WO2010121466A1 - 电池充电控制电路、充电器及电池充电控制方法 - Google Patents
电池充电控制电路、充电器及电池充电控制方法 Download PDFInfo
- Publication number
- WO2010121466A1 WO2010121466A1 PCT/CN2009/074608 CN2009074608W WO2010121466A1 WO 2010121466 A1 WO2010121466 A1 WO 2010121466A1 CN 2009074608 W CN2009074608 W CN 2009074608W WO 2010121466 A1 WO2010121466 A1 WO 2010121466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- voltage
- charging
- circuit
- control circuit
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0036—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
Definitions
- the present invention relates to the field of electronics, and in particular, to a battery charging control circuit, a charger, and a battery charging control method.
- the traditional charger uses the battery's power to start the charging circuit to directly charge the battery by an external power source.
- standby without battery access
- the battery is connected to the charger. When there is no external power supply, it will cause waste of power on the battery.
- the technical problem to be solved by the embodiments of the present invention is to provide a battery charging control circuit, a charger and a battery charging control method, which can realize the energy of the battery not being used as the starting energy source of the charging circuit of the charger, and eliminates the Start the unstable potential risk, protect the battery well; avoid electric leakage when the charger is in standby, thus ensuring personal safety; can avoid the waste of power on the battery when the battery is connected to the charger and there is no external power supply.
- the embodiment of the present invention adopts the following technical solutions:
- a battery charging control circuit includes:
- the first detecting module is configured to detect the external power source
- the second detecting module is configured to detect, when the first detecting module detects that the external power source has an input, whether the voltage of the battery exceeds a preset threshold, and if so, trigger charging of the battery.
- a charger includes a charging circuit for charging a battery, and further includes:
- the battery charging control circuit is configured to detect whether the voltage of the battery exceeds a preset threshold when detecting that the external power source has an input, and if so, trigger the charging circuit to charge the battery.
- a battery charging control method includes: External power supply for testing;
- the external power source When it is detected that the external power source has an input, it continues to detect whether the voltage of the battery exceeds a preset threshold, and if so, triggers charging of the battery.
- a battery charging control circuit including a first detecting module and a second detecting module, the first detecting module is configured to detect the external power source, and the second detecting module is configured to when the first detecting module detects the input of the external power source , detecting whether the voltage of the battery exceeds a preset threshold, and if so, triggering charging of the battery, the power of the battery can be used as the starting energy source of the charging circuit of the charger, eliminating the potential risk of unstable startup, and protecting well
- the battery can avoid electrical leakage when the charger is in standby, thus ensuring personal safety; it can avoid the waste of power on the battery when the battery is connected to the charger and there is no external power supply.
- FIG. 1 is a schematic view showing a specific embodiment of a battery charging control circuit of the present invention
- FIG. 2 is a schematic view of a specific embodiment of a charger of the present invention.
- Embodiments of the present invention provide a battery charging control circuit and a corresponding charger and battery charging control method, wherein the battery charging control circuit includes a first detecting module and a second detecting module, and the first detecting module is configured to detect an external power source.
- the second detecting module is configured to detect whether the voltage of the battery exceeds a preset threshold when the first detecting module detects that the external power source has an input, and if so, trigger charging the battery, so that the battery can be charged as the power of the battery.
- the starting energy source of the circuit eliminates the potential risk of unstable startup and protects the battery well; it can avoid electrical leakage when the charger is in standby, thus ensuring personal safety; it can prevent the battery from being connected to the charger and without external power supply. Waste of electrical energy on the battery.
- the battery charging control circuit mainly includes:
- the first detecting module is configured to detect the external power supply.
- the first detecting module is a first photocoupler 0C3 including a first diode and a first triode.
- an external power source has an input
- a current flows through the first diode, so that the first triode is turned on, wherein the external power source is an AC power source;
- a second detecting module configured to: when the first detecting module detects that the external power source has an input, detect whether the voltage of the battery exceeds a preset threshold, and if so, trigger charging the battery, specifically, the second detecting module includes the battery connection The terminal VB+, the battery connection negative terminal VB-, and the voltage dividing component, the voltage dividing component includes a first Zener diode D13, a second Zener diode D21, and a second photoelectric coupling including a second diode and a second transistor OC2, the battery connection positive terminal VB+ is sequentially connected to the battery connection negative terminal VB- through the first triode, the voltage dividing component, and the second diode, when the first triode is turned on, and the battery is connected to the positive terminal VB+ and When the battery voltage between the battery connected negative terminal VB- exceeds the voltage on the voltage dividing component corresponding to the threshold value, the first Zener diode D13 and the second Zener diode D21 are turned on, and a current
- the battery charging control circuit may further include other components, such as the third transistor D18, one end of which is connected to the third end of the first photocoupler OC3, and the two ends of which are connected to the one end of the first Zener diode D13.
- the 3 terminals are connected to the battery connection positive terminal VB+, and the 2 terminals of the second diode are sequentially connected to the battery connection negative terminal VB- through the resistor R27, the resistor R62, and the third diode ZP, and the 4 ends of the second transistor It is connected to the three ends of the second transistor through the third Zener diode D6.
- the battery may be a lithium battery, a nickel cadmium battery, a nickel hydride battery or a lead storage battery.
- the threshold is 14 volts.
- the voltage dividing element may be another voltage regulating tube connected between the three ends of the first photocoupler OC3 and the one end of the second photocoupler OC2.
- the charger mainly includes a charging circuit for charging a battery, and a battery charging control circuit, when detecting an input of an external power source, Detecting whether the voltage of the battery exceeds a preset threshold, and if so, triggering the charging circuit to charge the battery, wherein the charging circuit may specifically include:
- the external power input uses the L terminal and the N terminal, and the AC input filtering and rectifying circuit reduces the conducted noise voltage from the AC85V ⁇ 265V/50Hz/60Hz AC grid, and also causes the charger power conversion work.
- the conduction noise is reduced, and the external power supply after the filter component passes through, that is, after the input AC voltage passes through the D1 rectifier bridge, the ripple DC voltage becomes a primary DC power supply voltage after the smoothing of the C4 electrolytic capacitor filter;
- a power conversion circuit for converting the primary DC power supply voltage into a secondary DC power supply current to charge the battery specifically, the power conversion circuit converts the primary DC power supply voltage into an isolated connection with the AC power grid (external power supply)
- the secondary DC supply current charges the battery, wherein the switch tube Q1 operates at a switching frequency greater than a certain value (the value can be taken from 30KHz to 133KHz), and the current flows through the transformer during the time when the switch tube Q1 is turned on.
- the coil between the 4th and 6th ends of the T1 and the work generating magnetic field energy induces the induced pulse current on the coil between the 9th, 7th and 8th terminals of the transformer T1, and outputs the DC energy after the rectifier D2.
- the control circuit (such as the subsequent output voltage regulation control circuit, etc.) will cause the output of the stored energy DC voltage to follow the load battery The voltage changes to keep the output current constant at the required size point.
- the smaller part of the energy generated by the power conversion circuit during the power conversion process forms a secondary auxiliary power supply AUX required for the secondary regulated power supply circuit on the capacitor C13 through the rectifier D11;
- a primary auxiliary regulated power supply circuit for supplying a part of the electric energy of the electric energy conversion circuit to the control chip. Specifically, in the process of converting electric energy by the electric energy conversion circuit, a small portion of energy is also passed through the rectifier D12 and the resistor. After R49, a primary auxiliary regulated power supply is formed on the capacitor C3 to supply power to the control chip U4;
- An output voltage stabilization control circuit for adjusting the control chip to perform voltage regulation control on the charged output voltage, specifically, an output voltage of the output voltage stabilization control circuit sampling capacitor C7 and the voltage regulation adjustment reference chip D20 After comparing the voltages on the upper side, the output impedance of the photocoupler OC1 is controlled to adjust the on-time of the output driving pulse of the control chip U4, so that the output voltage of the charging is negatively adjusted by the average value of the rated output voltage. Therefore, the maximum value of the output voltage of the charging is within a prescribed range, and the maximum value can be set to be about 42V;
- An output current constant current control circuit for adjusting the control chip by the output voltage stabilization control circuit to perform constant current control on the charged output current specifically, the resistor R43, R42, R37 sampling current measuring power resistor R34 (0.1R/3W)
- the negative potential value and positive potential value of the grounding terminal are compared at the 5th and 6th terminals of the comparator U1-B, and the DC output is outputted by the 7th terminal of the comparator U1-B.
- the control voltage sequentially passes through the resistor R2 and the diode D7, and then pulls the RESET signal terminal of the voltage regulation adjustment chip D20 to perform negative feedback adjustment of the output current of the charging, and the sampling voltage dividing circuit composed of the resistors R43, R42 and R37, on the R37
- the voltage dividing ratio determines the constant value of the current output.
- the other 2 and 3 terminals of the comparator U1-A detect whether the output battery voltage is out of range. If it is exceeded, the diode U24/resistor R44 is used to change the 5-terminal reference of the comparator U1-B. The voltage value is adjusted by the reference value to cause the constant current value to jump;
- a charging completion determination and a state display driving circuit for detecting a voltage of the battery to determine whether charging is completed and performing a corresponding state display
- the three terminals of the comparator U2-A are sample-charged through the resistors R29, R24, and R21.
- the output current or the charged output voltage If the output current of the charge is less than the set value (the voltage to the ground on the resistor R46), the 1-pole of the comparator U2-A outputs a high impedance, and the green light of the LED is GREEN. Lights up, and turns off the red light RED, indicating that the charge state transition is completed, and the charging is over.
- the one end of the comparator U2-A If the output current of the charge is greater than the set value (the ground voltage on the resistor R46), the one end of the comparator U2-A outputs a low impedance.
- the red light RED will light up, indicating the high current charging state; the resistors R13 and R51 on the 5th end of the comparator U2-B can detect the charging output current of the charger by sampling the voltage difference across the resistor R34.
- the 7-terminal output of the comparator U2-B outputs a high impedance, The output is low impedance.
- the grounding capacitor C10 When the output is high impedance, the grounding capacitor C10 is charged by the pull-up resistor R53. When the potential is higher than the turn-on voltage of the FET Q5, the FET Q5 is turned on, and the potential of the terminal of the switching transistor Q3 is pulled. The ground potential causes the D pole and the S pole of the switching transistor Q3 to be non-conducting, thereby turning off the charging output current;
- the battery will be pre-charged for a period of time. This time is the charging delay time on the grounding capacitor C10. During this delay time, the charging current of the battery It will also be detected by the detection module. As with the normal charging process of the battery, the detection result will be sent to the comparator U2-B for comparison and judgment. When the 7-terminal output of the comparator U2-B outputs high impedance, the grounding capacitor C10 is pulled up.
- Resistor R53 charging delay when the potential on the capacitor C10 is higher than the turn-on voltage of the FET Q5, the FET Q5 is turned on, and the potential of the terminal of the switch Q3 is pulled to the ground potential to make the D pole of the switch Q3 S pole is not conducting, thereby turning off the charging output current; if the result of the detection is such that the 7-terminal output of the comparator U2-B outputs a low impedance, the switching tube Q3 will continue to conduct, allowing the charger to enter a continuous state of charge.
- the battery charging control circuit mainly includes:
- the first detecting module is configured to detect the external power supply.
- the first detecting module is a first photocoupler OC3 including a first diode and a first triode.
- an external power source When an external power source has an input, When there is a voltage input at the terminals 1 and 2 of OC3, a current flows through the first diode, so that the first triode is turned on, and the external power source is an alternating current power source;
- a second detecting module configured to: when the first detecting module detects that the external power source has an input, detect whether the voltage of the battery exceeds a preset threshold, and if so, trigger charging the battery, specifically, the second detecting module includes the battery connection The terminal VB+, the battery connection negative terminal VB-, and the voltage dividing component, the voltage dividing component includes a first Zener diode D13, a second Zener diode D21, and a second photoelectric coupling including a second diode and a second transistor OC2, the battery connection positive terminal VB+ is sequentially connected to the battery connection negative terminal VB- through the first triode, the voltage dividing component, and the second diode, when the first triode is turned on, and the battery is connected to the positive terminal VB+ and When the battery voltage between the battery connected negative terminal VB- exceeds the voltage on the voltage dividing component corresponding to the threshold value, the first Zener diode D13 and the second Zener diode D21 are turned on, and a current
- the second triode is turned on, and the second triodes 3 and 4 end release an activation signal for charging the battery, and the activation signal can finally act on the control core for controlling the charging of the battery.
- the base voltage of the switch Q10 can be pulled to less than 0.15V, so that the C and E poles of the switch Q10 are non-conducting and the 6-terminal voltage of the control chip U4 is released, so that it can be freely charged and raised to a suitable level. Level, so that the control chip U4 starts to start and works;
- the battery charging control circuit may further include other components, such as the third transistor D18, one end of which is connected to the third end of the first photocoupler OC3, and the two ends of which are connected to the one end of the first Zener diode D13.
- the 3 terminals are connected to the battery connection positive terminal VB+, and the 2 terminals of the second diode are sequentially connected to the battery connection negative terminal VB- through the resistor R27, the resistor R62, and the third diode ZP, and the 4 ends of the second transistor It is connected to the three ends of the second transistor through the third Zener diode D6.
- the battery is a lithium battery, a nickel cadmium battery, a nickel hydride battery, or a lead storage battery.
- the threshold is 14 volts.
- an embodiment of the present invention further provides a battery charging control method, which mainly includes: The detection is performed on the external power supply. Specifically, the detection may be performed by using the foregoing first detection module, and details are not described herein.
- the external power source When it is detected that the external power source has an input, it continues to detect whether the voltage of the battery exceeds a preset threshold, and if so, triggers charging of the battery, specifically, may be detected by the second detecting module, where not Let me repeat.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
电池充电控制电路、 充电器及电池充电控制方法
技术领域
本发明涉及电子领域, 尤其涉及一种电池充电控制电路、 充电器及电池 充电控制方法。
背景技术
传统的充电器通过电池的电能启动充电电路直接以外接电源对电池进行 充电, 而待机 (无电池接入) 时, 很有可能由于电泄露造成人身触电危险, 另一方面电池连接于充电器且无外接电源时, 会造成电池上电能的浪费。
发明内容
本发明实施例所要解决的技术问题在于, 提供一种电池充电控制电路、 一种充电器及一种电池充电控制方法, 可以实现不以电池的电能作为充电器 充电电路的启动能量源, 消除了启动不稳定的潜在风险, 很好地保护了电池; 可以在充电器待机时避免电泄露, 从而保证人身安全; 可以避免电池连接于 充电器且无外接电源时造成电池上电能的浪费。
为解决上述技术问题, 本发明实施例采用如下技术方案:
一种电池充电控制电路, 包括:
第一检测模块, 用于对外接电源进行检测;
第二检测模块,用于当所述第一检测模块检测到所述外接电源有输入时, 检测电池的电压是否超过预设定阈值, 若是, 触发对所述电池进行充电。
一种充电器, 包括用于对电池进行充电的充电电路, 还包括:
电池充电控制电路, 用于当检测到外接电源有输入时, 检测电池的电压 是否超过预设定阈值, 若是, 触发所述充电电路对所述电池进行充电。
一种电池充电控制方法, 包括:
对外接电源进行检测;
当检测到所述外接电源有输入时, 继续检测电池的电压是否超过预设定 阈值, 若是, 触发对所述电池进行充电。
本发明实施例的有益效果是:
通过提供一种电池充电控制电路, 包括第一检测模块和第二检测模块, 第一检测模块用于对外接电源进行检测, 第二检测模块用于当第一检测模块 检测到外接电源有输入时, 检测电池的电压是否超过预设定阈值, 若是则触 发对电池进行充电, 可以实现不以电池的电能作为充电器充电电路的启动能 量源, 消除了启动不稳定的潜在风险, 很好地保护了电池; 可以在充电器待 机时避免电泄露, 从而保证人身安全; 可以避免电池连接于充电器且无外接 电源时造成电池上电能的浪费。
下面结合附图对本发明实施例作进一步的详细描述。
附图说明
图 1是本发明的电池充电控制电路的具体实施例示意图;
图 2是本发明的充电器的具体实施例示意图。
具体实施方式
本发明实施例提供了一种电池充电控制电路以及对应的充电器和电池充 电控制方法, 其中电池充电控制电路包括第一检测模块和第二检测模块, 第 一检测模块用于对外接电源进行检测, 第二检测模块用于当第一检测模块检 测到外接电源有输入时, 检测电池的电压是否超过预设定阈值, 若是则触发 对电池进行充电, 可以实现不以电池的电能作为充电器充电电路的启动能量 源, 消除了启动不稳定的潜在风险, 很好地保护了电池; 可以在充电器待机 时避免电泄露, 从而保证人身安全; 可以避免电池连接于充电器且无外接电 源时造成电池上电能的浪费。
图 1是本发明的电池充电控制电路的具体实施例示意图, 参照该图, 该 电池充电控制电路主要包括:
第一检测模块, 用于对外接电源进行检测, 具体地, 该第一检测模块为 包括第一二极管、第一三极管的第一光电耦合器 0C3 , 当外接电源有输入时, 即在 0C3的 1、 2端有电压输入时, 第一二极管上有电流流过, 从而使第一 三极管导通, 其中外接电源为交流电源;
第二检测模块, 用于当第一检测模块检测到外接电源有输入时, 检测电 池的电压是否超过预设定阈值, 若是, 触发对电池进行充电, 具体地, 第二 检测模块包括电池连接正端子 VB+、 电池连接负端子 VB -、 分压元件, 分压 元件包括第一稳压管 D13、 第二稳压管 D21, 以及包括第二二极管、 第二三 极管的第二光电耦合器 OC2, 电池连接正端子 VB+依次通过第一三极管、 分 压元件、 第二二极管与电池连接负端子 VB-相连, 当第一三极管导通, 且电 池连接正端子 VB+与电池连接负端子 VB-之间的电池电压超过阈值对应的分 压元件上的电压时, 第一稳压管 D13、 第二稳压管 D21导通, 第二二极管上 有电流流过, 从而使第二三极管导通, 第二三极管 3、 4端释放用于对电池进 行充电的启动信号, 该启动信号可以最终作用于控制对电池进行充电的控制 芯片上;
当然, 该电池充电控制电路还可以包括其他元件, 如第三三极管 D18 , 其 1端与在第一光电耦合器 OC3的 3端相连、 2端与第一稳压管 D13的 1端 相连、 3端与电池连接正端子 VB+相连,第二二极管的 2端依次通过电阻 R27、 电阻 R62、第三二极管 ZP与电池连接负端子 VB-相连, 第二三极管的 4端通 过第三稳压管 D6与第二三极管的 3端相连。
作为一种实施方式, 上述电池可以是锂电池、 镍镉电池、 镍氢电池或铅 蓄电池。
作为一种实施方式, 当上述电池为锂电池时, 阈值为 14伏。
另外, 上述分压元件还可以是连接于所述第一光电耦合器 OC3的 3端、 所述第二光电耦合器 OC2的 1端之间的另一稳压管。
图 2是本发明的充电器的具体实施例示意图, 参照该图, 该充电器主要 包括用于对电池进行充电的充电电路, 以及电池充电控制电路, 用于当检测 到外接电源有输入时, 检测电池的电压是否超过预设定阈值, 若是, 触发所 述充电电路对所述电池进行充电, 其中充电电路可具体包括:
用于将所述外接电源变换成初级直流供电电压的交流输入滤波及整流电
路, 具体地, 外接电源输入采用 L端与 N端, 而交流输入滤波及整流电路将 来自 AC85V~265V/50Hz/60Hz交流电网的传导噪声电压予以削减, 同时, 也 将充电器电能变换工作引起的传导噪声予以削减, 经过其中的滤波器件后的 外接电源, 即输入交流电压经过 D1整流桥后, 变成紋波直流电压在 C4电解 电容滤波平滑后上形成初级直流供电电压;
用于将所述初级直流供电电压变换成次级直流供电电流对所述电池进行 充电的电能变换电路, 具体地, 电能变换电路将初级直流供电电压, 变换成 与交流电网 (外接电源) 绝缘隔离的次级直流供电电流给电池充电, 其中的 开关管 Q1 以大于某个值 (该值可从 30KHz~133KHz中取值) 的开关频率工 作, 电流在开关管 Q1导通的时间内流过变压器 T1的 4〜6端之间的线圈, 并做功产生磁场能量以感应的方式在变压器 T1次级的 9〜7、 8端之间的线圈 上产生感应脉冲电流,经过整流管 D2后输出直流电能量,并在输出电解电容 C7、 C22上形成储能直流电压(对应次级直流供电电流), 控制电路(如后续 的输出稳压控制电路等) 会使到输出的储能直流电压大小跟随负载电池电压 变动, 以保持输出电流恒定在要求的大小点上。 电能变换电路在电能变换过 程中产生的较小的一部分能量通过整流管 D11在电容 C13上形成次级稳压供 电电路所需要的次级辅助供电电源 AUX;
用于进行充电控制的控制芯片 U4;
用于将所述电能变换电路的一部分电能供给所述控制芯片的初级辅助稳 压电源电路, 具体地, 在电能变换电路进行电能变换的过程中, 同样会有一 小部分能量经过整流管 D12和电阻 R49后在电容 C3上形成初级辅助稳压电 源给控制芯片 U4供电;
用于对所述控制芯片进行调整, 以对充电的输出电压进行稳压控制的输 出稳压控制电路,具体地, 输出稳压控制电路采样电容 C7上的输出电压来和 稳压调整基准芯片 D20上的电压进行比较后,控制光电耦合器 OC1的输出阻 抗大小,从而调整控制芯片 U4的输出驱动脉冲的导通时间大小,使得充电的 输出电压得到额定输出电压值为平均值的负反馈调整, 从而使得充电的输出 电压的最大值在规定的范围内, 可设定最大值在 42V左右;
用于通过所述输出稳压控制电路对所述控制芯片进行调整, 以对充电的 输出电流进行恒流控制的输出电流恒流控制电路, 具体地, 可利用电阻 R43、
R42、 R37采样测流功率电阻 R34 ( 0.1R/3W) 接地端的负电位值和正电位值 在比较器 U1-B的 5、 6端进行信号比较, 并由比较器 U1-B的 7端输出直流 控制电压依次经过电阻 R2、 二极管 D7 后拉动稳压调整基准芯片 D20 的 RESET信号端电平进行充电的输出电流的负反馈调节, 电阻 R43、 R42、 R37 构成的采样分压电路中, R37 上的分压比决定电流输出恒定值的大小, 另一 个比较器 U1-A的 2、 3端检测输出电池电压是否超出范围, 如果超出则利用 二极管 D24/电阻 R44改变比较器 U1-B的 5端基准电压值, 实现以基准值调 节而使得恒流电流值跳变;
用于对所述电池的电压进行检测以判定是否完成充电并进行对应状态显 示的充电完成判定及状态显示驱动电路, 具体地, 比较器 U2-A的 3端通过 电阻 R29、 R24、 R21采样充电的输出电流或充电的输出电压, 如果充电的输 出电流小于设定值(电阻 R46上的对地电压), 则比较器 U2-A的 1端输出高 阻抗, 此时 LED灯的绿灯片 GREEN被点亮, 同时关闭红灯片 RED, 表示完 成充电状态转换, 充电结束, 如果充电的输出电流大于设定值 (电阻 R46上 的对地电压), 则比较器 U2-A的 1端输出低阻抗, 红灯片 RED会点亮, 表 示大电流充电状态; 比较器 U2-B的 5端上的电阻 R13、 R51能通过电阻 R34 两端电压差以采样方式检测到充电器的充电的输出电流是否小于设定值, 如 果比较器 U2-B的 5端电压低于设定值(电阻 R52上的对地电压), 则比较器 U2-B的 7端输出高阻抗, 反则输出低阻抗, 当输出高阻抗时, 接地电容 C10 被上拉电阻 R53充电, 当其电位高于场效应管 Q5的开通电压时, 场效应管 Q5导通, 将开关管 Q3的 1端电位拉到地电位使开关管 Q3的 D极与 S极不 导通, 从而关闭充电的输出电流;
不论是在开机后插入电池, 还是电池充完电后的再次插入电池, 电池都 会被预先充电一段时间, 这个时间就是接地电容 C10上的充电延时时间, 在 这段延时时间内, 电池的充电电流会同样被检测模块检测到, 同电池正常充 电过程一样, 检测的结果会送到比较器 U2-B进行比较判断, 当比较器 U2-B 的 7端输出高阻抗时, 接地电容 C10被上拉电阻 R53充电延时, 当电容 C10 上的电位高于场效应管 Q5的开通电压时, 场效应管 Q5导通, 将开关管 Q3 的 1端电位拉到地电位使开关管 Q3的 D极与 S极不导通, 从而关闭充电的 输出电流;如果检测的结果是使得比较器 U2-B的 7端输出低阻抗时,开关管
Q3将持续导通, 使充电器进入持续充电状态。
用于将所述电能变换电路的另一部分电能供给所述输出电流恒流控制电 路和所述充电完成判定及状态显示驱动电路的所述次级稳压供电电路;
而该电池充电控制电路主要包括:
第一检测模块, 用于对外接电源进行检测, 具体地, 该第一检测模块为 包括第一二极管、第一三极管的第一光电耦合器 OC3 , 当外接电源有输入时, 即在 OC3的 1、 2端有电压输入时, 第一二极管上有电流流过, 从而使第一 三极管导通, 其中外接电源为交流电源;
第二检测模块, 用于当第一检测模块检测到外接电源有输入时, 检测电 池的电压是否超过预设定阈值, 若是, 触发对电池进行充电, 具体地, 第二 检测模块包括电池连接正端子 VB+、 电池连接负端子 VB -、 分压元件, 分压 元件包括第一稳压管 D13、 第二稳压管 D21, 以及包括第二二极管、 第二三 极管的第二光电耦合器 OC2, 电池连接正端子 VB+依次通过第一三极管、 分 压元件、 第二二极管与电池连接负端子 VB-相连, 当第一三极管导通, 且电 池连接正端子 VB+与电池连接负端子 VB-之间的电池电压超过阈值对应的分 压元件上的电压时, 第一稳压管 D13、 第二稳压管 D21导通, 第二二极管上 有电流流过, 从而使第二三极管导通, 第二三极管 3、 4端释放用于对电池进 行充电的启动信号, 该启动信号可以最终作用于控制对电池进行充电的控制 芯片上, 具体可将开关管 Q10的基极电压拉成小于 0.15V, 从而开关管 Q10 的 C极与 E极不导通而释放控制芯片 U4的 6端电压, 令其可以被自由充电 上升到合适电平, 从而使控制芯片 U4开始启动并工作;
当然, 该电池充电控制电路还可以包括其他元件, 如第三三极管 D18, 其 1端与在第一光电耦合器 OC3的 3端相连、 2端与第一稳压管 D13的 1端 相连、 3端与电池连接正端子 VB+相连,第二二极管的 2端依次通过电阻 R27、 电阻 R62、第三二极管 ZP与电池连接负端子 VB-相连, 第二三极管的 4端通 过第三稳压管 D6与第二三极管的 3端相连。
作为一种实施方式, 所述电池为锂电池、 镍镉电池、 镍氢电池或铅蓄电 池。
作为一种实施方式, 当所述电池为锂电池时, 所述阈值为 14伏。
相应的, 本发明实施例还提供了一种电池充电控制方法, 主要包括:
对外接电源进行检测, 具体地, 可通过上述第一检测模块进行检测, 此 处不再赘述;
当检测到所述外接电源有输入时, 继续检测电池的电压是否超过预设定 阈值, 若是, 触发对所述电池进行充电, 具体地, 可通过上述第二检测模块 进行检测, 此处亦不再赘述。
以上所述是本发明的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也视为本发明的保护范围。
Claims
1、 一种电池充电控制电路, 其特征在于, 包括:
第一检测模块, 用于对外接电源进行检测;
第二检测模块,用于当所述第一检测模块检测到所述外接电源有输入时, 检测电池的电压是否超过预设定阈值, 若是, 触发对所述电池进行充电。
2、 如权利要求 1所述的电池充电控制电路, 其特征在于, 所述第一检测 模块为包括第一二极管、 第一三极管的第一光电耦合器, 当所述外接电源有 输入时, 所述第一二极管上有电流流过, 从而使所述第一三极管导通,
所述第二检测模块包括:
电池连接正端子、 电池连接负端子、 分压元件, 以及包括第二二极管、 第二三极管的第二光电耦合器, 所述电池连接正端子依次通过所述第一三极 管、 分压元件、 第二二极管与所述电池连接负端子相连, 当所述第一三极管 导通, 且所述电池连接正端子与所述电池连接负端子之间的所述电池的电压 超过所述阈值对应的所述分压元件上的电压时, 所述第二二极管上有电流流 过, 从而使所述第二三极管导通, 所述第二三极管释放用于对所述电池进行 充电的启动信号。
3、 如权利要求 2所述的电池充电控制电路, 其特征在于, 所述分压元件 为串联的第一稳压管、 第二稳压管。
4、 如权利要求 1至 3中任一项所述的电池充电控制电路, 其特征在于, 所述电池为锂电池、 镍镉电池、 镍氢电池或铅蓄电池。
5、 如权利要求 4所述的电池充电控制电路, 其特征在于, 当所述电池为 锂电池时, 所述阈值为 14伏。
6、 一种充电器, 包括用于对电池进行充电的充电电路, 其特征在于, 还 包括:
电池充电控制电路, 用于当检测到外接电源有输入时, 检测电池的电压 是否超过预设定阈值, 若是, 触发所述充电电路对所述电池进行充电。
7、 如权利要求 6所述的充电器, 其特征在于, 所述充电电路包括: 用于将所述外接电源变换成初级直流供电电压的交流输入滤波及整流电 路;
用于将所述初级直流供电电压变换成次级直流供电电流对所述电池进行 充电的电能变换电路;
用于进行充电控制的控制芯片;
用于将所述电能变换电路的一部分电能供给所述控制芯片的初级辅助稳 压电源电路;
用于对所述控制芯片进行调整, 以对充电的输出电压进行稳压控制的输 出稳压控制电路;
用于通过所述输出稳压控制电路对所述控制芯片进行调整, 以对充电的 输出电流进行恒流控制的输出电流恒流控制电路;
用于对所述电池的电压进行检测以判定是否完成充电并进行对应状态显 示的充电完成判定及状态显示驱动电路;
用于将所述电能变换电路的另一部分电能供给所述输出电流恒流控制电 路和所述充电完成判定及状态显示驱动电路的所述次级稳压供电电路。
8、 如权利要求 6或 7所述的充电器, 其特征在于, 所述电池为锂电池、 镍镉电池、 镍氢电池或铅蓄电池。
9、 如权利要求 8所述的充电器, 其特征在于, 当所述电池为锂电池时, 所述阈值为 14伏。
10、 一种电池充电控制方法, 其特征在于, 包括:
对外接电源进行检测;
当检测到所述外接电源有输入时, 继续检测电池的电压是否超过预设定 阈值, 若是, 触发对所述电池进行充电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101068496A CN101604861B (zh) | 2009-04-22 | 2009-04-22 | 电池充电控制电路及充电器 |
CN200910106849.6 | 2009-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010121466A1 true WO2010121466A1 (zh) | 2010-10-28 |
Family
ID=41470458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/074608 WO2010121466A1 (zh) | 2009-04-22 | 2009-10-26 | 电池充电控制电路、充电器及电池充电控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101604861B (zh) |
WO (1) | WO2010121466A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106301309A (zh) * | 2016-07-18 | 2017-01-04 | 厦门优迅高速芯片有限公司 | 一种可准确设定迟滞电压的上电启动复位电路 |
CN107294379A (zh) * | 2017-08-12 | 2017-10-24 | 厦门奇力微电子有限公司 | 高压差交流输入的线性稳压电路和方法 |
CN109240476A (zh) * | 2018-09-18 | 2019-01-18 | 合肥联宝信息技术有限公司 | 一种电池供电的方法、电路及电子设备 |
CN110943720A (zh) * | 2018-09-21 | 2020-03-31 | 凌宇科技(北京)有限公司 | 一种设备的自动关机电路及设备 |
CN111146847A (zh) * | 2020-02-24 | 2020-05-12 | 上海派能能源科技股份有限公司 | 一种锂电池管理系统的充放电保护电路和锂电池管理系统 |
CN111404238A (zh) * | 2020-04-28 | 2020-07-10 | 上海电力大学 | 一种锂电池组充电装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102730800B (zh) * | 2011-04-12 | 2014-05-21 | 中国科学院长春应用化学研究所 | 一种利用间歇性能源电解水的方法及装置 |
CN103368210A (zh) * | 2012-03-27 | 2013-10-23 | 国基电子(上海)有限公司 | 移动设备及其充电方法 |
CN104218645A (zh) * | 2014-09-12 | 2014-12-17 | 苏州克兰兹电子科技有限公司 | 一种锂电池充电器 |
CN104553849B (zh) * | 2014-12-03 | 2017-01-11 | 安徽贵博新能科技有限公司 | 电动汽车直流充电安全监测装置 |
CN109792156A (zh) * | 2016-11-26 | 2019-05-21 | 华为技术有限公司 | 一种充电链路的情况的实时监测的方法和设备 |
CN107942260A (zh) * | 2017-12-11 | 2018-04-20 | 上海木爷机器人技术有限公司 | 一种电池充放电测试的控制方法及系统 |
CN107889330A (zh) * | 2017-12-14 | 2018-04-06 | 宁波绿光能源科技有限公司 | 一种一体化太阳能路灯自激电路 |
EP3722824B1 (en) | 2018-09-30 | 2022-03-09 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Test system and method for charging apparatus |
CN114069739A (zh) * | 2020-07-31 | 2022-02-18 | 华为技术有限公司 | 稳压输出的方法和无线充电接收装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1808336A (zh) * | 2005-01-20 | 2006-07-26 | 英业达股份有限公司 | 充电管理方法及系统 |
CN101436830A (zh) * | 2007-11-15 | 2009-05-20 | 鸿富锦精密工业(深圳)有限公司 | 电源装置及其保护方法 |
CN101540514A (zh) * | 2009-04-22 | 2009-09-23 | 杨文锋 | 电池充电控制电路、充电器及电池充电控制方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2527018Y (zh) * | 2002-02-26 | 2002-12-18 | 郑少民 | 手机专用同步双充充电器 |
JP3983681B2 (ja) * | 2003-01-14 | 2007-09-26 | 株式会社マキタ | 充電装置 |
CN1516320A (zh) * | 2003-08-27 | 2004-07-28 | 惠州Tcl金能电池有限公司 | 一种充电器 |
CN2907031Y (zh) * | 2005-05-27 | 2007-05-30 | 佛山市顺德区顺达电脑厂有限公司 | 电池充电控制电路 |
-
2009
- 2009-04-22 CN CN2009101068496A patent/CN101604861B/zh not_active Expired - Fee Related
- 2009-10-26 WO PCT/CN2009/074608 patent/WO2010121466A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1808336A (zh) * | 2005-01-20 | 2006-07-26 | 英业达股份有限公司 | 充电管理方法及系统 |
CN101436830A (zh) * | 2007-11-15 | 2009-05-20 | 鸿富锦精密工业(深圳)有限公司 | 电源装置及其保护方法 |
CN101540514A (zh) * | 2009-04-22 | 2009-09-23 | 杨文锋 | 电池充电控制电路、充电器及电池充电控制方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106301309A (zh) * | 2016-07-18 | 2017-01-04 | 厦门优迅高速芯片有限公司 | 一种可准确设定迟滞电压的上电启动复位电路 |
CN106301309B (zh) * | 2016-07-18 | 2023-08-01 | 厦门优迅高速芯片有限公司 | 一种可准确设定迟滞电压的上电启动复位电路 |
CN107294379A (zh) * | 2017-08-12 | 2017-10-24 | 厦门奇力微电子有限公司 | 高压差交流输入的线性稳压电路和方法 |
CN107294379B (zh) * | 2017-08-12 | 2023-07-28 | 厦门奇力微电子有限公司 | 高压差交流输入的线性稳压电路和方法 |
CN109240476A (zh) * | 2018-09-18 | 2019-01-18 | 合肥联宝信息技术有限公司 | 一种电池供电的方法、电路及电子设备 |
CN109240476B (zh) * | 2018-09-18 | 2024-04-19 | 合肥联宝信息技术有限公司 | 一种电池供电的方法、电路及电子设备 |
CN110943720A (zh) * | 2018-09-21 | 2020-03-31 | 凌宇科技(北京)有限公司 | 一种设备的自动关机电路及设备 |
CN110943720B (zh) * | 2018-09-21 | 2024-01-26 | 凌宇科技(北京)有限公司 | 一种设备的自动关机电路及设备 |
CN111146847A (zh) * | 2020-02-24 | 2020-05-12 | 上海派能能源科技股份有限公司 | 一种锂电池管理系统的充放电保护电路和锂电池管理系统 |
CN111404238A (zh) * | 2020-04-28 | 2020-07-10 | 上海电力大学 | 一种锂电池组充电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101604861A (zh) | 2009-12-16 |
CN101604861B (zh) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010121466A1 (zh) | 电池充电控制电路、充电器及电池充电控制方法 | |
US9124184B2 (en) | DC/DC converter | |
TWI345869B (en) | Synchronous rectifying controller and a forward synchronous rectifying circuit | |
US20130188401A1 (en) | Capacitor discharging circuit and converter | |
CN112510652B (zh) | 电池充电电路、充电设备和电子设备 | |
TWM423346U (en) | Charging device | |
US7602151B2 (en) | Charger with output voltage compensation | |
JP2010124572A (ja) | スイッチング電源装置 | |
CN101540514B (zh) | 电池充电控制电路及充电器 | |
TWI414126B (zh) | 充電裝置 | |
JP6505382B2 (ja) | 昇圧型直流の電気エネルギー出力制御回路装置 | |
WO2020010969A1 (zh) | 整流电路、无线充电装置、电源提供设备及无线充电系统 | |
JP2009017648A (ja) | 充電装置 | |
KR100820308B1 (ko) | 배터리 충전 장치 | |
CN216290693U (zh) | 转换装置及控制器 | |
JP2009142061A (ja) | Dc−dcコンバータ装置 | |
CN103618530B (zh) | 功率半导体开关驱动电路的自供电电路及方法 | |
CN203691365U (zh) | 功率半导体开关驱动电路的自供电电路 | |
WO2021203870A1 (zh) | 一种充电装置及其控制方法、充电系统 | |
CN214822642U (zh) | 电动摩托车充电转换器 | |
US11349325B2 (en) | Temperature dependent current and pulse controlled charging method for a battery charger | |
CN113726175A (zh) | 转换装置、控制器及其供电控制方法 | |
CN210273531U (zh) | 充电电路、充电设备及终端 | |
KR101501854B1 (ko) | 동기 정류기의 구동 장치 | |
CN106787664A (zh) | 软起动电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09843570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.03.2012) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09843570 Country of ref document: EP Kind code of ref document: A1 |