WO2010122183A1 - Sistema dinámico de cultivo - Google Patents

Sistema dinámico de cultivo Download PDF

Info

Publication number
WO2010122183A1
WO2010122183A1 PCT/ES2010/000117 ES2010000117W WO2010122183A1 WO 2010122183 A1 WO2010122183 A1 WO 2010122183A1 ES 2010000117 W ES2010000117 W ES 2010000117W WO 2010122183 A1 WO2010122183 A1 WO 2010122183A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture system
crop
container
cultivation
unit
Prior art date
Application number
PCT/ES2010/000117
Other languages
English (en)
French (fr)
Inventor
Pedro Fernando MARTÍNEZ GONZALEZ
Original Assignee
Martinez Gonzalez Pedro Fernando
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martinez Gonzalez Pedro Fernando filed Critical Martinez Gonzalez Pedro Fernando
Publication of WO2010122183A1 publication Critical patent/WO2010122183A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/04Hydroponic culture on conveyors
    • A01G31/042Hydroponic culture on conveyors with containers travelling on a belt or the like, or conveyed by chains
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the purpose of the present invention patent application is to provide a dynamic cultivation system, which contributes to the function to which it is intended, several advantages that will be reported later, apart from others inherent in its organization and constitution.
  • plants created by genetic engineering that produce specialized substances such as, for example, transgenic corn, which, like obtaining ethanol, is modifying the economy of the crops of this plant and the life of the communities that of it they still depend).
  • Seed varieties have been improved until the point of being able to germinate faster and adapt to shorter seasons in different climates.
  • Current seeds can resist pesticides capable of killing all green plants.
  • Hydroponic crops a method of cultivating without soil, using chemical nutrient solutions, can help meet the growing need for production as the world's population increases.
  • the dynamic cultivation system refers to a system designed to generate the possibility of multiplying the product resulting from an area, on which it is grown or grown, food intended for human, industrial or agricultural consumption.
  • the main objective of the dynamic cultivation system ( Figure 1) is to supply light to all containers housed in a cultivation unit. Therefore, each crop unit is provided with a conveyor belt, which provides continuous and cyclic movement to all containers, ensuring the supply of light, which will be solar or artificial, depending on the position of the container with respect to the unit of cultivation at a given time.
  • the dynamic cultivation system is formed by two cultivation units facing each other, as illustrated in ( Figure 2).
  • This configuration added to the geometry of the cultivation units generates a tunnel under the two structures through which it is possible to locate devices to move the resulting food or product from one point to another, it will also allow the passage of operators.
  • the cultivation unit is a structure, designed to be an integral part of a system, which contemplates the entire life cycle of the crop, starting with the planting process until harvesting and all intermediate processes.
  • Each cultivation unit inside has half of a structural arch, and when two cultivation units are facing each other, and also permanently joined together, a structural arch is formed (Figure 2), which distributes Uniform system forces.
  • the cultivation unit ( Figure 3), as a fundamental part of the dynamic cultivation system, has been designed to: 1. Maximize the area of exposure to sunlight, allowing as many containers as possible to receive direct sunlight in a moment of time. 2. Optimize the area of the work tunnel, in which the operators carry out the necessary activities to carry out the management of the crop life cycle.
  • Sun exposure zone ( Figure 4) highlights the area or surface optimized to expose at a given time, the largest amount of containers to sunlight or artificial light.
  • Each of the containers of a crop unit will pass through this area continuously thanks to the action of the conveyor belt which causes the containers to be cyclically and continuously irrigated.
  • This area also has a transparent cover, which. It adapts to the requirements of the crop and it slides from the left vertical zone of the crop unit presented in Figure 4, to cover the sun exposure zone.
  • Figure 5 highlights the area or surface optimized to carry out automated (mechanical) processes, which involve machines that are located in this area only when the task for which they were designed is carried out.
  • Each culture unit inside has half of a structural arch, and when two cultivation units are facing each other, and also joined together, a structural arch is formed (Figure 6), which distributes evenly The forces of the system.
  • This arc added to the geometry of the crop unit You can create a tunnel through which machines and people, (operators), can access and / or extract the containers located in each of the cultivation units.
  • the structural arch is created when two cultivation units are faced, and joining them in four main points. Two of these joints are carried out in the upper structural coupling zone, and the other two points in the lower structural coupling zone. Top and bottom structural coupling points. ( Figure 7) highlights the areas or points of structural coupling.
  • the structural arch is created when two cultivation units are confronted, and joining them in these four points. Two of these joints are carried out in the upper structural coupling zone, and the other two points in the lower structural coupling zone. Vertical collection duct area.
  • FIG. 8 highlights the surface on which the vertical collection duct is located, which is designed to drive the material harvested by automated tools, from the mechanical action zone to the tunnel, in which said material It will be deposited in deposits for further processing.
  • Manual action zone highlights the area or surface optimized to carry out manual processes, in which the operator is responsible for carrying out actions on the crop.
  • the cultivation unit is provided with the access hatch, through which it is possible to access or extract the containers from a cultivation unit.
  • the manual action zone in its lower area is provided with two grooves to allow the access of the machinery that the operator might require to extract a container from the cultivation unit.
  • Container hauling area. ( Figure 10) highlights the area or surface optimized with rails, bearings and hoists, to carry containers outside the cultivation unit.
  • the main characteristic of the cultivation unit ( Figure 11) is its conveyor belt, which is responsible for supplying the cyclic and continuous movement to the containers.
  • the conveyor belt is made up of two chains that advance synchronously, these two chains are separated in such a way that the distance between them is the maximum length of the container.
  • the conveyor belt makes the containers move in a cyclic manner, whereby all the containers receive direct sunlight at any given time. This implies that the other containers that are not receiving direct sunlight, will be receiving artificial light, because the growing unit inside is provided with light bulbs
  • the conveyor belt of the culture unit provides support to the containers when the system is in motion, however it is possible to extract a culture unit container by sliding the conveyor belt container. This action is possible because in the conveyor belt there are fastening mechanisms for each container, which allow to release and extract a container when the occasion requires it, either temporarily or to be replaced by another container.
  • the force that provides the movement of the conveyor belt can be of mechanical, hydraulic, electrical origin or a combination of these, depending on the area in which the system is implanted.
  • the clamping mechanisms are special links that are part of the conveyor belt and allow, by the mechanical action of a lever, performed by an operator or a mechanical process, to hold or release a container. There are as many clamping mechanisms as there are containers in the cultivation unit.
  • the clamping mechanism ( Figure 12) is part of the conveyor belt and is the conjunctural point between the culture unit and the containers. It has been designed to perform three processes.
  • clamping and releasing It consists of holding the containers when the system is in motion or static. However, the mechanism also allows, by means of a mechanical action performed by the operator or a mechanical process, to release the container and extract it from the culture unit if necessary. The release and removal of a container is carried out in the manual action zone, through the access hatch.
  • Positioning There are processes such as collection, which require precise positioning and for a certain period of time a container in a specific area of the structure.
  • the culture unit is provided by default with two optical positioning sensors. Located in the manual action zone. (access hatch) and the mechanical action zone. These optical sensors are able to locate special marks, located in each of the clamping mechanisms, special links that are part of the conveyor belt that holds the containers. And when said mark passes in front of one of the optical sensors they stop the action of the conveyor belt for a certain programmed time, or until the operator decides.
  • the positioning system remains inactive most of the time, allowing the conveyor belt to provide continuous and cyclic movement to the containers, receiving these light constantly.
  • the positioning system is activated by an operator or in a programmed way to carry out an activity, first choose which sensor must be activated and the system is requested to activate said device, depending on the area in which the activities are to be carried out About the crop.
  • the materials used to build a cultivation unit will be those whose characteristics allow to provide a solid and durable structure to sustain the crop that it houses properly. At the same time generating a reliable and safe environment for operators who are responsible for managing the system. They will also be materials that add the lowest possible weight.
  • the characteristic form of the cultivation unit has been conceived and designed to optimize each of its surfaces to carry out all the processes inherent in the cultivation, from the pre-planting tasks, to the harvesting and harvesting tasks. All this mechanically and / or manually, depending on the type of crop that supports the system.
  • the size of the crop unit may vary to suit the crop requirements. This adaptation is linked to three factors: r Quantity of cultivation, the number of containers that you want to store in a cultivation unit. -Height of the cultivated product, the height of the cultivated product directly affects the vertical separation distance, which must exist between the containers of a cultivation unit.
  • -Total weight the sum of the weight of the cultivation unit, the containers and their content.
  • the culture unit is designed to modify the size of 'according to the requirements of the culture.
  • the structure of the crop unit can provide the crop with a microclimate, to maintain the ideal temperature and conditions of the crop throughout the year, allowing not only to multiply the resulting product over an area, but will also serve as a greenhouse.
  • CONTAINER It is the basic element of the dynamic cultivation system.
  • the containers ( Figure 14), inside the cultivation unit are in a cyclic and constant movement thanks to the action of the conveyor belt, ensuring that each container provides the crop that houses enough light, either of solar or artificial origin .
  • Each container is equipped with clamping cylinders through which it interacts with the fastening mechanisms of the conveyor belt. This interaction forms the conjunctural point between the container and the conveyor belt and through it with the culture unit.
  • the containers have been designed to:
  • each container is constituted by a frame, a tank and finally an evacuation valve.
  • the materials used to build a container will be those whose characteristics allow to provide a solid and durable structure to sustain the crop that it houses properly. Also ensuring that the materials add the lowest possible weight and that they do not adversely affect any process of the crop life cycle.
  • the frame provides a solid support to the container inside or outside the culture unit.
  • the clamping cylinders are the elements of the frame that protrude on both sides of the container, as illustrated in ( Figure 15).
  • the clamping cylinders are the union between the container and the clamping mechanisms of the conveyor belt, and through these with the cultivation unit.
  • the deposit almost completely forms the structure of the container.
  • the frame and the evacuation valve are integrated in it. Its purpose is to house the crop by isolating it from external agents ( Figure
  • the evacuation valve is a device located on one side of the container, at the bottom of the container, as illustrated in ( Figure 17).
  • the shape of the evacuation valve has been designed on the inside of the container, in a funnel way, to route all the fluid to the nozzle on the outside of the container, where liquids can subsequently be stored.
  • the dynamic cultivation system has been designed to maximize the exposure of the crop to sunlight, so that a horizontal arrangement like the one presented in ( Figure 18) is the most appropriate for making use of the system in rural areas.
  • Adapting the dynamic cultivation system to urban environments requires " use of vertical structures, buildings conditioned to house and support the dynamic cultivation system as well as the systems and processes inherent to it, as shown in the
  • This adaptation of the dynamic cultivation system can support crops that can carry out their life cycle with the supply of artificial light. That is, crops that do not require direct sunlight to carry out their vital processes.
  • This adaptation involves the need to install lamps in the building over the area of sun exposure of each of the units' cultivation located in the structure.
  • This adaptation of the dynamic cultivation system can support crops that can carry out their life cycle mostly through the supply of artificial light. That is, crops that do not strictly require constant sunlight to carry out their vital processes.
  • This adaptation implies that inside the dynamic culture system there will be lamps to supply artificial light on all horizontal surfaces that can be generated.
  • DYNAMIC CULTURE SYSTEM IN AQUATIC ENVIRONMENTS The adaptation of the dynamic culture system to aquatic environments may require adapting the shape of the crop unit to a rectangular shape as shown in ( Figure 21) because the entire system would be submerged under Water; All processes must be carried out from the surface, therefore the dynamic • culture system does not require the characteristic optimized area to shape the tunnel that is formed when facing two crop units.
  • This adaptation will not require the system to be in constant motion, only the conveyor belt will be activated when the crop's life cycle requires it, for example, transferring fish to another environment due to the fact that its size has increased.

Abstract

Sistema dinámico de cultivo, diseñado para multiplicar el producto resultante de un área, sobre la cual se cultiva, o crece, alimento destinado para consumo humano, industrial o agrícola, que está conformado por una unidad de cultivo que en su interior alberga una banda transportadora, la cual suministra movimiento cíclico y constante a unos contenedores, que a su vez se encuentran sujetos a ésta a través de la coyuntura existente entre unos mecanismos de sujeción, eslabones especiales de la banda transportadora, y unos cilindros de sujeción que sobresalen a los dos costados de cada contenedor. El sistema suministra un movimiento cíclico y constante a los contenedores, en orden a que todos reciban luz solar directa en un momento dado, dependiendo de los requerimientos del cultivo.

Description

DESCRIPCIÓN
SISTEMA DINÁMICO DE CULTIVO
OBJETO DE LA INVENCIÓN
La presente solicitud de Patente de Invención tiene por objeto un sistema dinámico de cultivo, que aporta a la función a que se destina, varias ventajas que se consignarán más adelante, aparte de otras inherentes a su organización y constitución.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad y como referencia al estado de la técnica, debe mencionarse que con la aparición del tractor, las exigentes tareas de sembrar, cosechar y trillar pueden realizarse de forma rápida y a una escala antes inimaginable. Según la Academia Internacional de Ingeniería de EE.UU., la mecanización agraria es uno de los 20 mayores logros de la ingeniería del siglo XX. A principios del siglo XX, en EE.UU. se necesitaba un granjero para alimentar de 2 a 5 personas, mientras que hoy, gracias a la tecnología, los agroquímicos y las verdades actuales, un granjero puede alimentar a 130 peronas. El costo de esta productividad es un gran consumo energético, generalmente de combustibles fósiles.
La difusión de la radio y la televisión (medios de comunicación) , así como de la informática, son de gran ayuda, al facilitar informes metereológicos, estudios de mercado, etc.
Además de comida para humanos y sus animales, se produce' cada vez con más amplia utilidad flores, plantas ornamentales, madera, fertilizantes, pieles, cuero, productos químicos (etanol, pláticos, azúcar, almidón), fibras (algodón, cáñamo, lino) , combustible (biodiesel, el propio etanol, que ahora se está obteniendo del maiz o de cualquier otro tipo de planta) , productos biofarmacéuticos . También existen plantas creadas por ingeniería genética que producen sustancias especializadas (como, por ejemplo, el maiz transgénico, que, al igual que la obtención de etanol, está modificando a economía de los cultivos de esta planta y la vida de las comunidades que de ella siguen dependiendo) .
La manipulación genética, la mejor gestión de los nutrientes del suelo y la mejora en el control de las semillas han aumentado enormemente las cosechas por unidad de superficie, a cambio estas semillas se han vuelto más sensibles a plagas y enfermedades, lo que conlleva una necesidad de mayor cuidado por parte del agricultor; prueba de ello es el resurgimiento de antiguas variedades, muy resistentes a las enfermedades y plagas, por su rusticidad. Δl mismo tiempo, la mecanización ha reducido la exigencia de mano de obra. Las cosechas son generalmente menores en los paises más pobres, al carecer de capital, la tecnología y los conocimientos científicos necesarios . La agricultura moderna depende enormemente de la tecnología y las ciencias físicas y biológicas. La irrigación, el drenaje, la conservación y la sanidad, que son vitales para una agricultura exitosa, exigen el conocimiento especializado de ingenieros agrónomos. La química agrícola, en cambio, trata con la aplicación de fertilizantes, insecticidas y fungicidas, la reparación de suelos, el análisis de productos agrícolas, etc.
Las variedades de semillas han sido mejoradas hasta el punto de poder germinar más rápido y adaptarse a estaciones más breves en distintos climas . Las semillas actuales pueden resistirse a pesticidas capaces de exterminar a todas las plantas verdes. Los cultivos hidropónicos, un método para cultivar sin tierra, utilizando soluciones de nutrientes químicos, pueden ayudar a cubrir la creciente necesidad de producción a medida que la población mundial aumenta.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
El sistema dinámico de cultivo, objeto de la presente invención, se refiere a un sistema diseñado para generar la posibilidad de multiplicar el producto resultante de un área, sobre la cual se cultiva o crece, alimento destinado para consumo humano, industrial o agrícola.
El principal objetivo del sistema dinámico de cultivo (Figura 1) es suministrar luz a todos los contenedores albergados en una unidad de cultivo. Por lo cual cada unidad de cultivo se encuentra provista de una banda transportadora, que proporciona movimiento cíclico y continuo a todos los contenedores, asegurando el suministro de luz, la cual será solar o artificial, dependiendo de la posición del contenedor con respecto a la unidad de cultivo en un momento dado.
En su configuración más sencilla el sistema dinámico de cultivo se encuentra formado por dos unidades de cultivo enfrentadas la una contra la otra, como se ilustra en la (Figura 2) . Esta configuración sumada a la geometría de las unidades de cultivo genera bajo las dos estructuras un túnel a través del cual es posible ubicar dispositivos para desplazar el alimento o producto resultante de un punto a otro, también permitirá el paso de operarios. La unidad de cultivo es una estructura, diseñada para ser parte integral de un sistema, el cual contempla todo el ciclo de vida del cultivo, iniciando con el proceso de siembra hasta la recolección y todos los procesos intermedios .
Cada unidad de cultivo en su interior cuenta con la mitad de un arco estructural, y cuando dos unidades de cultivo son enfrentadas la una contra la otra, y además unidas de manera permanente, se forma un arco estructural (Figura 2), que distribuye de manera uniforme las fuerzas del sistema.
La unidad de cultivo (Figura 3), como pieza fundamental del sistema dinámico de cultivo, ha sido diseñada para: 1.Maximizar el área de exposición a la luz solar, permitiendo que el mayor número de contenedores posibles, reciba luz solar directa en un momento del tiempo. 2. Optimizar el área del túnel de trabajo, en el cual los operarios realizan las actividades necesarias para llevar a cabo la gestión del ciclo de vida del cultivo.
3. Suministrar movimiento cíclico y constante a los contenedores, para que todos reciban luz solar directa en un momento dado, dependiendo de los requerimientos del cultivo . 4. Adaptar su estructura a los requerimientos del cultivo que sustentará, modificando sus dimensiones; altura, ancho y profundidad, asi como el número de contenedores que albergará . 5. Permitir que se lleven a cabo todos los procesos inherentes al cultivo, desde las tareas previas a la siembra, hasta las labores de cosecha y recolección. Todo esto de manera mecánica y/o manual, dependiendo del tipo de cultivo que sustente el sistema. 6. Soportar los sistemas requeridos para monitorear y gestionar el ciclo de vida de alimento o producto cultivado .
7. Permitir el acceso y/o extracción de los contenedores, mediante la escotilla de acceso, de manera mecánica o manual . δ.Posicionar de manera precisa un contenedor en puntos específicos de la estructura, como son la zona de recolección mecánica y la zona de la escotilla de acceso. 9. Identificar de manera única un contenedor, para conocer el estado de cultivo y en que fase del ciclo de vida de éste se encuentra.
10. Soportar el peso de la estructura y de los contenedores que alberga. 11. Interactuar con otras unidades de cultivo.
12. Acoplarse a la maquinaria que fuese requerida para que se lleven a cabo todos los procesos inherentes al cultivo. 13. Gestión de subproductos, derivados y/o subprocesos resultantes de la actividad primaria. Para complementar la descripción que seguidamente se va a realizar, y con objeto de ayudar a una mejor comprensión de sus características, se acompaña a la presente descripción, de un juego de planos en cuyas figuras, de forma ilustrativa y no limitativa, se representan los detalles más significativos de la invención .
BREVE DESCRIPCIÓN DE IAS FIGURAS
Figuras 1 a 21. Muestran sendas vistas representativas de la invención, las cuales se describen a lo largo de la presente descripción. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
ZONAS RELEVANTES DE LA UNIDAD DE CULTIVO
Zona de exposición solar. La (Figura 4) destaca la zona o superficie optimizada para exponer en un momento dado, la mayor cantidad de contenedores a la luz solar o artificial.
Cada uno de los contenedores de una unidad de cultivo pasará por esta zona continuamente gracias a la acción de la banda transportadora la cual hace que los contenedores se rríuevan de manera cíclica y continua.
Esta zona también cuenta con una cubierta transparente, que . se adapta a los requerimientos del cultivo y que se desliza desde la zona vertical izquierda de la unidad de cultivo presentada en la figura 4, hasta cubrir la zona de exposición solar.
Zona de acción mecánica.
La (Figura 5) destaca la zona o superficie optimizada para llevar a cabo procesos automatizados (mecánicos), en los cuales intervienen máquinas que son ubicadas en esta zona solo cuando se lleva a cabo la tarea para la cual fueron diseñadas.
Estos procesos involucran el sistema de posicionamiento, el cual permite posicionar de manera precisa y durante cierto lapso de tiempo un contenedor en una zona especifica de la estructura.
Zona de acople estructural.
Cada unidad de cultivo en su interior cuenta con la mitad de un arco estructural, y cuando dos unidades de cultivo son enfrentadas la una contra la otra, y además unidas, se forma un arco estructural (Figura 6), el cual distribuye de manera uniforme las fuerzas del sistema.
Este arco sumado a la geometría de la unidad de cultivo puede crear un túnel por el cual máquinas y personas, (operarios) , pueden acceder y/o extraer los contenedores ubicados en cada una de las unidades de cultivo.
El arco estructural se crea al ser enfrentadas dos unidades de cultivo, y uniéndolas en cuatro puntos principales. Dos de estas uniones se llevan a cabo en la zona de acople estructural superior, y los otros dos puntos en la zona de acople estructural inferior. Puntos de acople estructural superior e inferior. La (Figura 7) destaca las zonas o puntos de acople estructural.
El arco estructural se crea al ser enfrentadas dos unidades de cultivo, y uniéndolas en estos cuatro puntos. Dos de estas uniones se llevan a cabo en la zona de acople estructural superior, y los otros dos puntos en la zona de acople estructural inferior. Zona del conducto vertical de recolección.
La (Figura 8) destaca la superficie en la cual se encuentra ubicado el conducto vertical de recolección, el cual está diseñado para conducir el material cosechado por las herramientas automatizadas, desde la zona de acción mecánica hasta el túnel, en el cual, dicho material será depositado en depósitos para su posterior procesamiento. Zona de acción manual. La (Figura 9) destaca la zona o superficie optimizada para llevar a cabo procesos manuales, en los cuales el operario es el encargado de realizar acciones sobre el cultivo .
Para ello la unidad de cultivo se encuentra provista de la escotilla de acceso, a través de la cual es posible ' acceder o extraer los contenedores de una unidad de cultivo.
La zona de acción manual en su área inferior está provista de dos hendiduras para permitir el acceso de la maquinaria que pudiera requerir el operario para extraer un contenedor de la unidad de cultivo. Zona de acarreo de contenedores. La (Figura 10) destaca la zona o superficie optimizada con railes, rodamientos y polipastos, para acarrear contenedores fuera de la unidad de cultivo.
Estos railes además hacen parte de los puntos de unión entre dos unidades de cultivo; conforman la zona de acople estructural inferior, la cual hace parte del arco estructural. BANDA TRANSPORTADORA
La principal característica de la unidad de cultivo (Figura 11), es su banda transportadora, que es la encargada de suministrar el movimiento cíclico y continuo a los contenedores.
La banda transportadora está conformada por dos cadenas que avanzan de manera sincronizada, estas dos cadenas se encuentran separadas de tal manera que la distancia entre ellas es el largo máximo del contenedor.
La banda transportadora hace que los contenedores se muevan de manera cíclica, por lo cual todos los contenedores reciben luz solar directa en un momento dado. Implicando esto que los demás contenedores que no se encuentran recibiendo luz solar directa, estarán recibiendo luz artificial, debido a que la unidad de cultivo en su interior se encuentra provista con bombillas
'para suministrar luz artificial. Lo cual asegura que los cultivos, a pesar de encontrarse- en movimiento siempre recibirán luz, bien sea solar o artificial.
La banda transportadora de la unidad de cultivo provee sujeción a los contenedores cuando el sistema se encuentra en movimiento, sin embargo es posible extraer un contenedor de la unidad de cultivo desligando el contenedor de la banda transportadora. Esta acción es posible debido a que en la banda transportadora existen mecanismos de sujeción para cada contenedor, que permiten liberar y extraer un contenedor cuando la ocasión lo requiera, bien sea de manera temporal o para ser reemplazado por otro contenedor.
La fuerza que provee el movimiento de la banda transportadora puede ser de origen mecánico, hidráulico, eléctrico o una combinación de éstos, dependiendo del ámbito en el cual se implante el sistema. MECANISMOS DE SUJECIÓN
Los mecanismos de sujeción son eslabones especiales que hacen parte de la banda transportadora y permiten mediante la acción mecánica de una palanca, efectuada por un operario o un proceso mecánico, sujetar o liberar un contenedor. Existen tantos mecanismos de sujeción como contenedores existan en la unidad de cultivo.
El mecanismo de sujeción (Figura 12), hace parte de la banda transportadora y es el punto coyuntural entre la unidad de cultivo y los contenedores. Ha sido concebido para realizar tres procesos.
Primero, sujeción y liberación: Consiste en sujetar los contenedores cuando el sistema se encuentra en movimiento o estático. Sin embargo el mecanismo también permite, mediante una acción mecánica realizada por el operario o un proceso mecánico, liberar el contenedor y extraerlo de la unidad de cultivo de ser necesario. La liberación y extracción de un contenedor se lleva a cabo en la zona de acción manual, a través de la escotilla de acceso .
Segundo, Rotación: Los contenedores siempre están cambiando su posición debido a la acción de traslación cíclica generada por la banda transportadora, es necesario contar con un mecanismo que permita a los contenedores conservar su orientación con respecto a la horizontal todo el tiempo. Este dispositivo reside en el mecanismo de sujeción, los eslabones especiales que hacen parte de la banda transportadora.
Tercero, Posicionamiento : Existen procesos tales como la recolección, que requieren posicionar de manera precisa y durante cierto lapso de tiempo un contenedor en una zona especifica de la estructura.
La unidad de cultivo se encuentra provista por defecto con dos sensores ópticos de posicionamiento. Ubicados en la zona de acción manual . (escotilla de acceso) y la zona de acción mecánica. Estos sensores ópticos, son capaces de ubicar marcas especiales, ubicadas en cada uno de los mecanismos de sujeción, eslabones especiales que hacen parte de la banda transportadora que sujetan los contenedores. Y cuando dicha marca pasa frente a uno de los sensores ópticos éstos detienen la acción de la banda transportadora durante cierto tiempo programado, o hasta que el operario lo decida.
El sistema de posicionamiento permanece inactivo la mayor parte del tiempo, permitiendo que la banda transportadora suministre movimiento cíclico y continuo a los contenedores, recibiendo éstos luz de manera constante .
El sistema de posicionamiento es activado por un operario o de manera programada para llevar a cabo una actividad, primero se elije que sensor debe ser activado y se solicita al sistema que active dicho dispositivo, dependiendo de la zona en la cual han de realizarse las actividades sobre el cultivo. ESTRUCTURA DE LA UNIDAD DE CULTIVO
Materiales
Desde el punto de vista estructural los materiales utilizados para construir una unidad de cultivo serán aquéllos cuyas características permitan suministrar una estructura sólida y durable para sustentar el cultivo que alberga de manera adecuada. Generando al mismo tiempo un ambiente confiable y seguro para los operarios que se encarguen de gestionar el sistema. Además serán materiales que sumen el menor peso posible.
Forma
La forma característica de la unidad de cultivo ha sido concebida y diseñada buscando optimizar cada una de sus superficies para llevar a cabo todos los procesos inherentes al cultivo, desde las tareas previas a la siembra, hasta las labores de cosecha y recolección. Todo esto de manera mecánica y/o manual, dependiendo del tipo de cultivo que sustente el sistema.
Tamaño El tamaño de la unidad de cultivo puede variar para adaptarse a- los requerimientos del cultivo. Esta adaptación está ligada a tres factores : rCantidad de cultivo, el número de contenedores que se quieren almacenar en una unidad de cultivo. -Altura del producto cultivado, la altura del producto cultivado incide directamente en la distancia de separación vertical, que debe existir entre los contenedores de una unidad de cultivo.
-Peso total, la suma del peso de la unidad de cultivo, los contenedores y el contenido de los mismos.
La unidad de cultivo está diseñada para modificar su tamaño de' acuerdo a los requerimientos del cultivo.
Por lo cual la geometría, estructura y sistemas de la unidad de cultivo han sido diseñados para ampliar sus dimensiones en punto específicos.
Como se muestra en la (Figura 13) , la correlación matemática existente entre B' y D' , B y D, A' y C , permiten de acuerdo a los factores descritos anteriormente redefinir las dimensiones de la unidad de cultivo. AMBIENTE AL INTERIOR DE LA UNIDAD DE CULTIVO
La estructura de la unidad de cultivo puede proveer al cultivo un microclima, para mantener la temperatura y condiciones del cultivo ideales durante todo el año, permitiendo no solo multiplicar el producto resultante sobre un área, sino que además hará las veces de invernadero.
Frente a una helada o altas temperaturas es posible utilizar la infraestructura de la unidad de cultivo para brindar resguardo.
Además, proveerán un ambiente aislado, posibilitando asi la disminución de plaguicidas, mejorando la calidad de los cultivos. Si se detecta que en un contenedor hay algún tipo de plaga, es posible tratarla de manera individual o incluso aislarla, extrayéndola de la unidad de cultivo, evitandoasi la diseminación de la plaga.
CONTENEDOR Es el elemento básico del sistema dinámico de cultivo. Los contenedores (Figura 14), al interior de la unidad de cultivo se encuentran en movimiento cíclico y constante gracias a la acción de la banda transportadora, asegurando que cada contenedor proporcione al cultivo que alberga, suficiente luz, bien sea de origen solar o artificial .
Cada contenedor se encuentra dotado de cilindros de sujeción a través de los cuales interactua con los mecanismos de sujeción de la banda transportadora. Esta interacción conforma el punto coyuntural entre el contenedor y la banda transportadora y a través de ésta con la unidad de cultivo. Los contenedores han sido diseñados para:
1. Soportar el peso del cultivo que contiene.
2. Sustentar el cultivo y resguardarlo de los factores ambientales externos a la unidad de cultivo.
3.Adosarse o separarse de manera segura y controlada de una banda transportadora, y a través de ésta, de una unidad de cultivo.
4. Permitir la recolección de subproductos, tales como humus, agua, fertilizantes, abonos orgánicos, etc.
5. Dado que el contenedor es una estructura individual, es posible vaciar la tierra o sustancias hidropónicas después de haber realizado un proceso de cultivo y reemplazarla por nueva tierra para obtener finalmente un mejor resultado en el siguiente proceso de cultivo. 6. Permitir adosar estructuras para suministrar luz artificial al cultivo ubicado en el contenedor de presentarse circunstancias en las que no sea posible activar de manera constante la banda transportadora. Cada contenedor se encuentra constituido por un armazón, un depósito y finalmente una válvula de evacuación.
Desde el punto de vista estructural los materiales utilizados para construir un contenedor serán aquéllos cuyas características permitan suministrar una estructura sólida y durable para sustentar el cultivo que alberga de manera adecuada. Asegurando además que los materiales sumen el menor peso posible y que no afecten de manera negativa ningún proceso del ciclo de vida del cultivo. Arma zón
El armazón, brinda un sólido soporte al contenedor dentro de la unidad de cultivo o fuera de ésta.
Los cilindros de sujeción, son los elementos del armazón que sobresalen a los dos costados del contenedor, como se ilustra en la (Figura 15) .
Los cilindros de sujeción son la unión entre el contenedor y los mecanismos de sujeción de la banda transportadora, y a través de éstos con la unidad de cultivo. Depósito
El depósito conforma casi en su totalidad la estructura del contenedor. En él se encuentran integrados el armazón y la válvula de evacuación. Su propósito es albergar el cultivo aislándolo de agentes externos (Figura
16) .
A nivel de unidad de cultivo, debido a la segmentación que generan los contenedores en el cultivo, es posible aislar un contenedor de encontrarse en éste algún tipo de infección o daño en el cultivo, evitando de esta manera que contamine al resto del cultivo. Válvula de evacuación
La válvula de evacuación, es un dispositivo ubicado en uno de los costados del contenedor, en la parte inferior de éste, como se ilustra en la (Figura 17) .
Ha sido diseñada para evacuar líquidos que se pudieran acumular en el contenedor.
Estos líquidos pueden contener subproductos de gran valor, dependiendo del cultivo. La forma de la válvula de evacuación ha sido diseñada en la parte interior del contenedor, de manera de embudo, para encaminar todo el fluido hacia la boquilla en la parte exterior del contenedor, donde los líquidos podrán posteriormente ser almacenados.
SISTEMA DINÁMICO DE CULTIVO EN ÁREAS RURALES
El sistema dinámico de cultivo ha sido diseñado para maximizar la exposición del cultivo a la luz solar, por lo cual una disposición horizontal como la que se presenta en la (Figura 18) es la más apropiada para hacer uso del sistema en las zonas rurales.
Esta optimización del área de cultivo permite obtener cuatro o más veces, más cultivo en la misma área. Redundando esto en una multiplicación del ingreso percibido por las personas o empresas involucradas en el proceso. Multiplicar el producto obtenido sobre la misma área, permite incluso diversificar en el tipo de cultivo que se produce en esa área especifica. SISTEMA DINÁMICO DE CULTIVO EN ÁREAS URBANAS
Adaptar el sistema dinámico de cultivo a ambientes urbanos requiere hacer " uso de estructuras verticales, edificios acondicionados para albergar y sustentar el sistema dinámico de cultivo asi como los sistemas y procesos inherentes al mismo, como se muestra en la
(Figura 19) .
Debido a que se trata de estructuras verticales, seria poco probable para este tipo de adaptación suministrar luz solar directa. Esta adaptación del sistema dinámico de cultivo podrá sustentar cultivos que puedan llevar a cabo su ciclo de vida con el suministro de luz artificial. Es decir, cultivos que no requieran de la luz solar directa para llevar a cabo sus procesos vitales. Esta adaptación implica que es necesario instalar en el edificio lámparas sobre la zona de exposición solar de cada una de las unidades de ' cultivo ubicadas en la estructura. SISTEMA DINÁMICO DE CULTIVO EXTENDIDO
La adaptación extendida del sistema dinámico de cultivo requiere hacer uso de estructuras verticales, acondicionadas para albergar y sustentar el sistema dinámico de cultivo, asi como los sistemas y procesos inherentes al mismo, como se muestra en la (Figura 20) .
En una sola estructura vertical, se pueden incorporar tantos sistemas de cultivo como sean necesarios (Figura 20), además de superponerlas y organizarías de manera similar a como se ve en la Figura 19.
Debido a esta adaptación del sistema dinámico de cultivo seria poco probable para este tipo de adaptación suministrar luz directa.
Esta adaptación del sistema dinámico de cultivo podrá sustentar cultivos que puedan llevar a cabo su ciclo de vida en su mayoría mediante el suministro de luz artificial. Es decir, cultivos que no requieran estrictamente de la luz solar constante para llevar a cabo sus procesos vitales. Esta adaptación implica que al interior del sistema dinámico de cultivo existirán lámparas para suministrar luz artificial sobre todas las superficies horizontales que puedan generarse. SISTEMA DINÁMICO DE CULTIVO EN AMBIENTES ACUÁTICOS La adaptación del sistema dinámico de cultivo a ambientes acuáticos podrida requerir adaptar la forma de la unidad de cultivo a una forma rectangular como se representa en la (Figura 21) debido a que todo el sistema se encontraría sumergido bajo el agua; todos los procesos han de realizarse desde la superficie, por lo anterior el sistema dinámico de - cultivo no requiere de la característica zona optimizada para dar forma al túnel que se forma al enfrentar dos unidades de cultivo. Esta adaptación no requerirá que el sistema se encuentre en movimiento constante, solo se activará la banda transportadora cuando el ciclo de vida del cultivo lo requiera, por ejemplo trasladar peces a otro ambiente debido a que ha aumentado su tamaño.
En la superficie se adaptarán mecanismos que permitan la traslación del producto de un ambiente a otro.
La invención, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a titulo de ejemplo en la descripción,- y a las cuales alcanzará igualmente la protección que se recaba. Podrá pues, realizarse en cualquier forma y tamaño, y con los materiales y medios más adecuados, por quedar todo ello comprendido en el espíritu de las reivindicaciones.

Claims

REIVINDICACIONES
l.~ SISTEMA DINÁMICO DE CULTIVO, diseñado para multiplicar el producto resultante de un área, sobre la cual se cultiva, o crece, alimento destinado para consumo humano, industrial o agricola, caracterizado por estar conformado por una unidad de cultivo que en su interior alberga una banda transportadora, la cual suministra movimiento cíclico y constante a unos contenedores, que a su vez se encuentran sujetos a ésta a través de la coyuntura existente entre unos mecanismos de sujeción, eslabones especiales de la banda transportadora, y unos cilindros de sujeción que sobresalen a los dos costados de cada contenedor.
2.~ SISTEMA DINÁMICO DE CULTIVO, según la reivindicación 1, caracterizado porque es apto para suministrar un movimiento cíclico y constante a los contenedores, en orden a que todos reciban luz solar directa en un momento dado, dependiendo de los requerimientos del cultivo.
3.- SISTEMA DINÁMICO DE CULTIVO, según las, reivindicaciones anteriores, caracterizado porque la unidad de cultivo está diseñada para ser parte integral del sistema, el cual contempla todo el ciclo de vida del cultivo, iniciando con el proceso de siembra hasta la recolección y todos los procesos intermedios .
4.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo en su interior cuenta con la mitad de un arco estructural, de modo que cuando dos unidades de cultivo son enfrentadas la una contra la otra, y además unidas de manera permanente, se forma un arco estructural (Figura 6), que distribuye de manera uniforme las fuerzas del sistema.
5.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo es tal que maximiza el área de exposición a la luz solar o artificial, permitiendo que el mayor número de contenedores posible, reciba luz directa en un momento de tiempo.
6.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo es apta para optimizar el área del túnel de trabajo, en el cual los operarios pueden realizar de ser preciso actividades necesarias para llevar a cabo la gestión del ciclo de vida del cultivo.
7.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo de acuerdo con las necesidades del cultivo puede omitir optimizar el área del túnel de trabajo, implicando esto que la unidad de cultivo puede adquirir una forma rectangular, permitiendo el acceso al cultivo solo por la parte superior de la unidad.
8.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo adapta su estructura a los requerimientos del cultivo que sustentará, modificando sus dimensiones, altura, ancho y profundidad, asi como el número de contenedores que ubicará y el tamaño de éstos.
9.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo es apta para permitir que se lleven a cabo todos los procesos inherentes al cultivo, desde las tareas previas a la siembra, hasta las labores de cosecha y recolección, de manera mecánica y/o manual, dependiendo del tipo de cultivo que sustente el sistema.
10.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo soporta los sistemas requeridos para monitorear y gestionar el ciclo de vida del cultivo.
11.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo es apta para permitir el acceso y/o extracción de los contenedores, mediante la escotilla de acceso, y de no encontrarse está habilitada, mediante la zona de acción mecánica.
12.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo posiciona de manera precisa un contenedor en puntos específicos de la estructura, como son la zona de acción mecánica y la zona de la escotilla de acceso.
13.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque sistemas integrados a la unidad de cultivo son aptos para permitir identificar de manera única un contenedor.
14.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo es apta para acoplar la maquinaria que fuese requerida para que se lleven a cabo los procesos inherentes al cultivo.
15.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo cuenta con una banda transportadora la cual está conformada por dos cadenas que avanzan de manera sincronizada, suministrando movimiento cíclico y constante a los contenedores, hallándose separadas estas dos cadenas de tal manera que la distancia entre ellas es el largo máximo del contenedor.
16.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque en la banda transportadora existen mecanismos de sujeción para cada contenedor; eslabones especiales que hacen parte de la banda transportadora, permitiendo sujetar o liberar un contenedor mediante la acción mecánica de una palanca
(Figura 12), disponiéndose de tantos mecanismos de sujeción como contenedores existan en la unidad de cultivo.
17.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque el mecanismo de sujeción permite llevar a cabo procesos de sujeción y liberación, rotación y posicionamiento de los contenedores .
18.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la forma de la unidad de cultivo ha sido concebida y diseñada optimizando cada una de sus superficies para llevar a cabo todos los procesos inherentes al cultivo.
19.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque la unidad de cultivo es apta para proveer al cultivo de un microclima, en orden a mantener la temperatura y condiciones de cultivo ideales durante todo el año, habiéndose previsto que frente a temperaturas nocivas para el cultivo sea posible utilizar la infraestructura de la unidad de cultivo para el correspondiente resguardo.
20.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque cada contenedor se encuentra dotado de cilindros de sujeción, a través, de los cuales interactúan con los mecanismos de sujeción de la banda contenedora, conformando esta interacción el punto coyuntural entre el contenedor y la banda transportadora y a través de ésta con la unidad de cultivo .
21.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque cada contenedor se encuentra constituido por un armazón, un depósito y finalmente una válvula de evacuación apta para a través de la cual poder extraer subproductos liquidos del interior del contenedor.
22.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque el armazón del contenedor dispone de cilindros de sujeción, los elementos del armazón que sobresalen a los dos costados del contenedor (Figura 15) y que son la unión entre el contenedor y los mecanismos de sujeción de la banda transportadora.
23.- SISTEMA DINÁMICO DE CULTIVO, según las reivindicaciones anteriores, caracterizado porque una sola estructura vertical es apta para incorporar tantos sistemas de cultivo como sean necesarios (Figura 20), permitiendo asimismo su superposición (Figura 19) .
PCT/ES2010/000117 2009-04-22 2010-03-23 Sistema dinámico de cultivo WO2010122183A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200901049 2009-04-22
ES200901049A ES2368053B1 (es) 2009-04-22 2009-04-22 Sistema dinámico de cultivo.

Publications (1)

Publication Number Publication Date
WO2010122183A1 true WO2010122183A1 (es) 2010-10-28

Family

ID=43010704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000117 WO2010122183A1 (es) 2009-04-22 2010-03-23 Sistema dinámico de cultivo

Country Status (2)

Country Link
ES (1) ES2368053B1 (es)
WO (1) WO2010122183A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537412A1 (en) 2011-06-21 2012-12-26 Beckhart Pty Limited A machine to aid in growing mushrooms
EP2773180A4 (en) * 2011-11-02 2015-09-23 Plantagon Int Ab BUILDING FOR CROPPING PLANTS IN SHELLS WITH CONVEYOR SYSTEM FOR MOVING THE SHELLS
US9560813B2 (en) 2011-11-02 2017-02-07 Plantagon International Ab Building with integrated greenhouse
US20170055461A1 (en) * 2015-05-28 2017-03-02 Robert V. Neuhoff, JR. Automated hydroponics system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432965A (en) * 1966-07-05 1969-03-18 Charles M Smith Hydroponics apparatus
EP0352031A1 (en) * 1988-07-20 1990-01-24 Pedro Maria Alberto Echarte Petri Chamber for germination and cultivation of seeds and plants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432965A (en) * 1966-07-05 1969-03-18 Charles M Smith Hydroponics apparatus
EP0352031A1 (en) * 1988-07-20 1990-01-24 Pedro Maria Alberto Echarte Petri Chamber for germination and cultivation of seeds and plants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537412A1 (en) 2011-06-21 2012-12-26 Beckhart Pty Limited A machine to aid in growing mushrooms
EP2773180A4 (en) * 2011-11-02 2015-09-23 Plantagon Int Ab BUILDING FOR CROPPING PLANTS IN SHELLS WITH CONVEYOR SYSTEM FOR MOVING THE SHELLS
US9560813B2 (en) 2011-11-02 2017-02-07 Plantagon International Ab Building with integrated greenhouse
US20170055461A1 (en) * 2015-05-28 2017-03-02 Robert V. Neuhoff, JR. Automated hydroponics system and method
US10485193B2 (en) * 2015-05-28 2019-11-26 Robert V. Neuhoff, JR. Automated hydroponics system and method

Also Published As

Publication number Publication date
ES2368053A1 (es) 2011-11-14
ES2368053B1 (es) 2012-09-18

Similar Documents

Publication Publication Date Title
JP4110157B2 (ja) 可変式空間有効利用型栽培法
EP3206476B1 (en) Horticultural method and apparatus
CN102498842A (zh) 一种生产脱毒马铃薯原原种的方法
JP5152869B2 (ja) イチゴ苗の養成方法、及びイチゴ栽培方法
CN112385452B (zh) 蜈蚣草快速育苗设施及使用其培养蜈蚣草的方法
US20210185947A1 (en) Vertically Mounted Cropping And Irrigation System
WO2010122183A1 (es) Sistema dinámico de cultivo
CN201667884U (zh) 一种基质栽培槽装置
CN103026888A (zh) 植物栽培方法、栽培模块及商业用途
JP2024059925A (ja) 保温システム、保温装置等を全般的に効率的に配置する発明
CN103782896B (zh) 一种利用日光温室唐菖蒲育种方法
KR101780467B1 (ko) 농작물 지지대
JP2020124208A (ja) 農業用ロボット装置
CN205389849U (zh) 地下授粉箱
CN211532240U (zh) 一种水培蔬菜育苗运输装置
CN204721941U (zh) 一种现代化立体种植、养殖系统
WO2018006923A1 (es) Proceso para llevar el agua por goteo a las plantas, controlar las malezas de los cultivos en la agricultura; por medio de una lámina o manto plástico
CN104938240A (zh) 立体式管道微灌蔬菜标准化的种植装置和种植方法
KR20160101456A (ko) 카트리지형 수경재배겸용 생물사육기
WO2011025192A2 (ko) 지중배관으로 식물성장에 필요한 물품을 공급하고 방해물을 배출하는 식물재배 방법과 그 장치
KR101759179B1 (ko) 인삼 이동식 베드 재배 시스템
CN204762439U (zh) 立体式管道微灌蔬菜标准化的种植装置
CN218526956U (zh) 一种具有储水灌溉功能的大棚
KR101663865B1 (ko) 양액 토양 겸용 화분 및 상기 양액 토양 겸용 화분에 적용되는 화분 받침 부재 및 화분 내부 부재
CN109258373B (zh) 一种温室苗床盆花立体多层生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 29.02.2012

122 Ep: pct application non-entry in european phase

Ref document number: 10766667

Country of ref document: EP

Kind code of ref document: A1