WO2021098542A1 - 一种摆动叶片液气动力装置 - Google Patents

一种摆动叶片液气动力装置 Download PDF

Info

Publication number
WO2021098542A1
WO2021098542A1 PCT/CN2020/127509 CN2020127509W WO2021098542A1 WO 2021098542 A1 WO2021098542 A1 WO 2021098542A1 CN 2020127509 W CN2020127509 W CN 2020127509W WO 2021098542 A1 WO2021098542 A1 WO 2021098542A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotor
cylinder
wall
power device
Prior art date
Application number
PCT/CN2020/127509
Other languages
English (en)
French (fr)
Inventor
李光惠
Original Assignee
李光惠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李光惠 filed Critical 李光惠
Publication of WO2021098542A1 publication Critical patent/WO2021098542A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/30Rotary-piston engines having the characteristics covered by two or more of groups F03C2/02, F03C2/08, F03C2/22, F03C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F03C2/308Rotary-piston engines having the characteristics covered by two or more of groups F03C2/02, F03C2/08, F03C2/22, F03C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in F03C2/08 and having a hinged member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • F01C1/44Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the invention relates to the technical fields of hydraulic pressure, air pressure, low-drop hydroelectric power generation, medium and low temperature, medium and low pressure thermal steam power conversion, and more particularly, it is a swing blade hydro-pneumatic power device.
  • a positive displacement rotary power device such as a vane motor is composed of a cylinder (stator ring), a rotor, a cylinder head, a vane, and other main components.
  • the inner wall of the cylinder and the outer wall of the rotor have different radial distances on different sections, and the vanes are located between them.
  • the blades Under the action of pressurized liquid or gas, the blades have different lengths, areas and directions in different radial directions, between the inner wall of the cylinder and the outer wall of the rotor, and the torque is generated to drive the rotor to rotate.
  • the existing vane-type hydraulic (pneumatic) motor the rotor has vane sliding grooves, in the radial direction of the rotor, relative to the rotor, the vanes move back and forth, the overall movement distance of the vane is the maximum gap between the rotor and the cylinder, and the movement of the vane is Large kinetic energy loss; the outward movement of the blades requires the help of external forces such as springs in the rotor or hydraulic pressure, air pressure, etc.
  • the rotor structure is relatively complex and heavy; the existing blade-type hydraulic (pneumatic) motor blades are relatively simple in design, and the blades Radial movement is powered by a spring or liquid (gas) pressure.
  • the blade movement When the motor is working, the blade movement may lag, causing liquid (gas) leakage and reducing motor efficiency; the inward movement of the blade is provided by the inner wall of the cylinder.
  • Directional force will produce a certain frictional force, and the direction of the reverse force is not radial, but at a certain angle. While the reverse force exerts radial force on the blade, it also generates resistance to the movement of the blade and the rotor.
  • the efficiency of the motor is reduced; the blades are installed in the rotor through the chute, the length of the blades is limited, and the maximum gap between the rotor and the cylinder is relatively small, which affects the capacity ratio, flow ratio and work efficiency of the motor.
  • the existing vane-type hydraulic (pneumatic) motor is restricted by the structure of the vane, the connection and the movement mode, and the flow ratio, power ratio, and energy conversion efficiency of the motor are greatly restricted.
  • thermal power devices such as steam turbines and turbines generally have an open thermal system.
  • the temperature of the system is higher, and the pressure can reach above 20MPa. It is powered by high-pressure and high-speed working fluids. The higher the pressure, the greater the thermal efficiency of the system. high.
  • Its working principle is to use the pressure and kinetic energy of the high-pressure, high-speed working fluid to impact the rotor blades to generate power.
  • the thermal working medium is high-temperature and high-pressure steam, it has extremely high requirements for the manufacture of heat engines.
  • the structure of the heat engine is complex and the precision requirements are high. Therefore, the manufacturing process is complicated, difficult and costly.
  • the equipment usually tends to be large-scale, and the equipment maintenance requirements are high. The cost is big.
  • volumetric power devices such as screw power devices
  • medium and low temperature thermal power generation indicating that the characteristics of volumetric power devices have certain advantages in the field of medium and low temperature, medium and low pressure thermal power generation.
  • the volumetric power unit has a closed steam power space. Under the premise of ensuring the tightness, even for low-pressure, low-speed steam, its reactive flow energy loss is small, which can effectively improve the thermal efficiency of the system.
  • the purpose of the present invention is to design a swing blade hydro-pneumatic power device to solve the performance deficiency caused by the structure itself in the prior art, and achieve the purpose of expanding the application range of the positive displacement hydro-pneumatic device.
  • the invention uses the rotor combined with the blade rotation and swing to move, so that the blade movement is more smooth, the reliability is higher, the sealing performance is better, the friction of the cylinder inner wall is reduced, and there is no reverse resistance of the machine itself, which greatly improves It improves the energy conversion efficiency of the power plant, and is more suitable for medium and low-pressure liquid-vapor power plants; at the same time, this new technical structure has a large single-turn flow rate, which achieves a higher liquid (gas) capacity ratio of the power plant, and improves the power plant’s performance. Liquid (gas) flow ratio, thereby increasing the power ratio of the power plant; when the working medium of the power plant is gas or steam, a higher expansion ratio or compression ratio of a single unit can be achieved.
  • a swing blade hydro-pneumatic power device including a cylinder block, a cylinder head, a rotor and blades, the rotor is movably connected to the inner edge of the blade, and the blade can rotate and swing relative to the rotor.
  • the outer wall of the rotor is provided with a hinge connected to the inner edge of the blade, and the hinges are arranged equidistantly in the circumferential direction of the rotor; as a preferred arrangement scheme
  • the shape of the outer wall of the rotor can be similar to a regular polygonal structure (a circular structure is also possible, but not limited to this), and a hinge connected to the inner edge of the blade is provided at the corners of the outer wall of the rotor, and the outer wall of the rotor is connected to the inner edge of the blade.
  • the blade can rotate and swing relative to the rotor with the hinge axis as the center, avoiding the reciprocating sliding of the blade in the blade slot of the rotor, reducing frictional resistance and blade kinetic energy loss, and lubricating oil can be enclosed in the hinge.
  • the shape of the cross section of the inner wall of the cylinder is composed of two arc segments transitioned by a tangent or arc, and the centers of the two arc segments are eccentrically arranged;
  • the arc center of one of the arc segments of the cylinder is concentric with the rotor rotation center, and the length of the arc segment is greater than or capable of covering the length of the arc segment of the outer wall of the rotor between two adjacent hinges of the rotor.
  • the arc section of the inner wall of the cylinder with the rotor rotation center concentric can effectively improve the sealing performance between the cylinder and the rotor of the power unit.
  • a blade limit spring is arranged between the rotor and the blade to make the outer edge of the blade close to the inner wall of the cylinder to restrict the free movement of the blade and make the blade The outer edge is close to the inner wall of the cylinder.
  • a lubricating oil storage bin and a lubricating oil passage are provided on the rotor, and the lubricating oil passage is connected to the lubricating oil storage bin and the hinge, and the rotor is rotated Centrifugal force provides lubrication to moving parts.
  • the blade is also provided with a blade lubricating oil passage (a blade lubricating oil storage bin may also be provided on the blade), and passes through the lubricating oil passage
  • the hinge is connected to provide lubrication to the active part of the outer edge of the blade.
  • the lubricating oil storage bin (or the blade lubricating oil storage bin) is connected to the blade shaft (or shaft), the blade roller, and the blade roller on the outer edge of the blade through the hinge and the lubricating oil passage. Shafts, guide rail fittings, etc. are connected.
  • centrifugal force is used to send lubricating oil to the hinges of the rotor and the blades, the outer edge of the blades, and the circular shaft (or blade circular shaft) connected to the blades, blade rollers or blade rollers.
  • Shaft, guide rail fittings, etc. realize the lubrication of moving parts;
  • the lubricating oil storage bin can be used to replenish lubricating oil in the working gap of the motor through the cylinder head opening; it can be in the lubricating oil channel according to the motor speed, lubricating oil supply amount, maintenance period, etc Set current-limiting parts to realize effective lubrication and safe operation of equipment.
  • a rotor shaft is nested in the rotor, and a rotor shaft input tube that penetrates one side of the cylinder head is nested in the rotor shaft;
  • An inlet is provided between two adjacent hinges in the circumferential direction, a shaft input port is provided in the radial direction of the rotor shaft, an input pipe input port is provided on the wall of the rotor shaft input pipe, the inlet, the shaft input port and the When the input port of the input pipe is connected, pressurized liquid and gas can enter the working chamber of the power unit to perform work.
  • the outer edge of the blade is embedded with a blade roller and a blade shaft.
  • the cylinder head is provided with a vane guide on the inner wall of the cylinder, the vane guide is a groove, and the vane guide is located between the inner wall of the cylinder and the outer wall of the rotor and is close to the cylinder.
  • the outer edge of the blade is closely attached to the inner wall of the cylinder by the blade guide provided on the cylinder head; the inner groove of the blade guide of the cylinder head is adapted to the guide rail bearing.
  • the groove width of the guide rail is slightly larger than the diameter of the guide rail bearing to prevent the guide rail bearing from generating high-speed friction when the positive pressure section and the reverse pressure section of the blade rotate in opposite directions; the outer groove wall mainly plays a role of sealing.
  • the blade circular shaft extends out of the two ends of the blade, and the two ends of the blade circular shaft are provided with guide rails capable of trajectory movement in the blade guide rails.
  • the outer edge of the blade and the roller are close to the inner wall of the cylinder.
  • an auxiliary blade (back pressure sealing blade) is also connected to the outer edge of the blade and the movement front, and the rear edge of the auxiliary blade movement direction (relative to the blade The direction of motion) is connected with the outer edge of the blade by the auxiliary blade hinge.
  • the front ends of the auxiliary blade are equipped with auxiliary blade circular shafts, and the auxiliary blade circular shaft is matched with the auxiliary blade to control the front edge of the auxiliary blade to close to the cylinder body under the action of the blade guide rail.
  • the corresponding section (when the blade is in the back pressure state), prevents liquid (gas) leakage and plays a good sealing role; this structure is especially used as a pneumatic motor power unit, which can play a role in sealing the power unit inlet in advance ( The function of gas) can make full use of the gas expansion pressure to do work to achieve the purpose of improving the energy conversion efficiency of the power plant.
  • the blade may adopt the A structure: the outer edge of the blade is embedded with a blade roller (built-in high-speed bearing), and the outer edge of the blade is axially
  • a blade circular shaft is also provided through the outer edge of the blade and the blade drum, and the blade circular shaft extends out of both ends of the blade.
  • On both ends of the blade circular shaft there are provided guide rail fittings capable of trajectory movement in the blade guide rail, and the guide rail
  • the matching parts adopt guide rail bearings or sliders.
  • the outer wall of the blade drum is in contact with the inner wall of the cylinder body. The blade passes through the guide rail matching parts and the blade drum.
  • the inner wall can reduce the frictional resistance between the blade and the cylinder; improve the reliability of the blade movement, achieve the purpose of improving the sealing performance of the blade and reducing the leakage of liquid (gas) body.
  • the blade may adopt the B structure: round shafts are provided at both ends of the outer edge of the blade for installing guide rail fittings using guide rail bearings or sliders, With the cooperation of the blade guide rail, the movement track of the outer edge of the blade is controlled so that the outer edge of the blade is close to the inner wall of the cylinder.
  • the blade may adopt a C structure: round shafts are provided at both ends of the outer edge of the blade, and are used to install the guide rail fittings adopting the guide rail bearing or the sliding block.
  • the outer edge of the blade is provided with a roller embedding groove, and the blade roller is provided in the roller embedding groove. This structure can reduce the frictional resistance between the blade and the cylinder.
  • a discharge outlet and an inlet are arranged on the cylinder, and between the two blades, a chamber is formed by the cylinder, the cylinder head, the rotor, and the blades.
  • the inlet and outlet (discharge outlet, inlet) of the gas body can be opened on the cylinder block or cylinder head.
  • the opening position of the inlet and outlet can be adjusted appropriately according to the power unit (motor) speed and liquid (gas) pressure. In the specific setting, it is used for
  • the end position of the gas or steam power plant inlet can be determined according to the expansion ratio of the gas or steam.
  • the following arrangement structure is particularly adopted: on the cylinder head, the inner side of the vane guide rail and the corresponding section of the vane subjected to the reverse pressure are provided with a back pressure support spring; preferably for the vane guide rail.
  • the inner side of the vane guide rail on the cylinder head and the corresponding section of the inner wall of the cylinder from the discharge outlet to the inlet are provided with a back pressure support spring to reduce the gap between the vane and the inner wall of the cylinder, and improve the outer edge of the vane and the inner wall of the cylinder. The tightness between.
  • the cylinder body adopts a structure with a straight section in the middle of the cross section and curved arc sections at both ends, which can make the blade running track more reasonable and maximize the increase of the blade.
  • the motor's liquid (gas)-to-body flow ratio improves the power ratio of the vane motor.
  • a swing blade liquid-pneumatic power device powered by gas or steam and a power device activation port is provided on the one side of the cylinder head, and when there is no connected air intake
  • a (steam) channel to provide starting power or torque the width or diameter of the starting opening should be smaller than the thickness of the blade to avoid connecting two adjacent chambers.
  • the present invention has the following advantages and beneficial effects:
  • the present invention is a positive displacement hydro-pneumatic power device. Its structure is derived from the vane motor in the hydraulic and pneumatic fields, but has major innovations and changes. Therefore, its application range is not limited to the hydraulic and pneumatic fields, and can be used in medium, low temperature, medium and low pressure. Thermal power generation (utilization of low-grade thermal energy, such as solar energy, geothermal, waste heat, etc.), and the field of low-drop small hydropower to expand its application range.
  • the invention is used for medium and low pressure liquid vapor, and under the premise of ensuring the tightness, the pressurized liquid vapor can pass through the power device with high efficiency, thereby improving the energy conversion efficiency; under the condition of ensuring a certain efficiency, the power device can be miniaturized.
  • the heat engine can be miniaturized and the thermal power generation system can be conveniently and flexibly designed.
  • the present invention can be implemented economically and conveniently.
  • the present invention can achieve equipment miniaturization, can improve the energy conversion efficiency of medium and low temperature, medium and low pressure thermal systems, and has a smaller starting torque than positive displacement power equipment such as twin-screw expanders.
  • positive displacement power equipment such as twin-screw expanders.
  • the existing hydraulic and pneumatic vane motors have their vanes reciprocating in the radial direction of the rotor relative to the rotor.
  • the overall movement distance of the vanes is the maximum gap between the rotor and the cylinder.
  • the vane of the present invention swings relative to the rotor. Rotation, the movement distance of the outer edge of the blade is the maximum gap between the rotor and the cylinder, and the movement distance of the inner edge of the blade is zero, so the kinetic energy loss of the blade is relatively small, so the energy loss is small.
  • the existing hydraulic and pneumatic blade motors have blade slots in the rotor, and need to install springs or design hydraulic and pneumatic channels.
  • the rotor structure is relatively complex and heavy; while the rotor of the present invention has a relatively simple structure, simple manufacturing process, and relatively low cost. Lower, easy to maintain, and light in weight.
  • the design of the existing hydraulic and pneumatic blade motor blades is relatively simple.
  • the radial movement of the blades is powered by springs or liquid (gas) pressure.
  • the blade movement may lag, causing liquid (gas) movement.
  • Leakage reduces the efficiency of the motor; the blades are provided with the opposite force from the inner wall of the cylinder, which will generate a certain frictional force, and the direction of the opposite force is not radial, but at a certain angle with the blades, and the opposite force is exerting on the blades.
  • the radial force also produces resistance to the movement of the blades and rotors, which reduces the efficiency of the motor.
  • the present invention due to the design of the blade guide rail, the guide rail fitting, the blade roller or the blade roller, which cooperates to make the movement of the blade Smoother, higher reliability, better sealing, reduced friction on the inner wall of the cylinder, and no reverse resistance of the machine itself, greatly improving work efficiency; although the blade design of the present invention is relatively complex, it is different from traditional blades. Compared with the complexity of the motor rotor and the difficulty of the manufacturing process, it is still simple and easy, and the manufacturing cost is also reduced to a certain extent.
  • the liquid (gas) storage chamber formed between the blades of the present invention has a relatively large capacity. Compared with the blade motor of the original structure, the power can be greatly improved when the size is similar and the rotation speed is the same.
  • the present invention optimizes the inlet and outlet of the liquid (gas) body, and qualitatively designs the inlet and outlet opening positions and end positions, which is beneficial to make full use of the liquid (gas) to generate torque and power, and improve the efficiency of the power plant.
  • the invention includes multi-chamber work, one or two chambers are always in the state of liquid (gas) work, can continuously output power, and the blades work reliably under the action of the blade guide rail or the limit spring.
  • the invention can directly generate rotation power by using pressurized liquid (water, oil) or gas (including high-pressure gas and high-pressure steam produced by fuel oil and gas), and has high energy conversion efficiency. It can be widely used to generate electricity or drive other mechanical devices, and can also be used as a basic structure for liquid and air pumps.
  • the invention Compared with the currently widely used hydraulic and pneumatic motors, the invention has simple structure, reliable work, convenient maintenance, simple manufacturing and installation process, low manufacturing cost, and its notable features are high power ratio and high energy conversion efficiency.
  • Figure 1 is a schematic diagram of the structure of the present invention shown in Example 1 (gas or steam as power).
  • Fig. 2 is a schematic diagram of the structure of the present invention shown in embodiment 2 (liquid is power).
  • Fig. 3 is a schematic diagram of the structure of the rotor shaft of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the rotor shaft input pipe according to the present invention.
  • Fig. 5 is a schematic diagram of the structure of the blade (non-blade guide rail technology) of the present invention.
  • Fig. 6 is a schematic diagram of the structure of the present invention (using the blade guide rail in the first operating state).
  • Figure 7 is a schematic diagram of the structure of the present invention (using the second operating state of the vane guide rail).
  • Figure 8 is a schematic diagram of the structure of the present invention (using the third operating state of the vane guide rail).
  • Figure 9 is a schematic diagram of the structure of the present invention (using the blade guide rail in the fourth operating state).
  • Figure 10 is a schematic diagram of the rotor according to the present invention (including lubricating oil storage bin and lubricating oil passage).
  • Figure 11 is a schematic diagram of the cylinder head structure of the present invention (using vane guide rails).
  • Fig. 12 is a schematic diagram of the structure of the blade of the present invention (the blade guide rail structure adopts a roller).
  • Fig. 13 is a schematic diagram of the structure of the blade (the blade guide rail structure adopts a roller) of the present invention.
  • FIG. 14 is a schematic diagram of the structure of the blade (the third type of blade guide rail structure) according to the present invention.
  • Figure 15 is a schematic diagram of the auxiliary vane (back pressure sealing vane) structure.
  • Fig. 16 is a schematic diagram of the arrangement of the back pressure support spring according to the present invention.
  • Figure 17 is a front view of the liquid (gas) inlet and outlet (installed on the cylinder) of the present invention (A is the drain outlet, and B is the inlet).
  • Figure 18 is a schematic diagram of the structure of the present invention (including the auxiliary blade structure).
  • Figure 19 is a schematic diagram of the deformed structure of the present invention (the rotor section of A is pentagonal, and the section of cylinder B is elliptical).
  • Fig. 20 is a schematic diagram of the power plant structure with a cylindrical cylinder, a cylindrical rotor, and arc-shaped blades, and the cylinder and the rotor are in eccentric positions.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise specifically defined.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features. Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • this embodiment shows a power plant that uses pressurized gas or steam to do work.
  • the cylinder block 1 adopts a cylinder block structure composed of two arc segments whose inner wall is transitioned by a tangent or arc.
  • the cylinder block 1 (stator ring), two cylinder heads 2, a rotor 3, four blades 4, four blade rollers 12, a rotor shaft 3A, a rotor shaft center input pipe 3B, and the like are constituted.
  • the inner wall of the cylinder 1 is a structure formed by two arc segments transitioned by tangents or arcs. It is the outer structure of the power unit and can be fixed to the cylinder head 2 by flanges.
  • the center of the two arcs of the cylinder 1 is eccentrically arranged; the rotation center of the rotor 3 is concentric with the center of one of the arcs of the cylinder 1, and the length of the arc concentric with the rotation center of the rotor 3 is greater than or can cover the two on the rotor 3.
  • the length of the arc segment between adjacent connecting positions (hinge 8), the outer wall of the rotor 3 and the inner edge of the blade 4 are tolerated to fit the arc segment of the inner wall of the cylinder 1 that is concentric with the rotation center of the rotor 3; make the rotor 3 and the cylinder 1 on the axis Keep the same direction, and make the rotor 3 relative to the cylinder block 1 and the cylinder head 2 limited to rotating motion; the cylinder block 1 has a discharge outlet (gas or steam) 19, between the two blades 4, the cylinder block 1, the rotor 3.
  • the outer edge of the previous blade 4 or the position of the blade drum 12 in the rotation direction of the rotor 3 is the starting position of the discharge outlet 19; when the warehouse space When the minimum capacity is reached, the outer edge position of the latter blade 4 is the end position of the discharge port 19.
  • the rotor 3 is shaped like a square column (but not limited to this, it can also be diamond, round, etc.).
  • the rotor forms the outer wall of the rotor 3 and the cylinder in different radial directions. 1
  • the distance difference between the inner wall; the outer wall of the rotor 3 is equidistantly arranged with hinges 8 in the circumferential direction.
  • the hinges 8 cooperate with the hinge shaft 9 for linking with the blade 4 and enable the blade 4 to swing on the rotor 3;
  • the rotor 3 is nested with the rotor shaft 3A,
  • a section of the rotor shaft 3A is hollow in the rotor 3 and extends to the cylinder head 2 on one side, passing through the fixing hole 21 in the cylinder head 2;
  • the other end of the rotor shaft 3A extends out of the cylinder head 2, which is a torque and power output component;
  • An inlet 20 is provided between the adjacent hinges 8 of the rotor, and a shaft input port 20A is provided at a position corresponding to the rotor shaft 3A and the inlet 20;
  • the rotor shaft 3A is nested with a rotor shaft input pipe 3B, which penetrates and extends from one side of the cylinder
  • the cover 2 is fixed to the cylinder head 2, and the part extending out of the cylinder cover can be used as a liquid vapor input interface;
  • the blade 4 is a rectangular plate shape (not limited to a plate shape), and a hinge 8 is provided on its inner edge.
  • the blade 4 is located between the cylinder block 1 and the rotor 3 and two cylinder heads 2, and the inner edge of the blade 4 passes through the hinge 8 is linked to the rotor 3 by a hinge, and can be rotated and oscillated between the cylinder block 1 and the rotor 3; a blade drum 12 is embedded on the outer edge of the blade 4; the steam pressure or air pressure and the rotor 3 are rotated by centrifugal force , The outer edge of the blade 4 runs close to the inner wall of the cylinder 1 through the blade drum 12.
  • Cylinder head 2 is a plate shape that fits with cylinder block 1, and is an external structural part of this power unit. Its shape is sufficient to cover the end of cylinder block 1 and is fixed to the axial ends of cylinder block 1; cylinder head 2 has In the fixing hole 21 of the rotor shaft, the shaft center of the rotor 3 is fixed at the center of an arc in the cylinder 1 through the rotor shaft 3A and the bearing.
  • a blade limit spring is provided between the rotor 3 and the blade 4 to keep the outer edge of the blade 4 close to the inner wall of the cylinder 1 without the influence of the negative pressure of the chamber.
  • a power unit starting inlet is provided on one side of the cylinder head 2 to provide starting power or torque when the power unit is not connected to an intake (steam) channel, and the starting inlet width or diameter is smaller than the blade thickness.
  • Lubricating oil can be encapsulated in the hinge 8 where the rotor 3 is connected to the blade 4 and the drum 12 where the blade 4 is installed.
  • the former blade 4 is forced to the rotor 3, the center of rotation radius is greater than the force radius of the outer wall of the rotor 3 or The reverse force radius of the next blade 4, the angle between the force direction of the previous blade 4 and the rotation direction of the rotor 3 is smaller than the angle between the force on the outer wall of the rotor 3 or the reverse force direction of the next blade 4 and the rotation direction of the rotor 3 , Thereby forming a torque difference, thereby forming a torque to drive the rotor 3 to rotate.
  • pressure steam can be input through the start inlet on the cylinder head 2 to provide starting torque. After the power unit is started, the start inlet can be closed.
  • the inlet 20 and the shaft input port 20A are connected to the input pipe input port 20B, and the outer edge of the blade 4 leaves the arc section of the inner wall of the cylinder 1 concentric with the rotor 3, and the chamber enters the steam injection stage.
  • the warehouse is in a state of pushing work and doing work.
  • the rotor 3 continues to rotate.
  • the inlet 20 and the shaft input port 20A and the input pipe input port 20B are cut off, the steam no longer enters the warehouse, and the warehouse enters the steam expansion stage.
  • the warehouse is in a state of expansion work.
  • the rotor 3 continues to rotate.
  • the outer edge of the front blade 4 of the warehouse passes over the starting position of the discharge port 19 of the cylinder 1, and the warehouse enters the steam discharge stage until the blades 4
  • the outer edge crosses the end position of the discharge port 19 of the cylinder block 1 and enters the arc section of the inner wall of the cylinder block 1 concentric with the rotor 3.
  • the steam discharge phase of the warehouse ends; when the warehouse is in the steam discharge stage, the rotor 3 The latter bin in the direction of rotation is in the work phase.
  • a brand-new structure is adopted to make the movement of the blades more smooth, the power unit has higher operating reliability, lower friction, and better sealing, which can greatly improve the energy conversion efficiency and power of the power unit.
  • the power plant with medium and low pressure steam as the power source in terms of working principle and device structure. It initially has the design and performance requirements that a small power plant should have, and can be applied to medium and low temperature (or low-grade) heat. Power generation field, such as waste heat utilization, geothermal power generation, small solar thermal power generation, etc.
  • the equipment can be miniaturized, with low speed and moderate power as its salient features.
  • This embodiment is a power device that uses pressurized liquid to provide power.
  • the power device of this embodiment has the same configuration as that of Embodiment 1.
  • the difference from Embodiment 1 lies in the input tube of the rotor shaft input tube 3B.
  • the input port 20B has a large opening, and its design needs to satisfy the requirement that the working chamber closes the liquid input channel instantaneously before the liquid starts to leak out.
  • the working principle of this embodiment is basically the same as that of Embodiment 1, the difference is that when the liquid working chamber is doing work, liquid always enters the chamber, and there is no expansion phase.
  • one or two bins are always in the work phase, which can ensure the continuous power output of the power plant.
  • the rotor 3 continues to rotate.
  • the inlet 20 and the shaft input port 20A and the input pipe input port 20B are cut off, and the liquid no longer enters the chamber; at the same time, the outer edge of the front blade 4 of the chamber immediately passes over the cylinder
  • the warehouse enters the stage of leaking liquid, and the working state of the warehouse ends; the latter warehouse in the direction of rotation of the rotor 3 is still in the working stage.
  • a swing blade hydro-pneumatic power device is mainly composed of a cylinder block 1 (stator ring), two cylinder heads 2, a rotor 3, six blades 4, and six pairs
  • the guide rail bearing, six blade rollers 12 and so on are constituted.
  • the cylinder body 1 is cylindrical, which is the outer structural part of the power plant, and can be fixed to the cylinder head 2 by flanges; the cross-sectional shape of the cylinder body 1 is like a circular racetrack (the present invention is not limited to similar circular racetracks, It can also be round, oval, etc.); the cylinder 1 has liquid (gas) inlets and outlets (discharge outlet 19 and inlet 20).
  • the cylinder 1, the rotor 3, the cylinder head 2 and the blades 4 When the space forming the bin reaches the minimum capacity, the outer edge position of the former blade 4 in the direction of rotation of the rotor 3 is the starting position of the inlet 20, and the outer edge position of the latter blade 4 is the end position of the discharge outlet 19; When the warehouse space reaches the maximum capacity, the position of the outer edge of the latter blade 4 is the end position of the inlet 20, and the position of the outer edge of the previous blade or the blade drum 12 is the starting position of the discharge outlet 19.
  • the cylinder head 2 is a straight line and arc-shaped plate, which is an external structural part of the power unit and fixes the power unit; the cylinder head 2 has a fixing hole 21 for the rotor shaft, which is fixed by the rotor shaft The rotor 3 is in the cylinder 1; the cylinder head has a blade guide 5, which is an annular groove for inserting the guide bearing of the blade, and cooperates with the inner wall of the cylinder 1 to control the movement trajectory of the outer edge of the blade 4.
  • the rotor 3 is in the shape of a rhombus column (but not limited to this, it can also be a circle), and the cross-sectional shape of the outer wall is a regular hexagon (but not limited to a regular hexagon, but can also be any polygon)
  • the two ends of the rotor 3 are cylindrical rotor shafts, which pass through the fixing holes 21 in the cylinder head 2, and place the rotor 3 in the center of the cylinder block 1, so that the rotor 3 and the cylinder block 1 are aligned in the axial direction, and the rotor 3 Relative to the cylinder block 1, the cylinder head 2 is limited to rotating motion; one end of the rotor shaft extends out of the cylinder head 2, which is a torque and power output component; on the cross section, different rotors form the inner wall of the cylinder 1 and the outer wall of the rotor 3 in the radial direction
  • the blade 4 is a rectangular plate shape (not limited to a plate shape), with a hinge 8 provided on the inner edge, and a blade of structure A is adopted on the outer edge of the blade 4.
  • the blade 4 is located in the cylinder 1 and the rotor 3 and two cylinders.
  • the inner edge of the blade 4 is hinged on the rotor 3 through a hinge 8, and can be rotated and oscillated between the cylinder 1 and the rotor 3; there is a blade shaft 10 on the outer edge of the blade 4, and the blade 4
  • the blade roller 12 (built-in high-speed bearing) is embedded on the outer edge of the blade, the blade shaft 10 axially penetrates the outer edge of the blade 4 and the blade roller 12 and extends at both ends of the blade 4; the part extending from both ends of the blade shaft 10 is fixed
  • the guide rail fitting here, the guide rail bearing is used
  • the guide rail fitting controls the movement trajectory of the outer edge of the blade 4;
  • the blade 4 passes through the guide bearing and the blade roller 12, under the liquid (gas) pressure, the inner wall of the cylinder 1 Under the joint action of the blade guide 5, the outer edge of the blade 4 is close to the inner wall of the cylinder body 1.
  • the diameter of the guide rail bearing is set to be slightly smaller than the groove width of the blade guide 5.
  • the space formed by the cylinder block 1, the rotor 3, the cylinder head 2 and the blades 4 is a motor fluid (gas) chamber.
  • the chamber is in the liquid (gas) press-in phase, in the direction of rotation of the rotor 3, under the action of the liquid (gas) pressure in the chamber, the circumferential force transmitted from the previous blade 4 to the hinge 8 is greater than the reverse of the latter blade 4 Force, the pressure difference of the rotor 3 in the direction of rotation is formed, and a torque is formed to drive the rotor 3 to rotate.
  • the chamber is in a working state.
  • the capacity of the chambers 1 and 4 are in the minimum state, and the liquid (gas) in the chamber is in the critical point state where the liquid (gas) is discharged and then pressed in; the chambers 2 and 5 are in the working state of the liquid (gas) being continuously pressed in. ; The warehouse 3 and 6 are in a state of continuous leakage of liquid (gas).
  • the rotor 3 rotates at a certain angle, and the chambers 1, 4 continue to be in the working state of liquid (gas) pressure from the last working state; the capacity of the chambers 2, 5 reaches the maximum, and the chambers 1, 4 ) Is at the critical point of pressure in and out of discharge, and the state of the warehouse is over; the warehouses 3 and 6 are in a state of continuous discharge of liquid (gas).
  • the rotor continues to rotate at a certain angle, and the chambers 1 and 4 are in a state of continuous pressure in and work; the chambers 2, 5 continue to be in a state of liquid (gas) discharge since the last working state; The chambers 3 and 6 are in a state of continuous leakage of liquid (gas).
  • the rotor continues to rotate at a certain angle, and the chambers 1 and 4 are in the state of liquid (gas) continuous pressure to do work, and enter the initial (shown in Figure 1) chambers 2, 5 state; chamber 2, 5In the state of continuous liquid (gas) leakage, enter the initial state of chamber 3, 6, the capacity of the chambers 3, 6 reaches the minimum, and the chamber is at the critical point of liquid (gas) leakage and then press in, enter the initial chamber Room 1, 4 state.
  • the working state of the above power plant is the working process of the rotor 3 rotating 60°; the rotor 3 rotating 180°, then each chamber will complete the complete process from liquid (gas) entering to leaking or leaking to entering, that is, each chamber
  • the chamber will complete a complete work process; when the rotor 3 rotates 360°, each chamber will complete two complete work processes.
  • the previous blade 4 of the chamber When the chamber is in a working state, the previous blade 4 of the chamber is in a positive pressure state. Because the blade 4 is at a certain angle with the inner wall of the cylinder 1, the liquid (gas) pressure makes the front blade 4 close to the inner wall of the cylinder 1, and Good sealing effect.
  • This example is a power plant designed according to the present invention, which is more suitable for a power plant powered by pressurized liquid.
  • Embodiment 3 is further optimized on the basis of Embodiment 3.
  • the same parts as the aforementioned technical solutions will not be repeated here.
  • the following structure is especially adopted:
  • the inner side of the vane guide 5 of the cylinder head 2 and the outer edge of the vane 4 are located at the corresponding section from the discharge port 19 to the inlet 20 (the vane 4 is in a back pressure state).
  • a back pressure support spring 18 is provided to reduce the gap between the vane 4 and the inner wall of the cylinder 1 Clearance improves the sealing performance of the vane motor.
  • this solution aims to further improve the sealing performance and energy conversion efficiency of the power plant.
  • an auxiliary blade 15 (back pressure sealing blade) is connected to the outer edge of the blade 4 and in front of the movement of the blade 4, and the rear edge of the auxiliary blade 15 ( Relative to the direction of motion of the blade) is connected to the outer edge of the blade 4 by a secondary blade hinge 16.
  • the front movement track makes it close to the inner wall of the cylinder 1, when the auxiliary vane 15 runs on the outer edge of the vane 4 at the corresponding section from the discharge port 19 to the inlet 20 (the vane 4 is in a back pressure state) to prevent liquid (gas) leakage , It has a good sealing effect; when this structure is especially applied to a vane motor as a pneumatic motor, it can play a role in sealing the air inlet (inlet 20) of the power unit in advance, and make full use of the gas expansion pressure to do work to improve power The purpose of device efficiency.
  • Gas is different from liquid. There is a state of compression and expansion. Compressed gas has a certain amount of energy.
  • This solution uses auxiliary vanes to close the inlet 20 in advance, and adjusts the opening position of the inlet and outlet according to the gas pressure and expansion rate, which can effectively use the gas expansion. The energy released.
  • the compressed air inlet is completely closed, which can be solved by a special starting air pressure channel design.
  • the starting air pressure channel is designed between the inlet 20 and the outlet 19 in the direction of rotation of the rotor 3, which can be closed after the power unit is started.
  • the power plant of this scheme has better sealing performance, and can make full use of gas expansion pressure to do work, and has higher energy conversion efficiency, which is suitable for fields with higher energy conversion efficiency requirements or pressurized gas applications.
  • a lubricating oil storage bin 6 and a lubricating oil passage 7 are provided on the rotor 3, and a blade lubricating oil passage 14 is provided on the blade 4 through which lubricating oil passes.
  • the channel 7, the blade lubricating oil channel 14 communicates with the lubricating oil storage bin 6 and the hinge 8, the guide bearing and the blade drum 12, when the rotor 3 and the blade 4 rotate, the lubricating oil is sent to the hinge 8 connecting the rotor 3 and the blade 4 by centrifugal force ,
  • the blade roller 12, the guide rail bearing, etc. connected to the blade 4 realize the lubrication of the movable parts.
  • this solution aims to improve the convenience of equipment maintenance, reduce equipment wear, and extend equipment service life.
  • the arrow in the box is the direction of liquid (gas) flow
  • the direction of the arrow on the rotor 3 is the direction of rotation of the rotor.
  • Embodiment 3 is further optimized on the basis of Embodiment 3. The same parts as the technical solution will not be repeated here.
  • the setting position of the liquid (gas) inlet and outlet is changed and designed, and the corresponding rotor and cylinder The cover is also changed.
  • a rotor shaft 3A When installed, a rotor shaft 3A is nested in the rotor 3, and a rotor shaft input pipe 3B that penetrates one side of the cylinder head 2 is nested in the rotor shaft 3A; two in the circumferential direction of the rotor 3
  • An inlet 20 is provided between two adjacent hinges 8, a shaft input port 20A is provided in the radial direction of the rotor shaft 3A, and an input pipe input port 20B is provided on the wall of the rotor shaft input pipe 3B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)

Abstract

一种摆动叶片液气动力装置,包括缸体(1)、缸盖(2)、转子(3)及叶片(4),所述转子(3)活动连接叶片(4)内沿,叶片(4)能够相对于转子(3)作旋转摆动。所述摆动叶片液气动力装置采用摆动叶片技术结构,使得叶片的运动更加流畅,可靠性高,密封性好,降低了缸体内壁的摩擦力,没有机械本身的反向阻力,提高了动力装置的工作效率。

Description

一种摆动叶片液气动力装置 技术领域
本发明涉及液压、气压、低落差水力发电、中低温中低压热力蒸汽动力转换等技术领域,具体地说,是一种摆动叶片液气动力装置。
背景技术
容积式旋转动力装置如叶片马达,是由缸体(定子环)、转子、缸盖、叶片等主要部件组成,缸体内壁与转子外壁在不同的断面径向上距离不同,叶片位于其间,在有压液体或气体的作用下,形成了叶片在不同的径向上、在缸体内壁与转子外壁之间的受力长度、面积及方向不同,从而产生扭矩推动转子旋转。
现有叶片式液(气)压马达,转子有叶片滑槽,在转子径向、相对于转子,其叶片作往复式运动,叶片整体的运动距离为转子与缸体的最大间隙,叶片运动有较大动能损失;叶片向外运动需要借助转子内的弹簧或液压、气压等外力,转子结构相对复杂、重量较大;现有的叶片式液(气)压马达叶片设计相对简单,其叶片的径向运动,向外由弹簧或液(气)压力提供动力,在马达工作时,叶片运动可能出现滞后现象,造成液(气)泄漏,降低马达效率;叶片向内运动由缸体内壁提供反向力,会产生一定的摩擦力,而反向力方向也不是径向,而是成一定的角度,反向力在给叶片径向力的同时,也给叶片和转子的运动产生了阻力,降低了马达效率;叶片通过滑槽安装在转子内,叶片长度受限,转子与缸体的最大间隙相对较小,影响马达的容量比、流量比和工作效率。
总之,现有的叶片式液(气)压马达由于叶片结构及连接和运动方式的制约,马达的流量比、功率比、能量转换效率受到较大的限制。
现有的水力动力装置如水轮机,结构均为开放式设计,利用或主要利用水的动能冲击水轮机叶片因而产生动力和扭矩。对于水位较低、落差较小的小型水力发电,因水压较低势能转换动能不够充分,因而导致能量利用效率不高。
传统的热力动力装置如汽轮机、透平机,其热力系一般为开口系,系统温度较高,其压力可以达到20MPa以上,以高压、高速运动的工质提供动力,压力越高系统热效率也越高。其工作原理是利用高压、高速工质的压力及动能冲击转子叶片产生动力。由于热力工质为高温高压蒸汽,对热机的制造有极高的要求,热机结构复杂、精度要求高,因而制造工艺复杂、难度大、成本高,设备通常趋于大型化,设备维护要求高、成本大。
然而,对于中低温、中低压热力发电而言,应用传统的热机作为动力设备则无法有效地提高系统热效率,其原因在于开放式的设备结构,可以导致部分蒸汽无功流动,或低效率通 过热机。中低温热力发电的热效率通常较低(一般为12~30%),如何提高其热效率,一直是困扰中低温热力发电行业发展的技术问题,而热机的技术发展又是其中的关键因素。
在自然界及现代社会中存在着广泛的低品位、中低温热源,如锅炉余热、地热、太阳能等,人们利用这类能源除一般的生活供热外,还利用其热能发电。中低温热源的特点是温度不高,如利用其发电,存在工质压力较低的问题,在利用现有技术和设备的前提下发电的热效率较低,以致单位功率投资较高的缺点,限制了中低温热能的利用。
近年来容积式动力装置(如螺杆动力装置),在中低温热力发电中逐步得到应用,说明容积式动力装置的特点在中低温、中低压热力发电领域具有一定的优势。
容积式动力装置具有封闭的蒸汽做功空间,在保证密封性的前提下,即使对于低压、低速的蒸汽,其无功流动能量损失小,从而可以有效地提高系统热效率。
发明内容
本发明的目的在于设计一种摆动叶片液气动力装置,解决现有技术结构本身原因导致的性能之不足,达到拓展容积式液气动力装置应用范围的目的。
本发明采用转子结合叶片旋转摆动的方式进行运动,使得叶片的运动更加流畅,可靠性更高,密封性更好,降低了缸体内壁的摩擦力,更没有机械本身的反向阻力,大大提高了动力装置的能量转换效率,更适合中低压液汽的动力装置;同时,这一新型技术结构,单转流量大,实现了动力装置更高的液(气)容量比,提高了动力装置的液(气)流量比,从而提高了动力装置的功率比;动力装置的工质为气体或蒸汽时,可实现单机较高的膨胀比或压缩比。
本发明通过下述技术方案实现:一种摆动叶片液气动力装置,包括缸体、缸盖、转子及叶片,所述转子活动连接叶片内沿,叶片能够相对于转子作旋转摆动。
进一步的为更好地实现本发明,特别采用下述设置结构:所述转子外壁上设置有与叶片的内沿相连接的铰链,且铰链在转子的周向上等距设置;作为优选的设置方案,所述转子外壁的形状可以为相似正多边形结构(圆形结构亦可,但不限于此),且在转子外壁的棱角处设有与叶片的内沿相连接的铰链,转子外壁与叶片内沿采用铰链连接,叶片能够相对于转子、以铰链轴为中心作旋转摆动,避免叶片在转子的叶片槽中作往复滑动,减少摩擦阻力和叶片动能损失,铰链内可以封装润滑油。
进一步的为更好地实现本发明,特别采用下述设置结构:所述缸体内壁断面的形状为以切线或弧线过渡的两个弧段构成,且两个弧段中心为偏心设置;所述缸体的其中一个弧段圆弧中心与转子旋转中心同心,且弧段长度大于或能够覆盖转子两个相邻铰链之间的转子外壁弧段长度,转子外壁或叶片内沿公差配合于与转子旋转中心同心的缸体内壁弧段,可以有效 提高动力装置由缸体和转子之间的密封性能。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述转子和叶片之间,设置有使叶片外沿紧贴缸体内壁的叶片限位弹簧,限制叶片自由活动,使叶片外沿紧贴缸体内壁。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述转子上设置有润滑油储仓和润滑油通道,且润滑油通道连通润滑油储仓和铰链,利用转子旋转时的离心力对活动部位提供润滑。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述叶片上亦设置有叶片润滑油通道(也可以在叶片上设置有叶片润滑油储仓),并与润滑油通道通过铰链连通,对叶片外沿活动部位提供润滑,通过铰链和润滑油通道将润滑油储仓(或叶片润滑油储仓)与叶片外沿的叶片圆轴(或圆轴)、叶片滚筒、叶片滚轴、导轨配合件等连通,在转子、叶片旋转时利用离心力将润滑油送至转子与叶片链接的铰链、叶片外沿及与叶片连接的圆轴(或叶片圆轴)、叶片滚筒或叶片滚轴、导轨配合件等,实现对活动部件润滑;润滑油储仓可以通过缸盖开口,在马达工作间隙补充润滑油;可以根据马达的转速、润滑油补给量、维护周期等,在润滑油通道设置限流部件,实现有效的润滑和设备的安全运行。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述转子内嵌套有转子转轴,在转子转轴内嵌套有贯穿一侧缸盖的转子轴心输入管;在转子的周向上两个相邻铰链之间设置有入口,在转子转轴径向上设置有轴心输入口,在转子轴心输入管管壁上设置有输入管输入口,所述入口、轴心输入口和输入管输入口连通时,有压液、气能够进入动力装置工作仓室做功。
进一步的为更好地实现本发明,特别采用下述设置结构:所述叶片的外沿嵌设有叶片滚筒及叶片圆轴。
进一步的为更好地实现本发明,特别采用下述设置结构:所述缸盖在缸体的内壁内侧设置叶片导轨,叶片导轨为凹槽,叶片导轨位于缸体内壁与转子外壁之间靠近缸体内壁一侧,所述叶片外沿通过设置在缸盖上的叶片导轨作用下紧贴缸体内壁;所述缸盖的叶片导轨内槽璧适配导轨轴承,在设置时,可以缸体内壁替代外槽璧,导轨槽宽微微大于导轨轴承的直径,以防止导轨轴承在叶片正压段与反压段旋转方向相反时产生高速摩擦;外槽璧主要起到密封作用。
进一步的为更好地实现本发明,特别采用下述设置结构:所述叶片圆轴延伸出叶片的两端,在叶片圆轴的两端上设置有能够在叶片导轨内做轨迹运动的导轨配合件,使叶片外沿及滚筒贴近缸体的内壁。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述叶片的外沿及运动前方还连接有副叶片(反压密封叶片),副叶片运动方向的后沿(相对于叶片运动方向)与叶片的外沿采用副叶片铰链连接,副叶片前沿两端设有副叶片圆轴,且在副叶片圆轴上配合有能够在叶片导轨的作用下控制副叶片前沿紧贴缸体内壁做轨迹运动的导轨轴承件或滑块件;导轨轴承件或滑块件在叶片导轨的作用下控制副叶片前沿运动轨迹,使之紧贴缸体内壁,在叶片外沿位于泄出口至入口的对应段(叶片处于反压状态时),防止液(气)体泄漏,起到良好的密封作用;这一结构特别运用到作为气压马达的动力装置时,可以起到提前密封动力装置入口(气)的作用,充分利用气体膨胀压力做功,达到提高动力装置能量转换效率的目的。
进一步的为更好地实现本发明,特别采用下述设置结构:所述叶片或采用A结构:所述叶片的外沿嵌设有叶片滚筒(内置高速轴承),在叶片的外沿上轴向贯穿叶片外沿和叶片滚筒还设置有叶片圆轴,且叶片圆轴延伸出叶片的两端,在叶片圆轴的两端上设置有能够在叶片导轨内做轨迹运动的导轨配合件,且导轨配合件采用导轨轴承或滑块,叶片滚筒的外壁与缸体的内壁相接触,叶片通过导轨配合件和叶片滚筒,在缸体内壁和叶片导轨的作用下,使叶片的外沿部位紧贴缸体内壁,并减少叶片与缸体之间的摩擦阻力;提高叶片运动的可靠性,达到提高叶片密封性、减少液(气)体泄漏的目的。
进一步的为更好地实现本发明,特别采用下述设置结构:所述叶片或采用B结构:叶片的外沿两端设有圆轴,用于安装采用导轨轴承或滑块的导轨配合件,在叶片导轨的配合下,控制叶片外沿的运动轨迹,使叶片外沿紧贴缸体内壁。
进一步的为更好地实现本发明,特别采用下述设置结构:所述叶片或采用C结构:叶片外沿两端设有圆轴,用于安装采用导轨轴承或滑块的导轨配合件,在叶片外沿设有滚轴嵌槽,在滚轴嵌槽内设有叶片滚轴,这一结构可以减少叶片与缸体之间的摩擦阻力。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述缸体上设置泄出口和入口,且在两个叶片之间,由缸体、缸盖、转子及叶片形成仓室的空间达到最小容量时,在转子旋转方向上的前一个叶片外沿位置为液(气)体入口的起始位置,后一个叶片外沿位置为液(气)体泄出口的结束位置;所述仓室空间达到最大容量时,后一个叶片外沿位置为液(气)体入口的结束位置,前一个叶片外沿位置为液(气)体泄出口的起始位置,设置时,液(气)体的出入口(泄出口、入口)可在缸体或缸盖上开设。在实际应用时由于液(气)体在运动时可能产生滞后现象,因此还可根据动力装置(马达)转速、液(气)压力对出入口的开口位置作适当调整,在具体设置时,用于气体或蒸汽的动力装置入口结束位置可以根据气体或蒸汽的膨胀比确定。
进一步的为更好地实现本发明,特别采用下述设置结构:在所述缸盖上叶片导轨内侧、叶片受反向压力的对应段,设置有反压支撑弹簧;优选的针对采用叶片导轨的结构,在所述缸盖上叶片导轨内侧、缸体内壁泄出口至入口的对应段,设置有反压支撑弹簧,减少叶片与缸体内壁之间的间隙,并提高叶片外沿与缸体内壁之间的密封性。
进一步的为更好地实现本发明,特别采用下述设置结构:所述缸体采用截面中部为直线段、两端为弯弧段的结构,能够使叶片运行轨迹更加合理,最大限度地提高叶片马达的液(气)体流量比,从而提高了叶片马达的功率比。
进一步的为更好地实现本发明,特别采用下述设置结构:以气体或蒸汽为动力的摆动叶片液气动力装置,在所述一侧缸盖上设置动力装置启动口,在没有联通进气(汽)通道的情况下提供启动动力或扭矩,启动口宽度或直径应小于叶片厚度,以免将两个相邻的仓室贯通。
本发明与现有技术相比,具有以下优点及有益效果:
本发明为容积式液气动力装置,其结构源于液压、气动领域的叶片马达,但是又有重大创新和变化,因此其应用范围已不局限于液压、气动领域,可以在中低温、中低压热力发电(低品位热能利用,如太阳能、地热、余热等),低落差小型水力发电领域拓展其应用范围。
本发明用于中低压液汽,在保证密封性的前提下,使有压液汽高效率通过动力装置,提高能量转换效率;在保证一定的效率条件下,可实现动力装置小型化。
由于中低温热源一般的热能规模不大,这就要求热机可以小型化,可以方便灵活地设计热力发电系统,本发明可以经济、便利地加以实现。
本发明与传统的热机如汽轮机、透平机相比,可以实现设备小型化,可提高中低温、中低压热力系统能量转换效率,与容积式动力设备如双螺杆膨胀机相比启动扭矩小,在转速相近的情况下蒸汽流量大,比功率大。
在自然界也广泛存在着低落差小型水力发电站,其发电效率较低,主要原因是水轮机存在结构性缺陷,因水压较低势能转换动能不够充分,低压、低速流动的水力资源,水流或作无功流动,或低效率通过水轮机,利用本发明则可以在低落差小型水力发电领域有效提高发电效率。
现有的液压、气压叶片马达,在转子径向、相对于转子,其叶片作往复式运动,叶片整体的运动距离为转子与缸体的最大间隙,而本发明所述叶片相对于转子作摆动旋转,叶片外沿的运动距离为转子与缸体的最大间隙,叶片内沿的运动距离为零,因此叶片的动能损失相对较小,因而能量损失较小。
现有的液压、气压叶片马达,转子有叶片槽,需要安装弹簧或设计液压、气压通道,转子结构相对复杂、重量较大;而本发明所述转子的结构相对简单,制造工艺简单、成本相对较低、易于维护、重量较小。
现有的液压、气压叶片马达叶片设计相对简单,其叶片的径向运动,向外由弹簧或液(气)压力提供动力,在马达工作时,叶片运动可能出现滞后现象,造成液(气)泄漏,降低马达效率;叶片向内由缸体内壁提供反向力,会产生一定的摩擦力,而反向力方向也不是径向,而是与叶片成一定的角度,反向力在给叶片径向力的同时,也给叶片和转子的运动产生了阻力,降低了马达效率;而本发明由于设计了叶片导轨、导轨配合件、叶片滚筒或叶片滚轴,几者配合,使得叶片的运动更加流畅可靠性更高、密封性更好,降低了缸体内壁的摩擦力,更没有机械本身的反向阻力,大大提高了工作效率;虽然本发明所述叶片设计相对复杂,与传统的叶片马达转子的复杂性、制造工艺的难度相比,仍属简单和容易,制造成本也有一定降低。
现有的叶片式液(气)压马达由于叶片结构的制约,叶片之间形成的液(气)仓室容量较小,马达的流量比、功率比受到较大的限制。本发明叶片之间形成的液(气)仓室容量较大,与原结构的叶片马达相比,在尺寸相近、转速相同的情况下,功率可以得到较大提升。
本发明较传统叶片马达对液(气)体出入口进行了优化,对出入口开口位置、结束位置做了定性设计,有利于充分利用液(气)产生扭矩和动力,提高了动力装置效率。
本发明含多仓室工作,始终有一个或两个仓室处于进液(气)做功状态,可以持续输出动力,叶片在叶片导轨或限位弹簧的作用下,工作可靠。
本发明能够利用有压液体(水、油)或气体(包括燃油、燃气产生的高压燃气、高压蒸汽),直接产生旋转动力,能量转换效率较高。可广泛用于发电或驱动其它机械装置,也可以作为液、气泵基础结构。
与当前广泛应用的液压、气压马达相比,本发明结构简单、工作可靠、维护方便、制造及安装工艺简单、制造成本低,其显著特点是功率比值高、能量转换效率高。
附图说明
图1为实施例1所示出的本发明结构示意图(气体或蒸汽作为动力)。
图2为实施例2所示出的本发明结构示意图(液体为动力)。
图3为本发明所述转子转轴结构示意图。
图4为本发明所述转子轴心输入管结构示意图。
图5为本发明所述叶片(非叶片导轨技术)结构示意图。
图6为本发明结构示意图(采用叶片导轨第一运行状态)。
图7为本发明结构示意图(采用叶片导轨第二运行状态)。
图8为本发明结构示意图(采用叶片导轨第三运行状态)。
图9为本发明结构示意图(采用叶片导轨第四运行状态)。
图10为本发明所述转子示意图(含润滑油储仓、润滑油通道)。
图11为本发明所述缸盖结构示意图(采用叶片导轨)。
图12为本发明所述叶片(叶片导轨结构采用滚筒)结构示意图。
图13为本发明所述叶片(叶片导轨结构采用滚轴)结构示意图。
图14为本发明所述叶片(叶片导轨结构第三种)结构示意图。
图15为副叶片(反压密封叶片)结构示意图。
图16为本发明所述反压支撑弹簧布设示意图。
图17为本发明所述液(气)出入口(缸体上设置)正视图(A为泄出口,B为入口)。
图18为本发明结构示意图(含有副叶片结构)。
图19为本发明的变形结构示意图(A的转子断面为五边形,B的缸体断面为椭圆形)。
图20为圆筒形缸体、圆筒形转子、弧形叶片且缸体和转子呈偏心位置的动力装置结构示意图。
其中,1-缸体、2-缸盖、3-转子、3A-转子转轴、3B-转子轴心输入管、4-叶片、5-叶片导轨、6-润滑油储仓、7-润滑油通道、8-铰链、9-铰链转轴、10-叶片圆轴、11-导轨配合件、12-叶片滚筒、13-叶片滚轴、14-叶片润滑油通道、15-副叶片、16-副叶片铰链、17-副叶片圆轴、18-反压支撑弹簧、19-泄出口、20-入口、20A-轴心输入口、20B-输入管输入口、21-固定孔、22-圆轴、A-流入方向、B-流出方向、C-转子旋转方向。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
在本发明的描述中,需要理解的是,术语等指示的方位或位置关系为基于附图所示的方 位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
值得注意的是:在本申请中,某些需要应用到本领域的公知技术或常规技术手段时,申请人可能存在没有在文中具体的阐述该公知技术或/和常规技术手段是一种什么样的技术手段,但不能以文中没有具体公布该技术手段,而认为本申请不符合专利法第二十六条第三款的情况。
实施例1:
如图1所示,本实施例示出了采用有压气体或蒸汽做功的动力装置,缸体1采用断面形状为内壁以切线或弧线过渡的两个弧段构成的缸体结构,主要由一个缸体1(定子环)、两个缸盖2、一个转子3、四个叶片4、四个叶片滚筒12、转子转轴3A、转子轴心输入管3B等构成。
如附图1所示,缸体1为其内壁断面的形状为以切线或弧线过渡的两个弧段构成的结构,为本动力装置的外结构件,可通过法兰固定于缸盖2;缸体1两个弧段中心为偏心设置;转子3旋转中心与缸体1的其中一个弧段圆弧中心同心,且与转子3旋转中心同心的弧段长度大于或能够覆盖转子3上两个相邻连接位置(铰链8)之间的弧段长度,转子3外壁及叶片4内沿公差配合于与转子3旋转中心同心的缸体1内壁弧段;使转子3与缸体1在轴向保持一致,并使转子3相对于缸体1、缸盖2仅限于作旋转运动;缸体1开设泄出口(气体或蒸汽)19,在两个叶片4之间,由缸体1、转子3、缸盖2及叶片4形成仓室的空间达 到最大容量时,在转子3旋转方向的前一个叶片4外沿或叶片滚筒12位置为泄出口19的起始位置;当所述仓室空间达到最小容量时,后一个叶片4外沿位置为泄出口19的结束位置。
如附图1、3、4、5、10所示,转子3为类似方形柱状(但不限于此,也可以为菱形、圆形等),转子在不同的径向上形成转子3外壁与缸体1内壁的距离差;转子3外壁周向上等距设置铰链8,铰链8配合铰链转轴9用于和叶片4链接并使得叶片4能够在转子3上进行摆动;转子3内嵌套转子转轴3A,转子转轴3A在转子3内一段为空心管状,并延伸至一侧缸盖2,穿过缸盖2内的固定孔21;转子转轴3A另一端延伸出缸盖2,为扭矩、动力输出部件;在转子相邻铰链8之间设入口20,在转子转轴3A与入口20相对应的位置设轴心输入口20A;转子转轴3A内嵌套转子轴心输入管3B,贯穿和延伸出一侧缸盖2,并固定于缸盖2,延伸出缸盖部分可以作为液汽输入接口;转子轴心输入管3B在转子3轴向段内开口设置输入管输入口20B,输入管输入口20B的开口大小取决于蒸汽压力或设定的蒸汽膨胀比。
如图5所示,叶片4为长方形板状(不限于板状),其内沿设置铰链8,叶片4位于缸体1与转子3及两个缸盖2之间,叶片4内沿通过铰链8以铰链方式链接在转子3上,在缸体1与转子3之间能够作旋转摆动;在叶片4的外沿嵌有叶片滚筒12;蒸汽压力或气压力和转子3在旋转离心力的作用下,叶片4外沿通过叶片滚筒12紧贴缸体1内壁运行。
缸盖2为与缸体1适配的板状,为本动力装置的外结构件,其外形足以覆盖缸体1端部,并固定于缸体1的轴向两端;缸盖2内有转子转轴的固定孔21,通过转子转轴3A及轴承固定转子3的轴中心在缸体1中的一个弧段中心。
在转子3与叶片4之间设有叶片限位弹簧,在没有仓室负压影响下,以保持叶片4外沿紧贴缸体1内壁。
在一侧缸盖2上设置动力装置启动入口,为动力装置没有联通进气(汽)通道的情况下提供启动动力或扭矩,启动入口宽度或直径小于叶片厚度。
在转子3与叶片4连接的铰链8内、叶片4安装的滚筒12内,可以封装润滑油。
本实施例工作原理:
以蒸汽动力为例,如附图1所示,在两个叶片4之间,由缸体1、转子3、缸盖2及叶片4形成的空间为蒸汽工作仓室。仓室在蒸汽进入或处于膨胀阶段为仓室做功阶段。在仓室蒸汽压力的作用下,前一个叶片4外沿沿缸体1内壁运动,其外沿运动半径加大,前一个叶片4受力至转子3旋转中心半径大于转子3外壁受力半径或后一个叶片4的反向受力半径,前一个叶片4受力方向与转子3旋转方向夹角小于转子3外壁受力或后一个叶片4的反向受 力方向与转子3旋转方向的夹角,由此形成了力矩差,从而形成扭矩推动转子3旋转。
在转子3旋转过程中,始终有仓室处于膨胀或进汽阶段,可以保证动力装置有持续的动力输出。
动力装置启动时,可以通过缸盖2上的启动入口输入压力蒸汽,提供启动扭矩,动力装置启动后,即可关闭启动入口。
本实施例工作过程:
当转子3旋转,入口20和轴心输入口20A与输入管输入口20B连通,叶片4外沿离开与转子3同心的缸体1内壁弧段时,仓室进入蒸汽压入阶段,这一阶段仓室处于推动功做功状态。
转子3继续旋转,当仓室进入的蒸汽达到设定容量时,入口20和轴心输入口20A与输入管输入口20B切断,蒸汽不再进入仓室,仓室进入蒸汽膨胀阶段,这一阶段仓室处于膨胀功做功状态。
之后转子3继续旋转,当仓室的蒸汽达到设定的压力或膨胀比时,仓室前叶片4外沿越过缸体1的泄出口19的开始位置,仓室进入蒸汽泄出阶段,直至叶片4外沿越过缸体1的泄出口19的结束位置,进入与转子3同心的缸体1内壁弧段,仓室的蒸汽泄出阶段结束;在仓室处于蒸汽泄出阶段时,在转子3旋转方向的后一个仓室处于做功阶段。
作为优选的实施方案,采用全新的结构,使得叶片的运动更加流畅,动力装置运行可靠性更高、摩擦较小、密封性更好,可以大幅提高动力装置的能量转换效率和功率。
根据性能初步分析,在工作原理、装置结构上更适合以中低压蒸汽为动力源的动力装置,初步具备了小型动力装置应该具备的设计及性能要求,可以应用于中低温(或低品位)热力发电领域,如余热利用、地热发电、小型太阳能热力发电等。
可实现设备小型化,低转速、功率适中是其显著特征。
实施例2:
本实施例为采用有压液体提供动力的动力装置,如附图2所示,本实施例的动力装置构成与实施例1一致,与实施例1的区别在于转子轴心输入管3B的输入管输入口20B开口较大,其设计需要满足工作仓室在液体开始泄出前瞬时关闭液体输入通道。
本实施例工作原理:
本实施例工作原理与实施例1基本一致,区别在于液体工作仓室在做功时始终有液体进入仓室,没有膨胀做功阶段。
在转子3旋转过程中,始终有一个或两个仓室处于做功阶段,可以保证动力装置有持续的动力输出。
本实施例工作过程:
当转子3旋转,入口20和轴心输入口20A与输入管输入口20B连通,叶片4外沿离开与转子3同心的缸体1内壁弧段时,仓室进入液体压入阶段,仓室处于做功状态。
转子3继续旋转,当仓室容量达到最大时,入口20和轴心输入口20A与输入管输入口20B切断,液体不再进入仓室;与此同时,仓室前叶片4外沿马上越过缸体1的泄出口19的开始位置,仓室进入泄出液体阶段,仓室做功状态结束;在转子3旋转方向的后一个仓室仍处于做功阶段。
实施例3:
如附图6、10、11、12所示,一种摆动叶片液气动力装置,主要由一个缸体1(定子环)、两个缸盖2、一个转子3、六个叶片4、六对导轨轴承、六个叶片滚筒12等构成。
如附图6所示,缸体1为筒状,为本动力装置的外结构件,可通过法兰固定于缸盖2;缸体1断面形状如环形跑道(本发明不限于类似环形跑道,也可以为圆形、椭圆形等);缸体1开设液(气)出入口(泄出口19和入口20),在两个叶片4之间,由缸体1、转子3、缸盖2及叶片4形成仓室的空间达到最小容量时,在转子3旋转方向上的前一个叶片4外沿位置为入口20的起始位置,后一个叶片4外沿位置为泄出口19的结束位置;当所述仓室空间达到最大容量时,后一个叶片4外沿位置为入口20的结束位置,前一个叶片外沿或叶片滚筒12位置为泄出口19的起始位置。
如附图11所示,缸盖2为直线加圆弧形的板状,为本动力装置的外结构件,固定本动力装置;缸盖2内有转子转轴的固定孔21,通过转子转轴固定转子3在缸体1中;缸盖有叶片导轨5,叶片导轨5为环形凹槽,用于插入叶片的导轨轴承,与缸体1内壁配合,控制叶片4外沿的运动轨迹。
如附图6、10所示,转子3为菱形柱状(但不限于此,也可以为圆形),其外璧断面形状为正六边形(但不限于正六边形,也可以为任意多边形),转子3两端为圆柱状的转子转轴,穿过缸盖2内的固定孔21,置转子3于缸体1内中心位置,使转子3与缸体1在轴向保持一致,并使转子3相对于缸体1、缸盖2仅限于作旋转运动;转子转轴一端延伸出缸盖2,为扭矩、动力输出部件;在断面上,不同的转子径向上形成缸体1内壁与转子3外壁的距离差;转子3外壁棱角处设铰链8,所有铰链8等距分布于转子外壁上,铰链8配合铰链转轴9用于和叶片4链接并使得叶片4能够在转子3上进行摆动。
如附图12所示,叶片4为长方形板状(不限于板状),其内沿设置铰链8,叶片4外沿采用A结构的叶片:叶片4位于缸体1与转子3及两个缸盖2之间,叶片4内沿通过铰链8以铰链方式链接在转子3上,在缸体1与转子3之间能够作旋转摆动;在叶片4的外沿 有叶片圆轴10,在叶片4的外沿嵌设叶片滚筒12(内置高速轴承),叶片圆轴10轴向贯穿叶片4外沿和叶片滚筒12并在叶片4两端延伸出头;在叶片圆轴10两端延伸出来的部分固定导轨配合件(此处采用导轨轴承)11,在叶片导轨5的配合下,控制叶片4外沿的运动轨迹;叶片4通过导轨轴承和叶片滚筒12,在液(气)压力、缸体1内壁和叶片导轨5的共同作用下,使叶片4外沿紧贴缸体1内壁。导轨轴承的直径设置为微微小于叶片导轨5的槽宽。
本实施例工作原理:
如附图6所示,在两个叶片4之间,由缸体1、转子3、缸盖2及叶片4形成的空间为马达液(气)仓室。在仓室处于液(气)压入阶段,在转子3旋转方向上,在仓室液(气)压力的作用下,前一个叶片4的传导至铰链8的周向力大于后一个叶片4的反向力,也就形成了转子3在旋转方向上的压力差,从而形成扭矩推动转子3旋转,这一阶段仓室处于做功状态。在仓室处于液(气)泄出阶段,由于仓室液(气)压力的释放,仓室压力较小,仓室③、⑥的前一个叶片4和后一个叶片4形成的反向压力小,对转子3旋转形成的阻力较小。
本实施例工作过程:
如附图6所示,仓室①、④容量处于最小状态,仓室内液(气)处于泄出转压入的临界点状态;仓室②、⑤处于液(气)持续压入的做功状态;仓室③、⑥处于液(气)持续泄出状态。
如附图7所示,转子3旋转一定角度,仓室①、④从上一工作状态开始持续处于液(气)压入的做功状态;仓室②、⑤容量达到最大,仓室液(气)处于压入转泄出临界点,仓室做功状态结束;仓室③、⑥液(气)处于持续泄出状态。
如附图8所示,转子继续旋转一定角度,仓室①、④液(气)处于持续压入做功状态;仓室②、⑤从上一工作状态开始持续处于液(气)泄出状态;仓室③、⑥处于液(气)持续泄出状态。
如附图9所示,转子继续旋转一定角度,仓室①、④处于液(气)持续压入做功状态,进入初始(附图1所示)的仓室②、⑤状态;仓室②、⑤处于液(气)持续泄出状态,进入初始的仓室③、⑥状态,仓室③、⑥容量达到最小,仓室处于液(气)泄出转压入的临界点,进入初始的仓室①、④状态。
以上动力装置工作状态为转子3旋转60°的工作过程;转子3旋转180°,则每个仓室将完成从液(气)进入到泄出或泄出到进入的完整过程,即每个仓室将完成一个完整的做功过程;转子3旋转360°,则每个仓室将完成两个完整的做功过程。
在仓室处于做功状态时,仓室的前一个叶片4处于正压状态,由于叶片4与缸体1内壁 成一定角度,液(气)压力使前叶片4紧贴缸体1内壁,起到良好的密封作用。
作为优选的实施方案,解决叶片马达现有技术结构本身原因导致马达能量转换效率较低的不足之处,采用新的结构,使得叶片的运动更加流畅,可靠性更高,密封性更好,可以大幅提高马达的能量转换效率和功率。
本实例是依据本发明设计的动力装置,更适宜有压液体为动力的动力装置。
实施例4:
本实施例是在实施例3的基础上进一步优化,与前述技术方案相同部分在此将不再赘述,如图16所示,为更好地实现本发明,特别采用下述结构:在所述缸盖2的叶片导轨5内侧、叶片4外沿位于泄出口19至入口20的对应段(叶片4处于反压状态),设置反压支撑弹簧18,减少叶片4与缸体1内壁之间的间隙,提高叶片马达密封性。
叶片4处于反压状态时,由于机械磨损导致的间隙及液(气)压力的作用,可能导致液(气)泄漏,本方案即是针对这一问题的优化方案。
作为优选的实施方案,本方案旨在进一步提高动力装置的密封性和能量转换效率。
如图15、18所示,为更好地实现本发明,在所述叶片4的外沿、叶片4运动前方连接有副叶片15(反压密封叶片),所述副叶片15的后沿(相对于叶片运动方向)与叶片4外沿采用副叶片铰链16连接,副叶片15前沿两端有副叶片圆轴17配合有导轨轴承件或滑块件,在叶片导轨5的作用下控制副叶片15前沿运动轨迹,使之紧贴缸体1内壁,当副叶片15运行在叶片4外沿位于泄出口19至进口20的对应段(叶片4处于反压状态)时,防止液(气)泄漏,起到良好的密封作用;这一结构特别运用到作为气压马达的叶片马达上时,可以起到提前密封动力装置进气口(入口20)的作用,充分利用气体膨胀压力做功,达到提高动力装置效率的目的。
气体与液体不同,存在压缩和膨胀的状态,压缩气体存在本身具有一定的能量,本方案通过副叶片提前封闭入口20,并根据气体压力及膨胀率调整出入口的开口位置,可以有效利用气体膨胀所释放的能量。
本方案存在压气入口完全封闭的状态,可以专门的启动气压通道设计来进行解决,比如在转子3旋转方向入口20至出口19之间设计启动气压通道,在动力装置启动后可予以关闭。
叶片4处于反压状态时,由于机械磨损导致的间隙及液(气)压力的作用,可能导致液(气)泄漏,本方案即是针对这一问题的另一个优化方案。
作为优选的实施方案,本方案动力装置密封性更好,同时可充分利用气体膨胀压力做功,能量转换效率更高,适合对能量转换效率要求更高或有压气体应用的领域。
如附图10、12所示,为更好地实现本发明,在所述转子3上设置润滑油储仓6和润滑油通道7,在所述叶片4设置叶片润滑油通道14,通过润滑油通道7、叶片润滑油通道14连通润滑油储仓6和铰链8、导轨轴承及叶片滚筒12,在转子3、叶片4旋转时利用离心力将润滑油送至转子3与叶片4的链接的铰链8、叶片4连接的叶片滚筒12、导轨轴承等,实现对活动部件润滑。
作为优选的实施方案,本方案旨在提高设备维护的便利性,减少设备磨损、延长设备使用寿命。
在附图6~9中方框箭头为液(气)流动方向,转子3上的箭头方向为转子旋转方向。
实施例5:
本实施例是在实施例3的基础上进一步优化,与其技术方案相同部分在此将不再赘述,在本实施例中,将液(气)出入口的设置位置进行更改设计,相应的转子、缸盖也进行改变,设置时,在所述转子3内嵌套有转子转轴3A,在转子转轴3A内嵌套有贯穿一侧缸盖2的转子轴心输入管3B;在转子3的周向上两个相邻铰链8之间设置有入口20,在转子转轴3A径向上设置有轴心输入口20A,在转子轴心输入管3B管壁上设置有输入管输入口20B,所述入口20、轴心输入口20A和输入管输入口20B连通时,有压液、气能够进入动力装置工作仓室做功,其泄出口19依然设置在缸体1上,其设置的准则为:在两个叶片4之间,由缸体1、转子3、缸盖2及叶片4形成仓室的空间达到最大容量时,在转子3旋转方向的前一个叶片4外沿或叶片滚筒12位置为泄出口19的起始位置,当所述仓室空间达到最小容量时,后一个叶片4外沿位置为泄出口19的结束位置。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均在本发明的保护范围之内。

Claims (11)

  1. 一种摆动叶片液气动力装置,包括缸体(1)、缸盖(2)、转子(3)及叶片(4),其特征在于:所述转子(3)活动连接叶片(4)内沿,叶片(4)能够相对于转子(3)作旋转摆动。
  2. 根据权利要求1所述的一种摆动叶片液气动力装置,其特征在于:所述转子(3)外壁上设置有与叶片(4)的内沿相连接的铰链(8),且铰链(8)在转子(3)的周向上等距设置。
  3. 根据权利要求2所述的一种摆动叶片液气动力装置,其特征在于:所述缸体(1)内壁断面的形状为以切线或弧线过渡的两个弧段构成,且两个弧段中心为偏心设置;所述缸体(1)的其中一个弧段圆弧中心与转子(3)旋转中心同心,且弧段长度大于或能够覆盖转子(3)两个相邻铰链(8)之间的转子(3)外壁弧段长度,转子(3)外壁或叶片(4)内沿公差配合于与转子(3)旋转中心同心的缸体(1)内壁弧段。
  4. 根据权利要求2所述的一种摆动叶片液气动力装置,其特征在于:在所述转子(3)上设置有润滑油储仓(6)和润滑油通道(7),且润滑油通道(7)连通润滑油储仓(6)和铰链(8),利用转子(3)旋转时的离心力对活动部位提供润滑。
  5. 根据权利要求4所述的一种摆动叶片液气动力装置,其特征在于:在所述叶片(4)上设置有叶片润滑油通道(14),并与润滑油通道(7)通过铰链(8)连通,对叶片(4)外沿活动部位提供润滑。
  6. 根据权利要求2或3或4或5所述的一种摆动叶片液气动力装置,其特征在于:在所述转子(3)内嵌套有转子转轴(3A),在转子转轴(3A)内嵌套有贯穿一侧缸盖(2)的转子轴心输入管(3B);在转子(3)的周向上两个相邻铰链(8)之间设置有入口(20),在转子转轴(3A)径向上设置有轴心输入口(20A),在转子轴心输入管(3B)管壁上设置有输入管输入口(20B),所述入口(20)、轴心输入口(20A)和输入管输入口(20B)连通时,有压液、气能够进入动力装置工作仓室做功。
  7. 根据权利要求1或2或3或4或5所述的一种摆动叶片液气动力装置,其特征在于:所述叶片(4)的外沿嵌设有叶片滚筒(12)。
  8. 根据权利要求1或2所述的一种摆动叶片液气动力装置,其特征在于:所述缸盖(2)在缸体(1)的内壁内侧设置叶片导轨(5),叶片导轨(5)为凹槽,所述叶片(4)外沿通过设置在缸盖(2)上的叶片导轨(5)作用下紧贴缸体(1)内壁。
  9. 根据权利要求8所述的一种摆动叶片液气动力装置,其特征在于:所述叶片(4)的外沿嵌设有叶片滚筒(12)及叶片圆轴(10),所述叶片圆轴(10)延伸出叶片(4)的两端,在叶片圆轴(10)的两端上设置有能够在叶片导轨(5)内做轨迹运动的导轨配合件 (11),使叶片(4)外沿及滚筒(12)贴近缸体(1)的内壁。
  10. 根据权利要求8所述的一种摆动叶片液气动力装置,其特征在于:在所述叶片(4)的外沿及运动前方还连接有副叶片(15),副叶片(15)运动方向的后沿与叶片(4)的外沿采用副叶片铰链(16)连接,副叶片(15)前沿两端设有副叶片圆轴(17),且在副叶片圆轴(17)上配合有能够在叶片导轨(5)的作用下控制副叶片(15)前沿紧贴缸体(1)内壁做轨迹运动的导轨轴承件或滑块件。
  11. 根据权利要求8所述的一种摆动叶片液气动力装置,其特征在于:在所述缸盖(2)上叶片导轨(5)内侧、叶片(4)受反向压力的对应段,设置有反压支撑弹簧(18)。
PCT/CN2020/127509 2019-11-19 2020-11-09 一种摆动叶片液气动力装置 WO2021098542A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911132124.4 2019-11-19
CN201911132124.4A CN110761937A (zh) 2019-11-19 2019-11-19 一种摆动叶片马达
CN202010645345.8A CN111608851A (zh) 2019-11-19 2020-07-07 一种摆动叶片液气动力装置
CN202010645345.8 2020-07-07

Publications (1)

Publication Number Publication Date
WO2021098542A1 true WO2021098542A1 (zh) 2021-05-27

Family

ID=69338466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127509 WO2021098542A1 (zh) 2019-11-19 2020-11-09 一种摆动叶片液气动力装置

Country Status (2)

Country Link
CN (2) CN110761937A (zh)
WO (1) WO2021098542A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110761937A (zh) * 2019-11-19 2020-02-07 李光惠 一种摆动叶片马达
CN115324889B (zh) * 2022-08-31 2024-03-29 安徽理工大学 一种容积泵
CN116357407B (zh) * 2023-05-31 2023-08-18 日照职业技术学院 一种汽轮机用离心式定速装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154283A (en) * 1984-02-18 1985-09-04 Philip Collier Rotary fluid-flow machine
JP2000104556A (ja) * 1998-09-05 2000-04-11 Nenji Ryu 回転式内燃機
CN101115909A (zh) * 2004-07-28 2008-01-30 Rkg控股公司 由外部压力源提供的压力介质驱动的马达
CN101305162A (zh) * 2005-09-12 2008-11-12 凤凰产品发展公司 自调整的旋转活塞机器
CN101397914A (zh) * 2007-09-24 2009-04-01 陈军 新型大流量叶片机构
WO2011022835A1 (en) * 2009-08-28 2011-03-03 Benn Bruce I Fluid turbine
CN102094727A (zh) * 2010-12-02 2011-06-15 无锡中阳新能源科技有限公司 压缩空气发动机及优化集成系统
WO2014074021A1 (ru) * 2012-11-07 2014-05-15 Timerzyanov Rustem Nailevich Цилиндро-поршневая группа для роторно-лопастного устройства
CN103912489A (zh) * 2014-03-10 2014-07-09 汤斌 偏心活动叶片泵
CN104100300A (zh) * 2014-07-08 2014-10-15 黄石巨丰机械制造有限公司 一种动力传动装置以及气动马达
CN105370322A (zh) * 2014-11-29 2016-03-02 沈阳耐蚀合金泵股份有限公司 旋转式动力机
CN110761937A (zh) * 2019-11-19 2020-02-07 李光惠 一种摆动叶片马达

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601218B1 (de) * 1992-11-27 1997-01-22 Andro Caric Drehkolbenmaschine
CN1163651A (zh) * 1994-08-23 1997-10-29 丹提卡特国际有限公司 流体反作用装置
CN1138136A (zh) * 1995-06-12 1996-12-18 吕文杰 前后叶片式转子发动机
CN200964870Y (zh) * 2006-10-31 2007-10-24 黄庆培 一种旋转叶片活塞
CN105201557A (zh) * 2015-09-21 2015-12-30 重庆大学 一种旋片机
CN107218082B (zh) * 2017-06-16 2019-05-03 盐城市东荣石油机械有限公司 一种具有润滑油路的叶片式气动马达
CN107939450A (zh) * 2017-11-24 2018-04-20 李四屯 多用途叶片式能动机
CN212671984U (zh) * 2019-11-19 2021-03-09 李光惠 一种摆动叶片液气动力装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154283A (en) * 1984-02-18 1985-09-04 Philip Collier Rotary fluid-flow machine
JP2000104556A (ja) * 1998-09-05 2000-04-11 Nenji Ryu 回転式内燃機
CN101115909A (zh) * 2004-07-28 2008-01-30 Rkg控股公司 由外部压力源提供的压力介质驱动的马达
CN101305162A (zh) * 2005-09-12 2008-11-12 凤凰产品发展公司 自调整的旋转活塞机器
CN101397914A (zh) * 2007-09-24 2009-04-01 陈军 新型大流量叶片机构
WO2011022835A1 (en) * 2009-08-28 2011-03-03 Benn Bruce I Fluid turbine
CN102094727A (zh) * 2010-12-02 2011-06-15 无锡中阳新能源科技有限公司 压缩空气发动机及优化集成系统
WO2014074021A1 (ru) * 2012-11-07 2014-05-15 Timerzyanov Rustem Nailevich Цилиндро-поршневая группа для роторно-лопастного устройства
CN103912489A (zh) * 2014-03-10 2014-07-09 汤斌 偏心活动叶片泵
CN104100300A (zh) * 2014-07-08 2014-10-15 黄石巨丰机械制造有限公司 一种动力传动装置以及气动马达
CN105370322A (zh) * 2014-11-29 2016-03-02 沈阳耐蚀合金泵股份有限公司 旋转式动力机
CN110761937A (zh) * 2019-11-19 2020-02-07 李光惠 一种摆动叶片马达
CN111608851A (zh) * 2019-11-19 2020-09-01 李光惠 一种摆动叶片液气动力装置

Also Published As

Publication number Publication date
CN111608851A (zh) 2020-09-01
CN110761937A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021098542A1 (zh) 一种摆动叶片液气动力装置
EP2581552B1 (en) Spiraster-type fluid motor or engine and compressor or pump
JP2017520708A (ja) 偏心羽根ポンプ
WO2021088135A1 (zh) 具有泽仑圆形状的腔体、流体工作装置以及发动机
CN205858418U (zh) 一种倾斜轴式变几何动力涡轮导叶
CN103161645A (zh) 一种切流通道式水轮机
CN102748190A (zh) 可调速容积式水泵水轮机
CN108678810B (zh) 平面回转式膨胀机
CN212671984U (zh) 一种摆动叶片液气动力装置
CN205225340U (zh) 一种改进型三角活塞旋转压缩膨胀机
US7051698B2 (en) Rotary drive mechanism
US20120070326A1 (en) Compression method and means
WO2024108958A1 (zh) 一种60mw反动式中间进气一次再热空气透平及运行方法
WO2008019575A1 (fr) Mécanisme rotatif d'expansion compression placé dans une cavité de circulation de fluides et muni de pales traversant un arbre.
CN204163774U (zh) 转子膨胀机
CN203515678U (zh) 一种叶片式能量转换装置
CN202325699U (zh) 活动叶片式蒸汽轮机
CN214145579U (zh) 一种气动发电机
CN112012927B (zh) 燃料电池挡板式滑片空压机及其装置
CN103821610B (zh) 旋转活塞发动机
CN204783804U (zh) 一种使用超声波轴承的空气压缩机
CN103498727A (zh) 叶片式发动机
CN103527252A (zh) 一种叶片式能量转换装置
CN112761731A (zh) 一种用于高压天然气井口降压的三角转子气动发电机
CN203515794U (zh) 叶片式发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889246

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889246

Country of ref document: EP

Kind code of ref document: A1