千扰信号, 从而降低电路的电磁千扰。 本实用新型的进一步结构是:
该较正电路还包括有共模电感线圏 L3、 电感线圏 L4 , 电感线圏 L3设于所述电感线 圏 L1与 R端之间, 电感线圏 L4设于所述电感线圏 L2与 S端之间。 共模电感线圏 L3、 电感线圏 L4起到两方面的作用: 一方面抑制千扰信号电流突变而产生新的千扰, 另一 方面也吸收回路中电源千扰所产生的能量。
在所述第一电源输出端 P2端与第二电源输出端 N2端之间设有电容 C3。 电容 C3对 第一电源输出端 P2端与第二电源输出端 N2端之间进行滤波, 进一步降低了千扰。
所述无桥功率因数较正模块包括绝缘栅双极晶体管 Ml、 绝缘栅双极晶体管 M2、 二 极管 Dl、 二极管 D2、 二极管 D3、 二极管 D4、 电阻 R1 ; 二极管 Dl、 二极管 D2、 二极管 D3、二极管 D4连接形成桥式整流电路, 该桥式整流电路的两个输入端分别为所述 R端、 S端, 其中一个输出端为所述第一电源输出端 P2端, 另一个输出端通过电阻 R1与所述 第二电源输出端 N2端连接; 绝缘栅双极晶体管 Ml、 绝缘栅双极晶体管 M2的栅极分别 为开关信号输入端, 绝缘栅双极晶体管 Ml、 绝缘栅双极晶体管 M2的集电极分别与所述 R端、 S端连接, 绝缘栅双极晶体管 Ml、 绝缘栅双极晶体管 M2发射极并接后与所述第 二电源输出端 N2端连接。
所述电容 Cl、 电容 C2均为高压瓷片电容。 釆用高压瓷片电容, 一方面能承受两端 较高的电压, 同时瓷片电容的高频特型比较好, 有利于高频千扰信号的通过。 所述共模电感线圏 L3、 电感线圏 L4的磁心为铁氧体磁芯或非晶磁心, 以提高其高 频性能。
综上所述, 本实用新型的优点是: 本实用新型所述单相无桥功率因数较正电路在提 升功率因数的同时, 电磁千扰得到降低, 使电路能有效的满足国家相关规定的标准。 附图说明
图 1是现有单相无桥功率因数较正电路的第一种结构图;
图 2是现有单相无桥功率因数较正电路的第二种结构图;
图 3是本实用新型所述单相无桥功率因数较正电路的结构图; 具体实施方式
如图 3所示, 一种单相无桥功率因数较正电路, 包括无桥功率因数较正模块、 电感 线圏 Ll、 电感线圏 L2 , 无桥功率因数较正模块的两个输入端分别为 R端、 S端, 该较 正电路的前端为第一电源输入端 P1端、 第二电源输入端 N1端, 第一电源输入端 P1端 通过电感线圏 L1与 R端连接, 第二电源输入端 N1端通过电感线圏 L2与 S端连接, 无 桥功率因数较正模块的后端为第一电源输出端 P2端、 第二电源输出端 N2端; 该较正电 路还包括有电容 Cl、 电容 C2 , 电容 Cl、 电容 C2的第一端分别与第一电源输入端 PI端、 第二电源输入端 N1端连接, 电容 Cl、 电容 C2的第二端并接后再与第一电源输出端 P2 端连接。
其中, 所述电容 Cl、 电容 C2均为高压瓷片电容, 所述共模电感线圏 L3、 电感线圏 L4 的磁心为铁氧体磁芯或非晶磁心。 所述无桥功率因数较正模块包括绝缘栅双极晶体 管 Ml、 绝缘栅双极晶体管 M2、 二极管 Dl、 二极管 D2、 二极管 D3、 二极管 D4、 电阻 R1 ; 二极管 Dl、 二极管 D2、 二极管 D3、 二极管 D4连接形成桥式整流电路, 该桥式整流电 路的两个输入端分别为所述 R端、 S端, 其中一个输出端为所述第一电源输出端 P2端, 另一个输出端通过电阻 R1与所述第二电源输出端 N2端连接; 绝缘栅双极晶体管 Ml、 绝缘栅双极晶体管 M2的栅极分别为开关信号输入端, 绝缘栅双极晶体管 Ml、 绝缘栅双 极晶体管 M2的集电极分别与所述 R端、 S端连接, 绝缘栅双极晶体管 Ml、 绝缘栅双极 晶体管 M2发射极并接后与所述第二电源输出端 N2端连接。该较正电路还包括有共模电 感线圏 L3、 电感线圏 L4 , 电感线圏 L3设于所述电感线圏 L1与 R端之间, 电感线圏 L4 设于所述电感线圏 L2与 S端之间; 在所述第一电源输出端 P2端与第二电源输出端 N2 端之间设有电容 C3。
在使用时, 第一电源输入端 P1端、 第二电源输入端 N1端分别与电源的两个输出端 连接; 本实施例由于在功率因数较正电路中设置有电容 Cl、 电容 C2 , 使得第一电源输 出端 P2端、 第二电源输出端 N2端所输出的千扰信号通过电容 Cl、 电容 C2—电感线圏 Ll、 电感线圏 L2—无桥功率因数较正模块一第一电源输出端 P2端、 第二电源输出端 N2 端这个内循环将千扰吸收,避免通过第一电源输出端 P2端、 第二电源输出端 N2端向外 传导和辐射千扰信号, 从而降低电路的电磁千扰。 共模电感线圏 L3、 电感线圏 L4起到 两方面的作用: 一方面抑制千扰信号电流突变而产生新的千扰, 另一方面也吸收回路中 电源千扰所产生的能量。 以上仅为本实用新型的较佳实施例, 并不以此限定本实用新型的保护范围; 在不违 反本实用新型构思的基础上所作的任何替换与改进, 均属本实用新型的保护范围。

Claims

权 利 要求
1、 一种单相无桥功率因数较正电路, 包括无桥功率因数较正模块、 第一电感线圏 Ll、 第二电感线圏 L2 , 无桥功率因数较正模块的两个输入端分别为 R端、 S端, 该较正 电路的前端为第一电源输入端 P1端、 第二电源输入端 N1端, 第一电源输入端 P1端通 过第一电感线圏 L1与 R端连接, 第二电源输入端 N1端通过第二电感线圏 L2与 S端连 接, 无桥功率因数较正模块的后端为第一电源输出端 P2端、 第二电源输出端 N2端; 其 特征在于, 该较正电路还包括有第一电容 Cl、 第二电容 C2 , 第一电容 Cl、 第二电容 C2 的第一端分别与第一电源输入端 P1端、 第二电源输入端 N1端连接, 第一电容 Cl、 第 二电容 C2的第二端并接后再与第一电源输出端 P2端连接。
2、 如权利要求 1所述单相无桥功率因数较正电路, 其特征在于, 该较正电路还包 括有共模电感线圏 L3、 电感线圏 L4 , 第三电感线圏 L3设于所述第一电感线圏 L1与 R 端之间, 第四电感线圏 L4设于所述第二电感线圏 L2与 S端之间。
3、 如权利要求 2所述单相无桥功率因数较正电路, 其特征在于, 在所述第一电源 输出端 P2端与第二电源输出端 N2端之间设有第三电容 C3。
4、 如权利要求 1或 2或 3所述单相无桥功率因数较正电路, 其特征在于, 所述无 桥功率因数较正模块包括第一绝缘栅双极晶体管 Ml、 第二绝缘栅双极晶体管 M2、 第一 二极管 Dl、 第二二极管 D2、 第三二极管 D3、 第四二极管 D4、 电阻 R1 ; 第一二极管 Dl、 第二二极管 D2、 第三二极管 D3、 第四二极管 D4连接形成桥式整流电路, 该桥式整流电 路的两个输入端分别为所述 R端、 S端, 其中一个输出端为所述第一电源输出端 P2端, 另一个输出端通过电阻 R1 与所述第二电源输出端 N2端连接; 第一绝缘栅双极晶体管 Ml、 第二绝缘栅双极晶体管 M2的栅极分别为开关信号输入端, 第一绝缘栅双极晶体管 Ml、 第二绝缘栅双极晶体管 M2的集电极分别与所述 R端、 S端连接, 第一绝缘栅双极 晶体管 Ml、 第二绝缘栅双极晶体管 M2发射极并接后与所述第二电源输出端 N2端连接。
5、 如权利要求 1或 2或 3所述单相无桥功率因数较正电路, 其特征在于, 所述第 一电容 Cl、 第二电容 C2均为高压瓷片电容。
6、 如权利要求 1或 2或 3所述单相无桥功率因数较正电路, 其特征在于, 所述共 模电感线圏 L3、 电感线圏 L4的磁心为铁氧体磁芯或非晶磁心。
PCT/CN2010/072293 2009-04-28 2010-04-28 单相无桥功率因数校正电路 WO2010124637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200920055533.4 2009-04-28
CN2009200555334U CN201436615U (zh) 2009-04-28 2009-04-28 单相无桥功率因数校正电路

Publications (1)

Publication Number Publication Date
WO2010124637A1 true WO2010124637A1 (zh) 2010-11-04

Family

ID=42373064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072293 WO2010124637A1 (zh) 2009-04-28 2010-04-28 单相无桥功率因数校正电路

Country Status (2)

Country Link
CN (1) CN201436615U (zh)
WO (1) WO2010124637A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694476A (zh) * 2011-03-22 2012-09-26 全汉企业股份有限公司 应用在无桥式交换电路的开关控制电路以及控制方法
KR101303341B1 (ko) 2012-05-07 2013-09-03 주식회사 동아일렉콤 브리지리스 역률보상 회로
KR101484486B1 (ko) * 2013-04-18 2015-01-20 주식회사 동아일렉콤 전력 변환기

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201436615U (zh) * 2009-04-28 2010-04-07 珠海格力电器股份有限公司 单相无桥功率因数校正电路
CN103916003A (zh) * 2014-03-28 2014-07-09 上海交通大学 共阴极半桥功率因数校正电路
CN103916002A (zh) * 2014-03-28 2014-07-09 上海交通大学 共阳极半桥功率因数校正电路
CN105207464B (zh) * 2015-09-18 2017-09-05 浙江工业大学 自激式BJT型无桥Zeta PFC整流电路
CN105337488B (zh) * 2015-10-23 2017-11-17 福州大学 一种具有正向电压输出的新型无桥Cuk PFC变换器
CN108270341A (zh) * 2018-01-31 2018-07-10 北京云头柜智能科技有限公司 一种医用床头柜的防漏电装置及方法
CN108696160A (zh) * 2018-05-29 2018-10-23 上海空间电源研究所 一种空间用低共模干扰的无桥pfc变换器及方法
CN115328253B (zh) * 2022-08-29 2024-04-05 珠海市伟高变频科技有限公司 一种无需输入电压检测的单相pfc电路及其电压估算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1383256A (zh) * 2002-04-19 2002-12-04 艾默生网络能源有限公司 一种功率因数校正方法及电路
US20060132104A1 (en) * 2004-11-08 2006-06-22 Yong Li Digital control of bridgeless power factor correction circuit
CN1797912A (zh) * 2004-12-14 2006-07-05 国际整流器公司 用于无桥功率因数校正电路的电磁干扰降噪电路及方法
CN201138785Y (zh) * 2007-11-29 2008-10-22 上海美多通信设备有限公司 开关电源滤波电路
CN201436615U (zh) * 2009-04-28 2010-04-07 珠海格力电器股份有限公司 单相无桥功率因数校正电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1383256A (zh) * 2002-04-19 2002-12-04 艾默生网络能源有限公司 一种功率因数校正方法及电路
US20060132104A1 (en) * 2004-11-08 2006-06-22 Yong Li Digital control of bridgeless power factor correction circuit
CN1797912A (zh) * 2004-12-14 2006-07-05 国际整流器公司 用于无桥功率因数校正电路的电磁干扰降噪电路及方法
CN201138785Y (zh) * 2007-11-29 2008-10-22 上海美多通信设备有限公司 开关电源滤波电路
CN201436615U (zh) * 2009-04-28 2010-04-07 珠海格力电器股份有限公司 单相无桥功率因数校正电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694476A (zh) * 2011-03-22 2012-09-26 全汉企业股份有限公司 应用在无桥式交换电路的开关控制电路以及控制方法
KR101303341B1 (ko) 2012-05-07 2013-09-03 주식회사 동아일렉콤 브리지리스 역률보상 회로
KR101484486B1 (ko) * 2013-04-18 2015-01-20 주식회사 동아일렉콤 전력 변환기

Also Published As

Publication number Publication date
CN201436615U (zh) 2010-04-07

Similar Documents

Publication Publication Date Title
WO2010124637A1 (zh) 单相无桥功率因数校正电路
CN101860237A (zh) 高功率因数恒流电路及电源
CN103700484B (zh) 抑制共模emi的开关电源高频变压器辅助绕组设计方法
CN107257209A (zh) 一种应用于氢闸流管的高压纳秒脉冲触发器
WO2003088468A1 (fr) Convertisseur de puissance polyvalent
WO2016201850A1 (zh) Pfc电路及一种电子设备
CN207743705U (zh) 一种基于电流互感器的自动匹配谐振取电直流源
CN101610027B (zh) 一种功率因数校正用电磁干扰抑制电路
CN109327144A (zh) 一种宽输入电压范围的llc谐振变换器
CN2854919Y (zh) 高频开关电源电路
CN108023368A (zh) 一种基于电流互感器的自动匹配谐振取电直流源
CN103856176A (zh) 采用耦合电感的lcl滤波器
CN204559415U (zh) 高频高压电源分包整流装置
CN206432898U (zh) 一种移相全桥谐振逆变电路的混合集成电路
CN207691509U (zh) 无线充电电路及无线充电装置
CN206149135U (zh) Emc滤波电路和电磁炉
CN108565987A (zh) 谐振式无线充电系统中的全桥逆变电路
CN203181262U (zh) 一种高频电焊台电磁感应加热系统
CN106787773A (zh) 无直通问题的直流变压器
CN203434754U (zh) 一种具有pfc的谐振式无线电能传输发射装置
CN203840004U (zh) 一种智能高效快速充电机
CN202940726U (zh) 一种共模电流抑制电路
CN206547053U (zh) 无直通问题的直流变压器
CN202435261U (zh) 无源功率因数校正电路
CN206461534U (zh) 一种无环流磁集成三桥臂双Buck逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769326

Country of ref document: EP

Kind code of ref document: A1