WO2010121519A1 - 一种在沉井施工中用于支撑沉井结构的内支撑桩 - Google Patents

一种在沉井施工中用于支撑沉井结构的内支撑桩 Download PDF

Info

Publication number
WO2010121519A1
WO2010121519A1 PCT/CN2010/071714 CN2010071714W WO2010121519A1 WO 2010121519 A1 WO2010121519 A1 WO 2010121519A1 CN 2010071714 W CN2010071714 W CN 2010071714W WO 2010121519 A1 WO2010121519 A1 WO 2010121519A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
inner support
flange
sinking
supporting
Prior art date
Application number
PCT/CN2010/071714
Other languages
English (en)
French (fr)
Inventor
丁慈鑫
丁树东
Original Assignee
Ding Cixin
Ding Shudong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ding Cixin, Ding Shudong filed Critical Ding Cixin
Publication of WO2010121519A1 publication Critical patent/WO2010121519A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/08Lowering or sinking caissons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/20Caisson foundations combined with pile foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D35/00Straightening, lifting, or lowering of foundation structures or of constructions erected on foundations

Definitions

  • the present invention relates to a sinking structure support device, and more particularly to an inner support pile for supporting a sinking well in a sinking construction. Background technique
  • the sinking well As a structure of underground space structures or deep foundation or deep foundation pit support construction, the sinking well has its unique range of engineering application conditions. For example, in the case of better hard soil quality, the sinking technology may not be used, and other foundation pit construction techniques are more convenient and economical. However, in soft soil areas, due to poor geological porosity, poor stability and poor bearing capacity, the use of general foundation pit supporting structures will result in high maintenance costs, and at the same time lead to longer construction period and, in addition, construction risks. Big. The use of the sinking technology solution also has its special cost structure and construction risks. In order to reduce the engineering cost and construction risk, the invention patent of the application number 200810026012.6, the invention name “Sinking structure and the method of smoothing and sinking the sinking structure into the ground” provides a very solution.
  • FIG. 1 shows a specific embodiment of the above technical solution.
  • the bottom frame beam 13 of the sinking structure 10 is supported by the inner support pile 11 to prevent the sinking structure.
  • the uncontrollable free sinking of 10 provides a jack 12 between the bottom frame beam 13 and the inner support pile 11.
  • the jack 12 is divided into two batches (the first batch of jacks and the second batch of jacks). In the initial state, all the jacks 12 are in an extended state, and the first time to operate all the jacks to shorten the height, the sinking well 10 realizes the first Sink once.
  • the first batch of jacks are operated to shorten a certain height, so that they are in a state of disengagement support, at which time the second batch of jacks supports the sinking structure;
  • the piles under a batch of jacks are cut off for a length, and the extended state of the first jacks is restored to receive loads to support the sinking structure.
  • the second batch of jacks is operated to shorten the certain height to make it out of the supporting working state.
  • the first batch of jacks supports the sinking structure; then the piles under the second batch of jacks are cut off for a length, and the first part is restored.
  • the elongation state of the two batches of jacks receives the load.
  • all the jacks jointly support the sinking structure.
  • the jacks are simultaneously operated to shorten the height, and the sinking well 10 realizes the second sinking.
  • the downhole structure 10 can be safely, smoothly, and accurately submerged to a predetermined depth.
  • the above-mentioned inner support pile body needs continuous manual cutting when the sinking sinking, and the pile body is generally a very thick reinforced concrete pile or steel pipe pile. It is very difficult to cut off the construction in the foundation pit, which is not conducive to speeding up the construction progress; and the pile after the interception can not be recycled again. A concrete pile or steel pipe pile can only be completed once, resulting in resources. Waste. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an inner support pile for supporting a caisson structure in a sinking construction.
  • the combined device can not only reduce labor but also effectively ensure the safe sinking of the sinking structure. Strength and speed up the construction schedule, but also the recycling of the pile section, reducing the waste of resources.
  • the inner support pile for supporting the sinking structure of the present invention is composed of a plurality of sections of the pile section in a detachable manner.
  • a plurality of pile sections are installed in a detachable manner to form an inner support pile.
  • the position of the pile top jack is changed by continuously disassembling the pile section, thereby realizing the sinking structure.
  • Controllable sinking Compared with the existing technical solutions for controlling the sinking of the caisson structure by manually cutting the inner support pile, it can not only reduce the labor intensity and speed up the construction progress, but also It can also recycle pile sections and reduce waste of resources.
  • the pile section includes a steel pipe and a flange fixed to both ends of the steel pipe, and the pile sections are mounted together by fastening between adjacent flanges.
  • the combination of such a pile structure is less costly and can effectively secure the pile sections together.
  • the pile joint structure may further comprise a steel pipe, a first flange mounted on the one end of the steel pipe with a flange, and a second flange mounted on the other end of the steel pipe with an internal thread, the flange being provided with an external thread. Adjacent first flanges and second flanges are threaded to fit the pegs together.
  • Another technical problem to be solved by the present invention is to provide an inner support pile for supporting a sinking structure in a sinking construction.
  • the inner support pile can not only further reduce the labor intensity and speed up the construction progress, but also recycle the pile section and reduce the waste of resources; and the cost is more cheap.
  • the inner support pile for supporting the sinking structure of the present invention comprises a pile and a composite pile, and the composite pile is composed of a plurality of sections and sections, and the pile and the composite pile are fixed together. Form the inner support pile.
  • FIG. 1 is a schematic view of a conventional support device for a caisson structure in a sinking construction
  • Figure 2 is a schematic structural view of a first preferred embodiment of the inner support pile of the present invention
  • Figure 3a is a cross-sectional view of the pile joint structure shown in Figure 2;
  • Figure 3b is a plan view of the pile joint structure shown in Figure 2;
  • Figure 4 is a schematic view showing the application of the inner support pile in the sinking structure of the present invention
  • Figure 5 is a schematic structural view of a second preferred embodiment of the inner support pile of the present invention
  • Figure 6 is a schematic view of the pile joint structure shown in Figure 5;
  • Figure 7 is a state diagram of the sinking structure in the soft soil layer after sinking to a predetermined position
  • Figure 8 is a schematic view showing the structure of a third preferred embodiment of the inner support pile of the present invention. detailed description
  • the inner support pile of the present invention is composed of a plurality of pile sections 21, and the respective pile sections 21 are detachably mounted together.
  • the cross-sections of the two adjacent pile joints 21 should be congruent, that is, the protruding portion cannot be formed at the position where the two pile joints are combined, because the protruding portion is disadvantageous for the inner support pile in the soil layer. Sinking will cause some resistance to the sinking of the inner support pile.
  • Figure 2, Figure 3a and Figure 3b show a detachable mounting method.
  • the pile section 21 comprises a circular steel tube 211 and a flange 212 mounted on both ends of the circular steel tube.
  • the shape of the steel pipe 211 is not limited to a circular shape, and other shapes (e.g., rectangular) of steel pipes may be selected depending on the circumstances.
  • the two adjacent pile joints 21 are fixed together by bolts 213 passing through the circular holes 214 in the flange 212.
  • a nut 215 is fixed corresponding to each flange hole 214, in this embodiment.
  • the nut 215 is pre-welded to the inside of the flange 212 before the flange 212 is installed.
  • a pile tip 22 is attached to the lower end of the bottommost pile section.
  • the two ends of the pile section 21 adopt a conventional flange structure, and the flange 212 can be directly welded to both ends of the circular steel pipe 211, and the structure is very simple, which is easy to manufacture and manufacture.
  • FIG. 4 is a schematic view showing the application of the inner support pile in the sinking structure of the present invention.
  • the inner support pile 2 and the jack 3 supporting the sinking structure 4 under the mutually staggered longitudinal beams are controlled to sink.
  • a predetermined number of inner support piles 2 are firstly driven under the ground, and several pile sections 21 need to be combined first in the process of pile driving.
  • Depth depth and quantity of inner support pile 2 The distribution and distribution depend on the structure and geological conditions of the sinking well.
  • the excavation can be carried out in the sinking well.
  • the jacks 3 on the inner support piles are divided into two batches, which are respectively named as the first batch of jacks and the second batch of jacks, and which jacks are named as the first batch of jacks, which jacks Named the second batch of jacks, depending on the specific construction environment.
  • it cannot be arbitrarily divided during the division and it is necessary to ensure that the second batch of jacks can support the sinking structure safely and stably when the first batch of jacks is taken out.
  • the first jacks can also support the sinking structure 4 safely and steadily.
  • the first sinking of the caisson structure is required, and at the same time, all the jacks are operated to shorten a set stroke height, and the sinking structure 4 realizes the first sinking.
  • the first batch of jacks is firstly released from the load and displaced to make room, and a pile section 21 is removed from the inner support pile 2 corresponding to the first jacks.
  • the socket wrench can be used for disassembly; then the first batch of jacks is installed on the inner support pile 2 and the first batch of jacks are kept to be extended to receive the load.
  • the second batch of jacks is shortened to be separated from the load and displaced to make room, and one pile section 21 is removed from the inner support pile 2 corresponding to the second batch of jacks, and then the second batch of jacks is mounted on the inner support pile 2 and Keep the second batch of jacks in tension and accept the load.
  • all the jacks are in an extended top state, and at the same time, all the jacks are operated to shorten a set stroke height, and the sinking well 4 realizes a second sinking.
  • This cycle operation can sink the sinker structure 4 to a predetermined depth.
  • the process of disassembling the pile section 21 is compared with the existing cut concrete pile, and its operation process Very fast, greatly shortening the construction period.
  • the pile sections under the disassembly can be recycled and can be used in other engineering projects, and the internal support piles of the present invention reduce waste of resources compared to the cut off reinforced concrete piles.
  • the above technical solution is particularly suitable for geological conditions in which the bearing layer of the pile end is shallow.
  • the pile section 21 includes a steel pipe 211 and a first method of mounting a flange 411 at one end of the steel pipe. a flange 41 and a second flange 42 with an internal thread mounted on the other end of the steel tube, the flange 411 is provided with an external thread, and the adjacent first flange 41 and the second flange 42 are threaded.
  • a plurality of bolts need to be installed during installation.
  • this threaded connection is not suitable for a rectangular cross section and is particularly suitable for a composite pile of a circular cross section.
  • the inner support pile is not all the piles because the creep property of the soft soil cannot effectively support the sinking well structure in the long-term.
  • the section can be recycled.
  • the inner support pile 2 In order to ensure the long-term safety and stability of the caisson structure, the inner support pile 2 generally penetrates into the ground depth until it contacts the geological rock bearing layer. After the sinking structure sinks into place, the sinking structure is scheduled. The pile joint between the location and the geological rock bearing layer will be permanently retained in the soft soil to support the sinking structure.
  • This permanent inner support pile is generally referred to as the foundation pile 25, as shown in Figure 7. .
  • a concrete cap 6 can be arranged between the inner support pile and the sinking structure, and the cap 6 permanently connects the caisson structure 4 with the pile. Allow the pile to withstand vertical downward pressure or upward pull.
  • the inner support pile 2 of another structure is provided in the present invention.
  • it includes a foundation pile 25 composed of a PHC pipe pile (prestressed high-strength concrete pipe pile) and a composite pile 20 composed of a plurality of section pile sections 21 in a detachable manner; wherein the above-mentioned foundation pile 25 and composite pile 20 are The inner support piles 2 are fixed together.
  • Foundation pile 25 is prefabricated PHC pipe pile or steel Reinforced concrete piles or steel pipe piles, the length of the foundation pile 25 is generally determined by design.
  • the structure capable of being fitted with the composite pile 20 must be prefabricated at the upper end thereof, and the pile tip 31 is prefabricated at the lower end thereof to facilitate the sinking of the inner support pile 2.
  • the method of using the inner support pile 2 of this structure in the construction of the sinking well is basically the same as the method of using the inner support pile which is completely composed of the pile joint, and will not be described again here.
  • FIG. 8 is a schematic structural view of a third preferred embodiment of the inner support pile, the lower part of which is a pile 25, and a metal steel plate 251, a metal steel plate 251 and a lowermost end of the composite pile 20 are prefabricated at the upper end of the pile 25.
  • the joint is fixed by welding, and stress diffusion ribs 252 are provided in the bottommost pile section 21 welded to the pile 25 to diffuse stress and reduce stress intensity.
  • the lower end of the pile 25 is a pile tip 31.
  • the mounting manner of the foundation pile 25 and the composite pile 20 is not limited to the connection of the welding method, and may be connected by other means.
  • a bolt or a nut may be embedded in the upper end of the pile.
  • the flanges after the concrete has solidified, the bolts or flanges with nuts can also be used to remove all the pile joints on the pile.
  • the structure of the pile section of the composite pile may adopt the structure of the inner support pile of Fig. 2 or Fig. 5, and details are not described herein.
  • the top elevation of the foundation pile may be higher than the design elevation (ie, super high) or lower than the design elevation (ie, under high).
  • the top elevation of the pile is too high, as long as the pile of the super high part is continuously cut off with the sinking of the sinking well, since the cutting distance is not 4 inches long, the construction progress will not occur. Too much impact. For the pile with low height, the remaining pile joints 21 are not removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Description

说 明 书 一种在沉井施工中用于支撑沉井结构的内支撑桩 技术领域
本发明涉及一种沉井结构支撑装置, 尤其是指在沉井施工中用于支撑沉 井的内支撑桩。 背景技术
沉井作为地下空间构筑物或高层建筑深基础或深基坑支护施工的一种结 构, 有其独特的工程应用条件范围。 比如, 一般在较好的硬土地质条件下, 可不采用沉井技术, 而采用其它基坑施工技术方法则更为便捷经济。 然而在 软土地区, 由于地质疏松, 稳定性差, 承载力差, 因此采用一般的基坑支护 结构则将导致高昂的支护费用, 同时导致施工的工期变长, 此外, 施工的风 险也较大。 而采用沉井技术方案亦有其特殊的成本构成与施工风险。 为了降 低工程成本和施工风险, 申请号为 200810026012.6、 发明名称为 《沉井结构 及将沉井结构平稳准确沉入地面的方法》 的发明专利就提供了一种非常的解 决办法。
下面筒单介绍上述发明专利的技术方案, 如图 1所示为上述技术方案的 一种具体的实施例, 沉井结构 10的底部框架梁 13通过内支撑桩体 11支撑着 以防止沉井结构 10的不可控的自由下沉, 在底部框架梁 13与内支撑桩体 11 之间设置有千斤顶 12。千斤顶 12被分成两批(第一批千斤顶和第二批千斤顶 ), 初始状态下全部的千斤顶 12是处于伸长状态的, 第一次同时操作全部的千斤 顶缩短高度, 沉井 10便实现了第一次下沉。
为了实现沉井 10的第二次下沉, 操作第一批千斤顶缩短一定的高度, 使 其处于脱离支撑工作状态, 此时由第二批千斤顶支撑着沉井结构; 接着将第 一批千斤顶之下的桩体截断一节长度, 恢复第一批千斤顶的伸长状态接受荷 载以支撑沉井结构。 接着操作第二批千斤顶缩短一定的高度, 使其处于脱离 支撑工作状态, 此时由第一批千斤顶支撑着沉井结构; 接着将第二批千斤顶 之下的桩体截断一节长度, 恢复第二批千斤顶的伸长状态接受荷载, 此时全 部的千斤顶共同支撑沉井结构, 此时, 再次同时操作全部的千斤顶缩短高, 沉井 10便实现了第二次下沉。
按照上述沉井结构 10第二次下沉的方法, 如此循环操作即可将沉井结构 10安全、 平稳、 准确地下沉到预定的深度。
上述沉井结构虽然能够有效地降低工程成本和施工风险, 但是, 上述内 支撑桩体在沉井下沉时需要不断的人工截断, 这种桩体一般都是很粗的钢筋 混凝土桩或者钢管桩, 在基坑内对其进行截断操作施工难度非常大, 不利于 加快施工进度; 而且截断后的桩体不能再次回收利用, 一根混凝土桩体或者 钢管桩体只能完成一次施工, 造成了资源的浪费。 发明内容
本发明要解决的技术问题是提供一种在沉井施工中用于支撑沉井结构的 内支撑桩, 这种组合装置在能够有效地保证沉井结构的安全下沉情况下, 不 但能降低劳动强度与加快施工进度, 而且还能回收利用桩节, 减少了资源的 浪费。
为了解决上述技术问题, 本发明用于支撑沉井结构的内支撑桩由若干段 桩节采用可拆卸的安装方式组成。
在本发明技术方案中采用可拆卸的方式将多个桩节安装构成内支撑桩, 在沉井结构下沉时, 通过不断地人工拆卸桩节来实现桩顶千斤顶位置变化, 进而实现沉井结构的可控下沉。 与现有的通过人工切割内支撑桩实现沉井结 构可控下沉的技术方案相比, 其不但能降低劳动强度与加快施工进度, 而且 还能回收利用桩节, 减少了资源的浪费。
上述桩节包括钢管以及固定在钢管两端的法兰, 通过相邻的法兰之间的 紧固将桩节安装在一起。 采用这种桩体结构的组合方式成本较低, 并且能够 有效地将桩节固定在一起。 上述桩节结构还可以有钢管、 安装在钢管一端带有凸缘的第一法兰以及 安装在钢管另一端的带有内螺纹的第二法兰构成, 所述凸缘上设有外螺纹, 相邻的第一法兰与第二法兰通过螺纹的方式配合以将桩节安装在一起。
本发明要解决的另一个技术问题是提供另一种在沉井施工中用于支撑沉 井结构的内支撑桩。 这种内支撑桩相比上面所述的内支撑桩, 不但能进一步 降低劳动强度与加快施工进度, 回收利用桩节, 减少了资源的浪费; 而且其 成本更加氐廉。
为了解决上述技术问题, 本发明用于支撑沉井结构的内支撑桩包括基桩 以及组合桩, 该组合桩由若干段桩节采用可拆卸的安装方式组成, 基桩和组 合桩被固定在一起构成内支撑桩。
上述技术方案在采用桩节组合的基础上, 将永久性埋在地下用于支撑沉 井的内支撑桩改为低成本的基桩, 需要拆卸的部分采用桩节组合的方式, 这 样其不但能够实现降低劳动强度与加快施工进度的优点, 而且还能回收利用 桩节, 减少了资源的浪费。 附图说明
图 1是现有的在沉井施工中沉井结构支撑装置示意图;
图 2是本发明内支撑桩的第一种优选实施方式的结构示意图; 图 3a是图 2所示的桩节结构的剖视图;
图 3b是图 2所示的桩节结构的俯视图;
图 4是本发明内支撑桩应用在沉井结构中示意图; 图 5是本发明内支撑桩的第二种优选实施方式的结构示意图; 图 6是图 5所示的桩节结构的示意图;
图 7是在软土层中沉井结构下沉到预定位置后的状态图;
图 8是本发明内支撑桩的第三种优选实施方式的结构示意图。 具体实施方式
下面结合说明书附图和具体实施方式对本发明在沉井施工中用于支撑沉 井结构的内支撑桩作进一步详细说明。
如图 2所示, 本发明内支撑桩由若干个桩节 21组成, 各个桩节 21之间 通过可拆卸的方式安装在一起。 在本发明中需要说明的是, 相邻两个桩节 21 的横截面应该全等, 即在两个桩节结合的位置不能出现突出部分, 因为突出 部分不利于内支撑桩在土层中的下沉, 会对内支撑桩下沉造成一定的阻力。 图 2、 图 3a和图 3b中给出了一种可拆卸式的安装方式, 在本实施例中, 桩节 21 包括圓形钢管 211 以及安装在圓形钢管两端的法兰 212, 在具体实施时钢 管 211的形状并不限于为圓形, 也可以根据具体情况选择其他形状(如矩形 ) 的钢管。 相邻两个桩节 21之间通过穿过法兰 212上圓孔 214的螺栓 213被固 定在一起, 在法兰 212的内侧对应于每个法兰孔 214固定有螺母 215 , 在本实 施例中, 在安装法兰 212之前, 螺母 215被预先焊接在法兰 212内侧。 在最 底端的桩节的下端安装有桩尖 22。本实施例中的桩节 21两端采用惯用的法兰 结构, 法兰 212可以被直接焊接的圓形钢管 211的两端, 结构非常筒单, 容 易加工制造。
如图 4示为本发明内支撑桩应用在沉井结构中的示意图, 在本图中, 通 过位于相互交错的纵横梁下面的内支撑桩 2以及千斤顶 3支撑沉井结构 4可 控下沉。 施工时, 首先在地面之下预先打入了预定数量的内支撑桩 2, 在打桩 的过程中需要先将若干个桩节 21组合在一起。 内支撑桩 2的下沉深度、 数量 与分布取决于沉井的结构及地质情况。 待内支撑桩 2打入预定深度后, 在地 面上预留一部分长度, 并在每个内支撑桩 2上设置千斤顶 3 , 所有千斤顶 3均 处于伸长状态, 然后再在千斤顶 3上构建沉井结构 4, 沉井结构 4构建完成后 即可在沉井内施工挖土。
在本发明中, 为了描述的方便, 将内支撑桩上的千斤顶 3分为两批, 将 其分别命名为第一批千斤顶和第二批千斤顶, 至于哪些千斤顶命名为第一批 千斤顶, 哪些千斤顶命名为第二批千斤顶, 视具体的施工环境不同而划分。 但是, 在划分时不能任意划分, 要保证沉井结构 4在第一批千斤顶被取出时, 第二批千斤顶能够安全稳定地支撑沉井结构 4。 同样, 在第二批千斤顶被取出 时, 第一批千斤顶也能够安全稳定地支撑沉井结构 4。
待施工到一定程度后需要第一次下沉沉井结构时, 同时操作全部的千斤 顶缩短一个设定的行程高度, 沉井结构 4便实现了第一次下沉。
待施工到一定程度后需要第二次下沉沉井结构时, 首先缩短第一批千斤 顶脱离荷载并移位让出空间, 从与第一批千斤顶对应的内支撑桩 2上拆卸一 节桩节 21 , 拆卸时可采用套筒扳手拆卸; 再将第一批千斤顶安装到内支撑桩 2上并保持第一批千斤顶保持伸长顶紧接受荷载。再使第二批千斤顶缩短脱离 荷载并移位让出空间, 从与第二批千斤顶对应的内支撑桩 2上拆卸一节桩节 21 , 再将第二批千斤顶安装到内支撑桩 2上并保持第二批千斤顶保持伸长顶 紧接受荷载。 此时全部的千斤顶都处于伸长顶紧状态, 同时操作全部的千斤 顶缩短一个设定的行程高度, 沉井 4便实现了第二次下沉。
如此循环操作即可将沉井结构 4 下沉到预定的深度。 为了在沉井结构下 沉过程中可以有效控制沉井结构每次下沉的距离以方便沉井结构下的施工, 最好将上述桩节 21制作成长度相等的桩节, 这样就保证沉井结构每次下沉的 距离相同。
上述施工时, 拆卸桩节 21的过程相比现有的截断混凝土桩, 其操作过程 非常快捷, 大大缩短了施工工期。 而且, 拆卸下的桩节可回收利并能够在其 他的工程项目中周转使用, 相比截断的钢筋混凝土桩被废弃, 本发明内支撑 桩减少了资源浪费。 上述技术方案尤其适用于桩端持力层较浅的地质条件。
图 5和图 6所示为本发明内支撑桩的另一种优选实施方式的结构示意图, 在本实施例中, 桩节 21包括钢管 211、 安装在钢管一端带有凸缘 411的第一 法兰 41以及安装在钢管另一端的带有内螺纹的第二法兰 42,所述凸缘 411上 设有外螺纹, 相邻的第一法兰 41与第二法兰 42通过螺纹的方式配合以将桩 节 21安装在一起。 相比上面所述的桩节结构在安装时需要安装多个螺栓, 本 实施例中的桩节安装和拆卸更加快捷, 只需要使用链条管钳拆卸即可, 更加 有利于缩短施工时间。 但此螺纹连接方式不适应于矩形截面而特别适用于圓 形截面的组合桩。
然而在某些土壤环境中, 例如广州南沙地区的软土层中, 由于软土的蠕 变特性对下沉到位的沉井结构不能有效地长期稳定支撑, 因此上述内支撑桩 并不是所有的桩节都能够回收利用, 为了保证沉井结构的长期安全稳定性, 内支撑桩 2—般打入地面深度直到与地质岩土持力层接触, 沉井结构下沉到 位后, 位于沉井结构预定位置与地质岩土持力层之间的桩节会被永久性的留 于软土中用来支撑沉井结构, 一般称这种永久性的内支撑桩为基桩 25 , 如图 7所示。 同时, 在沉井结构下沉到预定位置后, 还可以在内支撑桩与沉井结构 之间设置混凝土承台 6,承台 6将沉井结构 4与基桩永久性连接在一起。使基 桩可承受竖向向下的压力或向上的拔力。
由于在软土施工中沉井结构下沉到位后需要预留一段内支撑桩永久性地 支撑沉井结构, 如图 8所示, 本发明中又提供了另外一种结构的内支撑桩 2, 其具体包括由 PHC管桩(预应力高强混凝土管桩)构成的基桩 25以及由若 干段桩节 21采用可拆卸的安装方式组成的组合桩 20; 其中, 上述基桩 25和 组合桩 20被固定在一起构成内支撑桩 2。 基桩 25为预制的 PHC管桩或者钢 筋混凝土桩或者钢管桩, 基桩 25的长度一般通过各种参数由设计所确定。 当 然在预制 PHC管桩时须在其上端同时预制能够与组合桩 20安装配合的结构, 在其下端要预制有桩尖 31以有利于内支撑桩 2的下沉。 这种结构的内支撑桩 2 在沉井施工中的使用方法与完全由桩节组合而成的内支撑桩的使用方法基 本上相同, 这里不再赘述。 待沉井结构下沉到预定位置后, 直接在基桩顶上 浇筑混凝土承台以将沉井结构与基桩永久性的连接。 使基桩可承受竖向向下 的压力或向上的拔力。 这种技术方案尤其适用于桩端持力层较深的地质条件。
如图 8所示为上述内支撑桩的第三种优选实施方式的结构示意图, 其下 部为基桩 25 , 在基桩 25的上端预制有金属钢板 251 , 金属钢板 251与组合桩 20的最下端通过焊接的方式固定连接,并且在与基桩 25焊接的最底端的桩节 21内设有应力扩散肋 252以扩散应力及降低应力强度。基桩 25的下端为桩尖 31。 当然, 基桩 25与组合桩 20的安装方式并不限于焊接方式的连接, 也可 以采用其他的方式连接, 例如: 在用混凝土预制基桩时, 可以在其上端预先 埋设有螺栓或带有螺母的法兰, 待混凝土凝固后螺栓或带有螺母的法兰也被 样就可以将基桩上的所有桩节拆卸下。 而组合桩的桩节结构可以采用图 2或 者图 5的内支撑桩的结构, 这里不再赘述。
这里需要说明的是, 由于岩土工程的复杂性和基桩持力层非水平性, 在 工程施工时支撑桩的下沉深度时不可避免的存在施工与设计的误差, 即支撑 桩下沉后, 基桩的顶部标高可能高于设计标高 (即超高), 也可能低于设计标 高 (即欠高)。 对于基桩的顶部标高超高的情况, 只要随着沉井的下沉不断地 截除超高部分的桩体即可, 由于切割的距离并不是 4艮长, 所以对施工进度并 不会产生太大的影响。 对于欠高部分的桩体, 就不拆除剩余的桩节 21 , 只要 在桩节 21内插入钢筋, 灌入混凝土, 形成钢管混凝土桩体, 达到设计标高即 可, 由于是计算误差造成的, 这段距离一般不会太长, 通常情况下 1至 2节 桩节即可补偿误差。
以上所揭露的仅为本发明的优选实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明申请专利范围所作的等同变化, 仍属本发明所 涵盖的范围。

Claims

1. 一种用于支撑沉井结构的内支撑桩, 其特征在于, 所述内支撑桩由若 干段桩节采用可拆卸的安装方式组成。
2. 如权利要求 1所述的用于支撑沉井结构的内支撑桩, 其特征在于, 所 述桩节包括钢管以及固定在钢管两端的法兰, 通过相邻的法兰之间的紧固将 桩节安装在一起。
3. 如权利要求 2所述的用于支撑沉井结构的内支撑桩, 其特征在于, 相 邻法兰之间通过螺栓紧固, 该螺栓与固定在其中一个法兰内侧的螺母配合, 该螺母对应与每个法兰孔。
4. 如权利要求 1所述的用于支撑沉井结构的内支撑桩, 其特征在于, 所 述桩节由钢管、 安装在钢管一端带有凸缘的第一法兰以及安装在钢管另一端 的带有内螺纹的第二法兰构成, 所述凸缘上设有外螺纹, 相邻的第一法兰与 第二法兰通过螺纹的方式配合以将桩节安装在一起。
5. 如权利要求 2至 4任一所述的用于支撑沉井结构的内支撑桩, 其特征 在于, 在所述桩节长度相等。
6. 一种用于支撑沉井结构的内支撑桩, 其特征在于, 其包括基桩以及组 合桩, 该组合桩由若干段桩节采用可拆卸的安装方式组成, 上述基桩和组合 桩被固定在一起构成内支撑桩。
7. 如权利要求 6所述的用于支撑沉井结构的内支撑桩, 其特征在于, 所 述桩节包括钢管以及固定在钢管两端的法兰, 通过相邻的法兰之间的紧固将 桩节安装在一起。
8. 如权利要求 7所述的用于支撑沉井结构的内支撑桩, 其特征在于, 相 邻法兰之间通过螺栓紧固, 该螺栓与固定在其中一个法兰内侧的螺母配合, 该螺母对应与每个法兰孔。
9. 如权利要求 6所述的用于支撑沉井结构的内支撑桩, 其特征在于, 所 述桩节由钢管、 安装在钢管一端带有凸缘的第一法兰以及安装在钢管另一端 的带有内螺纹的第二法兰构成, 所述凸缘上设有外螺纹, 相邻的第一法兰与 第二法兰通过螺纹的方式配合以将桩节安装在一起。
10. 如权利要求 6所述的用于支撑沉井结构的内支撑桩, 其特征在于, 所述基桩为 PHC管桩或者钢管桩或者钢筋混凝土桩。
PCT/CN2010/071714 2009-04-24 2010-04-13 一种在沉井施工中用于支撑沉井结构的内支撑桩 WO2010121519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910038968.2 2009-04-24
CN2009100389682A CN101565946B (zh) 2009-04-24 2009-04-24 一种在沉井施工中用于支撑沉井结构的内支撑桩

Publications (1)

Publication Number Publication Date
WO2010121519A1 true WO2010121519A1 (zh) 2010-10-28

Family

ID=41282294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071714 WO2010121519A1 (zh) 2009-04-24 2010-04-13 一种在沉井施工中用于支撑沉井结构的内支撑桩

Country Status (2)

Country Link
CN (1) CN101565946B (zh)
WO (1) WO2010121519A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088105A (zh) * 2016-07-29 2016-11-09 天津大学建筑设计研究院 一种装配式基坑支撑结构体系
CN109797763A (zh) * 2019-01-25 2019-05-24 中交二航局第四工程有限公司 一种水中沉井近邻锚桩定位方法及定位结构
CN112982465A (zh) * 2021-02-08 2021-06-18 广东耀南建设集团有限公司 一种多段沉降式沉井壁身施工方法
CN113235632A (zh) * 2021-04-14 2021-08-10 中铁二十四局集团有限公司 可自动实时纠偏的沉井下沉装置及施工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565946B (zh) * 2009-04-24 2010-12-29 丁慈鑫 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN101851930B (zh) * 2010-01-15 2012-10-03 丁慈鑫 沉井的下沉装置及具有该装置的沉井的下沉方法
CN102900090A (zh) * 2011-07-29 2013-01-30 邹宗煊 一种防涌水防地面下沉不倾斜干作业沉井及其施工方法
CN103397622B (zh) * 2013-07-29 2016-04-27 宏华海洋油气装备(江苏)有限公司 一种自升式平台桩腿及其安装方法
CN105951863B (zh) * 2016-06-17 2019-06-04 北京市市政四建设工程有限责任公司 一种主动装配式沉井的施工设备的施工方法
CN107653881A (zh) * 2017-09-30 2018-02-02 国家电网公司 一种输电线路用预应力混凝土管桩连接装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB486900A (en) * 1936-12-12 1938-06-13 British Steel Piling Co Ltd Improvements in or relating to the construction of a concrete pile, pier, or like column
CN1097828A (zh) * 1994-05-30 1995-01-25 北京市第三市政工程公司 地下预制钢管柱与灌注桩定位连接工艺及其设备
CN101148890A (zh) * 2007-11-08 2008-03-26 中交武汉港湾工程设计研究院有限公司 桥梁沉箱复合桩基础及其逆作建造方法
CN201176597Y (zh) * 2008-01-28 2009-01-07 丁慈鑫 一种沉井结构
CN101503879A (zh) * 2009-03-10 2009-08-12 中国第一冶金建设有限责任公司 防止沉井倾斜的预控方法
CN101509258A (zh) * 2009-03-10 2009-08-19 中国第一冶金建设有限责任公司 预先控制沉井下沉倾斜的方法
CN101565946A (zh) * 2009-04-24 2009-10-28 丁慈鑫 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN101591915A (zh) * 2009-06-25 2009-12-02 丁慈鑫 用于支撑沉井结构的外支撑体系及其施工方法
CN201390971Y (zh) * 2009-04-24 2010-01-27 丁慈鑫 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN201433398Y (zh) * 2009-06-25 2010-03-31 丁慈鑫 用于支撑沉井结构的外支撑体系

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197827A (en) * 1992-02-04 1993-03-30 Lee Yuan Ho Method for lowering a basement structure
CN201080609Y (zh) * 2007-06-20 2008-07-02 林启东 一种预应力混凝土管桩连接件
CN201221081Y (zh) * 2008-06-02 2009-04-15 华升建设集团有限公司 预应力混凝土管桩的连接结构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB486900A (en) * 1936-12-12 1938-06-13 British Steel Piling Co Ltd Improvements in or relating to the construction of a concrete pile, pier, or like column
CN1097828A (zh) * 1994-05-30 1995-01-25 北京市第三市政工程公司 地下预制钢管柱与灌注桩定位连接工艺及其设备
CN101148890A (zh) * 2007-11-08 2008-03-26 中交武汉港湾工程设计研究院有限公司 桥梁沉箱复合桩基础及其逆作建造方法
CN201176597Y (zh) * 2008-01-28 2009-01-07 丁慈鑫 一种沉井结构
CN101503879A (zh) * 2009-03-10 2009-08-12 中国第一冶金建设有限责任公司 防止沉井倾斜的预控方法
CN101509258A (zh) * 2009-03-10 2009-08-19 中国第一冶金建设有限责任公司 预先控制沉井下沉倾斜的方法
CN101565946A (zh) * 2009-04-24 2009-10-28 丁慈鑫 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN201390971Y (zh) * 2009-04-24 2010-01-27 丁慈鑫 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN101591915A (zh) * 2009-06-25 2009-12-02 丁慈鑫 用于支撑沉井结构的外支撑体系及其施工方法
CN201433398Y (zh) * 2009-06-25 2010-03-31 丁慈鑫 用于支撑沉井结构的外支撑体系

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088105A (zh) * 2016-07-29 2016-11-09 天津大学建筑设计研究院 一种装配式基坑支撑结构体系
CN109797763A (zh) * 2019-01-25 2019-05-24 中交二航局第四工程有限公司 一种水中沉井近邻锚桩定位方法及定位结构
CN112982465A (zh) * 2021-02-08 2021-06-18 广东耀南建设集团有限公司 一种多段沉降式沉井壁身施工方法
CN113235632A (zh) * 2021-04-14 2021-08-10 中铁二十四局集团有限公司 可自动实时纠偏的沉井下沉装置及施工方法
CN113235632B (zh) * 2021-04-14 2022-07-08 中铁二十四局集团有限公司 可自动实时纠偏的沉井下沉装置及施工方法

Also Published As

Publication number Publication date
CN101565946A (zh) 2009-10-28
CN101565946B (zh) 2010-12-29

Similar Documents

Publication Publication Date Title
WO2010121519A1 (zh) 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN105113389B (zh) 装配式钢‑混凝土组合结构桥墩柱构件
CN102162258B (zh) 一种塔吊钢管混凝土高桩塔基结构及构建方法
US11274412B2 (en) Reinforcement structures for tensionless concrete pier foundations and methods of constructing the same
CN205024712U (zh) 一种组合式塔吊基础
CN106120803A (zh) 承压水情况下基坑支护施工方法
CN102409697A (zh) 预制装配式塔桅结构基础
KR20110029454A (ko) 역타공법에 사용되는 기둥 하부 기초의 보강 구조
KR101086643B1 (ko) 다수개의 강선을 인장부의 전단면에 배치한 프리스트레스트콘크리트거더
CN210106749U (zh) 一种软土地基超大断面顶管顶进作业的反力结构
CN210439324U (zh) 一种格构式混凝土风电塔预制墩台板梁式基础
CN210288419U (zh) 一种用于大跨距逆作基坑的反立柱斜撑加固系统
CN114657977B (zh) 一种预应力混凝土管桩端部裂缝加固补强装置
US11293407B1 (en) Circular can-shape foundation and construction method for onshore wind turbines
CN202227362U (zh) 一种预制装配式塔桅结构基础
KR200263526Y1 (ko) 매달아 내려치고 되올려치는 콘크리트 구조물 구축장치
CN201390971Y (zh) 一种在沉井施工中用于支撑沉井结构的内支撑桩
CN210049264U (zh) 装配式基础
CN109989415B (zh) 装配式基础的施工方法
KR101131631B1 (ko) 다수개의 강선을 인장부의 전단면에 배치한 프리스트레스트콘크리트거더를 이용한 조립식교량시공방법
CN111441365A (zh) 一种装配式高支座反拉型钢斜撑机构、体系及施工方法
KR101131629B1 (ko) 다수개의 강선을 인장부의 전단면에 배치한 프리스트레스트콘크리트거더의 제작방법
CN221321046U (zh) 一种装配式墙板与拉森钢板桩组合式挡土墙结构
CN221095146U (zh) 一种基坑斜撑支护结构
CN218933149U (zh) 一种smw工法桩结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766609

Country of ref document: EP

Kind code of ref document: A1