WO2010082775A2 - 시스템 정보 전송 및 수신 장치 - Google Patents

시스템 정보 전송 및 수신 장치 Download PDF

Info

Publication number
WO2010082775A2
WO2010082775A2 PCT/KR2010/000247 KR2010000247W WO2010082775A2 WO 2010082775 A2 WO2010082775 A2 WO 2010082775A2 KR 2010000247 W KR2010000247 W KR 2010000247W WO 2010082775 A2 WO2010082775 A2 WO 2010082775A2
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
carrier
subframe
system information
base station
Prior art date
Application number
PCT/KR2010/000247
Other languages
English (en)
French (fr)
Other versions
WO2010082775A3 (ko
Inventor
김소연
정재훈
권영현
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to US13/144,691 priority Critical patent/US8982759B2/en
Publication of WO2010082775A2 publication Critical patent/WO2010082775A2/ko
Publication of WO2010082775A3 publication Critical patent/WO2010082775A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting or receiving system information in a wireless communication system.
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • LTE long term evolution
  • a physical channel is a PDSCH (Physical Downlink Shared) data channel.
  • Channel Physical Uplink Shared Channel
  • PUSCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • System information refers to essential information for communication between the terminal and the base station.
  • system information is divided into MIB (Master Information Block) and SIB (System Information Block).
  • MIB is the most essential information
  • SIB is divided into SIB-x according to its importance or frequency.
  • the MIB is transmitted through a physical broadcast channel (PBCH), which is a physical channel, and the SIB is transmitted through a PDCCH as common control information.
  • PBCH physical broadcast channel
  • LTE-A 3GPP LTE-Advanced
  • MIMO multiple input multiple output
  • CoMP coordinated multi-point transmission
  • An object of the present invention is to provide an apparatus and method for transmitting system information.
  • Another object of the present invention is to provide an apparatus and method for receiving system information.
  • a base station includes a radio frequency (RF) unit; And a processor connected to the RF unit and transmitting system information on a broadcast channel, wherein the system information includes multi-carrier information related to multi-carrier operation.
  • RF radio frequency
  • the multicarrier information may include at least one of the number of multicarriers, a carrier index, and a carrier type used by the system.
  • the multi-carrier information may include a non-PHICH indicator indicating a carrier on which a PHICH (Physical HARQ Indicator Channel) used for transmission of a downlink hybrid automatic repeat request (HARQ) ACK / NACK signal is not transmitted.
  • a PHICH Physical HARQ Indicator Channel
  • the system information may include the number of transmit antennas used for downlink transmission.
  • the broadcast channel may be a Secondary Physical Broadcast Channel (S-PBCH).
  • S-PBCH Secondary Physical Broadcast Channel
  • the S-PBCH may be transmitted through at least one subframe among 10 subframes constituting a radio frame.
  • the subframe includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols, and the S-PBCH includes three previous OFDM symbols, a secondary synchronization signal (SSS), a primary synchronization signal (PSS), and a PBCH. It may be transmitted through at least one OFDM symbol among the remaining OFDM symbols except for the OFDM symbol used for transmission.
  • OFDM orthogonal frequency division multiplexing
  • the terminal includes a radio frequency (RF) unit; And a processor connected to the RF unit and receiving system information on a broadcast channel and communicating with a base station based on the system information, wherein the system information includes multi-carrier information related to a multi-carrier operation.
  • RF radio frequency
  • 1 shows a wireless communication system.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • 3 shows the configuration of the PBCH.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors).
  • BS base station
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • wireless modem wireless modem
  • handheld device handheld device
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • a radio frame consists of 10 subframes indexed from 0 to 9, and one subframe consists of two slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink and may be called another name.
  • SC-FDMA orthogonal frequency division multiplexing
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of the Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • one subframe in a normal CP includes 7 OFDM symbols
  • one subframe in an extended CP includes 6 OFDM symbols.
  • the primary synchronization signal is transmitted in the last OFDM symbol of the first slot (the first slot of the first subframe (index 0 subframe)) and the 11th slot (the first slot of the sixth subframe (index 5 subframe)). do.
  • PSS is used to obtain OFDM symbol synchronization or slot synchronization and is associated with a physical cell identity.
  • Primary Synchronization Code (PSC) is a sequence used for PSS, and 3GPP LTE has three PSCs. One of three PSCs is transmitted to the PSS according to the cell ID. The same PSC is used for each of the last OFDM symbols of the first slot and the eleventh slot.
  • the secondary synchronization signal includes a first SSS and a second SSS.
  • the first SSS and the second SSS are transmitted in an OFDM symbol adjacent to the OFDM symbol in which the PSS is transmitted.
  • SSS is used to obtain frame synchronization.
  • the SSS is used to obtain a cell ID along with the PSS.
  • the first SSS and the second SSS use different Secondary Synchronization Codes (SSCs).
  • SSCs Secondary Synchronization Codes
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • PDCH physical downlink control channel
  • SIB system information block
  • the MIB is first subjected to encoding and rate matching, and then scrambled with a scrambling code (S310).
  • the scramble code is generated based on the cell ID.
  • the scrambled MIB is modulated based on Quadrature Phase Shift Keying (QPSK) to generate modulation symbols (S320).
  • QPSK Quadrature Phase Shift Keying
  • the modulation symbols are mapped to a layer and precoding is performed to generate symbols for each transmit antenna (S330).
  • the symbol for the transmit antenna is mapped to a resource element (k, l) (S340).
  • k is the subcarrier index and l is the OFDM symbol index of the second slot of the first subframe (subframe of index 0).
  • RE index (k, l) k and l are given by
  • N DL RB is the number of resource blocks in the total system bandwidth
  • N RB sc is the number of subcarriers per resource block.
  • the PBCH is mapped to four subframes for 40 ms, that is, in four consecutive radio frames.
  • the PBCH is mapped to a physical resource using 4 OFDM symbols and 72 subcarriers in one subframe.
  • the MIB is defined as in the following table.
  • MasterInformationBlock SEQUENCE ⁇ dl-Bandwidth ENUMERATED ⁇ n6, n15, n25, n50, n75, n100, spare2, spare1 ⁇ , phich-Configuration PHICH-Configuration, systemFrameNumber BIT STRING (SIZE (8)), spare BIT STRING (SIZE (10)) ⁇
  • the 'dl-Bandwidth' is the system bandwidth, and 'systemFrameNumber' is the system frame number (SFN).
  • the 'phich-Configuration' includes a PHICH (Physical Hybrid Automatic Repeat Request Indicator Channel) duration and a PHICH resource.
  • the PHICH interval indicates the number of OFDM symbols in which the PHICH is transmitted in the subframe, and the PHICH resource is used to determine the number of PHICH groups in the subframe.
  • the system bandwidth, SFN, and PHICH configuration can be known.
  • CRC cyclic redundancy check
  • the new masking sequence may be determined as a masking sequence for the existing number of 1, 2, and 4 antennas and a sequence having the largest distance. This sequence is not necessarily used to indicate 8, but may be used to represent more than four antennas.
  • the LTE terminal cannot decode the masked MIB with the additional masking sequence. Therefore, if an additional masking sequence is used for MIB transmission of a specific carrier, the specific carrier can be set as an incompatible carrier that the LTE terminal cannot use.
  • the MIB includes essential information that the terminal needs to know in order to communicate between the base station and the terminal, such as the system bandwidth, SFN, PHICH configuration, and the number of transmit antennas.
  • the system bandwidth SFN
  • PHICH configuration the number of transmit antennas.
  • additional information elements are defined in the extra bits, backward compatibility with the existing 3GPP LTE may be guaranteed.
  • cell-specific system information is transmitted through a PBCH.
  • cell-specific and / or carrier-specific system information may be transmitted through the PBCH.
  • the carrier-specific system information is multi-carrier information related to multi-carrier operation between the terminal and the base station, and may be different system information for each carrier.
  • MIB Information elements that can be additionally defined in the MIB are as follows.
  • Information about cell-specific carrier configuration It may be information about the number of carriers or the center frequency. If synchronization is acquired for one carrier among a plurality of carriers, synchronization information of another carrier can be obtained through this information. Therefore, it is not necessary to search for a synchronization signal for all the plurality of carriers, so that synchronization is faster and power consumption of the terminal can be reduced.
  • the carrier may be classified into a compatible carrier and an incompatible carrier according to whether backward support for LTE is supported.
  • the type of carrier indicates whether each carrier is a compatible carrier or an incompatible carrier.
  • an extension carrier on which a synchronization signal or a PBCH is not transmitted may be defined, and the type of the carrier may indicate whether the carrier is extended.
  • the PHICH is a channel carrying a HARQ ACK / NACK signal for uplink data.
  • the non-PHICH indicator ignores the PHICH configuration on the PBCH and specifies a carrier (or subframe) that does not transmit the PHICH. Since the PHICH is transmitted through the downlink carrier on which the uplink allocation is received, the carrier configured by the non-PHICH indicator may not monitor the DCI format (eg, DCI format 0) including the uplink allocation.
  • a corresponding downlink carrier index is transmitted through a PBCH in an initial access process such as a random access process, so that the UE can know which carrier is performing initial access.
  • (1) to (5) may be referred to as multi-carrier information associated with the multi-carrier operation between the terminal and the base station.
  • Transmission antenna field This is information that the base station informs the terminal of the number of transmit antennas used for downlink transmission.
  • a masking sequence of the existing PBCH may indicate the number of up to four transmit antennas.
  • This transmit antenna field may be used by the base station to inform the number of transmit antennas greater than four. If the number of transmit antennas is N, the transmit antenna field may have ceil (N) bits. Alternatively, the transmit antenna field may have a bit equal to or smaller than ceil (N), and terminals may combine the information obtained by PBCH de-masking to obtain the number of additional transmit antennas. Compared to using a new masking sequence, there is an advantage that can guarantee backward compatibility with the existing LTE terminal.
  • PHICH related information for the LTE-A terminal.
  • additional PHICH-related parameters may be defined.
  • Information about the system version included in the MIB may be used to indicate how the SIB is configured. For example, if the system version indicates a legacy system such as LTE, the SIB may be configured as defined in the existing system. When the system version indicates a newly defined system such as LTE-A, it may be informed that the SIB constitutes a modified form of SIB differently from the existing or added to the existing.
  • At least one of the contents (1) to (10) proposed above may be included in the MIB and transmitted on the PBCH.
  • the above additional contents may also be transmitted through a secondary PBCH, which will be described later.
  • the scramble sequence is initialized based on the cell ID.
  • the peak-to-average power ratio PAPR
  • carrier-specific scrambling may be performed to reduce downlink PAPR.
  • the scrambling sequence may be initialized based on at least one of a carrier index, a cell ID, and a combination thereof for carrier-specific scrambling. If carrier-specific scrambling is applied, the existing LTE terminal cannot receive the PBCH. Therefore, carrier-specific scrambling is used only for the LTE-A dedicated carrier or mixed carriers capable of supporting both the LTE terminal and the LTE-A terminal to prevent the LTE terminal from using the corresponding carrier. Can use certain scrambling
  • S-PBCH secondary PBCH
  • S-PBCH broadcast channel used for extended system information for LTE-A.
  • the S-PBCH may be transmitted for a 40 ms period like the PBCH, or may be transmitted in a 20 ms or 80 ms period.
  • the frequency domain in which the S-PBCH is transmitted may use 72 subcarriers in the middle of the system bandwidth as in the conventional PBCH. There is no limit to the number of subcarriers used. However, when using the same number of subcarriers as the existing PBCH, PSS, and SSS, there is an advantage in that the remaining subcarriers can be easily scheduled for other purposes and minimize waste resources.
  • the S-PBCH may be transmitted in the first subframe of a radio frame in which the existing PBCH, PSS, and SSS are transmitted. As described above, in the subframe in which the PBCH is transmitted, PSS and SSS are transmitted using two OFDM symbols of the previous slot. Alternatively, the S-PBCH may be transmitted in the sixth subframe in which the PSS and the SSS are transmitted.
  • S-PBCH is transmitted in the first subframe of the radio frame.
  • the S-PBCH may be transmitted through at least one OFDM symbol among the three OFDM symbols of the subframe among the 14 OFDM symbols and the remaining OFDM symbols except for the six OFDM symbols used for transmission of the SSS, PSS, and PBCH. . All of the remaining OFDM symbols may be used for S-PBCH transmission, or one or more OFDM symbols of the remaining OFDM symbols may be used for S-PBCH transmission.
  • the S-PBCH is transmitted in the sixth subframe as well as the first subframe of the radio frame. Since the PBCH is not transmitted in the sixth subframe, up to nine OFDM symbols may be used for transmission of the S-PBCH in the sixth subframe. All of the remaining OFDM symbols may be used for S-PBCH transmission, or one or more OFDM symbols of the remaining OFDM symbols may be used for S-PBCH transmission.
  • 4 and 5 disclose an application to a normal cyclic prefix (CP) in which seven OFDM symbols are included in one slot.
  • 6 and 7 disclose application to an extended CP that includes six OFDM symbols in one slot. 6 and 7 only vary in the total number of OFDM symbols per subframe, and are the same as the embodiments of FIGS. 4 and 5.
  • the use of 72 subcarriers by the PBCH, PSS, and SSS is to enable transmission and reception of the PBCH, PSS, and SSS in a narrow band system of 1.25 MHz. 4 to 7, in a narrowband system, resources for a data channel may be insufficient in a subframe in which an S-PBCH is transmitted. In this case, the number of OFDM symbols used for transmission of the S-PBCH may be limited.
  • the S-PBCH is transmitted in the first or sixth subframe, but the position or number of subframes used for the transmission of the S-PBCH is not limited.
  • the S-PBCH is a separate broadcast channel for the LTE-A terminal, and backward compatibility is guaranteed if the shared channel is transmitted in the data area where it can be transmitted. This is because the LTE terminal needs to schedule not to use the area where the S-PBCH is transmitted.
  • Base station 810 is a wireless device for organizing and transmitting system information.
  • the terminal 850 is a wireless device that accesses the base station 810 based on the received system information.
  • the base station 810 includes a processor 811, a memory 812, and a radio frequency (RF) unit 815.
  • the processor 811 is connected to the memory 812 and the RF unit 815 to configure system information, and transmits system information on a broadcast channel.
  • the processor 811 implements the functions, processes, and / or methods described above.
  • the memory 812 is connected to the processor 811 and stores various information for driving the processor 811.
  • the RF unit 815 is connected to the processor 811 to transmit and / or receive a radio signal.
  • the terminal 850 includes a processor 851, a memory 852, an interface unit 853, and an RF unit 855.
  • the processor 851 is connected to the memory 852, the interface unit 853, and the RF unit 855 to receive system information from the base station 810, and communicate with the base station 810 based on the received system information.
  • the memory 852 is connected to the processor 851 and stores various information for driving the processor 851.
  • the interface unit 853 includes an input device, a display, and the like for interfacing with a user.
  • the RF unit 855 is connected to the processor 851 and transmits and / or receives a radio signal.
  • Processors 811 and 851 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memories 812, 852 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 815, 855 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. Modules may be stored in memories 812 and 852 and executed by processors 811 and 851.
  • the memories 812 and 852 may be inside or outside the processors 811 and 851, and may be connected to the processors 811 and 851 by various well-known means.

Abstract

시스템 정보를 전송하거나 수신하는 장치 및 방법이 개시된다. 시스템 정보 전송 장치는 시스템 정보를 브로드캐스트 채널상으로 전송하는 프로세서를 포함하되, 상기 시스템 정보는 다중 반송파 동작과 관련된 다중 반송파 정보를 포함한다. 레거시 시스템과의 하위 호환성을 제공하면서, 추가적인 정보 요소를 시스템 정보에 포함시킬 수 있다.

Description

시스템 정보 전송 및 수신 장치
본 발명은 무선통신에 관한 것으로, 더욱 상세하게는 무선통신 시스템에서 시스템 정보를 전송 또는 수신하는 장치 및 방법에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 3GPP LTE(long term evolution)는 유력한 차세대 이동통신 표준이다.
3GPP TS 36.211 V8.5.0 (2008-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 나타난 바와 같이, LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDSCH(Physical Downlink Control Channel)과 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
시스템 정보는 단말과 기지국간의 통신을 위한 필수적인(essential) 정보를 말한다. 3GPP LTE에서 시스템 정보는 MIB(Master Information Block)과 SIB(System Information Block)으로 나뉜다. MIB는 가장 필수적인 정보이고, SIB는 그 중요도나 주기에 따라 다시 SIB-x의 형태로 나뉜다. MIB는 물리채널인 PBCH(Physical Broadcast Channel)을 통해 전송되고, SIB는 공용 제어정보로써 PDCCH를 통해 전송되는 점에서 차이가 있다.
3GPP LTE의 진화인 3GPP LTE-A(Advanced)에서 추가적으로 논의되는 기법으로 다중 반송파, 릴레이, MIMO(Multiple Input Multiple Output), CoMP(Coordinated Multi-Point transmission) 등이 있다.
추가적인 기법이 도입됨에 따라 시스템 정보에도 추가적인 정보 요소(information element)가 더 포함될 필요가 있다.
시스템 정보의 양이 많이 짐에 따라, 기존 시스템과의 호환성을 고려하여 시스템 정보의 전송에 사용되는 채널을 설계할 필요가 있다.
본 발명이 이루고자 하는 기술적 과제는 시스템 정보를 전송하는 장치 및 방법을 제공하는 데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 시스템 정보를 수신하는 장치 및 방법을 제공하는 데 있다.
일 양태에 있어서, 기지국은 RF(radio frequency) 부; 및 상기 RF부와 연결되고, 시스템 정보를 브로드캐스트 채널상으로 전송하는 프로세서를 포함하되, 상기 시스템 정보는 다중 반송파 동작과 관련된 다중 반송파 정보를 포함한다.
상기 다중 반송파 정보는 시스템이 사용하는 다중 반송파의 개수, 반송파 인덱스 및 반송파 타입 중 적어도 어느 하나를 포함할 수 있다.
상기 다중 반송파 정보는 하향링크 HARQ(hybrid automatic repeat request) ACK/NACK 신호의 전송에 사용되는 PHICH(Physical HARQ Indicator Channel)가 전송되지 않는 반송파를 가리키는 non-PHICH 지시자를 포함할 수 있다.
상기 시스템 정보는 하향링크 전송에 사용되는 전송 안테나의 개수를 포함할 수 있다.
상기 브로드캐스트 채널은 S-PBCH(Secondary Physical Broadcast Channel)일 수 있다. 상기 S-PBCH는 무선 프레임을 구성하는 10개의 서브프레임 중 적어도 하나의 서브프레임을 통해 전송될 수 있다.
서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 상기 S-PBCH는 상기 복수의 OFDM 심벌 중 앞선 3개의 OFDM 심벌과 SSS(Secondary Synchronization Signal), PSS(Primary Synchronization Signal) 및 PBCH의 전송에 사용되는 OFDM 심벌을 제외한 나머지 OFDM 심벌등 중 적어도 하나의 OFDM 심벌을 통해 전송될 수 있다.
다른 양태에 있어서, 단말은 RF(radio frequency) 부; 및 상기 RF부와 연결되고, 시스템 정보를 브로드캐스트 채널 상으로 수신하고, 상기 시스템 정보를 기반으로 기지국과 통신하는 프로세서를 포함하되, 상기 시스템 정보는 다중 반송파 동작과 관련된 다중 반송파 정보를 포함한다.
레거시 시스템과의 하위 호환성을 제공하면서, 추가적인 정보 요소를 시스템 정보에 포함시킬 수 있다. 또한, 확장된 시스템 정보를 전송할 수 있는 채널의 구조가 제공된다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 3GPP LTE에서 무선 프레임의 구조를 나타낸다.
도 3은 PBCH의 구성을 나타낸다.
도 4는 S-PBCH 전송의 일 예를 나타낸다.
도 5는 S-PBCH 전송의 다른 예를 나타낸다.
도 6은 S-PBCH 전송의 또 다른 예를 나타낸다.
도 7은 S-PBCH 전송의 또 다른 예를 나타낸다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
도 1은 무선통신 시스템을 나타낸다. 무선통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서 하향링크(downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
도 2는 3GPP LTE에서 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.5.0 (2008-12)의 6절을 참조할 수 있다. 무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cylcic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211에 의하면, 노멀 CP에서 1 서브프레임은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 6 OFDM 심벌을 포함한다.
PSS(Primary Synchronization Signal)은 첫번째 슬롯(첫번째 서브프레임(인덱스 0인 서브프레임)의 첫번째 슬롯)과 11번째 슬롯(여섯번째 서브프레임(인덱스 5인 서브프레임)의 첫번째 슬롯)의 마지막 OFDM 심벌에 전송된다. PSS는 OFDM 심벌 동기 또는 슬롯 동기를 얻기 위해 사용되고, 물리적 셀 ID(identity)와 연관되어 있다. PSC(Primary Synchronization code)는 PSS에 사용되는 시퀀스이며, 3GPP LTE는 3개의 PSC가 있다. 셀 ID에 따라 3개의 PSC 중 하나를 PSS로 전송한다. 첫번째 슬롯과 11번째 슬롯의 마지막 OFDM 심벌 각각에는 동일한 PSC를 사용한다.
SSS(Secondary Synchronization Signal)은 제1 SSS와 제2 SSS를 포함한다. 제1 SSS와 제2 SSS는 PSS가 전송되는 OFDM 심벌에 인접한 OFDM 심벌에서 전송된다. SSS는 프레임 동기를 얻기 위해 사용된다. SSS는 PSS와 더불어 셀 ID를 획득하는데 사용된다. 제1 SSS와 제2 SSS는 서로 다른 SSC(Secondary Synchronization Code)를 사용한다. 제1 SSS와 제2 SSS가 각각 31개의 부반송파를 포함한다고 할 때, 길이 31인 2개의 SSC가 각각 시퀀스가 제1 SSS와 제2 SSS에 사용된다.
PBCH(Physical Broadcast Channel)은 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH(physical downlink control channel)를 통해 전송되는 시스템 정보를 SIB(system information block)라 한다.
도 3은 PBCH의 구성을 나타낸다. MIB는 먼저 인코딩 및 레이트 매칭을 거친 후, 스크램블링 코드로 스크램블된다(S310). 스크램블 코드는 셀 ID를 기반으로 생성된다.
스크램블된 MIB는 QPSK(Quadrature Phase Shift Keying) 기반으로 변조되어 변조 심벌들이 생성된다(S320).
변조 심벌들은 계층(layer)으로 맵핑되고 프리코딩이 수행되어, 각 전송 안테나에 대한 심벌이 생성된다(S330).
상기 전송 안테나에 대한 심벌은 RE(resource element) (k,l)에 맵핑된다(S340). k는 부반송파 인덱스, l은 첫번째 서브레임(인덱스 0인 서브프레임)의 두번째 슬롯의 OFDM 심벌 인덱스이다. RE 인덱스 (k,l)에서 k와 l은 다음 식과 같이 주어진다.
수학식 1
Figure PCTKR2010000247-appb-M000001
여기서, k'=0,1,2,3 이고, NDL RB는 전체 시스템 대역폭에서의 자원블록의 갯수이고, NRB sc는 자원블록당 부반송파의 갯수이다.
이는 하나의 무선 프레임을 기준으로 한 것이고, PBCH는 40ms 동안 즉, 4개의 연속적인 무선 프레임에서 4개의 서브프레임에 매핑이 된다. 상기 식에 의하면, PBCH는 한 서브프레임 내에서 4개의 OFDM 심벌과 72개의 부반송파들을 사용하여 물리적 자원에 맵핑된다.
3GPP TS 36.331 V8.4.0 (2008-12)의 6.2절에 의하면, MIB는 다음 표와 같이 정의된다.
표 1
MasterInformationBlock ::= SEQUENCE { dl-Bandwidth ENUMERATED { n6, n15, n25, n50, n75, n100, spare2, spare1}, phich-Configuration PHICH-Configuration, systemFrameNumber BIT STRING (SIZE (8)), spare BIT STRING (SIZE (10))}
'dl-Bandwidth'는 시스템 대역폭이고, 'systemFrameNumber'는 SFN(system frame number)이다. 'phich-Configuration'은 PHICH(Physical Hybrid automatic repeat request Indicator Channel) 구간(duration)과 PHICH 자원을 포함한다. PHICH 구간은 서브프레임에서 PHICH가 전송되는 OFDM 심벌의 개수를 나타내고, PHICH 자원은 서브프레임에서 PHICH 그룹의 개수를 결정하는데 사용된다.
상기와 같이 단말이 PBCH 상으로 MIB를 수신하면, 시스템 대역폭, SFN, PHICH 구성을 알 수 있다. 또한, MIB의 CRC(Cyclic Redundancy Check)와 다음 표와 같은 마스킹 시퀀스를 추가적으로 마스킹함으로써, 기지국의 전송 안테나의 개수를 단말에게 알려준다.
표 2
기지국의 전송 안테나 개수 마스킹 시퀀스
1 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
2 <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
4 <0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1>
3GPP LTE는 하향링크에서 최대 4개의 전송 안테나를 지원하기 때문에, 상기와 같은 3개의 마스킹 시퀀스가 사용된다.
만약 8개의 전송 안테나가 사용된다면, <1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0>와 같은 마스킹 시퀀스를 추가적으로 정의하여 사용할 수 있다. 새로운 마스킹 시퀀스는 기존 1, 2, 4개의 안테나 수에 대한 마스킹 시퀀스와 디스턴스가 가장 큰 시퀀스로 결정할 수 있다. 해당 시퀀스는 반드시 8을 알려주기 위해서 사용될 필요는 없고, 4개 보다 많은 안테나 수를 표현하기 위해 사용될 수 있다.
상기와 같은 추가적인 마스킹 시퀀스를 사용한다면, LTE 단말은 추가적인 마스킹 시퀀스로 마스킹된 MIB를 디코딩할 수 없다. 따라서, 추가적인 마스킹 시퀀스를 특정 반송파의 MIB 전송에 사용한다면, 상기 특정 반송파를 LTE 단말이 사용하지 못하는 비 호환 반송파로 설정할 수 있다.
이제, 본 발명에서 제안하는 MIB에 포함되는 추가적인 정보 요소(information element)에 대해 기술한다.
MIB는 상기의 내용과 같이 시스템 대역폭, SFN, PHICH 구성, 전송 안테나 개수와 같이 기지국과 단말 간에 통신을 하기 위해, 단말이 알아야야 하는 필수적인 정보를 포함한다. 이때, 기존에 정의된 MIB에는 여분의 10비트 필드가 있는 바, 상기 여분의 비트에 추가적인 정보 요소를 정의한다면, 기존 3GPP LTE와의 하위 호환성(backward compatibility)을 보장할 수 있다.
기존 LTE 시스템에서는 상향링크와 하향링크에 대해서 단일 반송파만을 사용하므로, PBCH를 통해 셀-특정적인(cell-specific) 시스템 정보가 전송되고 있다. 하지만, 상향링크 및/또는 다중 반송파를 사용할 경우 PBCH를 통해 셀-특정적 및/또는 반송파-특정적 시스템 정보가 전송될 수 있다. 반송파-특정적 시스템 정보는 단말과 기지국간의 다중 반송파 동작과 관련된 다중 반송파 정보로써, 반송파마다 서로 다른 시스템 정보일 수 있다.
MIB에 추가적으로 정의될 수 있는 정보 요소는 다음과 같다.
(1) 복수의 반송파 중 사용 가능한(또는 사용 불가능한) 반송파에 관한 정보. 이는 반송파의 인덱스로 나타내거나, 비트맵 형태로 나타낼 수 있다.
(2) 셀-특정적 반송파 구성에 대한 정보. 반송파의 개수나 중심 주파수에 관한 정보일 수 있다. 복수의 반송파 중 하나의 반송파에 대해서 동기를 획득하면, 이 정보를 통해 다른 반송파의 동기 정보를 획득할 수 있다. 따라서, 복수의 반송파 모두에 대해 동기신호를 검색할 필요가 없어, 동기화가 빨라지고 단말의 전원 소모를 줄일 수 있다.
(3) 반송파의 타입. 반송파는 LTE에 대한 하위 호환성을 지원하는지 여부에 따라 호환 반송파와 비호환 반송파로 구분될 수 있다. 반송파의 타입은 각 반송파가 호환 반송파인지 비호환 반송파인지 여부를 지시한다. 또는, 데이터 레이트(data rate)를 증가시키기 위해, 동기신호나 PBCH가 전송되지 않는 확장(extension) 반송파가 정의될 수 있는데, 반송파의 타입은 확장 반송파 여부를 지시할 수도 있다.
(4) non-PHICH 지시자. PHICH는 상향링크 데이터에 대한 HARQ ACK/NACK 신호를 나르는 채널이다. non-PHICH 지시자는 PBCH 상의 PHICH 구성을 무시하고, PHICH를 전송하지 않는 반송파(또는 서브프레임)를 지정한다. PHICH는 상향링크 할당이 수신되는 하향링크 반송파를 통해 전송되므로, non-PHICH 지시자에 의해 설정된 반송파에서는 상향링크 할당을 포함하는 DCI 포맷(예, DCI 포맷 0)에 대해서는 모니터링하지 않을 수 있다.
(5) 셀 탐색 후 랜덤 액세스 과정과 같은 초기 액세스 과정에서 PBCH를 통해 해당되는 하향링크 반송파 인덱스를 전송함으로써, 단말이 어느 반송파를 통해 초기 액세스를 진행하고 있는지 알 수 있도록 할 수 있다.
(1) 내지 (5)는 단말과 기지국간의 다중 반송파 동작과 관련된 다중 반송파 정보라 할 수 있다.
(6) 기존 LTE와 호환되지 않는 새로운 포맷의 LTE-A를 위한 서브프레임 또는 릴레이를 위한 서브프레임을 지시하는 정보가 포함될 수 있다.
(7) 전송 안테나 필드. 이는 기지국이 단말에게 하향링크 전송에 사용되는 전송 안테나의 개수를 알려주는 정보이다. 기존 PBCH의 마스킹 시퀀스를 통해 4개까지의 전송 안테나 개수를 알려줄 수 있는데, 이 전송 안테나 필드는 기지국이 4개 보다 많은 전송 안테나 개수를 알려주기 위해 사용할 수 있다. 전송 안테나의 개수가 N 이라면, 전송 안테나 필드는 ceil(N) 비트를 가질 수 있다. 또는, 전송 안테나 필드는 ceil(N) 이하의 비트를 가지고, 단말들은 PBCH 디-마스킹으로 얻은 정보를 조합하여, 추가되는 전송 안테나 개수를 얻을 수도 있다. 새로운 마스킹 시퀀스를 이용하는 것과 비교하여, 기존 LTE 단말과의 하위 호환성을 보장할 수 있는 장점이 있다.
(8) LTE-A 단말을 위한 PHICH 관련 정보. 기존의 PHICH 구간이나 PHICH 자원이외에 추가적인 PHICH 관련 파라미터가 정의될 수 있다.
(9) 시스템 버전에 대한 정보. MIB에 포함되는 시스템 버전에 대한 정보를 이용하여 SIB가 어떻게 구성되는지를 알려줄 수 있다. 예를 들어, 시스템 버전이 LTE와 같은 레거시(legacy) 시스템을 지시하는 경우에는 SIB가 기존 시스템에 정의된대로 구성될 수 있다. 시스템 버전이 LTE-A와 같이 새로 정의되는 시스템을 지시하는 경우에는 SIB가 기존과 다르게, 또는 기존에 추가되어 변형된 형태의 SIB를 구성함을 알릴 수 있는 것이다.
(10) 릴레이의 타입 또는 펨토 셀의 타입
(11) CoMP(Coordinated Multi-Point transmission) 가능 모드에 대한 지시자 또는 CoMP 타입
상기에 제안한 (1)~(10) 내용들 중 적어도 하나가 MIB에 포함되어, PBCH 상으로 전송될 수 있다. 또한, 상기의 추가적인 내용들은 후술하는 2차(secondary PBCH)를 통해서도 전송될 수 있다.
전술한 바와 같이 PBCH를 구성할 때, 셀 특정 스크램블링(cell-specific scrambling)이 수행되며, 이를 위해 스크램블 시퀀스는 셀 ID를 기반으로 초기화된다. 다중 반송파를 통해 한 셀에서 데이터를 송신 또는 수신하는 경우에, 각 반송파를 통해 전송되는 PBCH의 비트의 전체 또는 대부분이 동일하다면, PAPR(Peak-to-Average Power Ratio)가 높아질 수 있다. 한 셀에서 다중 반송파를 사용한다면, 하향링크 PAPR를 줄이기 위해 반송파-특정 스크램블링이 수행될 수 있다.
반송파-특정 스크램블링을 위해 스크램블 시퀀스는 반송파 인덱스, 셀 ID 및 이들의 조합 중 적어도 어느 하나를 기반으로 초기화될 수 있다. 반송파-특정 스크램블링이 적용되면 기존 LTE 단말은 PBCH를 수신할 수 없다. 따라서, LTE-A 전용 반송파에만 반송파-특정 스크램블링을 사용하거나, LTE 단말과 LTE-A 단말을 모두 지원할 수 있는 혼합 반송파(mixed carrier)에서 LTE 단말이 해당 반송파를 사용하지 않도록 하기 위해 해 PBCH의 반송파-특정 스크램블링을 사용할 수 있다.
이제 제안되는 2차 PBCH(Secondary PBCH, S-PBCH)의 구조에 대해 기술한다.
LTE-A 시스템에서는 다중 반송파, 더 높은 차수의 MIMO, 릴레이, CoMP와 같은 새로운 기법의 도입으로 인해, 다양한 시스템 정보가 필요하다. LTE-A를 위한 확장된 시스템 정보에 사용되는 브로드캐스트 채널을 S-PBCH라 한다.
S-PBCH는 PBCH와 같이 40ms 주기 동안 전송되거나, 20ms 또는 80ms의 주기로 전송될 수 있다.
S-PBCH가 전송되는 주파수 영역은 기존 PBCH와 같이 시스템 대역폭의 가운데 72개의 부반송파를 사용할 수 있다. 사용되는 부반송파의 수에는 제한이 없다. 다만, 기존 PBCH나 PSS, SSS와 동일한 수의 부반송파를 사용한다면, 나머지 부반송파를 다른 용도로 스케줄링하기 용이하고, 낭비하는 자원을 최소화시킨다는 측면에서 잇점이 있다.
S-PBCH는 기존 PBCH, PSS 및 SSS가 전송되는 무선 프레임의 첫번째 서브프레임에서 전송될 수 있다. 전술한 바와 같이, PBCH가 전송되는 서브프레임에는 PSS, SSS가 이전 슬롯의 두 개의 OFDM 심볼을 이용해 전송된다. 또는, S-PBCH는 PSS와 SSS가 전송되는 여섯번째 서브프레임에서 전송될 수 있다.
도 4는 S-PBCH 전송의 일 예를 나타낸다. 무선 프레임의 첫번째 서브프레임에서 S-PBCH가 전송된다. 14개의 OFDM 심벌 중 서브프레임의 앞선 3개의 OFDM 심벌과 SSS, PSS 및 PBCH의 전송에 사용되는 6개의 OFDM 심벌을 제외한 나머지 OFDM 심벌등 중 적어도 하나의 OFDM 심벌을 통해 S-PBCH가 전송될 수 있다. 나머지 OFDM 심벌들 모두가 S-PBCH 전송에 사용되거나, 나머지 OFDM 심벌들 중 하나 또는 그 이상의 OFDM 심벌이 S-PBCH 전송에 사용될 수 있다.
도 5는 S-PBCH 전송의 다른 예를 나타낸다. 무선 프레임의 첫번째 서브프레임 뿐만 아니라 여섯번째 서브프레임에서도 S-PBCH가 전송되는 예이다. 여섯번째 서브프레임에서는 PBCH가 전송되지 않으므로, 여섯번째 서브프레임에서는 최대 9개의 OFDM 심벌이 S-PBCH의 전송에 사용될 수 있다. 나머지 OFDM 심벌들 모두가 S-PBCH 전송에 사용되거나, 나머지 OFDM 심벌들 중 하나 또는 그 이상의 OFDM 심벌이 S-PBCH 전송에 사용될 수 있다.
도 4 및 5는 하나의 슬롯에 7개의 OFDM 심벌이 포함되는 노멀(normal) CP(Cyclic Prefix)에의 적용을 개시한다. 도 6 및 7은 하나의 슬롯에 6개의 OFDM 심벌이 포함되는 확장(extended) CP에의 적용을 개시한다. 도 6 및 7은 서브프레임 당 전체 OFDM 심벌의 개수만 달라질 뿐, 도 4 및 5의 실시예와 동일하다.
PBCH, PSS, SSS가 72개의 부반송파를 사용하는 것은 1.25MHz의 협대역 시스템에서 PBCH, PSS, SSS의 전송 및 수신이 가능하도록 하기 위함이다. 도 4 내지 7의 실시예에서, 협대역 시스템에서는 S-PBCH가 전송되는 서브프레임에서 데이터 채널을 위한 자원이 부족할 수 있다. 이경우 S-PBCH의 전송에 사용되는 OFDM 심벌의수를 제한할 수 있다.
상기 예에서는 첫번째 또는 여섯번째 서브프레임에서 S-PBCH를 전송하고 있지만, S-PBCH의 전송에 사용되는 서브프레임의 위치나 개수를 한정하는 것은 아니다.
S-PBCH는 LTE-A 단말을 위한 별도의 브로트캐스트 채널이고, 공유 채널이 전송될 수 있는 데이터영역에서 전송된다면 하위 호환성은 보장된다. LTE 단말이 S-PBCH가 전송되는 영역을 사용하지 않도록 스케줄링하면 되기 때문이다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다. 기지국(810)은 시스템 정보를 구성하고 전송하는 무선 장치이다. 단말(850)은 수신되는 시스템 정보를 기반으로 기지국(810)에 접속하는 무선 장치이다.
기지국(810)은 프로세서(811), 메모리(812) 및 RF(Radio Frequency)부(815)를 포함한다. 프로세서(811)는 메모리(812), RF부(815)와 연결되어 시스템 정보를 구성하고, 시스템 정보를 브로드캐스트 채널상으로 전송한다. 프로세서(811)는 전술한 기능, 과정 및/또는 방법을 구현한다. 메모리(812)는 프로세서(811)와 연결되어, 프로세서(811)를 구동하기 위한 다양한 정보를 저장한다. RF부(815)는 프로세서(811)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(850)은 프로세서(851), 메모리(852), 인터페이스부(853) 및 RF부(855)를 포함한다. 프로세서(851)는 메모리(852), 인터페이스부(853) 및 RF부(855)와 연결되어 기지국(810)으로부터 시스템 정보를 수신하고, 수신된 시스템 정보를 기반으로 기지국(810)과 통신한다. 메모리(852)는 프로세서(851)와 연결되어, 프로세서(851)를 구동하기 위한 다양한 정보를 저장한다. 인터페이스부(853)는 사용자와 인터페이스를 위한 입력 장치, 디스프플레이 등을 포함한다. RF부(855)는 프로세서(851)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
프로세서(811, 851)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(812,852)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(815,855)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(812,852)에 저장되고, 프로세서(811,851)에 의해 실행될 수 있다. 메모리(812,852)는 프로세서(811,851) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(811,851)와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.

Claims (12)

  1. RF(radio frequency) 부; 및
    상기 RF부와 연결되고, 시스템 정보를 브로드캐스트 채널상으로 전송하는 프로세서를 포함하되,
    상기 시스템 정보는 다중 반송파 동작과 관련된 다중 반송파 정보를 포함하는 기지국.
  2. 제 1 항에 있어서, 상기 다중 반송파 정보는 시스템이 사용하는 다중 반송파의 개수, 반송파 인덱스 및 반송파의 타입 중 적어도 어느 하나를 포함하는 기지국.
  3. 제 1 항에 있어서, 상기 다중 반송파 정보는 하향링크 HARQ(hybrid automatic repeat request) ACK/NACK 신호의 전송에 사용되는 PHICH(Physical HARQ Indicator Channel)가 전송되지 않는 반송파를 가리키는 non-PHICH 지시자를 포함하는 기지국.
  4. 제 1 항에 있어서, 상기 시스템 정보는 하향링크 전송에 사용되는 전송 안테나의 개수를 포함하는 기지국.
  5. 제 1 항에 있어서, 상기 브로드캐스트 채널은 S-PBCH(Secondary Physical Broadcast Channel)인 기지국.
  6. 제 5 항에 있어서, 상기 S-PBCH는 무선 프레임을 구성하는 10개의 서브프레임 중 적어도 하나의 서브프레임을 통해 전송되는 기지국.
  7. 제 6 항에 있어서, 상기 S-PBCH는 상기 무선 프레임을 구성하는 10개의 서브프레임 중 첫번째 서브프레임과 여섯번째 서브프레임 중 적어도 어느 하나를 통해 전송되는 기지국.
  8. 제 7 항에 있어서, 서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 상기 S-PBCH는 상기 복수의 OFDM 심벌 중 앞선 3개의 OFDM 심벌과 SSS(Secondary Synchronization Signal), PSS(Primary Synchronization Signal) 및 PBCH의 전송에 사용되는 OFDM 심벌을 제외한 나머지 OFDM 심벌등 중 적어도 하나의 OFDM 심벌을 통해 전송되는 기지국.
  9. RF(radio frequency) 부; 및
    상기 RF부와 연결되고, 시스템 정보를 브로드캐스트 채널 상으로 수신하고, 상기 시스템 정보를 기반으로 기지국과 통신하는 프로세서를 포함하되,
    상기 시스템 정보는 다중 반송파 동작과 관련된 다중 반송파 정보를 포함하는 단말.
  10. 제 9 항에 있어서, 상기 브로드캐스트 채널은 S-PBCH(Secondary Physical Broadcast Channel)인 단말.
  11. 제 10 항에 있어서, 상기 S-PBCH는 상기 무선 프레임을 구성하는 10개의 서브프레임 중 첫번째 서브프레임과 여섯번째 서브프레임 중 적어도 어느 하나를 통해 전송되는 단말.
  12. 제 11 항에 있어서, 서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 상기 S-PBCH는 상기 복수의 OFDM 심벌 중 앞선 3개의 OFDM 심벌과 SSS(Secondary Synchronization Signal), PSS(Primary Synchronization Signal) 및 PBCH의 전송에 사용되는 OFDM 심벌을 제외한 나머지 OFDM 심벌등 중 적어도 하나의 OFDM 심벌을 통해 전송되는 단말.
PCT/KR2010/000247 2009-01-15 2010-01-15 시스템 정보 전송 및 수신 장치 WO2010082775A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/144,691 US8982759B2 (en) 2009-01-15 2010-01-15 System information transmitting and receiving device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14507309P 2009-01-15 2009-01-15
US61/145,073 2009-01-15
US15476809P 2009-02-24 2009-02-24
US61/154,768 2009-02-24

Publications (2)

Publication Number Publication Date
WO2010082775A2 true WO2010082775A2 (ko) 2010-07-22
WO2010082775A3 WO2010082775A3 (ko) 2010-10-21

Family

ID=42340213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000247 WO2010082775A2 (ko) 2009-01-15 2010-01-15 시스템 정보 전송 및 수신 장치

Country Status (2)

Country Link
US (1) US8982759B2 (ko)
WO (1) WO2010082775A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453456A (zh) * 2013-09-17 2016-03-30 英特尔Ip公司 物理广播信道(pbch)内容的传输
WO2016208959A1 (en) * 2015-06-22 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
WO2018084624A1 (ko) * 2016-11-03 2018-05-11 삼성전자 주식회사 밀리미터 웨이브 시스템을 위한 빔포밍 기반 송수신 동작 방식 및 장치
CN109565770A (zh) * 2017-08-11 2019-04-02 瑞典爱立信有限公司 用于同步的方法和装置
US11096115B2 (en) 2016-11-03 2021-08-17 Samsung Electronics Co., Ltd. Beamforming-based transmitting and receiving operation method and device for millimeter-wave system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458418B (en) * 2006-12-19 2011-08-03 Lg Electronics Inc Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
KR100938756B1 (ko) * 2007-07-06 2010-01-26 엘지전자 주식회사 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
KR101349842B1 (ko) * 2009-04-13 2014-01-10 엘지전자 주식회사 개선 시스템을 지원하는 기지국에서의 시스템 정보 전송 방법 및 장치
JP5291664B2 (ja) * 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
JP5291663B2 (ja) * 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
WO2012058648A2 (en) * 2010-10-29 2012-05-03 Neocific, Inc. Transmission of synchronization and control signals in a broadband wireless system
US9107153B1 (en) * 2012-02-24 2015-08-11 Marvell International Ltd. Parallel processing of both code synchronization and frequency synchronization for wireless communication
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
CN103906139B (zh) * 2012-12-27 2018-10-30 夏普株式会社 系统信息的发送和接收方法以及基站和用户设备
JP6284951B2 (ja) * 2013-01-09 2018-02-28 エルジー エレクトロニクス インコーポレイティド 信号受信方法及びユーザ機器、並びに信号送信方法及び基地局
US20150003405A1 (en) * 2013-06-26 2015-01-01 Mediatek Inc. Enhanced Broadcast Channel for Primary System Information acquisition in OFDM/OFDMA Systems
CN106488509B (zh) * 2015-09-02 2021-10-19 中兴通讯股份有限公司 一种系统消息传输方法及装置
US10256955B2 (en) * 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation
WO2017196406A1 (en) * 2016-05-09 2017-11-16 Intel IP Corporation Extended physical broadcast channel design for 5g standalone system
US10887035B2 (en) * 2016-06-01 2021-01-05 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10512046B2 (en) * 2016-06-09 2019-12-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal and synchronization
CN110168979B (zh) 2017-01-06 2022-07-15 Idac控股公司 基于检错的同步和广播信道
US10523354B2 (en) 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
CN108809497B (zh) * 2017-05-05 2021-11-02 展讯通信(上海)有限公司 时间索引的承载方法、检测方法及装置、存储介质、基站、终端
CN109963270B (zh) * 2017-12-22 2022-06-07 中国电信股份有限公司 信息发送方法和系统、基站及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002724A1 (en) * 2005-06-15 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for broadcast superposition and cancellation in a multi-carrier wireless network
US20080085716A1 (en) * 2006-10-04 2008-04-10 Lg-Nortel Co., Ltd. Method and device for controlling wireless resource assignment
WO2008053321A2 (en) * 2006-10-30 2008-05-08 Nokia Corporation Providing transmission parameters for a high speed random access channel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331476B2 (en) * 2007-05-08 2012-12-11 Telefonaktiebolaget L M Ericsson (Publ) Method for detecting transmission mode in a system using multiple antennas
EP3293905B1 (en) * 2007-08-14 2021-02-17 LG Electronics Inc. Method for acquiring resource region information for phich
US8412287B2 (en) * 2008-08-15 2013-04-02 Nokia Siemens Networks Oy Power saving support for wireless networks
WO2010049006A1 (en) * 2008-10-31 2010-05-06 Nokia Siemens Networks Oy Carrier selection for accessing a cellular system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002724A1 (en) * 2005-06-15 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for broadcast superposition and cancellation in a multi-carrier wireless network
US20080085716A1 (en) * 2006-10-04 2008-04-10 Lg-Nortel Co., Ltd. Method and device for controlling wireless resource assignment
WO2008053321A2 (en) * 2006-10-30 2008-05-08 Nokia Corporation Providing transmission parameters for a high speed random access channel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11039334B2 (en) 2013-09-17 2021-06-15 Apple Inc. Transmission of physical broadcast channel (PBCH) contents
US10123231B2 (en) 2013-09-17 2018-11-06 Intel IP Corporation Transmission of physical broadcast channel (PBCH) contents
CN105453456A (zh) * 2013-09-17 2016-03-30 英特尔Ip公司 物理广播信道(pbch)内容的传输
WO2016208959A1 (en) * 2015-06-22 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
US10098103B2 (en) 2015-06-22 2018-10-09 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
WO2018084624A1 (ko) * 2016-11-03 2018-05-11 삼성전자 주식회사 밀리미터 웨이브 시스템을 위한 빔포밍 기반 송수신 동작 방식 및 장치
US11096115B2 (en) 2016-11-03 2021-08-17 Samsung Electronics Co., Ltd. Beamforming-based transmitting and receiving operation method and device for millimeter-wave system
KR20200003119A (ko) * 2017-08-11 2020-01-08 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 동기화를 위한 방법 및 디바이스
KR102260390B1 (ko) 2017-08-11 2021-06-03 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 동기화를 위한 방법 및 디바이스
KR20210066945A (ko) * 2017-08-11 2021-06-07 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 동기화를 위한 방법 및 디바이스
US10887853B2 (en) 2017-08-11 2021-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for synchronization
CN109565770B (zh) * 2017-08-11 2021-06-18 瑞典爱立信有限公司 用于同步的方法和装置
CN109565770A (zh) * 2017-08-11 2019-04-02 瑞典爱立信有限公司 用于同步的方法和装置
KR102421617B1 (ko) 2017-08-11 2022-07-18 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 동기화를 위한 방법 및 디바이스
US11438855B2 (en) 2017-08-11 2022-09-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for synchronization

Also Published As

Publication number Publication date
US8982759B2 (en) 2015-03-17
WO2010082775A3 (ko) 2010-10-21
US20110274102A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2010082775A2 (ko) 시스템 정보 전송 및 수신 장치
WO2017209478A1 (en) Resource scheduling method and apparatus
WO2013009005A2 (ko) 무선 통신 시스템에서 자원을 할당하는 방법 및 이를 위한 장치
WO2016182391A1 (en) Method and apparatus for performing initial access procedure for low cost user equipment in wireless communication system
WO2017078458A1 (en) Method and apparatus for handling frequency retuning for machine-type communication user equipment in wireless communication system
WO2011129628A2 (en) Systems and methods for bundling resource blocks in a wireless communication system
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2009116789A1 (en) Method of transmitting uplink data in wireless communication system
WO2010101366A2 (ko) 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
WO2010044632A2 (ko) 다중 반송파 시스템에서 통신 방법 및 장치
WO2010013961A2 (en) Method and apparatus of monitoring pdcch in wireless communication system
WO2010087643A2 (en) Control signaling for transmissions over contiguous and non-contiguous frequency bands
WO2010035987A2 (en) Downlink channel transmission method and apparatus and common channel reception method and apparatus in cellular communication system supporting bandwidth scalability
WO2010050735A2 (en) 8-transmit antenna reference signal design for downlink communications in a wireless system
WO2013069940A1 (en) Control channel detection method and apparatus of mimo system
WO2011074868A2 (ko) 무선 통신 시스템에서 제어 채널 모니터링 방법 및 장치
WO2013141546A1 (ko) 데이터 패킷 전송 방법 및 무선기기
WO2012169716A1 (ko) 제어정보 송수신 방법 및 송수신 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2016089184A1 (en) Method and apparatus for supporting variable transport block size without associated downlink control information in wireless communication system
WO2013133681A1 (ko) 협대역 단말을 위한 셀 선택 방법 및 이를 이용하는 장치
WO2016028116A1 (en) Method and apparatus for defining received signal strength indicator for discovery signals in wireless communication system
WO2016068642A1 (en) Method and apparatus for performing rrm measurements in unlicensed band in wireless communication system
WO2015020398A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 전송 방법 및 장치
WO2013048079A1 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731390

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13144691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731390

Country of ref document: EP

Kind code of ref document: A2