WO2010121450A1 - 叶片式连续旋转缸 - Google Patents

叶片式连续旋转缸 Download PDF

Info

Publication number
WO2010121450A1
WO2010121450A1 PCT/CN2009/072971 CN2009072971W WO2010121450A1 WO 2010121450 A1 WO2010121450 A1 WO 2010121450A1 CN 2009072971 W CN2009072971 W CN 2009072971W WO 2010121450 A1 WO2010121450 A1 WO 2010121450A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
angle
rotor
blade
annular chamber
Prior art date
Application number
PCT/CN2009/072971
Other languages
English (en)
French (fr)
Inventor
周华
Original Assignee
Zhou Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhou Hua filed Critical Zhou Hua
Publication of WO2010121450A1 publication Critical patent/WO2010121450A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/40Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member
    • F04C2/44Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C9/00Oscillating-piston machines or pumps
    • F04C9/002Oscillating-piston machines or pumps the piston oscillating around a fixed axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present invention relates to a piston cylinder.
  • crankshaft connecting rod piston mechanisms turbine mechanisms and vane motor mechanisms that are positive (reverse) to the mechanism for converting fluid pressure energy and mechanical energy in a continuous circular rotation motion.
  • the main shortcomings are non-uniform speed, non-equal torque, non-continuous power output, inertial impact, dead point, leading to multi-level misalignment of related machines, large vibration, high noise, low efficiency,
  • the work frequency is low, the structure is complicated, and the processing is difficult.
  • Turbine mechanism which is characterized by the conversion process of fluid kinetic energy in the middle of the positive (reverse) direction conversion process of fluid pressure energy and mechanical energy.
  • the main disadvantages are large conversion loss, low efficiency, large volume and high material requirements. , high processing difficulty and low life.
  • the blade motor mechanism is characterized by eccentric rotation.
  • the main disadvantages are non-equal speed, non-equal torque, non-continuous power output, difficult sealing, low output power, low efficiency, high noise, and easy vibration.
  • a vane type swing cylinder relating to the present invention has a structure as shown in Fig. 12: a cylinder 100, a rotor 200
  • the partition plate 300, the working medium inlet and outlet 400 and 500, and the vane 700 are composed; the cylinder block 100 and the rotor 200 constitute an annular chamber, and the continuous cavity of the annular chamber is partitioned by the partition plate 300, and the two working medium inlets and exits are separated from the partition plate.
  • the vane 700 divides the annular chamber into two working chambers, and under the action of the external reversing valve, respectively, the pressure working medium and the atmospheric circuit are respectively connected, and the pressure difference between the two chambers generates torque on the vane to push the rotor to rotate. Because the displacement of the diaphragm, the stroke of the blade rotation is generally lower than 280 degrees, so it is generally used for the reciprocating oscillating motion output mechanism.
  • An object of the present invention is to provide a vane type continuous rotary cylinder.
  • the present invention provides a vane type continuous rotary cylinder including a cylinder block, a rotor, a partition plate, a working fluid inlet, a working fluid outlet, and a vane.
  • the rotor is disposed in the cylinder block, and the rotor and the cylinder block Forming an annular chamber, the partition partitioning the continuous cavity of the annular chamber, the working fluid inlet and the working fluid outlet are respectively located at two sides of the partition, and the vane is in a plane parallel to the axis of the cylinder or through the axis of the cylinder
  • the movably disposed inner portion is guided by the cam to pass over the partition, the cam being disposed concentrically with the rotor.
  • the blades may have at least two, and the two blades are symmetrically arranged around the above axis.
  • the partition may be in one of the near angle of repose and the far angle of repose of the cam, that is, the first angle of repose, and the other of the near angle of repose and the angle of repose of the angle, that is, the second angle of repose, is greater than
  • the adjacent two blades contain an angle between the thickness of the flesh, and the blade and the cam running in the second angle of repose are sealed with a low sub-moving surface, and output work during the rotation, and the thrust movement angle and the return movement angle of the cam
  • the inner moving blade is pushed away from the cavity wall of the annular chamber by the cam, and there is no pressure difference on both sides of the blade, and no work is performed.
  • the cam may be a disc cam with a stroke greater than or equal to the bore diameter in the radial direction of the annular chamber.
  • the cam may be a cylindrical cam with a stroke greater than or equal to the bore diameter in the axial direction of the annular chamber.
  • the cam can be a female cam and can be placed in the cylinder together with the partition.
  • the working inlet is located in the thrust movement angle
  • the working outlet is located in the return movement angle
  • the far rest angle is the working segment of the blade.
  • the cam can be a male cam and is placed on the rotor together with the partition.
  • the working inlet is located in the return movement angle, the working outlet is in the thrust movement angle, and the near rest angle is the work segment.
  • the cam may be a female cam
  • the female cam includes two thin plates disposed inside the annular chamber, the two thin plates are symmetrically distributed in the axial direction of the annular chamber, the two thin plates are connected to the partition plate, and the two thin plates are A cam is formed with an outer side wall of the annular chamber.
  • the cam may be a male cam
  • the male cam includes two thin plates disposed inside the annular chamber, the two thin plates are symmetrically distributed in the axial direction of the annular chamber, and the two thin plates are connected to the partition plate, and the two thin plates are connected.
  • a cam is formed with an inner side wall of the annular chamber.
  • the blades and cams can be closed in a force-tight manner, and the locking force can be provided by the spring force of the spring or the pressure of the compressed gas.
  • a guide groove may be disposed on one side wall of the annular chamber, and both sides of the blade moving direction are embedded in the guide groove.
  • the normal projection of the blade may be C-shaped, the thickness of the two legs on both sides of the moving direction being equal to the depth of the guiding groove [24]
  • the central axis of movement of the blade can be offset from the center of rotation of the cam.
  • the cam can be a soft cam.
  • the soft cam is composed of an angle control mechanism and an actuator.
  • the magnitude of the push motion angle and the return motion angle is equal to the product of the single stroke stroke and the rotor angular velocity of the actuator.
  • the first angle of repose is greater than the angle between the partition and the axis, and the second angle of repose is greater than the angle between the thickness of the adjacent two blades.
  • the present invention also provides a vane type continuous rotary cylinder including a cylinder block, a rotor, a partition plate, a working fluid inlet, a working fluid outlet, and a vane.
  • the rotor is disposed in the cylinder body, and a ring is formed between the rotor and the cylinder block.
  • the utility model further comprises a thin plate for guiding the blade over the partition plate, wherein the thin plate is disposed in the annular chamber and forms a side wall with a side wall on the outer circumference of the annular chamber, that is, a side wall of the inner circumferential direction of the cylinder body.
  • the present invention further provides a vane type continuous rotary cylinder, comprising a cylinder block, a rotor, a partition plate, a working fluid inlet, a working fluid outlet, and a vane.
  • the rotor is disposed in the cylinder body, and an annular cavity is formed between the rotor and the cylinder block.
  • the partition is fixedly connected to the rotor, and the continuous cavity of the annular chamber is partitioned, and the working fluid inlet and the working fluid outlet are provided by the rotor and respectively located on two sides of the partition, and the vane is disposed on the cylinder, and the characteristic is And a thin plate guiding the blade over the partition plate, wherein the thin plate is disposed in the annular chamber and forms a male cam, a male cam and a cylinder, with a side wall on the inner circumference of the annular chamber, that is, a side wall of the circumferential direction of the rotor
  • the body and the blade constitute a concentric cam mechanism; at least two blades are symmetrically disposed on the cylinder; the male cam is coaxial with the rotor; the partition is located within the distal angle of repose of the male cam, and the near-rest angle is greater than the adjacent two blades The angle between the angles includes the flesh thickness of the blade, the blade running in the near angle of repose and the male cam are sealed for the
  • the present invention further provides a vane type continuous rotary cylinder including a cylinder block, a rotor, a partition plate, a working fluid inlet, a working fluid outlet, and a vane.
  • the rotor is disposed in the cylinder body, and a ring is formed between the rotor and the cylinder block.
  • the utility model is characterized in that it further comprises a cylindrical cam extending from the cylinder body, at least two blades are symmetrically arranged on the rotor, the cylindrical cam is coaxial with the rotor, the rotor, the cam and the blade constitute a concentric cam mechanism; the partition plate is located at the cylindrical cam In the near-rest angle, the same angle of repose is greater than the angle between the adjacent two blades, the angle includes the flesh thickness of the blade, and the blade running in the far angle of repose is sealed with the cylindrical cam as a low side moving surface. And outputting work in rotation, the blade moving in the thrust movement angle and the return movement angle of the cylindrical cam is pushed away from the cavity wall of the annular chamber by the cylindrical cam, and there
  • the present invention also provides a vane type continuous rotary cylinder including a cylinder block, a rotor, a partition plate, a working fluid inlet, a working fluid outlet, and a vane.
  • the rotor is disposed in the cylinder body, and a ring is formed between the rotor and the cylinder block.
  • a chamber, the partition partitions the continuous cavity of the annular chamber, and the working fluid inlet and the working fluid outlet are respectively located on two sides of the partition, and the utility model further comprises: a swingable blade having an axis parallel to the rotor axis and The guide vane passes over the cam of the diaphragm that is concentric with the rotor.
  • FIG. 1 is a schematic diagram of the principle of a first embodiment of the present invention, in which fluid pressure energy is converted into mechanical energy.
  • FIG. 2 is a perspective view showing the structure of the cylinder shown in Fig. 1.
  • FIG. 3 is a schematic view showing the principle of forming a closed chamber during the movement of the embodiment shown in FIG. 1.
  • FIG. 4 is a schematic diagram of the principle of the first embodiment of the present invention, in which mechanical energy is converted into fluid pressure energy.
  • Figure 5 is a schematic diagram of the principle of the second embodiment of the present invention.
  • Figure 6 is a front cross-sectional view showing a third embodiment of the present invention, in which a cylindrical cam is located on a cylinder block.
  • Figure 7 is an exploded view of the embodiment of Figure 6.
  • Figure 8 is a front cross-sectional view showing a fourth embodiment of the present invention, taken along line A-A of Figure 9;
  • Figure 9 is a cross-sectional view taken along line B-B of Figure 8.
  • Figure 10 is a schematic view of the structure of the rotor of Figure 9.
  • Figure 11 is an exploded view of the embodiment of Figure 9.
  • FIG. 12 is a schematic diagram of a conventional single-blade swing cylinder.
  • Figure 13 is a front cross-sectional view showing a fifth embodiment of the present invention, taken along line A-A of Figure 14.
  • Figure 14 is a cross-sectional view taken along line C-C of Figure 13;
  • Figure 15 is a cross-sectional view taken along line B-B of Figure 14.
  • Figure 16 is a schematic diagram of the principle of the sixth embodiment of the present invention.
  • Female cam means a cam in which the follower is located, such as the cam of the first embodiment described below;
  • Machine cam means a cam on which the follower is located, such as the cam of the second embodiment described below.
  • the vane type continuous rotary cylinder of the present invention is similar in structure to a vane type swing cylinder, and includes a cylinder block 1, a rotor 2, a partition plate 3, a working fluid inlet 4, a working fluid outlet 5, and a cam. 6.
  • the blade 7, which is different from the existing blade type oscillating cylinder, has a plurality of cams 6, and the function of the cam 6 is to displace the working blade 7 in a plane parallel to or through the axis of the cylinder, and can pass over the partition 3, cycle work, to achieve a one-way continuous circular motion.
  • the rotor 2, the cam 6, and the vanes 7 constitute a concentric cam mechanism.
  • an annular chamber is provided by the cylinder 1 and the rotor 2, and a partition 3 is provided in the chamber, the working fluid inlet 4 and the working fluid outlet 5 is located on both sides of the partition plate 3.
  • the cam 6 is a disc-shaped cam, which is disposed inside the annular chamber and is composed of two sheets of the same shape and symmetrically distributed in the axial direction of the annular chamber and the thin plate 62 and the annular chamber.
  • the outer side wall in the circumferential direction i.e., the inner side wall of the cylinder 1 in the circumferential direction
  • the two sheets are symmetrically disposed for the purpose of applying a force balance at the axial ends of the vane 7, and in the two sheets Under the action of the grooves 67 and 68, the vanes 7 cannot separate the annular chambers to form pressure differences on both sides.
  • the center of rotation of the cam 6 coincides with the axis of the rotor 2, the stroke of which is greater than or equal to the bore diameter in the radial direction of the annular chamber, and the near rest angle 8 of the cam 6 is greater than or equal to the angle between the thickness of the partition 3 and the axis and the partition 3 is included Inside, the blades moving within this angle can completely avoid the partition 3 .
  • the push motion angle 10 and the return motion angle 11 are separated on both sides of the partition 3, the working fluid inlet 4 is included in the thrust movement angle 10, and the working fluid outlet 5 is included in the return movement angle 11, and the distal angle of return is 9
  • the corresponding profile coincides with the outer wall of the annular chamber.
  • the two vanes 7 are evenly symmetrically distributed around the circumference of the annular chamber, and the far angle of repose 9 of the cam 6 is larger than the angle between the two vanes 7 (and considering the influence of the thickness of the vane 7 on the angle and the possibility of a jump phenomenon influences) .
  • the annular chamber When only one blade 7 is within the far angle of repose 9, the annular chamber is divided into two chambers by the partition 3 and the vane 7, the inlet chamber 14 on the working inlet 4 side and the outlet chamber on the working outlet side. 15. When the two blades 7 are located within the distal angle of repose 11, the annular chamber is divided into three chambers, namely: an inlet chamber 14, an outlet chamber 15, and a closed chamber 16 (shown in Figure 3).
  • the working fluid inlet 4 is connected to the working fluid outlet 5, and there is no pressure difference on both sides of the vane 7. To maintain continuous rotation, it is only necessary to rely on inertia or multi-level misaligned series.
  • the output torque and output power are discontinuous, and the energy loss is too large, but continuous rotation can also be achieved.
  • cam 6 is a disc-type female cam
  • follower that is, the vane 7 moves inside the cam and the partition
  • the follower that is, the vane 7 moves outside the cam and is located at the rotor 2 ⁇ with the partition 3, as shown in FIG. 5, the vane 7 It is disposed on the cylinder block 1.
  • the near-rest angle 8 is interchanged with the far-away angle 9
  • the thrust angle 10 is interchanged with the return angle 11 in the outer wall of the annular chamber of the foregoing embodiment. In the example, it becomes the inner wall of the annular chamber, and the other contents are unchanged.
  • the cam 6 is a cylindrical cam and is located in the cylinder 1, and its operation principle can be understood by referring to the description of the first embodiment.
  • a cylindrical cam can also be disposed on the rotor 2, and the principle of operation can be understood with reference to the description of the first embodiment and the second embodiment.
  • the cams of the foregoing embodiments may be appropriately modified in combination with various techniques relating to cam mechanisms in modern mechanical technology, typically:
  • the blade 7 acts as a follower. When its mass is large, the momentum has a great influence on its motion.
  • the primary consideration is to reduce its maximum speed. When it is required for its inertial force, the primary consideration is It is to reduce its maximum acceleration; when its motion stability is higher, the primary consideration is its maximum jerk.
  • Convex contour design should be performed for five different applications, such as polynomial, harmonic, and cycloidal motion, or combined motion laws for different applications.
  • a suitable follower bias can reduce the pressure angle of the blade 7 and increase mechanical efficiency.
  • the disadvantage is that it is unable to operate in both directions, the processing difficulty is increased, and the common spring compression space cannot be realized.
  • the mechanism size is large, and it is suitable for the case where the pressure gas 13 is used as the closing force and the disc type positive cam design.
  • Soft cam system refers to the combination of components that make the follower perform the same function as the cam in circular motion, such as angle sensor + control mechanism + power output + actuator, power and actuator can be pneumatic or electric high-speed components .
  • Advantages of the soft cam system The follower has no wear and impact with the high movement of the cam, no pressure angle, and no biasing of the follower; Disadvantages: a. Due to the rapid reciprocating of the straight line, the two ends of the stroke of the actuating blade 7 are Impact, increased cushioning will prolong the operating time and reduce the mechanism speed; b. System failure ⁇ Blade 7 and diaphragm 3 have the risk of destructive impact; This system is suitable for high life and low speed of the mechanism.
  • the number of the blades 7 is four. Comparing FIG. 1 and FIG. 8, it can be found that by increasing the number of the blades 7, a large thrust movement angle 9 and a return movement angle 10 can be obtained.
  • the contour is smoother, which reduces the running impact and increases the speed.
  • the thrust movement angle 9 and the return movement angle 10 do not need to consider the sealing of the cylinder wall and the blade 7, and the processing difficulty is lowered and a large working fluid inlet 4 and a working fluid outlet 5 can be set.
  • the large working fluid inlet 4 corresponds to a large pressure chamber, and the fluid working fluid has small flow resistance and stable pressure. When applied to internal combustion engines, there is enough combustion space, sufficient combustion, low waste, and complete conversion of heat energy. No suction pressure for the stroke, the available fuel range is wide; large working fluid outlet 5 fast pressure relief, low residual pressure, help to improve the efficiency of the mechanism.
  • the radial projection of the rotor 2 is "" shaped, consisting of a rotating shaft 21 and two flanges.
  • the disk 22 is composed of two flanges 22, and the inner side of the two flanges 22 radially sandwiches the partition plate 3 to form two side walls of the annular chamber.
  • a guiding groove 220 is radially opened, and the guiding groove 220 penetrates the rotating shaft 21
  • the number of blades 7 is even, moving radially within the guide groove 220, each group of blades 7 sharing a compression space, using a pressurized gas to provide a closing force (as understood with reference to Figure 5), the pressurized gas being supplied through the axial bore.
  • the structure can withstand high internal pressure and has good sealing performance.
  • the arrangement of the same guiding groove 220 helps to reduce the size of the cylinder.
  • the crucible rotor 2 is preferably designed separately.
  • the blade 7 is normally projected into a C shape, and its two legs are buried in the guide groove 220, the thickness of which is equal to the depth of the guide groove 220, and the corresponding position on the cylinder block. Set to have a bit groove or step, this setting helps to increase the seal.
  • the end cover 22 provided outside the cylinder is provided with intake holes 18-1, 18-2, exhaust holes 19-1, 19-2, intake grooves 20-1, 20-2, and exhaust grooves 21- 1, 21-2, the inlet and exhaust holes on the end cover are respectively electrically connected to the inlet and exhaust grooves, and are connected to the intake and exhaust holes 17 on the rotor 2, and the foregoing structure is matched with an air pump to form an angle control mechanism.
  • the commutation of the intake and exhaust can be completed to control the actuation of the vane 7, and the function that the cam 6 can achieve is completed.
  • the angle control mechanism of the end cap 22 and the actuator on the rotor blade form a soft Cam system.
  • the soft cam system of the present embodiment is different from the cam 6 of the first embodiment in that there is no clear boundary between the near rest angle 8 and the return movement angle 11, the far rest angle 9 and the kick movement angle 10.
  • the magnitude of the push motion angle 10 and the return motion angle 11 is varied and is equal to the product of the turn of the actuator and the rotational angular velocity of the rotor 2 for the single stroke of the actuator.
  • the near angle of repose 8 includes the angle between the flesh thickness of the baffle 3 and the axis
  • the far angle of repose 9 is greater than the angle between the adjacent two vanes 7 including the thickness of the flesh
  • the soft cam system can also be used in disc cam or cylindrical cam mechanisms.
  • the soft cam system shown above is just one of the ways. It can be implemented in a variety of ways, but both have an angle control mechanism and an actuator.
  • the rotor 2 of the present embodiment has a flange at the same end.
  • the pin shafts of the oscillating vanes 7 are respectively fixed on the holes on the two flanges and are sealed, except that the vanes 7 are in a swinging manner, and the flanges are not provided with guide grooves.
  • the first embodiment and the fourth embodiment use a disc type female cam, and the structural features are: simple and compact structure, easy processing, good sealing, and a large working fluid inlet 4 and a working fluid outlet 5 can be provided.
  • the second embodiment uses a disc-type male cam structure, as shown in FIG. 5, the characteristics of the disc-type male cam structure.
  • the third embodiment uses a cylindrical cam mechanism, as shown in Fig. 6, Fig. 7, the structural characteristics of the cylindrical cam mechanism are: complicated structure, high cam processing, not suitable for the blade 7 biasing structure, suitable for spring to provide closure For occasions suitable for soft cam applications, suitable for applications where the ratio of circumference to length of the mechanism is small, suitable for cam and vane type closed structures.
  • the fifth embodiment uses a soft cam mechanism which can be separately combined with the foregoing embodiment, and the characteristics of the soft cam will be completely inherited.
  • the sixth embodiment uses a swinging vane mechanism, and its structural features are: high processing difficulty, only applicable to a disc type male cam or a disc type female cam mechanism, which can only be used for one-way operation, but the swing follower mechanism
  • the advantage of the setting is that, in the case of inheriting the advantages of the aforementioned disc cam, it also has the characteristics of small rigidity impact, good sealing, and suitable for high-speed sports occasions.
  • the present invention has been described with reference to the present embodiments, it will be understood by those skilled in the art that In the broadest sense, it is not intended to depart from the invention.
  • the two blades shown in FIG. 1 may be offset by a certain distance without being on the same straight line passing through the center of the rotor.
  • the center axis of rotation is offset from the center of rotation of the cam 6. Therefore, it is intended that the modifications and variations of the embodiments described above fall within the scope of the appended claims.

Description

说明书 叶片式连续旋转缸
[I] 技术领域
[2] 本发明涉及一种活塞缸。
[3] 背景技术
[4] 目前以连续圆周旋转运动方式正 (逆) 向转化流体压力能和机械能的机构比 较成熟的主要有曲轴连杆活塞机构、 涡轮机构和叶片马达机构。
[5] 曲轴连杆活塞机构, 其结构特点为能量转化以直线往复运动与旋转运动的正
(逆) 向转化来实现, 主要缺点有非匀速、 非等扭矩、 非连续等功率输出、 惯 性冲击、 有死点, 导致相关机器需多级错相联动, 振动大、 噪音大、 效率低、 做功频率低、 结构复杂、 加工难度高。
[6] 涡轮机构, 其特点为在流体压力能和机械能的正 (逆) 向转化过程中间还要 经过流体动能的转化过程, 其主要缺点为转化损失大、 效率低、 体积大、 材料 要求高、 加工难度高、 寿命低。
[7] 叶片马达机构, 其特点为偏心旋转, 主要缺点有非等速、 非等扭矩、 非连续 等功率输出、 密封难度大、 输出功率小、 效率低、 噪音大、 易产生振动。
[8] 其它非主流旋转运动机构中, 基本上均存在上述机构中的局部缺陷, 最主要 一点是能量转化效率低, 非连续等功率输出。
[9] 与本发明相关的叶片式摆动缸, 其结构如附图 12所示: 由缸体 100、 转子 200
、 隔板 300、 工质出入口 400和 500、 叶片 700组成; 缸体 100和转子 200组成环形 腔室, 由隔板 300将环形腔室的连续空腔隔断, 两个工质出入口分居于隔板两侧 , 叶片 700将环形腔室分成两个工作腔, 在外部换向阀的作用下, 分别与压力工 质与接大气回路导通, 两个腔室压差在叶片上产生扭矩推动转子旋转; 因为隔 板的阻档, 叶片旋转的行程一般低于 280度, 所以一般用于往复摆动运动输出机 构。
[10] 发明内容
[I I] 本发明的目的是提供一种叶片式连续旋转缸。 [12] 为实现前述目的, 本发明提供一种叶片式连续旋转缸, 包括缸体、 转子、 隔板 、 工质入口、 工质出口以及叶片, 转子设置于缸体中, 转子和缸体之间形成环 形腔室, 隔板将该环形腔室的连续空腔隔断, 工质入口和工质出口分别位于隔 板的两侧, 叶片在平行于缸体的轴线或通过缸体的轴线的平面内可移动地设置 , 叶片通过凸轮引导而越过隔板, 该凸轮与转子同心设置。
[13] 优化地, 叶片可以有至少两个, 两个叶片围绕上述轴线对称布置。
[14] 进一步的, 隔板可以处于凸轮的近休止角和远休止角中的一方即第一休止角内 , 同吋近休止角和远休止角中的另一方, 即第二休止角, 大于相邻两个叶片包 含肉厚之间的夹角, 在第二休止角内运转的叶片与凸轮为低副运动面密封, 并 在旋转中输出功, 在凸轮的推程运动角和回程运动角内运动的叶片被凸轮推离 环形腔室的腔壁, 且该叶片两侧无压差, 不做功。
[15] 凸轮可以为盘式凸轮, 其行程大于或等于环形腔室的径向上的缸径。
[16] 凸轮可以为圆柱凸轮, 其行程大于或等于环形腔室的轴向上的缸径。
[17] 凸轮可以为阴凸轮, 并可与隔板一起设置于缸体中, 工质入口位于推程运动角 内, 工质出口位于回程运动角内, 远休止角为叶片的做功段。
[18] 凸轮可以为阳凸轮, 并与隔板一起设置于转子上, 工质入口位于回程运动角内 , 工质出口位于推程运动角内, 近休止角为做功段。
[19] 进一步的, 凸轮可以为阴凸轮, 该阴凸轮包括设置于环形腔室内部的两个薄板 , 该两个薄板在环形腔室轴向上对称分布, 该两薄板连接隔板, 两薄板和环形 腔室的一段外侧壁形成凸轮。
[20] 进一步的, 凸轮可以为阳凸轮, 该阳凸轮包括设置于环形腔室内部的两个薄板 , 该两个薄板在环形腔室轴向上对称分布, 该两薄板连接隔板, 两薄板和环形 腔室的一段内侧壁形成凸轮。
[21] 叶片与凸轮可釆用力封闭方式, 其锁合力可由弹簧的弹力或压缩气体的压力提 供。
[22] 环形腔室内的一侧壁上可设置导向槽, 叶片运动方向上的两侧嵌于导向槽中。
[23] 叶片的法向投影可以是 C形, 其运动方向两侧的两脚的厚度等于导向槽的深度 [24] 叶片的移动中心轴线可以偏置于凸轮的回转中心。
[25] 凸轮可以为软凸轮, 该软凸轮由角度控制机构和执行机构组成, 其推程运动角 和回程运动角的大小等于执行机构单行程作动吋间与转子回转角速度的乘积, 在最高转速下, 其第一休止角大于隔板与轴心的夹角, 第二休止角大于相邻两 个叶片包含肉厚之间的夹角。
[26] 本发明还提供一种叶片式连续旋转缸, 其包括缸体、 转子、 隔板、 工质入口、 工质出口以及叶片, 转子设置于缸体中, 转子和缸体之间形成环形腔室, 隔板 固定连接于缸体上, 将该环形腔室的连续空腔隔断, 工质入口和工质出口由缸 体提供且分别位于隔板的两侧, 叶片设置在转子上, 其特点是, 还包括用于引 导叶片越过隔板的薄板, 薄板设置于该环形腔室中并和该环形腔室的外圆周上 的一段侧壁即缸体的内圆周方向的一段侧壁形成阴凸轮, 叶片和转子在该阴凸 轮内运动, 转子、 阴凸轮以及叶片构成同心凸轮机构; 至少两叶片对称地设置 在转子上, 该阴凸轮与转子共轴线; 隔板位于该阴凸轮的近休止角内, 同吋远 休止角大于相邻两个叶片之间的夹角, 该夹角包含该叶片的肉厚; 在远休止角 内运转的叶片与阴凸轮为低副运动面密封, 并在旋转中输出功, 在阴凸轮的推 程运动角和回程运动角内运动的叶片被阴凸轮推离该环形腔室的腔壁, 且该叶 片两侧无压差, 不做功。
[27] 本发明另外提供一种叶片式连续旋转缸, 包括缸体、 转子、 隔板、 工质入口、 工质出口以及叶片, 转子设置于缸体中, 转子和缸体之间形成环形腔室, 隔板 固定连接于转子上, 将该环形腔室的连续空腔隔断, 工质入口和工质出口由转 子提供且分别位于隔板的两侧, 叶片设置在缸体上, 其特点是, 还包括引导叶 片越过隔板的薄板, 薄板设置于该环形腔室中并和该环形腔室的内圆周上的一 段侧壁即转子的圆周方向的一段侧壁形成阳凸轮, 阳凸轮、 缸体以及叶片构成 同心凸轮机构; 至少两叶片对称地设置在缸体上; 该阳凸轮与转子共轴线; 隔 板位于该阳凸轮的远休止角内, 同吋近休止角大于相邻两个叶片之间的夹角, 该夹角包含该叶片的肉厚, 在近休止角内运转的叶片与阳凸轮为低副运动面密 封, 并在旋转中输出功, 在阳凸轮的推程运动角和回程运动角内运动的叶片被 薄板推离该环形腔室的腔壁, 且该叶片两侧无压差, 不做功。 [28] 本发明另外还提供一种叶片式连续旋转缸, 包括缸体、 转子、 隔板、 工质入口 、 工质出口以及叶片, 转子设置于缸体中, 转子和缸体之间形成环形腔室, 隔 板固定连接于缸体上, 将该环形腔室的连续空腔隔断, 工质入口和工质出口由 缸体提供且分别位于隔板的两侧, 叶片设置在转子上, 其特点是, 还包括从缸 体上延伸出的圆柱凸轮, 至少两叶片对称地设置在转子上, 该圆柱凸轮与转子 共轴线, 转子、 凸轮以及叶片构成同心凸轮机构; 隔板位于该圆柱凸轮的近休 止角内, 同吋远休止角大于相邻两个叶片之间的夹角, 该夹角包含该叶片的肉 厚, 在远休止角内运转的叶片与圆柱凸轮为低副运动面密封, 并在旋转中输出 功, 在圆柱凸轮的推程运动角和回程运动角内运动的叶片被圆柱凸轮推离该环 形腔室的腔壁, 且该叶片两侧无压差, 不做功。
[29] 本发明还提供一种叶片式连续旋转缸, 其包括缸体、 转子、 隔板、 工质入口、 工质出口以及叶片, 转子设置于缸体中, 转子和缸体之间形成环形腔室, 隔板 将该环形腔室的连续空腔隔断, 工质入口和工质出口分别位于隔板的两侧, 其 特点是, 还包括可摆动的、 轴线与转子轴线平行的叶片及用于引导叶片越过隔 板的与转子同心的凸轮。
[30] 釆用了前述技术方案的有益效果是:
[31] 与曲轴连杆活塞机构相比, 由于叶片连续旋转, 从而解决了运动方式转化的损 失和惯性冲击问题; 与涡轮机构相比, 解决了能量转化通过流体动能中转及动 能利用效率低的问题; 与叶片马达机构相比解决了偏心机构非稳定输出问题, 解决了叶片线状密封的泄漏损失问题, 解决了承载能力低的问题; 其环形腔室 循环活塞结构相当于无限长度的直线单向活塞缸, 因此其能量转化效率同直线 活塞缸, 可达 80%以上, 相对于目前的各种旋转运动机构, 其效率有成倍提升, 且具备扭矩输出范围宽、 功率范围宽、 许用工质种类广泛、 连续等扭矩等功率 输出等优点, 同吋不损失原各种机构的可级联、 带负载自起动、 无级变速、 高 速响应、 快速换向、 过载保护等优点。 可广泛应用于水力火力发电、 内燃机、 流体泵、 压缩机、 流体马达、 无级变速等领域。
[32] 附图说明
[33] 在下列附图中, 用于表示同一实施例的各幅图中, 同一标记表示同一组成部 分 (同一技术特征或同一对象) 。 用于表示不同实施例的各幅图中, 同一标记 表示起作相同作用的组成部分 (同一技术特征或同一对象)
[34] 图 1为本发明第一实施例的原理示意图, 其中流体压力能转化为机械能。
[35] 图 2为图 1所示缸体的结构示意的轴测图。
[36] 图 3为图 1所示实施例运动过程中封闭室形成原理示意图。
[37] 图 4为本发明第一实施例的原理示意图, 其中机械能转化为流体压力能。
[38] 图 5为本发明第二实施例的原理示意图。
[39] 图 6为本发明第三实施例的主剖视图, 其中圆柱凸轮位于缸体上。
[40] 图 7为图 6所示实施例的分解视图。
[41] 图 8为本发明的第四实施例的主剖视图, 其是沿图 9中 A-A线剖视。
[42] 图 9为沿图 8中 B-B的剖视图。
[43] 图 10为图 9中转子的结构示意图。
[44] 图 11为图 9所示实施例的分解视图。
[45] 图 12是现有的单叶片式摆动缸的原理图。
[46] 图 13为本发明的第五实施例的主剖视图, 其是沿图 14中 A- A线剖视。
[47] 图 14为图 13中 C-C旋转剖视图。
[48] 图 15为图 14中 B-B剖视图。
[49] 图 16为本发明第六实施例的原理示意图
[50] 具体实施方式
[51] 首先定义以下技术术语:
[52] "阴凸轮"是指从动件位于其中的凸轮, 如下述第一实施例的凸轮;
[53] "阳凸轮"是指从动件位于其外的凸轮, 如下述第二实施例的凸轮。
[54] 第一实施例
[55] 如图 1所示, 本发明的叶片式连续旋转缸, 其结构类似于叶片式摆动缸, 包 括缸体 1、 转子 2、 隔板 3、 工质入口 4、 工质出口 5、 凸轮 6、 叶片 7, 区别于现有 的叶片式摆动缸的是一多了凸轮 6, 凸轮 6作用是使工作中的叶片 7在平行于或 穿过缸体轴线的平面内位移, 能越过隔板 3, 循环做功, 实现单向连续圆周运动 方式。 在图 1中转子 2、 凸轮 6以及叶片 7构成同心凸轮机构。 [56] 在应用于流体压力能转化为机械能的情况下, 如图 1所示, 由缸体 1和转子 2 提供环形腔室, 腔室内设置有隔板 3, 工质入口 4与工质出口 5分居于隔板 3的两 侧, 凸轮 6为盘形凸轮, 设置于环形腔室内部, 由两片形状一样、 对称分布于环 形腔室轴向上的薄板 61和薄板 62与环形腔室的圆周方向的外侧壁 (即缸体 1的圆 周方向的内侧壁) 组成, 如图 2所示, 对称地设置两薄板的目的是为了施加在叶 片 7轴向两端的作用力平衡, 并且在两薄板之间的沟槽 67和 68的作用下, 叶片 7 无法对环形腔室分隔而形成两侧的压差。 凸轮 6的转动中心与转子 2轴心重合, 其行程大于等于环形腔室径向上的缸径, 凸轮 6的近休止角 8大于等于隔板 3的厚 度与轴心的夹角并将隔板 3包含在内, 在此角内运动的叶片能完全避让过隔板 3 。 推程运动角 10与回程运动角 11分居于隔板 3两侧, 工质入口 4被包含于推程运 动角 10内, 工质出口 5被包含于回程运动角 11内, 远休止角 9所对应的廓线与环 形腔室外壁重合。 两个叶片 7在环形腔室内圆周均匀对称分布, 凸轮 6的远休止 角 9大于两个叶片 7之间的夹角 (并且考虑叶片 7厚度对角度造成的影响及有可能 出现的腾跳现象的影响) 。 当仅有一个叶片 7处于远休止角 9内吋, 环形腔室被 隔板 3和此叶片 7分隔成两个腔室, 工质入口 4侧的为入口室 14, 工质出口侧为出 口室 15。 当两个叶片 7同吋位于远休止角 11内吋, 环形腔室被隔成三个腔室, 分 别为: 入口室 14、 出口室 15、 封闭室 16 (如图 3所示) 。
[57] 如图 1所示, 当压力流体工质由工质入口 4进入, 在入口室 14和出口室 15两侧 压差的作用下, 远休止角 9内的叶片 7做旋转活塞运动带动转子 2逆吋针旋转做功 。 如图 3, 当两个叶片 7均处于远休止角 9内吋, 封闭室 16形成, 一部份压力工质 被封闭在内。 当叶片 7运转到凸轮 6回程段, 在凸轮 6的作用下, 叶片 7沿转子 2上 的导向槽径向缩进, 脱离与环形腔室外壁的密封, 封闭室 16因与出口室 15导通 而消失, 完成泄压作业。 当叶片 7进入近休止角 8吋, 被完全径向压缩, 避让过 隔板 3。 在凸轮 6的推程段, 叶片 7在弹簧 12的弹力作用下径向伸出。 在重新进入 远休止角 9吋与环形腔室外壁接触密合, 再次做功。 与现有的叶片式摆动缸类似 , 隔板 3的侧边与转子 2之间始终保持密合, 在图 1所示的实施例中, 薄板 61、 薄 板 62与隔板 3密合或者一体形成, 叶片 7的端部嵌有密封件, 叶片 7在越过隔板 3 吋, 隔板 3和转子 2之间同样是密合, 流体工质不会从图 1中的左腔室流入到右腔 室。
[58] 如图 3所示, 因两个叶片 7在一进一出远休止角 9吋, 始终有一个叶片 7在远休 止角 9内做功, 根据环形活塞腔的结构特点 (即横截面积、 横截面形状处处相同 ) , 在源压力工质流量恒定、 负载恒定的假设条件下本文所述均指此假设条件 下, 忽略凸轮阻力变化、 泄压室残压等影响, 转子 2匀角速度旋转, 连续等扭矩 、 等功率输出。
[59] 从图 1至图 3可以理解到, 在只有一个叶片 7的情况下, 并处于远休止角 9外吋
, 工质入口 4与工质出口 5导通, 叶片 7两侧无压差, 要保持连续转动只能依靠惯 性或多级错相串联。 其输出扭矩、 输出功均为非连续, 且能量损失过大, 但也 能实现连续转动。
[60] 应用于机械能转化为流体压力能的情况下, 如图 4所示, 转子 2在外接动力的 情况下逆吋针旋转, 入口室 14在位于远休止角 9内的叶片 7的作用下, 容积扩大 形成负压, 常压工质被吸入此腔室。 当两个叶片 7同吋进入凸轮的远休止角 9吋 , 封闭室 16形成, 部份常压工质被封闭在内; 继续转动, 叶片 7进入回程运动角 11内, 封闭室 16与出口室 15导通而消失, 封闭的常压工质被压入出口室 15内, 此吋流体的压力能增加, 本实施例可作为泵或压缩机。
[61] 以上阐述的是凸轮 6为盘式阴凸轮, 从动件即叶片 7在凸轮内部运动且与隔板
3同位于缸体 1吋的工作原理。
[62] 第二实施例
[63] 与第一实施例不同的是, 在凸轮 6为盘式阳凸轮, 从动件即叶片 7在凸轮外部 运动且与隔板 3同位于转子 2吋, 如图 5所示, 叶片 7被设置于缸体 1上, 上述的内 容中近休止角 8与远休止角 9互换, 推程运动角 10与回程运动角 11互换, 在前述 实施例的环形腔室的外壁在本实施例中变为环形腔室的内壁, 其它内容不变。
[64] 第三实施例
[65] 如图 6和图 7所示, 与第一实施例不同的是凸轮 6为圆柱凸轮且位于缸体 1, 其 工作原理可以参照第一实施例的描述来理解。 另外, 如第二实施例所示, 还可 以将圆柱凸轮设置在转子 2上, 其工作原理可以参照第一实施例和第二实施例的 描述来理解。 [66] 另外, 可以结合现代机械技术中有关于凸轮机构的各项技术对前述实施例中 的凸轮进行适当的变形, 典型的有:
[67] a、 从动件运动规律的设计
[68] 叶片 7作为从动件, 当其质量较大吋, 动量对其运动影响较大, 首要考虑的 是减小的是其最大速度; 当对其惯性力要求较高的场合, 首要考虑的是减小其 最大加速度; 当对其运动平稳性要求较高吋, 首要考虑的是其最大跃度。 应针 对不同应用场合来选用五次多项式、 简谐、 摆线等运动规律或组合运动规律来 进行凸轮廓线设计。
[69] b、 釆用从动件偏置的凸轮机构设计
[70] 如图 5所示, 合适的从动件偏置可以降低叶片 7的压力角, 提升机械效率。 缺 点为无法双向运转, 加工难度增加, 且无法实现共用弹簧压缩空间, 多叶片情 况下机构尺寸较大, 适合于压力气体 13作为封闭力和盘式阳凸轮设计的场合。
[71] c、 釆用软凸轮系统设计
[72] 软凸轮系统指的是圆周运动中使从动件完成与凸轮同样功能的部件组合, 例 如角度传感器 +控制机构 +动力输出 +执行元件, 动力和执行元件可以是气动或电 动等高速元件。 软凸轮系统的优点: 从动件没有与凸轮高副运动的磨损和冲击 、 没有压力角, 不需要从动件偏置; 缺点: a.因直线快速往复, 作动叶片 7行程 的两端有冲击, 增加缓冲会延长作动吋间, 降低机构转速; b.系统失效吋叶片 7 与隔板 3有破坏性撞击风险; 此系统适用于机构寿命要求高、 低速的情况下。
[73] 第四实施例: 盘式阴凸轮结构
[74] 如图 8和图 9所示, 叶片 7为四个, 比较图 1和图 8, 可以发现, 增加叶片 7的数 目可以获得较大的推程运动角 9和回程运动角 10, 凸轮的轮廓线较平滑, 可减小 运转冲击提高转速。 同吋推程运动角 9和回程运动角 10内不用考虑缸壁与叶片 7 的密封, 加工难度降低且可设置较大的工质入口 4和工质出口 5。 大的工质入口 4 对应有较大压力腔室, 流体工质流阻小、 压力稳定。 应用于内燃机吋, 有足够 燃烧空间, 燃烧充分, 排废低, 热能转化压力能完全。 无吸压作排行程, 可用 燃料范围宽; 大的工质出口 5泄压速度快, 残压低, 有助于提高机构效率。
[75] 如图 10和图 11所示, 转子 2的径向投影为" "形, 由一根转轴 21和两个法兰 盘 22组成, 两个法兰盘 22内侧径向包夹住隔板 3, 形成环形腔室的两侧壁, 在法 兰盘 22上沿径向开有导向槽 220, 导向槽 220贯穿转轴 21, 叶片 7数目为偶数, 在 导向槽 220内径向移动, 每组叶片 7共用压缩空间, 使用压力气体提供封闭力 ( 参照图 5来理解) , 压力气体通过轴向孔道供应。 此结构可承受高内压, 密封性 较好, 同吋导向槽 220的设置有助于减小缸体尺寸, 如图 11所示, 此吋转子 2最 好分体设计。
[76] 如图 11中的 A处放大视图及图 6所示, 叶片 7法向投影为 C形, 其两脚埋入导 向槽 220中, 其厚度等于导向槽 220深度, 缸体上对应位置设置有让位槽或台阶 , 此设置有助于增加密封。
[77] 第五实施例: 软凸轮机构
[78] 如图 13、 图 14和图 15所示: 在第一实施例的基础上, 取消薄板 61、 62的设置
, 即取消了硬体凸轮的设置, 在转子 2上增加了进、 排气孔 17和活塞腔, 在叶片 7上增加了活塞片, 与转子 2共同组成了气动执行机构来完成叶片 7与缸壁的密封 及避让隔板的动作。 在缸体外部设置的端盖 22上设置有进气孔 18-1、 18-2, 排气 孔 19-1、 19-2, 进气槽 20-1、 20-2, 排气槽 21-1、 21-2, 端盖上的进、 排气孔分 别与进、 排气槽导通, 并与转子 2上的进排气孔 17导通, 前述结构配合一气泵构 成角度控制机构, 在转子 2旋转过程中能完成进、 排气的换向来控制叶片 7作动 , 完成凸轮 6所能实现的功能, 在此处端盖 22的角度控制机构与转子叶片上的执 行机构共同组成了软凸轮系统。
[79] 本实施例的软凸轮系统与实施例一中的凸轮 6不同之处为: 近休止角 8与回程 运动角 11、 远休止角 9与推程运动角 10之间并无明确的界线, 推程运动角 10与回 程运动角 11的大小是变化的, 并且等于执行元件单行程所用的吋间与转子 2旋转 角速度的乘积。 为确保近休止角 8包含隔板 3肉厚与轴心的夹角、 远休止角 9大于 相邻两个叶片 7包含肉厚的夹角,要对机构的最大转速及执行元件的速度做控制。
[80] 软凸轮系统同样可以应用于盘式阳凸轮或圆柱凸轮的机构中。
[81] 以上所示软凸轮系统只是其中一种方式, 其实现方式可以多种多样, 但都需 具备角度控制机构及执行机构两个部份。
[82] 第六实施例: 摆动从动件机构 [83] 如图 16所示: 在第一实施例的基础上, 转子 2上的叶片 7将径向往复运动改为 摆动; 在近休止角 8内吋, 叶片 7的外弧面与转子外圆面重合, 并与隔板及转子 密封; 在推程运动角 10内吋, 因为叶片 7内弧面上导气槽的设置, 叶片 7与转子 2 间并不会形成密封的空腔, 在扭力弹簧 12的作用下逐渐打开; 在远休止角吋, 叶片 7的远端孤面与缸体内壁密封, 形成入口室并作功。
[84] 与实施例四的转子结构类似, 本实施例的转子 2两端一样分别有一个法兰盘
, 摆动式叶片 7的销轴分别固定在两法兰盘上的孔上并有密封设置, 不同的是因 为叶片 7为摆动方式, 法兰盘上并没有导向沟槽的设置。
[85] 从以上可看出摆动叶片 7与转子 2的加工难度高且需做分体设计。
[86] 第一实施例和第四实施例釆用盘式阴凸轮, 其结构特点是: 结构简单紧凑, 易加工, 密封较好, 可设置大的工质入口 4和工质出口 5, 可设置大的轴向缸径 , 叶片 7设置成偏置结构加工难度大, 多叶片吋不宜用弹簧 12提供封闭力, 需外 加轴向高压供气系统, 叶片 7与凸轮 6高副运动, 高速性能稍差, 适合气态工质 或大缸径场合。
[87] 另外, 第二实施例釆用盘式阳凸轮结构, 如图 5所示, 盘式阳凸轮结构特点
: 结构简单, 易加工, 密封较好, 适合设置叶片 7偏置结构, 适合多叶片 7设置 , 高速性能好, 轴上供排工质, 供排工质口尺寸受限制, 体积较大, 适合高速 各种场合, 尤其是缸体 1转动场合。
[88] 第三实施例釆用圆柱凸轮机构, 如图 6, 图 7所示, 圆柱凸轮机构的结构特点 是: 结构复杂, 凸轮加工难度高, 不适合叶片 7偏置结构, 适合弹簧提供封闭力 场合, 适合软凸轮应用场合, 适合机构尺寸周径与长度比值较小之场合, 适合 凸轮与叶片釆用型封闭结构场合。
[89] 第五实施例釆用软凸轮机构, 可分别与前述实施例相结合, 其软凸轮的特点 将完全继承。
[90] 第六实施例釆用摆动叶片机构, 其结构特点是: 加工难度高, 只适用盘式阳 凸轮或盘式阴凸轮机构, 只能用于单向运转场合, 但摆动从动件机构的的设置 所带来的好处是在继承前述盘式凸轮优点的情况下, 还具有刚性冲击小, 密封 好, 适合高速运动场合等特性。 虽然本发明已参照当前的具体实施例来描述, 但是本技术领域中的普通技术 人员应当认识到, 以上的实施例仅是用来说明本发明, 应理解其中可作各种变 化和修改而在广义上没有脱离本发明, 所以并非作为对本发明的限定, 例如, 在图 1中所示的两叶片不用在同一穿过转子中心的直线上, 可以偏置一定的距离 而错开, 此吋叶片 7的转动中心轴线偏置于凸轮 6的回转中心。 因此, 只要在本 发明的实质精神范围内, 对以上所述实施例的变化、 变形都将落在本发明权利 要求书的范围内。

Claims

权利要求书
[1] 1 . 一种叶片式连续旋转缸, 包括缸体 (1) 、 转子 (2) 、 隔板 (3) 、 工 质入口 (4) 、 工质出口 (5) 以及叶片 (7) , 转子 (2) 设置于缸体 (1) 中, 在所述转子 (2) 和缸体 (1) 之间形成环形腔室, 隔板 (3) 将该环形 腔室的连续空腔隔断, 工质入口 (4) 和工质出口 (5) 分别位于隔板 (3) 的两侧, 叶片 (7) 在平行于缸体 (1) 的轴线或经过缸体 (1) 的轴线的平 面内可移动地设置, 其特征在于还包括用于引导叶片 (7) 越过隔板 (3) 的与转子 (2) 同心的凸轮 (6) 。
[2] 2. 根据权利要求 1所述的叶片式连续旋转缸, 其中, 至少两叶片 (7) 围绕 缸体 (1) 的轴线对称布置。
[3] 3 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 隔板 (3) 位于凸轮 (
6) 的近休止角 (8) 和远休止角 (9) 中的一方即第一休止角内, 同吋近休 止角 (8) 和远休止角 (9) 中的另一方, 即第二休止角, 大于相邻两个叶 片 (7) 包含肉厚之间的夹角, 在第二休止角内运转的叶片 (7) 与凸轮为 低副运动面密封, 并在旋转中输出功, 在凸轮 (6) 的推程运动角 (10) 和 回程运动角 (11) 内运动的叶片 (7) 被凸轮 (6) 推离该环形腔室的腔壁 , 且该叶片 (7) 两侧无压差, 不做功。
[4] 4. 根据权利要求 1所述的叶片式连续旋转缸, 其中, 凸轮 (6) 为盘式凸轮
, 其行程大于或等于环形腔室的径向上的缸径。
[5] 5 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 凸轮 (6) 为圆柱凸轮
, 其行程大于或等于环形腔室的轴向上的缸径。
[6] 6 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 凸轮 (6) 为阴凸轮并 与隔板 (3) —起设置于缸体 (1) 中, 工质入口 (4) 位于推程运动角 (10 ) 内, 工质出口 (5) 位于回程运动角 (11) 内, 远休止角 (9) 为叶片的 做功段。
[7] 7 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 凸轮 (6) 为阳凸轮并 与隔板 (3) —起设置于转子 (2) 上, 工质入口 (4) 位于回程运动角 (11 ) 内, 工质出口 (5) 位于推程运动角 (10) 内, 近休止角 (8) 为做功段
[8] 8 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 凸轮 (6) 为阴凸轮, 所述凸轮 (6) 包括设置于环形腔室内部的两个薄板, 该两个薄板在环形腔 室轴向上对称分布, 该两薄板连接隔板 (3) , 两薄板和环形腔室的一段外 侧壁构成所述凸轮 (6) 。
[9] 9 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 凸轮 (6) 为阳凸轮, 所述凸轮 (6) 包括设置于环形腔室内部的两个薄板, 该两个薄板在环形腔 室轴向上对称分布, 该两薄板连接隔板 (3) , 两薄板和环形腔室的一段内 侧壁形成该凸轮。
[10] 10. 根据权利要求 1所述的叶片式连续旋转缸, 其中, 叶片 (7) 与凸轮 (6
) 釆用力封闭方式, 其锁合力由弹簧 (12) 的弹力或压缩气体 (13) 的压 力提供。
[11] 11 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 环形腔室内与叶片 (
7) 移动方向平行的两侧壁上设置有导向槽 (220) , 叶片 (7) 运动方向的 两侧嵌于导向槽 (220) 中。
[12] 12. 根据权利要求 11所述的叶片式连续旋转缸, 其中, 叶片 (7) 的法向投 影为 C形, 其运动方向两侧的两脚的厚度等于导向槽 (220) 的深度。
[13] 13 . 根据权利要求 1所述的叶片式连续旋转缸, 其中, 叶片 (7) 的移动中 心轴线偏置于凸轮 (6) 的回转中心。
[14] 14. 根据权利要求 1所述的叶片式连续旋转缸, 其特征在于凸轮 (6) 为软 凸轮, 该软凸轮由角度控制机构和执行机构组成, 其推程运动角 (10) 和 回程运动角 (11) 的大小等于执行机构单行程作动吋间与转子 (2) 回转角 速度的乘积, 在最高转速下, 其第一休止角大于隔板 (3) 与轴心的夹角, 第二休止角大于相邻两个叶片 (7) 包含肉厚之间的夹角。
[15] 15 . 一种叶片式连续旋转缸, 包括缸体 (1) 、 转子 (2) 、 隔板 (3) 、 工 质入口 (4) 、 工质出口 (5) 以及叶片 (7) , 转子 (2) 设置于缸体 (1) 中, 转子 (2) 和缸体 (1) 之间形成环形腔室, 隔板 (3) 固定连接于缸体 ( 1) 上, 将环形腔室的连续空腔隔断, 工质入口 (4) 和工质出口 (5) 由 缸体 (1) 提供且分别位于隔板 (3) 的两侧, 叶片 (7) 设置在转子 (2) 上, 其特征在于还包括用于引导叶片 (7) 越过隔板 (3) 的薄板, 薄板设 置于该环形腔室中并和该环形腔室的外圆周上的一段侧壁即缸体 (1) 的内 圆周上的一段侧壁形成阴凸轮, 叶片 (7) 和转子 (2) 在该阴凸轮内运动
, 转子 (2) 、 阴凸轮以及叶片 (7) 构成同心凸轮机构;
至少两叶片 (7) 对称地设置在转子 (2) 上, 所述阴凸轮与转子 (2) 共轴 线;
隔板 (3) 位于所述阴凸轮的近休止角 (8) 内, 同吋远休止角 (9) 大于相 邻两个叶片 (7) 之间的夹角, 该夹角包含叶片 (7) 的肉厚;
在远休止角 (9) 内运转的叶片 (7) 与阴凸轮为低副运动面密封, 并在旋 转中输出功, 在阴凸轮的推程运动角 (10) 和回程运动角 (11) 内运动的 叶片 (7) 被阴凸轮推离环形腔室的腔壁, 且叶片 (7) 两侧无压差, 不做 功。
16 . 一种叶片式连续旋转缸, 包括缸体 (1) 、 转子 (2) 、 隔板 (3) 、 工 质入口 (4) 、 工质出口 (5) 以及叶片 (7) , 转子 (2) 设置于缸体 (1) 中, 转子 (2) 和缸体 (1) 之间形成环形腔室, 隔板 (3) 固定连接于转子
(2) 上, 将该环形腔室的连续空腔隔断, 工质入口 (4) 和工质出口 (5) 由转子 (2) 提供且分别位于隔板 (3) 的两侧, 叶片 (7) 设置在缸体 (1 ) 上, 其特征在于还包括引导叶片 (7) 越过隔板 (3) 的薄板, 薄板设置 于环形腔室中并和环形腔室的内圆周上的一段侧壁即转子 (2) 的圆周方向 的一段侧壁形成阳凸轮, 阳凸轮、 缸体 (1) 以及叶片 (7) 构成同心凸轮 机构;
至少两叶片 (7) 对称地设置在缸体 (1) 上;
该阳凸轮与转子 (2) 共轴线;
隔板 (3) 位于该阳凸轮的远休止角 (8) 内, 同吋近休止角 (9) 大于相邻 两个叶片 (7) 之间的夹角, 该夹角包含该叶片 (7) 的肉厚, 在近休止角 (9) 内运转的叶片 (7) 与阳凸轮为低副运动面密封, 并在旋转中输出功 , 在阳凸轮的推程运动角 (10) 和回程运动角 (11) 内运动的叶片 (7) 被 薄板推离该环形腔室的腔壁, 且该叶片 (7) 两侧无压差, 不做功。
[17] 17 . 一种叶片式连续旋转缸, 包括缸体 (1) 、 转子 (2) 、 隔板 (3) 、 工 质入口 (4) 、 工质出口 (5) 以及叶片 (7) , 转子 (2) 设置于缸体 (1) 中, 转子 (2) 和缸体 (1) 之间形成环形腔室, 隔板 (3) 固定连接于缸体 ( 1) 上, 将环形腔室的连续空腔隔断, 工质入口 (4) 和工质出口 (5) 由 缸体 (1) 提供且分别位于隔板 (3) 的两侧, 叶片 (7) 设置在转子 (2) 上, 其特征在于还包括从缸体 (1) 上延伸出的圆柱凸轮, 该圆柱凸轮与转 子 (2) 共轴线, 至少两叶片 (7) 对称地设置在转子 (2) 上, 转子 (2) 、 圆柱凸轮以及叶片 (7) 构成同心凸轮机构;
隔板 (3) 位于圆柱凸轮的近休止角 (8) 内, 同吋圆柱凸轮的远休止角 (9 ) 大于相邻两个叶片 (7) 之间的夹角, 该夹角包含该叶片 (7) 的肉厚, 在远休止角 (9) 内运转的叶片 (7) 与圆柱凸轮为低副运动面密封, 并在 旋转中输出功, 在圆柱凸轮的推程运动角 (10) 和回程运动角 (11) 内运 动的叶片 (7) 被圆柱凸轮推离环形腔室的腔壁, 且该叶片 (7) 两侧无压 差, 不做功。
[18] 18.
一种叶片式连续旋转缸, 包括缸体 (1) 、 转子 (2) 、 隔板 (3) 、 工质入 口 (4) 、 工质出口 (5) 以及叶片 (7) , 转子 (2) 设置于缸体 (1) 中, 转子 (2) 和缸体 (1) 之间形成环形腔室, 隔板 (3) 将该环形腔室的连续 空腔隔断, 工质入口 (4) 和工质出口 (5) 分别位于隔板 (3) 的两侧, 其 特征在于还包括可摆动的、 轴线与转子轴线平行的叶片 (7) 、 用于引导叶 片 (7) 越过隔板 (3) 的与转子 (2) 同心的凸轮 (6) 。
PCT/CN2009/072971 2009-04-20 2009-07-29 叶片式连续旋转缸 WO2010121450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2009100496044A CN101586474A (zh) 2009-04-20 2009-04-20 叶片式连续旋转缸
CN200910049604.4 2009-04-20

Publications (1)

Publication Number Publication Date
WO2010121450A1 true WO2010121450A1 (zh) 2010-10-28

Family

ID=41370877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072971 WO2010121450A1 (zh) 2009-04-20 2009-07-29 叶片式连续旋转缸

Country Status (2)

Country Link
CN (1) CN101586474A (zh)
WO (1) WO2010121450A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828950A (zh) * 2012-09-21 2012-12-19 浙江东海瑞普科技有限公司 一种芯隔泵
CN109854499A (zh) * 2019-04-01 2019-06-07 杨金牛 多功能高压泵

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182623A (zh) * 2010-10-17 2011-09-14 龙全洪 流体动力机
CN102242707A (zh) * 2011-06-11 2011-11-16 童海滨 内切双筒滚动式泵
CN103486025A (zh) * 2012-06-11 2014-01-01 王映辉 叉式复合滑板转子泵
CN104747235A (zh) * 2014-01-27 2015-07-01 摩尔动力(北京)技术股份有限公司 进排共用流体机构及包括其的装置
CN104712370B (zh) * 2014-02-04 2018-02-09 摩尔动力(北京)技术股份有限公司 隔离体联动流体机构及包括其的发动机
CN106194268A (zh) * 2016-08-19 2016-12-07 唐翊翃 气体、液体与动力转化系统
CN110662903B (zh) * 2017-05-25 2021-12-03 南洋理工大学 旋转叶片装置
CN109505659A (zh) * 2018-05-15 2019-03-22 万常玉 气体膨胀压力动力机
CN108869439A (zh) * 2018-07-09 2018-11-23 武汉科技大学 一种缸体叶片支撑为可拆卸式的液压摆动油缸
CN109209862B (zh) * 2018-10-26 2019-11-12 常州大学 渐开面多腔摆动泵
CN112439655B (zh) * 2020-10-30 2022-02-08 湖南泰合电机有限公司 一种电机加工用铁氧体转子涂胶装置
CN114013420B (zh) * 2021-09-28 2023-07-21 中国船舶工业集团公司第七0八研究所 一种无轴承矢量喷管驱动装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047720A (zh) * 1990-06-06 1990-12-12 崔汉平 隔板活塞旋转内燃发动机
CN1284607A (zh) * 2000-09-11 2001-02-21 孙会英 双叶片液压泵及马达
CN1285289A (zh) * 2000-09-20 2001-02-28 孙会英 多挡位液压变速器
CN1598267A (zh) * 2004-09-11 2005-03-23 于贵 旋转式发动机
WO2005038198A1 (en) * 2003-10-16 2005-04-28 Esko Raikamo A hydraulically operated power unit
WO2006127535A1 (en) * 2005-05-20 2006-11-30 Gilbert Staffend, Inc. Rotating vane combustion engine
CN101216036A (zh) * 2008-01-21 2008-07-09 任国明 旋瓣式压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047720A (zh) * 1990-06-06 1990-12-12 崔汉平 隔板活塞旋转内燃发动机
CN1284607A (zh) * 2000-09-11 2001-02-21 孙会英 双叶片液压泵及马达
CN1285289A (zh) * 2000-09-20 2001-02-28 孙会英 多挡位液压变速器
WO2005038198A1 (en) * 2003-10-16 2005-04-28 Esko Raikamo A hydraulically operated power unit
CN1598267A (zh) * 2004-09-11 2005-03-23 于贵 旋转式发动机
WO2006127535A1 (en) * 2005-05-20 2006-11-30 Gilbert Staffend, Inc. Rotating vane combustion engine
CN101216036A (zh) * 2008-01-21 2008-07-09 任国明 旋瓣式压缩机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828950A (zh) * 2012-09-21 2012-12-19 浙江东海瑞普科技有限公司 一种芯隔泵
CN102828950B (zh) * 2012-09-21 2016-01-13 浙江东海瑞普科技有限公司 一种芯隔泵
CN109854499A (zh) * 2019-04-01 2019-06-07 杨金牛 多功能高压泵

Also Published As

Publication number Publication date
CN101586474A (zh) 2009-11-25

Similar Documents

Publication Publication Date Title
WO2010121450A1 (zh) 叶片式连续旋转缸
US6659744B1 (en) Rotary two axis expansible chamber pump with pivotal link
JP2016508558A (ja) 容積型の機械のためのデバイス、当該デバイスのための制御ギヤ機構および制御ギヤ機構の使用法
JP6408027B2 (ja) 偏心可動羽根ポンプ
WO2014166431A1 (zh) 转动装置及其相应的流体马达、发动机、压缩机和泵
WO2006046027A1 (en) Rotary vane engine
WO2018126758A1 (zh) 一种旋转压缩机、制冷系统及调温设备
WO2018171452A1 (zh) 一种凸轮转子内燃发动机动力系统
WO2021098542A1 (zh) 一种摆动叶片液气动力装置
CN102155407A (zh) 单缸双作用旋转式压缩机
JP2012077751A (ja) ロータリーモジュレーションエンジン
US20140000550A1 (en) Piston engine
JPH05507536A (ja) ロータリピストン型内燃機関
US20030192503A1 (en) Rotary machine
US20070280844A1 (en) Rotary Machine and Internal Combustion Engine
WO2023280183A1 (zh) 分腔转子容积机构
WO2017032271A1 (zh) 应用压动闸阀机构的转动装置、转动系统及流体机械
WO2013152730A1 (zh) 转子压缩机、转子发动机及转子汽轮机
JP2018535357A (ja) 回転排出装置
CN110285057A (zh) 同步多偏心轴转子泵及发动机
CN101769164A (zh) 旋转活塞缸
CN203515794U (zh) 叶片式发动机
JP6563919B2 (ja) 固定レール式ロータポンプおよび固定レール式ロータポンプ組み合わせ過給内燃エンジン
US10082028B2 (en) Rotary volumetric machine with three pistons
CN109611195B (zh) 一种转子与定子间导流式转子内燃机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/03/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09843554

Country of ref document: EP

Kind code of ref document: A1