WO2010121442A1 - 电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置 - Google Patents

电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置 Download PDF

Info

Publication number
WO2010121442A1
WO2010121442A1 PCT/CN2009/071718 CN2009071718W WO2010121442A1 WO 2010121442 A1 WO2010121442 A1 WO 2010121442A1 CN 2009071718 W CN2009071718 W CN 2009071718W WO 2010121442 A1 WO2010121442 A1 WO 2010121442A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
fuel cell
membrane electrode
cell device
anode
Prior art date
Application number
PCT/CN2009/071718
Other languages
English (en)
French (fr)
Inventor
郭建国
毛星原
Original Assignee
Guo Jianguo
Mao Xingyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Jianguo, Mao Xingyuan filed Critical Guo Jianguo
Publication of WO2010121442A1 publication Critical patent/WO2010121442A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of fuel cell applications, and more particularly to a fuel cell device having an electric field-membrane electrode assembly (E-field MEA) structure and a reversible regenerative hydrogen-oxygen electrolysis device.
  • E-field MEA electric field-membrane electrode assembly
  • a fuel cell is a device that converts the chemical energy of hydrogen and oxygen directly into electrical energy through an electrode reaction.
  • the biggest feature of this kind of device is that the energy conversion efficiency is not limited by the "Carnot cycle” because the combustion process is not involved in the reaction process.
  • the energy conversion rate is as high as 60% ⁇ 80%, and the actual use efficiency is the ordinary internal combustion engine. 2 ⁇ 3 times.
  • it has the advantages of diversified fuel, clean exhaust, low noise and low environmental pollution.
  • the current fuel cell structure is a three-in-one component MEA (Membrane Electrode Assembly) consisting of an "anode-electrolyte-cathode".
  • MEA Membrane Electrode Assembly
  • the type of electrolyte determines the operating temperature of the fuel cell, and the catalyst used on the electrode promotes the electrochemical reaction rate of the fuel and the oxidant.
  • fuel cells can be roughly divided into six types: alkaline fuel cell (AFC), proton exchange membrane fuel cell (PEMFC), sterol fuel cell (DMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel. Battery (MCFC) and solid oxide fuel cell (SOFC).
  • the catalytic material of the diol fuel cell (DMFC) and the proton exchange membrane fuel cell (PEMFC) cathode and anode is platinum.
  • the current process is to carry small Pt metal particles on the surface of the toner with good dispersibility, so that Pt the amount to reduce the cost of 0.2mg / cm 2 -0.1mg / cm 2 , the fuel cell is greatly reduced.
  • the power density of the sterol fuel cell (DMFC) and the proton exchange membrane fuel cell (PEMFC) is not stable during long-term operation, resulting in a gradual decline in power generation efficiency and working life. shorten.
  • Fig. 1 (a) and Fig. 1 (b) represent acidic and alkaline electrolyte (PEM) fuel cells, respectively.
  • 1.0 is an electrolyte; 2.0 is an anode; and 3.0 is a cathode.
  • the electrolyte 1.0 comprises an electrolytic layer 1.1, a catalytic layer 1.2 and a catalytic layer 1.3.
  • 7.0 is an external load.
  • the electrolytic layer and the catalytic layer are in close contact with the interface of the anode 2.0 and the cathode 3.0, respectively.
  • Anode 2.0 and cathode 3.0 have an anode flow channel 2.1 and a cathode channel 3.
  • the main reasons for the voltage drop caused by the "anode-electrolyte-cathode” fuel cell are: activation loss, fuel penetration and internal short-circuit current, ohmic loss, mass transfer or concentration loss.
  • Electrolyte is an ion-conducting electrolyte, but it can always generate a small amount of electron conduction, and hydrogen molecules leak from the anode through the electrolyte to the cathode, reacting with oxygen at the cathode, forming fuel penetration and internal short circuit. Current.
  • the ohmic loss is the resistance of the electrode and the resistance encountered by the ion flow in the proton exchange membrane ( ⁇ ) electrolyte.
  • the present invention provides an "electric field-membrane electrode (E-field MEA) combined structure fuel cell device", the electric field-membrane electrode (E-field MEA) combined structure of the fuel cell device, can effectively reduce activation loss, fuel Penetration and internal short circuit current, ohmic losses.
  • a further object of the present invention is to provide a fuel cell device of such an electric field-membrane electrode assembly structure, and an application in a reversible regenerative hydrogen oxygen electrolysis device.
  • E-field MEA electric field-membrane electrode
  • the fuel cell device of the electric field-membrane electrode (E-field MEA) combination structure of the present invention is a three-in-one assembly composed of the prior art "anode-electrolyte-cathode", and the outer layer of the anode and the cathode is electrically isolated.
  • a pair of electric field anodes and an electric field anode, and an electric field anode and an electric field anode are connected to an isolated DC power source, and a stable or regulated internal electric field is provided for the three-in-one component of the "anode-electrolyte-cathode".
  • the fuel cell device of the electric field-membrane electrode (E-field MEA) combined structure according to the present invention is mainly used in a fuel cell operating at medium and low temperatures, such as an alkaline fuel cell (AFC), a proton exchange membrane fuel cell (PEMFC). ), sterol fuel cell (DMFC).
  • AFC alkaline fuel cell
  • PEMFC proton exchange membrane fuel cell
  • DMFC sterol fuel cell
  • the working principle of the invention is: burning of the combined structure of the electric field-membrane electrode (E-field MEA) of the invention
  • E-field MEA electric field-membrane electrode
  • Oxygen binds electrons on the electrode and hydrogen ions in the electrolyte to form water.
  • a direct current power source, an electric field positive electrode, and an electric field negative electrode combine to form an internal electric field E, and the direction is directed from the anode to the cathode.
  • H + forms a repulsive electric field force, so that ions in the electrolyte The resistance encountered by the flow is reduced, and the electrons in the electric field E form an attractive electric field force, preventing the diffused electrons from entering the electrolyte, and reducing the internal short-circuit current of the electrolyte.
  • the contact surface of the electrode catalyst and the electrolyte generates a large amount of electrons and ions to form an electric double layer.
  • the stable electric field E enhances the electric double layer located at or near the electrode-electrolyte interface to reduce the activation loss.
  • An alkaline electrolyte (AFC) fuel cell composed of a fuel cell device having an electric field-membrane electrode (E-field MEA) combination structure of the present invention is exemplified by an anodized anode reaction and a electron flow: an anode: 2H 2 + 40H- ⁇ 4H 2 0+4e" Hydroxide ions react with hydrogen to liberate energy and electrons and produce water.
  • DC power supply 6.0, electric field positive electrode and electric field negative electrode combine to form internal electric field E, direction is directed from the anode to the cathode, and OH_ forms an attractive electric field in electric field E.
  • the force reduces the resistance encountered by the flow of hydroxide ions in the electrolyte, and the electrons in the electric field E also form an attractive electric field force, prevent the diffused electrons from entering the electrolyte, and reduce the internal short-circuit current of the electrolyte.
  • the electrode catalyst and the electrolyte contact surface are generated. A large number of electrons and ions form an electric double layer, and the stable electric field E at this time enhances the electric double layer located at or near the electrode-electrolyte interface, reducing activation loss.
  • a typical operating voltage variation curve of a fuel cell device comprising an electric field-membrane electrode (E-field MEA) combined structure of the present invention and an existing "anode-electrolyte-cathode” composition, see Figure 7 shows.
  • the output voltage of the present invention is significantly higher than that of a conventional fuel cell; it is closer to the theoretical non-destructive voltage curve.
  • a plurality of fuel cell devices of the present invention may be connected in series to form a high voltage output electric field-membrane electrode (E-field MEA) combined structure fuel cell device.
  • E-field MEA electric field-membrane electrode
  • the second invention task of the present application is the use of the above-described electric field-membrane electrode (E-field MEA) combined structure fuel cell device in a reversible regenerative hydrogen-oxygen electrolysis device.
  • E-field MEA electric field-membrane electrode
  • the fuel cell device of the electric field-membrane electrode (E-field MEA) combination structure of the present invention may also constitute a hydroxide water electrolysis device.
  • the positive electrode is often referred to as the anode and the negative electrode is commonly referred to as the cathode, as opposed to a fuel cell.
  • the stable electric field E of the present invention enhances the electric double layer located at or near the electrode-electrolyte interface, reduces the activation loss, lowers the decomposition voltage of the electrolyzed water, and improves the electrolysis efficiency.
  • the E-field MEA component device of the water electrolysis cell of the present invention decomposes the voltage deposition diagram, as shown in FIG.
  • the initial voltage and the decomposition voltage of the present invention are both significantly lower than those of the conventional water electrolysis cell.
  • the oxyhydrogen water cell device can be connected in parallel with a plurality of devices to form a hydrogen oxyhydroxide electrolysis device with a high gas production rate.
  • the fuel cell device of the electric field-membrane electrode assembly structure of the present invention can effectively reduce activation loss, fuel penetration and internal short-circuit current, and ohmic loss, thereby improving the performance of the fuel cell. Overcoming existing fuel cell devices, it is not possible to reduce activation loss, fuel penetration and internal short circuit current, and insufficient ohmic losses.
  • the fuel cell device of the electric field-membrane electrode assembly structure of the present invention in the application of the reversible regenerative hydrogen-oxygen electrolysis device, also reduces the activation loss, reduces the decomposition voltage of the electrolyzed water, and improves the electrolysis efficiency.
  • Fig. 1 (a) is a schematic diagram of the working principle of the MEA assembly of the existing acidic electrolyte fuel cell
  • Fig. 1 (b) is a schematic diagram of the working principle of the MEA assembly of the existing alkaline electrolyte fuel cell
  • Fig. 2 is a schematic structural view of the MEA assembly of the existing fuel cell
  • FIG. 3(A) is a schematic view showing the working principle of the E-field MEA assembly of the acidic fuel cell of the present invention
  • FIG. 3(B) is a schematic view showing the working principle of the E-field MEA assembly of the alkaline fuel cell of the present invention
  • Field MEA component structure diagram is a schematic view showing the working principle of the E-field MEA assembly of the acidic fuel cell of the present invention.
  • Figure 5 is a schematic view showing the working principle of the E-field MEA assembly of the water electrolysis cell of the present invention
  • Figure 6 is a schematic view showing the structure of the E-field MEA assembly of the water electrolysis cell of the present invention
  • Figure 8 is a diagram showing the decomposition voltage of the E-field MEA component device of the water electrolysis cell of the present invention.
  • a fuel cell device of an electric field-membrane electrode (E-field MEA) combination structure is composed of a main component of an electrolyte 1.0, an anode 2.0, a cathode 3.0, an electric field positive electrode 4.0, and an electric field negative electrode 5.0.
  • the DC power supply 6.0 is a power supply for the electric field positive electrode 4.0 and the electric field negative electrode 5.0.
  • the main function is to provide a stable or regulated internal electric field E for the three-in-one component of the membrane electrode MEA.
  • Load 7.0 is an external load powered by a fuel cell.
  • Figure 3 (A) and Figure 3 (B) represent acid and alkaline electrolyte fuel cells, respectively.
  • the working principle of the fuel cell device of the electric field-membrane electrode (E-field MEA) combined structure of the present embodiment is as follows:
  • Acid-electrolyte (PEM) fuel cell anode-anode reaction and electron flow anode: 23 ⁇ 4 ⁇ 4H + +4e" Hydrogen ionization, derivation of electrons and generation of hydrogen ions.
  • Cathode 0 2 +4e-+4H + ⁇ 2H 2 0 Oxygen
  • the electrons on the gas-bonding electrode and the hydrogen ions in the electrolyte form water.
  • a direct current power source 6.0, an electric field positive electrode 4.0, and an electric field negative electrode 5.0 are combined to form an internal electric field E, and the direction is directed from the anode to the cathode, and in the electric field E, H + forms a repulsive electric field force.
  • the resistance encountered by the ion flow in the electrolyte is reduced, and the electrons in the electric field E form an attractive electric field force, preventing the diffused electrons from entering the electrolyte, and reducing the internal short-circuit current of the electrolyte.
  • the contact surface of the electrode catalyst and the electrolyte generates a large amount of electrons and ions to form an electric double layer.
  • the stable electric field E enhances the electric double layer located at or near the electrode-electrolyte interface to reduce the activation loss.
  • Anodically reacted and electron flow of an alkaline electrolyte (AFC) fuel cell Anode: 2H 2 +40H- ⁇ 4H 2 0+4e" Hydroxyl ion reacts with hydrogen to release energy and electrons and produce water.
  • the oxygen and the electrons on the electrode react with the water of the electrolyte to form a new hydroxide ion.
  • the electric field positive electrode 4.0 and the electric field negative electrode 5.0 combine to form an internal electric field E, and the direction is directed from the anode to the cathode.
  • OH_ forms an attractive electric field force, so that the resistance encountered in the flow of hydroxide ions in the electrolyte is reduced, and in the electric field E
  • the electrons also form an attractive electric field force that prevents the diffused electrons from entering the electrolyte and reduces the internal short circuit current of the electrolyte.
  • the electrode catalyst and the electrolyte contact surface generate a large amount of electrons and ions to form an electric double layer.
  • the stable electric field E enhances the electric double layer located at or near the electrode-electrolyte interface to reduce the activation loss.
  • an electric field-membrane electrode (E-field MEA) combined structure fuel cell device is composed of: electrolytic layer 1.1, catalytic layer 1.2, catalytic layer 1.3, anode 2.0, anode flow. groove
  • a fuel cell device consisting of a cathode 3.0, a cathode runner 3.1, an electric field positive plate 4.1, an insulating layer 4.2, an electric field negative plate 5.1, an insulating layer 5.2, a DC power source U6.0, and a load 7.0. And a plurality of fuel cell devices can be connected in series to form a high voltage electric field-membrane electrode (E-field MEA) combined structure Fuel cell device.
  • E-field MEA electric field-membrane electrode
  • the fuel cell device of the present embodiment "an electric field-membrane electrode (E-field MEA) combined structure" is mainly characterized by a five-in-one fuel cell consisting of "electric field positive electrode-anode-electrolyte-cathode-electric field negative electrode". Component.
  • the five-in-one assembly is a three-in-one assembly of a prior art fuel cell "anode-electrolyte-cathode”.
  • the outer layer of the anode and the cathode is electrically isolated to combine the electric field anode with the electric field anode.
  • the operation of the fuel cell device of the electric field-membrane electrode (E-field MEA) combination structure can effectively reduce activation loss, fuel penetration and internal short-circuit current and ohmic loss.
  • an electric field-membrane electrode (E-field MEA) combined structure is mainly characterized by: mainly used in fuel cells operating at medium and low temperatures, such as alkaline fuel cells (AFC), protons Exchange membrane fuel cell (PEMFC), sterol fuel cell (DMFC).
  • AFC alkaline fuel cells
  • PEMFC protons Exchange membrane fuel cell
  • DMFC sterol fuel cell
  • a fuel cell device of the present embodiment 2"-electric field-membrane electrode (E-field MEA) combined structure can be operated in a reverse manner to form a hydrogen-oxygen water electrolysis device.
  • the "water electrolysis cell device of the electric field-membrane electrode (E-field MEA) combined structure” is composed of the main components of the electrolyte 1.0, the anode 2.0, the cathode 3.0, the electric field positive electrode 4.0, and the electric field negative electrode 5.0.
  • the DC power supply 6.0 is a power supply for the electric field positive electrode 4.0 and the electric field negative electrode 5.0.
  • the main function is to provide a stable or regulated internal electric field E for the three-in-one component of the membrane electrode MEA.
  • Power 7.0 is the electrolysis power source for water cells.
  • the working principle of the water electrolysis cell device of the second embodiment of the present invention is as follows: In the positive electrode, water is oxidized to emit electrons 2H 2 0 ⁇ 0 2 +4H + +4e- The reaction produces oxygen. At the negative electrode H + removed from the electrolyte, the power source 7.0 supplies electrons, and 4H + + 4e_ ⁇ 2H 2 reacts to generate hydrogen gas.
  • the DC power source 6.0, the electric field positive electrode 4.0, and the electric field negative electrode 5.0 are combined to form an internal electric field E, and the direction is directed from the anode to the cathode.
  • H + forms a repulsive electric field force, which causes the resistance of the ion flow in the electrolyte to be encountered. The force is reduced.
  • the electric field E enhances the deformation of the water dipole at or near the positive electrode-electrolyte interface, the electric dipole phase is enhanced, the conductivity is improved, and the electrolysis efficiency is enhanced.
  • the "water electrolysis cell device of the electric field-membrane electrode (E-field MEA) combined structure” is a declared invention patent "stabilized strong electric field constant current electrolytic cell and its electrolysis device", patent application number: 200910025631.8 On the basis of another electric field-membrane electrode (E-field MEA) combined structure of a single hydrogen-oxygen water electrolysis cell device.
  • E-field MEA is composed of an electrolytic layer 1.1, a catalytic layer 1.2, a catalytic layer 1.3, a cathode 2.0, and a cathode.
  • Single hydrogen-oxygen water electrolysis cell composed of guide channel 2.1, anode 3.0, anode flow channel 3.1, electric field negative plate 4.1, insulating layer 4.2, electric field positive plate 5.1, insulating layer 5.2, DC power supply U6.0, and electrolysis power supply 7.0 Device.
  • the monohydrogen-hydrogen water electrolysis cell unit can be connected in series to form a plurality of sets of hydrogen-oxygen water electrolysis devices. Note: In a hydrogen-oxygen water electrolyzer, the positive electrode is often referred to as the anode and the negative electrode is commonly referred to as the cathode, as opposed to a fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Description

电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置 技术领域
本发明涉及燃料电池应用领域, 尤其涉及一种电场 -膜电极组件 (E-field MEA)结构的燃料电池装置及其可逆式再生氢氧电解装置。
背景技术
燃料电池是一种将氢和氧的化学能, 通过电极反应直接转换成电能的 装置。 这种装置的最大特点是由于反应过程中不涉及到燃烧, 因此其能量转 换效率不受"卡诺循环"的限制, 其能量转换率高达 60 % ~ 80 % , 实际使用效 率则是普通内燃机的 2 ~ 3倍。 另外, 它还具有燃料多样化、 排气干净、 噪 音低、 环境污染小等优点。
当前燃料电池结构是由 "阳极-电解质 -阴极"所组成的三合一组件 MEA ( Membrane Electrode Assembly ) 。 电解质的类型决定了燃料电池的工作温 度, 而电极上所釆用的催化剂是促进燃料剂与氧化剂的电化学反应速率。 按 电解质划分, 燃料电池大致可分为六种: 碱性燃料电池(AFC ) 、 质子交换 膜燃料电池 ( PEMFC )、 曱醇燃料电池 ( DMFC )、磷酸燃料电池 ( PAFC ) 、 熔融碳酸盐燃料电池(MCFC )和固体氧化物燃料电池(SOFC ) 。
其中曱醇燃料电池(DMFC )、 质子交换膜燃料电池(PEMFC ) 阴极和 阳极的催化材料是铂, 当前工艺是将很小的 Pt金属粒子担载在具有良好分 散性的碳粉表面, 使 Pt用量降低到 0.2mg/cm2-0.1mg/cm2, 极大降低了燃料 电池的成本。 但是由于阴极和阳极的催化材料铂用量的减少, 使得曱醇燃料 电池(DMFC )、 质子交换膜燃料电池(PEMFC ) 的功率密度在长期工作时 稳定性不好, 造成发电效率逐渐下降, 工作寿命缩短。 以下结合附图进一步说明现有技术的原理与不足。 现有燃料电池基本结 构由"阳极-电解质-阴极"所组成的三合一组件 MEA,以及工作原理参看图 1、 图 2所示。 其中, 图 1 (a)和图 1 (b)分别代表酸性和碱性电解质 (PEM )燃 料电池。
参看附图 1、 图 2中, 1.0为电解质; 2.0为阳极; 3.0为阴极。 其中电解 质 1.0包含有电解层 1.1、 催化层 1.2与催化层 1.3。 7.0是外负载。 电解层与 催化层分别与阳极 2.0、 阴极 3.0的交界面紧密交接。 阳极 2.0与阴极 3.0分 别有阳极导流槽 2.1与阴极导流槽 3.1。
酸性电解质 (PEM )燃料电池的阴阳极反应和电子流:
阳极: 2H2→4H++4e- 阴极: 02+4e-+4H+→2H20
碱性电解质 (AFC )燃料电池的阴阳极反应和电子流:
阳极: 2Η2+40ίΓ→ 4H20+4e"
阴极: 02+4e-+2H20→ 40ίΓ
由"阳极-电解质-阴极"所组成的燃料电池,其影响电压降的主要原因有: 活化损失、 燃料的穿透和内部短路电流、 欧姆损失、 传质或浓度损失。
如在一个质子交换膜(ΡΕΜ )燃料电池中, 酸性电解质与阴阳电极总有 连续的电子流流向电解质或从电解质流出, 形成活化损失。 质子交换膜 ( ΡΕΜ ) 电解质是离子传导型电解质, 但它总是可以发生少量的电子传导, 以及氢分子从阳极通过电解质渗漏到阴极, 在阴极与氧反应, 形成燃料的穿 透和内部短路电流。 而欧姆损失是电极的电阻和质子交换膜(ΡΕΜ )电解质 中离子流动遇到的阻力。 发明内容
为了克服现有 "阳极-电解质-阴极"所组成的燃料电池装置, 无法减少活 化损失、 燃料的穿透和内部短路电流、 欧姆损失, 来提高燃料电池的性能。 本发明提供一种"电场-膜电极 (E-field MEA)组合结构的燃料电池装置",该电 场-膜电极 (E-field MEA)组合结构的燃料电池装置, 能有效的减少活化损失、 燃料的穿透和内部短路电流、 欧姆损失。 本发明的进一步目的是提供这种电 场-膜电极组合结构的燃料电池装置, 以及在可逆式再生氢氧电解装置中的 应用。
实现本申请第一个发明任务的技术方案是:
一种电场-膜电极 (E-field MEA)组合结构的燃料电池装置,在阳极与阴极 之间设有电解质, 其特征在于, 在所述的阳极外面设有与该阳极绝缘的电场 正极; 在所述阴极的外面设有与该阴极绝缘的电场负极; 所述的电场正极及 电场负极与一个直流电源连接。
换言之, 本发明的电场-膜电极 (E-field MEA)组合结构的燃料电池装置, 是在现有技术 "阳极-电解质-阴极" 所组成的三合一组件中, 阴阳电极外层 电隔离组合一对电场负极与电场正极, 而电场负极与电场正极连接一个隔离 的直流电源, 并为"阳极-电解质 -阴极"所组成的三合一组件提供一个稳定或 调控的内电场。
本发明所述的电场-膜电极 (E-field MEA)组合结构的燃料电池装置,主要 应用在中、 低温工作的燃料电池中, 如碱性燃料电池(AFC )、 质子交换膜 燃料电池 ( PEMFC )、 曱醇燃料电池 ( DMFC )。
本发明的工作原理是:以本发明电场-膜电极 (E-field MEA)组合结构的燃 料电池装置构成的酸性电解质(PEM )燃料电池为例: 阴、 阳极反应和电子 流:阳极: 2H2→ 4H++4e" 氢离子化, 释放出电子并产生氢离子。 阴极: 02+4e"+4H+→2H20 氧气结合电极上的电子和电解质中的氢离子形成水。酸 性电解质燃料电池的阴阳极反应和形成电子流过程中,直流电源、电场正极、 电场负极组合形成内电场 E, 方向从阳极指向阴极, 在电场 E中 H+形成排斥 电场力, 使电解质中离子流动遇到的阻力减少, 在电场 E中的电子形成吸引 电场力, 阻止扩散的电子进入电解质中, 减少电解质内部短路电流。 同时电 极催化剂与电解质接触面产生大量的电子与离子形成双电层, 此时稳定的电 场 E增强位于电极 -电解质界面或其附近的双电层, 减少活化损失。
以本发明电场-膜电极 (E-field MEA)组合结构的燃料电池装置构成的碱 性电解质(AFC )燃料电池为例: 的阴阳极反应和电子流:阳极: 2H2+40H-→ 4H20+4e" 氢氧根离子与氢反应, 放出能量和电子并产生水。 阴极: 02+4e"+2H20→ 40H" 氧和电极上的电子与电解质的水反应 , 形成新的氢氧 根离子。 碱性电解质燃料电池的阴阳极反应和形成电子流过程中, 直流电源 6.0、 电场正极、 电场负极组合形成内电场 E, 方向从阳极指向阴极, 在电场 E中 OH_形成吸引电场力,使电解质中氢氧根离子流动遇到的阻力减少,在电 场 E中的电子也形成吸引电场力, 阻止扩散的电子进入电解质中, 减少电解 质内部短路电流。 同时电极催化剂与电解质接触面产生大量的电子与离子形 成双电层, 此时稳定的电场 E增强位于电极 -电解质界面或其附近的双电层, 减少活化损失。
以本发明电场-膜电极 (E-field MEA)组合结构的燃料电池装置与现有的 "阳极-电解质-阴极"所组成 MEA燃料电池, 典型工作电压变化曲线图, 参看 图 7所示。 本发明的输出电压明显高于传统燃料电池; 与理论无损电压曲线 更力口接近。
本发明的优化方案中, 多个本发明的燃料单电池装置可以串联形成一个 高电压输出的电场-膜电极 (E-field MEA)组合结构的燃料电池装置。
本申请的第 2个发明任务,是上述的电场-膜电极 (E-field MEA)组合结构 的燃料电池装置, 在可逆式再生氢氧电解装置中的应用。
即,本发明的电场-膜电极 (E-field MEA)组合结构的燃料电池装置也可以 组成氢氧水电解装置。 注: 在水电解装置中, 正极通常称为阳极, 负极通常 称为阴极, 这与燃料电池相反。 由于同样的原理, 作为氢氧水电解装置时, 本发明稳定的电场 E增强位于电极 -电解质界面或其附近的双电层, 减少活 化损失, 降低电解水的分解电压, 提高电解效率。
本发明水电解池 E-field MEA组件装置分解电压析出图, 参看图 8所示。 本发明的初始电压与分解电压, 均明显低于传统的水电解池。
在优化方案中, 所述的氢氧水电解池装置可以多个装置并联, 形成的一 个产气率高的氢氧水电解装置。
本发明的电场 -膜电极组合结构的燃料电池装置, 能有效的减少活化损 失、 燃料的穿透和内部短路电流, 以及欧姆损失, 提高了燃料电池的性能。 克服了现有的燃料电池装置, 无法减少活化损失、 燃料的穿透和内部短路电 流, 以及欧姆损失不足。 本发明的这种电场-膜电极组合结构的燃料电池装 置, 在可逆式再生氢氧电解装置中的应用, 同样减少了活化损失, 降低电解 水的分解电压, 提高了电解效率。
附图说明 图 1 ( a ) 为现有酸性电解质燃料电池 MEA组件工作原理示意图; 图 1 ( b ) 为现有碱性电解质燃料电池 MEA组件工作原理示意图; 图 2为现有燃料电池 MEA组件结构示意图;
图 3 ( A )为本发明酸性燃料电池 E-field MEA组件工作原理示意图; 图 3 ( B )为本发明碱性燃料电池 E-field MEA组件工作原理示意图; 图 4为本发明燃料电池 E-field MEA组件结构示意图;
图 5为本发明水电解池 E-field MEA组件工作原理示意图;
图 6 为本发明水电解池 E-field MEA组件结构示意图; 图 8 为本发明水电解池 E-field MEA组件装置分解电压析出图。
具体实施方式
实施例 1
参照图 3所示, 一种电场-膜电极 (E-field MEA)组合结构的燃料电池装置 是由电解质 1.0、 阳极 2.0、 阴极 3.0、 电场正极 4.0、 电场负极 5.0主要部件所组 成。 其中直流电源 6.0是电场正极 4.0、 电场负极 5.0的供电电源, 主要功能是 为膜电极 MEA所组成的三合一组件提供稳定或调控的内电场 E。 负载 7.0是燃 料电池供电的外负载。 其中, 图 3 (A)、 图 3 (B)分别代表酸性和碱性电解质燃 料电池。
参照图 3所示, 本实施例一种电场-膜电极 (E-field MEA)组合结构的燃料 电池装置的工作原理是:
酸性电解质 ( PEM ) 燃料电池的阴阳极反应和电子流:阳极: 2¾→ 4H++4e" 氢离子化,译放出电子并产生氢离子。阴极: 02+4e-+4H+→2H20 氧 气结合电极上的电子和电解质中的氢离子形成水。 酸性电解质燃料电池的阴 阳极反应和形成电子流过程中, 直流电源 6.0、 电场正极 4.0、 电场负极 5.0组 合形成内电场 E, 方向从阳极指向阴极, 在电场 E中 H+形成排斥电场力, 使 电解质中离子流动遇到的阻力减少, 在电场 E中的电子形成吸引电场力, 阻 止扩散的电子进入电解质中, 减少电解质内部短路电流。 同时电极催化剂与 电解质接触面产生大量的电子与离子形成双电层, 此时稳定的电场 E增强位 于电极 -电解质界面或其附近的双电层, 减少活化损失。
碱性电解质( AFC )燃料电池的阴阳极反应和电子流:阳极: 2H2+40H-→ 4H20+4e" 氢氧根离子与氢反应, 放出能量和电子并产生水。 阴极: 02+4e"+2H20→ 40H" 氧和电极上的电子与电解质的水反应 , 形成新的氢氧 根离子。 碱性电解质燃料电池的阴阳极反应和形成电子流过程中, 直流电源
6.0、 电场正极 4.0、 电场负极 5.0组合形成内电场 E, 方向从阳极指向阴极, 在电场 E中 OH_形成吸引电场力, 使电解质中氢氧根离子流动遇到的阻力减 少, 在电场 E中的电子也形成吸引电场力, 阻止扩散的电子进入电解质中, 减少电解质内部短路电流。 同时电极催化剂与电解质接触面产生大量的电子 与离子形成双电层, 此时稳定的电场 E增强位于电极-电解质界面或其附近的 双电层, 减少活化损失。
参照图 4所示,本实施例 "一种电场-膜电极 (E-field MEA)组合结构的燃料 电池装置"是由: 电解层 1.1、 催化层 1.2、 催化层 1.3、 阳极 2.0、 阳极导流槽
2.1、 阴极 3.0、 阴极导流槽 3.1、 电场正极板 4.1、 绝缘层 4.2、 电场负极板 5.1、 绝缘层 5.2、 直流电源 U6.0、 负载 7.0所组成的燃料单电池装置。 而多个燃料 单电池装置可以串联形成一个高电压的电场 -膜电极 (E-field MEA)组合结构 的燃料电池装置。
本实施例 "一种电场 -膜电极 (E-field MEA)组合结构的燃料电池装置"主 要发明特征为:燃料电池由 "电场正极 -阳极 -电解质-阴极-电场负极"所组成的 五合一组件。 该五合一组件是在现有技术的燃料电池"阳极-电解质 -阴极 "所 组成的三合一组件中, 阴阳电极外层电隔离组合电场负极与电场正极。 该电 场-膜电极 (E-field MEA)组合结构的燃料电池装置的工作原理,能有效的减少 活化损失、 燃料的穿透和内部短路电流及欧姆损失。
本实施例 "一种电场 -膜电极 (E-field MEA)组合结构的燃料电池装置"主 要发明特征为: 主要应用在中、 低温工作的燃料电池中, 如碱性燃料电池 ( AFC )、 质子交换膜燃料电池(PEMFC )、 曱醇燃料电池(DMFC )。
参照图 5所示, 本实施例 2"—种电场-膜电极 (E-field MEA)组合结构的燃 料电池装置"可以逆式工作方式, 形成氢氧水电解装置。
本实施例 2"—种电场 -膜电极 (E-field MEA)组合结构的水电解池装置"是 由电解质 1.0、 阳极 2.0、 阴极 3.0、 电场正极 4.0、 电场负极 5.0主要部件所组成。 其中直流电源 6.0是电场正极 4.0、 电场负极 5.0的供电电源, 主要功能是为膜 电极 MEA所组成的三合一组件提供稳定或调控的内电场 E。电源 7.0是水电解 池电解电源。
本实施例 2"—种电场-膜电极 (E-field MEA)组合结构的水电解池装置"的 工作原理是: 在正极, 水被氧化放出电子 2H20→02+4H++4e-反应产生氧。 在负极 H+从电解质中移出, 电源 7.0提供电子, 4H++4e_→2H2反应产生氢气。 其中直流电源 6.0、 电场正极 4.0、 电场负极 5.0组合形成内电场 E, 方向从阳 极指向阴极。 在电场 E中 H+形成排斥电场力, 使电解质中离子流动遇到的阻 力减少。 同时电场 E增强位于正电极 -电解质界面或其附近的水偶极子变形拉 长, 电偶极子相位增强, 导电性提高, 增强电解效率。
本实施例 2"—种电场-膜电极 (E-field MEA)组合结构的水电解池装置"是 在申报的发明专利 "稳定强电场恒电流电解池及其电解装置", 专利申请号: 200910025631.8的基础上,提出的另一种电场-膜电极 (E-field MEA)组合结构 的单氢氧水电解池装置。
参照图 6所示, 本实施例 2"—种电场-膜电极 (E-field MEA)组合结构的 水电解池装置 "结构是由电解层 1.1、 催化层 1.2、 催化层 1.3、 阴极 2.0、 阴 极导流槽 2.1、 阳极 3.0、 阳极导流槽 3.1、 电场负极板 4.1、 绝缘层 4.2、 电 场正极板 5.1、 绝缘层 5.2、 直流电源 U6.0、 电解电源 7.0所组成的单氢氧水 电解池装置。该单氢氧水电解池装置可以串联组成多组形式的氢氧水电解装 置。 注: 在氢氧水电解装置中, 正极通常称为阳极, 负极通常称为阴极, 这 与燃料电池相反。

Claims

权 利 要 求
1、 一种电场-膜电极组合结构的燃料电池装置, 在阳极与阴极之间设有 电解质, 其特征在于, 在所述的阳极外面设有与该阳极绝缘的电场正极; 在 所述阴极的外面设有与该阴极绝缘的电场负极; 所述的电场正极及电场负极 与一个直流电源连接。
2、 根据权利要求 1所述的电场-膜电极组合结构的燃料电池装置, 其特 征在于, 所述的电池装置为碱性燃料电池、 质子交换膜燃料电池, 或曱醇燃 料电池。
3、 根据权利要求 1所述的电场-膜电极组合结构的燃料电池装置, 其特 征在于, 所述的电场 -膜电极组合结构的燃料电池装置为多个串联, 形成的 一个高电压输出的电场-膜电极组合结构的燃料电池装置。
4、 根据权利要求 2所述的电场-膜电极组合结构的燃料电池装置, 其特 征在于, 所述的电场 -膜电极组合结构的燃料电池装置为多个串联, 形成的 一个高电压输出的电场-膜电极组合结构的燃料电池装置。
5、 根据权利要求 3所述的电场-膜电极组合结构的燃料电池装置, 其特 征在于, 所述的电场 -膜电极组合结构的燃料电池装置的具体结构, 是由电 解层( 1.1 )、催化层 ( 1.2 )、催化层( 1.3 )、 阳极 ( 2.0 ) , 阳极导流槽 ( 2.1 ) , 阴极(3.0 ) 、 阴极导流槽(3.1 ) 、 电场正极板(4.1 )、 绝缘层 (4.2)、 电场负 极板 (5.1)、 绝缘层 (5.2)、 直流电源 U(6.0)、 负载 (7.0)所组成。
6、 根据权利要求 4所述的电场-膜电极组合结构的燃料电池装置, 其特 征在于, 所述的电场 -膜电极组合结构的燃料电池装置的具体结构, 是由电 解层( 1.1 )、催化层( 1.2 )、催化层( 1.3 )、 阳极 ( 2.0 ) , 阳极导流槽 ( 2.1 ) , 阴极(3.0) 、 阴极导流槽(3.1 ) 、 电场正极板(4.1)、 绝缘层 (4.2)、 电场负 极板 (5.1)、 绝缘层 (5.2)、 直流电源 U(6.0)、 负载 (7.0)所组成。
7、 一种权利要求 1所述的电场-膜电极组合结构的燃料电池装置, 在可 逆式再生氢氧电解装置中的应用。
8、 根据权利要求 7所述的电场 -膜电极组合结构的燃料电池装置构成的, 可逆式再生氢氧电解装置, 其特征在于, 所述电解装置的具体结构是由: 电 解层(1.1)、催化层(1.2)、催化层(1.3)、 阴极(2.0)、 阴极导流槽(2.1)、 阳极(3.0) 、 阳极导流槽(3.1 ) 、 电场负极板(4.1)、 绝缘层(4.2)、 电场 正极板(5.1)、 绝缘层(5.2)、 直流电源 U (6.0)、 电解电源 (7.0)所组成。
9、 根据权利要求 7所述的电场 -膜电极组合结构的燃料电池装置构成的, 可逆式再生氢氧电解装置, 其特征在于, 所述的氢氧水电解池装置可以多组 装置并联, 形成的一个产气率高的氢氧水电解装置。
10、 根据权利要求 8所述的电场-膜电极组合结构的燃料电池装置构成 的, 可逆式再生氢氧电解装置, 其特征在于, 所述的氢氧水电解池装置可以 多组装置并联, 形成的一个产气率高的氢氧水电解装置。
PCT/CN2009/071718 2009-04-22 2009-05-09 电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置 WO2010121442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910031035.0 2009-04-22
CN2009100310350A CN101540409B (zh) 2009-04-22 2009-04-22 电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置

Publications (1)

Publication Number Publication Date
WO2010121442A1 true WO2010121442A1 (zh) 2010-10-28

Family

ID=41123475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071718 WO2010121442A1 (zh) 2009-04-22 2009-05-09 电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置

Country Status (2)

Country Link
CN (1) CN101540409B (zh)
WO (1) WO2010121442A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208641B (zh) * 2012-11-13 2015-02-18 郭建国 电场-膜电极燃料电池堆及其智能均衡电场管理系统
CN107546401B (zh) * 2017-07-28 2020-03-17 上海交通大学 一种双向可逆燃料电池系统
CN108390083B (zh) * 2018-01-10 2020-08-14 江苏乾景新能源产业技术研究院有限公司 一种组合再生式燃料电池系统放电工作模式启动方法
CN108178252B (zh) * 2018-01-22 2024-03-22 浙江工业大学 一种四电极双电解系统及采用该系统处理难降解有机废水方法
CN109786803A (zh) * 2018-08-26 2019-05-21 熵零技术逻辑工程院集团股份有限公司 一种电化学装置
CN110767928B (zh) * 2019-10-31 2021-08-31 重庆大学 一种基于电场强化传质的热再生氨电池及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075411A (ja) * 2000-08-24 2002-03-15 Akira Takayama 静電気を用いた燃料電池
CN2492514Y (zh) * 2001-04-30 2002-05-22 吴凤君 一种能够生成还原水的保温杯
CN1525588A (zh) * 2003-09-17 2004-09-01 胡大林 一种燃料电池中促进化学反应进行的方法
WO2005100639A1 (ja) * 2004-04-08 2005-10-27 Naoki Nomura 電気分解によるガス発生装置
US7432002B2 (en) * 2002-09-30 2008-10-07 E.I. Du Pont De Nemours And Company Method for regeneration of performance in a fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187822A (ja) * 2001-12-20 2003-07-04 Sony Corp プロトン伝導体、膜電極接合体、燃料電池、燃料電池装置、並びに電圧変換装置
CN100521322C (zh) * 2004-04-03 2009-07-29 王守义 等离子燃料电池
CN2891308Y (zh) * 2005-09-16 2007-04-18 上海清能燃料电池技术有限公司 既可电解水又可发电的再生式燃料电池堆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075411A (ja) * 2000-08-24 2002-03-15 Akira Takayama 静電気を用いた燃料電池
CN2492514Y (zh) * 2001-04-30 2002-05-22 吴凤君 一种能够生成还原水的保温杯
US7432002B2 (en) * 2002-09-30 2008-10-07 E.I. Du Pont De Nemours And Company Method for regeneration of performance in a fuel cell
CN1525588A (zh) * 2003-09-17 2004-09-01 胡大林 一种燃料电池中促进化学反应进行的方法
WO2005100639A1 (ja) * 2004-04-08 2005-10-27 Naoki Nomura 電気分解によるガス発生装置

Also Published As

Publication number Publication date
CN101540409A (zh) 2009-09-23
CN101540409B (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
Pan et al. Performance of a hybrid direct ethylene glycol fuel cell
JP4788152B2 (ja) 燃料電池のエージング方法およびエージング装置
CN107706435B (zh) 一种双极膜型直接硼氢化物燃料电池
WO2010121442A1 (zh) 电场-膜电极组合结构的燃料电池装置及其可逆式再生氢氧电解装置
JP4788151B2 (ja) 燃料電池の特性復帰方法および特性復帰装置
RU160133U1 (ru) Твердополимерный топливный элемент
KR101101497B1 (ko) 고온형 연료전지 전극의 제조 방법 및 그 방법에 의해 제조된 막전극 접합체
US20110053032A1 (en) Manifold for series connection on fuel cell
KR20140053568A (ko) 고체산화물 연료전지 모듈
KR20210027924A (ko) 고분자 전해질 분리막에 기반한 고효율 일체형 재생연료전지, 이의 운전방법, 및 이의 제조방법
CN220233245U (zh) 一种用于燃料电池的全氟磺酸质子交换膜
Auriyani et al. The Electrolyte-Fuel Concentrations Effects on Direct Methanol Alkaline Fuel Cell (DMAFC) Through Non-Noble Metal Catalysts
KR100531822B1 (ko) 연료전지의 공기 공급 장치
US20060159976A1 (en) Electrochemical energy source and electronic device incorporating such an energy source
JP5752430B2 (ja) アルカリ形燃料電池およびその使用方法
KR100556764B1 (ko) 연료전지의 전극 구조
KR100446781B1 (ko) 연료전지의 혼합전극 구조
KR20130075988A (ko) 고체산화물 연료전지용 분리판
KR20050025489A (ko) 연료전지의 공기 공급 장치
US20110117475A1 (en) Anode supported solid oxide fuel cell
JP2002343368A (ja) 高分子電解質型燃料電池
CN100376051C (zh) 燃料电池混合电极结构
JP5504498B2 (ja) 燃料電池、燃料電池システムおよび発電方法
CN202585631U (zh) 不易积碳的固体氧化物燃料电池
KR100829897B1 (ko) 절곡막을 가진 양성자교환막 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843546

Country of ref document: EP

Kind code of ref document: A1