WO2010120076A2 - 무선 통신 시스템에서 데이터 전송 및 수신 방법 - Google Patents

무선 통신 시스템에서 데이터 전송 및 수신 방법 Download PDF

Info

Publication number
WO2010120076A2
WO2010120076A2 PCT/KR2010/002237 KR2010002237W WO2010120076A2 WO 2010120076 A2 WO2010120076 A2 WO 2010120076A2 KR 2010002237 W KR2010002237 W KR 2010002237W WO 2010120076 A2 WO2010120076 A2 WO 2010120076A2
Authority
WO
WIPO (PCT)
Prior art keywords
frame
region
ofdm symbols
wireless communication
offset
Prior art date
Application number
PCT/KR2010/002237
Other languages
English (en)
French (fr)
Other versions
WO2010120076A3 (ko
Inventor
이욱봉
조한규
문성호
곽진삼
임빈철
노민석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to RU2011140986/07A priority Critical patent/RU2528167C2/ru
Priority to US13/264,372 priority patent/US8509176B2/en
Priority to CN201080016683.XA priority patent/CN102396168B/zh
Publication of WO2010120076A2 publication Critical patent/WO2010120076A2/ko
Publication of WO2010120076A3 publication Critical patent/WO2010120076A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting and receiving data in a wireless communication system.
  • IEEE 802.16m system needs to be standardized to maintain compatibility with the IEEE 802.16e system, and the IEEE 802.16m system also needs a frame structure capable of supporting an 802.16e terminal.
  • the frame of the IEEE 802.16m system includes a plurality of subframes, the subframe includes a plurality of subcarriers on the frequency axis and a plurality of OFDM symbols on the time axis. Some of the plurality of subframes included in one frame are used for transmitting uplink data, and others are used for transmitting downlink data.
  • the IEEE 802.16m system can use some of the downlink subframes for the IEEE 802.16m system, the rest can be used as the IEEE 802.16e system.
  • the area used for the IEEE 802.16e system is called the Wireless metropolitan area networks orthogonal frequency division multiple access downlink zone (hereinafter referred to as the "WirelessMAN OFDMA DL Zone”), and is used for the IEEE 802.16m system.
  • the area is referred to as an advanced air interface downlink zone (hereinafter referred to as "Advanced Air Interface DL Zone").
  • FIG. 1 is a view showing a downlink frame structure according to the prior art when the frame offset (frame offset) is 1
  • Figure 2 is a view showing a downlink frame structure according to the prior art when the frame offset (frame offset) is 2. to be.
  • the frame offset defines an offset between a start point of a frame for an IEEE 802.16e system and a start point of a frame for an IEEE 802.16m system in units of subframes.
  • the frame offset is an integer greater than or equal to 1 and less than the number of downlink subframes. For example, when one frame includes five downlink subframes, the frame offset is an integer of 1 or more and less than 5.
  • Type 1 subframe includes 6 OFDM symbols
  • type 2 subframe includes 7 OFDM symbols
  • type 3 subframe includes 5 OFDM symbols
  • type 4 subframe includes 9 OFDM symbols do.
  • the WirelessMAN OFDMA DL Zone includes a type 1 subframe. That is, in FIG. 1, the WirelessMAN OFDMA DL Zone includes 6 OFDM symbols, and in FIG. 2, the WirelessMAN OFDMA DL Zone includes 12 OFDM symbols.
  • the preamble is allocated to the first OFDM symbol of the frame for the IEEE 802.16e system, and the FCH and the DL-MAP are allocated to the second and third OFDM symbols.
  • Subchannelization of the IEEE 802.16e system includes partial usage of subchannels (hereinafter referred to as "PUSC") and full usage of subchannels (hereinafter referred to as "FUSC”). And adaptive modulation and coding (hereinafter, referred to as "AMC") method.
  • PUSC consists of two OFDM symbols
  • FUSC consists of one OFDM symbol
  • AMC consists of three OFDM symbols.
  • the second and third OFDM symbols to which the FCH and DL-MAP are allocated are subchannelized to PUSC.
  • an odd number of OFDM symbols exist in the remaining portion of the WirelessMAN OFDMA DL Zone except for a portion where preamble, FCH, and DL-MAP are allocated.
  • the frame structure according to the prior art increases the overhead since a control message must be sent to inform the UE of the change of the subchannelization method, and as the subchannelization method changes, radio resources cannot be used continuously. There is a problem that resources are wasted.
  • An object of the present invention is to provide a data transmission method using a frame structure that can increase the efficiency of the wireless communication system.
  • An object of the present invention is to provide a data transmission method that can reduce overhead and efficiently use radio resources.
  • the base station transmits downlink data to a first terminal supporting the first system through a first region of the frame, Transmitting downlink data to a second terminal supporting the second system through a second region located behind the first region by a frame offset on the time axis, wherein the wireless communication system supports 8.75 MHz bandwidth;
  • the frame offset is an offset between a start point of the frame for the first system and a start point of the frame for the second system, and the first region includes 3 + 6 (frame offset-1) OFDM symbols.
  • a terminal is used to transmit downlink data to a terminal supporting a system different from the system supported by the terminal.
  • the wireless communication system supports 8.75 MHz bandwidth, and the first area is 3 + 6 (the Frame Offset-1) OFDM symbols, wherein the frame offset is an offset of a start point of the frame for the first system and a start point of the frame for the second system.
  • the wireless communication system may support a first type subframe including six OFDM symbols and a second type subframe including three OFDM symbols.
  • all of the subframes included in the second region may be the first type subframe.
  • the conventional physical layer structure may be utilized because the second region includes only the first type subframe.
  • 1 is a diagram illustrating a downlink frame structure according to the prior art when a frame offset is 1;
  • FIG. 2 is a diagram illustrating a downlink frame structure according to the prior art when the frame offset is 2.
  • FIG. 2 is a diagram illustrating a downlink frame structure according to the prior art when the frame offset is 2.
  • FIG. 3 is a diagram illustrating a TDD frame structure of a wireless communication system having a bandwidth of 8.75 MHz and a CP of 1/8 of useful symbol time.
  • FIG. 4 is a diagram illustrating a frame structure according to the first embodiment of the present invention when the frame offset is 1.
  • FIG. 5 is a diagram illustrating a frame structure according to the first embodiment of the present invention when the frame offset is 2.
  • FIG. 6 is a diagram illustrating a frame structure according to the first embodiment of the present invention when the frame offset is 3.
  • FIG. 7 is a diagram illustrating a downlink frame structure according to the second embodiment of the present invention when the frame offset is one.
  • FIG. 8 illustrates a downlink frame structure according to a second embodiment of the present invention when a type 1 subframe is included in a second region.
  • FIG. 9 is a diagram illustrating a downlink frame structure according to a third embodiment of the present invention when the frame offset is one.
  • FIG. 10 is a diagram illustrating a downlink frame structure according to a third embodiment of the present invention when the frame offset is two.
  • FIG. 3 is a diagram illustrating a TDD frame structure of a wireless communication system having a bandwidth of 8.75 MHz and a CP of 1/8 of useful symbol time.
  • the superframe includes four frames, and the frame includes seven subframes. And, superframe is a superframe header (Superframe header, SFH).
  • superframe header Superframe header, SFH
  • the subframe includes a plurality of subcarriers on the frequency axis and a plurality of OFDM symbols on the time axis.
  • a subframe may be divided into four types according to the number of OFDM symbols included in the subframe.
  • Type 1 subframe includes 6 OFDM symbols
  • type 2 subframe includes 7 OFDM symbols
  • type 3 subframe includes 5 OFDM symbols
  • type 4 subframe includes 9 OFDM symbols do. Referring to FIG. 3, three of the six subframes are type 1 subframes, and the remaining three are type 3 subframes.
  • FIG. 3 shows the case of TDD.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the TDD frame is a frame divided into an area for downlink transmission and an area for uplink transmission on the time axis. That is, some subframes of the plurality of subframes included in the frame are used for downlink transmission and the remaining subframes are used for uplink transmission.
  • the number of subframes used for downlink transmission and the number of subframes used for uplink transmission are determined according to the downlink and uplink ratios. For example, among seven subframes included in one frame as shown in FIG. 3. The first five subframes may be used for downlink transmission, and the latter two subframes may be used for uplink transmission.
  • the present invention relates to a method for transmitting downlink data to a terminal supporting a first system and a terminal supporting a second system through a frame in which a portion for uplink transmission and a portion for downlink transmission are duplexed by TDD. will be.
  • an embodiment of the present invention proposes a frame structure when a wireless communication system supports a new system and an existing system when the bandwidth is 8.75 MHz.
  • the base station divides a plurality of downlink subframes included in the frame into a first region and a second region, and transmits a downlink signal to a terminal supporting the first system through the first region, The downlink signal is transmitted to the terminal supporting the second system through the second region.
  • a downlink frame structure according to a first embodiment of the present invention will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a diagram illustrating a frame structure according to the first embodiment of the present invention when the frame offset is 1
  • FIG. 5 is a diagram illustrating a frame structure according to the first embodiment of the present invention when the frame offset is 2
  • FIG. 6 is a diagram illustrating a frame structure according to the first embodiment of the present invention when the frame offset is 3.
  • the frame offset is the offset between the starting point of the frame for the first system and the starting point of the frame for the second system.
  • the horizontal axis represents time
  • 'p' represents a preamble of the first system
  • 'PUSC' represents a symbol subchannelized to PUSC.
  • the first area is an area for communicating with a terminal supporting the first system
  • the second area is an area for communicating with a terminal supporting the second system.
  • the frame for the first system starts with the first OFDM symbol of the first region
  • the frame for the second system starts with the first OFDM symbol of the second region.
  • 4 to 6 illustrate a downlink frame when the downlink subframe and the uplink subframe have a ratio of 5: 2, but are not limited thereto.
  • the downlink includes 27 OFDM symbols.
  • the downlink frame according to the first embodiment of the present invention includes a mini-subframe including three OFDM symbols. This is to align time alignment with the IEEE 802.16e system.
  • the use of a subframe including three OFDM symbols as the first subframe of the downlink frame is used when the terminal operating in the IEEE 802.16e system mode and the terminal operating in the IEEE 802.16m system mode are mixed.
  • the transmission time interval in units of Type 1 subframes of IEEE 802.16m is used by using subframes of the first subframe for the IEEE 802.16e system and subframes including the six OFDM symbols of the latter for the IEEE 802.16m system. , TTI) to maintain transmission.
  • the first region includes 3 + 6 * (frame offset-1) OFDM symbols. That is, the first region in FIG. 4 includes three OFDM symbols, the second region in FIG. 5 includes nine OFDM symbols, and the second region in FIG. 6 includes fifteen OFDM symbols.
  • the first region includes a mini subframe at the forefront. If the frame offset is 1, as shown in FIG. 4, the first region includes one type 3 subframe, and if the frame offset is 2, the first region as shown in FIG. Contains one. And every time the frame offset increases by one. The number of type 1 subframes included in the first region increases by one. That is, the frame offset may include a mini subframe and may additionally include a type 1 subframe.
  • the subframes included in the second region are all first type subframes.
  • FIG. 7 is a diagram illustrating a downlink frame structure according to the second embodiment of the present invention when the frame offset is one.
  • the downlink includes 27 OFDM symbols.
  • the downlink frame according to the second embodiment of the present invention includes three type 2 subframes and one type 1 subframe.
  • the subframes included in the second region are all type 2 subframes, and the first region includes 6 + 7 * (frame offset-1) OFDM symbols.
  • the second region preferably includes at least one type 1 subframe. Therefore, as shown in FIG. 8, the downlink frame may be configured to include the type 1 subframe in the second region.
  • 8 illustrates a downlink frame structure according to a second embodiment of the present invention when a type 1 subframe is included in a second region.
  • the downlink frame according to the second embodiment of the present invention includes three type 2 subframes and one type 1 subframe, and the first region includes 7 * (frame offset) OFDM symbols. do.
  • FIG. 9 is a diagram illustrating a downlink frame structure according to a third embodiment of the present invention when the frame offset is one.
  • FIG. 10 is a diagram illustrating a downlink frame structure according to a third embodiment of the present invention when the frame offset is two.
  • the downlink according to the third embodiment of the present invention includes 27 OFDM symbols, and the downlink frame includes three type 3 subframes and two type 1 subframes. .
  • two type 1 subframes may be included in the second region. As shown in FIG. 10, one type 1 subframe is included in the first region and the other type 1 subframe is included in the second region. May be included.
  • the first region includes 5 * (frame offset) OFDM symbols, and in FIG. 10, the first region includes 6 + 5 * (frame offset-1) OFDM symbols.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • a data transmission and reception method according to an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), and PLDs ( programmable logic devices (FPGAs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the data transmission and reception method may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 데이터 전송 및 수신 방법에 관한 것이다. 본 발명의 일 양상에 따른 무선 통신 시스템의 데이터 전송 방법에 있어서, 기지국은 프레임의 제1 영역을 통해 제1 시스템을 지원하는 제1 단말에게 하향링크 데이터를 전송하고, 시간축으로 상기 제1 영역보다 프레임 오프셋만큼 뒤에 위치하는 제2 영역을 통해 제2 시스템을 지원하는 제2 단말에게 하향링크 데이터를 전송하는 단계를 포함하고, 상기 무선 통신 시스템은 8.75 MHz 대역폭을 지원하고, 상기 프레임 오프셋은 상기 제1 시스템용 프레임의 시작점과 상기 제2 시스템용 프레임의 시작점의 오프셋이고, 상기 제1 영역은 3+6(상기 프레임 오프셋-1)개의 OFDM 심볼을 포함한다.

Description

무선 통신 시스템에서 데이터 전송 및 수신 방법
본 발명은 무선 통신 시스템에서 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 데이터 전송 및 수신 방법에 관한 것이다.
최근 IEEE 802.16m 시스템의 표준화가 진행중이다. 그런데, IEEE 802.16m 시스템이 상용화되는 시점에 종래의 IEEE 802.16e 단말이 많이 보급되어 있는 상태일 것이다. 따라서, IEEE 802.16m 시스템은 IEEE 802.16e 시스템과 호환성을 유지하도록 표준화되는 것이 필요하고, IEEE 802.16m 시스템은 802.16e 단말을 지원할 수 있는 프레임 구조 또한 필요하다.
IEEE 802.16m 시스템의 프레임은 복수의 서브프레임을 포함하고, 서브프레임은 주파수 축에서는 복수의 부반송파(subcarrier)를 포함하고 시간 축에서는 복수의 OFDM 심볼을 포함한다. 하나의 프레임이 포함하는 복수의 서브프레임 중 일부는 상향링크 데이터를 전송하는데 사용되고 나머지는 하향링크 데이터를 전송하는데 사용된다.
IEEE 802.16e 단말을 지원하기 위해서, IEEE 802.16m 시스템은 하향링크 서브프레임 중 일부는 IEEE 802.16m 시스템용으로 사용하고, 나머지는 IEEE 802.16e 시스템으로 사용할 수 있다. IEEE 802.16e 시스템용으로 사용되는 영역을 와이어리스만 OFDMA 하향링크 영역(Wireless metropolitan area networks orthogonal frequency division multiple access downlink zone, 이하 "WirelessMAN OFDMA DL Zone"이라 함)이라 하고, IEEE 802.16m 시스템용으로 사용되는 영역을 어드밴스드 에어 인터페이스 하향링크 영역(Advanced Air Interface downlink zone, 이하 "Advanced Air Interface DL Zone"이라 함)이라 한다.
종래 기술에 따른 IEEE 802.16m 시스템의 8.75MHz 대역폭의 하향링크 프레임 구조에 대해 도 1 내지 2를 참조하여 설명한다.
도 1은 프레임 오프셋(frame offset)이 1인 경우 종래 기술에 따른 하향링크 프레임 구조를 나타낸 도면이고, 도 2는 프레임 오프셋(frame offset)이 2인 경우 종래 기술에 따른 하향링크 프레임 구조를 나타낸 도면이다.
종래 기술에 따른 프레임 오프셋은 IEEE 802.16e 시스템용 프레임의 시작점과 IEEE 802.16m 시스템용 프레임의 시작점 사이의 오프셋을 서브프레임 단위로 정의한 것이다. 그런데, IEEE 802.16m 시스템용 프레임이 적어도 하나의 하향링크 서브프레임을 포함할 것이므로 프레임 오프셋은 1 이상이고 하향링크 서브프레임의 수 미만의 정수이다. 예를 들어, 하나의 프레임이 5 개의 하향링크 서브프레임을 포함하는 경우 프레임 오프셋은 1 이상 5 미만의 정수이다.
IEEE 802.16m 시스템의 서브프레임은 4 가지 타입이 있다. 타입 1 서브프레임은 6 개의 OFDM 심볼을 포함하고, 타입 2 서브프레임은 7 개의 OFDM 심볼을 포함하고, 타입 3 서브프레임은 5 개의 OFDM 심볼을 포함하고, 타입 4 서브프레임은 9 개의 OFDM 심볼을 포함한다.
도 1 및 2에 도시된 바와 같이, 종래 기술에 따른 프레임 구조에서 WirelessMAN OFDMA DL Zone은 타입 1 서브프레임을 포함한다. 즉, 도 1에서 WirelessMAN OFDMA DL Zone은 6 개의 OFDM 심볼을 포함하고, 도 2에서 WirelessMAN OFDMA DL Zone은 12 개의 OFDM 심볼을 포함한다. 그리고, IEEE 802.16e 시스템용 프레임의 첫번째 OFDM 심볼에는 프리엠블이 할당되고, 두번째와 세번째 OFDM 심볼에는 FCH와 DL-MAP이 할당된다.
그리고, IEEE 802.16e 시스템의 부채널화(subchannelization) 방법에는 부분 사용 부채널(partial usage of subchannel, 이하 "PUSC"라 함), 전체 사용 부채널(full usage of subchannel, 이하 "FUSC"라 함) 및 적응적 변조 및 코딩(adaptice modulation and coding, 이하 "AMC"라 함) 방법이 있다. PUSC는 2개의 OFDM 심볼로 이루어지고, FUSC는 1 개의 OFDM 심볼로 이루어지고, AMC는 3 개의 OFDM 심볼로 이루어진다. 그리고, FCH와 DL-MAP이 할당되는 두번째와 세번째 OFDM 심볼은 PUSC로 부채널화된다.
따라서, 도 1을 보면 WirelessMAN OFDMA DL Zone에서 프리엠블, FCH, 및 DL-MAP이 할당된 부분을 제외하고 남은 부분에 홀수개의 OFDM symbol들이 존재한다.
그런데, 홀수개의 OFDM 심볼은 부채널화할 때, FUSC 또는 Band-AMC 방법을 사용해야 한다. 따라서 부채널화 방법이 바뀐 것을 알려주기 위해 제어 메시지를 단말에게 보내야 하고, PUSC로 부채널화 하다가 다른 방법으로 부채널화하는 경우에는 연속적으로 자원을 사용할 수 없다.
위에서 설명한 바와 같이, 종래 기술에 따른 프레임 구조는 부채널화 방법 변경을 단말에게 알려주기 위해 제어 메시지를 보내야 하므로 오버헤드를 증가시키고, 부채널화 방법이 바뀜에 따라 연속적으로 자원을 사용할 수 없어서 무선 자원이 낭비되는 문제점이 있다.
본 발명의 목적은 무선 통신 시스템의 효율을 높일 수 있는 프레임 구조를 이용한 데이터 전송 방법을 제공하는 것이다.
본 발명의 목적은 오버헤드가 줄일 수 있고, 무선 자원을 효율적으로 사용할 수 있는 데이터 전송 방법을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위해, 본 발명의 일 양상에 따른 무선 통신 시스템의 데이터 전송 방법에 있어서, 기지국은 프레임의 제1 영역을 통해 제1 시스템을 지원하는 제1 단말에게 하향링크 데이터를 전송하고, 시간축으로 상기 제1 영역보다 프레임 오프셋만큼 뒤에 위치하는 제2 영역을 통해 제2 시스템을 지원하는 제2 단말에게 하향링크 데이터를 전송하는 단계를 포함하고, 상기 무선 통신 시스템은 8.75 MHz 대역폭을 지원하고, 상기 프레임 오프셋은 상기 제1 시스템용 프레임의 시작점과 상기 제2 시스템용 프레임의 시작점의 오프셋이고, 상기 제1 영역은 3+6(상기 프레임 오프셋-1)개의 OFDM 심볼을 포함한다.
상기 과제를 달성하기 위해, 본 발명의 다른 양상에 따른 무선 통신 시스템의 데이터를 수신하는 방법에 있어서, 단말은 상기 단말이 지원하는 시스템과 다른 시스템을 지원하는 단말에게 하향링크 데이터를 전송하기 위해 사용되는 프레임의 제1 영역보다 프레임 오프셋만큼 뒤에 위치하는 상기 프레임의 제2 영역을 통해 하향링크 데이터를 수신하고, 상기 무선 통신 시스템은 8.75MHz 대역폭을 지원하고, 상기 제1 영역은 3+6(상기 프레임 오프셋-1) 개의 OFDM 심볼을 포함하고, 상기 프레임 오프셋은 상기 제1 시스템용 프레임의 시작점과 상기 제2 시스템용 프레임의 시작점의 오프셋이다.
이때, 상기 무선 통신 시스템은 6개의 OFDM 심볼을 포함하는 제1 타입 서브프레임 및 3 개의 OFDM 심볼을 포함하는 제2 타입 서브프레임을 지원할 수 있다.
또한, 상기 제2 영역에 포함된 서브프레임은 모두 상기 제1 타입 서브프레임일 수 있다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
첫째, 프레임 오프셋에 3개의 OFDM 심볼을 포함하는 서브프레임을 포함시킴으로써 모든 OFDM 심볼을 한가지 방법으로 부채널화할 수 있어 오버헤드를 줄일 수 있다.
둘째, 제2 영역이 제1 타입 서브프레임만을 포함함으로써 종래의 물리 계층 구조를 활용할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 프레임 오프셋(frame offset)이 1인 경우 종래 기술에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 2는 프레임 오프셋(frame offset)이 2인 경우 종래 기술에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 3은 대역폭이 8.75 MHz이고 CP가 유용한 심볼 시간의 1/8인 무선 통신 시스템의 TDD 프레임 구조를 나타낸 도면이다.
도 4는 프레임 오프셋(frame offset)이 1인 경우 본 발명의 제1 실시예에 따른 프레임 구조를 나타낸 도면이다.
도 5는 프레임 오프셋(frame offset)이 2인 경우 본 발명의 제1 실시예에 따른 프레임 구조를 나타낸 도면이다.
도 6은 프레임 오프셋(frame offset)이 3인 경우 본 발명의 제1 실시예에 따른 프레임 구조를 나타낸 도면이다.
도 7은 프레임 오프셋(frame offset)이 1인 경우 본 발명의 제2 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 8은 타입 1 서브프레임이 제2 영역에 포함되는 경우 본 발명의 제2 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 9는 프레임 오프셋(frame offset)이 1인 경우 본 발명의 제3 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 10은 프레임 오프셋(frame offset)이 2인 경우 본 발명의 제3 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
먼저, 무선 통신 시스템에서 대역폭이 8.75 MHz이고 순환 전치(cyclic prefix, 이하 "CP"라 함)가 유용한 심볼 시간의 1/8이고 하향링크와 상향링크의 비율이 5:2인 경우, TDD 프레임 구조에 대해 도 3을 참조하여 설명한다. 도 3은 대역폭이 8.75 MHz이고 CP가 유용한 심볼 시간의 1/8인 무선 통신 시스템의 TDD 프레임 구조를 나타낸 도면이다.
도 3에 도시된 바와 같이, 슈퍼프레임은 4개의 프레임을 포함하고, 프레임은 7 개의 서브프레임을 포함한다. 그리고, 슈퍼프레임은 슈퍼프레임 헤더(Superframe header, SFH)를 포함한다.
서브프레임은 주파수축 상의 복수의 서브캐리어와 시간축 상의 복수의 OFDM 심볼을 포함한다. 서브프레임이 포함하는 OFDM 심볼 개수에 따라 서브프레임을 4 가지 타입으로 나눌 수 있다. 타입 1 서브프레임은 6 개의 OFDM 심볼을 포함하고, 타입 2 서브프레임은 7 개의 OFDM 심볼을 포함하고, 타입 3 서브프레임은 5 개의 OFDM 심볼을 포함하고, 타입 4 서브프레임은 9 개의 OFDM 심볼을 포함한다. 도 3을 보면, 6 개의 서브프레임 중 3 개는 타입 1 서브프레임이고, 나머지 3 개는 타입 3 서브프레임이다.
그리고, 하나의 프레임에 포함된 7 개의 서브프레임은 상향링크 또는 하향링크 전송을 위해 사용될 수 있는데, 상향링크 전송을 위한 부분과 하향링크 전송을 위한 부분은 주파수 분할 이중화(frequency division duplexing, 이하 "FDD"라 함) 또는 시간 분할 이중화(time division duplexing, 이하 "TDD"라 함)될 수 있는데, 도 3은 TDD된 경우를 나타낸고 있다. 상향링크 전송을 위한 부분과 하향링크 전송을 위한 부분이 FDD로 이중화되어 있는 프레임을 FDD 프레임이라 하고, 상향링크 전송을 위한 부분과 하향링크 전송을 위한 부분이 TDD로 이중화되어 있는 프레임을 TDD 프레임이라 한다.
TDD 프레임은 프레임을 시간축에서 하향링크 전송을 위한 영역과 상향링크 전송을 위한 영역으로 나눈 것이다. 즉, 프레임이 포함하는 복수의 서브프레임 중 일부 서브프레임은 하향링크 전송을 위해 사용되고 나머지 서브프레임은 상향링크 전송을 위해 사용된다. 하향링크와 상향링크 비율에 따라 하향링크 전송을 위해 사용되는 서브프레임 개수와 상향링크 전송을 위해 사용되는 서브프레임 개수가 결정되는데, 일례로 도 3과 같이 하나의 프레임이 포함하는 7 개의 서브프레임 중 앞부분의 다섯 개의 서브프레임은 하향링크 전송을 위해서 사용되고, 뒷부분의 두 개의 서브프레임은 상향링크 전송을 위해서 사용될 수 있다.
하향링크 서브프레임과 상향링크 서브프레임 사이에는 스위칭 타임(switching time)이 있다.
본 발명은 상향링크 전송을 위한 부분과 하향링크 전송을 위한 부분이 TDD로 이중화되어 있는 프레임을 통해 제1 시스템을 지원하는 단말과 제2 시스템을 지원하는 단말에게 하향링크 데이터를 전송하는 방법에 관한 것이다.
도 3은 대역폭이 8.75 MHz인 경우, 무선 통신 시스템의 기지국이 하나의 시스템을 지원하는 경우의 프레임 구조를 나타낸 것이다. 그런데, 무선 통신 시스템은 새로운 시스템과 기존의 시스템을 함께 지원할 필요가 있다. 따라서, 본 발명의 실시예에서는 대역폭이 8.75 MHz인 경우, 무선 통신 시스템이 새로운 시스템과 기존의 시스템을 함께 지원하는 경우의 프레임 구조에 대해 제안한다.
다음으로, 본 발명의 제1 실시예에 따른 무선 통신 시스템의 기지국에서 제1 시스템을 지원하는 단말과 제2 시스템을 지원하는 단말에게 데이터를 전송하는 방법에 대해 도 4 내지 6을 참조하여 설명한다.
본 발명의 실시예에 따르면, 기지국은 프레임에 포함된 복수의 하향링크 서브프레임을 제1 영역과 제2 영역으로 나눠 제1 영역을 통해 제1 시스템을 지원하는 단말에게 하향링크 신호를 전송하고, 제2 영역을 통해 제2 시스템을 지원하는 단말에게 하향링크 신호를 전송한다.
본 발명의 제1 실시예에 따른 하향링크 프레임 구조에 대해 도 4 내지 6을 참조하여 설명한다.
도 4는 프레임 오프셋(frame offset)이 1인 경우 본 발명의 제1 실시예에 따른 프레임 구조를 나타낸 도면이고, 도 5는 프레임 오프셋(frame offset)이 2인 경우 본 발명의 제1 실시예에 따른 프레임 구조를 나타낸 도면이고, 도 6은 프레임 오프셋(frame offset)이 3인 경우 본 발명의 제1 실시예에 따른 프레임 구조를 나타낸 도면이다.
프레임 오프셋은 제1 시스템용 프레임의 시작점과 제2 시스템용 프레임의 시작점 사이의 오프셋이다.
도 4 및 5에서, 가로축은 시간을 나타내고, 'p'는 제1 시스템의 프리엠블을 나타내고, 'PUSC'는 PUSC로 부채널화된 심볼을 나타낸다. 그리고, 제1 영역은 제1 시스템을 지원하는 단말과 통신하기 위한 영역이고, 제2 영역은 제2 시스템을 지원하는 단말과 통신하기 위한 영역이다. 그리고, 제1 시스템용 프레임은 제1 영역의 첫번째 OFDM 심볼부터 시작되고, 제2 시스템용 프레임은 제2 영역의 첫번째 OFDM 심볼부터 시작된다.
도 4 내지 6은 하향링크 서브프레임과 상향링크 서브프레임이 비율이 5:2인 경우의 하향링크 프레임을 나타내고 있으나, 본 발명의 이에 한정되지 않는다.
도 4 내지 6에 도시된 바와 같이, 하향링크 서브프레임과 상향링크 서브프레임이 비율이 5:2인 경우 하향링크는 27 개의 OFDM 심볼을 포함한다.
그리고, 본 발명의 제1 실시예에 따른 하향링크 프레임은 3 개의 OFDM 심볼을 포함하는 미니 서브프레임(mini-subframe)을 포함한다. 이는 IEEE 802.16e 시스템과 타임 얼라인(time align)을 맞추기 위함이다. 하향링크 프레임의 첫 번째 서브프레임으로 3 개의 OFDM 심볼을 포함하는 서브프레임을 사용하는 것은 IEEE 802.16e 시스템 모드로 동작하는 단말과 IEEE 802.16m 시스템 모드로 동작하는 단말이 혼재할 경우, 하향링크 프레임의 앞부분의 서브프레임들은 IEEE 802.16e 시스템을 위해 사용하고 뒷부분의 6개의 OFDM 심볼을 포함하는 서브프레임들은 IEEE 802.16m 시스템을 위해 사용함으로써 IEEE 802.16m의 타입 1 서브프레임 단위의 전송 타임 인터벌(transmission time interval, TTI) 전송을 유지하도록 하기 위함이다.
그리고, 제1 영역은 3+6*(프레임 오프셋-1) 개의 OFDM 심볼을 포함한다. 즉, 도 4에서 제1 영역은 3 개의 OFDM 심볼을 포함하고, 도 5에서 제2 영역은 9 개의 OFDM 심볼을 포함하고, 도 6에서 제2 영역은 15 개의 OFDM 심볼을 포함한다.
제1 영역은 가장 앞부분에 미니 서브프레임을 포함한다. 프레임 오프셋이 1인 경우에는 도 4와 같이 제1 영역은 타입 3 서브프레임 한 개를 포함하고, 프레임 오프셋이 2인 경우에는 도 5과 같이 제1 영역은 타입 3 서브프레임 한 개와 타입 1 서브프레임 한 개를 포함한다. 그리고, 프레임 오프셋이 한 개씩 늘어날 때마다. 제1 영역이 포함하는 타입 1 서브프레임의 개수가 한 개씩 늘어난다. 즉, 프레임 오프셋은 미니 서브프레임을 포함하고, 추가적으로 타입 1 서브프레임을 포함할 수 있다.
그리고, 제2 영역에 포함된 서브프레임은 모두 제1 타입 서브프레임이다.
다음으로, 본 발명의 제2 실시예에 따른 무선 통신 시스템의 기지국에서 제1 시스템을 지원하는 단말과 제2 시스템을 지원하는 단말에게 데이터를 전송하는 방법에 대해 도 7을 참조하여 설명한다. 도 7은 프레임 오프셋(frame offset)이 1인 경우 본 발명의 제2 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 7에 도시된 바와 같이, 하향링크는 27 개의 OFDM 심볼을 포함한다. 본 발명의 제2 실시예에 따른 하향링크 프레임은 3 개의 타입 2 서브프레임과 1 개의 타입 1 서브프레임을 포함한다.
제2 영역에 포함된 서브프레임은 모두 타입 2 서브프레임이고, 제1 영역은 6+7*(프레임 오프셋-1) 개의 OFDM 심볼을 포함한다.
그런데, IEEE 802.16m 시스템의 슈퍼프레임 헤더는 타입 1 서브프레임으로 구성되므로 제2 영역이 최소한 1 개의 타입 1 서브프레임을 포함하는 것이 바람직하다. 따라서, 도 8과 같이 타입 1 서브프레임이 제2 영역에 포함되도록 하향링크 프레임을 구성할 수도 있다. 도 8은 타입 1 서브프레임이 제2 영역에 포함되는 경우 본 발명의 제2 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 8을 보면, 본 발명의 제2 실시예에 따른 하향링크 프레임은 3 개의 타입 2 서브프레임과 1 개의 타입 1 서브프레임을 포함하고, 제1 영역은 7*(프레임 오프셋) 개의 OFDM 심볼을 포함한다.
다음으로, 본 발명의 제3 실시예에 따른 무선 통신 시스템의 기지국에서 제1 시스템을 지원하는 단말과 제2 시스템을 지원하는 단말에게 데이터를 전송하는 방법에 대해 도 9 및 10을 참조하여 설명한다. 도 9는 프레임 오프셋(frame offset)이 1인 경우 본 발명의 제3 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다. 도 10은 프레임 오프셋(frame offset)이 2인 경우 본 발명의 제3 실시예에 따른 하향링크 프레임 구조를 나타낸 도면이다.
도 9 및 10에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 하향링크는 27 개의 OFDM 심볼을 포함하고, 하향링크 프레임은 3 개의 타입 3 서브프레임과 2 개의 타입 1 서브프레임을 포함한다.
도 9와 같이 2개의 타입 1 서브프레임이 모두 제2 영역에 포함될 수도 있고, 도 10과 같이 1개의 타입 1 서브프레임은 제1 영역에 포함되고, 나머지 1 개의 타입 1 서브프레임은 제2 영역에 포함될 수도 있다.
도 9에서는 제1 영역은 5*(프레임 오프셋) 개의 OFDM 심볼을 포함하고, 도 10에서는 제1 영역은 6+5*(프레임 오프셋-1) 개의 OFDM 심볼을 포함한다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예에 따른 데이터 전송 및 수신 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예에 따른 데이터 전송 및 수신 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 기술적 사상 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.

Claims (6)

  1. 무선 통신 시스템의 기지국에서 데이터 전송 방법에 있어서,
    프레임의 제1 영역을 통해 제1 시스템을 지원하는 제1 단말에게 하향링크 데이터를 전송하는 단계; 및
    시간축으로 상기 제1 영역보다 프레임 오프셋만큼 뒤에 위치하는 제2 영역을 통해 제2 시스템을 지원하는 제2 단말에게 하향링크 데이터를 전송하는 단계를 포함하고,
    상기 무선 통신 시스템은 8.75 MHz 대역폭을 지원하고, 상기 프레임 오프셋은 상기 제1 시스템용 프레임의 시작점과 상기 제2 시스템용 프레임의 시작점의 오프셋이고, 상기 제1 영역은 3+6(상기 프레임 오프셋-1)개의 OFDM 심볼을 포함하는 데이터 전송 방법.
  2. 제1항에 있어서,
    상기 무선 통신 시스템은 6개의 OFDM 심볼을 포함하는 제1 타입 서브프레임 및 3 개의 OFDM 심볼을 포함하는 제2 타입 서브프레임을 지원하는 것을 특징으로 하는 데이터 전송 방법.
  3. 제2항에 있어서,
    상기 제2 영역에 포함된 서브프레임은 모두 상기 제1 타입 서브프레임인 것을 특징으로 하는 데이터 전송 방법.
  4. 무선 통신 시스템의 단말에서 데이터를 수신하는 방법에 있어서,
    상기 단말이 지원하는 시스템과 다른 시스템을 지원하는 단말에게 하향링크 데이터를 전송하기 위해 사용되는 프레임의 제1 영역보다 프레임 오프셋만큼 뒤에 위치하는 상기 프레임의 제2 영역을 통해 하향링크 데이터를 수신하는 단계를 포함하고,
    상기 무선 통신 시스템은 8.75MHz 대역폭을 지원하고, 상기 제1 영역은 3+6(상기 프레임 오프셋-1) 개의 OFDM 심볼을 포함하고, 상기 프레임 오프셋은 상기 제1 시스템용 프레임의 시작점과 상기 제2 시스템용 프레임의 시작점의 오프셋인 데이터 수신 방법.
  5. 제4항에 있어서,
    상기 무선 통신 시스템은 6개의 OFDM 심볼을 포함하는 제1 타입 서브프레임 및 3 개의 OFDM 심볼을 포함하는 제2 타입 서브프레임을 지원하는 것을 특징으로 하는 데이터 수신 방법.
  6. 제5항에 있어서,
    상기 제2 영역에 포함된 서브프레임은 모두 상기 제1 타입 서브프레임인 것을 특징으로 하는 데이터 수신 방법.
PCT/KR2010/002237 2009-04-14 2010-04-12 무선 통신 시스템에서 데이터 전송 및 수신 방법 WO2010120076A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2011140986/07A RU2528167C2 (ru) 2009-04-14 2010-04-12 Способ передачи и приема данных в беспроводной системе связи
US13/264,372 US8509176B2 (en) 2009-04-14 2010-04-12 Method for transmitting and receiving data in a wireless communication system
CN201080016683.XA CN102396168B (zh) 2009-04-14 2010-04-12 在无线通信系统中发送和接收数据的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16930409P 2009-04-14 2009-04-14
US61/169,304 2009-04-14
KR1020090067777A KR101498067B1 (ko) 2009-04-14 2009-07-24 무선 통신 시스템에서 데이터 전송 및 수신 방법
KR10-2009-0067777 2009-07-24

Publications (2)

Publication Number Publication Date
WO2010120076A2 true WO2010120076A2 (ko) 2010-10-21
WO2010120076A3 WO2010120076A3 (ko) 2011-01-27

Family

ID=42982970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002237 WO2010120076A2 (ko) 2009-04-14 2010-04-12 무선 통신 시스템에서 데이터 전송 및 수신 방법

Country Status (5)

Country Link
US (1) US8509176B2 (ko)
KR (1) KR101498067B1 (ko)
CN (1) CN102396168B (ko)
RU (1) RU2528167C2 (ko)
WO (1) WO2010120076A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686496A (zh) * 2008-09-27 2010-03-31 中兴通讯股份有限公司 WiMAX演进系统下行子帧分配、信息传输及获取方法
KR101598910B1 (ko) * 2009-01-07 2016-03-02 엘지전자 주식회사 무선 통신 시스템에서 시분할 이중화 방식의 프레임 구조를 이용하여 신호를 송수신하는 방법 및 장치
WO2016022287A1 (en) 2014-08-07 2016-02-11 Coherent Logix, Incorporated Multi-partition radio frames
BR122023024931A2 (pt) * 2014-08-07 2024-01-23 ONE Media, LLC Aparelho e método para transmitir um fluxo de transporte de taxa variável
CN106685603B (zh) * 2015-11-11 2019-11-05 华为技术有限公司 Tdd系统信息传输的方法和装置
KR20190131529A (ko) 2017-03-24 2019-11-26 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 통신 네트워크에서 통신을 처리하기 위한 무선 네트워크 노드, 무선 장치 및 그 수행 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070042442A (ko) * 2005-10-18 2007-04-23 삼성전자주식회사 무선통신 시스템에서 전송 시간 구간의 할당 방법과 장치및 그 시스템
KR20070119963A (ko) * 2006-06-16 2007-12-21 엘지전자 주식회사 이동통신 시스템에서 상향링크 데이터 전송 및 수신 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599764B2 (en) * 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US8031583B2 (en) * 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
WO2007077522A2 (en) * 2006-01-03 2007-07-12 Nokia Corporation Method for retransmission during intercell interference
US7715442B2 (en) * 2006-02-24 2010-05-11 Intel Corporation Method, apparatus, and system of wireless transmission with frame alignment
KR101306733B1 (ko) * 2006-03-24 2013-09-11 엘지전자 주식회사 무선 통신 시스템에서 데이터 심볼의 전송을 지원하기 위해프리엠블을 설정하는 방법 및 구조
KR101358424B1 (ko) * 2006-08-10 2014-02-17 삼성전자주식회사 피드백 정보 전송 방법 및 장치
US8462676B2 (en) * 2006-10-17 2013-06-11 Intel Corporation Frame structure for support of large delay spread deployment scenarios
WO2008049028A1 (en) * 2006-10-17 2008-04-24 Intel Corporation Device, system, and method for partitioning and framing communication signals in broadband wireless access networks
KR100852152B1 (ko) * 2006-12-08 2008-08-13 한국전자통신연구원 직교 주파수 분할 다중 접속 시스템의 주파수 오프셋 보상장치 및 그 방법
KR20090012038A (ko) * 2007-07-26 2009-02-02 엘지전자 주식회사 슈퍼프레임 구조를 이용한 데이터 전송 방법 및 수신 방법
JP4412505B2 (ja) * 2007-08-08 2010-02-10 日本電気株式会社 無線通信システム
US20090067377A1 (en) * 2007-08-15 2009-03-12 Motorola, Inc. Medium access control frame structure in wireless communication system
KR101531503B1 (ko) * 2007-09-10 2015-06-26 엘지전자 주식회사 다중 harq를 이용한 신호 전송 방법
KR101632080B1 (ko) * 2007-11-09 2016-06-20 지티이 (유에스에이) 인크. 통신 시스템용의 유연한 ofdm/ofdma 프레임 구조
US8315330B2 (en) * 2007-12-20 2012-11-20 Lg Electronics Inc. Method of transmitting data in wireless communication system
US20090185483A1 (en) * 2008-01-19 2009-07-23 Futurewei Technologies, Inc. Method and Apparatus for Transmitting Data and Error Recovery
KR101387536B1 (ko) * 2008-02-19 2014-04-21 엘지전자 주식회사 Ofdm 시스템에서 연속적인 파일럿 부반송파 송신 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070042442A (ko) * 2005-10-18 2007-04-23 삼성전자주식회사 무선통신 시스템에서 전송 시간 구간의 할당 방법과 장치및 그 시스템
KR20070119963A (ko) * 2006-06-16 2007-12-21 엘지전자 주식회사 이동통신 시스템에서 상향링크 데이터 전송 및 수신 방법

Also Published As

Publication number Publication date
RU2528167C2 (ru) 2014-09-10
CN102396168B (zh) 2014-10-29
US20120093080A1 (en) 2012-04-19
WO2010120076A3 (ko) 2011-01-27
KR101498067B1 (ko) 2015-03-03
CN102396168A (zh) 2012-03-28
RU2011140986A (ru) 2013-05-20
US8509176B2 (en) 2013-08-13
KR20100113961A (ko) 2010-10-22

Similar Documents

Publication Publication Date Title
WO2009131396A2 (en) Method of communicating according to time division duplex
WO2010101432A2 (ko) 중계국의 제어신호 전송 방법 및 장치
WO2010039003A2 (ko) 무선통신 시스템에서 중계기를 위한 무선 자원 할당 방법 및 장치
EP2208385B1 (en) A method of designing a multiplexing structure for resource allocation to support legacy system
WO2010101366A2 (ko) 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
WO2010082775A2 (ko) 시스템 정보 전송 및 수신 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2011065797A2 (ko) 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 신호를 수신하는 단말 장치 및 그 방법
WO2009128643A2 (ko) Tdd 기반의 무선통신 시스템에서 통신 방법 및 장치
WO2009125946A2 (en) Method of transmitting midamble
WO2012148076A1 (en) Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
WO2009110695A1 (ko) Fdd 프레임에서의 무선자원 할당방법
WO2010117239A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
KR20100135650A (ko) H-fdd 동작을 지원하는 프레임 구조를 이용하여 통신을 수행하는 방법
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2010074472A2 (ko) 데이터 프레임을 이용한 데이터 송수신 방법 및 장치
WO2010120076A2 (ko) 무선 통신 시스템에서 데이터 전송 및 수신 방법
WO2011071337A2 (ko) 무선통신 시스템에서 동시에 신호를 송수신하는 중계기 장치 및 그 방법
EP2878094A1 (en) Method and apparatus for transmitting harq-ack
WO2010090455A2 (en) Method and apparatus of composing uplink control channel in wireless communication system
WO2011074836A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 장치
WO2010120092A2 (ko) 무선 통신 시스템에서 데이터 전송 및 수신 방법
WO2011108846A2 (ko) 다중 반송파를 이용한 통신 방법 및 장치
WO2009116821A2 (ko) 무선통신 시스템에서 프레임 전송 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016683.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764615

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 4111/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011140986

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13264372

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10764615

Country of ref document: EP

Kind code of ref document: A2