WO2010122951A1 - Hydraulic drive device - Google Patents

Hydraulic drive device Download PDF

Info

Publication number
WO2010122951A1
WO2010122951A1 PCT/JP2010/056793 JP2010056793W WO2010122951A1 WO 2010122951 A1 WO2010122951 A1 WO 2010122951A1 JP 2010056793 W JP2010056793 W JP 2010056793W WO 2010122951 A1 WO2010122951 A1 WO 2010122951A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
main
hydraulic
piston pump
pump
Prior art date
Application number
PCT/JP2010/056793
Other languages
French (fr)
Japanese (ja)
Inventor
和巳 伊藤
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to CN201080001233.3A priority Critical patent/CN101970880B/en
Priority to KR1020107021274A priority patent/KR101233541B1/en
Publication of WO2010122951A1 publication Critical patent/WO2010122951A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/28Control of machines or pumps with stationary cylinders
    • F04B1/29Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B1/295Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/251High pressure control

Definitions

  • This invention relates to a hydraulic drive device mounted on a construction machine such as a hydraulic excavator or a work vehicle.
  • JP 2003-221842 A issued by the Japan Patent Office in 2003 discloses a hydraulic excavator equipped with a hydraulic drive device including three variable displacement hydraulic pumps driven by a common engine. Of the three hydraulic pumps, the discharge hydraulic oil of the first hydraulic pump and the second hydraulic pump is used for excavating the soil and moving the excavator, and the discharge hydraulic oil of the third hydraulic pump is used for the boom and operation. Used for chamber rotation.
  • an object of the present invention is to provide a hydraulic drive device capable of adjusting a drive load of a pump under a simple structure.
  • the present invention provides a hydraulic drive apparatus including a variable displacement type main piston pump and a variable displacement type sub piston pump that are rotationally driven via a common drive shaft.
  • a main hydraulic actuator that continuously decreases the discharge capacity of the main piston pump in response to an increase in the discharge pressure of the pump, and a discharge capacity of the sub-piston pump in accordance with the discharge pressure of the sub-piston pump.
  • a sub-hydraulic actuator that switches between them.
  • FIG. 1 is a hydraulic circuit diagram of a hydraulic drive apparatus according to the present invention.
  • FIG. 2 is a longitudinal sectional view of the hydraulic drive device.
  • FIG. 3 is a hydraulic circuit diagram of a hydraulic drive apparatus according to another embodiment of the present invention.
  • a hydraulic drive device 100 mounted on a hydraulic excavator includes a first pump 1, a second pump 2, and a third pump 3 that are driven by a common internal combustion engine 4.
  • the hydraulic excavator is a traveling device using left and right crawlers, a drilling device that excavates the ground by driving buckets, arms, booms, etc., a turning device that turns the excavating device and the cab relative to the vehicle body, earth and sand in the traveling direction, etc.
  • the hydraulic drive device 100 is driven by supplying pressurized hydraulic oil to these devices.
  • the pressurized hydraulic oil discharged from the first pump 1 is supplied to a hydraulic motor that drives the left and right crawlers via the first pump passage 11.
  • the pressurized hydraulic oil discharged from the second pump 2 is supplied to a plurality of hydraulic cylinders that drive the excavator through the second pump passage 12.
  • the hydraulic oil discharged from the third pump 3 is supplied to the hydraulic motor that drives the swivel device and the hydraulic cylinder that drives the earth discharging plate through the third pump passage 13.
  • FIG. 1 the first pump 1 and the second pump 2 are constituted by a main piston pump 20.
  • the third pump 3 is constituted by a sub piston pump 50.
  • the main piston pump 20 and the sub piston pump 50 are coaxially configured on a shaft 25 driven by the internal combustion engine 4.
  • the main piston pump 20 is a two-flow type variable displacement swash plate type piston pump having two discharge ports.
  • the main piston pump 20 is accommodated in a space formed by a main casing 21 and a cover 22 fixed to the main casing 21.
  • the main piston pump 20 includes a main cylinder block 23 and a main swash plate 24.
  • the main cylinder block 23 is fixed to the shaft 25 and rotates integrally with the shaft 25.
  • One end of the shaft 25 is supported by the cover 22 via a bearing 32, and an intermediate portion of the shaft 25 is supported by the main casing 21 via a bearing 31.
  • the other end of the shaft 25 protruding from the main casing 21 to the outside is the FIG.
  • main cylinder block 23 an even number of main cylinders 26 are arranged in parallel with the central axis O of the shaft 25 at a constant interval on substantially the same circumference centering on the central axis O.
  • a main piston 28 is inserted into each main cylinder 26.
  • a main volume chamber 27 facing one end of the main piston 28 is defined inside the main cylinder 26.
  • the other end of the main piston 28 protrudes from the main cylinder block 23 and comes into sliding contact with the main swash plate 24 via a shoe 29.
  • a spring 48 that presses the shoe 29 toward the main swash plate 24 is housed inside the main cylinder block 23.
  • a cylinder port 33 or a cylinder port 34 communicating with the main volume chamber 27 is opened at the end surface of the main cylinder block 23 located on the opposite side of the main swash plate 24. This end surface of the main cylinder block 23 is in sliding contact with the valve plate 30 supported by the main casing 21.
  • the cylinder port 33 and the cylinder port 34 are alternately formed on the circumferences of different radii around the central axis O.
  • a cylinder port 33 communicating with half of the cylinders 26 and a cylinder port 34 communicating with the remaining half of the cylinders 26 are opened at the end surface of the main cylinder block 23.
  • the valve plate 30 is formed with one suction port and two discharge ports.
  • the suction port communicates with both the cylinder port 33 and the cylinder port 34 in the rotation angle region of the main cylinder block 23 where the main volume chamber 27 expands.
  • the two discharge ports include a discharge port communicating with the cylinder port 33 and a discharge port communicating with the cylinder port 34 in the rotation angle region of the main cylinder block 23 in which the main volume chamber 27 is reduced.
  • the discharge port communicating with the cylinder port 33, the main cylinder 26 having the cylinder port 33, and the main piston 28 inserted into the main cylinder 26 constitute the first pump 1.
  • the discharge port communicating with the cylinder port 34, the main cylinder 26 having the cylinder port 34, and the main piston 28 inserted into the main cylinder 26 constitute the second pump 1.
  • the discharge port of the first pump 1 has a FIG. 1 is connected to the discharge port of the second pump 2 in FIG. 2 is connected.
  • FIG. Although not shown in FIG. 2, the first pump passage 11 and the second pump passage 12 are formed through the main casing 21.
  • the springs 35 and 36 urge the main swash plate 24 in the direction of increasing the tilt angle.
  • the spring 35 always urges the main swash plate 24 in the direction of increasing the tilt angle, and the spring 36 moves the main swash plate 24 in the direction of increasing the tilt angle when the tilt angle of the main swash plate 24 falls below a predetermined angle.
  • Energize It is also possible to support the main swash plate 24 with a single spring instead of the springs 35 and 36.
  • the discharge capacity of the main piston pump 20 is adjusted by the first main hydraulic actuator 7, the second main hydraulic actuator 8, and the auxiliary hydraulic actuator 9. Again FIG.
  • the first main hydraulic actuator 7 and the second main hydraulic actuator 8 are slidably inserted into the cylinders 37 and 38 formed coaxially with the main casing 21 and the cylinders 37 and 38.
  • a stepped plunger 42 is formed with a hydraulic chamber 43 that exerts pressure on the step portion of the stepped plunger 42 and a hydraulic chamber 44 that exerts pressure on the tip portion of the stepped plunger 42.
  • the stepped plunger 42 is common to the first main hydraulic actuator 7 and the second main actuator 8.
  • the hydraulic chamber 44 that exerts pressure on the stepped plunger 42 constitutes the first main hydraulic actuator 7, and the hydraulic chamber 43 that exerts pressure on the stepped plunger 42 constitutes the second main hydraulic actuator 8.
  • the discharge pressure P ⁇ b> 1 of the first pump 1 is guided to the hydraulic chamber 44 of the first main hydraulic actuator 7.
  • the stepped plunger 42 is displaced, and the main swash plate 24 is driven in a direction in which the tilt angle becomes smaller.
  • the discharge capacity of the main piston pump 20 is reduced.
  • the discharge pressure P2 of the second pump 2 is guided to the hydraulic chamber 43 of the second main hydraulic actuator 8.
  • the pressure in the hydraulic chamber 43 increases, the stepped plunger 42 is displaced, and the main swash plate 24 is driven in a direction in which the tilt angle becomes smaller.
  • the discharge capacity of the main piston pump 20 is reduced.
  • the auxiliary hydraulic actuator 9 includes a cylinder, a piston slidably inserted into the cylinder, and hydraulic chambers 9A and 9B defined by the piston in the cylinder.
  • the auxiliary hydraulic actuator 9 is the same as FIG.
  • the discharge pressure P3 of the third pump 3 normally acts on the hydraulic chamber 9A of the auxiliary hydraulic actuator 9 (not shown in 2).
  • the piston in the auxiliary hydraulic actuator 9 displaces the main swash plate 24 in the direction in which the tilt angle becomes smaller, that is, in the direction in which the discharge capacity of the main piston pump 20 decreases.
  • the discharge pressure P3 of the third pump 3 is guided to the hydraulic chamber 9B of the auxiliary hydraulic actuator 9 via the switching valve 5.
  • the main swash plate 24 that determines the discharge capacity of the main piston pump 20 includes the first main hydraulic actuator 7, the second main hydraulic actuator 8, and the auxiliary hydraulic actuator 9 as the main swash plate 24.
  • the pressing force exerted and the elastic support force of the springs 35 and 36 that support the main swash plate 24 in the opposite direction are held at an arbitrary position. Therefore, the discharge capacity of the main piston pump 20 changes steplessly according to the pressure of the actuator 7-9. Again FIG. Referring to FIG.
  • the sub-piston pump 50 constituting the third pump 3 is a one-flow type variable displacement swash plate type piston pump having one discharge port.
  • the sub piston pump 50 is housed in a space formed by the sub casing 51 fixed to the main casing 21 and the main casing 21.
  • the sub piston pump 50 includes a sub cylinder block 53 and a sub swash plate 54.
  • the sub cylinder block 53 is fixed to the shaft 55 and rotates integrally with the shaft 55.
  • One end of the shaft 55 is supported by the sub casing 51 via a bearing 62.
  • the other end of the shaft 55 is supported on the main casing 21 via a bearing 61.
  • the shaft 55 is configured integrally with the shaft 25 on the same axis, and rotates integrally with the shaft 25.
  • a plurality of sub-cylinders 56 parallel to the central axis O are formed in the sub-cylinder block 53 on a circumference centered on the central axis O at regular intervals.
  • a sub piston 58 is inserted into each sub cylinder 56.
  • a sub volume chamber 57 that faces one end of the sub piston 58 is defined inside the sub cylinder 56.
  • the other end of the sub piston 58 protrudes from the sub cylinder block 53 and is in sliding contact with the sub swash plate 54 via a shoe 59.
  • a spring 65 for pressing the shoe 59 toward the sub swash plate 54 is accommodated inside the sub cylinder block 53.
  • the sub piston 58 slidably contacting the sub swash plate 54 via the shoe 59 reciprocates in the direction of the central axis O while expanding integrally with the sub cylinder block 53 to expand and contract the sub volume chamber 57.
  • a cylinder port 63 communicating with the sub volume chamber 57 is opened at the end surface of the sub cylinder block 53 located on the opposite side of the sub swash plate 54. This end surface of the sub cylinder block 53 is in sliding contact with the valve plate 60 supported by the main casing 21 in the sub casing 51.
  • One suction port and one discharge port 64 are formed in the valve plate 60. The suction port communicates with the cylinder port 63 in the rotation angle region of the sub cylinder block 53 where the sub volume chamber 57 expands.
  • the discharge port 64 communicates with the cylinder port 63 in the rotation angle region of the sub cylinder block 53 in which the sub volume chamber 57 is reduced.
  • the discharge port 64 is connected to the third pump passage 13.
  • the third pump passage 13 is formed through the main casing 21. Therefore, the flow rate and pressure of the hydraulic oil in the third pump passage 13 can be controlled independently from the flow rates and pressures of the hydraulic oil in the first pump passage 11 and the second pump passage 12.
  • the sub swash plate 54 is supported by the sub casing 51 through a pair of ball bearings in a state in which the tilt angle can be changed.
  • the sub hydraulic actuator 10 includes a cylinder 66 formed at the bottom of the sub casing 51 and a plunger 67 slidably inserted into the cylinder 66, and a hydraulic chamber 68 is defined therebetween.
  • the third pump passage 13 is connected to the hydraulic chamber 68 via the pilot switching valve 5. Again FIG. Referring to FIG. 1, the third pump passage 13 is connected to a hydraulic motor that drives the turning device and a hydraulic cylinder that drives the earth discharging plate, and the auxiliary hydraulic actuator 9 is connected to the main swash plate 24 in the direction of decreasing the tilt angle. Connected to the hydraulic chamber 9A.
  • the third pump passage 13 is further connected to the hydraulic chamber 9B for operating the auxiliary hydraulic actuator 9 in the direction of increasing the tilt angle of the main swash plate 24 and the hydraulic chamber 68 of the sub hydraulic actuator 10 via the pilot switching valve 5. Is done.
  • the sub hydraulic actuator 10 drives the sub swash plate 54 in the direction of decreasing the tilt angle by supplying pressure to the hydraulic chamber 68.
  • the pilot switching valve 5 drives the auxiliary hydraulic actuator 9 in the direction of increasing the tilt angle of the main swash plate 24.
  • a drive position A for supplying the discharge pressure P3 of the third pump 3 to the hydraulic chamber 9B formed in the auxiliary hydraulic actuator 9 and the hydraulic chamber 68 of the sub hydraulic actuator 10 via the third pump passage 13;
  • a drain position B for releasing the hydraulic chamber to the drain passage 14.
  • the pilot switching valve 5 is urged toward the drain position B by the elastic force of the return spring 6. Further, the discharge pressure P3 of the third pump 3 from the third pump passage 13 acts as a pilot pressure in the opposite direction to the return spring 6, that is, toward the drive position A.
  • the pilot switching valve 5 is located at the drain position B, and the sub swash plate 54 of the third pump 3 is held at the maximum tilt angle position. For example, by decentering the tilting axis of the sub swash plate 54 with respect to the shaft 55, a moment is generated by the pressing force applied by the sub piston 58 to the sub swash plate 54, and the sub swash plate 54 is maximized without using a spring.
  • the tilt angle position can be held.
  • the pilot switching valve 5 When the discharge pressure P3 of the third pump 3 exceeds the elastic force of the return spring 6, the pilot switching valve 5 is switched to the drive position A. As a result, the plunger 67 rotates the sub swash plate 54 to the minimum tilt angle position by the discharge pressure P3 of the third pump 3 supplied to the hydraulic chamber 68. As a result, the third pump 3 reduces the discharge flow rate. In this way, the discharge capacity of the third pump 3 is switched between the maximum capacity and the minimum capacity in accordance with the position of the pilot switching valve 5. On the other hand, the discharge pressure P3 of the third pump 3 always acts on the pressure chamber that reduces the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9.
  • the hydraulic chamber 9B that increases the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9 is open to the drain. Therefore, in this state, a force in the direction of decreasing the tilt angle based on the discharge pressure P3 of the third pump 3 acts on the main swash plate 24 via the auxiliary hydraulic actuator 9.
  • the discharge pressure P3 of the third pump 3 also acts on the hydraulic chamber 9B that increases the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9.
  • the auxiliary hydraulic actuator 9 stops displacement in the direction of decreasing the tilt angle of the main swash plate 24.
  • the tilt angle of the main swash plate 24 and the tilt angle of the sub swash plate 54 decrease, and the hydraulic drive device as a whole. Balance the discharge capacity.
  • the discharge pressure P3 of the third pump 3 exceeds a certain pressure, the decrease in the tilt angle of the main swash plate 24 stops.
  • the sub swash plate 54 is held at the minimum tilt angle position as it is.
  • the elastic restoring force of the return spring 6 is configured to be manually adjustable. By setting the elastic restoring force of the return spring 6 large, the discharge pressure P3 of the third pump 3 at which the switching valve 5 switches from the drain position B to the driving position A can be set high.
  • the first pump 1, the second pump 2, and the third pump 3 are driven by the rotational torque of the internal combustion engine 4.
  • the discharge hydraulic oil of the first pump 1 is supplied to a hydraulic motor that drives the left and right crawlers through the first pump passage 11.
  • the discharge hydraulic oil of the second pump 2 is supplied to each hydraulic cylinder that drives the excavator through the second pump passage 12.
  • the discharge hydraulic oil of the third pump 3 is supplied through the third pump passage 13 to a hydraulic motor that drives the swivel device and a hydraulic cylinder that drives the earth discharging plate.
  • the flow rate of the hydraulic oil supplied to each device is adjusted by an operator operating a control valve, and the excavator travels, excavates the ground, and transports earth and sand.
  • the main piston pump 20, which is used as both the first pump 1 and the second pump 2 has the urging force of the springs 35 and 36, the discharge pressure P1 of the first pump 1 guided to the first main hydraulic actuator 7, and the second main
  • the tilt angle of the main swash plate 24 is set at a position where the total pressure of the discharge pressure P2 of the second pump 2 guided to the hydraulic actuator 8 and the discharge pressure P3 of the third pump 3 guided to the auxiliary hydraulic actuator 9 is balanced. Hold.
  • the main swash plate 24 is tilted to a position where the driving force of the swash plate 24 and the urging force of the springs 35 and 36 due to the increased pressure are balanced.
  • the displacement of the main piston 28 per one rotation is reduced.
  • the discharge capacity of the main piston pump 20 gradually decreases.
  • the output of the internal combustion engine 4 is kept within a certain range.
  • the sub piston pump 50 constituting the third pump 3 changes the tilt angle of the sub swash plate 54, that is, the discharge capacity of the third pump 3 in two steps according to the discharge pressure P3. For example, when the swing device of the hydraulic excavator starts a swing operation, or when the swing device presses the bucket of the excavator against an object by turning, the discharge pressure P3 of the third pump 3 exceeds a predetermined pressure.
  • the switching valve 5 switches to the drive position A, and the sub swash plate 54 quickly changes the tilt angle from the maximum tilt angle position to the minimum tilt angle position.
  • the discharge pressure P3 of the third pump 3 is also led to the hydraulic chamber 9A of the auxiliary hydraulic actuator 9.
  • the pressure in the hydraulic chamber 9B acts in a direction that reduces the tilt angle of the main swash plate 24 of the main piston pump 20, that is, a direction that reduces the driving load of the first pump 1 and the second pump 2. That is, when the discharge pressure P3 of the third pump 3 increases, the first pump 1, the second pump 2, and the third pump 3 all change the tilt angle in the direction of decreasing the discharge capacity.
  • the load on the internal combustion engine 4 can be prevented from being stopped due to an excessive load.
  • the switching valve 5 is switched, and the third pump is also provided to the hydraulic chamber 9B that increases the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9. 3 discharge pressure P3 is supplied.
  • the operation of the auxiliary hydraulic actuator 9 in the direction of decreasing the tilt angle of the main swash plate 24 is stopped, and the decrease of the tilt angle of the main swash plate 24 is also stopped.
  • the tilt angle of 24 changes continuously. Therefore, the discharge capacity of the main piston pump 20 is finely adjusted according to the discharge pressure of these pumps 1-3.
  • the third pump 3 switches the tilt angle of the sub swash plate 54 between the maximum tilt angle position and the minimum tilt angle position in accordance with the discharge pressure P3. By switching the discharge capacity on / off, it is possible to prevent the drive load of the internal combustion engine 4 from becoming excessive.
  • FIG. A second embodiment of the present invention will be described with reference to FIG. In the description of this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the priority valve 16 and the low pressure relief valve 17 are arranged in series in the third pump passage 13 through which the third pump 3 constituting the sub-piston pump 50 discharges hydraulic oil.
  • the third pump passage 13 branches into the pump passage 18 and the pump passage 19 via the priority valve 16.
  • the priority valve 16 supplies the pump passage 18 with priority, and supplies excess hydraulic oil to the pump passage 19. Further, the excess hydraulic oil returns to the suction side of the third pump 3 through the low pressure relief valve 17.
  • hydraulic oil can be supplied from the third pump 3 to the two pump passages 18 and 19.
  • the hydraulic drive device according to the present invention is suitable for hydraulic supply for running, working, and turning of a hydraulic excavator, but is not limited to this, and can be applied to hydraulic supply devices for all construction machines and work vehicles. is there.
  • the exclusive properties or features encompassed by embodiments of the invention are claimed as follows.

Abstract

A hydraulic drive device (100) comprises a variable displacement main piston pump (20) and a variable displacement sub piston pump (50) which are rotationally driven through a common drive shaft (25, 55). The hydraulic drive device (100) is provided with: main hydraulic actuators (7, 8) for gradually reducing the discharge capacity of the main piston pump (20) according to rises in the discharge pressures (P1, P2) of the main piston pump (20); and a sub hydraulic actuator (10) for switching the discharge capacity of the sub piston pump (50) in two stages according to a rise in the discharge pressure (P3) of the sub piston pump (50). The configuration enables the capacity of the main piston pump (20) to be fine-adjusted and prevents the load on the pumps of the hydraulic drive device (100) from excessively increasing.

Description

油圧駆動装置Hydraulic drive
 この発明は、油圧ショベル等の建設機械や作業車両に搭載される油圧駆動装置に関する。 This invention relates to a hydraulic drive device mounted on a construction machine such as a hydraulic excavator or a work vehicle.
 日本国特許庁が2003年に発行したJP2003−221842 Aは、共通のエンジンに駆動される3台の可変容量型油圧ポンプからなる油圧駆動装置を備えた油圧ショベルを開示している。3台の油圧ポンプのうち第1の油圧ポンプと第2の油圧ポンプの吐出作動油は、土の掘削と油圧ショベルの移動とに用いられ、第3の油圧ポンプの吐出作動油がブーム及び操作室の旋回に用いられる。 JP 2003-221842 A issued by the Japan Patent Office in 2003 discloses a hydraulic excavator equipped with a hydraulic drive device including three variable displacement hydraulic pumps driven by a common engine. Of the three hydraulic pumps, the discharge hydraulic oil of the first hydraulic pump and the second hydraulic pump is used for excavating the soil and moving the excavator, and the discharge hydraulic oil of the third hydraulic pump is used for the boom and operation. Used for chamber rotation.
 この油圧駆動装置は、可変容量型の3台の油圧ポンプの吐出容量を、各油圧ポンプの吐出圧力に応じてそれぞれ連続的に調節する構造のため、構造が複雑で製造コストが高いという問題点があった。
 この発明の目的は、したがって、簡易な構造のもとでポンプの駆動負荷を調節できる油圧駆動装置を提供することである。
 以上の目的を達成するために、この発明は、共通の駆動軸を介して回転駆動される可変容量型のメインピストンポンプと可変容量型のサブピストンポンプとを備える油圧駆動装置において、前記メインピストンポンプの吐出圧力の上昇に応じて前記メインピストンポンプの吐出容量を連続的に減少させるメイン油圧アクチュエータと、前記サブピストンポンプの吐出圧力に応じて前記サブピストンポンプの吐出容量を2つの設定容量の間で切り換えるサブ油圧アクチュエータと、を備えている。
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。
This hydraulic drive unit has a structure that is complicated and high in manufacturing cost because the discharge capacity of three variable displacement hydraulic pumps is continuously adjusted according to the discharge pressure of each hydraulic pump. was there.
Accordingly, an object of the present invention is to provide a hydraulic drive device capable of adjusting a drive load of a pump under a simple structure.
In order to achieve the above object, the present invention provides a hydraulic drive apparatus including a variable displacement type main piston pump and a variable displacement type sub piston pump that are rotationally driven via a common drive shaft. A main hydraulic actuator that continuously decreases the discharge capacity of the main piston pump in response to an increase in the discharge pressure of the pump, and a discharge capacity of the sub-piston pump in accordance with the discharge pressure of the sub-piston pump. And a sub-hydraulic actuator that switches between them.
The details of the invention as well as other features and advantages are set forth in the following description of the specification and illustrated in the accompanying drawings.
 FIG.1はこの発明による油圧駆動装置の油圧回路図である。
 FIG.2は油圧駆動装置の縦断面図である。
 FIG.3はこの発明の他の実施例による油圧駆動装置の油圧回路図である。
FIG. 1 is a hydraulic circuit diagram of a hydraulic drive apparatus according to the present invention.
FIG. 2 is a longitudinal sectional view of the hydraulic drive device.
FIG. 3 is a hydraulic circuit diagram of a hydraulic drive apparatus according to another embodiment of the present invention.
 図面のFIG.1を参照すると、油圧ショベルに搭載される油圧駆動装置100は、共通の内燃エンジン4によって駆動される第1ポンプ1、第2ポンプ2、及び第3ポンプ3を備える。
 油圧ショベルは左右のクローラによる走行装置と、バケット、アーム、ブーム等を駆動して地面を掘削する掘削装置と、掘削装置や運転台を車体に対して旋回させる旋回装置と、進行方向に土砂等を押し出す排土板とを備え、油圧駆動装置100はこれらの装置に加圧作動油を供給して駆動する。
 第1ポンプ1が吐出する加圧作動油は第1ポンプ通路11を介して左右のクローラを駆動する油圧モータに供給される。第2ポンプ2が吐出する加圧作動油は第2ポンプ通路12を介して掘削装置を駆動する複数の油圧シリンダに供給される。
 第3ポンプ3が吐出する作動油は、第3ポンプ通路13を通って旋回装置を駆動する油圧モータと、排土板を駆動する油圧シリンダとに供給される。
 FIG.2を参照すると、第1ポンプ1と第2ポンプ2はメインピストンポンプ20によって構成される。第3ポンプ3はサブピストンポンプ50によって構成される。メインピストンポンプ20とサブピストンポンプ50は内燃エンジン4に駆動されるシャフト25上に同軸的に構成される。
 メインピストンポンプ20は、2つの吐出ポートを持つ2フロータイプの可変容量形斜板式ピストンポンプである。
 メインピストンポンプ20は、メインケーシング21と、メインケーシング21に固定されたカバー22とが形成するスペースに収装される。メインピストンポンプ20はメインシリンダブロック23とメイン斜板24とを備える。
 メインシリンダブロック23はシャフト25に固定され、シャフト25と一体に回転する。シャフト25の一端はカバー22にベアリング32を介して支持され、シャフト25の中間部はメインケーシング21にベアリング31を介して支持される。シャフト25のメインケーシング21から外部へ突出するもう一端にFIG.1に示す内燃エンジン4の回転トルクが入力する。
 メインシリンダブロック23にはシャフト25の中心軸Oと平行に偶数本のメインシリンダ26が、中心軸Oを中心とする略同一円周上に一定の間隔を保って配置される。
 各メインシリンダ26にはメインピストン28が挿入される。メインシリンダ26の内側にはメインピストン28の一端に臨むメイン容積室27が画成される。メインピストン28のもう一端はメインシリンダブロック23から突出し、メイン斜板24にシュー29を介して摺接する。
 メインシリンダブロック23の内側にはシュー29をメイン斜板24に向けて押圧するスプリング48が収装される。
 メインシリンダブロック23が回転すると、シュー29を介してメイン斜板24に摺接するメインピストン28はメインシリンダブロック23と一体回転しつつ、中心軸Oの方向に往復動してメイン容積室27を拡縮する。
 メイン斜板24の反対側に位置するメインシリンダブロック23の端面には、メイン容積室27に連通するシリンダポート33またはシリンダポート34が開口する。メインシリンダブロック23のこの端面はメインケーシング21に支持されたバルブプレート30に摺接する。
 シリンダポート33とシリンダポート34は中心軸Oを中心とする異なる半径の円周上に交互に形成される。結果として、メインシリンダブロック23の端面には、半数のシリンダ26に連通するシリンダポート33と、残りの半数のシリンダ26に連通するシリンダポート34とが開口する。
 バルブプレート30には1個の吸込ポートと2個の吐出ポートが形成される。吸込ポートはメイン容積室27が拡大するメインシリンダブロック23の回転角度領域においてシリンダポート33とシリンダポート34の双方に連通する。2個の吐出ポートはメイン容積室27が縮小するメインシリンダブロック23の回転角度領域において、シリンダポート33に連通する吐出ポートと、シリンダポート34に連通する吐出ポートからなる。
 シリンダポート33に連通する吐出ポート、シリンダポート33を有するメインシリンダ26、及びそれらのメインシリンダ26に挿入されたメインピストン28とが第1のポンプ1を構成する。シリンダポート34に連通する吐出ポート、シリンダポート34を有するメインシリンダ26、及びそれらのメインシリンダ26に挿入されたメインピストン28とが第2のポンプ1を構成する。
 第1のポンプ1の吐出ポートにはFIG.1に示す第1ポンプ通路11が接続され、第2のポンプ2の吐出ポートにはFIG.1に示す第2ポンプ通路12が接続される。FIG.2には示されていないが、第1ポンプ通路11と第2ポンプ通路12はメインケーシング21を貫通して形成される。
 メインシリンダブロック23が1回転すると、各メインピストン28がメインシリンダ26内を1往復動する。メイン容積室27が拡張する吸込行程では、作動油がバルブプレート30の吸込ポートからシリンダポート33と34を介してメイン容積室27に吸い込まれる。メインシリンダ26のメイン容積室27が収縮する吐出行程では、作動油がメイン容積室27からシリンダポート33または34を介してバルブプレート30の2つの吐出ポートへと吐出され、第1のポンプ通路11と第2ポンプ通路12へ供給される。
 メインピストンポンプ20の以上の構造により、第1ポンプ通路11と第2ポンプ通路12には個別に作動油が供給されることになる。
 メイン斜板24は軸受41を介してカバー22に対して傾転可能に支持される。
 メイン斜板24とメインケーシング21の間にはスプリング35と36が介装される。スプリング35と36はメイン斜板24を傾転角増大方向に付勢する。スプリング35は常にメイン斜板24を傾転角増大方向に付勢し、スプリング36はメイン斜板24の傾転角度が所定角度を下回った場合に、メイン斜板24を傾転角増大方向に付勢する。スプリング35と36に代えて単一のスプリングでメイン斜板24を支持することも可能である。
 再びFIG.1を参照すると、メインピストンポンプ20の吐出容量は第1メイン油圧アクチュエータ7と、第2メイン油圧アクチュエータ8と、補助油圧アクチュエータ9とにより調整される。
 再びFIG.2を参照すると、第1のメイン油圧アクチュエータ7及び第2のメイン油圧アクチュエータ8は、メインケーシング21に同軸上に形成されたシリンダ37と38と、シリンダ37と38に摺動可能に挿入される段付きプランジャ42とを備える。メインケーシング21には段付きプランジャ42の段部に圧力を及ぼす油圧室43と段付きプランジャ42の先端部に圧力を及ぼす油圧室44とが形成される。
 段付きプランジャ42は第1のメイン油圧アクチュエータ7と第2のメインアクチュエータ8とで共通である。段付きプランジャ42に圧力を及ぼす油圧室44が第1のメイン油圧アクチュエータ7を構成し、段付きプランジャ42に圧力を及ぼす油圧室43が第2のメイン油圧アクチュエータ8を構成する。
 再びFIG.1を参照すると、第1のメイン油圧アクチュエータ7の油圧室44には第1ポンプ1の吐出圧P1が導かれる。油圧室44に導かれる圧力が上昇すると、段付きプランジャ42が変位し、メイン斜板24を傾転角度が小さくなる方向に駆動する。その結果、メインピストンポンプ20の吐出容量が減少する。
 第2のメイン油圧アクチュエータ8の油圧室43には第2ポンプ2の吐出圧力P2が導かれる。油圧室43の圧力が上昇すると、段付きプランジャ42が変位し、メイン斜板24を傾転角度が小さくなる方向に駆動する。その結果、メインピストンポンプ20の吐出容量が減少する。
 補助油圧アクチュエータ9はシリンダと、シリンダに摺動可能に挿入されるピストンと、シリンダ内にピストンにより画成される油圧室9Aと9Bとを備える。なお、補助油圧アクチュエータ9はFIG.2には示されない
 補助油圧アクチュエータ9の油圧室9Aには第3ポンプ3の吐出圧力P3が常作用する。油圧室9Aの圧力が上昇すると、補助油圧アクチュエータ9内のピストンはメイン斜板24を傾転角が小さくなる方向、すなわちメインピストンポンプ20の吐出容量が減少する方向、へと変位させる。
 補助油圧アクチュエータ9の油圧室9Bには第3ポンプ3の吐出圧力P3が切換弁5を介して導かれる。油圧室9Bに第3ポンプ3の吐出圧力P3が作用すると、メインピストンポンプ20の吐出圧減少方向へのピストンの変位が停止する。これに伴い、メイン斜板24の傾転角減少方向への変位も停止する。
 以上のように、メインピストンポンプ20の吐出容量を決定するメイン斜板24は、第1のメイン油圧アクチュエータ7と、第2のメイン油圧アクチュエータ8と、補助油圧アクチュエータ9とがメイン斜板24に及ぼす押圧力と、メイン斜板24を逆向きに支持するスプリング35と36の弾性支持力とがバランスする任意の位置に保持される。したがって、アクチュエータ7−9の圧力に応じてメインピストンポンプ20の吐出容量は無段階に変化する。
 再びFIG.2を参照すると、第3ポンプ3を構成するサブピストンポンプ50は、1つの吐出ポートを持つ1フロータイプの可変容量形斜板式ピストンポンプである。
 サブピストンポンプ50は、メインケーシング21に固定されたサブケーシング51とメインケーシング21とが形成するスペースに収装される。サブピストンポンプ50はサブシリンダブロック53とサブ斜板54とを備える。
 サブシリンダブロック53はシャフト55に固定され、シャフト55と一体に回転する。シャフト55の一端はサブケーシング51にベアリング62を介して支持される。シャフト55のもう一端はメインケーシング21にベアリング61を介して支持される。シャフト55はシャフト25と同軸上で一体に構成され、シャフト25と一体に回転する。
 サブシリンダブロック53には、中心軸Oと平行な複数個のサブシリンダ56が中心軸Oを中心とする円周上に一定間隔で形成される。
 各サブシリンダ56にはサブピストン58が挿入される。サブシリンダ56の内側にはサブピストン58の一端に臨むサブ容積室57が画成される。サブピストン58のもう一端はサブシリンダブロック53から突出し、サブ斜板54にシュー59を介して摺接する。
 サブシリンダブロック53の内側にはシュー59をサブ斜板54に向けて押圧するスプリング65が収装される。
 サブシリンダブロック53が1回転すると、各サブピストン58がサブシリンダ56内を1往復動する。シュー59を介してサブ斜板54に摺接するサブピストン58は、サブシリンダブロック53と一体回転しつつ、中心軸Oの方向に往復動してサブ容積室57を拡縮する。
 サブ斜板54の反対側に位置するサブシリンダブロック53の端面には、サブ容積室57に連通するシリンダポート63が開口する。
 サブシリンダブロック53のこの端面は、サブケーシング51内においてメインケーシング21に支持されたバルブプレート60に摺接する。バルブプレート60には、1個の吸込ポートと1個の吐出ポート64が形成される。サブ容積室57が拡大するサブシリンダブロック53の回転角度領域において吸込ポートがシリンダポート63に連通する。サブ容積室57が縮小するサブシリンダブロック53の回転角度領域において吐出ポート64がシリンダポート63に連通する。
 吐出ポート64は第3ポンプ通路13に接続される。第3ポンプ通路13はメインケーシング21を貫通して形成される。第3ポンプ通路13の作動油の流量や圧力は、したがって、第1ポンプ通路11及び第2ポンプ通路12の作動油の流量や圧力から独立して制御可能である。
 サブ斜板54は一対のボール軸受を介してサブケーシング51に傾転角を変更可能な状態で支持される。
 サブ油圧アクチュエータ10は、サブケーシング51の底部に形成されたシリンダ66と、このシリンダ66に摺動可能に挿入されるプランジャ67とを備え、両者の間に油圧室68が画成される。
 油圧室68には第3ポンプ通路13がパイロット切換弁5を介して接続される。
 再びFIG.1を参照すると、第3ポンプ通路13は旋回装置を駆動する油圧モータと、排土板を駆動する油圧シリンダとに接続されるとともに、補助油圧アクチュエータ9をメイン斜板24の傾転角減少方向に作動させる油圧室9Aに接続される。第3ポンプ通路13は、さらに、パイロット切換弁5を介して補助油圧アクチュエータ9をメイン斜板24の傾転角増大方向に作動させる油圧室9Bと、サブ油圧アクチュエータ10の油圧室68とに接続される。サブ油圧アクチュエータ10は油圧室68への圧力供給によりサブ斜板54を傾転角減少方向に駆動する
 パイロット切換弁5は、補助油圧アクチュエータ9をメイン斜板24の傾転角増大方向に駆動する補助油圧アクチュエータ9に形成された油圧室9Bと、サブ油圧アクチュエータ10の油圧室68とに、第3ポンプ通路13を介して第3ポンプ3の吐出圧力P3を供給する駆動ポジションAと、これらの油圧室をドレン通路14に解放するドレンポジションBとを有する。
 パイロット切換弁5は、リターンスプリング6の弾性力によりドレンポジションBに向けて付勢される。また、第3ポンプ通路13から第3ポンプ3の吐出圧力P3がパイロット圧力としてリターンスプリング6と逆向き、つまり駆動ポジションAに向けて作用する。
 第3ポンプ3の吐出圧力P3が低い場合には、パイロット切換弁5はドレンポジションBに位置しており、第3ポンプ3のサブ斜板54は、最大傾転角位置に保持される。例えば、サブ斜板54の傾転軸をシャフト55に対して偏心させることで、サブ斜板54にサブピストン58が加える押圧力でモーメントを発生させ、スプリングを用いずにサブ斜板54を最大傾転角位置に保持することができる。
 第3ポンプ3の吐出圧力P3がリターンスプリング6の弾性力を上回ると、パイロット切換弁5が駆動ポジションAに切り換わる。その結果、油圧室68に供給される第3ポンプ3の吐出圧力P3でプランジャ67がサブ斜板54を最小傾転角位置へと回動する。その結果、第3ポンプ3は吐出流量を低下させる。このようにして、パイロット切換弁5のポジションに応じて、第3ポンプ3の吐出容量は最大容量と最小容量との間で切り換えられる。
 一方、第3ポンプ3の吐出圧力P3は補助油圧アクチュエータ9のメイン斜板24の傾転角を減少させる圧力室に常時作用する。また、パイロット切換弁5がドレンポジションBにある間は、補助油圧アクチュエータ9のメイン斜板24の傾転角を増大させる油圧室9Bはドレーンに開放されている。したがって、この状態では、メイン斜板24には、補助油圧アクチュエータ9を介して第3ポンプ3の吐出圧力P3に基づく傾転角減少方向の力が作用する。
 一方、駆動ポジションAに切り換わると、補助油圧アクチュエータ9のメイン斜板24の傾転角を増大させる油圧室9Bにも第3ポンプ3の吐出圧力P3が作用する。これにより、補助油圧アクチュエータ9はメイン斜板24の傾転角を減少させる方向への変位を停止する。
 このようにして、この油圧駆動装置においては、第3ポンプ3の吐出圧力P3が増大するにつれて、メイン斜板24の傾転角とサブ斜板54の傾転角が減少し、油圧駆動装置全体の吐出容量をバランスさせる。一方、第3ポンプ3の吐出圧力P3が一定圧力を上回ると、メイン斜板24の傾転角の減少は停止する。サブ斜板54はそのまま最小傾転角位置に保持される。
 リターンスプリング6の弾性復元力は、手動により調節可能に構成される。リターンスプリング6の弾性復元力を大きく設定することにより、切換弁5がドレンポジションBから駆動ポジションAに切換わる第3ポンプ3の吐出圧力P3を高く設定することができる。
 油圧ショベルの運転中は、内燃エンジン4の回転トルクで第1ポンプ1、第2ポンプ2、及び第3ポンプ3が駆動される。
 第1ポンプ1の吐出作動油は第1ポンプ通路11を通って左右のクローラを駆動する油圧モータに供給される。第2ポンプ2の吐出作動油は第2ポンプ通路12を通って掘削装置を駆動する各油圧シリンダに供給される。第3ポンプ3の吐出作動油は、第3ポンプ通路13を通って旋回装置を駆動する油圧モータと、排土板を駆動する油圧シリンダとに供給される。
 各装置に供給される作動油の流量は、オペレータがコントロールバルブを操作することで調節され、油圧ショベルの走行や、地面の掘削や、土砂の搬送が行われる。
 第1ポンプ1と第2ポンプ2を兼用するメインピストンポンプ20は、スプリング35と36の付勢力と、第1のメイン油圧アクチュエータ7に導かれる第1ポンプ1の吐出圧P1、第2のメイン油圧アクチュエータ8に導かれる第2ポンプ2の吐出圧P2、及び補助油圧アクチュエータ9に導かれる第3ポンプ3の吐出圧P3の合計圧力と、がバランスする位置にメイン斜板24の傾転角度を保持する。吐出圧P1、P2、P3のいずれかが上昇すると、上昇圧力による斜板24の駆動力とスプリング35と36の付勢力とがバランスする位置へとメイン斜板24が傾転する結果、シャフト25の1回転当たりのメインピストン28の押しのけ容積が減少する。メインピストン28の押しのけ容積の減少に伴い、メインピストンポンプ20の吐出容量が漸次減少する。その結果、内燃エンジン4の出力は一定範囲に保たれる。
 第3ポンプ3を構成するサブピストンポンプ50は、吐出圧力P3に応じてサブ斜板54の傾転角度、すなわち第3ポンプ3の吐出容量を2段階に変化させる。
 例えば、油圧ショベルの旋回装置が旋回動作を始める場合、あるいは旋回装置が旋回することで掘削装置のバケットを対象物に押し当てる場合には、第3ポンプ3の吐出圧P3が所定圧を超えて上昇するのに応じて、切換弁5が駆動ポジションAに切り換わり、サブ斜板54が最大傾転角位置から最小傾転角位置へと速やかに傾転角を変化させる。その結果、第3ポンプ3の駆動負荷が過度に上昇するのを防止できる。
 第3ポンプ3の吐出圧P3は補助油圧アクチュエータ9の油圧室9Aにも導かれる。油圧室9Bの圧力は、メインピストンポンプ20のメイン斜板24の傾転角を減少させる方向、すなわち第1ポンプ1と第2ポンプ2の駆動負荷を軽減する方向に作用する。
 つまり、第3ポンプ3の吐出圧P3が上昇すると、第1ポンプ1、第2ポンプ2、及び第3ポンプ3はすべて吐出容量を減少させる方向へと傾転角を変化させるので、内燃エンジン4の負荷が応答良く軽減され、過大負荷による内燃エンジン4の運転停止を防止できる。
 なお、第3ポンプ3の吐出圧P3が一定圧力以上に上昇すると、切換弁5が切り換わり、補助油圧アクチュエータ9のメイン斜板24の傾転角を増大させる油圧室9Bにも、第3ポンプ3の吐出圧P3が供給される。その結果、補助油圧アクチュエータ9のメイン斜板24の傾転角を減少させる方向への作動が停止し、メイン斜板24の傾転角の減少も停止する。
 このようにして、メインピストンポンプ20が構成する第1ポンプ1と第2ポンプ2の吐出圧力P1,P2、及びサブピストンポンプ50が構成する第3ポンプ3の吐出圧力P3に応じてメイン斜板24の傾転角度は連続的に変化する。したがって、メインピストンポンプ20の吐出容量はこれらのポンプ1−3の吐出圧に応じてきめ細かく調節される。一方、第3ポンプ3はその吐出圧P3に応じてサブ斜板54の傾転角度を最大傾転角位置と最小傾転角位置の間でオン/オフ的に切り換える。吐出容量のオン/オフ的な切り換えにより、内燃エンジン4の駆動負荷が過大になるのを防止できる。つまり、メインピストンポンプ20の吐出容量のきめ細かい調整機能を維持しつつ、内燃エンジン4の過大負荷の防止を簡易な構成で実現することができる。
 サブピストンポンプ50は、サブ斜板54の傾転角度をオン/オフ的に切り換えるので、サブ斜板54の支持構造が簡素化されるとともに、サブ斜板54を傾転角増大方向に付勢するスプリングを省略できる。サブピストンポンプ50のこのような構造は油圧駆動装置の製造コストを削減するうえで好ましい。
 FIG.3を参照してこの発明の第2の実施例を説明する。
 この実施例の説明に際して、第1の実施例との共通の構成部については同一番号を付して詳しい説明を省略する。
 この実施例においては、サブピストンポンプ50を構成する第3ポンプ3が作動油を吐出する第3ポンプ通路13に、プライオリティバルブ16と低圧リリーフバルブ17を直列に配置する。第3ポンプ通路13は、プライオリティバルブ16を介してポンプ通路18とポンプ通路19に分岐する。プライオリティバルブ16はポンプ通路18に優先的に供給し、余剰の作動油をポンプ通路19に供給する。さらに余剰の作動油は低圧リリーフバルブ17を介して第3ポンプ3の吸い込み側に還流する。この実施例によれば、第3ポンプ3から2系統のポンプ通路18と19に作動油を供給することができる。
 以上の説明に関して2009年4月23日を出願日とする日本国における特願2009−105219号、の内容をここに引用により合体する。
 以上、この発明をいくつかの特定の実施例を通じて説明してきたが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。
 例えば、以上の各実施例では作動流体に作動油を用いているが、作動油の代わりに水溶性代替液等の作動流体を用いることも可能である。
FIG. Referring to FIG. 1, a hydraulic drive device 100 mounted on a hydraulic excavator includes a first pump 1, a second pump 2, and a third pump 3 that are driven by a common internal combustion engine 4.
The hydraulic excavator is a traveling device using left and right crawlers, a drilling device that excavates the ground by driving buckets, arms, booms, etc., a turning device that turns the excavating device and the cab relative to the vehicle body, earth and sand in the traveling direction, etc. The hydraulic drive device 100 is driven by supplying pressurized hydraulic oil to these devices.
The pressurized hydraulic oil discharged from the first pump 1 is supplied to a hydraulic motor that drives the left and right crawlers via the first pump passage 11. The pressurized hydraulic oil discharged from the second pump 2 is supplied to a plurality of hydraulic cylinders that drive the excavator through the second pump passage 12.
The hydraulic oil discharged from the third pump 3 is supplied to the hydraulic motor that drives the swivel device and the hydraulic cylinder that drives the earth discharging plate through the third pump passage 13.
FIG. Referring to FIG. 2, the first pump 1 and the second pump 2 are constituted by a main piston pump 20. The third pump 3 is constituted by a sub piston pump 50. The main piston pump 20 and the sub piston pump 50 are coaxially configured on a shaft 25 driven by the internal combustion engine 4.
The main piston pump 20 is a two-flow type variable displacement swash plate type piston pump having two discharge ports.
The main piston pump 20 is accommodated in a space formed by a main casing 21 and a cover 22 fixed to the main casing 21. The main piston pump 20 includes a main cylinder block 23 and a main swash plate 24.
The main cylinder block 23 is fixed to the shaft 25 and rotates integrally with the shaft 25. One end of the shaft 25 is supported by the cover 22 via a bearing 32, and an intermediate portion of the shaft 25 is supported by the main casing 21 via a bearing 31. The other end of the shaft 25 protruding from the main casing 21 to the outside is the FIG. The rotational torque of the internal combustion engine 4 shown in FIG.
In the main cylinder block 23, an even number of main cylinders 26 are arranged in parallel with the central axis O of the shaft 25 at a constant interval on substantially the same circumference centering on the central axis O.
A main piston 28 is inserted into each main cylinder 26. A main volume chamber 27 facing one end of the main piston 28 is defined inside the main cylinder 26. The other end of the main piston 28 protrudes from the main cylinder block 23 and comes into sliding contact with the main swash plate 24 via a shoe 29.
A spring 48 that presses the shoe 29 toward the main swash plate 24 is housed inside the main cylinder block 23.
When the main cylinder block 23 rotates, the main piston 28 slidably contacting the main swash plate 24 via the shoe 29 rotates together with the main cylinder block 23 and reciprocates in the direction of the central axis O to expand and contract the main volume chamber 27. To do.
A cylinder port 33 or a cylinder port 34 communicating with the main volume chamber 27 is opened at the end surface of the main cylinder block 23 located on the opposite side of the main swash plate 24. This end surface of the main cylinder block 23 is in sliding contact with the valve plate 30 supported by the main casing 21.
The cylinder port 33 and the cylinder port 34 are alternately formed on the circumferences of different radii around the central axis O. As a result, a cylinder port 33 communicating with half of the cylinders 26 and a cylinder port 34 communicating with the remaining half of the cylinders 26 are opened at the end surface of the main cylinder block 23.
The valve plate 30 is formed with one suction port and two discharge ports. The suction port communicates with both the cylinder port 33 and the cylinder port 34 in the rotation angle region of the main cylinder block 23 where the main volume chamber 27 expands. The two discharge ports include a discharge port communicating with the cylinder port 33 and a discharge port communicating with the cylinder port 34 in the rotation angle region of the main cylinder block 23 in which the main volume chamber 27 is reduced.
The discharge port communicating with the cylinder port 33, the main cylinder 26 having the cylinder port 33, and the main piston 28 inserted into the main cylinder 26 constitute the first pump 1. The discharge port communicating with the cylinder port 34, the main cylinder 26 having the cylinder port 34, and the main piston 28 inserted into the main cylinder 26 constitute the second pump 1.
The discharge port of the first pump 1 has a FIG. 1 is connected to the discharge port of the second pump 2 in FIG. 2 is connected. FIG. Although not shown in FIG. 2, the first pump passage 11 and the second pump passage 12 are formed through the main casing 21.
When the main cylinder block 23 rotates once, each main piston 28 reciprocates in the main cylinder 26 one time. In the suction stroke in which the main volume chamber 27 expands, the hydraulic oil is sucked into the main volume chamber 27 from the suction port of the valve plate 30 through the cylinder ports 33 and 34. In the discharge stroke in which the main volume chamber 27 of the main cylinder 26 contracts, the hydraulic oil is discharged from the main volume chamber 27 to the two discharge ports of the valve plate 30 via the cylinder port 33 or 34 and the first pump passage 11. And supplied to the second pump passage 12.
With the above structure of the main piston pump 20, hydraulic oil is supplied to the first pump passage 11 and the second pump passage 12 individually.
The main swash plate 24 is supported via a bearing 41 so as to be tiltable with respect to the cover 22.
Springs 35 and 36 are interposed between the main swash plate 24 and the main casing 21. The springs 35 and 36 urge the main swash plate 24 in the direction of increasing the tilt angle. The spring 35 always urges the main swash plate 24 in the direction of increasing the tilt angle, and the spring 36 moves the main swash plate 24 in the direction of increasing the tilt angle when the tilt angle of the main swash plate 24 falls below a predetermined angle. Energize. It is also possible to support the main swash plate 24 with a single spring instead of the springs 35 and 36.
Again FIG. 1, the discharge capacity of the main piston pump 20 is adjusted by the first main hydraulic actuator 7, the second main hydraulic actuator 8, and the auxiliary hydraulic actuator 9.
Again FIG. 2, the first main hydraulic actuator 7 and the second main hydraulic actuator 8 are slidably inserted into the cylinders 37 and 38 formed coaxially with the main casing 21 and the cylinders 37 and 38. And a stepped plunger 42. The main casing 21 is formed with a hydraulic chamber 43 that exerts pressure on the step portion of the stepped plunger 42 and a hydraulic chamber 44 that exerts pressure on the tip portion of the stepped plunger 42.
The stepped plunger 42 is common to the first main hydraulic actuator 7 and the second main actuator 8. The hydraulic chamber 44 that exerts pressure on the stepped plunger 42 constitutes the first main hydraulic actuator 7, and the hydraulic chamber 43 that exerts pressure on the stepped plunger 42 constitutes the second main hydraulic actuator 8.
Again FIG. Referring to FIG. 1, the discharge pressure P <b> 1 of the first pump 1 is guided to the hydraulic chamber 44 of the first main hydraulic actuator 7. When the pressure guided to the hydraulic chamber 44 rises, the stepped plunger 42 is displaced, and the main swash plate 24 is driven in a direction in which the tilt angle becomes smaller. As a result, the discharge capacity of the main piston pump 20 is reduced.
The discharge pressure P2 of the second pump 2 is guided to the hydraulic chamber 43 of the second main hydraulic actuator 8. When the pressure in the hydraulic chamber 43 increases, the stepped plunger 42 is displaced, and the main swash plate 24 is driven in a direction in which the tilt angle becomes smaller. As a result, the discharge capacity of the main piston pump 20 is reduced.
The auxiliary hydraulic actuator 9 includes a cylinder, a piston slidably inserted into the cylinder, and hydraulic chambers 9A and 9B defined by the piston in the cylinder. The auxiliary hydraulic actuator 9 is the same as FIG. The discharge pressure P3 of the third pump 3 normally acts on the hydraulic chamber 9A of the auxiliary hydraulic actuator 9 (not shown in 2). When the pressure in the hydraulic chamber 9A increases, the piston in the auxiliary hydraulic actuator 9 displaces the main swash plate 24 in the direction in which the tilt angle becomes smaller, that is, in the direction in which the discharge capacity of the main piston pump 20 decreases.
The discharge pressure P3 of the third pump 3 is guided to the hydraulic chamber 9B of the auxiliary hydraulic actuator 9 via the switching valve 5. When the discharge pressure P3 of the third pump 3 acts on the hydraulic chamber 9B, the displacement of the piston in the direction of decreasing the discharge pressure of the main piston pump 20 stops. Accordingly, the displacement of the main swash plate 24 in the direction of decreasing the tilt angle is also stopped.
As described above, the main swash plate 24 that determines the discharge capacity of the main piston pump 20 includes the first main hydraulic actuator 7, the second main hydraulic actuator 8, and the auxiliary hydraulic actuator 9 as the main swash plate 24. The pressing force exerted and the elastic support force of the springs 35 and 36 that support the main swash plate 24 in the opposite direction are held at an arbitrary position. Therefore, the discharge capacity of the main piston pump 20 changes steplessly according to the pressure of the actuator 7-9.
Again FIG. Referring to FIG. 2, the sub-piston pump 50 constituting the third pump 3 is a one-flow type variable displacement swash plate type piston pump having one discharge port.
The sub piston pump 50 is housed in a space formed by the sub casing 51 fixed to the main casing 21 and the main casing 21. The sub piston pump 50 includes a sub cylinder block 53 and a sub swash plate 54.
The sub cylinder block 53 is fixed to the shaft 55 and rotates integrally with the shaft 55. One end of the shaft 55 is supported by the sub casing 51 via a bearing 62. The other end of the shaft 55 is supported on the main casing 21 via a bearing 61. The shaft 55 is configured integrally with the shaft 25 on the same axis, and rotates integrally with the shaft 25.
A plurality of sub-cylinders 56 parallel to the central axis O are formed in the sub-cylinder block 53 on a circumference centered on the central axis O at regular intervals.
A sub piston 58 is inserted into each sub cylinder 56. A sub volume chamber 57 that faces one end of the sub piston 58 is defined inside the sub cylinder 56. The other end of the sub piston 58 protrudes from the sub cylinder block 53 and is in sliding contact with the sub swash plate 54 via a shoe 59.
A spring 65 for pressing the shoe 59 toward the sub swash plate 54 is accommodated inside the sub cylinder block 53.
When the sub cylinder block 53 makes one rotation, each sub piston 58 reciprocates in the sub cylinder 56 one time. The sub piston 58 slidably contacting the sub swash plate 54 via the shoe 59 reciprocates in the direction of the central axis O while expanding integrally with the sub cylinder block 53 to expand and contract the sub volume chamber 57.
A cylinder port 63 communicating with the sub volume chamber 57 is opened at the end surface of the sub cylinder block 53 located on the opposite side of the sub swash plate 54.
This end surface of the sub cylinder block 53 is in sliding contact with the valve plate 60 supported by the main casing 21 in the sub casing 51. One suction port and one discharge port 64 are formed in the valve plate 60. The suction port communicates with the cylinder port 63 in the rotation angle region of the sub cylinder block 53 where the sub volume chamber 57 expands. The discharge port 64 communicates with the cylinder port 63 in the rotation angle region of the sub cylinder block 53 in which the sub volume chamber 57 is reduced.
The discharge port 64 is connected to the third pump passage 13. The third pump passage 13 is formed through the main casing 21. Therefore, the flow rate and pressure of the hydraulic oil in the third pump passage 13 can be controlled independently from the flow rates and pressures of the hydraulic oil in the first pump passage 11 and the second pump passage 12.
The sub swash plate 54 is supported by the sub casing 51 through a pair of ball bearings in a state in which the tilt angle can be changed.
The sub hydraulic actuator 10 includes a cylinder 66 formed at the bottom of the sub casing 51 and a plunger 67 slidably inserted into the cylinder 66, and a hydraulic chamber 68 is defined therebetween.
The third pump passage 13 is connected to the hydraulic chamber 68 via the pilot switching valve 5.
Again FIG. Referring to FIG. 1, the third pump passage 13 is connected to a hydraulic motor that drives the turning device and a hydraulic cylinder that drives the earth discharging plate, and the auxiliary hydraulic actuator 9 is connected to the main swash plate 24 in the direction of decreasing the tilt angle. Connected to the hydraulic chamber 9A. The third pump passage 13 is further connected to the hydraulic chamber 9B for operating the auxiliary hydraulic actuator 9 in the direction of increasing the tilt angle of the main swash plate 24 and the hydraulic chamber 68 of the sub hydraulic actuator 10 via the pilot switching valve 5. Is done. The sub hydraulic actuator 10 drives the sub swash plate 54 in the direction of decreasing the tilt angle by supplying pressure to the hydraulic chamber 68. The pilot switching valve 5 drives the auxiliary hydraulic actuator 9 in the direction of increasing the tilt angle of the main swash plate 24. A drive position A for supplying the discharge pressure P3 of the third pump 3 to the hydraulic chamber 9B formed in the auxiliary hydraulic actuator 9 and the hydraulic chamber 68 of the sub hydraulic actuator 10 via the third pump passage 13; And a drain position B for releasing the hydraulic chamber to the drain passage 14.
The pilot switching valve 5 is urged toward the drain position B by the elastic force of the return spring 6. Further, the discharge pressure P3 of the third pump 3 from the third pump passage 13 acts as a pilot pressure in the opposite direction to the return spring 6, that is, toward the drive position A.
When the discharge pressure P3 of the third pump 3 is low, the pilot switching valve 5 is located at the drain position B, and the sub swash plate 54 of the third pump 3 is held at the maximum tilt angle position. For example, by decentering the tilting axis of the sub swash plate 54 with respect to the shaft 55, a moment is generated by the pressing force applied by the sub piston 58 to the sub swash plate 54, and the sub swash plate 54 is maximized without using a spring. The tilt angle position can be held.
When the discharge pressure P3 of the third pump 3 exceeds the elastic force of the return spring 6, the pilot switching valve 5 is switched to the drive position A. As a result, the plunger 67 rotates the sub swash plate 54 to the minimum tilt angle position by the discharge pressure P3 of the third pump 3 supplied to the hydraulic chamber 68. As a result, the third pump 3 reduces the discharge flow rate. In this way, the discharge capacity of the third pump 3 is switched between the maximum capacity and the minimum capacity in accordance with the position of the pilot switching valve 5.
On the other hand, the discharge pressure P3 of the third pump 3 always acts on the pressure chamber that reduces the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9. While the pilot switching valve 5 is in the drain position B, the hydraulic chamber 9B that increases the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9 is open to the drain. Therefore, in this state, a force in the direction of decreasing the tilt angle based on the discharge pressure P3 of the third pump 3 acts on the main swash plate 24 via the auxiliary hydraulic actuator 9.
On the other hand, when switching to the drive position A, the discharge pressure P3 of the third pump 3 also acts on the hydraulic chamber 9B that increases the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9. As a result, the auxiliary hydraulic actuator 9 stops displacement in the direction of decreasing the tilt angle of the main swash plate 24.
In this way, in this hydraulic drive device, as the discharge pressure P3 of the third pump 3 increases, the tilt angle of the main swash plate 24 and the tilt angle of the sub swash plate 54 decrease, and the hydraulic drive device as a whole. Balance the discharge capacity. On the other hand, when the discharge pressure P3 of the third pump 3 exceeds a certain pressure, the decrease in the tilt angle of the main swash plate 24 stops. The sub swash plate 54 is held at the minimum tilt angle position as it is.
The elastic restoring force of the return spring 6 is configured to be manually adjustable. By setting the elastic restoring force of the return spring 6 large, the discharge pressure P3 of the third pump 3 at which the switching valve 5 switches from the drain position B to the driving position A can be set high.
During operation of the hydraulic excavator, the first pump 1, the second pump 2, and the third pump 3 are driven by the rotational torque of the internal combustion engine 4.
The discharge hydraulic oil of the first pump 1 is supplied to a hydraulic motor that drives the left and right crawlers through the first pump passage 11. The discharge hydraulic oil of the second pump 2 is supplied to each hydraulic cylinder that drives the excavator through the second pump passage 12. The discharge hydraulic oil of the third pump 3 is supplied through the third pump passage 13 to a hydraulic motor that drives the swivel device and a hydraulic cylinder that drives the earth discharging plate.
The flow rate of the hydraulic oil supplied to each device is adjusted by an operator operating a control valve, and the excavator travels, excavates the ground, and transports earth and sand.
The main piston pump 20, which is used as both the first pump 1 and the second pump 2, has the urging force of the springs 35 and 36, the discharge pressure P1 of the first pump 1 guided to the first main hydraulic actuator 7, and the second main The tilt angle of the main swash plate 24 is set at a position where the total pressure of the discharge pressure P2 of the second pump 2 guided to the hydraulic actuator 8 and the discharge pressure P3 of the third pump 3 guided to the auxiliary hydraulic actuator 9 is balanced. Hold. When any one of the discharge pressures P1, P2, and P3 is increased, the main swash plate 24 is tilted to a position where the driving force of the swash plate 24 and the urging force of the springs 35 and 36 due to the increased pressure are balanced. The displacement of the main piston 28 per one rotation is reduced. As the displacement of the main piston 28 decreases, the discharge capacity of the main piston pump 20 gradually decreases. As a result, the output of the internal combustion engine 4 is kept within a certain range.
The sub piston pump 50 constituting the third pump 3 changes the tilt angle of the sub swash plate 54, that is, the discharge capacity of the third pump 3 in two steps according to the discharge pressure P3.
For example, when the swing device of the hydraulic excavator starts a swing operation, or when the swing device presses the bucket of the excavator against an object by turning, the discharge pressure P3 of the third pump 3 exceeds a predetermined pressure. As the valve rises, the switching valve 5 switches to the drive position A, and the sub swash plate 54 quickly changes the tilt angle from the maximum tilt angle position to the minimum tilt angle position. As a result, the driving load of the third pump 3 can be prevented from rising excessively.
The discharge pressure P3 of the third pump 3 is also led to the hydraulic chamber 9A of the auxiliary hydraulic actuator 9. The pressure in the hydraulic chamber 9B acts in a direction that reduces the tilt angle of the main swash plate 24 of the main piston pump 20, that is, a direction that reduces the driving load of the first pump 1 and the second pump 2.
That is, when the discharge pressure P3 of the third pump 3 increases, the first pump 1, the second pump 2, and the third pump 3 all change the tilt angle in the direction of decreasing the discharge capacity. The load on the internal combustion engine 4 can be prevented from being stopped due to an excessive load.
When the discharge pressure P3 of the third pump 3 rises above a certain pressure, the switching valve 5 is switched, and the third pump is also provided to the hydraulic chamber 9B that increases the tilt angle of the main swash plate 24 of the auxiliary hydraulic actuator 9. 3 discharge pressure P3 is supplied. As a result, the operation of the auxiliary hydraulic actuator 9 in the direction of decreasing the tilt angle of the main swash plate 24 is stopped, and the decrease of the tilt angle of the main swash plate 24 is also stopped.
In this way, the main swash plate according to the discharge pressures P1 and P2 of the first pump 1 and the second pump 2 constituted by the main piston pump 20 and the discharge pressure P3 of the third pump 3 constituted by the sub-piston pump 50. The tilt angle of 24 changes continuously. Therefore, the discharge capacity of the main piston pump 20 is finely adjusted according to the discharge pressure of these pumps 1-3. On the other hand, the third pump 3 switches the tilt angle of the sub swash plate 54 between the maximum tilt angle position and the minimum tilt angle position in accordance with the discharge pressure P3. By switching the discharge capacity on / off, it is possible to prevent the drive load of the internal combustion engine 4 from becoming excessive. That is, it is possible to prevent an overload of the internal combustion engine 4 with a simple configuration while maintaining a fine adjustment function of the discharge capacity of the main piston pump 20.
Since the sub piston pump 50 switches the tilt angle of the sub swash plate 54 on and off, the support structure of the sub swash plate 54 is simplified and the sub swash plate 54 is urged in the direction of increasing the tilt angle. Can be omitted. Such a structure of the sub-piston pump 50 is preferable for reducing the manufacturing cost of the hydraulic drive device.
FIG. A second embodiment of the present invention will be described with reference to FIG.
In the description of this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
In this embodiment, the priority valve 16 and the low pressure relief valve 17 are arranged in series in the third pump passage 13 through which the third pump 3 constituting the sub-piston pump 50 discharges hydraulic oil. The third pump passage 13 branches into the pump passage 18 and the pump passage 19 via the priority valve 16. The priority valve 16 supplies the pump passage 18 with priority, and supplies excess hydraulic oil to the pump passage 19. Further, the excess hydraulic oil returns to the suction side of the third pump 3 through the low pressure relief valve 17. According to this embodiment, hydraulic oil can be supplied from the third pump 3 to the two pump passages 18 and 19.
Regarding the above explanation, the contents of Japanese Patent Application No. 2009-105219 in Japan, whose application date is April 23, 2009, are incorporated herein by reference.
Although the present invention has been described through several specific embodiments, the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.
For example, although the working oil is used as the working fluid in each of the above embodiments, a working fluid such as a water-soluble alternative liquid may be used instead of the working oil.
 以上のようにこの発明による油圧駆動装置は、油圧ショベルの走行、作業、旋回のための油圧供給に適しているが、これに限らず、あらゆる建設機械や作業車両の油圧供給装置に適用可能である。
 この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。
As described above, the hydraulic drive device according to the present invention is suitable for hydraulic supply for running, working, and turning of a hydraulic excavator, but is not limited to this, and can be applied to hydraulic supply devices for all construction machines and work vehicles. is there.
The exclusive properties or features encompassed by embodiments of the invention are claimed as follows.

Claims (5)

  1.  共通の駆動軸(25,55)を介して回転駆動される可変容量型のメインピストンポンプ(20)と可変容量型のサブピストンポンプ(50)とを備える油圧駆動装置(100)において:
     前記メインピストンポンプ(20)の吐出圧力(P1,P2)の上昇に応じて前記メインピストンポンプ(20)の吐出容量を漸減させるメイン油圧アクチュエータ(7,8)と;
     前記サブピストンポンプ(50)の吐出圧力(P3)の上昇に応じて前記サブピストンポンプ(50)の吐出容量を2つの設定容量の間で切り換えるサブ油圧アクチュエータ(10)と;
     を備える。
    In a hydraulic drive device (100) comprising a variable displacement main piston pump (20) and a variable displacement sub-piston pump (50) that are rotationally driven via a common drive shaft (25, 55):
    A main hydraulic actuator (7, 8) for gradually decreasing the discharge capacity of the main piston pump (20) in response to an increase in the discharge pressure (P1, P2) of the main piston pump (20);
    A sub hydraulic actuator (10) that switches the discharge capacity of the sub piston pump (50) between two set capacities in response to an increase in the discharge pressure (P3) of the sub piston pump (50);
    Is provided.
  2.  請求項1に記載の油圧駆動装置(100)において、前記サブピストンポンプ(50)の吐出圧力(P3)の上昇に応じて前記メインピストンポンプ(20)の吐出容量を漸減させる補助アクチュエータ(9)をさらに備える。 The hydraulic actuator (100) according to claim 1, wherein the auxiliary actuator (9) gradually reduces the discharge capacity of the main piston pump (20) in response to an increase in the discharge pressure (P3) of the sub-piston pump (50). Is further provided.
  3.  請求項2に記載の油圧駆動装置(100)において、前記補助アクチュエータ(9)は、前記メインピストンポンプ(20)の吐出容量を減少させる容量減少油圧室(9A)と、前記メインピストンポンプ(20)の吐出容量の増大方向に作用させる容量増大油圧室(9B)とを備え、前記サブピストンポンプ(50)の吐出圧力(P3)は前記容量減少油圧室(9A)に常時供給される一方、前記油圧駆動装置(100)は前記サブピストンポンプ(50)の吐出圧力(P3)を前記容量増大油圧室(9B)に供給する切換弁(5)をさらに備える。 The hydraulic drive device (100) according to claim 2, wherein the auxiliary actuator (9) includes a capacity decreasing hydraulic chamber (9A) for reducing a discharge capacity of the main piston pump (20), and the main piston pump (20). ), And a discharge pressure (P3) of the sub-piston pump (50) is constantly supplied to the volume reduction hydraulic chamber (9A). The hydraulic drive device (100) further includes a switching valve (5) for supplying the discharge pressure (P3) of the sub-piston pump (50) to the capacity increasing hydraulic chamber (9B).
  4.  請求項3に記載の油圧駆動装置(100)において、前記切換弁(5)は前記サブピストンポンプ(50)の吐出圧力(P3)に応じて選択的に適用されるドレンポジション(B)と駆動ポジション(A)とを備え、前記ドレンポジション(B)においては、前記容量増大油圧室(9B)と前記サブ油圧アクチュエータ(10)とをドレンに開放し、前記駆動ポジション(A)においては前記容量増大油圧室(9B)と前記サブ油圧アクチュエータ(10)とに前記サブピストンポンプ(50)の吐出圧力(P3)を供給するように構成される。 The hydraulic drive device (100) according to claim 3, wherein the switching valve (5) is driven selectively with a drain position (B) applied in accordance with a discharge pressure (P3) of the sub-piston pump (50). Position (A), and at the drain position (B), the capacity increasing hydraulic chamber (9B) and the sub hydraulic actuator (10) are opened to the drain, and at the driving position (A), the capacity is increased. The discharge pressure (P3) of the sub piston pump (50) is supplied to the increased hydraulic chamber (9B) and the sub hydraulic actuator (10).
  5.  請求項1から4のいずれかの油圧駆動装置(100)において、前記メインピストンポンプ(20)は内燃エンジン(4)に駆動されるメインシリンダブロック(23)、前記メインシリンダブロック(23)には複数のメインシリンダ(26)が形成される、と、各メインシリンダ(26)に収装されたメインピストン(28)、前記メインピストン(28)は前記メインシリンダ(26)内にメイン容積室(27)を画成する、と、前記メインシリンダブロック(23)の回転に応じて前記メインピストン(28)を往復動させてメイン容積室(27)を拡縮するメイン斜板(24)と、前記メイン斜板(24)の傾転角が増大する方向へ前記メイン斜板(24)を付勢するスプリング(35,36)と、を備え、前記メインアクチュエータ(7,8)は前記メイン斜板(24)の傾転角が減少する方向へ前記メイン斜板(24)を駆動するように構成され、前記サブピストンポンプ(50)は前記内燃エンジン(4)に駆動されるサブシリンダブロック(53)、前記サブシリンダブロック(21)には複数のサブシリンダ(56)が形成される、と、各サブシリンダ(56)に収装されたサブピストン(58)、前記サブピストン(58)は前記サブシリンダ(56)内にサブ容積室(57)を画成する、と、前記サブシリンダブロック(53)の回転に応じて前記サブピストン(58)を往復動させて前記サブ容積室(57)を拡縮するサブ斜板(54)と、を備え、前記サブ油圧アクチュエータ(10)は、前記サブ斜板(54)の傾転角が減少する方向へ前記サブ斜板(54)を駆動するように構成される。 The hydraulic drive device (100) according to any one of claims 1 to 4, wherein the main piston pump (20) includes a main cylinder block (23) driven by an internal combustion engine (4), and the main cylinder block (23). When a plurality of main cylinders (26) are formed, the main piston (28) accommodated in each main cylinder (26), and the main piston (28) are arranged in a main volume chamber (26) in the main cylinder (26). 27), a main swash plate (24) for expanding and contracting the main volume chamber (27) by reciprocating the main piston (28) according to the rotation of the main cylinder block (23), A spring (35, 36) for urging the main swash plate (24) in a direction in which the tilt angle of the main swash plate (24) increases, and the main actuator The data (7, 8) is configured to drive the main swash plate (24) in a direction in which the tilt angle of the main swash plate (24) decreases, and the sub-piston pump (50) includes the internal combustion engine. The sub-cylinder block (53) driven by (4) and the sub-cylinder block (21) are formed with a plurality of sub-cylinders (56), and the sub-pistons housed in each sub-cylinder (56) (58), the sub-piston (58) defines a sub-volume chamber (57) in the sub-cylinder (56), and the sub-piston (58) according to the rotation of the sub-cylinder block (53). A sub swash plate (54) that reciprocates the sub volume chamber (57), and the sub hydraulic actuator (10) has a direction in which the tilt angle of the sub swash plate (54) decreases. To the sub Configured to drive plate (54).
PCT/JP2010/056793 2009-04-23 2010-04-09 Hydraulic drive device WO2010122951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080001233.3A CN101970880B (en) 2009-04-23 2010-04-09 Hydraulic drive device
KR1020107021274A KR101233541B1 (en) 2009-04-23 2010-04-09 Hydraulic driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009105219A JP5188444B2 (en) 2009-04-23 2009-04-23 Hydraulic drive device for work equipment
JP2009-105219 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010122951A1 true WO2010122951A1 (en) 2010-10-28

Family

ID=43011068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056793 WO2010122951A1 (en) 2009-04-23 2010-04-09 Hydraulic drive device

Country Status (4)

Country Link
JP (1) JP5188444B2 (en)
KR (1) KR101233541B1 (en)
CN (1) CN101970880B (en)
WO (1) WO2010122951A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746270A (en) * 2018-07-12 2018-11-06 江阴盛鼎机械制造有限公司 A kind of hydraulic bending press
US10145396B2 (en) 2016-12-15 2018-12-04 Caterpillar Inc. Energy recovery system and method for hydraulic tool
EP4183936A1 (en) * 2021-11-22 2023-05-24 Nabtesco Corporation Drive device and construction machine
EP4190976A3 (en) * 2021-12-06 2023-06-21 Nabtesco Corporation Drive transmission device and construction machine, and method of assembling construction machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986737B2 (en) * 2011-11-28 2016-09-06 Kyb株式会社 Swash plate type piston pump
CN103362898A (en) * 2012-03-31 2013-10-23 何荣志 Multi-pressure-source energy-saving hydraulic system
JP6420758B2 (en) * 2013-04-11 2018-11-07 日立建機株式会社 Drive device for work machine
IT201700106781A1 (en) * 2017-09-25 2019-03-25 Manitou Italia Srl Device for feeding and for changing the displacement of a hydraulic motor.
CN116044736B (en) * 2022-12-29 2023-11-07 川崎春晖精密机械(浙江)有限公司 Testing system and testing method for regulator for swash plate plunger pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759948B2 (en) * 1983-06-28 1995-06-28 ハイドロマチツク・ゲゼルシヤフト・ミツト・ベシユレンクタ−・ハフツング Control device for a drive assembly consisting of several hydraulic drive units
WO2008090890A1 (en) * 2007-01-22 2008-07-31 Hitachi Construction Machinery Co., Ltd. Pump control device for construction machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360884B2 (en) * 1993-08-23 2003-01-07 株式会社セガ Game device
JPH08338357A (en) * 1995-06-13 1996-12-24 Toyota Autom Loom Works Ltd Variable displacement type piston pump
KR100540772B1 (en) * 2001-06-21 2006-01-10 히다치 겡키 가부시키 가이샤 Hydraulic driving unit for working machine, and method of hydraulic drive
JP4150192B2 (en) * 2002-01-29 2008-09-17 ヤンマー株式会社 Excavator
JP4139352B2 (en) * 2004-05-19 2008-08-27 カヤバ工業株式会社 Hydraulic control device
JP4446822B2 (en) * 2004-07-13 2010-04-07 日立建機株式会社 Hydraulic drive device for work vehicle
DE102005055057A1 (en) * 2005-11-18 2007-05-24 Robert Bosch Gmbh Multi-piston pump
JP4893401B2 (en) * 2007-03-22 2012-03-07 株式会社不二越 Inverter driven hydraulic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759948B2 (en) * 1983-06-28 1995-06-28 ハイドロマチツク・ゲゼルシヤフト・ミツト・ベシユレンクタ−・ハフツング Control device for a drive assembly consisting of several hydraulic drive units
WO2008090890A1 (en) * 2007-01-22 2008-07-31 Hitachi Construction Machinery Co., Ltd. Pump control device for construction machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145396B2 (en) 2016-12-15 2018-12-04 Caterpillar Inc. Energy recovery system and method for hydraulic tool
CN108746270A (en) * 2018-07-12 2018-11-06 江阴盛鼎机械制造有限公司 A kind of hydraulic bending press
EP4183936A1 (en) * 2021-11-22 2023-05-24 Nabtesco Corporation Drive device and construction machine
EP4190976A3 (en) * 2021-12-06 2023-06-21 Nabtesco Corporation Drive transmission device and construction machine, and method of assembling construction machine

Also Published As

Publication number Publication date
CN101970880B (en) 2014-08-27
KR101233541B1 (en) 2013-02-14
JP5188444B2 (en) 2013-04-24
CN101970880A (en) 2011-02-09
KR20100137480A (en) 2010-12-30
JP2010255244A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
WO2010122951A1 (en) Hydraulic drive device
US10519990B2 (en) Hydraulic apparatus
US9790966B2 (en) Hydraulic drive system
JP5342949B2 (en) Pump for closed circuit configuration
US11274682B2 (en) Hydraulic driving apparatus
EP1978248B1 (en) Pump Equipment
JP6075866B2 (en) Pump control device
JP6453736B2 (en) Hydraulic drive unit for construction machinery
JP2009250204A (en) Axial piston equipment, hydraulic circuit and operating machine
JPH01267367A (en) Multi-throw piston pump
US20180135764A1 (en) Work Machine
JP5353464B2 (en) Forklift hydraulic device and hydraulic pump
JP2004316839A (en) Hydraulic pressure driving device
JP4231872B2 (en) Excavator
JP3974076B2 (en) Hydraulic drive device
JP2014105621A (en) Hydraulic device
JP2009121435A (en) Axial piston device, hydraulic circuit and working machine
JP4150192B2 (en) Excavator
JP3787063B2 (en) Displacement control device for variable displacement pump
JP5945742B2 (en) Pump unit swash plate angle control system
JP3809393B2 (en) Control device for variable displacement piston pump
JP3916437B2 (en) Hydraulic pump control device
JP2022158355A (en) Variable displacement swash plate hydraulic pump and construction machine comprising the same
JP2021195918A (en) Servo mechanism
CN116928006A (en) Hydraulic control system and working machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001233.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107021274

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767008

Country of ref document: EP

Kind code of ref document: A1